Science.gov

Sample records for induces allergic responses

  1. Anti-inflammatory effect of curcumin on mast cell-mediated allergic responses in ovalbumin-induced allergic rhinitis mouse.

    PubMed

    Zhang, Ning; Li, Hong; Jia, Jihui; He, Mingqiang

    2015-01-01

    Curcumin has commonly been used for the treatment of various allergic diseases. However, its precise anti-allergic rhinitis effect and mechanism remain unknown. In the present study, the effect of curcumin on allergic responses in ovalbumin (OVA)-induced allergic rhinitis mouse was investigated. We explored the effect of curcumin on the release of allergic inflammatory mediators, such as histamine, OVA-specific IgE, and inflammatory cytokines. Also, we found that curcumin improved rhinitis symptoms, inhibited the histopathological changes of nasal mucosa, and decreased the serum levels of histamine, OVA-specific IgE and TNF-α in OVA-induced allergic rhinitis mice. In addition, curcumin suppressed the production of inflammatory cytokines, such as TNF-α, IL-1β, IL-6 and IL-8. Moreover, curcumin significantly inhibited PMA-induced p-ERK, p-p38, p-JNK, p-Iκ-Bα and NF-κB. These findings suggest that curcumin has an anti-allergic effect through modulating mast cell-mediated allergic responses in allergic rhinitis, at least partly by inhibiting MAPK/NF-κB pathway.

  2. AN EXTRACT OF PENICILLIUM CHRYSOGENUM INDUCES DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES IN MICE

    EPA Science Inventory

    Rationale: Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of P. chrysogenum (PCE) can dose-dependently induce responses typ...

  3. AN EXTRACT OF PENICILLIUM CHRYSOGENUM INDUCES DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES IN MICE

    EPA Science Inventory

    Rationale: Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of P. chrysogenum (PCE) can dose-dependently induce responses typ...

  4. Chickpea (Cicer arietinum) proteins induce allergic responses in nasobronchial allergic patients and BALB/c mice.

    PubMed

    Verma, Alok Kumar; Kumar, Sandeep; Tripathi, Anurag; Chaudhari, Bhushan P; Das, Mukul; Dwivedi, Premendra D

    2012-04-05

    Allergy to chickpea or Garbanzo bean (Cicer arietinum) has been reported in the Indian population. Little information is found regarding allergenic events involved in the chickpea allergy; therefore, chickpea allergenicity assessment was undertaken. In vivo and ex vivo studies were carried out using BALB/c mice. Chickpea skin prick test positive patients have been used to extend this study in humans. Identification of allergens was carried out by simulated gastric fluids assay for pepsin resistant polypeptides and validated by IgE western blotting using chickpea sensitive humans and sensitized mice sera. Our data have shown the occurrence of a systemic anaphylactic reaction resulting in reduced body temperature after challenge along with significantly increased levels of IgE, IgG1, MMCP-1, CCL-2 as well as histamine. Further, increased Th1/Th2 (mixed) cytokine response was observed in spleen cell culture supernatants. Jejunum, lungs and spleen showed prominent histopathological changes specific for allergic inflammation. Immunoblotting with pooled sera of either sensitized mice or human sera recognized seven similar IgE binding polypeptides that may be responsible for chickpea induced hypersensitivity reactions. This study has addressed the allergenic manifestations associated with chickpea consumption and identifies the proteins responsible for allergenicity which may prove useful in diagnosis and management of allergenicity of legumes especially chickpea. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Natural and induced allergic responses increase the ability of the nose to warm and humidify air.

    PubMed

    Assanasen, P; Baroody, F M; Abbott, D J; Naureckas, E; Solway, J; Naclerio, R M

    2000-12-01

    We have previously shown that subjects with seasonal allergic rhinitis out of season had a reduced ability to warm and humidify air compared with normal subjects. We sought to investigate whether allergic reactions induced by either seasonal exposure or nasal challenge with antigen would decrease the capacity of the nose to condition cold, dry air. We performed two prospective studies comparing the effects of allergic inflammation, induced by either seasonal exposure or nasal challenge with antigen, on nasal conditioning capacity (NCC). The total water gradient (WG) across the nose was used to represent the NCC. In the first study, the NCC was measured and compared before and during the allergy season in 10 subjects with seasonal allergic rhinitis. In the second study, 20 subjects with seasonal allergic rhinitis were recruited outside of the allergy season. NCC was measured and compared before and 24 hours after challenge with antigen. In the first study, seasonal allergic subjects in season showed a significant increase in NCC when compared with their preseason baseline (total WG in season: 2050 +/- 138 mg vs total WG preseason: 1524 +/- 100 mg; P <.01). In the second study, antigen challenge led to early-phase and late-phase responses. There was a statistically significant increase in NCC 24 hours after antigen challenge compared with that before antigen challenge (total WG after antigen challenge: 1938 +/- 101 mg vs total WG before antigen challenge: 1648 +/- 84 mg; P =.01). Allergic reactions induced by either seasonal exposure or antigen challenge increase the ability of the nose to condition inspired air. We speculate that allergic inflammation increases this ability by changing the perimeter of the nasal cavity.

  6. Setipiprant, a selective CRTH2 antagonist, reduces allergen-induced airway responses in allergic asthmatics.

    PubMed

    Diamant, Z; Sidharta, P N; Singh, D; O'Connor, B J; Zuiker, R; Leaker, B R; Silkey, M; Dingemanse, J

    2014-08-01

    CRTH2 is a G-protein-coupled receptor on T helper2 cells that mediates pro-inflammatory effects of prostaglandin D2 in allergic responses. To investigate the tolerability and pharmacokinetics of setipiprant (ACT-129968), a selective orally active CRTH2 antagonist, in allergic asthmatics and to assess the protective effects of multiple doses of this drug against allergen-induced airway responses. In this 3-centre, double-blinded, placebo-controlled, cross-over study, 18 allergic asthmatic males were randomized to setipiprant 1000 mg or matching placebo b.i.d. for 5 consecutive days. Study periods were separated by a washout of ≥ 3 weeks. On study day 4, subjects underwent a standardized allergen challenge and airway response was recorded by FEV1 until 10 h post-allergen. Airway responsiveness to methacholine and exhaled nitric oxide (eNO) were measured pre- and post-dosing. The effects of both treatments on the allergen-induced airway responses were compared by a paired Student's t-test. Fifteen subjects completed the study per-protocol and were included in the analysis. Overall, setipiprant was well tolerated and no clinically relevant adverse events occurred. Trough plasma concentrations showed a high inter-subject variability. Compared with placebo, setipiprant significantly reduced the allergen-induced late asthmatic response (LAR), inhibiting the area under the response vs. time curve (AUC(3-10 h) ) by on average 25.6% (P = 0.006) and significantly protected against the allergen-induced airway hyperresponsiveness (AHR) to methacholine (P = 0.0029). There was no difference in the early asthmatic response (EAR) or in allergen-induced changes in eNO between treatments. Setipiprant at multiple oral doses was well tolerated and reduced both the allergen-induced LAR and the associated AHR in allergic asthmatics. Our findings confirm that CRTH2 may be a promising target for the treatment of allergic disorders. © 2014 John Wiley & Sons Ltd.

  7. Ability of pollen cytoplasmic granules to induce biased allergic responses in a rat model.

    PubMed

    Abou Chakra, Oussama; Rogerieux, Françoise; Poncet, Pascal; Sutra, Jean-Pierre; Peltre, Gabriel; Sénéchal, Hélène; Lacroix, Ghislaine

    2011-01-01

    Grass pollen is one of the most important aeroallergens in Europe. It highly contributes to respiratory allergic diseases, mainly allergic rhinitis. In contact to water or airborne pollutants, pollen grains can release pollen cytoplasmic granules (PCGs) containing allergens. Because of their size (<5 μm), PCGs may penetrate deeper into the lungs to induce higher allergic responses, such as asthma. They have been associated with thunderstorm-related asthma. The aim of this study was to evaluate, with Brown Norway rats, the allergenic potential of isolated PCGs and to compare it with the allergenicity of whole timothy grass pollen. Rats were sensitized (day 0) and challenged (day 21), in controlled comparative conditions, with pollen grains (0.5 mg) or PCGs (4.5 × 10⁷ and 0.5 mg). At day 25, blood samples, bronchoalveolar lavage fluid (BALF) and bronchial lymph node were collected. IgE and IgG1 levels in sera were assessed by ELISA. Alveolar cells, protein and cytokine concentrations were quantified in BALF. T cell proliferation, in response to pollen or granules, was performed by lymph node assay. The results showed that proliferative responses of lymph node cells were similar in PCG- and pollen-sensitized rats. IgE and IgG1 levels were higher in pollen- than in PCG-sensitized rats. However, eosinophils, lymphocytes and pro-allergy cytokines in BALF were higher in PCG- than in pollen-sensitized rats. Thus, PCGs, able to deeply penetrate in the respiratory tract, induced local and strong allergic and inflammatory responses more linked with asthma- than rhinitis-related allergic symptoms. Copyright © 2010 S. Karger AG, Basel.

  8. Effect of Persimmon Leaf Extract on Phthalic Anhydride-induced Allergic Response in Mice

    PubMed Central

    Mok, Ji Ye; Jeon, In Hwa; Cho, Jung-Keun; Park, Ji Min; Kim, Hyeon Soo; Kang, Hyun Ju; Kim, Hyung Soon; Jang, Seon Il

    2012-01-01

    The purpose of this study was to investigate the anti-allergy activities of persimmon leaf extract (PLE) on a phthalic anhydride (PA)-induced allergic mouse model. A human leukemic mast cell line (HMC-1) was used to examine the inhibitory activity of PLE on the histamine release by human leukemic mast cells. PLE inhibited histamine release from HMC-1 cells in response to cross-linkage of high-affinity IgE receptor-α (FcεRIα). Additionally, a PA-induced allergic mouse model was used to investigate the effects of PLE in vivo. Mice were orally administrated with or without PLE of single dose (250 mg/kg/day) for 31 days. Oral intake of PLE significantly inhibited passive cutaneous reactions. Oral administration of PLE to PA-induced allergic mice also led to a striking suppression of the development of contact dermatitis, ear swelling and lymph node weight. In addition, PA-specific IL-4 production of draining lymph node cells was markedly diminished by PLE oral administration, but not IFN-γ. Furthermore, PLE treatment suppressed PA-induced thymus and activation-regulated chemokine (CCL17) and cutaneous T cell-attracting chemokine (CCL27) expressions in ear tissues. Based on these results, we suggest that PLE may have therapeutic potential as an effective material for management of irritant contact dermatitis or related inflammatory diseases. PMID:24471058

  9. Triclosan Induces Thymic Stromal Lymphopoietin in Skin Promoting Th2 Allergic Responses.

    PubMed

    Marshall, Nikki B; Lukomska, Ewa; Long, Carrie M; Kashon, Michael L; Sharpnack, Douglas D; Nayak, Ajay P; Anderson, Katie L; Jean Meade, B; Anderson, Stacey E

    2015-09-01

    Triclosan is an antimicrobial chemical incorporated into many personal, medical and household products. Approximately, 75% of the U.S. population has detectable levels of triclosan in their urine, and although it is not typically considered a contact sensitizer, recent studies have begun to link triclosan exposure with augmented allergic disease. We examined the effects of dermal triclosan exposure on the skin and lymph nodes of mice and in a human skin model to identify mechanisms for augmenting allergic responses. Triclosan (0%-3%) was applied topically at 24-h intervals to the ear pinnae of OVA-sensitized BALB/c mice. Skin and draining lymph nodes were evaluated for cellular responses and cytokine expression over time. The effects of triclosan (0%-0.75%) on cytokine expression in a human skin tissue model were also examined. Exposure to triclosan increased the expression of TSLP, IL-1β, and TNF-α in the skin with concomitant decreases in IL-25, IL-33, and IL-1α. Similar changes in TSLP, IL1B, and IL33 expression occurred in human skin. Topical application of triclosan also increased draining lymph node cellularity consisting of activated CD86(+)GL-7(+) B cells, CD80(+)CD86(+) dendritic cells, GATA-3(+)OX-40(+)IL-4(+)IL-13(+) Th2 cells and IL-17 A(+) CD4 T cells. In vivo antibody blockade of TSLP reduced skin irritation, IL-1β expression, lymph node cellularity, and Th2 responses augmented by triclosan. Repeated dermal exposure to triclosan induces TSLP expression in skin tissue as a potential mechanism for augmenting allergic responses.

  10. Triclosan Induces Thymic Stromal Lymphopoietin in Skin Promoting Th2 Allergic Responses

    PubMed Central

    Marshall, Nikki B.; Lukomska, Ewa; Long, Carrie M.; Kashon, Michael L.; Sharpnack, Douglas D.; Nayak, Ajay P.; Anderson, Katie L.; Meade, B. Jean; Anderson, Stacey E.

    2016-01-01

    Triclosan is an antimicrobial chemical incorporated into many personal, medical and household products. Approximately, 75% of the U.S. population has detectable levels of triclosan in their urine, and although it is not typically considered a contact sensitizer, recent studies have begun to link triclosan exposure with augmented allergic disease. We examined the effects of dermal triclosan exposure on the skin and lymph nodes of mice and in a human skin model to identify mechanisms for augmenting allergic responses. Triclosan (0%–3%) was applied topically at 24-h intervals to the ear pinnae of OVA-sensitized BALB/c mice. Skin and draining lymph nodes were evaluated for cellular responses and cytokine expression over time. The effects of triclosan (0%–0.75%) on cytokine expression in a human skin tissue model were also examined. Exposure to triclosan increased the expression of TSLP, IL-1β, and TNF-α in the skin with concomitant decreases in IL-25, IL-33, and IL-1α. Similar changes in TSLP, IL1B, and IL33 expression occurred in human skin. Topical application of triclosan also increased draining lymph node cellularity consisting of activated CD86+GL-7+ B cells, CD80+CD86+ dendritic cells, GATA-3+OX-40+IL-4+IL-13+ Th2 cells and IL-17 A+ CD4 T cells. In vivo antibody blockade of TSLP reduced skin irritation, IL-1β expression, lymph node cellularity, and Th2 responses augmented by triclosan. Repeated dermal exposure to triclosan induces TSLP expression in skin tissue as a potential mechanism for augmenting allergic responses. PMID:26048654

  11. Cytokines in tears during the secondary keratoconjunctival responses induced by allergic reaction in the nasal mucosa.

    PubMed

    Pelikan, Zdenek

    2014-01-01

    Allergic keratoconjunctivitis (KC) can occur in a primary form due to an allergic reaction taking place in the conjunctivae or in a secondary form induced by nasal allergy. To search for the cytokine changes in tears accompanying the secondary keratoconjunctival response types (SKCR), caused by the nasal allergy. In 43 KC patients developing 15 immediate (SIKCR), 16 late (SLKCR) and 12 delayed (SDYKCR) responses to nasal provocation tests with allergens (NPT), the NPTs were repeated with subsequent recording of cytokine concentrations in tears up to 72 h. The SIKCRs (p<0.001), occurring 10-120 min after the NPT, were accompanied by significant changes (p<0.05) of interleukin (IL)-4, IL-6, IL-10, IL-12p70 and granulocyte-macrophage colony-stimulating factor (GM-CSF). The SLKCRs (p<0.01), appearing 5-12 h after the NPT, were associated with significant changes (p<0.05) of IL-3, IL-4, IL-5, IL-8, IL-10, tumor necrosis factor (TNF)-α, GM-CSF and granulocyte colony-stimulating factor. The SDYKCRs (p<0.01), occurring 24-48 h after the NPT, were accompanied by significant changes (p<0.05) of IL-2, IL-8, IL-10, interferon-γ, transforming growth factor-β and TNF-α. The particular SKCR types, induced by an allergic reaction in the nasal mucosa, were accompanied by different cytokine profiles in the tears, suggesting involvement of different hypersensitivity mechanisms. These results also stress the diagnostic usefulness of NPTs combined with monitoring of ocular features in KC patients who did not respond satisfactorily to the topical ophthalmological treatment. © 2014 S. Karger AG, Basel.

  12. Mediator profiles in tears during the conjunctival response induced by allergic reaction in the nasal mucosa.

    PubMed

    Pelikan, Zdenek

    2013-01-01

    The allergic reaction occurring primarily in the nasal mucosa can induce a secondary conjunctival response of an immediate (SICR), late (SLCR), or delayed (SDYCR) type in some patients with allergic conjunctivitis (AC). To investigate the concentration changes of histamine, tryptase, eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN), leukotrienes (LTB 4, LTC4, LTE4), myeloperoxidase (MPO), interferon-γ (IFN-γ), and interleukins (IL-2, IL-4, IL-5) in tears during the SICR, SLCR, and SDYCR. In 32 patients with AC, 11 SICR (p<0.01), 13 SLCR (p<0.001), and eight SDYCR (p<0.01) to nasal challenges with allergens (NPTs), the NPTs and 32 control tests with PBS were repeated and supplemented with the determination of these factors in tears. The SICRs were associated with significant concentration changes in tears (p<0.05) of histamine, tryptase, ECP, LTC4, and IL-4. The SLCRs were accompanied by significant changes in concentrations of histamine, ECP, LTB4, LTC4, MPO, IL-4, and IL-5. The SDYCRs were associated with significant concentration changes in tears (p<0.05) of LTB4, MPO, IFN-γ, and IL-2. No significant changes in these factors were recorded in tears during the 32 PBS controls (p>0.1) or in the ten control patients (p>0.1). These results provide evidence for causal involvement of nasal allergy in some patients with AC, inducing secondary conjunctival response of immediate (SICR), late SLCR, or delayed SDYCR type, associated with different mediator, cytokine, and cellular profiles in the tears, suggesting involvement of different hypersensitivity mechanisms. These results also emphasize the diagnostic value of nasal allergen challenge combined with monitoring of the conjunctival response in some patients with AC.

  13. Mediator profiles in tears during the conjunctival response induced by allergic reaction in the nasal mucosa

    PubMed Central

    2013-01-01

    Background The allergic reaction occurring primarily in the nasal mucosa can induce a secondary conjunctival response of an immediate (SICR), late (SLCR), or delayed (SDYCR) type in some patients with allergic conjunctivitis (AC). Objectives To investigate the concentration changes of histamine, tryptase, eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN), leukotrienes (LTB 4, LTC4, LTE4), myeloperoxidase (MPO), interferon-γ (IFN-γ), and interleukins (IL-2, IL-4, IL-5) in tears during the SICR, SLCR, and SDYCR. Methods In 32 patients with AC, 11 SICR (p<0.01), 13 SLCR (p<0.001), and eight SDYCR (p<0.01) to nasal challenges with allergens (NPTs), the NPTs and 32 control tests with PBS were repeated and supplemented with the determination of these factors in tears. Results The SICRs were associated with significant concentration changes in tears (p<0.05) of histamine, tryptase, ECP, LTC4, and IL-4. The SLCRs were accompanied by significant changes in concentrations of histamine, ECP, LTB4, LTC4, MPO, IL-4, and IL-5. The SDYCRs were associated with significant concentration changes in tears (p<0.05) of LTB4, MPO, IFN-γ, and IL-2. No significant changes in these factors were recorded in tears during the 32 PBS controls (p>0.1) or in the ten control patients (p>0.1). Conclusions These results provide evidence for causal involvement of nasal allergy in some patients with AC, inducing secondary conjunctival response of immediate (SICR), late SLCR, or delayed SDYCR type, associated with different mediator, cytokine, and cellular profiles in the tears, suggesting involvement of different hypersensitivity mechanisms. These results also emphasize the diagnostic value of nasal allergen challenge combined with monitoring of the conjunctival response in some patients with AC. PMID:23869165

  14. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure

    PubMed Central

    Yoshioka, Yasuo; Kuroda, Etsushi; Hirai, Toshiro; Tsutsumi, Yasuo; Ishii, Ken J.

    2017-01-01

    Over the past decade, a vast array of nanomaterials has been created through the development of nanotechnology. With the increasing application of these nanomaterials in various fields, such as foods, cosmetics, and medicines, there has been concern about their safety, that is, nanotoxicity. Therefore, there is an urgent need to collect information about the biological effects of nanomaterials so that we can exploit their potential benefits and design safer nanomaterials, while avoiding nanotoxicity as a result of inhalation or skin exposure. In particular, the immunomodulating effect of nanomaterials is one of most interesting aspects of nanotoxicity. However, the immunomodulating effects of nanomaterials through skin exposure have not been adequately discussed compared with the effects of inhalation exposure, because skin penetration by nanomaterials is thought to be extremely low under normal conditions. On the other hand, the immunomodulatory effects of nanomaterials via skin may cause severe problems for people with impaired skin barrier function, because some nanomaterials could penetrate the deep layers of their allergic or damaged skin. In addition, some studies, including ours, have shown that nanomaterials could exhibit significant immunomodulating effects even if they do not penetrate the skin. In this review, we summarize our current knowledge of the allergic responses induced by nanomaterials upon skin exposure. First, we discuss nanomaterial penetration of the intact or impaired skin barrier. Next, we describe the immunomodulating effects of nanomaterials, focusing on the sensitization potential of nanomaterials and the effects of co-exposure of nanomaterials with substances such as chemical sensitizers or allergens, on the onset of allergy, following skin exposure. Finally, we discuss the potential mechanisms underlying the immunomodulating effects of nanomaterials by describing the involvement of the protein corona in the interaction of

  15. Oral probiotic bacterial administration suppressed allergic responses in an ovalbumin-induced allergy mouse model.

    PubMed

    Kim, Hyeyoung; Kwack, Kubum; Kim, Dae-Young; Ji, Geun Eog

    2005-08-01

    This study investigated whether orally administered probiotic bacteria (Bifidobacterium bifidum and Lactobacillus casei) and a gram-negative bacterium (Escherichia coli) function as allergic immune modulators to prevent food allergy, according to the hygiene hypothesis. C3H/HeJ mice were sensitized with ovalbumin (OVA) and cholera toxin for 5 weeks. After sensitization, the OVA-induced mice that were not treated with bacteria had significantly increased levels of OVA-specific IgE, total IgE, and IgG1 in sera, as well as scab-covered tails. In comparison, groups treated with B. bifidum BGN4 (BGN4), L. casei 911 (L. casei), or Escherichia coli MC4100 (E. coli) had decreased levels of OVA-specific IgE, total IgE, and IgG1, and decreased levels of mast cell degranulation and tail scabs. OVA-specific IgA levels were decreased in BGN4- and L. casei-treated groups. In conclusion, administration of E. coli, BGN4, or L. casei decreased the OVA-induced allergy response. However, a normal increase in body weight was inhibited in the E. coli-treated mice and in the montreated mice groups during allergy sensitization. Thus, BGN4 and L. casei appear to be useful probiotic bacteria for the prevention of allergy.

  16. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    PubMed Central

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  17. Acute and chronic exposure to Tyrophagus putrescentiae induces allergic pulmonary response in a murine model

    PubMed Central

    Nuñez, Nailê Karine; dos Santos Dutra, Moisés; Barbosa, Gustavo Leivas; Morassutti, Alessandra Loureiro; de Souza, Rodrigo Godinho; Vargas, Mauro Henrique Moraes; Antunes, Géssica Luana; Silveira, Josiane Silva; da Silva, Guilherme Liberato; Pitrez, Paulo Márcio

    2016-01-01

    Background Tyrophagus putrescentiae (Tp) is a source of aeroallergen that causes allergic diseases. Objective To describe an acute and chronic murine model of allergic asthma with Tp extract with no systemic sensitization and no use of adjuvant. Methods Mites from dust sample were cultured and a raw extract was produced. Female BALB/c mice (6-8 weeks) were challenged intranasally with Tp extract or Dulbecco's phosphate-buffered saline, for 10 consecutive days (acute protocol) or for 6 weeks (chronic protocol). Twenty-four hours after the last intranasal challenge, bronchoalveolar lavage fluid (BALF) was performed for total and differential cells count, cytokine analysis, and eosinophil peroxidase activity. Lung tissue was also removed for histopathologic analysis. Results Tp extract has shown a significant increase in total cells count from BALF as well as an increase in absolute eosinophils count, eosinophil peroxidase activity, interleukin (IL)-5 and IL-13 levels, in both acute and chronic protocols. Peribronchovascular infiltrate, goblet cells hyperplasia and collagen deposition were shown in the airways of acute and chronic Tp-exposed mice. Conclusion Our data suggest that the intranasal exposure to Tp extract, with no systemic sensitization and no use of adjuvants, induces a robust allergic inflammation in the lungs of mice, in both acute and chronic models. Our Tp extract seems to be a potent allergen extract which may be used in asthma model studies. PMID:26844220

  18. DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES TO PENICILLIUM CHRYSOGENUM

    EPA Science Inventory

    ABSTRACT
    Indoor mold has been associated with development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and its viable conidia can induce allergic responses in a mouse model of allergic penicilliosis. The hypothesis o...

  19. DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES TO PENICILLIUM CHRYSOGENUM

    EPA Science Inventory

    ABSTRACT
    Indoor mold has been associated with development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and its viable conidia can induce allergic responses in a mouse model of allergic penicilliosis. The hypothesis o...

  20. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses.

    PubMed

    De Grove, Katrien C; Provoost, Sharen; Hendriks, Rudi W; McKenzie, Andrew N J; Seys, Leen J M; Kumar, Smitha; Maes, Tania; Brusselle, Guy G; Joos, Guy F

    2017-01-01

    Although the prominent role of TH2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. We sought to investigate the relative contribution of ILC2 and adaptive TH2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. Wild-type, Gata-3(+/nlslacZ) (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα)(fl/fl)IL7R(Cre) (ILC2-deficient), and recombination-activating gene (Rag) 2(-/-) mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and TH2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and TH2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and TH2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2(-/-) mice. These data indicate that dysregulation of ILC2s and TH2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure. Copyright © 2016 American Academy of

  1. Irritancy and Allergic Responses Induced by Exposure to the Indoor Air Chemical 4-Oxopentanal

    PubMed Central

    Anderson, Stacey E.; Franko, Jennifer; Jackson, Laurel G.; Wells, J. R.; Ham, Jason E.; Meade, B. J.

    2012-01-01

    Over the last two decades, there has been an increasing awareness regarding the potential impact of indoor air pollution on human health. People working in an indoor environment often experience symptoms such as eye, nose, and throat irritation. Investigations into these complaints have ascribed the effects, in part, to compounds emitted from building materials, cleaning/consumer products, and indoor chemistry. One suspect indoor air contaminant that has been identified is the dicarbonyl 4-oxopentanal (4-OPA). 4-OPA is generated through the ozonolysis of squalene and several high-volume production compounds that are commonly found indoors. Following preliminary workplace sampling that identified the presence of 4-OPA, these studies examined the inflammatory and allergic responses to 4-OPA following both dermal and pulmonary exposure using a murine model. 4-OPA was tested in a combined local lymph node assay and identified to be an irritant and sensitizer. A Th1-mediated hypersensitivity response was supported by a positive response in the mouse ear swelling test. Pulmonary exposure to 4-OPA caused a significant elevation in nonspecific airway hyperreactivity, increased numbers of lung-associated lymphocytes and neutrophils, and increased interferon-γ production by lung-associated lymph nodes. These results suggest that both dermal and pulmonary exposure to 4-OPA may elicit irritant and allergic responses and may help to explain some of the adverse health effects associated with poor indoor air quality. PMID:22403157

  2. Infection with Syphacia obvelata (pinworm) induces protective Th2 immune responses and influences ovalbumin-induced allergic reactions.

    PubMed

    Michels, Chesney; Goyal, Prem; Nieuwenhuizen, Natalie; Brombacher, Frank

    2006-10-01

    Infections with pinworms are common in rodent animal facilities. In this study, we show the consequence of an outbreak in a transgenic barrier facility of infection by Syphacia obvelata, a murine pinworm gastrointestinal nematode. Immune responses were defined in experimental infection studies with BALB/c mice. Infection with S. obvelata induced a transient Th2-type immune response with elevated interleukin 4 (IL-4), IL-5, and IL-13 cytokine production and parasite-specific immunoglobulin G1 (IgG1). In contrast, BALB/c mice deficient in IL-13, IL-4/13, or the IL-4 receptor alpha chain showed chronic disease, with a >100-fold higher parasite burden, increased gamma interferon production, parasite-specific IgG2b, and a default Th2 response. Interestingly, infected IL-4-/- BALB/c mice showed only slightly elevated parasite burdens compared to the control mice, suggesting that IL-13 plays the dominant role in the control of S. obvelata. The influence that pinworm infection has on the allergic response to a dietary antigen was found to be important. Helminth-infected mice immunized against ovalbumin (Ova) elicited more severe anaphylactic shock with reduced Ova-specific IL-4 and IL-5 than did noninfected controls, demonstrating that S. obvelata infection is able to influence nonrelated laboratory experiments. The latter outcome highlights the importance of maintaining mice for use as experimental models under pinworm-free conditions.

  3. Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy.

    PubMed

    Golias, Jaroslav; Schwarzer, Martin; Wallner, Michael; Kverka, Miloslav; Kozakova, Hana; Srutkova, Dagmar; Klimesova, Klara; Sotkovsky, Petr; Palova-Jelinkova, Lenka; Ferreira, Fatima; Tuckova, Ludmila

    2012-01-01

    The egg protein ovalbumin (OVA) belongs to six most frequent food allergens. We investigated how thermal processing influences its ability to induce allergic symptoms and immune responses in mouse model of food allergy. Effect of increased temperature (70°C and 95°C) on OVA secondary structure was characterized by circular dichroism and by the kinetics of pepsin digestion with subsequent HPLC. BALB/c mice were sensitized intraperitoneally and challenged with repeated gavages of OVA or OVA heated to 70°C (h-OVA). Levels of allergen-specific serum antibodies were determined by ELISA (IgA and IgGs) or by β-hexosaminidase release test (IgE). Specific activities of digestive enzymes were determined in brush border membrane vesicles of jejunal enterocytes. Cytokine production and changes in regulatory T cells in mesenteric lymph nodes and spleen were assessed by ELISA and FACS. Heating of OVA to 70°C caused mild irreversible changes in secondary structure compared to boiling to 95°C (b-OVA), but both OVA treatments led to markedly different digestion kinetics and Tregs induction ability in vitro, compared to native OVA. Heating of OVA significantly decreased clinical symptoms (allergic diarrhea) and immune allergic response on the level of IgE, IL-4, IL-5, IL-13. Furthermore, h-OVA induced lower activities of serum mast cell protease-1 and enterocyte brush border membrane alkaline phosphatase as compared to native OVA. On the other hand h-OVA stimulated higher IgG2a in sera and IFN-γ secretion by splenocytes. Minor irreversible changes in OVA secondary structure caused by thermal processing changes both its digestion and antigenic epitopes formation, which leads to activation of different T cell subpopulations, induces shift towards Th1 response and ultimately reduces its allergenicity.

  4. Irritancy and Allergic Responses Induced by Topical Application of ortho-Phthalaldehyde

    PubMed Central

    Anderson, Stacey E.; Umbright, Christina; Sellamuthu, Rajendran; Fluharty, Kara; Kashon, Michael; Franko, Jennifer; Jackson, Laurel G.; Johnson, Victor J.; Joseph, Pius

    2010-01-01

    Although ortho-phthalaldehyde (OPA) has been suggested as an alternative to glutaraldehyde for the sterilization and disinfection of hospital equipment, the toxicity has not been thoroughly investigated. The purpose of these studies was to evaluate the irritancy and sensitization potential of OPA. The EpiDerm Skin Irritation Test was used to evaluate in vitro irritancy potential of OPA and glutaraldehyde. Treatment with 0.4125 and 0.55% OPA induced irritation, while glutaraldehyde exposure at these concentrations did not. Consistent with the in vitro results, OPA induced irritancy, evaluated by ear swelling, when mice were treated with 0.75%. Initial evaluation of the sensitization potential was conducted using the local lymph node assay at concentrations ranging from 0.005 to 0.75%. A concentration-dependent increase in lymphocyte proliferation was observed with a calculated EC3 value of 0.051% compared to that of 0.089%, previously determined for glutaraldehyde. Immunoglobulin (Ig) E-inducing potential was evaluated by phenotypic analysis of draining lymph node (DLN) cells and measurement of total and specific serum IgE levels. The 0.1 and 0.75% exposed groups yielded significant increases in the IgE+B220+ cell population in the lymph nodes while the 0.75% treated group demonstrated significant increases in total IgE, OPA-specific IgE, and OPA-specific IgG1. In addition, significant increases in interleukin-4 messenger RNA and protein expression in the DLNs were observed in OPA-treated groups. The results demonstrate the dermal irritancy and allergic potential of OPA and raise concern about the proposed/intended use of OPA as a safe alternative to glutaraldehyde. PMID:20176622

  5. Ablation of ovomucoid-induced allergic response by desensitization with recombinant ovomucoid third domain in a murine model

    PubMed Central

    Rupa, P; Mine, Y

    2006-01-01

    Attempts to modulate the allergenic response by hypoallergens aimed at eliminating IgE-binding epitopes have been established recently for allergen immunotherapy. Desensitization offers an alternative approach to mounting a protective immune response. We have shown previously that mutation of the decisive amino acids in the B cell epitope of the ovomucoid third domain suppresses IgE binding reactivity against human patient sera and we hypothesize that this hypoallergenic variant could be a potential candidate molecule for specific immunotherapy against an ovomucoid-induced IgE reaction. The aim of this study was to investigate whether hyposensitization with the ovomucoid-modified isoform could desensitize ovomucoid-sensitized mice. We mapped the immunodominant B cell epitopes of ovomucoid in Balb/c mice. A hypoallergenic ovomucoid mutant isoform, having ablated allergenicity against patient sera, was used to desensitize ovomucoid-sensitized Balb/c mice by intraperitoneal injection. Female Balb/c mice were sensitized with intact ovomucoid molecule (Fovm) and desensitized with the modified isoform of the third domain of ovomucoid (GMFA). Intact ovomucoid-sensitized mice desensitized with phosphate-buffered saline (PBS) served as positive controls to maintain hypersensitivity. To gain insight into the efficacy of the modified ovomucoid variant in desensitization, effects on hypersensitivity reactions and histamine levels, followed by its association with antibody levels and cytokine profiles, were measured. Abrogation of the allergic response with complete suppression of anaphylactic symptoms and lower serum histamine levels was observed in the desensitized group by GMFA, accompanied by significantly reduced ovomucoid-specific IgE and IgG1 levels and enhanced specific IgG and IgG2a levels. The sensitized group showed severe anaphylactic symptoms, enhanced serum histamine concentrations and increased levels of specific IgE and IgG1. The level of interleukin (IL)-4 was

  6. Characterization of allergic response induced by repeated dermal exposure of IL-4/Luc/CNS-1 transgenic mice to low dose formaldehyde

    PubMed Central

    Kwak, Moon-Hwa; Kim, Ji-Eun; Go, Jun; Koh, Eun-Kyoung; Song, Sung-Hwa; Sung, Ji-Eun; Yang, Seung-Yun; An, Beum-Soo; Jung, Young-Jin; Lee, Jae-Ho; Lim, Yong

    2014-01-01

    Although formaldehyde (FA) is known to be a major allergen responsible for allergic contact dermatitis, there are conflicting reports regarding correlation between FA exposure and interleukin (IL-4) expression. To investigate whether allergic responses including IL-4 expression were induced by repeated dermal exposure to low dose FA, alterations in the luciferase signal and allergic phenotypes were measured in IL-4/Luc/CNS-1 transgenic (Tg) mice containing luciferase cDNA under control of the IL-4 promoter after exposure to 4% FA for 2 weeks. High levels of luciferase were detected in the abdominal region of the whole body and submandibular lymph node (SLN) of FA treated mice. Additionally, the ear thickness and IgE concentration were significantly upregulated in the FA treated group when compared with the acetone olive oil (AOO) treated group. FA treated mice showed enhanced auricular lymph node (ALN) weight, epidermis and dermis thickness, and infiltration of inflammatory cells. Furthermore, the expression of IL-6 among T helper 2 cytokines was higher in the FA treated group than the AOO treated group, while vascular endothelial growth factor (VEGF) levels remained constant. Overall, the results presented herein provide additional evidence that various allergic responses may be successfully induced in IL-4/Luc/CNS-1 Tg mice after exposure to low dose FA for 2 weeks. The luciferase signal under the IL-4 promoter may reflect general indicators of the allergic response induced by exposure to low dose FA. PMID:25324870

  7. Allergic Responses Induced by a Fungal Biopesticide Metarhizium anisopliae and House Dust Mite Are Compared in a Mouse Model.

    PubMed

    Ward, Marsha D W; Chung, Yong Joo; Copeland, Lisa B; Doerfler, Donald L

    2011-01-01

    Biopesticides can be effective in controlling their target pest. However, research regarding allergenicity and asthma development is limited. We compared the ability of fungal biopesticide Metarhizium anisopliae (MACA) and house dust mite (HDM) extracts to induce allergic responses in BALB/c mice. The extracts were administered by intratracheal aspiration at doubling doses (2.5-80 μg protein) 4X over a four-week period. Three days after the last exposure, serum and bronchoalveolar lavage fluid (BALF) were collected. The extracts' relative allergenicity was evaluated based on response robustness (lowest significant dose response compared to control (0 μg)). MACA induced a more robust serum total IgE response than HDM. However, in the antigen-specific IgE assay, a similar dose of both MACA and HDM was required to achieve the same response level. Our data suggest a threshold dose of MACA for allergy induction and that M. anisopliae may be similar to HDM in allergy induction potential.

  8. Allergic Responses Induced by a Fungal Biopesticide Metarhizium anisopliae and House Dust Mite Are Compared in a Mouse Model

    PubMed Central

    Ward, Marsha D. W.; Chung, Yong Joo; Copeland, Lisa B.; Doerfler, Donald L.

    2011-01-01

    Biopesticides can be effective in controlling their target pest. However, research regarding allergenicity and asthma development is limited. We compared the ability of fungal biopesticide Metarhizium anisopliae (MACA) and house dust mite (HDM) extracts to induce allergic responses in BALB/c mice. The extracts were administered by intratracheal aspiration at doubling doses (2.5–80 μg protein) 4X over a four-week period. Three days after the last exposure, serum and bronchoalveolar lavage fluid (BALF) were collected. The extracts' relative allergenicity was evaluated based on response robustness (lowest significant dose response compared to control (0 μg)). MACA induced a more robust serum total IgE response than HDM. However, in the antigen-specific IgE assay, a similar dose of both MACA and HDM was required to achieve the same response level. Our data suggest a threshold dose of MACA for allergy induction and that M. anisopliae may be similar to HDM in allergy induction potential. PMID:21785589

  9. Comparison of cetirizine with astemizole in the treatment of perennial allergic rhinitis and study of the concomitant effect on histamine and allergen-induced wheal responses.

    PubMed

    Lobaton, P; Moreno, F; Coulie, P

    1990-11-01

    Thirty patients suffering from perennial allergic rhinitis took astemizole and cetirizine, 10 mg/d, under double-blind, crossover randomized conditions for 4 weeks. Four weeks washout separated the two periods. Nasal condition was improved, histamine and allergen-induced wheal responses were inhibited by both treatments with a slight advantage for cetirizine. Both treatments were well tolerated.

  10. Comparison of the Allergic Responses Induced by PeniciIlium chrysogenum and House Dust Mite Extracts in a Mouse Model

    EPA Science Inventory

    A report by the Institute of Medicine suggested that more research is needed to better understand mold effects on allergic disease, particularly asthma development. We compared the ability of the fungal Penicillium chrysogenum (PCE) and house dust mite (HDM) extracts to induce al...

  11. Comparison of the Allergic Responses Induced by PeniciIlium chrysogenum and House Dust Mite Extracts in a Mouse Model

    EPA Science Inventory

    A report by the Institute of Medicine suggested that more research is needed to better understand mold effects on allergic disease, particularly asthma development. We compared the ability of the fungal Penicillium chrysogenum (PCE) and house dust mite (HDM) extracts to induce al...

  12. Wogonin Induces Eosinophil Apoptosis and Attenuates Allergic Airway Inflammation

    PubMed Central

    Dorward, David A.; Sharma, Sidharth; Rennie, Jillian; Felton, Jennifer M.; Alessandri, Ana L.; Duffin, Rodger; Schwarze, Jurgen; Haslett, Christopher; Rossi, Adriano G.

    2015-01-01

    Rationale: Eosinophils are key effector cells in allergic diseases, including allergic rhinitis, eczema, and asthma. Their tissue presence is regulated by both recruitment and increased longevity at inflamed sites. Objectives: To investigate the ability of the flavone wogonin to induce eosinophil apoptosis in vitro and attenuate eosinophil-dominant allergic inflammation in vivo in mice. Methods: Human and mouse eosinophil apoptosis in response to wogonin was investigated by cellular morphology, flow cytometry, mitochondrial membrane permeability, and pharmacological caspase inhibition. Allergic lung inflammation was modeled in mice sensitized and challenged with ovalbumin. Bronchoalveolar lavage (BAL) and lung tissue were examined for inflammation, mucus production, and inflammatory mediator production. Airway hyperresponsiveness to aerosolized methacholine was measured. Measurements and Main Results: Wogonin induced time- and concentration-dependent human and mouse eosinophil apoptosis in vitro. Wogonin-induced eosinophil apoptosis occurred with activation of caspase-3 and was inhibited by pharmacological caspase inhibition. Wogonin administration attenuated allergic airway inflammation in vivo with reductions in BAL and interstitial eosinophil numbers, increased eosinophil apoptosis, reduced airway mucus production, and attenuated airway hyperresponsiveness. This wogonin-induced reduction in allergic airway inflammation was prevented by concurrent caspase inhibition in vivo. Conclusions: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation, suggesting that it has therapeutic potential for the treatment of allergic inflammation in humans. PMID:25629436

  13. Exposure to Aedes aegypti Bites Induces a Mixed-Type Allergic Response following Salivary Antigens Challenge in Mice

    PubMed Central

    Barros, Michele S.; Gomes, Eliane; Gueroni, Daniele I.; Ramos, Anderson D.; Mirotti, Luciana; Florsheim, Esther; Bizzarro, Bruna; Lino, Ciro N. R.; Maciel, Ceres; Lino-Dos-Santos-Franco, Adriana; Tavares-de-Lima, Wothan; Capurro, Margareth L.; Russo, Momtchilo

    2016-01-01

    Classical studies have shown that Aedes aegypti salivary secretion is responsible for the sensitization to mosquito bites and many of the components present in saliva are immunogenic and capable of inducing an intense immune response. Therefore, we have characterized a murine model of adjuvant-free systemic allergy induced by natural exposure to mosquito bites. BALB/c mice were sensitized by exposure to A. aegypti mosquito bites and intranasally challenged with phosphate-buffered saline only or the mosquito’s salivary gland extract (SGE). Blood, bronchoalveolar lavage (BAL) and lung were collected and evaluated for cellularity, histopathological analyses, cytokines and antibody determination. Respiratory pattern was analyzed by Penh measurements and tracheal segments were obtained to study in vitro reactivity to methacholine. BAL recovered from sensitized mice following challenge with SGE showed an increased number of eosinophils and Th2 cytokines such as IL-4, IL-5 and IL-13. Peribronchoalveolar eosinophil infiltration, mucus and collagen were also observed in lung parenchyma of sensitized mice, suggesting the development of a typical Th2 response. However, the antibody profile in serum of these mice evidenced a mixed-type response with presence of both, IgG1/IgE (Th2-related) and IgG2a (Th1-related) isotypes. In addition, changes in breathing pattern and tracheal reactivity to methacholine were not found. Taken together, our results show that A. aegypti bites trigger an atypical allergic reaction, with some classical cellular and soluble Th2 components in the lung, but also systemic Th1 and Th2 antibody isotypes and no change in either the respiratory pattern or the trachea responsiveness to agonist. PMID:27203689

  14. Exposure to Aedes aegypti Bites Induces a Mixed-Type Allergic Response following Salivary Antigens Challenge in Mice.

    PubMed

    Barros, Michele S; Gomes, Eliane; Gueroni, Daniele I; Ramos, Anderson D; Mirotti, Luciana; Florsheim, Esther; Bizzarro, Bruna; Lino, Ciro N R; Maciel, Ceres; Lino-Dos-Santos-Franco, Adriana; Tavares-de-Lima, Wothan; Capurro, Margareth L; Russo, Momtchilo; Sá-Nunes, Anderson

    2016-01-01

    Classical studies have shown that Aedes aegypti salivary secretion is responsible for the sensitization to mosquito bites and many of the components present in saliva are immunogenic and capable of inducing an intense immune response. Therefore, we have characterized a murine model of adjuvant-free systemic allergy induced by natural exposure to mosquito bites. BALB/c mice were sensitized by exposure to A. aegypti mosquito bites and intranasally challenged with phosphate-buffered saline only or the mosquito's salivary gland extract (SGE). Blood, bronchoalveolar lavage (BAL) and lung were collected and evaluated for cellularity, histopathological analyses, cytokines and antibody determination. Respiratory pattern was analyzed by Penh measurements and tracheal segments were obtained to study in vitro reactivity to methacholine. BAL recovered from sensitized mice following challenge with SGE showed an increased number of eosinophils and Th2 cytokines such as IL-4, IL-5 and IL-13. Peribronchoalveolar eosinophil infiltration, mucus and collagen were also observed in lung parenchyma of sensitized mice, suggesting the development of a typical Th2 response. However, the antibody profile in serum of these mice evidenced a mixed-type response with presence of both, IgG1/IgE (Th2-related) and IgG2a (Th1-related) isotypes. In addition, changes in breathing pattern and tracheal reactivity to methacholine were not found. Taken together, our results show that A. aegypti bites trigger an atypical allergic reaction, with some classical cellular and soluble Th2 components in the lung, but also systemic Th1 and Th2 antibody isotypes and no change in either the respiratory pattern or the trachea responsiveness to agonist.

  15. IL-33-mediated innate response and adaptive immune cells contribute to maximum responses of protease allergen-induced allergic airway inflammation.

    PubMed

    Kamijo, Seiji; Takeda, Haruna; Tokura, Tomoko; Suzuki, Mayu; Inui, Kyoko; Hara, Mutsuko; Matsuda, Hironori; Matsuda, Akira; Oboki, Keisuke; Ohno, Tatsukuni; Saito, Hirohisa; Nakae, Susumu; Sudo, Katsuko; Suto, Hajime; Ichikawa, Saori; Ogawa, Hideoki; Okumura, Ko; Takai, Toshiro

    2013-05-01

    How the innate and adaptive immune systems cooperate in the natural history of allergic diseases has been largely unknown. Plant-derived allergen, papain, and mite allergens, Der f 1 and Der p 1, belong to the same family of cysteine proteases. We examined the role of protease allergens in the induction of Ab production and airway inflammation after repeated intranasal administration without adjuvants and that in basophil/mast cell stimulation in vitro. Papain induced papain-specific IgE/IgG1 and lung eosinophilia. Der f 1 induced Der f 1-specific IgG1 and eosinophilia. Although papain-, Der f 1-, and Der p 1-stimulated basophils expressed allergy-inducing cytokines, including IL-4 in vitro, basophil-depleting Ab and mast cell deficiency did not suppress the papain-induced in vivo responses. Protease inhibitor-treated allergens and a catalytic site mutant did not induce the responses. These results indicate that protease activity is essential to Ab production and eosinophilia in vivo and basophil activation in vitro. IL-33-deficient mice lacked eosinophilia and had reduced papain-specific IgE/IgG1. Coadministration of OVA with papain induced OVA-specific IgE/IgG1, which was reduced in IL-33-deficient mice. We demonstrated IL-33 release, subsequent IL-33-dependent IL-5/IL-13 release, and activation of T1/ST2-expressing lineage(-)CD25(+)CD44(+) innate lymphoid cells in the lung after papain inhalation, suggesting the contribution of the IL-33-type 2 innate lymphoid cell-IL-5/IL-13 axis to the papain-induced airway eosinophilia. Rag2-deficient mice, which lack adaptive immune cells, showed significant, but less severe, eosinophilia. Collectively, these results suggest cooperation of adaptive immune cells and IL-33-responsive innate cells in protease-dependent allergic airway inflammation.

  16. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment.

    PubMed

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R; Kurosky, Alexander; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation.

  17. BLOCKADE OF TRKA OR P75 NEUROTROPHIN RECEPTORS ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAYS RESPONSES IN BALB/C MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway resistance. Exposure to diesel exhaust particles (DEP) associated with the combustion of diesel fuel exacerbates allergic airways responses. We tested t...

  18. Curcumin suppresses ovalbumin-induced allergic conjunctivitis

    PubMed Central

    Chung, So-Hyang; Choi, Seong Hyun; Choi, Jin A.; Chuck, Roy S.

    2012-01-01

    Purpose Allergic conjunctivitis (AC) from an allergen-driven T helper 2 (Th2) response is characterized by conjunctival eosinophilic infiltration. Because curcumin has shown anti-allergic activity in an asthma and contact dermatitis laboratory models, we examined whether administration of curcumin could affect the severity of AC and modify the immune response to ovalbumin (OVA) allergen in an experimental AC model. Methods Mice were challenged with two doses of topical OVA via the conjunctival sac after systemic sensitization with OVA in aluminum hydroxide (ALUM). Curcumin was administered 1 h before OVA challenge. Several indicators for allergy such as serum immunoglubulin E (IgE) antibodies production, eosinophil infiltration into the conjunctiva and Th2 cytokine production were evaluated in mice with or without curcumin treatment. Results Mice challenged with OVA via the conjunctival sac following systemic sensitization with OVA in ALUM had severe AC. Curcumin administration markedly suppressed IgE-mediated and eosinophil-dependent conjunctival inflammation. In addition, mice administered curcumin had less interleukin-4 (IL-4) and interleukin-5 (IL-5) (Th2 type cytokine) production in conjunctiva, spleen, and cervical lymph nodes than mice in the non-curcumin-administered group. OVA challenge resulted in activation of the production of inducible nitric oxide (iNOS), and curcumin treatment inhibited iNOS production in the conjunctiva. Conclusions We believe our findings are the first to demonstrate that curcumin treatment suppresses allergic conjunctival inflammation in an experimental AC model. PMID:22876123

  19. Allergen challenge induces Ifng dependent GTPases in the lungs as part of a Th1 transcriptome response in a murine model of allergic asthma.

    PubMed

    Dharajiya, Nilesh; Vaidya, Swapnil; Sinha, Mala; Luxon, Bruce; Boldogh, Istvan; Sur, Sanjiv

    2009-12-21

    According to the current paradigm, allergic airway inflammation is mediated by Th2 cytokines and pro-inflammatory chemokines. Since allergic inflammation is self-limited, we hypothesized that allergen challenge simultaneously induces anti-inflammatory genes to counter-balance the effects of Th2 cytokines and chemokines. To identify these putative anti-inflammatory genes, we compared the gene expression profile in the lungs of ragweed-sensitized mice four hours after challenge with either PBS or ragweed extract (RWE) using a micro-array platform. Consistent with our hypothesis, RWE challenge concurrently upregulated Th1-associated early target genes of the Il12/Stat4 pathway, such as p47 and p65 GTPases (Iigp, Tgtp and Gbp1), Socs1, Cxcl9, Cxcl10 and Gadd45g with the Th2 genes Il4, Il5, Ccl2 and Ccl7. These Th1-associated genes remain upregulated longer than the Th2 genes. Augmentation of the local Th1 milieu by administration of Il12 or CpG prior to RWE challenge further upregulated these Th1 genes. Abolition of the Th1 response by disrupting the Ifng gene increased allergic airway inflammation and abrogated RWE challenge-induced upregulation of GTPases, Cxcl9, Cxcl10 and Socs1, but not Gadd45g. Our data demonstrate that allergen challenge induces two sets of Th1-associated genes in the lungs: 1) Ifng-dependent genes such as p47 and p65 GTPases, Socs1, Cxcl9 and Cxcl10 and 2) Ifng-independent Th1-inducing genes like Gadd45g. We propose that allergen-induced airway inflammation is regulated by simultaneous upregulation of Th1 and Th2 genes, and that persistent unopposed upregulation of Th1 genes resolves allergic inflammation.

  20. Maternal Influences over Offspring Allergic Responses

    PubMed Central

    2015-01-01

    Asthma occurs as a result of complex interactions of environmental and genetic factors. Clinical studies and animal models of asthma indicate offspring of allergic mothers have increased risk of development of allergies. Environmental factors including stress-induced corticosterone and vitamin E isoforms during pregnancy regulate the risk for offspring development of allergy. In this review, we discuss mechanisms for the development of allergic disease early in life, environmental factors that may impact the development of risk for allergic disease early in life, and how the variation in global prevalence of asthma may be explained, at least in part, by some environmental components. PMID:25612797

  1. The Major Birch Pollen Allergen Bet v 1 Induces Different Responses in Dendritic Cells of Birch Pollen Allergic and Healthy Individuals

    PubMed Central

    Smole, Ursula; Radauer, Christian; Lengger, Nina; Svoboda, Martin; Rigby, Neil; Bublin, Merima; Gaier, Sonja; Hoffmann-Sommergruber, Karin; Jensen-Jarolim, Erika; Mechtcheriakova, Diana; Breiteneder, Heimo

    2015-01-01

    Dendritic cells play a fundamental role in shaping the immune response to allergens. The events that lead to allergic sensitization or tolerance induction during the interaction of the major birch pollen allergen Bet v 1 and dendritic cells are not very well studied. Here, we analyzed the uptake of Bet v 1 and the cross-reactive celery allergen Api g 1 by immature monocyte-derived dendritic cells (iMoDCs) of allergic and normal donors. In addition, we characterized the allergen-triggered intracellular signaling and transcriptional events. Uptake kinetics, competitive binding, and internalization pathways of labeled allergens by iMoDCs were visualized by live-cell imaging. Surface-bound IgE was detected by immunofluorescence microscopy and flow cytometry. Allergen- and IgE-induced gene expression of early growth response genes and Th1 and Th2 related cytokines and chemokines were analyzed by real-time PCR. Phosporylation of signaling kinases was analyzed by Western blot. Internalization of Bet v 1 by iMoDCs of both donor groups, likely by receptor-mediated caveolar endocytosis, followed similar kinetics. Bet v 1 outcompeted Api g 1 in cell surface binding and uptake. MoDCs of allergic and healthy donors displayed surface-bound IgE and showed a pronounced upregulation of Th2 cytokine- and NFκB-dependent genes upon non-specific Fcε receptor cross-linking. In contrast to these IgE-mediated responses, Bet v 1-stimulation increased transcript levels of the Th2 cytokines IL-4 and IL-13 but not of NFκB-related genes in MoDCs of BP allergic donors. Cells of healthy donors were either unresponsive or showed elevated mRNA levels of Th1-promoting chemokines. Moreover, Bet v 1 was able to induce Erk1/2 and p38 MAPK activation in BP allergics but only a slight p38 activation in normal donors. In conclusion, our data indicate that Bet v 1 favors the activation of a Th2 program only in DCs of BP allergic individuals. PMID:25635684

  2. Basophils, cytokines, and the allergic inflammatory response.

    PubMed

    DuBuske, L M

    1996-01-01

    Immediate allergic response has long been recognized to be related to the activation of mast cells by antigen. The role of the mast cells as producers of cytokines, however, has only more recently been extensively studied. The effect of TH2 lymphocytes in the inflammatory process is now well recognized in animal models. The central role of cytokines in the allergic inflammatory response is currently an area of intense clinical investigation. Cytokines influence production, migration, and activation of basophils. A wide array of cytokines is produced by mast cells upon initiation of the immediate allergic response. These cytokines influence a number of other different cells including basophils and eosinophils, and also activate lymphocytes, thus perpetuating allergic inflammation.

  3. DOSE-DEPENDENT ALLERGIC RESPONSES TO AN EXTRACT OF PENICILLIUM CHRYSOGENUM IN BALB/MICE

    EPA Science Inventory

    Indoor mold has been associated with the development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of ...

  4. DOSE-DEPENDENT ALLERGIC RESPONSES TO AN EXTRACT OF PENICILLIUM CHRYSOGENUM IN BALB/MICE

    EPA Science Inventory

    Indoor mold has been associated with the development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of ...

  5. DOSE-DEPENDENT ALLERGIC RESPONSES TO AN EXTRACT OF PENICILLIUM CHRYSOGENUM IN BAL/C MICE

    EPA Science Inventory

    Indoor mold has been associated with the development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of ...

  6. DOSE-DEPENDENT ALLERGIC RESPONSES TO AN EXTRACT OF PENICILLIUM CHRYSOGENUM IN BAL/C MICE

    EPA Science Inventory

    Indoor mold has been associated with the development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of ...

  7. RELATIVE POTENCY OF MOLD AND HOUSE DUST MITE EXTRACTS IN INDUCING ALLERGIC RESPONSES IN BALB/C MICE

    EPA Science Inventory

    Rationale: Mold has been associated with the exacerbation of allergic asthma. However, its role in induction of allergic asthma is not clear. Using a previously developed mouse model for allergic asthma, we compared potencies of two fungal extracts (Metarhizium anisop...

  8. RELATIVE POTENCY OF MOLD AND HOUSE DUST MITE EXTRACTS IN INDUCING ALLERGIC RESPONSES IN BALB/C MICE

    EPA Science Inventory

    Rationale: Mold has been associated with the exacerbation of allergic asthma. However, its role in induction of allergic asthma is not clear. Using a previously developed mouse model for allergic asthma, we compared potencies of two fungal extracts (Metarhizium anisop...

  9. Emerging Antigens Involved in Allergic Responses

    PubMed Central

    Platts-Mills, Thomas A.E.; Commins, Scott P.

    2013-01-01

    New allergic diseases can “emerge” because of exposure to a novel antigen, because the immune responsiveness of the subject changes, or because of a change in the behavior of the population. Novel antigens have entered the environment as new pests in the home (e.g., Asian lady beetle or stink bugs), in the diet (e.g., prebiotics or wheat isolates), or because of the spread of a biting arthropod (e.g., ticks). Over the last few years, a significant new disease has been identified, which has changed the paradigm for food allergy. Bites of the tick, Amblyomma americanum, are capable of inducing IgE antibodies to galactose-alpha-1,3-galactose, which is associated with two novel forms of anaphylaxis. In a large area of the southeastern United States, the disease of delayed anaphylaxis to mammalian meat is now common. This disease challenges many previous rules about food allergy and provides a striking model of an emerging allergic disease. PMID:24095162

  10. Colostrinin decreases hypersensitivity and allergic responses to common allergens.

    PubMed

    Boldogh, Istvan; Aguilera-Aguirre, Leopoldo; Bacsi, Attila; Choudhury, Barun K; Saavedra-Molina, Alfredo; Kruzel, Marian

    2008-01-01

    Colostrinin (CLN), isolated from mothers' pre-milk fluid (colostrum), is a uniform mixture of low-molecular-weight, proline-rich polypeptides. CLN induces neurite outgrowth of pheochromocytoma cells, extends the lifespan of diploid fibroblast cells, inhibits beta-amyloid-induced apoptosis and improves cognitive functions when administered to Alzheimer's disease patients. The aim of this study was to investigate potential allergic responses to CLN and its impact on allergic sensitization and inflammation caused by common allergens. We used a well-characterized mouse model of allergic airway inflammation. Changes in IgE/IgG1 and mucin levels, airway eosinophilia and hyperreactivity to methacholine were determined by ELISA, differential cell counting and whole-body plethysmography, respectively. CLN did not increase IgE/IgG1 levels or induce cutaneous hypersensitivity reaction, airway inflammation and mucin production. Importantly, CLN significantly (p < 0.001) decreased IgE/IgG1 production, airway eosinophilia, mucin production and hypersensitivity induced by allergenic extracts from ragweed pollen grains and house dust mites. CLN itself is non-allergenic; however, it is effective in preventing allergic responses to known indoor and outdoor allergens. These data support the safe application of CLN and its potential use in the prevention of allergic inflammation in humans. Copyright 2008 S. Karger AG, Basel.

  11. RELATIVE POTENCY OF FUNGAL EXTRACTS IN INDUCING ALLERGIC ASTHMA-LIKE RESPONSES IN BALB/C MICE

    EPA Science Inventory

    Indoor mold has been associated with the development of allergic asthma. However, relative potency of molds in the induction of allergic asthma is not clear. In this study, we tested the relative potency of fungal extracts (Metarizium anisophilae [MACA], Stachybotrys ...

  12. RELATIVE POTENCY OF FUNGAL EXTRACTS IN INDUCING ALLERGIC ASTHMA-LIKE RESPONSES IN BALB/C MICE

    EPA Science Inventory

    Indoor mold has been associated with the development of allergic asthma. However, relative potency of molds in the induction of allergic asthma is not clear. In this study, we tested the relative potency of fungal extracts (Metarizium anisophilae [MACA], Stachybotrys ...

  13. Allergic Contact Dermatitis Induced by Textile Necklace

    PubMed Central

    Nygaard, Uffe; Kralund, Henrik Højgrav; Sommerlund, Mette

    2013-01-01

    Allergic contact dermatitis to textile dyes is considered to be a rare phenomenon. A recent review reported a prevalence of contact allergy to disperse dyes between 0.4 and 6.7%. The relevance of positive patch testing was not reported in all studies. Textile dye allergy is easily overlooked and is furthermore challenging to investigate as textile dyes are not labelled on clothing. In this report, we present a case of allergic contact dermatitis to a textile necklace. The patch test showed strong reactions to the necklace and the azo dyes Disperse Orange 1 and Disperse Yellow 3. Despite the European legislation and the reduced use of disperse dyes in Third World countries, disperse azo dyes still induce new cases of allergic contact dermatitis. PMID:24348384

  14. Evaluation of allergic response using dynamic thermography

    NASA Astrophysics Data System (ADS)

    Rokita, E.; Rok, T.; Tatoń, G.

    2015-03-01

    Skin dynamic termography supplemented by a mathematical model is presented as an objective and sensitive indicator of the skin prick test result. Termographic measurements were performed simultaneously with routine skin prick tests. The IR images were acquired every 70 s up to 910 s after skin prick. In the model histamine is treated as the principal mediator of the allergic reaction. Histamine produces vasolidation and the engorged vessels are responsible for an increase in skin temperature. The model parameters were determined by fitting the analytical solutions to the spatio-temporal distributions of the differences between measured and baseline temperatures. The model reproduces experimental data very well (coefficient of determination = 0.805÷0.995). The method offers a set of parameters to describe separately skin allergic reaction and skin reactivity. The release of histamine after allergen injection is the best indicator of allergic response. The diagnostic parameter better correlates with the standard evaluation of a skin prick test (correlation coefficient = 0.98) than the result of the thermographic planimetric method based on temperature and heated area determination (0.81). The high sensitivity of the method allows for determination of the allergic response in patients with the reduced skin reactivity.

  15. Deuterium-oxide-induced histamine release from basophils of allergic subjects. I. Responsiveness to deuterium oxide requires an activation step

    SciTech Connect

    Kazimierczak, W.; Plaut, M.; Knauer, K.A.; Meier, H.L.; Lichtenstein, L.M.

    1984-04-01

    Basophils from many atopic persons, and especially asthmatic patients, have been shown to release histamine in response to 44% deuterium oxide (D2O), whereas basophils from nonatopic persons do not release histamine. The present experiments analyzed the mechanisms by which D/sub 2/O mediated release. It was found that although D/sub 2/O induced release from washed leukocytes, it failed to induce release from whole blood or from leukocytes that had sedimented but had not been washed. The kinetics of release after washing were rapid and were equivalent regardless of the temperature at which cells were sedimented (O degrees or 37 degrees C). Washed cells became desensitized to the action of D/sub 2/O within 30 to 60 min at 37 degrees C, whereas unwashed leukocytes did not become desensitized. Serum or plasma inhibited D/sub 2/O-induced release, although high concentrations (1/5) were less inhibitory than lower ones (1/10 to 1/100). Basophils from D/sub 2/O responders also released histamine in response to a ''platelet enhancing factor'' (PEF), whereas those from D/sub 2/O nonresponders did not. As with D/sub 2/O-mediated release, PEF-mediated release occurred only with washed leukocytes, desensitized within 30 to 60 min at 37 degrees C, and was inhibited by serum. These results suggest that D/sub 2/O induces histamine release by augmenting the effects of an endogenous activation mechanism, and that PEF acts on the same (D/sub 2/O-responsive) donors to augment this activation mechanism. Cell activation, as well as desensitization of this activation mechanism, occurs rapidly when basophils are washed free of plasma inhibitors and placed at 37 degrees C.

  16. Kissing reduces allergic skin wheal responses and plasma neurotrophin levels.

    PubMed

    Kimata, Hajime

    2003-11-01

    The effect of kissing on allergen-induced skin wheal responses and plasma neurotrophin levels were studied in 30 normal subjects, 30 patients with allergic rhinitis (AR), and 30 patients with atopic dermatitis (AD). All of the patients with AR or AD are allergic to house dust mite (HDM) and Japanese cedar pollen (JCP). They are all Japanese and they do not kiss habitually. The subject kissed freely during 30 min with their lover or spouse alone in a room with closed doors while listening to soft music. Before and after kissing, skin prick tests were performed using commercial HDM allergen, JCP allergen, as well as histamine and control solution, and wheal responses were measured. Simultaneously, plasma levels of neurotrophin, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and -4 (NT-4) were measured. Kissing significantly reduced wheal responses induced by HDM and JCP, but not by histamine, and decreased plasma levels of NGF, BDNF, NT-3, and NT-4 in patients with AR or AD, while it failed to do so in normal subjects. These finding indicate that kissing have some implication in the study of neuroimmunology in allergic patients.

  17. Xanthii Fructus inhibits allergic response in the ovalbumin-sensitized mouse allergic rhinitis model

    PubMed Central

    Gwak, Nam-Gil; Kim, Eun-Young; Lee, Bina; Kim, Jae-Hyun; Im, Yong-Seok; Lee, Ka-Yeon; Jun-Kum, Chang; Kim, Ho-Seok; Cho, Hyun-Joo; Jung, Hyuk-Sang; Sohn, Youngjoo

    2015-01-01

    Background: Xanthii Fructus (XF) is widely used in traditional anti-bacterial and anti-inflammatory Asian medicine. Allergic rhinitis is a common inflammatory disease characterized by markedly increased levels of anti-inflammatory factors and the recruitment of inflammatory cells into the nasal mucosa. We investigated the effects of XF in the allergen-induced rhinitis model. Materials and Methods: Following ovalbumin (OVA)/alum intraperitoneal injection on days 0, 7 and 14, the BALB/c mice (albino, laboratory-bred strain of the house mice) were challenged intranasally with OVA for 10 days a week after the last sensitization. The number of sneezes was recorded for 10 days; additionally, the levels of cytokines, histamine, immunoglobulin E (IgE) and OVA-specific serum IgE were estimated. Eosinophil infiltration, thickness of nasal mucosa and expression of caspase-1 were determined by immunohistochemistry. We also evaluated the effect of XF on the phosphorylation of nuclear factor kappa-B (NF-κB) and inhibitor of nuclear factor kappa B-alpha (IκB-α) in human mast cell-1 (HMC-1), by Western blotting. Results: The administration of XF significantly decreased sneezing and the serum levels of histamine, IgE, OVA-specific IgE, and cytokines such as tumor necrosis factor-alpha (TNF-α), interleukine-1 beta (IL-1β), IL-5, IL-6, monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2). XF inhibited the changes in thickness of the nasal septum, influx of eosinophils and expression of capase-1. In addition, XF inhibited the phosphorylation of IκB-α and NF-κB in phorbol-myristate-acetate plus calcium ionophore A23187 (A23187) stimulated HMC-1. Conclusion: This study suggests that XF acts a potent anti-allergic drug which alleviates the allergic responses in ovalbumin-sensitized mouse allergic rhinitis model. PMID:26664025

  18. Allergic sensitization is associated with inadequate antioxidant responses in mice and men.

    PubMed

    Utsch, L; Folisi, C; Akkerdaas, J H; Logiantara, A; van de Pol, M A; van der Zee, J S; Krop, E J M; Lutter, R; van Ree, R; van Rijt, L S

    2015-10-01

    Allergies arise from aberrant Th2 responses to allergens. The processes involved in the genesis of allergic sensitization remain elusive. Some allergens such as derived from house dust mites have proteolytic activity which can induce oxidative stress in vivo. A reduced capacity of the host to control oxidative stress might prime for allergic sensitization. Two different strains of mice were compared for their antioxidant and immune response to HDM. Protease activity of the HDM extract was reduced to investigate its role in oxidative stress induction in the airways and whether this induction could determine allergic sensitization and inflammation. The role of oxidative stress in allergic sensitization was also investigated in humans. An occupational cohort of animal workers was followed for the development of sensitization to rodent urinary proteins. Levels of oxidative stress in serum and antioxidant responses by PBMCs were determined. Susceptibility to allergic sensitization to mite allergens in mice was highly dependent on host genetic background and was associated with oxidative stress in the lungs before allergen exposure and poor antioxidant response after allergen exposure. Reduction in mite protease activity limited its capacity to induce oxidative stress and allergic inflammation in mice. We showed that also in human subjects, oxidative stress before allergen exposure and poor antioxidant responses were associated with predisposition to occupational allergy. Our study indicates that oxidative stress condition before allergen exposure due to an inadequate antioxidant response may prime for allergic Th2 responses. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.

    PubMed

    Shin, Hee Soon; Shon, Dong-Hwa

    2015-01-01

    An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders.

  20. Importins and exportins regulating allergic immune responses.

    PubMed

    Aggarwal, Ankita; Agrawal, Devendra K

    2014-01-01

    Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS) present on cargo molecules to be imported while nuclear export signals (NES) on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.

  1. Application of vitamin E to antagonize SWCNTs-induced exacerbation of allergic asthma

    PubMed Central

    Li, Jinquan; Li, Li; Chen, Hanqing; Chang, Qing; Liu, Xudong; Wu, Yang; Wei, Chenxi; Li, Rui; Kwan, Joseph K. C.; Yeung, King Lun; Xi, Zhuge; Lu, Zhisong; Yang, Xu

    2014-01-01

    The aggravating effects of zero-dimensional, particle-shaped nanomaterials on allergic asthma have been previously investigated, but similar possible effects of one-dimensional shaped nanomaterials have not been reported. More importantly, there are no available means to counteract the adverse nanomaterial effects to allow for their safe use. In this study, an ovalbumin (OVA)-sensitized rat asthma model was established to investigate whether single walled carbon nanotubes (SWCNTs) aggravate allergic asthma. The results showed that SWCNTs in rats exacerbated OVA-induced allergic asthma and that this exacerbation was counteracted by concurrent administration vitamin E. A mechanism involving the elimination of reactive oxygen species, downregulation of Th2 responses, reduced Ig production, and the relief of allergic asthma symptoms was proposed to explain the antagonistic effects of vitamin E. This work could provide a universal strategy to effectively protect people with allergic asthma from SWCNTs or similar nanomaterial-induced aggravating effects. PMID:24589727

  2. Oleanolic acid controls allergic and inflammatory responses in experimental allergic conjunctivitis.

    PubMed

    Córdova, Claudia; Gutiérrez, Beatriz; Martínez-García, Carmen; Martín, Rubén; Gallego-Muñoz, Patricia; Hernández, Marita; Nieto, María L

    2014-01-01

    Pollen is the most common aeroallergen to cause seasonal conjunctivitis. The result of allergen exposure is a strong Th2-mediated response along with conjunctival mast cell degranulation and eosinophilic infiltration. Oleanolic acid (OA) is natural a triterpene that displays strong anti-inflammatory and immunomodulatory properties being an active anti-allergic molecule on hypersensitivity reaction models. However, its effect on inflammatory ocular disorders including conjunctivitis, has not yet been addressed. Hence, using a Ragweed pollen (RWP)-specific allergic conjunctivitis (EAC) mouse model we study here whether OA could modify responses associated to allergic processes. We found that OA treatment restricted mast cell degranulation and infiltration of eosinophils in conjunctival tissue and decreased allergen-specific Igs levels in EAC mice. Th2-type cytokines, secreted phospholipase A2 type-IIA (sPLA2-IIA), and chemokines levels were also significantly diminished in the conjunctiva and serum of OA-treated EAC mice. Moreover, OA treatment also suppressed RWP-specific T-cell proliferation. In vitro studies, on relevant cells of the allergic process, revealed that OA reduced the proliferative and migratory response, as well as the synthesis of proinflammatory mediators on EoL-1 eosinophils and RBL-2H3 mast cells exposed to allergic and/or crucial inflammatory stimuli such as RWP, sPLA2-IIA or eotaxin. Taken together, these findings demonstrate the beneficial activity of OA in ocular allergic processes and may provide a new intervention strategy and potential therapy for allergic diseases.

  3. No Adjuvant Effect of Bacillus thuringiensis-Maize on Allergic Responses in Mice

    PubMed Central

    Dekan, Gerhard; Epstein, Michelle M.

    2014-01-01

    Genetically modified (GM) foods are evaluated carefully for their ability to induce allergic disease. However, few studies have tested the capacity of a GM food to act as an adjuvant, i.e. influencing allergic responses to other unrelated allergens at acute onset and in individuals with pre-existing allergy. We sought to evaluate the effect of short-term feeding of GM Bacillus thuringiensis (Bt)-maize (MON810) on the initiation and relapse of allergic asthma in mice. BALB/c mice were provided a diet containing 33% GM or non-GM maize for up to 34 days either before ovalbumin (OVA)-induced experimental allergic asthma or disease relapse in mice with pre-existing allergy. We observed that GM-maize feeding did not affect OVA-induced eosinophilic airway and lung inflammation, mucus hypersecretion or OVA-specific antibody production at initiation or relapse of allergic asthma. There was no adjuvant effect upon GM-maize consumption on the onset or severity of allergic responses in a mouse model of allergic asthma. PMID:25084284

  4. No adjuvant effect of Bacillus thuringiensis-maize on allergic responses in mice.

    PubMed

    Reiner, Daniela; Lee, Rui-Yun; Dekan, Gerhard; Epstein, Michelle M

    2014-01-01

    Genetically modified (GM) foods are evaluated carefully for their ability to induce allergic disease. However, few studies have tested the capacity of a GM food to act as an adjuvant, i.e. influencing allergic responses to other unrelated allergens at acute onset and in individuals with pre-existing allergy. We sought to evaluate the effect of short-term feeding of GM Bacillus thuringiensis (Bt)-maize (MON810) on the initiation and relapse of allergic asthma in mice. BALB/c mice were provided a diet containing 33% GM or non-GM maize for up to 34 days either before ovalbumin (OVA)-induced experimental allergic asthma or disease relapse in mice with pre-existing allergy. We observed that GM-maize feeding did not affect OVA-induced eosinophilic airway and lung inflammation, mucus hypersecretion or OVA-specific antibody production at initiation or relapse of allergic asthma. There was no adjuvant effect upon GM-maize consumption on the onset or severity of allergic responses in a mouse model of allergic asthma.

  5. Role of Rho kinase isoforms in murine allergic airway responses.

    PubMed

    Zhu, M; Liu, P-Y; Kasahara, D I; Williams, A S; Verbout, N G; Halayko, A J; Fedulov, A; Shoji, T; Williams, E S; Noma, K; Shore, S A; Liao, J K

    2011-10-01

    Inhibition of Rho-associated coiled-coil forming kinases (ROCKs) reduces allergic airway responses in mice. The purpose of this study was to determine the roles of the two ROCK isoforms, ROCK1 and ROCK2, in these responses. Wildtype (WT) mice and heterozygous ROCK1 and ROCK2 knockout mice (ROCK1(+/-) and ROCK2(+/-), respectively) were sensitised and challenged with ovalbumin. ROCK expression and activation were assessed by western blotting. Airway responsiveness was measured by forced oscillation. Bronchoalveolar lavage was performed and the lungs were fixed for histological assessment. Compared with WT mice, ROCK1 and ROCK2 expression were 50% lower in lungs of ROCK1(+/-) and ROCK2(+/-) mice, respectively, without changes in the other isoform. In WT lungs, ROCK activation increased after ovalbumin challenge and was sustained for several hours. This activation was reduced in ROCK1(+/-) and ROCK2(+/-) lungs. Airway responsiveness was comparable in WT, ROCK1(+/-), and ROCK2(+/-) mice challenged with PBS. Ovalbumin challenge caused airway hyperresponsiveness in WT, but not ROCK1(+/-) or ROCK2(+/-) mice. Lavage eosinophils and goblet cell hyperplasia were significantly reduced in ovalbumin-challenged ROCK1(+/-) and ROCK2(+/-) versus WT mice. Ovalbumin-induced changes in lavage interleukin-13, interleukin-5 and lymphocytes were also reduced in ROCK1(+/-) mice. In conclusion, both ROCK1 and ROCK2 are important in regulating allergic airway responses.

  6. Oral Muscle Relaxant May Induce Immediate Allergic Reactions

    PubMed Central

    Hur, Gyu-Young; Hwang, Eui Kyung; Moon, Jae-Young; Ye, Young-Min; Shim, Jae-Jeong; Kang, Kyung-Ho

    2012-01-01

    Eperisone and afloqualone act by relaxing both skeletal and vascular smooth muscles to improve circulation and suppress pain reflex. These drugs are typically prescribed with non-steroidal anti-inflammatory drugs (NSAIDs) as painkillers. However, there have been no reports on serious adverse reactions to oral muscle relaxants; and this is the first report to describe three allergic reactions caused by eperisone and afloqualone. All three patients had histories of allergic reactions after oral intake of multiple painkillers, including oral muscle relaxants and NSAIDs, for chronic muscle pain. An open-label oral challenge test was performed with each drug to confirm which drugs caused the systemic reactions. All patients experienced the same reactions within one hour after oral intake of eperisone or afloqualone. The severity of these reactions ranged from laryngeal edema to hypotension. To confirm that the systemic reaction was caused by eperisone or afloqualone, skin prick testing and intradermal skin tests were performed with eperisone or afloqualone extract in vivo, and basophil activity tests were performed after stimulation with these drugs in vitro. In one patient with laryngeal edema, the intradermal test with afloqualone extract had a positive result, and CD63 expression levels on basophils increased in a dose-dependent manner by stimulation with afloqualone. We report three allergic reactions caused by oral muscle relaxants that might be mediated by non-immunoglobulin E-mediated responses. Since oral muscle relaxants such as eperisone and afloqualone are commonly prescribed for chronic muscle pain and can induce severe allergic reactions, we should prescribe them carefully. PMID:22665359

  7. Fullerene nanomaterials inhibit the allergic response.

    PubMed

    Ryan, John J; Bateman, Henry R; Stover, Alex; Gomez, Greg; Norton, Sarah K; Zhao, Wei; Schwartz, Lawrence B; Lenk, Robert; Kepley, Christopher L

    2007-07-01

    Fullerenes are a class of novel carbon allotropes that may have practical applications in biotechnology and medicine. Human mast cells (MC) and peripheral blood basophils are critical cells involved in the initiation and propagation of several inflammatory conditions, mainly type I hypersensitivity. We report an unanticipated role of fullerenes as a negative regulator of allergic mediator release that suppresses Ag-driven type I hypersensitivity. Human MC and peripheral blood basophils exhibited a significant inhibition of IgE dependent mediator release when preincubated with C(60) fullerenes. Protein microarray demonstrated that inhibition of mediator release involves profound reductions in the activation of signaling molecules involved in mediator release and oxidative stress. Follow-up studies demonstrated that the tyrosine phosphorylation of Syk was dramatically inhibited in Ag-challenged cells first incubated with fullerenes. In addition, fullerene preincubation significantly inhibited IgE-induced elevation in cytoplasmic reactive oxygen species levels. Furthermore, fullerenes prevented the in vivo release of histamine and drop in core body temperature in vivo using a MC-dependent model of anaphylaxis. These findings identify a new biological function for fullerenes and may represent a novel way to control MC-dependent diseases including asthma, inflammatory arthritis, heart disease, and multiple sclerosis.

  8. Oleanolic Acid Controls Allergic and Inflammatory Responses in Experimental Allergic Conjunctivitis

    PubMed Central

    Martínez-García, Carmen; Martín, Rubén; Gallego-Muñoz, Patricia; Hernández, Marita; Nieto, María L.

    2014-01-01

    Pollen is the most common aeroallergen to cause seasonal conjunctivitis. The result of allergen exposure is a strong Th2-mediated response along with conjunctival mast cell degranulation and eosinophilic infiltration. Oleanolic acid (OA) is natural a triterpene that displays strong anti-inflammatory and immunomodulatory properties being an active anti-allergic molecule on hypersensitivity reaction models. However, its effect on inflammatory ocular disorders including conjunctivits, has not yet been addressed. Hence, using a Ragweed pollen (RWP)-specific allergic conjunctivitis (EAC) mouse model we study here whether OA could modify responses associated to allergic processes. We found that OA treatment restricted mast cell degranulation and infiltration of eosinophils in conjunctival tissue and decreased allergen-specific Igs levels in EAC mice. Th2-type cytokines, secreted phospholipase A2 type-IIA (sPLA2-IIA), and chemokines levels were also significantly diminished in the conjunctiva and serum of OA-treated EAC mice. Moreover, OA treatment also suppressed RWP-specific T-cell proliferation. In vitro studies, on relevant cells of the allergic process, revealed that OA reduced the proliferative and migratory response, as well as the synthesis of proinflammatory mediators on EoL-1 eosinophils and RBL-2H3 mast cells exposed to allergic and/or crucial inflammatory stimuli such as RWP, sPLA2-IIA or eotaxin. Taken together, these findings demonstrate the beneficial activity of OA in ocular allergic processes and may provide a new intervention strategy and potential therapy for allergic diseases. PMID:24699261

  9. Dietary Enrichment with 20% Fish Oil Decreases Mucus Production and the Inflammatory Response in Mice with Ovalbumin-Induced Allergic Lung Inflammation

    PubMed Central

    Hall, Jean A.; Hartman, Jaye; Skinner, Monica M.; Schwindt, Adam R.; Fischer, Kay A.; Vorachek, William R.; Bobe, Gerd; Valentine, Beth A.

    2016-01-01

    The prevalence of asthma has increased in recent decades, which may be related to higher dietary intake of (n-6) polyunsaturated fatty acids (PUFA) and lower intake of (n-3) PUFA, e.g., those contained in fish oil. The objective of this study was to determine if dietary PUFA enrichment decreases mucus production or the inflammatory response associated with ovalbumin (OVA)-induced allergic lung inflammation. Mice (n = 10/group) were fed control, 20% fish oil, or 20% corn oil enriched diets for a total of 12 weeks. At 8 and 10 weeks, mice were given an intraperitoneal injection of saline (10 control-fed mice) or OVA (30 remaining mice). Once at 10 weeks and on 3 consecutive days during week 12, mice were challenged by nebulizing with saline or OVA. Mice were euthanized 24 hours after the last challenge and blood was collected for plasma FA analysis. Bronchoalveolar lavage (BAL) fluid was collected to determine cell composition and Th2-type cytokine (IL-4, IL-13) concentrations. Periodic acid-Schiff (PAS) + mucus-producing cells and CD45+ inflammatory cell infiltrates in lung tissue were quantified using morphometric analysis. Relative abundance of mRNA for mucin (Muc4, Muc5ac, and Muc5b) and Th2-type cytokine (IL-4, IL-5, and IL-13) genes were compared with ß-actin by qPCR. Supplementation with either corn oil or fish oil effectively altered plasma FA profiles towards more (n-6) FA or (n-3) FA, respectively (P < 0.0001). Sensitization and challenge with OVA increased the proportion of neutrophils, lymphocytes, and eosinophils, and decreased the proportion of macrophages and concentrations of IL-13 in BAL fluid; increased the percentage of PAS+ mucus-producing cells and CD45+ inflammatory cell infiltrates in lung tissue; and increased gene expression of mucins (Muc4, Muc5ac, and Muc5b) and Th2-type cytokines (IL-5 and IL-13) in lung tissue of control-fed mice. Dietary PUFA reversed the increase in PAS+ mucus-producing cells (P = 0.003). In addition, dietary

  10. Dietary Enrichment with 20% Fish Oil Decreases Mucus Production and the Inflammatory Response in Mice with Ovalbumin-Induced Allergic Lung Inflammation.

    PubMed

    Hall, Jean A; Hartman, Jaye; Skinner, Monica M; Schwindt, Adam R; Fischer, Kay A; Vorachek, William R; Bobe, Gerd; Valentine, Beth A

    The prevalence of asthma has increased in recent decades, which may be related to higher dietary intake of (n-6) polyunsaturated fatty acids (PUFA) and lower intake of (n-3) PUFA, e.g., those contained in fish oil. The objective of this study was to determine if dietary PUFA enrichment decreases mucus production or the inflammatory response associated with ovalbumin (OVA)-induced allergic lung inflammation. Mice (n = 10/group) were fed control, 20% fish oil, or 20% corn oil enriched diets for a total of 12 weeks. At 8 and 10 weeks, mice were given an intraperitoneal injection of saline (10 control-fed mice) or OVA (30 remaining mice). Once at 10 weeks and on 3 consecutive days during week 12, mice were challenged by nebulizing with saline or OVA. Mice were euthanized 24 hours after the last challenge and blood was collected for plasma FA analysis. Bronchoalveolar lavage (BAL) fluid was collected to determine cell composition and Th2-type cytokine (IL-4, IL-13) concentrations. Periodic acid-Schiff (PAS) + mucus-producing cells and CD45+ inflammatory cell infiltrates in lung tissue were quantified using morphometric analysis. Relative abundance of mRNA for mucin (Muc4, Muc5ac, and Muc5b) and Th2-type cytokine (IL-4, IL-5, and IL-13) genes were compared with ß-actin by qPCR. Supplementation with either corn oil or fish oil effectively altered plasma FA profiles towards more (n-6) FA or (n-3) FA, respectively (P < 0.0001). Sensitization and challenge with OVA increased the proportion of neutrophils, lymphocytes, and eosinophils, and decreased the proportion of macrophages and concentrations of IL-13 in BAL fluid; increased the percentage of PAS+ mucus-producing cells and CD45+ inflammatory cell infiltrates in lung tissue; and increased gene expression of mucins (Muc4, Muc5ac, and Muc5b) and Th2-type cytokines (IL-5 and IL-13) in lung tissue of control-fed mice. Dietary PUFA reversed the increase in PAS+ mucus-producing cells (P = 0.003). In addition, dietary

  11. INHIBITION OF PAN NEUROTROPHIN RECEPTOR P75 ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAY RESPONSES IN C57/BL6J MICE

    EPA Science Inventory

    Recent investigations have linked neurotrophins including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle...

  12. INHIBITION OF PAN NEUROTROPHIN RECEPTOR P75 ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAY RESPONSES IN C57/BL6J MICE

    EPA Science Inventory

    Recent investigations have linked neurotrophins including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle...

  13. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE₂.

    PubMed

    Kim, Yun-Gi; Udayanga, Kankanam Gamage Sanath; Totsuka, Naoya; Weinberg, Jason B; Núñez, Gabriel; Shibuya, Akira

    2014-01-15

    Although imbalances in gut microbiota composition, or "dysbiosis," are associated with many diseases, the effects of gut dysbiosis on host systemic physiology are less well characterized. We report that gut dysbiosis induced by antibiotic (Abx) treatment promotes allergic airway inflammation by shifting macrophage polarization in the lung toward the alternatively activated M2 phenotype. Adoptive transfer of alveolar macrophages derived from Abx-treated mice was sufficient to increase allergic airway inflammation. Abx treatment resulted in the overgrowth of a commensal fungal Candida species in the gut and increased plasma concentrations of prostaglandin E₂ (PGE₂), which induced M2 macrophage polarization in the lung. Suppression of PGE₂ synthesis by the cyclooxygenase inhibitors aspirin and celecoxib suppressed M2 macrophage polarization and decreased allergic airway inflammatory cell infiltration in Abx-treated mice. Thus, Abx treatment can cause overgrowth of particular fungal species in the gut and promote M2 macrophage activation at distant sites to influence systemic responses including allergic inflammation.

  14. The Seed Biotinylated Protein of Soybean (Glycine max): A Boiling-Resistant New Allergen (Gly m 7) with the Capacity To Induce IgE-Mediated Allergic Responses.

    PubMed

    Riascos, John J; Weissinger, Sandra M; Weissinger, Arthur K; Kulis, Michael; Burks, A Wesley; Pons, Laurent

    2016-05-18

    Soybean is a common allergenic food; thus, a comprehensive characterization of all the proteins that cause allergy is crucial to the development of effective diagnostic and immunotherapeutic strategies. A cDNA library was constructed from seven stages of developing soybean seeds to investigate candidate allergens. We searched the library for cDNAs encoding a seed-specific biotinylated protein (SBP) based on its allergenicity in boiled lentils. A full-length cDNA clone was retrieved and expressed as a 75.6-kDa His-tagged recombinant protein (rSBP) in Escherichia coli. Western immunoblotting of boiled bacterial extracts demonstrated specific IgE binding to rSBP, which was further purified by metal affinity and anion exchange chromatographies. Of the 23 allergic sera screened by ELISA, 12 contained IgEs specific to the purified rSBP. Circular dichroism spectroscopy revealed a predominantly unordered structure consistent with SBP's heat stability. The natural homologues (nSBP) were the main proteins isolated from soybean and peanut embryos after streptavidin affinity purification, yet they remained low-abundance proteins in the seed as confirmed by LC-MS/MS. Using capture ELISAs, the soybean and peanut nSBPs were bound by IgEs in 78 and 87% of the allergic sera tested. The soybean nSBP was purified to homogeneity and treatments with different denaturing agents before immunoblotting highlighted the diversity of its IgE epitopes. In vitro activation of basophils was assessed by flow cytometry in a cohort of peanut-allergic children sensitized to soybean. Stronger and more frequent (38%) activations were induced by nSBP-soy compared to the major soybean allergen, Gly m 5. SBPs may represent a novel class of biologically active legume allergens with the structural resilience to withstand many food-manufacturing processes.

  15. Unlipidated Outer Membrane Protein Omp16 (U-Omp16) from Brucella spp. as Nasal Adjuvant Induces a Th1 Immune Response and Modulates the Th2 Allergic Response to Cow’s Milk Proteins

    PubMed Central

    Ibañez, Andrés E.; Smaldini, Paola; Coria, Lorena M.; Delpino, María V.; Pacífico, Lucila G. G.; Oliveira, Sergio C.; Risso, Gabriela S.; Pasquevich, Karina A.; Fossati, Carlos Alberto; Giambartolomei, Guillermo H.; Docena, Guillermo H.; Cassataro, Juliana

    2013-01-01

    The discovery of novel mucosal adjuvants will help to develop new formulations to control infectious and allergic diseases. In this work we demonstrate that U-Omp16 from Brucella spp. delivered by the nasal route (i.n.) induced an inflammatory immune response in bronchoalveolar lavage (BAL) and lung tissues. Nasal co-administration of U-Omp16 with the model antigen (Ag) ovalbumin (OVA) increased the amount of Ag in lung tissues and induced OVA-specific systemic IgG and T helper (Th) 1 immune responses. The usefulness of U-Omp16 was also assessed in a mouse model of food allergy. U-Omp16 i.n. administration during sensitization ameliorated the hypersensitivity responses of sensitized mice upon oral exposure to Cow’s Milk Protein (CMP), decreased clinical signs, reduced anti-CMP IgE serum antibodies and modulated the Th2 response in favor of Th1 immunity. Thus, U-Omp16 could be used as a broad Th1 mucosal adjuvant for different Ag formulations. PMID:23861971

  16. Allergic response to metabisulfite in lidocaine anesthetic solution.

    PubMed Central

    Campbell, J. R.; Maestrello, C. L.; Campbell, R. L.

    2001-01-01

    True allergies to local anesthetics are rare. It is common for practitioners to misdiagnose a serious adverse event to local anesthetics as an allergic reaction. The most likely causes for an allergic response are the preservative, antioxidant, or metabolites and not the anesthetic itself. This case report illustrates the need for practitioners to understand the many potential allergens in local anesthetics and to correctly diagnose patients that are truly allergic to the local anesthetic. Images Figure 1 Figure 2 Figure 3 Figures 4 and 5 PMID:11495401

  17. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  18. Lactase-induced occupational protein contact dermatitis and allergic rhinoconjunctivitis.

    PubMed

    Laukkanen, Arja; Ruoppi, Pirkko; Remes, Sami; Koistinen, Tiina; Mäkinen-Kiljunen, Soili

    2007-08-01

    Enzymes are high-molecular-weight proteins and highly sensitizing occupational allergens used widely in industrial processes. Lactase has been described to cause work-related respiratory and conjunctival immunoglobulin (Ig)-E-mediated sensitizations in workers in the pharmaceutical industry. In these previous reports, allergic rhinoconjunctivitis or asthma was confirmed with prick tests but not by challenge tests. Lactase previously has not been described as a cause of immediate or delayed contact skin reaction. Furthermore, there are no previous reports of lactase-specific IgE. We report a case of protein contact dermatitis and allergic rhinoconjunctivitis from occupational exposure to lactase in a pharmaceutical worker. The patient exhibited strong positive responses to lactase in prick tests. In an open application test, lactase elicited whealing, and in patch testing, lactase elicited an eczematous reaction. Serum lactase-specific IgE antibodies were demonstrated in immunospot and radioallergosorbent test assays, and lactase-IgE-binding fractions and their specificities were examined in immunoblot and immunoblot inhibition assays. The chamber challenge test was performed to detect the association between lactase sensitization and rhinoconjunctival symptoms. Our results have confirmed the previous observations that lactase can induce occupational IgE-mediated respiratory and conjunctival sensitizations, but they show that contact skin reactions caused by lactase may also occur.

  19. Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease

    PubMed Central

    Siddesha, Jalahalli M.; Nakada, Emily M.; Mihavics, Bethany R.; Hoffman, Sidra M.; Rattu, Gurkiranjit K.; Chamberlain, Nicolas; Cahoon, Jonathon M.; Lahue, Karolyn G.; Daphtary, Nirav; Aliyeva, Minara; Chapman, David G.; Desai, Dhimant H.; Poynter, Matthew E.

    2016-01-01

    Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases. PMID:27154200

  20. Rheb1 deletion in myeloid cells aggravates OVA-induced allergic inflammation in mice

    PubMed Central

    Li, Kai; Zhang, Yue; Liang, Kang Yan; Xu, Song; Zhou, Xue Juan; Tan, Kang; Lin, Jun; Bai, Xiao Chun; Yang, Cui Lan

    2017-01-01

    The small GTPase ras homolog enriched in brain (Rheb) is a downstream target of tuberous sclerosis complex 1/2 (TSC1/2) and an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), the emerging essential modulator of M1/M2 balance in macrophages. However, the role and regulatory mechanisms of Rheb in macrophage polarization and allergic asthma are not known. In the present study, we utilized a mouse model with myeloid cell-specific deletion of the Rheb1 gene and an ovalbumin (OVA)-induced allergic asthma model to investigate the role of Rheb1 in allergic asthma and macrophage polarization. Increased activity of Rheb1 and mTORC1 was observed in myeloid cells of C57BL/6 mice with OVA-induced asthma. In an OVA-induced asthma model, Rheb1-KO mice demonstrated a more serious inflammatory response, more mucus production, enhanced airway hyper-responsiveness, and greater eosinophil numbers in bronchoalveolar lavage fluid (BALF). They also showed increased numbers of bone marrow macrophages and BALF myeloid cells, elevated M2 polarization and reduced M1 polarization of macrophages. Thus, we have established that Rheb1 is critical for the polarization of macrophages and inhibition of allergic asthma. Deletion of Rheb1 enhances M2 polarization but decreases M1 polarization in alveolar macrophages, leading to the aggravation of OVA-induced allergic asthma. PMID:28225024

  1. Ragweed-induced allergic rhinoconjunctivitis: current and emerging treatment options

    PubMed Central

    Ihler, Friedrich; Canis, Martin

    2015-01-01

    Ragweed (Ambrosia spp.) is an annually flowering plant whose pollen bears high allergenic potential. Ragweed-induced allergic rhinoconjunctivitis has long been seen as a major immunologic condition in Northern America with high exposure and sensitization rates in the general population. The invasive occurrence of ragweed (A. artemisiifolia) poses an increasing challenge to public health in Europe and Asia as well. Possible explanations for its worldwide spread are climate change and urbanization, as well as pollen transport over long distances by globalized traffic and winds. Due to the increasing disease burden worldwide, and to the lack of a current and comprehensive overview, this study aims to review the current and emerging treatment options for ragweed-induced rhinoconjunctivitis. Sound clinical evidence is present for the symptomatic treatment of ragweed-induced allergic rhinoconjunctivitis with oral third-generation H1-antihistamines and leukotriene antagonists. The topical application of glucocorticoids has also been efficient in randomized controlled clinical trials. Combined approaches employing multiple agents are common. The mainstay of causal treatment to date, especially in Northern America, is subcutaneous immunotherapy with the focus on the major allergen, Amb a 1. Beyond this, growing evidence from several geographical regions documents the benefit of sublingual immunotherapy. Future treatment options promise more specific symptomatic treatment and fewer side effects during causal therapy. Novel antihistamines for symptomatic treatment are aimed at the histamine H3-receptor. New adjuvants with toll-like receptor 4 activity or the application of the monoclonal anti-immunoglobulin E antibody, omalizumab, are supposed to enhance conventional immunotherapy. An approach targeting toll-like receptor 9 by synthetic cytosine phosphate–guanosine oligodeoxynucleotides promises a new treatment paradigm that aims to modulate the immune response, but it has

  2. Allergic airway inflammation induces a pro-secretory epithelial ion transport phenotype in mice.

    PubMed

    Anagnostopoulou, P; Dai, L; Schatterny, J; Hirtz, S; Duerr, J; Mall, M A

    2010-12-01

    The airway epithelium is a central effector tissue in allergic inflammation and T-helper cell (Th) type 2-driven epithelial responses, such as mucus hypersecretion contribute to airflow obstruction in allergic airway disease. Previous in vitro studies demonstrated that Th2 cytokines also act as potent modulators of epithelial ion transport and fluid secretion, but the in vivo effect of allergic inflammation on airway ion transport remains unknown. We, therefore, induced allergic inflammation by intratracheal instillation of Aspergillus fumigatus extract or interleukin-13 in mice and determined effects on ion transport in native tracheal and bronchial tissues. We demonstrate that allergic inflammation enhanced basal Cl(-) secretion in both airway regions and inhibited epithelial Na(+) channel (ENaC)-mediated Na(+) absorption and increased Ca²(+)-dependent Cl(-) secretion in bronchi. Allergen-induced alterations in bronchial ion transport were associated with reduced transcript levels of α-, β- and γENaC, and were largely abrogated in signal transducer and activator of transcription (Stat)6(-/-) mice. Our studies demonstrate that Th2-dependent airway inflammation produced a pro-secretory ion transport phenotype in vivo, which was largely Stat6-dependent. These results suggest that Th2-mediated fluid secretion may improve airway surface hydration and clearance of mucus that is hypersecreted in allergic airway diseases such as asthma, and identify epithelial Stat6 signalling as a potential therapeutic target to promote mucus hydration and airway clearance.

  3. Role of ROCK2 in CD4(+) cells in allergic airways responses in mice.

    PubMed

    Kasahara, D I; Mathews, J A; Ninin, F M C; Wurmbrand, A P; Liao, J K; Shore, S A

    2017-02-01

    Rho kinases (ROCKs) contribute to allergic airways disease. ROCKs also play a role in lymphocyte proliferation and migration. To determine the role of ROCK2 acting within CD4(+) cells in allergic airways responses. ROCK2-haploinsufficient (ROCK2(+/-) ) and wild-type mice were sensitized with ovalbumin (OVA). ROCK2(+/-) mice then received either CD4(+) cells from ROCK2-sufficient OVA TCR transgenic (OT-II) mice or saline i.v. 48 h before challenge with aerosolized OVA. Wild-type mice received saline before challenge. Allergic airways responses were measured 48 h after the last challenge. Allergic airways responses were also assessed in mice lacking ROCK2 only in CD4(+) cells (ROCK2(CD)(4Cre) mice) vs. control (CD4-Cre and ROCK2(flox/flox) ) mice. OVA-induced increases in bronchoalveolar lavage lymphocytes, eosinophils, IL-13, IL-5, and eotaxin were reduced in ROCK2(+/-) vs. wild-type mice, as were airway hyperresponsiveness and mucous hypersecretion. In ROCK2(+/-) mice, adoptive transfer with CD4(+) cells from OT-II mice restored effects of OVA on lymphocytes, eosinophils, IL-13, IL-5, and mucous hypersecretion to wild-type levels, whereas eotaxin and airway hyperresponsiveness were not affected. ROCK2 inhibitors reduced IL-13-induced release of eotaxin from airway smooth muscle (ASM), similar to effects of these inhibitors on ASM contractility. Despite the ability of adoptive transfer to restore allergic airways inflammation in ROCK2-insufficient mice, allergic inflammation was not different in ROCK2(CD)(4Cre) vs. control mice. ROCK2 contributes to allergic airways responses likely via effects within ASM cells and within non-lymphocyte cells involved in lymphocyte activation and migration into the airways. © 2016 John Wiley & Sons Ltd.

  4. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    PubMed Central

    Lee, Chen-Chen; Wang, Ching-Chiung; Huang, Huei-Mei; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2015-01-01

    This study investigated the immunomodulatory effects of ferulic acid (FA) on antigen-presenting dendritic cells (DCs) in vitro and its antiallergic effects against ovalbumin- (OVA-) induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation induced a high level of interleukin- (IL-) 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF-) α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4), MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE) and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13), and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN-) γ production in bronchoalveolar lavage fluid (BALF) and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model. PMID:26495021

  5. Immune allergic response in Asperger syndrome.

    PubMed

    Magalhães, Elizabeth S; Pinto-Mariz, Fernanda; Bastos-Pinto, Sandra; Pontes, Adailton T; Prado, Evandro A; deAzevedo, Leonardo C

    2009-11-30

    Asperger's syndrome is a subgroup of autism characterized by social deficits without language delay, and high cognitive performance. The biological nature of autism is still unknown but there are controversial evidence associating an immune imbalance and autism. Clinical findings, including atopic family history, serum IgE levels as well as cutaneous tests showed that incidence of atopy was higher in the Asperger group compared to the healthy controls. These findings suggest that atopy is frequent in this subgroup of autism implying that allergic inflammation might be an important feature in Asperger syndrome.

  6. Allergen-encoded signals that control allergic responses

    PubMed Central

    Tung, Hui-Ying; Landers, Cameron; Li, Evan; Porter, Paul; Kheradmand, Farrah; Corry, David B.

    2016-01-01

    Purpose of review The purpose is to review the important recent advances made in how innate immune cells, microbes, and the environment contribute to the expression of allergic disease, emphasizing the allergen-related signals that drive allergic responses. Recent findings The last few years have seen crucial advances in how innate immune cells such as innate lymphoid cells group 2 and airway epithelial cells and related molecular pathways through organismal proteinases and innate immune cytokines, such as thymic stromal lymphopoietin, IL-25, and IL-33 contribute to allergy and asthma. Simultaneously with these advances, important progress has been made in our understanding of how the environment, and especially pathogenic organisms, such as bacteria, viruses, helminths, and especially fungi derived from the natural and built environments, either promote or inhibit allergic inflammation and disease. Of specific interest are how lipopolysaccharide mediates its antiallergic effect through the ubiquitin modifying factor A20 and the antiallergic activity of both helminths and protozoa. Summary Innate immune cells and molecular pathways, often activated by allergen-derived proteinases acting on airway epithelium and macrophages as well as additional unknown factors, are essential to the expression of allergic inflammation and disease. These findings suggest numerous future research opportunities and new opportunities for therapeutic intervention in allergic disease. PMID:26658015

  7. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    PubMed

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.

  8. In Vivo and In Vitro Studies of Th17 Response to Specific Immunotherapy in House Dust Mite-Induced Allergic Rhinitis Patients

    PubMed Central

    Chen, De Hua; Lin, Zhi Bin; Wang, De Yun; Li, Tian Ying

    2014-01-01

    T helper (Th)17 cells have been implicated in the development of allergic rhinitis (AR), but their response to specific immunotherapy (SIT) remains unclear. We investigated the impact of SIT on Th17 response and Th1/Th2 changes in AR patients. Blood samples from AR patients (n = 20) who were monosensitized to house dust mite (HDM) were collected before the initiation of SIT (SIT-untreated) and after the end of 2-year SIT (SIT-treated) treatment. Twenty healthy volunteers were recruited as controls. In vitro HDM stimulation in peripheral blood mononuclear cells (PBMCs) was also performed. Expression levels of Th17 associated genes were determined in both PBMCs and plasma by PCR and ELISA, while Th17/Th1/Th2/IL10 producing cell proportions were evaluated in PBMCs by flow cytometry. The SIT effect was evaluated by assessing clinical symptoms. mRNA levels of Th17 specific genes (IL17 and RORC) were increased in SIT-untreated AR versus controls, and decreased following SIT treatment. SIT can change the production of Th17 associated genes (reduction of IL17, IL6, and IL23, but increase of IL27) in plasma from AR patients. Th2/Th1 ratio and proportions of Th17 cells were suppressed while IL10 producing CD4+ T cells were elevated after SIT. In vitro HDM challenge presents concordant patterns with in vivo findings: 1) increase of Th2 and Th17 response in AR patients; 2) suppression of IL10 producing CD4+ T cells in SIT-untreated AR but elevation in SIT-treated AR patients. Most importantly, a positive correlation between IL17 mRNA/protein levels and clinical symptom scores was observed. SIT significantly inhibits Th17 mediated inflammation in AR and IL17 may be a useful biomarker for both AR severity and SIT therapeutic effect. Trial Registration Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12613000445774 PMID:24647473

  9. β-Glucan exacerbates allergic airway responses to house dust mite allergen.

    PubMed

    Hadebe, Sabelo; Kirstein, Frank; Fierens, Kaat; Redelinghuys, Pierre; Murray, Graeme I; Williams, David L; Lambrecht, Bart N; Brombacher, Frank; Brown, Gordon D

    2016-04-02

    β-(1,3)-Glucan is present in mould cell walls and frequently detected in house dust mite (HDM) faeces. β-Glucan exposure is thought to be associated with pulmonary allergic inflammation in mouse and man, although the published data are inconsistent. Here, we show that highly purified β-glucan exacerbates HDM-induced eosinophilic, T helper 2 type airway responses by acting as an adjuvant, promoting activation, proliferation and polarisation of HDM-specific T cells (1-Derβ T cells). We therefore provide definitive evidence that β-glucan can influence allergic pulmonary inflammation.

  10. Immune responses to different patterns of exposure to ovalbumin in a mouse model of allergic rhinitis.

    PubMed

    Liang, Mei-Jun; Fu, Qing-Ling; Jiang, Hong-Yan; Chen, Feng-Hong; Chen, Dong; Chen, De-Hua; Lin, Zhi-Bin; Xu, Rui

    2016-11-01

    Allergic rhinitis (AR) has been a significant healthcare burden on individuals and society. However, the detailed effect of different patterns of allergen exposure on the development of AR remains controversial. A mouse model of AR was established to address the complex relationships between allergen exposure and the development of AR. Allergic symptom, OVA-specific IgE in serum and nasal lavage fluid, allergic inflammation in nasal tissues were evaluated after intranasal sensitization and challenge of ovalbumin (OVA) in mice treated with two different doses of allergen for different sensitized durations. Exposure to different doses and sensitized durations of OVA were capable of inducing allergic nasal response. Repetitive OVA exposure in the sensitization phase induced the recruitment of eosinophils and goblet cell hyperplasia. The level of OVA-specific IgE in serum depended on OVA exposure and was mediated in a duration-related manner. In addition, mice treated with low-dose OVA for prolonged duration manifested the major features of human local allergic rhinitis. There were dose- and duration-related effects of allergen exposure on the development of AR. LAR was associated with repetitive exposure to low-dose allergen. Thus, allergen avoidance should be an important aim of AR management.

  11. Immune response to sublingual immunotherapy in children allergic to mites.

    PubMed

    Barberi, S; Villa, M P; Pajno, G B; La Penna, F; Barreto, M; Cardelli, P; Amodeo, R; Tabacco, F; Caminiti, L; Ciprandi, G

    2011-01-01

    Allergic rhinitis (AR) is characterized by Th2 polarized immune response. Specific immunotherapy modifies this arrangement restoring a physiologic Th1 profile. Sublingual immunotherapy (SLIT) is widely prescribed, but there is no early marker of response. The aim of this study is to investigate possible marker of SLIT effectiveness. Thirty children with mite allergy were studied: 15 were treated with drugs alone, 15 with SLIT and drugs on demand. The study lasted 2 years. Visual analogue scale (VAS) for symptoms and medication score were evaluated. Serum cytokines (IL-2, IL-4, IL-6, IL-8, IL-10, IFN-gamma, MCP-1, and TNF-alpha) were assessed by ELISA before and after 1 and 2 year SLIT. SLIT-treated children obtained a significant improvement of symptoms and a reduction of drug use, whereas children treated with a drug alone did not obtained any change. IL-10 significantly increased, whereas Th2-dependent and pro-inflammatory cytokines significantly decreased. In conclusion, the present study demonstrates that 2-year SLIT is capable of inducing immunologic hyporeactivity to mites.

  12. Oral administration of Lactobacillus paracasei L9 attenuates PM2.5-induced enhancement of airway hyperresponsiveness and allergic airway response in murine model of asthma.

    PubMed

    Wang, Xifan; Hui, Yan; Zhao, Liang; Hao, Yanling; Guo, Huiyuan; Ren, Fazheng

    2017-01-01

    This study investigated allergy immunotherapy potential of Lactobacillus paracasei L9 to prevent or mitigate the particulate matter 2.5 (PM2.5) enhanced pre-existing asthma in mice. Firstly, we used a mouse model of asthma (a 21-day ovalbumin (OVA) sensitization and challenge model) followed by PM2.5 exposure twice on the same day of the last challenge. PM2.5 was collected from the urban area of Beijing and underwent analysis for metals and polycyclic aromatic hydrocarbon contents. The results showed that PM2.5 exposure enhanced airway hyper-responsiveness (AHR) and lead to a mixed Th2/ IL-17 response in asthmatic mice. Secondly, the PM2.5 exposed asthmatic mice were orally administered with L9 (4×107, 4×109 CFU/mouse, day) from the day of first sensitization to the endpoint, for 20 days, to investigate the potential mitigative effect of L9 on asthma. The results showed that L9 ameliorated PM2.5 exposure enhanced AHR with an approximate 50% decrease in total airway resistance response to methacholine (48 mg/ml). L9 also prevented the exacerbated eosinophil and neutrophil infiltration in bronchoalveolar lavage fluid (BALF), and decreased the serum level of total IgE and OVA-specific IgG1 by 0.44-fold and 0.3-fold, respectively. Additionally, cytokine production showed that L9 significantly decreased T-helper cell type 2 (Th2)-related cytokines (IL-4, -5, -13) and elevated levels of Th1 related IFN-γ in BALF. L9 also reduced the level of IL-17A and increased the level of TGF-β. Taken together, these results indicate that L9 may exert the anti-allergic benefit, possibly through rebalancing Th1/Th2 immune response and modulating IL-17 pro-inflammatory immune response. Thus, L9 is a promising candidate for preventing PM exposure enhanced pre-existing asthma.

  13. Oral administration of Lactobacillus paracasei L9 attenuates PM2.5-induced enhancement of airway hyperresponsiveness and allergic airway response in murine model of asthma

    PubMed Central

    Zhao, Liang; Hao, Yanling; Guo, Huiyuan; Ren, Fazheng

    2017-01-01

    This study investigated allergy immunotherapy potential of Lactobacillus paracasei L9 to prevent or mitigate the particulate matter 2.5 (PM2.5) enhanced pre-existing asthma in mice. Firstly, we used a mouse model of asthma (a 21-day ovalbumin (OVA) sensitization and challenge model) followed by PM2.5 exposure twice on the same day of the last challenge. PM2.5 was collected from the urban area of Beijing and underwent analysis for metals and polycyclic aromatic hydrocarbon contents. The results showed that PM2.5 exposure enhanced airway hyper-responsiveness (AHR) and lead to a mixed Th2/ IL-17 response in asthmatic mice. Secondly, the PM2.5 exposed asthmatic mice were orally administered with L9 (4×107, 4×109 CFU/mouse, day) from the day of first sensitization to the endpoint, for 20 days, to investigate the potential mitigative effect of L9 on asthma. The results showed that L9 ameliorated PM2.5 exposure enhanced AHR with an approximate 50% decrease in total airway resistance response to methacholine (48 mg/ml). L9 also prevented the exacerbated eosinophil and neutrophil infiltration in bronchoalveolar lavage fluid (BALF), and decreased the serum level of total IgE and OVA-specific IgG1 by 0.44-fold and 0.3-fold, respectively. Additionally, cytokine production showed that L9 significantly decreased T-helper cell type 2 (Th2)–related cytokines (IL-4, -5, -13) and elevated levels of Th1 related IFN-γ in BALF. L9 also reduced the level of IL-17A and increased the level of TGF-β. Taken together, these results indicate that L9 may exert the anti-allergic benefit, possibly through rebalancing Th1/Th2 immune response and modulating IL-17 pro-inflammatory immune response. Thus, L9 is a promising candidate for preventing PM exposure enhanced pre-existing asthma. PMID:28199353

  14. Deer ked-induced occupational allergic rhinoconjunctivitis.

    PubMed

    Laukkanen, Arja; Ruoppi, Pirkko; Mäkinen-Kiljunen, Soili

    2005-05-01

    Deer keds (elk fly) have not previously been described as a cause of respiratory or conjunctival sensitization. To report a case of IgE-mediated allergic rhinoconjunctivitis from occupational exposure to deer ked. Skin prick testing (SPT) was performed with pollens, animal danders, mites, molds, and deer ked. The serum deer ked-specific IgE level was examined in ImmunoSpot and radioallergosorbent test assays, and deer ked IgE-binding fractions and their specificities were examined in immunoblot and immunoblot inhibition assays. Nasal provocation testing (NPT) and conjunctival provocation testing (CPT) were performed to detect the association between deer ked sensitization and rhinoconjunctival symptoms. Both SPT and NPT were performed with deer ked whole-body extract, whereas CPT was performed with deer ked wing. The results of SPT, NPT, and CPT were positive for deer ked. In laboratory tests, serum deer ked-specific IgE antibodies were demonstrated in radioallergosorbent test and ImmunoSpot assays. In immunoblot, IgE-binding bands were demonstrated at 17, 33, 70, and 85 kDa, which were clearly inhibited with deer ked extract but not with the control extract. Occupational IgE-mediated rhinoconjunctival allergy to deer ked was confirmed in this patient.

  15. Laughter counteracts enhancement of plasma neurotrophin levels and allergic skin wheal responses by mobile phone-mediated stress.

    PubMed

    Kimata, Hajime

    2004-01-01

    Laughter caused by viewing a comic video (Rowan Atkinson's The Best Bits of Mr. Bean) reduced the plasma nerve growth factor, neurotrophin-3 levels, and allergic skin wheal responses in patients with atopic dermatitis, whereas viewing a nonhumorous video (weather information) failed to do so. In contrast, stress induced by writing mail on a mobile phone enhanced the plasma nerve growth factor, neurotrophin-3 levels, and allergic skin wheal responses. However, previewing the comic video counteracted mobile phone-mediated enhancement of plasma neurotrophins or allergic skin wheal responses, whereas previewing the weather information failed to do so. Taken together, these results suggest that, in patients with atopic dermatitis, writing mail on a mobile phone causes stress and enhances allergic responses with a concomitant increase in plasma neurotrophins that are counteracted by laughter. These results may be useful in the study of pathophysiology and treatment of atopic dermatitis.

  16. Semaphorin 3A controls allergic and inflammatory responses in experimental allergic conjunctivitis

    PubMed Central

    Tanaka, Junmi; Tanaka, Hideo; Mizuki, Nobuhisa; Nomura, Eiichi; Ito, Norihiko; Nomura, Naoko; Yamane, Masayuki; Hida, Tomonobu; Goshima, Yoshio; Hatano, Hiroshi; Nakagawa, Hisashi

    2015-01-01

    AIM To assess the efficacy of topical Semaphorin-3A (SEMA3A) in the treatment of allergic conjunctivitis. METHODS Experimental allergic conjunctivitis (EAC) mice model induced by short ragweed pollen (SRW) in 4-week-old of BALB/c mice, mice were evaluated using haematoxylin and eosin (H&E) staining, immunofluorescence and light microscope photographs. Early phase took the samples in 24h after instillation and late phase took the samples between 4 to 14d after the start of treatment. The study use of topical SEMA3A (10 U, 100 U, 1000 U) eye drops and subconjunctival injection of SEMA3A with same concentration. For comparison, five types of allergy eyedrops were quantified using clinical characteristics. RESULTS Clinical score of composite ocular symptoms of the mice treated with SEMA3A were significantly decreased both in the immediate phase and the late phase compared to those treated with commercial ophthalmic formulations and non-treatment mice. SEMA3A treatment attenuates infiltration of eosinophils entering into conjunctiva in EAC mice. The score of eosinophil infiltration in the conjunctiva of SEMA3A 1000 U-treated group were significantly lower than low-concentration of SEMA3A treated groups and non-treated group. SEMA3A treatment also suppressed T-cell proliferation in vitro and decreased serum total IgE levels in EAC mice. Moreover, Treatment of SEMA3A suppressed Th2-related cytokines (IL-5, IL-13 and IL-4) and pro-inflammatory cytokines (IFN-γ, IL-17 and TNF-α) release, but increased regulatory cytokine IL-10 concentration in the conjunctiva of EAC mice. CONCLUSIONS SEMA3A as a biological agent, showed the beneficial activity in ocular allergic processes with the less damage to the intraocular tissue. It is expected that SEMA3A may be contributed in patients with a more severe spectrum of refractory ocular allergic diseases including allergic conjunctivitis in the near future. PMID:25709899

  17. Cyclooxygenase-1 overexpression decreases Basal airway responsiveness but not allergic inflammation.

    PubMed

    Card, Jeffrey W; Carey, Michelle A; Bradbury, J Alyce; Graves, Joan P; Lih, Fred B; Moorman, Michael P; Morgan, Daniel L; DeGraff, Laura M; Zhao, Yun; Foley, Julie F; Zeldin, Darryl C

    2006-10-01

    Pharmacological inhibition or genetic disruption of cyclooxygenase (COX)-1 or COX-2 exacerbates the inflammatory and functional responses of the lung to environmentally relevant stimuli. To further examine the contribution of COX-derived eicosanoids to basal lung function and to allergic lung inflammation, transgenic (Tr) mice were generated in which overexpression of human COX-1 was targeted to airway epithelium. Although no differences in basal respiratory or lung mechanical parameters were observed, COX-1 Tr mice had increased bronchoalveolar lavage fluid PGE(2) content compared with wild-type littermates (23.0 +/- 3.6 vs 8.4 +/- 1.4 pg/ml; p < 0.05) and exhibited decreased airway responsiveness to inhaled methacholine. In an OVA-induced allergic airway inflammation model, comparable up-regulation of COX-2 protein was observed in the lungs of allergic wild-type and COX-1 Tr mice. Furthermore, no genotype differences were observed in allergic mice in total cell number, eosinophil content (70 vs 76% of total cells, respectively), and inflammatory cytokine content of bronchoalveolar lavage fluid, or in airway responsiveness to inhaled methacholine (p > 0.05). To eliminate the presumed confounding effects of COX-2 up-regulation, COX-1 Tr mice were bred into a COX-2 null background. In these mice, the presence of the COX-1 transgene did not alter allergen-induced inflammation but significantly attenuated allergen-induced airway hyperresponsiveness, coincident with reduced airway leukotriene levels. Collectively, these data indicate that COX-1 overexpression attenuates airway responsiveness under basal conditions but does not influence allergic airway inflammation.

  18. Modulation of the oscillatory mechanics of lung tissue and the oxidative stress response induced by arginase inhibition in a chronic allergic inflammation model

    PubMed Central

    2013-01-01

    Background The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Methods Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Results Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). Conclusions In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma

  19. Modulation of the oscillatory mechanics of lung tissue and the oxidative stress response induced by arginase inhibition in a chronic allergic inflammation model.

    PubMed

    Aristoteles, Luciana R C R B; Righetti, Renato F; Pinheiro, Nathalia Montouro; Franco, Rosana B; Starling, Claudia M; da Silva, Julie C P; Pigati, Patrícia Angeli; Caperuto, Luciana C; Prado, Carla M; Dolhnikoff, Marisa; Martins, Milton A; Leick, Edna A; Tibério, Iolanda F L C

    2013-08-15

    The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due

  20. NEUROTROPHIN MEDIATION OF ALLERGIC AIRWAYS RESPONSES TO INHALED DIESEL PARTICLES IN MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway hyper-responsiveness. Diesel exhaust particulates (DEP) associated with the combustion of diesel fuel exacerbate many of these allergic airways respons...

  1. NEUROTROPHIN MEDIATION OF ALLERGIC AIRWAYS RESPONSES TO INHALED DIESEL PARTICLES IN MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway hyper-responsiveness. Diesel exhaust particulates (DEP) associated with the combustion of diesel fuel exacerbate many of these allergic airways respons...

  2. CTAB-coated gold nanorods elicit allergic response through degranulation and cell death in human basophils

    NASA Astrophysics Data System (ADS)

    Cheung, Ka Lun; Chen, Huanjun; Chen, Qiulan; Wang, Jianfang; Ho, Ho Pui; Wong, Chun Kwok; Kong, Siu Kai

    2012-07-01

    The effect of CTAB (cetyltrimethylammonium bromide)- or PEG (polyethylene glycol)-coated gold-nanorods (Au-NRs) on the non-IgE mediated allergic response was studied. We found that the CTAB-Au-NRs released more allergic mediators such as histamine and β-hexosaminidase from human basophil KU812, a common model for studying allergy, after 20 min incubation. Also, the CTAB-Au-NRs induced more apoptosis than the PEG-Au-NRs in KU812 24 h after treatment. These short- and long-term effects were not solely due to the CTAB residues in the supernatant desorbed from the Au-NRs.The effect of CTAB (cetyltrimethylammonium bromide)- or PEG (polyethylene glycol)-coated gold-nanorods (Au-NRs) on the non-IgE mediated allergic response was studied. We found that the CTAB-Au-NRs released more allergic mediators such as histamine and β-hexosaminidase from human basophil KU812, a common model for studying allergy, after 20 min incubation. Also, the CTAB-Au-NRs induced more apoptosis than the PEG-Au-NRs in KU812 24 h after treatment. These short- and long-term effects were not solely due to the CTAB residues in the supernatant desorbed from the Au-NRs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30435j

  3. Schizophyllum commune-induced allergic fungal rhinosinusitis and sinobronchial mycosis.

    PubMed

    Tsukatani, Toshiaki; Ogawa, Haruhiko; Anzawa, Kazushi; Kobayashi, Eiji; Hasegawa, Hiroki; Makimura, Koichi; Yoshizaki, Tomokazu; Ueda, Norishi

    2015-06-01

    We present 32- and 38-year-old males with Schizophyllum commune-induced allergic fungal rhinosinusitis (AFRS). S. commune-induced AFRS was diagnosed by clinical and radiographic findings, positive specific IgE antibodies against S. commune as measured by the ImmunoCAP system, and sequencing analysis of the fungus. Our two cases with S. commune-induced AFRS for the first time showed evidence for type 1 hypersensitivity to S. commune as determined by using specific IgE antibodies against S. commune, and the fungus was identified by sequence analysis.

  4. Schizophyllum commune-induced allergic fungal rhinosinusitis and sinobronchial mycosis

    PubMed Central

    Tsukatani, Toshiaki; Ogawa, Haruhiko; Anzawa, Kazushi; Kobayashi, Eiji; Hasegawa, Hiroki; Makimura, Koichi; Yoshizaki, Tomokazu; Ueda, Norishi

    2015-01-01

    We present 32- and 38-year-old males with Schizophyllum commune-induced allergic fungal rhinosinusitis (AFRS). S. commune-induced AFRS was diagnosed by clinical and radiographic findings, positive specific IgE antibodies against S. commune as measured by the ImmunoCAP system, and sequencing analysis of the fungus. Our two cases with S. commune-induced AFRS for the first time showed evidence for type 1 hypersensitivity to S. commune as determined by using specific IgE antibodies against S. commune, and the fungus was identified by sequence analysis. PMID:25756007

  5. Personalized symptoms forecasting for pollen-induced allergic rhinitis sufferers

    NASA Astrophysics Data System (ADS)

    Voukantsis, D.; Berger, U.; Tzima, F.; Karatzas, K.; Jaeger, S.; Bergmann, K. C.

    2015-07-01

    Hay fever is a pollen-induced allergic reaction that strongly affects the overall quality of life of many individuals. The disorder may vary in severity and symptoms depending on patient-specific factors such as genetic disposition, individual threshold of pollen concentration levels, medication, former immunotherapy, and others. Thus, information services that improve the quality of life of hay fever sufferers must address the needs of each individual separately. In this paper, we demonstrate the development of information services that offer personalized pollen-induced symptoms forecasts. The backbone of these services consists of data of allergic symptoms reported by the users of the Personal Hay Fever Diary system and pollen concentration levels (European Aeroallergen Network) in several sampling sites. Data were analyzed using computational intelligence methods, resulting in highly customizable forecasting models that offer personalized warnings to users of the Patient Hay Fever Diary system. The overall system performance for the pilot area (Vienna and Lower Austria) reached a correlation coefficient of r = 0.71 ± 0.17 (average ± standard deviation) in a sample of 219 users with major contribution to the Pollen Hay Fever Diary system and an overall performance of r = 0.66 ± 0.18 in a second sample of 393 users, with minor contribution to the system. These findings provide an example of combining data from different sources using advanced data engineering in order to develop innovative e-health services with the capacity to provide more direct and personalized information to allergic rhinitis sufferers.

  6. Microbial regulation of allergic responses to food

    PubMed Central

    Feehley, Taylor; Stefka, Andrew T.; Cao, Severine; Nagler, Cathryn R.

    2013-01-01

    The incidence of food allergy in developed countries is rising at a rate that cannot be attributed to genetic variation alone. In this review we discuss the environmental factors that may contribute to the increasing prevalence of potentially fatal anaphylactic responses to food. Decreased exposure to enteric infections due to advances in vaccination and sanitation, along with the adoption of high-fat (Western) diets, antibiotic use, Caesarian birth, and formula feeding of infants, have all been implicated in altering the enteric microbiome away from its ancestral state. This collection of resident commensal microbes performs many important physiological functions and plays a central role in the development of the immune system. We hypothesize that alterations in the microbiome interfere with immune system maturation, resulting in impairment of IgA production, reduced abundance of regulatory T cells, and Th2-skewing of baseline immune responses which drive aberrant responses to innocuous (food) antigens. PMID:22941410

  7. Modulation of immune responses by immunotherapy in allergic diseases.

    PubMed

    Cavkaytar, Ozlem; Akdis, Cezmi A; Akdis, Mübeccel

    2014-08-01

    Allergen immunotherapy (AIT) has been used for 100 years and until now different immunoregulatory pathways have been shown to take place in its mechanisms of action. It is characterized by administration of the causative allergen and is shown to be clinically efficient even after discontinuation of therapy particularly in allergic respiratory diseases, bee venom allergy, and food allergy. Generation of antigen/allergen-specific peripheral tolerance is the key mechanism during immunotherapy. It is mediated by development of T and B regulatory cells, IgG4 isotype allergen-specific antibodies and the involvement of multiple suppressor factors, which lead to decreased tissue inflammation, early and late phase responses. Describing novel regulatory mechanisms in the process of immune tolerance induction will help to identify treatment modalities not only for allergic disorders, but also for autoimmune diseases, organ transplantation, chronic infections, and cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus.

    PubMed

    Morris, Abigail; Wang, Bo; Waern, Ida; Venkatasamy, Radhakrishnan; Page, Clive; Schmidt, Eric P; Wernersson, Sara; Li, Jin-Ping; Spina, Domenico

    2015-01-01

    Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/-) mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT) control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil) recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD) found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.

  9. Oral supplementation with areca-derived polyphenols attenuates food allergic responses in ovalbumin-sensitized mice

    PubMed Central

    2013-01-01

    Background Arecae semen, the dried slice of areca nuts, is a traditional Chinese medicine used to treat intestinal parasitosis, rectal tenesmus and diarrhea. Areca nuts contain a rich amount of polyphenols that have been shown to modulate the functionality of mast cells and T cells. The objective of this study is to investigate the effect of polyphenol-enriched areca nut extracts (PANE) against food allergy, a T cell-mediated immune disorder. Methods BALB/c mice were left untreated or administered with PANE (0.05% and 0.1%) via drinking water throughout the entire experiment. The mice were sensitized with ovalbumin (OVA) twice by intraperitoneal injection, and then repeatedly challenged with OVA by gavage to induce food allergic responses. Results PANE administration attenuated OVA-induced allergic responses, including the occurrence of diarrhea and the infiltration and degranulation of mast cells in the duodenum. The serum level of OVA-specific IgE and the expression of interleukin-4 in the duodenum were suppressed by PANE treatment. In addition, PANE administration induced Gr-1+, IL-10+ and Gr-1+IL-10+ cells in the duodenum. Conclusion These results demonstrate that oral intake of areca-derived polyphenols attenuates food allergic responses accompanied with a decreased Th2 immunity and an enhanced induction of functional myeloid-derived suppressor cells. PMID:23816049

  10. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis

    PubMed Central

    Liu, Boyi; Escalera, Jasmine; Balakrishna, Shrilatha; Fan, Lu; Caceres, Ana I.; Robinson, Eve; Sui, Aiwei; McKay, M. Craig; McAlexander, M. Allen; Herrick, Christina A.; Jordt, Sven E.

    2013-01-01

    Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten-challenged skin of TRPA1-deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1-deficient sensory neurons were defective in SP signaling, and SP-induced scratching behavior was abolished in Trpa1−/− mice. SP receptor antagonists, such as aprepitant inhibited both hapten-induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis.—Liu, B., Escalera, J., Balakrishna, S., Fan, L., Caceres, A. I., Robinson, E., Sui, A., McKay, M. C., McAlexander, M. A., Herrick, C. A., Jordt, S. E. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. PMID:23722916

  11. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    SciTech Connect

    Ribeiro-Filho, Jaime; Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana; Moraes de Carvalho, Katharinne Ingrid; Silva Mendes, Diego da; Melo, Christianne Bandeira; Martins, Marco Aurélio; Silva Dias, Celidarque da; Piuvezam, Márcia Regina; and others

    2013-11-15

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  12. Respiratory syncytial virus-induced CCL5/RANTES contributes to exacerbation of allergic airway inflammation.

    PubMed

    John, Alison E; Berlin, Aaron A; Lukacs, Nicholas W

    2003-06-01

    Severe respiratory syncytial virus (RSV) infection has a significant impact on airway function and may induce or exacerbate the response to a subsequent allergic challenge. In a murine model combining early RSV infection with later cockroach allergen (CRA) challenge, we examined the role of RSV-induced CCL5/RANTES production on allergic airway responses. RSV infection increased CCL5 mRNA and protein levels, peaking at days 8 and 12, respectively. Administration of CCL5 antiserum during days 0-14 of the RSV infection did not significantly alter viral protein expression when compared to mice treated with control serum. In mice receiving the combined RSV-allergen challenge, lungs collected on day 22 exhibited significantly increased numbers of CD4- and CD8-positive T cells. This increase in T cell numbers was not observed in mice receiving alpha-CCL5. On day 43, peribronchial eosinophilia and leukotriene levels were increased in RSV-allergen mice. Pretreatment with CCL5 antiserum resulted in decreased recruitment of inflammatory cells to bronchoalveolar and peribronchial regions of the lungs and these reductions were associated with a reduction in both T cell recruitment into the bronchoalveolar space, leukotriene release and chemokine generation. Thus, CCL5 released during RSV infection has a significant effect on the inflammatory response to subsequent allergic airway challenges.

  13. Prevention of house dust mite induced allergic airways disease in mice through immune tolerance.

    PubMed

    Agua-Doce, Ana; Graca, Luis

    2011-01-01

    Allergic airways disease is a consequence of a Th2 response to an allergen leading to a series of manifestations such as production of allergen-specific IgE, inflammatory infiltrates in the airways, and airway hyper-reactivity (AHR). Several strategies have been reported for tolerance induction to allergens leading to protection from allergic airways disease. We now show that CD4 blockade at the time of house dust mite sensitization induces antigen-specific tolerance in mice. Tolerance induction is robust enough to be effective in pre-sensitized animals, even in those where AHR was pre-established. Tolerant mice are protected from airways eosinophilia, Th2 lung infiltration, and AHR. Furthermore, anti-CD4 treated mice remain immune competent to mount immune responses, including Th2, to unrelated antigens. Our findings, therefore, describe a strategy for tolerance induction potentially applicable to other immunogenic proteins besides allergens.

  14. Mast Cells Limit the Exacerbation of Chronic Allergic Contact Dermatitis in Response to Repeated Allergen Exposure.

    PubMed

    Gimenez-Rivera, Vladimir-Andrey; Siebenhaar, Frank; Zimmermann, Carolin; Siiskonen, Hanna; Metz, Martin; Maurer, Marcus

    2016-12-01

    Allergic contact dermatitis is a chronic T cell-driven inflammatory skin disease that is caused by repeated exposure to contact allergens. Based on murine studies of acute contact hypersensitivity, mast cells (MCs) are believed to play a role in its pathogenesis. The role of MCs in chronic allergic contact dermatitis has not been investigated, in part because of the lack of murine models for chronic contact hypersensitivity. We developed and used a chronic contact hypersensitivity model in wild-type and MC-deficient mice and assessed skin inflammatory responses to identify and characterize the role of MCs in chronic allergic contact dermatitis. Ear swelling chronic contact hypersensitivity responses increased markedly, up to 4-fold, in MC-deficient Kit(W-sh/W-sh) (Sash) and MCPT5-Cre(+)iDTR(+) mice compared with wild-type mice. Local engraftment with MCs protected Sash mice from exacerbated ear swelling after repeated oxazolone challenge. Chronic contact hypersensitivity skin of Sash mice exhibited elevated levels of IFN-γ, IL-17α, and IL-23, as well as increased accumulation of Ag-specific IFN-γ-producing CD8(+) tissue-resident memory T (TRM) cells. The CD8(+) T cell mitogen IL-15, which was increased in oxazolone-challenged skin of Sash mice during the accumulation of cutaneous TRM cells, was efficiently degraded by MCs in vitro. MCs protect from the exacerbated allergic skin inflammation induced by repeated allergen challenge, at least in part, via effects on CD8(+) TRM cells. MCs may notably influence the course of chronic allergic contact dermatitis. A better understanding of their role and the underlying mechanisms may lead to better approaches for the treatment of this common, disabling, and costly condition.

  15. Respiratory syncytial virus predisposes mice to augmented allergic airway responses via IL-13-mediated mechanisms.

    PubMed

    Lukacs, N W; Tekkanat, K K; Berlin, A; Hogaboam, C M; Miller, A; Evanoff, H; Lincoln, P; Maassab, H

    2001-07-15

    The development of severe childhood asthma may be influenced by several factors including environmental and infectious stimuli. The causal relationship between infectious viral responses, such as respiratory syncytial virus (RSV), and severe asthma during early childhood is unclear. In these studies, the ability for an initial RSV infection to exacerbate and promote a more severe asthmatic-type response was investigated by combining established murine models of disease. We examined the ability of RSV to induce exacerbation of allergic disease over a relatively long period, leading to development of severe airway responses including airway inflammation and hyperreactivity. The preferential production of IL-13 during a primary RSV infection appears to play a critical role for the exacerbation of cockroach allergen-induced disease. The depletion of IL-13 during RSV infections inhibited the exacerbation and acceleration of severe allergen-induced airway hyperreactivity. This was indicated by decreases in airway hyperreactivity and changes in lung chemokine production. These data suggest that the airway responses during asthma can be greatly affected by a previous RSV infection, even when infection occurs before allergen sensitization. Overall, infection of the airways with RSV can induce an IL-13-dependent change in airway function and promotes an environment that contributes to the development of severe allergic asthmatic responses.

  16. [Allergic responses to date palm and pecan pollen in Israel].

    PubMed

    Waisel, Y; Keynan, N; Gil, T; Tayar, D; Bezerano, A; Goldberg, A; Geller-Bernstein, C; Dolev, Z; Tamir, R; Levy, I

    1994-03-15

    Date palm (Phoenix dactylifera) and pecan (Carya illinoensis) trees are commonly planted in Israel for fruit, for shade, or as ornamental plants. Pollen grains of both species are allergenic; however, the extent of exposure to such pollen and the incidence of allergic response have not been studied here. We therefore investigated skin-test responses to pollen extracts of 12 varieties of palm and 9 of pecan in 705 allergic patients living in 3 cities and 19 rural settlements. Sensitivity to the pollen extracts of both species was much higher among residents of rural than of urban communities. Moreover, there was a definite relationship between the abundance of these trees in a region and the incidence of skin responders to their pollen. Sensitivity was frequent in settlements rich in these 2 species, such as those with nearby commercial date or pecan plantations. In general, sensitivity to date pollen extracts was lower than to pecan. However, differences in skin responses to pollen extracts of various clones were substantiated. Air sampling revealed that pollen pollution decreased considerably with distance from the trees. At approximately 100 m from a source concentrations of airborne pollen were low. Since planting of male palm and pecan trees in population centers would increase pollen pollution, it should be avoided.

  17. Chlamydia pneumoniae infection induced allergic airway sensitization is controlled by regulatory T-cells and plasmacytoid dendritic cells.

    PubMed

    Crother, Timothy R; Schröder, Nicolas W J; Karlin, Justin; Chen, Shuang; Shimada, Kenichi; Slepenkin, Anatoly; Alsabeh, Randa; Peterson, Ellena; Arditi, Moshe

    2011-01-01

    Chlamydia pneumoniae (CP) is associated with induction and exacerbation of asthma. CP infection can induce allergic airway sensitization in mice in a dose- and time-dependent manner. Allergen exposure 5 days after a low dose (mild-moderate), but not a high dose (severe) CP infection induces antigen sensitization in mice. Innate immune signals play a critical role in controlling CP infection induced allergic airway sensitization, however these mechanisms have not been fully elucidated. Wild-type, TLR2-/-, and TLR4-/- mice were infected intranasally (i.n.) with a low dose of CP, followed by i.n. exposure to human serum albumin (HSA) and challenged with HSA 2 weeks later. Airway inflammation, immunoglobulins, eosinophils, and goblet cells were measured. Low dose CP infection induced allergic sensitization in TLR2-/- mice, but not in TLR4-/- mice, due to differential Treg responses in these genotypes. TLR2-/- mice had reduced numbers of Tregs in the lung during CP infection while TLR4-/- mice had increased numbers. High dose CP infection resulted in an increase in Tregs and pDCs in lungs, which prevented antigen sensitization in WT mice. Depletion of Tregs or pDCs resulted in allergic airway sensitization. We conclude that Tregs and pDCs are critical determinants regulating CP infection-induced allergic sensitization. Furthermore, TLR2 and TLR4 signaling during CP infection may play a regulatory role through the modulation of Tregs.

  18. Syk Regulates Neutrophilic Airway Hyper-Responsiveness in a Chronic Mouse Model of Allergic Airways Inflammation

    PubMed Central

    Juvet, Stephen; Scott, Jeremy A.; Chow, Chung-Wai

    2017-01-01

    Background Asthma is a chronic inflammatory disease characterized by airways hyper-responsiveness (AHR), reversible airway obstruction, and airway inflammation and remodeling. We previously showed that Syk modulates methacholine-induced airways contractility in naïve mice and in mice with allergic airways inflammation. We hypothesize that Syk plays a role in the pathogenesis of AHR; this was evaluated in a chronic 8-week mouse model of house dust mite (HDM)-induced allergic airways inflammation. Methods We used the Sykflox/flox//rosa26CreERT2 conditional Syk knock-out mice to assess the role of Syk prior to HDM exposure, and treated HDM-sensitized mice with the Syk inhibitor, GSK143, to evaluate its role in established allergic airways inflammation. Respiratory mechanics and methacholine (MCh)-responsiveness were assessed using the flexiVent® system. Lungs underwent bronchoalveolar lavage to isolate inflammatory cells or were frozen for determination of gene expression in tissues. Results MCh-induced AHR was observed following HDM sensitization in the Syk-intact (Sykflox/flox) and vehicle-treated BALB/c mice. MCh responsiveness was reduced to control levels in HDM-sensitized Sykdel/del mice and in BALB/c and Sykflox/flox mice treated with GSK143. Both Sykdel/del and GSK143-treated mice mounted appropriate immune responses to HDM, with HDM-specific IgE levels that were comparable to Sykflox/flox and vehicle-treated BALB/c mice. HDM-induced increases in bronchoalveolar lavage cell counts were attenuated in both Sykdel/del and GSK143-treated mice, due primarily to decreased neutrophil recruitment. Gene expression analysis of lung tissues revealed that HDM-induced expression of IL-17 and CXCL-1 was significantly attenuated in both Sykdel/del and GSK143-treated mice. Conclusion Syk inhibitors may play a role in the management of neutrophilic asthma. PMID:28107345

  19. Placental immune response to apple allergen in allergic mothers.

    PubMed

    Abelius, Martina Sandberg; Enke, Uta; Varosi, Frauke; Hoyer, Heike; Schleussner, Ekkehard; Jenmalm, Maria C; Markert, Udo R

    2014-12-01

    The immunological milieu in the placenta may be crucial for priming the developing foetal immune system. Early imbalances may promote the establishment of immune-mediated diseases in later life, including allergies. The initial exposure to allergens seems to occur in utero, but little is known about allergen-induced placental cytokine and chemokine release. The release of several cytokines and chemokines from placenta tissue after exposure to mast cell degranulator compound 48/80 or apple allergen in placentas from allergic and healthy mothers was to be analysed. Four placentas from women with apple allergy and three controls were applied in a placental perfusion model with two separate cotyledons simultaneously perfused with and without apple allergen (Mal d 1). Two control placentas were perfused with compound 48/80. In outflow, histamine was quantified spectrophotofluorometrically, IL-2, IL-4, IL-6, IL-10, TNF and IFN-γ by a cytometric multiplex bead array and IL-13 and CXCL10, CXCL11, CCL17 and CCL22 with an in-house multiplex Luminex assay. Compound 48/80 induced a rapid release of histamine, CXCL10, CXCL11, CCL17 and CCL22, but not of the other factors. Apple allergen induced a time-dependent release of IL-6 and TNF, but not of histamine, in placentas of women with apple allergy compared with the unstimulated cotyledon. CCL17 levels were slightly increased after allergen stimulation in control placentas. Allergens can induce placental cytokines and chemokines distinctly in allergic and healthy mothers. These mediators may affect the prenatal development of the immune system and modify the risk of diseases related to immune disorders in childhood such as allergies.

  20. The Inhibitory Effects of Low-Dose Ionizing Radiation in IgE-Mediated Allergic Responses

    PubMed Central

    Nam, Seon Young; Yang, Kwang Hee; Kim, Cha Soon; Lee, In Kyung; Kim, Ji Young

    2015-01-01

    Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro. PMID:26317642

  1. The Inhibitory Effects of Low-Dose Ionizing Radiation in IgE-Mediated Allergic Responses.

    PubMed

    Joo, Hae Mi; Kang, Su Jin; Nam, Seon Young; Yang, Kwang Hee; Kim, Cha Soon; Lee, In Kyung; Kim, Ji Young

    2015-01-01

    Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro.

  2. Pulmonary IL-17E (IL-25) production and IL-17RB+ myeloid cell-derived Th2 cytokine production are dependent upon stem cell factor-induced responses during chronic allergic pulmonary disease.

    PubMed

    Dolgachev, Vladislav; Petersen, Bryan C; Budelsky, Alison L; Berlin, Aaron A; Lukacs, Nicholas W

    2009-11-01

    In the present studies local neutralization of allergen-induced stem cell factor (SCF) leads to decreased production of Th2 cytokines, a reduction in inflammation, allergen-specific serum IgE/IgG1, and attenuation of severe asthma-like responses. The local blockade of pulmonary SCF also resulted in a significant reduction of IL-17E (IL-25). Sorted cell populations from the lung indicated that IL-25 was produced from c-kit(+) cells, whereas Th2 cytokine production was primarily from c-kit(-) cell populations. SCF stimulated c-kit(+) eosinophils produced IL-25, whereas bone marrow-derived mast cells did not. Using 4get mice that contain a IL-4-IRES-eGFP that when transcribed coexpress GFP and IL-4, our studies identified cells that comprised a CD11b(+), GR1(+), Ly6C(+/-), c-kit(-), CD4(-), CD11c(-), MHC class II(low) cell population as a source of IL-4 in the lung after chronic allergen challenge. In the bone marrow a similar cell was identified with approximately a third of the IL-4(+) cells also expressing c-kit(+). The pulmonary and bone marrow IL-4(+) cell populations were significantly reduced upon local pulmonary anti-SCF treatment. Subsequently, when IL-25R was examined during the chronic allergen responses the expression was found on the IL-4(+) myeloid cell population that expressed CD11b(+)GR1(+). Interestingly, the IL-25R(+) cells in the bone marrow were also all CD11b(+)GR1(+), similar to the lung cells, but they were also all c-kit(+), potentially suggesting a maturation of the bone marrow cell once it enters the lung and/or is stimulated by SCF. Overall, these studies suggest a complex relationship between SCF, bone marrow-derived IL-25-responsive myeloid cells, Th2 cytokines, and chronic allergic disease.

  3. Spiraeoside inhibits mast cells activation and IgE-mediated allergic responses by suppressing phospholipase C-γ-mediated signaling.

    PubMed

    Kim, Jung Kuk; Seo, Young-Kyo; Park, Sehoon; Park, Soo-Ah; Lim, Seyoung; Lee, Susie; Kwon, Ohman; Seo, Jeong Kon; Choi, Ung-Kyu; Ryu, Sung Ho; Suh, Pann-Ghill

    2015-06-01

    Mast cells are responsible for IgE-mediated allergic responses through the secretion of various inflammatory cytokines and mediators. Therefore, the pharmacological regulation of mast cell activation is an important goal in the development of novel anti-allergic drugs. In this study, we found that spiraeoside (SP) inhibits mast cell activation and allergic responses in vivo. SP dose-dependently inhibited the degranulation induced by IgE-antigen (Ag) stimulation in RBL-2H3 mast cells without cytotoxic effects. At the molecular level, SP reduced the Ag-induced phosphorylation and subsequent activation of phospholipase C-γ2 (PLC-γ2). Moreover, SP inhibited the phosphorylation of spleen tyrosine kinase (Syk), linker for activation of T cells (LAT), and downstream MAPKs, such as ERK1/2, p38, and JNK, eventually attenuating expression of TNF-α and IL-4. Finally, we found that SP significantly inhibited IgE-mediated passive cutaneous anaphylaxis (PCA) in mice. Taken together, our results strongly suggest that SP suppresses IgE-mediated mast cell activation and allergic responses by inhibiting Lyn-induced PLC-γ2/MAPK signaling in mast cells.

  4. Food protein-induced enterocolitis syndrome and allergic proctocolitis.

    PubMed

    Nowak-Węgrzyn, Anna

    2015-01-01

    Non-IgE-mediated food allergic disorders account for up to 40% of milk protein allergy in infants and young children. We aim to review the recent literature and to provide an update on diagnosis and management of food protein-induced enterocolitis syndrome (FPIES) and food protein-induced allergic proctocolitis (FPIAP). The peer-reviewed articles indexed in PubMed have been reviewed. FPIES manifests in infants as profuse, repetitive vomiting and lethargy, often with diarrhea, leading to acute dehydration, or weight loss and failure to thrive, in chronic form. FPIES is caused most commonly by cow's milk (CM) and soy proteins; rice, oat, and other solid foods may also trigger FPIES. FPIES rarely occurs in the exclusively breastfed infants. FPIES is underrecognized; children are often mismanaged as having acute viral gastrointestinal illness, sepsis, or surgical disease, delaying diagnosis of FPIES for many months. Approximately 25% of children with FPIES develop food-specific IgE antibodies and some transition to immediate food allergy; IgE positivity is associated with a more protracted course. FPIES is a self-limiting condition, with most cases resolving by age three to five years. Ondansetron may be helpful in managing acute FPIES. FPIAP is a benign condition of bloody stools in a well-appearing infant, with usual onset between one and four weeks of age. Up to 60% of cases occur in exclusively breastfed infants and resolve with maternal elimination of CM and soy proteins. The majority of cases resolve by age 12 months. FPIES may transition to IgE-mediated food allergy in some patients; IgE positivity to the FPIES food is a marker of a more persistent disease. FPIAP is benign and resolves by age 12 months in most patients.

  5. Food protein-induced enterocolitis syndrome and allergic proctocolitis

    PubMed Central

    2015-01-01

    Non-IgE-mediated food allergic disorders account for up to 40% of milk protein allergy in infants and young children. We aim to review the recent literature and to provide an update on diagnosis and management of food protein-induced enterocolitis syndrome (FPIES) and food protein-induced allergic proctocolitis (FPIAP). The peer-reviewed articles indexed in PubMed have been reviewed. FPIES manifests in infants as profuse, repetitive vomiting and lethargy, often with diarrhea, leading to acute dehydration, or weight loss and failure to thrive, in chronic form. FPIES is caused most commonly by cow's milk (CM) and soy proteins; rice, oat, and other solid foods may also trigger FPIES. FPIES rarely occurs in the exclusively breastfed infants. FPIES is underrecognized; children are often mismanaged as having acute viral gastrointestinal illness, sepsis, or surgical disease, delaying diagnosis of FPIES for many months. Approximately 25% of children with FPIES develop food-specific IgE antibodies and some transition to immediate food allergy; IgE positivity is associated with a more protracted course. FPIES is a self-limiting condition, with most cases resolving by age three to five years. Ondansetron may be helpful in managing acute FPIES. FPIAP is a benign condition of bloody stools in a well-appearing infant, with usual onset between one and four weeks of age. Up to 60% of cases occur in exclusively breastfed infants and resolve with maternal elimination of CM and soy proteins. The majority of cases resolve by age 12 months. FPIES may transition to IgE-mediated food allergy in some patients; IgE positivity to the FPIES food is a marker of a more persistent disease. FPIAP is benign and resolves by age 12 months in most patients. PMID:25976434

  6. Myeloid differentiation protein 2 facilitates pollen- and cat dander-induced innate and allergic airway inflammation.

    PubMed

    Hosoki, Koa; Boldogh, Istvan; Aguilera-Aguirre, Leopoldo; Sun, Qian; Itazawa, Toshiko; Hazra, Tapas; Brasier, Allan R; Kurosky, Alexander; Sur, Sanjiv

    2016-05-01

    The National Health and Nutrition Examination Survey identified several pollens and cat dander as among the most common allergens that induce allergic sensitization and allergic diseases. We recently reported that ragweed pollen extract (RWPE) requires Toll-like receptor 4 (TLR4) to stimulate CXCL-mediated innate neutrophilic inflammation, which in turn facilitates allergic sensitization and airway inflammation. Myeloid differentiation protein 2 (MD2) is a TLR4 coreceptor, but its role in pollen- and cat dander-induced innate and allergic inflammation has not been critically evaluated. We sought to elucidate the role of MD2 in inducing pollen- and cat dander-induced innate and allergic airway inflammation. TCM(Null) (TLR4(Null), CD14(Null), MD2(Null)), TLR4(Hi), and TCM(Hi) cells and human bronchial epithelial cells with small interfering RNA-induced downregulation of MD2 were stimulated with RWPE, other pollen allergic extracts, or cat dander extract (CDE), and activation of nuclear factor κB (NF-κB), secretion of the NF-κB-dependent CXCL8, or both were quantified. Wild-type mice or mice with small interfering RNA knockdown of lung MD2 were challenged intranasally with RWPE or CDE, and innate and allergic inflammation was quantified. RWPE stimulated MD2-dependent NF-κB activation and CXCL secretion. Likewise, Bermuda, rye, timothy, pigweed, Russian thistle, cottonwood, walnut, and CDE stimulated MD2-dependent CXCL secretion. RWPE and CDE challenge induced MD2-dependent and CD14-independent innate neutrophil recruitment. RWPE induced MD2-dependent allergic sensitization and airway inflammation. MD2 plays an important role in induction of allergic sensitization to cat dander and common pollens relevant to human allergic diseases. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Role of Interleukin-17A on the Chemotactic Responses to CCL7 in a Murine Allergic Rhinitis Model

    PubMed Central

    Zhang, Yu-Lian; Han, Doo Hee; Kim, Dong-Young; Lee, Chul Hee; Rhee, Chae-Seo

    2017-01-01

    Background The proinflammatory cytokine interleukin (IL)-17A is associated with eosinophil infiltration into the nasal mucosa in a mouse model of ovalbumin-induced allergic rhinitis. Chemotaxis of eosinophils is mediated primarily through C-C chemokine receptor type 3 (CCR3). However, the mechanism underlying the IL-17A-mediated enhancement of eosinophil recruitment via chemoattractants/chemokines remains unknown. Objectives In this study, we assessed the contribution of IL-17A to eosinophil-related inflammation via the CCL7/CCR3 pathway in experimental allergic rhinitis. Methods IL-17A knockout (KO) and wild-type (WT) BALB/c mice were injected intraperitoneally and challenged intranasally with OVA to induce allergic rhinitis. Various parameters of the allergic response were evaluated, and mRNA and protein levels of CCL7 and CCR3 in nasal tissue and serum were compared between the two groups. The chemotactic response to CCL7 with or without IL-17A in bone marrow-derived eosinophils (bmEos) from BALB/c mice was measured. Results In the allergic rhinitis model, IL-17A deficiency significantly decreased nasal symptoms, serum IgE levels, and eosinophil recruitment to the nasal mucosa. CCL7 and CCR3 mRNA and protein levels were decreased in the nasal mucosa of IL-17A KO mice compared with the WT mice. BmEos showed a significantly increased chemotactic response to -low concentration of CCL7 in the presence of IL-17A compared with its absence. Conclusion The suppression of nasal inflammation due of IL-17A deficiency in allergic rhinitis is partly responsible for the regulation of CCL7 secretion and eosinophil infiltration, which may be regulated via the CCL7/CCR3 pathway. PMID:28046055

  8. Elevated and cross‐responsive CD1a‐reactive T cells in bee and wasp venom allergic individuals

    PubMed Central

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A.; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch

    2015-01-01

    The role of CD1a‐reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a‐reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom‐responsive CD1a‐reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a‐transfected K562 cells in the presence of wasp or bee venom. T‐cell response was evaluated based on IFNγ, GM‐CSF, and IL‐13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN‐γ, GM‐CSF, and IL‐13 producing CD1a‐reactive T cells responsive to venom and venom‐derived phospholipase than healthy individuals. Venom‐responsive CD1a‐reactive T cells were cross‐responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a‐reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein‐specific T cell and antibody responses. Here, we show that lipid antigens and CD1a‐reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. PMID:26518614

  9. Extrinsic allergic alveolitis induced by the yeast Debaryomyces hansenii.

    PubMed

    Yamamoto, Y; Osanai, S; Fujiuchi, S; Yamazaki, K; Nakano, H; Ohsaki, Y; Kikuchi, K

    2002-11-01

    A 65-yr-old female developed cough, fever and dyspnoea following repeated exposure to a home ultrasonic humidifier. High-resolution computed tomography showed ground-glass opacity in both lung fields. Arterial blood gas analysis gave an oxygen tension of 8.38 kPa (63 Torr). Pulmonary function testing revealed restrictive ventilatory impairment with a reduction in the diffusing capacity. The diagnosis of extrinsic allergic alveolitis (EAA) was confirmed by radiographic findings, pathological evidence of alveolitis and reproductive development by a provocation test to the humidifier water. The yeast Debaryomyces Hansenii was the only microorganism cultured from the water of the humidifier. The double diffusion precipitating test and lymphocyte proliferative response was positive for an extract of D. Hansenii, providing evidence to incriminate this fungus. This is the first described case of EAA caused by D. Hansenii.

  10. Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation.

    PubMed

    Fenoy, Ignacio M; Chiurazzi, Romina; Sánchez, Vanesa R; Argenziano, Mariana A; Soto, Ariadna; Picchio, Mariano S; Martin, Valentina; Goldman, Alejandra

    2012-01-01

    Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-β and CD4(+)FoxP3(+) cells.

  11. Toxoplasma gondii Infection Induces Suppression in a Mouse Model of Allergic Airway Inflammation

    PubMed Central

    Fenoy, Ignacio M.; Chiurazzi, Romina; Sánchez, Vanesa R.; Argenziano, Mariana A.; Soto, Ariadna; Picchio, Mariano S.; Martin, Valentina; Goldman, Alejandra

    2012-01-01

    Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact- independent and correlated with high levels of TGF-β and CD4+FoxP3+ cells. PMID:22952678

  12. POLYFUNCTIONAL DINITROPHENYL HAPTENS AS REAGENTS FOR ELICITATION OF IMMEDIATE TYPE ALLERGIC SKIN RESPONSES

    PubMed Central

    Parker, Charles W.; Kern, Milton; Eisen, Herman N.

    1962-01-01

    Dinitrophenyl derivatives of differing molecular weights and degrees of substitution have been contrasted with respect to their ability to elicit immediate type allergic responses and their capacity to induce antibody formation in the guinea pig. In contradistinction to dinitrophenyl-proteins, bis-DNP-lysine and DNP-polylysines (including a 100,000 molecular weight derivative) failed to induce antibody detectable by guinea pig passive cutaneous anaphylaxis. Dinitrophenyl-polylysines evoked urticarial responses non-specifically, but after succinylation were about as effective as dinitrophenyl-proteins in eliciting specific cutaneous reactions. An important factor influencing the effectiveness of bis-DNP-lysine in evoking specific wheal-and-erythema responses is antibody affinity for the dinitrophenyl-lysyl determinant. PMID:14483915

  13. METALS, PARTICLES AND IMPACT UPON PULMONARY ALLERGIC RESPONSES

    EPA Science Inventory


    The increase in allergic asthma over the past few decades has prompted investigations into whether air pollution may affect either the incidence or severity of allergic lung disease. Population studies have demonstrated that as air pollution rises, symptoms, medication use a...

  14. METALS, PARTICLES AND IMPACT UPON PULMONARY ALLERGIC RESPONSES

    EPA Science Inventory


    The increase in allergic asthma over the past few decades has prompted investigations into whether air pollution may affect either the incidence or severity of allergic lung disease. Population studies have demonstrated that as air pollution rises, symptoms, medication use a...

  15. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    EPA Science Inventory

    ABSTRACT BODY:
    Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  16. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    EPA Science Inventory

    ABSTRACT BODY:
    Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  17. A nematode immunomodulator suppresses grass pollen-specific allergic responses by controlling excessive Th2 inflammation.

    PubMed

    Daniłowicz-Luebert, Emilia; Steinfelder, Svenja; Kühl, Anja A; Drozdenko, Gennadiy; Lucius, Richard; Worm, Margitta; Hamelmann, Eckard; Hartmann, Susanne

    2013-03-01

    Helminth parasites modulate the immune system by complex mechanisms to ensure persistence in the host. Released immunomodulatory parasite components lead to a beneficial environment for the parasite by targeting different host cells and in parallel to a modulation of unrelated inflammatory responses in the host, such as allergy. The aim of this study was to investigate the effect of the potent helminth immunomodulator, filarial cystatin, in a murine model of airway inflammation and hyperreactivity induced by a clinically relevant aeroallergen (timothy grass (Phleum pratense) pollen) and on the function of peripheral blood mononuclear cells (PBMCs) from timothy grass pollen allergic patients. BALB/c mice were systemically sensitised with a recombinant major allergen of timothy grass pollen (rPhl p 5b) and then challenged with timothy grass pollen extract (GPE) via the airways. Filarial cystatin was applied i.p. during the sensitisation phase. Airway hyperresponsiveness to methacholine challenges, inflammation of airways, inflammatory cell recruitment, cytokine production and lung histopathology were investigated. In a translational approach, PBMCs from allergic subjects and healthy controls were treated in vitro with cystatin prior to stimulation with GPE. Administration of filarial cystatin suppressed rPhl p 5b-induced allergen-specific Th2-responses and airway inflammation, inhibited local recruitment of eosinophils, reduced levels of allergen-specific IgE and down-regulated IL-5 and IL-13 in the bronchoalveolar lavage (BAL). Ex vivo restimulation with cystatin of spleen cells from cystatin-treated mice induced the production of IL-10, while cystatin inhibited allergen-specific IL-5 and IL-13 levels. Human PBMCs from timothy grass pollen allergic patients displayed a shift towards a Th1 response after treatment with cystatin. These results show that filarial cystatin ameliorates allergic inflammation and disease in a clinically relevant model of allergy. This data

  18. Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma.

    PubMed

    Ather, Jennifer L; Chung, Michael; Hoyt, Laura R; Randall, Matthew J; Georgsdottir, Anna; Daphtary, Nirav A; Aliyeva, Minara I; Suratt, Benjamin T; Bates, Jason H T; Irvin, Charles G; Russell, Sheila R; Forgione, Patrick M; Dixon, Anne E; Poynter, Matthew E

    2016-08-01

    Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery-induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma.

  19. Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma

    PubMed Central

    Ather, Jennifer L.; Chung, Michael; Hoyt, Laura R.; Randall, Matthew J.; Georgsdottir, Anna; Daphtary, Nirav A.; Aliyeva, Minara I.; Suratt, Benjamin T.; Bates, Jason H. T.; Irvin, Charles G.; Russell, Sheila R.; Forgione, Patrick M.; Dixon, Anne E.

    2016-01-01

    Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery–induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma. PMID:27064658

  20. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis.

    PubMed

    Liu, Boyi; Escalera, Jasmine; Balakrishna, Shrilatha; Fan, Lu; Caceres, Ana I; Robinson, Eve; Sui, Aiwei; McKay, M Craig; McAlexander, M Allen; Herrick, Christina A; Jordt, Sven E

    2013-09-01

    Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten-challenged skin of TRPA1-deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1-deficient sensory neurons were defective in SP signaling, and SP-induced scratching behavior was abolished in Trpa1(-/-) mice. SP receptor antagonists, such as aprepitant inhibited both hapten-induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis.

  1. Preventive Intra Oral Treatment of Sea Cucumber Ameliorate OVA-Induced Allergic Airway Inflammation.

    PubMed

    Lee, Da-In; Park, Mi-Kyung; Kang, Shin Ae; Choi, Jun-Ho; Kang, Seok-Jung; Lee, Jeong-Yeol; Yu, Hak Sun

    2016-01-01

    Sea cucumber extracts have potent biological effects, including anti-viral, anti-cancer, antibacterial, anti-oxidant, and anti-inflammation effects. To understand their anti-asthma effects, we induced allergic airway inflammation in mice after 7 oral administrations of the extract. The hyper-responsiveness value in mice with ovalbumin (OVA)-alum-induced asthma after oral injection of sea cucumber extracts was significantly lower than that in the OVA-alum-induced asthma group. In addition, the number of eosinophils in the lungs of asthma-induced mice pre-treated with sea cucumber extract was significantly decreased compared to that of PBS pre-treated mice. Additionally, CD4[Formula: see text]CD25[Formula: see text]Foxp3[Formula: see text]T (regulatory T; Treg) cells significantly increased in mesenteric lymph nodes after 7 administrations of the extract. These results suggest that sea cucumber extract can ameliorate allergic airway inflammation via Treg cell activation and recruitment to the lung.

  2. OX40 blockade inhibits house dust mite driven allergic lung inflammation in mice and in vitro allergic responses in humans.

    PubMed

    Burrows, Katie E; Dumont, Celine; Thompson, Clare L; Catley, Matthew C; Dixon, Kate L; Marshall, Diane

    2015-04-01

    The costimulatory receptor OX40 is expressed on activated T cells and regulates T-cell responses. Here, we show the efficacy and mechanism of action of an OX40 blocking antibody using the chronic house dust mite (HDM) mouse model of lung inflammation and in vitro HDM stimulation of cells from HDM allergic human donors. We have demonstrated that OX40 blockade leads to a reduction in the number of eosinophils and neutrophils in the lavage fluid and lung tissue of HDM sensitized mice. This was accompanied by a decrease in activated and memory CD4(+) T cells in the lungs and further analysis revealed that both the Th2 and Th17 populations were inhibited. Improved lung function and decreased HDM-specific antibody responses were also noted. Significantly, efficacy was observed even when anti-OX40 treatment was delayed until after inflammation was established. OX40 blockade also inhibited the release of the Th2 cytokines IL-5 and IL-13 from cells isolated from HDM allergic human donors. Altogether, our data provide evidence of a role of the OX40/OX40L pathway in ongoing allergic lung inflammation and support clinical studies of a blocking OX40 antibody in Th2 high severe asthma patients.

  3. Impaired mast cell maturation and degranulation and attenuated allergic responses in Ndrg1-deficient mice.

    PubMed

    Taketomi, Yoshitaka; Sunaga, Kohei; Tanaka, Satoshi; Nakamura, Masanori; Arata, Satoru; Okuda, Tomohiko; Moon, Tae-Chul; Chang, Hyeun-Wook; Sugimoto, Yukihiko; Kokame, Koichi; Miyata, Toshiyuki; Murakami, Makoto; Kudo, Ichiro

    2007-06-01

    We have previously reported that N-myc downstream regulated gene-1 (NDRG1) is an early inducible protein during the maturation of mouse bone marrow-derived mast cells (BMMCs) toward a connective tissue mast cell-like phenotype. To clarify the function of NDRG1 in mast cells and allergic responses, we herein analyzed mast cell-associated phenotypes of mice lacking the Ndrg1 gene. Allergic responses including IgE-mediated passive systemic and cutaneous anaphylactic reactions were markedly attenuated in Ndrg1-deficient mice as compared with those in wild-type mice. In Ndrg1-deficient mice, dermal and peritoneal mast cells were decreased in number and morphologically abnormal with impaired degranulating ability. Ex vivo, Ndrg1-deficient BMMCs cocultured with Swiss 3T3 fibroblasts in the presence of stem cell factor, a condition that facilitates the maturation of BMMCs toward a CTMC-like phenotype, displayed less exocytosis than replicate wild-type cells after the cross-linking of FcepsilonRI or stimulation with compound 48/80, even though the exocytotic response of IL-3-maintained, immature BMMCs from both genotypes was comparable. Unlike degranulation, the production of leukotriene and cytokines by cocultured BMMCs was unaffected by NDRG1 deficiency. Taken together, the altered phenotypes of Ndrg1-deficient mast cells both in vivo and ex vivo suggest that NDRG1 has roles in the terminal maturation and effector function (degranulation) of mast cells.

  4. Parasitic Nematode-Induced CD4+Foxp3+T Cells Can Ameliorate Allergic Airway Inflammation

    PubMed Central

    Kang, Shin Ae; Park, Mi-Kyung; Cho, Min Kyoung; Park, Sang Kyun; Jang, Min Seong; Yang, Bo-Gie; Jang, Myoung Ho; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Background The recruitment of CD4+CD25+Foxp3+T (Treg) cells is one of the most important mechanisms by which parasites down-regulate the immune system. Methodology/Principal Findings We compared the effects of Treg cells from Trichinella spiralis-infected mice and uninfected mice on experimental allergic airway inflammation in order to understand the functions of parasite-induced Treg cells. After four weeks of T. spiralis infection, we isolated Foxp3-GFP-expressing cells from transgenic mice using a cell sorter. We injected CD4+Foxp3+ cells from T. spiralis-infected [Inf(+)Foxp3+] or uninfected [Inf(-)Foxp3+] mice into the tail veins of C57BL/6 mice before the induction of inflammation or during inflammation. Inflammation was induced by ovalbumin (OVA)-alum sensitization and OVA challenge. The concentrations of the Th2-related cytokines IL-4, IL-5, and IL-13 in the bronchial alveolar lavage fluid and the levels of OVA-specific IgE and IgG1 in the serum were lower in mice that received intravenous application of Inf(+)Foxp3+ cells [IV(inf):+(+) group] than in control mice. Some features of allergic airway inflammation were ameliorated by the intravenous application of Inf(-)Foxp3+ cells [IV(inf):+(-) group], but the effects were less distinct than those observed in the IV(inf):+(+) group. We found that Inf(+)Foxp3+ cells migrated to inflammation sites in the lung and expressed higher levels of Treg-cell homing receptors (CCR5 and CCR9) and activation markers (Klrg1, Capg, GARP, Gzmb, OX40) than did Inf(-)Foxp3+ cells. Conclusion/Significance T. spiralis infection promotes the proliferation and functional activation of Treg cells. Parasite-induced Treg cells migrate to the inflammation site and suppress immune responses more effectively than non-parasite-induced Treg cells. The adoptive transfer of Inf(+)Foxp3+ cells is an effective method for the treatment and prevention of allergic airway diseases in mice and is a promising therapeutic approach for the treatment

  5. Chlamydia pneumoniae Infection Induced Allergic Airway Sensitization Is Controlled by Regulatory T-Cells and Plasmacytoid Dendritic Cells

    PubMed Central

    Crother, Timothy R.; Schröder, Nicolas W. J.; Karlin, Justin; Chen, Shuang; Shimada, Kenichi; Slepenkin, Anatoly; Alsabeh, Randa; Peterson, Ellena; Arditi, Moshe

    2011-01-01

    Chlamydia pneumoniae (CP) is associated with induction and exacerbation of asthma. CP infection can induce allergic airway sensitization in mice in a dose- and time-dependent manner. Allergen exposure 5 days after a low dose (mild-moderate), but not a high dose (severe) CP infection induces antigen sensitization in mice. Innate immune signals play a critical role in controlling CP infection induced allergic airway sensitization, however these mechanisms have not been fully elucidated. Wild-type, TLR2−/−, and TLR4−/− mice were infected intranasally (i.n.) with a low dose of CP, followed by i.n. exposure to human serum albumin (HSA) and challenged with HSA 2 weeks later. Airway inflammation, immunoglobulins, eosinophils, and goblet cells were measured. Low dose CP infection induced allergic sensitization in TLR2−/− mice, but not in TLR4−/− mice, due to differential Treg responses in these genotypes. TLR2−/− mice had reduced numbers of Tregs in the lung during CP infection while TLR4−/− mice had increased numbers. High dose CP infection resulted in an increase in Tregs and pDCs in lungs, which prevented antigen sensitization in WT mice. Depletion of Tregs or pDCs resulted in allergic airway sensitization. We conclude that Tregs and pDCs are critical determinants regulating CP infection-induced allergic sensitization. Furthermore, TLR2 and TLR4 signaling during CP infection may play a regulatory role through the modulation of Tregs. PMID:21695198

  6. Modulation of the immune response by infection with Cryptosporidium spp. in children with allergic diseases.

    PubMed

    Guangorena-Gómez, J O; Maravilla-Domínguez, A; García-Arenas, G; Cervantes-Flores, M; Meza-Velázquez, R; Rivera-Guillén, M; Acosta-Saavedra, L C; Goytia-Acevedo, R C

    2016-08-01

    It has been demonstrated that the allergic response can be ameliorated by the administration of pathogen derivatives that activate Toll-like receptors and induce a Th1-type immune response (IR). Cryptosporidium is a parasite that promotes an IR via Toll-like receptors and elicits the production of Th1-type cytokines, which limit cryptosporidiosis. The aim of this study was to investigate allergy-related immune markers in children naturally infected with Cryptosporidium. In a cross-sectional study, 49 children with or without clinical diagnosis of allergies, oocysts of Cryptosporidium spp. in the faeces were screened microscopically. We microscopically screened for leucocytes, examined T and B cells for allergy-related activation markers using flow cytometry and evaluated serum for total IgE using chemiluminescence. Children with allergies and Cryptosporidium in the faeces had significantly lower levels of total IgE, B cells, CD19(+) CD23(+) and CD19(+) CD124(+) cells as well as a greater percentage of interferon-gamma (IFN-γ(+) ) and IL-4(+) CD4(+) cells than children with allergies without Cryptosporidium. This is the first description of the modulation of the IR in children with allergic diseases in the setting of natural Cryptosporidium infection. Our findings suggest the involvement of CD4(+) cells producing IL-4 and IFN-γ in the IR to Cryptosporidium in naturally infected children. © 2016 John Wiley & Sons Ltd.

  7. Immune response phenotype of allergic versus clinically tolerant pigs in a neonatal swine model of allergy.

    PubMed

    Schmied, Julie; Rupa, Prithy; Garvie, Sarah; Wilkie, Bruce

    2013-07-15

    The prevalence of childhood food allergy and the duration of these allergies, particularly those considered to be transient, like egg and milk allergy, are increasing. The identification of allergic individuals using minimally invasive, non-anaphylaxis-threatening methods is therefore of increasing importance. In this experiment, correlates were sought of an allergic immune response (IR) phenotype in pigs. Using pigs pre-treated with heat-killed bacteria or bacterial components before allergic sensitization with the egg white protein ovomucoid (Ovm), differences were determined in IR phenotype of pigs in the categories treated-allergic, treated-tolerant, control-allergic (CA) and control-tolerant. Phenotype was established by measuring immunoglobulin (Ig)-associated antibody activity (AbA), cytokine profiles and the proportion of blood T-regulatory cells (T-regs) and observing late-phase allergen-specific skin tests (ST). Although 100% of pigs became sensitized to Ovm, only 33% of pigs had clinical signs of allergy after oral challenge with egg white. Pigs without clinical signs were classified as clinically tolerant. Sixty-seven percent of allergic pigs had a positive, late-phase ST classified as very strong or strong, while 84% of clinically tolerant pigs did not have late-phase ST. Treated-allergic pigs and CA pigs had greater total antibody IgG (H+L), IgE and IgG1 AbA than clinically tolerant pigs. Cytokine profiles of allergic pigs and the proportion of circulating T-regs, did not differ significantly between allergic and clinically tolerant pigs. Therefore, measurement of allergen-specific IgG, IgG1 and/or IgE activity and evaluation of late-phase ID ST may be useful in identifying allergic IR phenotypes in swine models of food allergy, which may be extended toward human use.

  8. Potential therapeutic use of IL-37: a key suppressor of innate immunity and allergic immune responses mediated by mast cells.

    PubMed

    Conti, Pio; Carinci, Francesco; Lessiani, Gianfranco; Spinas, Enrico; Kritas, Spyridon K; Ronconi, Gianpaolo; Caraffa, Alessandro; Theoharides, Theoharis C

    2017-07-26

    The host response to either exogenous or endogenous insults produces a series of changes, characterized by alterations in immunological functions and generation of mediators called cytokines which include the interleukin-1 (IL-1) family members. IL-1 acts as a hormone mediating the host responses to infection and inflammation. Blocking inflammatory IL-1 family members can be effective against inflammatory disorders, including allergies. IL-37, (formerly IL-1 family member 7), emerges as an inhibitor of innate and adaptive immunity by reducing circulating and organ cytokine levels. IL-37, mainly expressed in dendritic cells, monocytes, and plasma cells after TIR ligand activation, inhibits inflammatory cytokines and augments the level of anti-inflammatory IL-10. IL-37 is involved in allergic reaction and its expression in dendritic cells causes tollerogenicity and inhibits inflammatory response. Mast cells (MCs) are ubiquitous in the body, reside in numerous mucosal tissues, and are mediators of allergic reaction, and innate and adaptive immunity. MCs are important regulators of cytokine generation in the course of inflammatory responses and allergy, and are implicated in the pathophysiology of allergic asthma. Cysteine protease caspase-1 activation leads to the cleavage of pro-form of IL-1 into active mature IL-1 which is present in stimulated and unstimulated inflammatory MCs. Inflammatory cytokine inhibition, along with the augmentation of anti-inflammatory IL-10 by IL-37, is certainly beneficial and improves the pathogenesis of allergic disorders. However, in these studies, the exact mechanism(s) of IL-37-induced anti-inflammatory and anti-allergic activity along with its side effect(s) remain to be determined.

  9. Effects of MK-801 and amphetamine treatments on allergic lung inflammatory response in mice.

    PubMed

    Hamasato, Eduardo Kenji; Ligeiro de Oliveira, Ana Paula; Lino-dos-Santos-Franco, Adriana; Ribeiro, Alison; Ferraz de Paula, Viviane; Peron, Jean Pierre Schatzmann; Damazo, Amílcar Sabino; Tavares-de-Lima, Wothan; Palermo-Neto, João

    2013-08-01

    Glutamate acts as a neurotransmitter within the Central Nervous System (CNS) and modifies immune cell activity. In lymphocytes, NMDA glutamate receptors regulate intracellular calcium, the production of reactive oxygen species and cytokine synthesis. MK-801, a NMDA receptor open-channel blocker, inhibits calcium entry into mast cells, thereby preventing mast cell degranulation. Several lines of evidence have shown the involvement of NMDA glutamate receptors in amphetamine (AMPH)-induced effects. AMPH treatment has been reported to modify allergic lung inflammation. This study evaluated the effects of MK-801 (0.25mg/kg) and AMPH (2.0mg/kg), given alone or in combination, on allergic lung inflammation in mice and the possible involvement of NMDA receptors in this process. In OVA-sensitized and challenged mice, AMPH and MK-801 given alone decreased cellular migration into the lung, reduced IL-13 and IL10 levels in BAL supernatant, reduced ICAM-1 and L-selectin expression in granulocytes in the BAL and decreased mast cell degranulation. AMPH treatment also decreased IL-5 levels. When both drugs were administered, treatment with MK-801 reversed the decrease in the number of eosinophils and neutrophils induced by AMPH in the BAL of OVA-sensitized and challenged mice as well as the effects on the expression of L-selectin and ICAM-1 in granulocytes, the IL-10, IL-5 and IL-13 levels in BAL supernatants and increased mast cell degranulation. At the same time, treatment with MK-801, AMPH or with MK-801+AMPH increased corticosterone serum levels in allergic mice. These results are discussed in light of possible indirect effects of AMPH and MK-801 via endocrine outflow from the CNS (i.e., HPA-axis activity) to the periphery and/or as a consequence of the direct action of these drugs on immune cell activity, with emphasis given to mast cell participation in the allergic lung response of mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Expression of airway remodeling proteins in mast cell activated by TGF-β released in OVA-induced allergic responses and their inhibition by low-dose irradiation or 8-oxo-dG.

    PubMed

    Hong, Gwan Ui; Kim, Nam Goo; Ro, Jai Youl

    2014-04-01

    Allergic asthma is characterized by chronic airway remodeling, which is associated with the expression of extracellular matrix proteins (ECM) by TGF-β. However, to date there are no reports demonstrating that structural proteins are directly expressed in mast cells. This study aimed to investigate whether ECM proteins are expressed in mast cells activated with antigen/antibody reaction, and whether the resolution effects of irradiation or 8-oxo-dG may contribute to allergic asthma prevention. Bone marrow-derived mast cells (BMMCs) were activated with DNP-HSA/anti-DNP IgE antibody (act-BMMCs). C57BL/6 mice were sensitized and challenged with ovalbumin (OVA) to induce allergic asthma. Mice were treated orally with 8-oxo-dG or exposed to whole body irradiation (using (137)Cs gamma ray at a dose of 0.5 Gy) for three consecutive days 24 h after OVA challenge. Expression of extracellular matrix (ECM) proteins, TGF-β signaling molecules and NF-κB/AP-1 was determined in the BMMCs, bronchoalveolar lavage (BAL) cells or lung tissues using Western blot, polymerase chain reaction (PCR) and electrophoretic mobility shift assay (EMSA), respectively. Act-BMMCs increased expression of ECM proteins, TGF-β/TGF-β receptor I, TGF-β signaling molecules and cytokines; and increased both NF-κB and AP-1 activity. In addition, the population of mast cells; expression of mast cell markers, TGF-β signaling molecules, ECM proteins/amounts; OVA-specific serum IgE level; numbers of goblet cells; airway hyperresponsiveness; cytokines/chemokines were increased in BAL cells and lung tissues of OVA-challenged mice. All of the above end points were reduced by irradiation or 8-oxo-dG in vitro and in vivo, respectively. The data suggest that mast cells induce expression of ECM proteins through TGF-β produced in inflammatory cells of OVA mice and that post treatment of irradiation or 8-oxo-dG after OVA-challenge may reduce airway remodeling through down-regulating mast cell re-activation by

  11. Enhancement of allergic responses in vivo and in vitro by butylated hydroxytoluene

    SciTech Connect

    Yamaki, Kouya; Taneda, Shinji; Yanagisawa, Rie; Inoue, Ken-ichiro; Takano, Hirohisa; Yoshino, Shin

    2007-09-01

    The effect of butylated hydroxytoluene (BHT), which is used widely as an antioxidant, on IgE-dependent allergic responses in vivo and in vitro was investigated. For in vivo study, passive cutaneous anaphylaxis (PCA) was elicited in rats by i.d. injection of anti-DNP IgE and 48 h later by i.v. injection of DNP-HSA. BHT was i.p. given immediately after anti-DNP IgE injection. For in vitro studies, the rat mast cell line RBL2H3 sensitized with monoclonal anti-dinitrophenol (DNP) IgE was challenged with the multivalent antigen DNP-human serum albumin (DNP-HSA) in the presence or absence of BHT. {beta}-Hexosaminidase and histamine released from RBL2H3 cells, as indicators of degranulation of the cells, the concentration of intracellular Ca{sup 2+}, the level of phosphorylated-Akt, and global tyrosine phosphorylation as indicators of mast cell activation, were measured. The results showed that BHT given to anti-DNP IgE-sensitized rats augmented DNP-specific PCA in a dose-dependent manner. In the presence of BHT, IgE-induced releases of {beta}-hexosaminidase and histamine from RBL2H3 cells were increased. BHT also further elevated IgE-mediated increased concentrations of intracellular Ca{sup 2+} and the levels of phosphorylated-Akt, but did not affect global tyrosine phosphorylation, in RBL2H3 cells. Moreover, the PI3K inhibitor LY294002 inhibited IgE-dependent degranulation and its enhancement by BHT. These findings indicate that BHT may upregulate PCA by enhancing mast cell degranulation associated with enhancements of intracellular Ca{sup 2+} concentration and PI3K activation, suggesting that BHT might affect allergic diseases such as allergic rhinitis and asthma.

  12. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice

    PubMed Central

    Kozy, Heather M.; Lum, Jeremy A.; Sweetwood, Rosemary; Chu, Mabel; Cunningham, Cameron R.; Salamon, Hugh; Lloyd, Clare M.; Coffman, Robert L.; Hessel, Edith M.

    2015-01-01

    Background CpG-containing oligodeoxynucleotides (CpG-ODN) are potent inhibitors of Th2-mediated allergic airway disease in sensitized mice challenged with allergen. A single treatment has transient effects but a limited series of treatments has potential to achieve clinically meaningful sustained inhibition of allergic airway disease. Objective To optimize the treatment regimen and determine the mechanisms of action in mice of an inhaled form of CpG-ODN being developed for human asthma treatment. Methods A limited series of weekly intranasal 1018 ISS (CpG-ODN; B-class) treatments were given to ragweed allergen-sensitized mice chronically exposed to allergen during and after the 1018 ISS treatment regimen. Treatment effects were evaluated by measuring effect on lung Th2 cytokines and eosinophilia as well as lung dendritic cell function and T cell responses. Results Twelve intranasal 1018 ISS treatments induced significant suppression of BAL eosinophilia and IL-4, IL-5, and IL-13 levels and suppression was maintained through 13 weekly ragweed exposures administered after treatment cessation. At least 5 treatments were required for lasting Th2 suppression. CpG-ODN induced moderate Th1 responses but Th2 suppression did not require IFN-γ. Th2 suppression was associated with induction of a regulatory T cell response. Conclusion A short series of CpG-ODN treatments results in sustained suppression of allergic lung inflammation induced by a clinically relevant allergen. PMID:24464743

  13. Feeding probiotic Lactobacillus rhamnosus (MTCC 5897) fermented milk to suckling mothers alleviates ovalbumin-induced allergic sensitisation in mice offspring.

    PubMed

    Saliganti, Vamshi; Kapila, Rajeev; Sharma, Rohit; Kapila, Suman

    2015-10-28

    The neonatal period is often polarised to T helper (Th2) response at the time of birth, predisposing offspring to allergic disorders. Passive immunity through the mother's milk is critical for immune system development of newborns. Probiotics have been proposed to harmonise Th1/Th2 imbalance in allergic conditions in adults. In the present study, the anti-allergic effects of feeding probiotic Lactobacillus rhamnosus-fermented milk (PFM) either to dams during the suckling period or to their offspring after weaning individually or else in successive periods against ovalbumin (OVA)-induced allergy in newborns was analysed. After allergen sensitisation, physical symptoms of allergy, gut immune response, humoral immune response and cell-mediated response through interleukins were detected. Consumption of PFM by mothers and offspring showed a reduction (P<0·01) in physical allergic symptoms in newborns with an increase (P<0·01) in the numbers of goblet and IgA+ cells in the small intestine. Similarly, considerable (P<0·001) decreases in OVA-specific antibodies (IgE, IgG, IgG1) and ratios of IgE/IgG2a and IgG1/IgG2a in the sera of newborn mice were recorded. A decrease in IL-4 and an increase in interferon-γ levels further confirmed the shift from Th2 to Th1 pathway in PFM-fed mice. It is logical to conclude that the timing of PFM intervention in alleviating allergic symptoms is critical, which was found to be most effective when mothers were fed during the suckling period.

  14. Characterisation of CD154+ T cells following ex vivo allergen stimulation illustrates distinct T cell responses to seasonal and perennial allergens in allergic and non-allergic individuals

    PubMed Central

    2013-01-01

    Background Allergic sensitisation has been ascribed to a dysregulated relationship between allergen-specific Th1, Th2 and regulatory T cells. We sought to utilise our short-term CD154 detection method to further analyse the relationship between these T cell subsets and investigate differences between seasonal and perennial allergens. Using peripheral blood samples from grass-allergic, cat-allergic and healthy non-atopic subjects, we compared the frequencies and phenotype of CD154-positive T helper cells following stimulation with seasonal (grass) and perennial (cat dander) allergens. Results We identified a higher frequency of CD154+ T cells in grass-allergic individuals compared to healthy controls; this difference was not evident following stimulation with cat allergen. Activated Th1, Th2 and Tr1-like cells, that co-express IFNγ, IL4 and IL10, respectively, were identified in varying proportions in grass-allergic, cat-allergic and non-allergic individuals. We confirmed a close correlation between Th1, Th2 and Tr1-like cell frequency in non-allergic volunteers, such that the three parameters increased together to maintain a low Th2: Th1 ratio. This relationship was dysregulated in grass-allergic individuals with no correlation between the T cell subsets and a higher Th2: Th1 ratio. We confirmed previous reports of a late-differentiated T cell phenotype in response to seasonal allergens compared to early-differentiated T cell responses to perennial allergens. Conclusions The findings confirm our existing work illustrating an important balance between Th1, Th2 and Tr1-like responses to allergens in health, where Th2 responses are frequently observed, but balanced by Th1 and regulatory responses. We confirm previous tetramer-based reports of phenotypic differences in T cells responding to seasonal and perennial allergens. PMID:24188324

  15. Acetaminophen Attenuates House Dust Mite-Induced Allergic Airway Disease in Mice.

    PubMed

    Smith, Gregory J; Thrall, Roger S; Cloutier, Michelle M; Manautou, Jose E; Morris, John B

    2016-09-01

    Epidemiologic evidence suggests that N-acetyl-para-aminophenol (APAP) may play a role in the pathogenesis of asthma, likely through pro-oxidant mechanisms. However, no studies have investigated the direct effects of APAP on the development of allergic inflammation. To determine the likelihood of a causal relationship between APAP and asthma pathogenesis, we explored the effects of APAP on inflammatory responses in a murine house dust mite (HDM) model of allergic airway disease. We hypothesized that APAP would enhance the development of HDM-induced allergic inflammation. The HDM model consisted of once daily intranasal instillations for up to 2 weeks with APAP or vehicle administration 1 hour prior to HDM during either week 1 or 2. Primary assessment of inflammation included bronchoalveolar lavage (BAL), cytokine expression in lung tissue, and histopathology. Contrary to our hypothesis, the effects of HDM treatment were substantially diminished in APAP-treated groups compared with controls. APAP-treated groups had markedly reduced airway inflammation: including decreased inflammatory cells in the BAL fluid, lower cytokine expression in lung tissue, and less perivascular and peribronchiolar immune cell infiltration. The anti-inflammatory effect of APAP was not abrogated by an inhibitor of cytochrome P450 (P450) metabolism, suggesting that the effect was due to the parent compound or a non-P450 generated metabolite. Taken together, our studies do not support the biologic plausibility of the APAP hypothesis that APAP use may contribute to the causation of asthma. Importantly, we suggest the mechanism by which APAP modulates airway inflammation may provide novel therapeutic targets for asthma. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Caspase-1 activation by NLRP3 inflammasome dampens IL-33-dependent house dust mite-induced allergic lung inflammation.

    PubMed

    Madouri, Fahima; Guillou, Noëlline; Fauconnier, Louis; Marchiol, Tiffany; Rouxel, Nathalie; Chenuet, Pauline; Ledru, Aurélie; Apetoh, Lionel; Ghiringhelli, François; Chamaillard, Mathias; Zheng, Song Guo; Trovero, Fabrice; Quesniaux, Valérie F J; Ryffel, Bernhard; Togbe, Dieudonnée

    2015-08-01

    The cysteine protease caspase-1 (Casp-1) contributes to innate immunity through the assembly of NLRP3, NLRC4, AIM2, and NLRP6 inflammasomes. Here we ask whether caspase-1 activation plays a regulatory role in house dust mite (HDM)-induced experimental allergic airway inflammation. We report enhanced airway inflammation in caspase-1-deficient mice exposed to HDM with a marked eosinophil recruitment, increased expression of IL-4, IL-5, IL-13, as well as full-length and bioactive IL-33. Furthermore, mice deficient for NLRP3 failed to control eosinophil influx in the airways and displayed augmented Th2 cytokine and chemokine levels, suggesting that the NLPR3 inflammasome complex controls HDM-induced inflammation. IL-33 neutralization by administration of soluble ST2 receptor inhibited the enhanced allergic inflammation, while administration of recombinant IL-33 during challenge phase enhanced allergic inflammation in caspase-1-deficient mice. Therefore, we show that caspase-1, NLRP3, and ASC, but not NLRC4, contribute to the upregulation of allergic lung inflammation. Moreover, we cannot exclude an effect of caspase-11, because caspase-1-deficient mice are deficient for both caspases. Mechanistically, absence of caspase-1 is associated with increased expression of IL-33, uric acid, and spleen tyrosine kinase (Syk) production. This study highlights a critical role of caspase-1 activation and NLPR3/ASC inflammasome complex in the down-modulation of IL-33 in vivo and in vitro, thereby regulating Th2 response in HDM-induced allergic lung inflammation.

  17. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model.

    PubMed

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the

  18. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model

    PubMed Central

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper

  19. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis.

    PubMed

    Kumagai, Kenichi; Horikawa, Tatsuya; Shigematsu, Hiroaki; Matsubara, Ryota; Kitaura, Kazutaka; Eguchi, Takanori; Kobayashi, Hiroshi; Nakasone, Yasunari; Sato, Koichiro; Yamada, Hiroyuki; Suzuki, Satsuki; Hamada, Yoshiki; Suzuki, Ryuji

    2016-01-12

    Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK) T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion-induced allergic contact dermatitis.

  20. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles.

    PubMed

    Heber, David; Li, Zhaoping; Garcia-Lloret, Maria; Wong, Angela M; Lee, Tsz Ying Amy; Thames, Gail; Krak, Michael; Zhang, Yanjun; Nel, Andre

    2014-01-01

    The generation of oxidative stress by ambient air pollution particles contributes to the development of allergic sensitization and asthma, as demonstrated by intranasal challenge with well-characterized diesel exhaust particle (DEP) suspensions in humans. This effect is due to the presence of redox active organic chemicals in DEP, and can be suppressed by antioxidants and inducers of phase II enzymes in animals. In this communication, we determined whether the administration of a standardized broccoli sprout extract (BSE), which contains a reproducible amount of the sulforaphane (SFN) precursor, glucoraphanin, could be used to suppress the nasal inflammatory response in human subjects challenged with 300 μg of an aqueous DEP suspension (equivalent to daily PM exposure levels on a Los Angeles freeway). SFN is capable of inducing an antioxidant and phase II response via activation of the nuclear transcription factor (erythroid-derived 2)-like 2 (Nrf2). Previous studies have shown that 70-90% SFN delivered by BSE is absorbed, metabolized, and excreted in humans. An initial intranasal challenge with DEP in 29 human subjects was used to characterize the magnitude of the inflammatory response. Following a 4 week washout, a BSE that delivers a reproducible and standardized dose of 100 μmol SFN in mango juice was administered daily for four days. The nasal DEP challenge was repeated and lavage fluid collected to perform white blood cell (WBC) counts. The average nasal WBC increased by 66% over the initial screening levels and by 85% over the control levels 24 hours after DEP exposure. However, total cell counts decreased by 54% when DEP challenge was preceded by daily BSE administration for 4 days (p < 0.001). Since the SFN dose in these studies is equivalent to the consumption of 100-200 g broccoli, our study demonstrates the potential preventive and therapeutic potential of broccoli or broccoli sprouts rich in glucoraphanin for reducing the impact of particulate

  1. Therapeutic efficacy of AM156, a novel prostanoid DP2 receptor antagonist, in murine models of allergic rhinitis and house dust mite-induced pulmonary inflammation.

    PubMed

    Stebbins, Karin J; Broadhead, Alex R; Correa, Lucia D; Scott, Jill M; Truong, Yen P; Stearns, Brian A; Hutchinson, John H; Prasit, Peppi; Evans, Jilly F; Lorrain, Daniel S

    2010-07-25

    Prostaglandin D(2) (PGD(2)) is derived from arachidonic acid and binds with high affinity to the G protein coupled receptors prostanoid DP(1) and DP(2). Interaction with DP(2) results in cell chemotaxis, eosinophil degranulation, eosinophil shape change, adhesion molecule upregulation and Th2 cytokine production. In allergic rhinitis and allergic asthma PGD(2) is released from mast cells in response to allergen challenge and may trigger symptoms such as sneezing, rhinorrhea, pruritus, mucus hypersecretion and pulmonary inflammation. In Japan, ramatroban, a dual prostanoid DP(2)/prostanoid TP receptor antagonist, is marketed for allergic rhinitis while selective DP(2) antagonists are currently under investigation as therapeutics for asthma and allergic rhinitis. In the studies described herein, we investigated the efficacy of AM156, a novel selective prostanoid DP(2) receptor antagonist, in murine models of allergic rhinitis and asthma. AM156 inhibited sneezing and nasal rubs in a model of allergic rhinitis. AM156 inhibited pulmonary inflammation and mucus hypersecretion induced by chronic inhalation of house dust mite. These results suggest that selective prostanoid DP(2) receptor antagonists such as AM156 may provide beneficial effects for the clinical treatment of diseases such as allergic rhinitis and asthma. (c) 2010 Elsevier B.V. All rights reserved.

  2. Nerve growth factor partially recovers inflamed skin from stress-induced worsening in allergic inflammation.

    PubMed

    Peters, Eva M J; Liezmann, Christiane; Spatz, Katharina; Daniltchenko, Maria; Joachim, Ricarda; Gimenez-Rivera, Andrey; Hendrix, Sven; Botchkarev, Vladimir A; Brandner, Johanna M; Klapp, Burghard F

    2011-03-01

    Neuroimmune dysregulation characterizes atopic disease, but its nature and clinical impact remain ill-defined. Induced by stress, the neurotrophin nerve growth factor (NGF) may worsen cutaneous inflammation. We therefore studied the role of NGF in the cutaneous stress response in a mouse model for atopic dermatitis-like allergic dermatitis (AlD). Combining several methods, we found that stress increased cutaneous but not serum or hypothalamic NGF in telogen mice. Microarray analysis showed increased mRNAs of inflammatory and growth factors associated with NGF in the skin. In stress-worsened AlD, NGF-neutralizing antibodies markedly reduced epidermal thickening together with NGF, neurotrophin receptor (tyrosine kinase A and p75 neurotrophin receptor), and transforming growth factor-β expression by keratinocytes but did not alter transepidermal water loss. Moreover, NGF expression by mast cells was reduced; this corresponded to reduced cutaneous tumor necrosis factor-α (TNF-α) mRNA levels but not to changes in mast cell degranulation or in the T helper type 1 (Th1)/Th2 cytokine balance. Also, eosinophils expressed TNF receptor type 2, and we observed reduced eosinophil infiltration after treatment with NGF-neutralizing antibodies. We thus conclude that NGF acts as a local stress mediator in perceived stress and allergy and that increased NGF message contributes to worsening of cutaneous inflammation mainly by enhancing epidermal hyperplasia, pro-allergic cytokine induction, and allergy-characteristic cellular infiltration.

  3. Anti-allergic effects of So-Cheong-Ryong-Tang in ovalbumin-induced allergic rhinitis model.

    PubMed

    Ku, Jin Mo; Hong, Se Hyang; Kim, Soon Re; Choi, Han-Seok; Seo, Hye Sook; Jang, Bo-Hyoung; Ko, Seong-Gyu; Shin, Yong Cheol

    2016-01-01

    Allergic rhinitis (AR) is an allergic inflammation of the nasal airways. The Korean herbal medicine, So-Cheong-Ryong-Tang (SCRT) has been typically used for the treatment of AR for hundreds of years. In the present study, we investigated whether SCRT suppresses the progression of AR in animal model. AR was induced by ovalbumin (OVA). Treatment with SCRT was assessed to study the effect of SCRT on AR in mice. Histological analysis, multiplex cytokine assay, blood analysis, cell viability assay, RT-PCR and Elisa assay were performed to verify inhibitory effect of SCRT on AR. SCRT reduced infiltration of inflammatory cells into nasal cavity. SCRT reduced infiltration of mast cells into nasal mucosa. SCRT reduced the levels of cytokines (IL-4 and LIF) in the serum. SCRT reduced the levels of leukocytes in the blood. SCRT decreased cell viability of HMC-1 cells and splenocyte. SCRT suppressed IL-4 level in HMC-1 cells and splenocyte cells in a dose-dependent manner. SCRT suppressed IL-6 level and TNF-α level in splenocyte. SCRT suppresses the progression of AR induced by OVA. SCRT might be a useful drug for the treatment of AR.

  4. Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals.

    PubMed

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch; Ogg, Graham

    2016-01-01

    The role of CD1a-reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a-reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom-responsive CD1a-reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a-transfected K562 cells in the presence of wasp or bee venom. T-cell response was evaluated based on IFNγ, GM-CSF, and IL-13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN-γ, GM-CSF, and IL-13 producing CD1a-reactive T cells responsive to venom and venom-derived phospholipase than healthy individuals. Venom-responsive CD1a-reactive T cells were cross-responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a-reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein-specific T cell and antibody responses. Here, we show that lipid antigens and CD1a-reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Immunization of proteins from Toxascaris leonina adult worm inhibits allergic specific Th2 response.

    PubMed

    Lee, Keun Hee; Park, Hye Kyung; Jeong, Hae Jin; Park, Sang Kyun; Lee, Sun Joo; Choi, Sun Hee; Cho, Min Kyoung; Ock, Mee Sun; Hong, Yeon-Chul; Yu, Hak Sun

    2008-10-01

    Recently, the influence of parasitic infections on the incidence of allergic diseases has become the focus of increased attention. In order to ascertain whether parasite-derived proteins could inhibit the allergic specific Th2 response, we applied excretory-secretory protein (Tl-ES) or total protein (Tl-TP) of the adult worm Toxascaris leonina to asthma model mice prior to or simultaneously with OVA challenge, after which we assessed the OVA-specific Th2 responses. The group subjected to immunization with Tl-ES and Tl-TP (immunized group) evidenced a thinning of the bronchial epithelial and muscle layer, a disruption and shedding of epithelial cells, a reduction in the number of goblet cells, and a reduction in mucus production as compared to the group treated with Tl-ES coupled with OVA challenge (challenge with OVA groups) and the OVA-induced asthma group. The administration of Tl-ES and Tl-TP, regardless of injection time, was shown to inhibit the recruitment of inflammatory cells into the airway, and in particular, macrophages, neutrophils, and lymphocytes were significantly reduced as the result of the parasite proteins. However, the total number of eosinophils was slightly reduced as the result of the administration of parasite proteins. Sensitization and OVA challenge was shown to accelerate the secretion of Th2 cytokines (IL-4 and IL-5) within the lung, but in the immunized groups, those levels were lower. The administration of Tl-TP and OVA challenge group also evidenced a significant reduction in IL-4 levels as compared to the OVA-challenged group. The concentrations of Th2 cytokines in the Tl-ES and OVA challenge group were more similar to those observed in the OVA-challenged group. The concentration of IL-10 and TGF-beta in the lung was decreased substantially in the OVA-only challenge group, but the Tl-TP immunized group exhibited significantly induced IL-10 cytokine. OVA-specific IgG2a, IgG1, and IgE levels in the immunized groups were significantly

  6. Cornuside inhibits mast cell-mediated allergic response by down-regulating MAPK and NF-κB signaling pathways

    SciTech Connect

    Li, Liangchang; Jin, Guangyu; Jiang, Jingzhi; Zheng, Mingyu; Jin, Yan; Lin, Zhenhua; Li, Guangzhao; Choi, Yunho; Yan, Guanghai

    2016-04-29

    Aims: The present study is to investigate the effect of cornuside on mast cell-mediated allergic response, as well as its possible mechanisms of action. Methods: To test the anti-allergic effects of cornuside in vivo, local extravasation was induced by local injection of anti-dinitrophenyl immunoglobulin E (IgE) followed by intravenous antigenic challenge in passive cutaneous anaphylaxis model rats. Mast cell viability was determined using MTT assay. Histamine content from rat peritoneal mast cells was measured by the radioenzymatic method. To investigate the mechanisms by which cornuside affects the reduction of histamine release, the levels of calcium uptake were measured. To examine whether cornuside affects the expression of pro-inflammatory cytokines, Western blotting and ELISA were carried out. Results: Oral administration of cornuside inhibited passive cutaneous anaphylaxis in rats. Presence of cornuside attenuated IgE-induced histamine release from rat peritoneal mast cells. The inhibitory effect of cornuside on histamine release was mediated by the modulation of intracellular calcium. In addition, cornuside decreased phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated production and secretion of pro-inflammatory cytokines such as TNF-α and IL-6 in human mast cells. The inhibitory effect of cornuside on pro-inflammatory cytokines was dependent on nuclear factor-κB and p38 mitogen-activated protein kinase. Conclusions: The present study provides evidence that cornuside inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. Furthermore, in vivo and in vitro anti-allergic effects of cornuside suggest a possible therapeutic application of this agent in inflammatory allergic diseases.

  7. Experimental extrinsic allergic alveolitis and pulmonary angiitis induced by intratracheal or intravenous challenge with Corynebacterium parvum in sensitized rats.

    PubMed

    Yi, E S; Lee, H; Suh, Y K; Tang, W; Qi, M; Yin, S; Remick, D G; Ulich, T R

    1996-10-01

    Extrinsic allergic alveolitis and pulmonary sarcoidosis are granulomatous diseases of the lung for which clinical presentation and anatomic site of granuloma formation differ. Extrinsic allergic alveolitis is caused by inhaled antigens, whereas the nature and source of the inciting antigen in sarcoidosis is unknown. To test the hypothesis that the route via which antigen is introduced to the lung contributes to the clinicopathological presentation of pulmonary granulomatous disease, rats immunized with intravenous (i.v.) Corynebacterium parvum were challenged after 2 weeks with either intratracheal (i.t.) or i.v. C. parvum. The granulomatous inflammation elicited by i.t. challenge predominantly involved alveolar spaces and histologically simulated extrinsic allergic alveolitis. In contrast, the inflammation induced by i.v. challenge was characterized by granulomatous angiitis and interstitial inflammation simulating sarcoidosis. Elevations of leukocyte counts and TNF levels in bronchoalveolar fluid, which reflect inflammation in the intra-alveolar compartment, were much more pronounced after i.t. than after i.v. challenge. Tumor necrosis factor, interleukin-6, CC chemokine, CXC chemokine, and adhesion molecule mRNA and protein expression occurred in each model. In conclusion, i.t. or i.v. challenge with C. parvum in sensitized rats caused pulmonary granulomatous inflammation that was histologically similar to human extrinsic allergic alveolitis and sarcoidosis, respectively. Although the soluble and cellular mediators of granulomatous inflammation were qualitatively similar in both disease models, the differing anatomic source of the same antigenic challenge was responsible for differing clinicopathological presentations.

  8. CARMA1 is necessary for optimal T cell responses in a murine model of allergic asthma.

    PubMed

    Ramadas, Ravisankar A; Roche, Marly I; Moon, James J; Ludwig, Thomas; Xavier, Ramnik J; Medoff, Benjamin D

    2011-12-15

    CARMA1 is a lymphocyte-specific scaffold protein necessary for T cell activation. Deletion of CARMA1 prevents the development of allergic airway inflammation in a mouse model of asthma due to a defect in naive T cell activation. However, it is unknown if CARMA1 is important for effector and memory T cell responses after the initial establishment of inflammation, findings that would be more relevant to asthma therapies targeted to CARMA1. In the current study, we sought to elucidate the role of CARMA1 in T cells that have been previously activated. Using mice in which floxed CARMA1 exons can be selectively deleted in T cells by OX40-driven Cre recombinase (OX40(+/Cre)CARMA1(F/F)), we report that CD4(+) T cells from these mice have impaired T cell reactivation responses and NF-κB signaling in vitro. Furthermore, in an in vivo recall model of allergic airway inflammation that is dependent on memory T cell function, OX40(+/Cre)CARMA1(F/F) mice have attenuated eosinophilic airway inflammation, T cell activation, and Th2 cytokine production. Using MHC class II tetramers, we demonstrate that the development and maintenance of Ag-specific memory T cells is not affected in OX40(+/Cre)CARMA1(F/F) mice. In addition, adoptive transfer of Th2-polarized OX40(+/Cre)CARMA1(F/F) Ag-specific CD4(+) T cells into wild-type mice induces markedly less airway inflammation in response to Ag challenge than transfer of wild-type Th2 cells. These data demonstrate a novel role for CARMA1 in effector and memory T cell responses and suggest that therapeutic strategies targeting CARMA1 could help treat chronic inflammatory disorders such as asthma.

  9. Therapeutic potential of anti-IL-1β IgY in guinea pigs with allergic asthma induced by ovalbumin.

    PubMed

    Wei-xu, Hu; Qin, Xiang; Zhu, Wen; Yuan-yi, Chen; Li-feng, Zeng; Zhi-yong, Liu; Dan, He; Xiao-mu, Wu; Guo-zhu, Hu

    2014-03-01

    Interleukin-1 beta (IL-1β) plays pivotal roles in the progression of allergic airway inflammation. This study aims to determine whether the blockade of IL-1β can inhibit airway inflammation in guinea pigs with allergic asthma induced by the inhalation of aerosolized ovalbumin (OVA). Healthy guinea pigs treated with saline were used as normal controls (group C). The guinea pigs with allergic asthma induced by the inhalation of aerosolized OVA were randomly divided into three groups: (1) the M group containing negative control animals treated with saline; (2) the Z1 group containing animals treated by the inhalation of atomized 0.1% anti-IL-1β immunoglobulin yolk (IgY); and (3) the Z2 group containing positive control animals that were treated with budesonide. The inflammatory cells in the peripheral blood (PB) and bronchoalveolar lavage fluid (BALF) were evaluated using methylene blue and eosin staining. Cytokine concentrations were measured using an enzyme-linked immunosorbent assay. Pulmonary sections were examined using hematoxylin-eosin staining. Allergic inflammation and damage to the pulmonary tissues were decreased in the Z1 group compared to the M group. Eosinophils and neutrophils in the PB and BALF were significantly decreased in the Z1 group compared to the M group (P<0.05). Treatment with anti-IL-1β IgY significantly reduced the levels of IL-1β, IL-4, IL-8, IL-13, TNF-α, TGF-β1 and IgE in the BALF (P<0.05). The inhalation of aerosolized anti-IL-1β IgY inhibits pathological responses in the pulmonary tissues of guinea pigs with allergic asthma. The inhibitory activity may be due to the decrease in the numbers of eosinophils and neutrophils and the reduced levels of inflammatory cytokines and IgE in the PB and BALF. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Lung ILC2s link innate and adaptive responses in allergic inflammation.

    PubMed

    Martinez-Gonzalez, Itziar; Steer, Catherine A; Takei, Fumio

    2015-03-01

    How allergens trigger the T helper 2 (Th2) response that characterizes allergic lung inflammation is not well understood. Epithelium-derived alarmins released after an allergen encounter activate the innate immune system, including group 2 innate lymphoid cells (ILC2s) which produce the type 2 interleukins IL-5 and IL-13. It has been recently shown that ILC2-derived cytokines are responsible not only for the innate responses underlying allergic inflammation but also for the initiation of the adaptive Th2 response. We review the role of lung ILC2s in the development of allergic inflammation and, in the context of recent findings, propose a common pathway wherein ILC2s, activated by the epithelium-derived cytokine IL-33, link the innate and the adaptive responses after allergen encounter in the lung. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. In vivo Regulation of the Allergic Response by the Interleukin 4 Receptor Alpha Chain Immunoreceptor Tyrosine-based Inhibitory Motif

    PubMed Central

    Tachdjian, Raffi; Khatib, Shadi Al; Schwinglshackl, Andreas; Kim, Hong Sook; Chen, Andrew; Blasioli, Julie; Mathias, Clinton; Kim, Hye-Young; Umetsu, Dale T.; Oettgen, Hans C.; Chatila, Talal A.

    2010-01-01

    Background Signaling by IL-4 and IL-13 via the IL-4 receptor alpha chain (IL-4Rα) plays a critical role in the pathology of allergic diseases. The IL-4Rα is endowed with an immunoreceptor tyrosine-based inhibitory motif (ITIM), centered on tyrosine 709 (Y709) in the cytoplasmic domain, that binds a number of regulatory phosphatases. The function of the ITIM in the in vivo regulation of IL-4R signaling remains unknown. Objective To determine the in vivo function of the IL-4Rα ITIM using mice in which the ITIM was inactivated by mutagenesis of the tyrosine Y709 residue into phenylalanine (F709). Methods F709 ITIM mutant mice were derived by knockin mutagenesis. Activation of intracellular signaling cascades by IL-4 and IL-13 was assessed by intracellular staining of phosphorylated signaling intermediates and by gene expression analysis. In vivo responses to allergic sensitization were assessed using models of allergic airway inflammation. Results The F709 mutation increased STAT6 phosphorylation by IL-4 and, disproportionately, by IL-13. This was associated with exaggerated Th2 polarization, enhanced alternative macrophage activation by IL-13, augmented basal and antigen-induced IgE responses and intensified allergen-induced eosinophilic airway inflammation and hyperreactivity. Conclusions These results point to a physiologic negative regulatory role for the Y709 ITIM in signaling via IL-4Rα, especially by IL-13. PMID:20392476

  12. A new, rapid in vivo method to evaluate allergic responses through distinctive distribution of a fluorescent-labeled immune complex: Potential to investigate anti-allergic effects of compounds administered either systemically or topically to the skin.

    PubMed

    Yamaki, Kouya; Yoshino, Shin

    2016-01-01

    We herein established a new method to evaluate allergic responses in mice rapidly and easily with ethical improvement by reducing the number of animals used. A single intravenous injection of a mixture of anti-OVA monoclonal IgE and fluorescein-ovalbumin (FITC-OVA) induced the distinctive spotted distribution of FITC-OVA in skin, named "ASDIS (Anaphylaxis-dependent Spotted Distribution of a fluorescent-labeled Immune complex in Skin)", and this was easily detected by in vivo imaging. The parallel induction of hypothermia, scratching, serum histamine increases, and ASDIS as well as the inhibition of ASDIS by either the systemic administration of a histamine H1 receptor antagonist or mast cell-depleting antibody suggested that our method, which only required 15 min, induced these allergic responses including ASDIS. Relatively mild but significant ASDIS was induced also in mice with passive systemic anaphylaxis by the method, requiring 2 separate days. The painting of anti-histamines on the skin markedly reduced ASDIS in the painted area only, suggesting the potential of this model to simultaneously compare the anti-allergic effects of several candidate compounds with control drugs in the same mice. ASDIS was suggested to originate from extravasated FITC-OVA/OE-1 immune complexes from blood to skin tissues other than mast cells. Our new method has the advantages of rapidity, easy method, and lower animal numbers to evaluate anti-allergic compounds as well as the characteristics of the used antibody, antigen, labeling molecules, additives, and other formulations. Our model for inducing ASDIS may contribute to the development of anti-allergic drugs, especially those intended for application to the skin.

  13. β-Glucan exacerbates allergic asthma independent of fungal sensitization and promotes steroid-resistant TH2/TH17 responses.

    PubMed

    Zhang, Zhonghua; Biagini Myers, Jocelyn M; Brandt, Eric B; Ryan, Patrick H; Lindsey, Mark; Mintz-Cole, Rachael A; Reponen, Tiina; Vesper, Stephen J; Forde, Frank; Ruff, Brandy; Bass, Stacey A; LeMasters, Grace K; Bernstein, David I; Lockey, James; Budelsky, Alison L; Khurana Hershey, Gurjit K

    2017-01-01

    Allergic sensitization to fungi has been associated with asthma severity. As a result, it has been largely assumed that the contribution of fungi to allergic disease is mediated through their potent antigenicity. We sought to determine the mechanism by which fungi affect asthma development and severity. We integrated epidemiologic and experimental asthma models to explore the effect of fungal exposure on asthma development and severity. We report that fungal exposure enhances allergen-driven TH2 responses, promoting severe allergic asthma. This effect is independent of fungal sensitization and can be reconstituted with β-glucan and abrogated by neutralization of IL-17A. Furthermore, this severe asthma is resistant to steroids and characterized by mixed TH2 and TH17 responses, including IL-13(+)IL-17(+)CD4(+) double-producing effector T cells. Steroid resistance is dependent on fungus-induced TH17 responses because steroid sensitivity was restored in IL-17rc(-/-) mice. Similarly, in children with asthma, fungal exposure was associated with increased serum IL-17A levels and asthma severity. Our data demonstrate that fungi are potent immunomodulators and have powerful effects on asthma independent of their potential to act as antigens. Furthermore, our results provide a strong rationale for combination treatment strategies targeting IL-17A for this subgroup of fungus-exposed patients with difficult-to-treat asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Allergic reaction induced by dermal and/or respiratory exposure to low-dose phenoxyacetic acid, organophosphorus, and carbamate pesticides.

    PubMed

    Fukuyama, Tomoki; Tajima, Yukari; Ueda, Hideo; Hayashi, Koichi; Shutoh, Yasufumi; Harada, Takanori; Kosaka, Tadashi

    2009-07-10

    Several types of pesticides, such as organophosphates, phenoxyacetic acid, and carbamate have a high risk of affecting human health, causing allergic rhinitis and bronchial asthma-like diseases. We used our long-term sensitization method and a local lymph node assay to examine the allergic reactions caused by several types of pesticides. BALB/c mice were topically sensitized (9 times in 3 weeks), then challenged dermally or intratracheally with 2,4-D, BRP, or furathiocarb. One day post-challenge, the mice were processed to obtain biologic materials for use in assays of total IgE levels in serum and bronchoalveolar lavage fluid (BALF); differential cell counts and chemokine levels in BALF; lymphocyte counts and surface antigen expression on B-cells within regional lymph nodes (LNs); and, ex situ cytokine production by cells from these LNs. 2,4-D-induced immune responses characteristic of immediate-type respiratory reactions, as evidenced by increased total IgE levels in both serum and BALF; an influx of eosinophils, neutrophils, and chemokines (MCP-1, eotaxin, and MIP-1beta) in BALF; increased surface antigen expression on B-cells IgE and MHC class II production) in both auricular and the lung-associated LNs; and increased Th2 cytokine production (IL-4, IL-5, IL-10, and IL-13) in both auricular and the lung-associated LN cells. In contrast, BRP and furathiocarb treatment yielded, at most, non-significant increases in all respiratory allergic parameters. BRP and furathiocarb induced marked proliferation of MHC Class II-positive B-cells and Th1 cytokines (IL-2, TNF-alpha, and IFN-gamma) in only auricular LN cells. These results suggest that 2,4-D is a respiratory allergen and BRP and furathiocarb are contact allergens. As our protocol detected classified allergic responses to low-molecular-weight chemicals, it thus may be useful for detecting environmental chemical-related allergy.

  15. Diesel exhaust augments allergen-induced lower airway inflammation in allergic individuals: a controlled human exposure study.

    PubMed

    Carlsten, Chris; Blomberg, Anders; Pui, Mandy; Sandstrom, Thomas; Wong, Sze Wing; Alexis, Neil; Hirota, Jeremy

    2016-01-01

    Traffic-related air pollution has been shown to augment allergy and airway disease. However, the enhancement of allergenic effects by diesel exhaust in particular is unproven in vivo in the human lung, and underlying details of this apparent synergy are poorly understood. To test the hypothesis that a 2 h inhalation of diesel exhaust augments lower airway inflammation and immune cell activation following segmental allergen challenge in atopic subjects. 18 blinded atopic volunteers were exposed to filtered air or 300 µg PM(2.5)/m(3) of diesel exhaust in random fashion. 1 h post-exposure, diluent-controlled segmental allergen challenge was performed; 2 days later, samples from the challenged segments were obtained by bronchoscopic lavage. Samples were analysed for markers and modifiers of allergic inflammation (eosinophils, Th2 cytokines) and adaptive immune cell activation. Mixed effects models with ordinal contrasts compared effects of single and combined exposures on these end points. Diesel exhaust augmented the allergen-induced increase in airway eosinophils, interleukin 5 (IL-5) and eosinophil cationic protein (ECP) and the GSTT1 null genotype was significantly associated with the augmented IL-5 response. Diesel exhaust alone also augmented markers of non-allergic inflammation and monocyte chemotactic protein (MCP)-1 and suppressed activity of macrophages and myeloid dendritic cells. Inhalation of diesel exhaust at environmentally relevant concentrations augments allergen-induced allergic inflammation in the lower airways of atopic individuals and the GSTT1 genotype enhances this response. Allergic individuals are a susceptible population to the deleterious airway effects of diesel exhaust. NCT01792232. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Innate and lymphocytic response of birch-allergic patients before and after sublingual immunotherapy.

    PubMed

    Guida, Giuseppe; Boita, Monica; Scirelli, Tiziana; Bommarito, Luisa; Heffler, Enrico; Badiu, Iuliana; Bellone, Graziella; Mietta, Sabrina; Mistrello, Gianni; Rolla, Giovanni

    2012-01-01

    Functional imbalance in Th1/Th2 cell response toward allergens is a recognized hallmark of allergic patients and a major role of dendritic cells (DCs) in redirecting T-cell phenotypes after specific immunotherapy has been suggested. This study investigates the proliferative and cytokine responses of T cells cocultured with monocyte-derived DCs (MoDCs) after allergen stimulation in birch-allergic patients compared with controls and investigates whether sublingual immunotherapy (SLIT) could change the DC-driven immune response. T cells were stimulated with the major birch pollen allergen (nBet v1) and MoDCs from eight birch-allergic patients with seasonal allergic rhinitis and eight nonallergic controls. Proliferation and cytokine production were measured before and after one course of SLIT with birch allergoid. Significantly lower levels of proinflammatory (IL-1beta, p = 0.027; IL-6, p = 0.030; TNF-alpha, p = 0.019) and Th1 (interferon gamma, p = 0.032; IL-12, p = 0.05) cytokines were measured in supernatants of T cells and MoDCs cultures from allergic patients compared with nonallergic controls. After SLIT, significant increase in IL-12 (p = 0.039), IL-1beta (p = 0.040), IL-6 (p = 0.041), TNF-α (p = 0.048), and IL-10 (p = 0.048) and significant decrease in IL-13 (p = 0.001) were observed. MoDCs/T-cell cocultures, pulsed with the specific allergen, produced lower quantities of proinflammatory and Th1 cytokines in allergic patients compared with healthy subjects, suggesting an allergen-specific impairment of natural immunity and Th1 immune response. A single course of SLIT was able to enhance allergen-specific innate immunity and to modify lymphocyte response, promoting Th1 and T-cell regulatory activity.

  17. What Characteristics Confer Proteins the Ability to Induce Allergic Responses? IgE Epitope Mapping and Comparison of the Structure of Soybean 2S Albumins and Ara h 2.

    PubMed

    Han, Youngshin; Lin, Jing; Bardina, Ludmilla; Grishina, Galina A; Lee, Chaeyoon; Seo, Won Hee; Sampson, Hugh A

    2016-05-12

    Ara h 2, a peanut 2S albumin, is associated with severe allergic reactions, but a homologous protein, soybean 2S albumin, is not recognized as an important allergen. Structural difference between these proteins might explain this clinical discrepancy. Therefore, we mapped sequential epitopes and compared the structure of Ara h 2, Soy Al 1, and Soy Al 3 (Gly m 8) to confirm whether structural differences account for the discrepancy in clinical responses to these two proteins. Commercially synthesized peptides covering the full length of Ara h 2 and two soybean 2S albumins were analyzed by peptide microarray. Sera from 10 patients with peanut and soybean allergies and seven non-atopic controls were examined. The majority of epitopes in Ara h 2 identified by microarray are consistent with those identified previously. Several regions in the 2S albumins are weakly recognized by individual sera from different patients. A comparison of allergenic epitopes on peanut and soybean proteins suggests that loop-helix type secondary structures and some amino acids with a large side chain including lone electron pair, such as arginine, glutamine, and tyrosine, makes the peptides highly recognizable by the immune system. By utilizing the peptide microarray assay, we mapped IgE epitopes of Ara h 2 and two soybean 2S albumins. The use of peptide microarray mapping and analysis of the epitope characteristics may provide critical information to access the allergenicity of food proteins.

  18. Leptin Enhances TH2 and ILC2 Responses in Allergic Airway Disease.

    PubMed

    Zheng, Handong; Zhang, Xing; Castillo, Eliseo F; Luo, Yan; Liu, Meilian; Yang, Xuexian O

    2016-10-14

    Allergic asthma and obesity are the leading health problems in the world. Many studies have shown that obesity is a risk factor of development of asthma. However, the underlying mechanism has not been well established. In this study, we demonstrate that leptin, an adipokine elevated in obese individuals, promoted proliferation and survival of pro-allergic type 2 helper T cells and group 2 innate lymphoid cells and production of type 2 cytokines, which together contribute to allergic responses. Leptin activates mTORC1, MAPK, and STAT3 pathways in TH2 cells. The effects of leptin on TH2 cell proliferation, survival, and cytokine production are dependent on the mTORC1 and MAPK pathways as revealed by specific inhibitors. In vivo, leptin-deficiency led to attenuated experimental allergic airway inflammation. Our results thus support that obesity-associated elevation of leptin contributes to the increased susceptibility of asthma via modulation of pro-allergic lymphocyte responses. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Adoptive transfer of dendritic cells isolated from helminth-infected mice enhanced T regulatory cell responses in airway allergic inflammation.

    PubMed

    Liu, J-Y; Li, L-Y; Yang, X-Z; Li, J; Zhong, G; Wang, J; Li, L-J; Ji, B; Wu, Z-Q; Liu, H; Yang, X; Liu, P-M

    2011-10-01

    Our and others' previous studies have shown that Schistosoma japonicum (SJ) infection can inhibit allergic reactions. Moreover, we found that adoptive transfer of dendritic cells (DCs) from inhibited mice showed a similar inhibitory effect on allergy, suggesting a critical role of DCs in SJ-infected mediated inhibition of allergy. In this study, we further examined the mechanism by which DCs contribute to inhibition of allergy. Our results showed that DCs from SJ-infected mice (SJDCs) produced significantly higher levels of IL-10 compared to those from naive control mice (NDCs). Adoptive transfer of SJDCs, unlike NDCs, significantly increased CD4+CD25+Foxp3+ T cells and CD4+CD25+IL-10+ T cells regulatory T-cell responses in vivo. This was correlated with significantly reduced production of IL-4 and IL-5 by CD4+ T cells, eotaxin in lung tissues and reduced airway allergic inflammation in the SJDC recipients following allergen sensitization and challenge. These data suggest that helminth infection may induce tolerogenic DCs that can inhibit the development of airway allergic inflammation through enhancing T regulatory cell responses.

  20. Responses to ragweed pollen in a pollen challenge chamber versus seasonal exposure identify allergic rhinoconjunctivitis endotypes.

    PubMed

    Jacobs, Robert L; Harper, Nathan; He, Weijing; Andrews, Charles P; Rather, Cynthia G; Ramirez, Daniel A; Ahuja, Sunil K

    2012-07-01

    The level of concordance between allergic symptoms induced on exposure to pollen in a pollen challenge chamber (PCC) versus the natural season is unknown. We sought to test the hypothesis that the symptom levels of allergic rhinoconjunctivitis elicited after out-of-season exposure to short ragweed in a PCC and during the natural season for giant ragweed pollen are highly correlated. Thirty-one ragweed-sensitive participants recorded symptoms for 15 days during the natural giant ragweed season in San Antonio, Texas. Twenty-six of these participants were challenged to short ragweed pollen in a PCC for 3 hours per day for up to 4 days. In the PCC participants were dichotomized into those in whom low versus high levels of symptoms developed slowly or rapidly (ie, slow/low vs rapid/high). Each successive exposure visit associated with a progressive increase in symptom levels that approximated those experienced during the natural season. Hierarchic clustering identified 3 endotypes: endotypes I and II reflected concordantly low (n= 7) versus high (n = 14) total symptom scores (TSSs) in both the natural season and the PCC, respectively. Accordingly, the correlation between the TSSs recorded in the natural season and in the PCC for these 21 participants was very high. Although participants with endotype III (n = 5) had greater TSSs in the natural season than in the PCC, the degree of correlation between the TSSs remained high. Our findings affirm our hypothesis, underscore the high cross-reactivity between distinct pollens, and highlight the utility of the PCC to identify novel allergy endotypes that might have contrasting mechanistic underpinnings and potentially therapeutic responses. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  1. Treatment of ovalbumin-induced experimental allergic bronchitis in rats by inhaled inhibitor of secretory phospholipase A2

    PubMed Central

    Shoseyov, D; Bibi, H; Offer, S; Schwob, O; Krimsky, M; Kleiman, M; Yedgar, S

    2005-01-01

    suppressed OVA induced early and late asthmatic reactions as expressed by bronchoconstriction, airway remodelling (histology), cysteinyl leukotriene level in BAL fluid, and production of TNFα and NO by BAL macrophages. OVA induced bronchoconstriction in sensitised non-pretreated rats was also inhibited by inhalation of HyPE either before or after the challenge. Conclusions: These findings confirm the pivotal role of sPLA2 in the pathophysiology of both the immediate allergic response and the inflammatory asthmatic process. Control of airway sPLA2 may be a new therapeutic approach to the treatment of asthma. PMID:15994250

  2. Trichuris suis ova therapy for allergic rhinitis does not affect allergen-specific cytokine responses despite a parasite-specific cytokine response.

    PubMed

    Bourke, C D; Mutapi, F; Nausch, N; Photiou, D M F; Poulsen, L K; Kristensen, B; Arnved, J; Rønborg, S; Roepstorff, A; Thamsborg, S; Kapel, C; Melbye, M; Bager, P

    2012-11-01

    Parasitic helminths have been shown to reduce inflammation in most experimental models of allergic disease, and this effect is mediated via cytokine responses. However, in humans, the effects of controlled helminth infection on cytokine responses during allergy have not been studied. The aim was to investigate whether infection with the nematode parasite Trichuris suis alters systemic cytokine levels, cellular cytokine responses to parasite antigens and pollen allergens and/or the cytokine profile of allergic individuals. In a randomized double-blinded placebo-controlled clinical trial (UMIN trial registry, Registration no. R000001298, Trial ID UMIN000001070, URL: http://www.umin.ac.jp/map/english), adults with grass pollen-induced allergic rhinitis received three weekly doses of 2500 Trichuris suis ova (n = 45) or placebo (n = 44) over 6 months. IFN-γ, TNF-α, IL-4, IL-5, IL-10 and IL-13 were quantified via cytometric bead array in plasma. Cytokines, including active TGF-β, were also quantified in supernatants from peripheral blood mononuclear cells cultured with parasite antigens or pollen allergens before, during and after the grass pollen season for a sub-cohort of randomized participants (T. suis ova-treated, n = 12, Placebo-treated, n = 10). Helminth infection induced a Th2-polarized cytokine response comprising elevated plasma IL-5 and parasite-specific IL-4, IL-5 and IL-13, and a global shift in the profile of systemic cytokine responses. Infection also elicited high levels of the regulatory cytokine IL-10 in response to T. suis antigens. Despite increased production of T. suis-specific cytokines in T. suis ova-treated participants, allergen-specific cytokine responses during the grass pollen season and the global profile of PBMC cytokine responses were not affected by T. suis ova treatment. This study suggests that cytokines induced by Trichuris suis ova treatment do not alter allergic reactivity to pollen during the peak of allergic rhinitis

  3. Programmed Death Ligand 1 Promotes Early-Life Chlamydia Respiratory Infection-Induced Severe Allergic Airway Disease.

    PubMed

    Starkey, Malcolm R; Nguyen, Duc H; Brown, Alexandra C; Essilfie, Ama-Tawiah; Kim, Richard Y; Yagita, Hideo; Horvat, Jay C; Hansbro, Philip M

    2016-04-01

    Chlamydia infections are frequent causes of respiratory illness, particularly pneumonia in infants, and are linked to permanent reductions in lung function and the induction of asthma. However, the immune responses that protect against early-life infection and the mechanisms that lead to chronic lung disease are incompletely understood. In the current study, we investigated the role of programmed death (PD)-1 and its ligands PD-L1 and PD-L2 in promoting early-life Chlamydia respiratory infection, and infection-induced airway hyperresponsiveness (AHR) and severe allergic airway disease in later life. Infection increased PD-1 and PD-L1, but not PD-L2, mRNA expression in the lung. Flow cytometric analysis of whole lung homogenates identified monocytes, dendritic cells, CD4(+), and CD8(+) T cells as major sources of PD-1 and PD-L1. Inhibition of PD-1 and PD-L1, but not PD-L2, during infection ablated infection-induced AHR in later life. Given that PD-L1 was the most highly up-regulated and its targeting prevented infection-induced AHR, subsequent analyses focused on this ligand. Inhibition of PD-L1 had no effect on Chlamydia load but suppressed infection-induced pulmonary inflammation. Infection decreased the levels of the IL-13 decoy receptor in the lung, which were restored to baseline levels by inhibition of PD-L1. Finally, inhibition of PD-L1 during infection prevented subsequent infection-induced severe allergic airways disease in later life by decreasing IL-13 levels, Gob-5 expression, mucus production, and AHR. Thus, early-life Chlamydia respiratory infection-induced PD-L1 promotes severe inflammation during infection, permanent reductions in lung function, and the development of more severe allergic airway disease in later life.

  4. Down-Regulation of miR-146a Expression Induces Allergic Conjunctivitis in Mice by Increasing TSLP Level

    PubMed Central

    Sun, Wen; Sheng, Yan; Chen, Jie; Xu, Dong; Gu, Yangshun

    2015-01-01

    Background Pollen is the most common aeroallergen to cause conjunctivitis. In this study, we established a short ragweed (SRW)-induced mouse model of allergic conjunctivitis (AC) and aimed to explore the potential role of miR-146a and its downstream molecules in the development of ocular allergic inflammation. Material/Methods The mouse model of challenge pollen was used for in vivo study. The culture model of primary human limbal epithelium (HLE) exposed to lipopolysaccharide (LPS) was performed for in vitro research. The numbers of eosinophils and total inflammatory cells were examined using Giemsa staining. The expression of mRNA and miR-146a was determined by quantitative RT-PCR, and protein production was evaluated by Western blotting. Results In vivo of mice, pollen challenge induced conjunctiva inflammatory response indicated by increased number of eosinophils and total inflammatory cells. Interestingly, pollen significantly attenuated miR-146a expression while it enhanced expression of thymic stromal lymphopoietin (TSLP) and its downstream molecules, including TSLP receptor (TSLPR)/ OX40 ligand (OX40L)/CD11C. In vitro of HCE, downregulation effect of miR-146a expression induced by LPS was reversed by Bay treatment, an inhibitor for nuclear factor kappa B (NF-κB), and LPS-induced cell inflammation is mediated by miR-146a-TSLP/TSLPR/OX40L/CD11C signaling pathway. This was further demonstrated by overexpression of miR-146a in mouse abrogated pollen-triggered conjunctiva inflammatory reaction as well as pollen-induced activity of TSLP/TSLPR/OX40L/CD11C signaling. Conclusions Down-regulation of miR-146a expression induces allergic conjunctivitis in mice by increasing TSLP level. PMID:26166175

  5. Attenuated allergic inflammatory response in the lungs during lactation.

    PubMed

    Ochoa-Amaya, Julieta E; Marino, Larissa P; Tobaruela, Carla N; Namazu, Lilian B; Calefi, Atilio S; Margatho, Rafael; Gonçalves, Vagner; Queiroz-Hazarbassanov, Nicolle; Klein, Marianne O; Palermo-Neto, João; de Oliveira, Ana P Ligeiro; de O Massoco, Cristina; Felicio, Luciano F

    2016-04-15

    To evaluate the influence of lactation on lung immune function during allergic inflammation. Female rats, 60-90days old, were divided into three groups: no lung allergy virgins (N group), ovalbumin (OVA)-immunized and sensitized virgins (V group), and OVA-immunized and sensitized lactating females (L group). On gestation day (GD) 10, all animals in L group received a subcutaneous injection of 0.1mg·kg(-1) OVA plus aluminum hydroxide. On GD17, the L group received a subcutaneous booster injection of 10μg OVA plus 10mg aluminum hydroxide. After 7days, an inhalatory challenge with 1% OVA was given in 15min sessions for 3 consecutive days. Animals from the V group received the same treatment, meaning both tests and time intervals between OVA treatment and inhalatory challenge were the same as in the L group. Twenty-four hours after the last inhalation session, the animals were euthanized, and the following tests were performed: total and differential bronchoalveolar lavage (BAL) and femoral marrow lavage (FML) leukocyte counts, quantification of tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ) levels in BAL fluid, and quantification of plasma corticosterone and catecholamine levels. The L group presented lower BAL total leukocyte counts and decreases in the number of eosinophils and macrophages compared with the V group. They also expressed higher BAL IFN-γ and lower plasma corticosterone levels. Plasma norepinephrine levels were higher in the L group than in the N and V groups. Lactating female rats presented less intense allergic lung inflammation. Our findings suggest that lactation may protect females from asthmatic crises. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Update on montelukast and its role in the treatment of asthma, allergic rhinitis and exercise-induced bronchoconstriction.

    PubMed

    Storms, William

    2007-09-01

    Montelukast sodium (Singulair, Merck and Co., Inc., Whitehouse Station, NJ) is a selective and orally-active leukotriene receptor antagonist with demonstrated effectiveness for treating allergic asthma and allergic rhinitis in adults and children as young as 12 months of age for allergic asthma and 6 months of age for allergic rhinitis. It was recently approved in the US for prevention of exercise-induced bronchoconstriction in patients who are > or = 15 years of age. This paper updates a prior review of the data on the clinical efficacy of montelukast published in this journal.

  7. Protective Effect of an Antibody against Specific Extracellular Domain of TLR2 on Agonists-Driven Inflammatory and Allergic Response

    PubMed Central

    Guo, Tianwu; Cai, Jun; Peng, Yanxia; Zhang, Lifang; Lan, Qiaofen; Chen, Yanwen; Liao, Huanjin; Xie, Tong; Wu, Ping; Pan, Qingjun

    2016-01-01

    Specific blocking strategies of TLR2-mediated inflammatory signaling and hypersensitivity reactions may offer novel therapeutic strategies to prevent a variety of diseases. In this study, we investigated the blocking effects of a new anti-TLR2 antibody anti-T20 against a 20 mer peptide T20 located in the extracellular specific domain of mouse TLR2. In addition, the effects of the anti-T20 in vitro, measuring the inhibition of the IL-6 and TNF-α production in response to PGN, LTA, and Pam3CSK4-stimulated RAW264.7 cells, were determined. In vivo, the effects of anti-T20 on a lethal anaphylaxis model using PGN-challenged OVA allergic mice, including the rectal temperature and mortality, and serum levels of TNF-α, IL-6, and LTC4 were assayed. The results showed that anti-T20 specifically bound to TLR2 and significantly inhibited PGN, LTA, and Pam3CSK4-driven TNF-α and IL-6 production by RAW264.7 cells. Also, anti-T20 protected OVA allergic mice from PGN-induced lethal anaphylaxis, and the serum levels of TNF-α, IL-6, and LTC4 of anti-T20 treated PGN-challenged OVA allergic mice were decreased as compared to isotype control of anti-T20 treated mice. In summary, this study produced a new antibody against the specific extracellular domain of TLR2 which has protective effect on TLR2 agonists-driven inflammatory and allergic response. PMID:27213155

  8. Glycation of clinically relevant chickpea allergen attenuates its allergic immune response in Balb/c mice.

    PubMed

    Gupta, Rinkesh Kumar; Raghav, Alok; Sharma, Akanksha; Gupta, Kriti; Neelabh; Mandal, Payal; Tripathi, Anurag; Ansari, Irfan Ahmad; Das, Mukul; Dwivedi, Premendra D

    2017-11-15

    Glycation of food allergens may alter their immunological behaviour. We sought to investigate the impact of glycation on the allergenicity of a food protein. Herein, a chickpea protein (≈26kDa) was purified and characterized as lectin. Further, glycation of this purified protein was carried out. Thereafter, allergic behaviour of this glycated protein was compared with its native form, using various allergic parameters in Balb/c mice. The reduced allergenicity of glycated protein was observed as lesser allergic phenotypes, reduced serum immunoglobulins and allergic mediators, lower mast cells and eosinophil counts, lower protein expressions of Th2 cytokines and associated transcription factors. In addition, more Th1 and less Th2 cytokine production in exposed splenocyte, were evident in the glycated protein treated mice as compared to its native protein treatment. Thus, glycation of the chickpea allergen attenuated the sensitizing potential and allergic responses in Balb/c mice significantly and could also be clinically beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Tregs and allergic disease

    PubMed Central

    Robinson, Douglas S.; Larché, Mark; Durham, Stephen R.

    2004-01-01

    Allergic diseases such as asthma, rhinitis, and eczema are increasing in prevalence and affect up to 15% of populations in Westernized countries. The description of Tregs as T cells that prevent development of autoimmune disease led to considerable interest in whether these Tregs were also normally involved in prevention of sensitization to allergens and whether it might be possible to manipulate Tregs for the therapy of allergic disease. Current data suggest that Th2 responses to allergens are normally suppressed by both CD4+CD25+ Tregs and IL-10 Tregs. Furthermore, suppression by these subsets is decreased in allergic individuals. In animal models, Tregs could be induced by high- or low-dose inhaled antigen, and prior induction of such Tregs prevented subsequent development of allergen sensitization and airway inflammation in inhaled challenge models. For many years, allergen-injection immunotherapy has been used for the therapy of allergic disease, and this treatment may induce IL-10 Tregs, leading to both suppression of Th2 responses and a switch from IgE to IgG4 antibody production. Improvements in allergen immunotherapy, such as peptide therapy, and greater understanding of the biology of Tregs hold great promise for the treatment and prevention of allergic disease. PMID:15545986

  10. EFFECT OF SHORT TERM DIESEL EXHAUST EXPOSURE ON NASAL RESPONSES TO INFLUENZA IN ALLERGIC RHINITICS.

    EPA Science Inventory

    Introduction: Recently published data suggest that diesel exhaust (DE) has special impact on allergic inflammation, suppressing Th1 and augmenting Th2 responses to allergen via oxidant stress effects on airway cells. Exposures to particulate air pollutants including DE are also a...

  11. SYNTHETIC COPPER-CONTAINING PARTICLES ENHANCE ALLERGIC AIRWAY RESPONSES IN MICE

    EPA Science Inventory

    SYNTHETIC COPPER-CONTAINING PARTICLES ENHANCE ALLERGIC AIRWAY RESPONSES IN MICE. SH Gavett, MI Gilmour, and N Haykal-Coates. National Health and Environ Effects Research Lab, USEPA, Res Triangle Park, NC USA
    Respiratory morbidity and mortality associated with increases in ...

  12. EFFECTS OF PARTICLES FROM TWO GERMAN CITIES ON ALLERGIC RESPONSES IN MICE

    EPA Science Inventory

    EFFECTS OF PARTICLES FROM TWO GERMAN CITIES ON ALLERGIC RESPONSES IN MICE. S. H. Gavett, L. R. Bishop, N. Haykal-Coates, J. Heinrich*, and M. I. Gilmour. Experimental Toxicology Division, ORD/NHEERL, U.S. EPA, Research Triangle Park, NC, USA, *GSF, Neuherberg, Germany.
    Chi...

  13. Oral Administration of N-Acetyl-D-Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    DTIC Science & Technology

    2007-03-01

    AD_________________ Award Number: DAMD17-03-1-0004 TITLE: Oral Administration of N- Acetyl -D...Oral Administration of N- Acetyl -D-Glucosamine Polymer Particles Down-Regulates 5a. CONTRACT NUMBER Airway Allergic Responses...TERMS Childhood asthma, N- acetyl -D-glucosamine polymer, IL-12, GATA-3, T-bet, macrophages, airway hyperreactivity 16. SECURITY CLASSIFICATION OF

  14. EFFECT OF SHORT TERM DIESEL EXHAUST EXPOSURE ON NASAL RESPONSES TO INFLUENZA IN ALLERGIC RHINITICS.

    EPA Science Inventory

    Introduction: Recently published data suggest that diesel exhaust (DE) has special impact on allergic inflammation, suppressing Th1 and augmenting Th2 responses to allergen via oxidant stress effects on airway cells. Exposures to particulate air pollutants including DE are also a...

  15. SYNTHETIC COPPER-CONTAINING PARTICLES ENHANCE ALLERGIC AIRWAY RESPONSES IN MICE

    EPA Science Inventory

    SYNTHETIC COPPER-CONTAINING PARTICLES ENHANCE ALLERGIC AIRWAY RESPONSES IN MICE. SH Gavett, MI Gilmour, and N Haykal-Coates. National Health and Environ Effects Research Lab, USEPA, Res Triangle Park, NC USA
    Respiratory morbidity and mortality associated with increases in ...

  16. EFFECTS OF PARTICLES FROM TWO GERMAN CITIES ON ALLERGIC RESPONSES IN MICE

    EPA Science Inventory

    EFFECTS OF PARTICLES FROM TWO GERMAN CITIES ON ALLERGIC RESPONSES IN MICE. S. H. Gavett, L. R. Bishop, N. Haykal-Coates, J. Heinrich*, and M. I. Gilmour. Experimental Toxicology Division, ORD/NHEERL, U.S. EPA, Research Triangle Park, NC, USA, *GSF, Neuherberg, Germany.
    Chi...

  17. Cockroach protease allergen induces allergic airway inflammation via epithelial cell activation

    PubMed Central

    Kale, Sagar L.; Agrawal, Komal; Gaur, Shailendra Nath; Arora, Naveen

    2017-01-01

    Protease allergens are known to enhance allergic inflammation but their exact role in initiation of allergic reactions at mucosal surfaces still remains elusive. This study was aimed at deciphering the role of serine protease activity of Per a 10, a major cockroach allergen in initiation of allergic inflammation at mucosal surfaces. We demonstrate that Per a 10 increases epithelial permeability by disruption of tight junction proteins, ZO-1 and occludin, and enhances the migration of Monocyte derived dendritic cell precursors towards epithelial layer as exhibited by trans-well studies. Per a 10 exposure also leads to secretion of IL-33, TSLP and intracellular Ca2+ dependent increase in ATP levels. Further, in vivo experiments revealed that Per a 10 administration in mice elevated allergic inflammatory parameters along with high levels of IL-33, TSLP, IL-1α and uric acid in the mice lungs. We next demonstrated that Per a 10 cleaves CD23 (low affinity IgE receptor) from the surface of PBMCs and purified B cells and CD25 (IL-2 receptor) from the surface of PBMCs and purified T cells in an activity dependent manner, which might favour Th2 responses. In conclusion, protease activity of Per a 10 plays a significant role in initiation of allergic airway inflammation at the mucosal surfaces. PMID:28198394

  18. Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses.

    PubMed

    Radauer-Preiml, Isabella; Andosch, Ancuela; Hawranek, Thomas; Luetz-Meindl, Ursula; Wiederstein, Markus; Horejs-Hoeck, Jutta; Himly, Martin; Boyles, Matthew; Duschl, Albert

    2016-01-16

    Engineered nanomaterials (ENMs) interact with different biomolecules as soon as they are in contact, resulting in the formation of a biomolecule 'corona'. Hence, the 'corona' defines the biological identity of the ENMs and could affect the response of the immune system to ENM exposure. With up to 40 % of the world population suffering from type I allergy, a possible modulation of allergen effects by binding to ENMs is highly relevant with respect to work place and consumer safety. Therefore, the aim of this present study was to gain an insight into the interactions of gold nanoparticles with different seasonally and perennially occurring outdoor and indoor allergens. Gold nanoparticles (AuNPs) were conjugated with the major allergens of birch pollen (Bet v 1), timothy grass pollen (Phl p 5) and house dust mite (Der p 1). The AuNP-allergen conjugates were characterized by means of TEM negative staining, dynamic light scattering (DLS), z-potential measurements and hyperspectral imaging. Furthermore, 3D models were constructed, based on the characterization data, to visualize the interaction between the allergens and the AuNPs surface. Differences in the activation of human basophil cells derived from birch/grass pollen- and house dust mite-allergic patients in response to free allergen and AuNP-allergen conjugates were determined using the basophil activation assay (BAT). Potential allergen corona replacement during BAT was controlled for using Western blotting. The protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was assessed, by an enzymatic activity assay and a cellular assay pertaining to lung type II alveolar epithelial cell tight junction integrity. The formation of a stable corona was found for all three allergens used. Our data suggest, that depending on the allergen, different effects are observed after binding to ENMs, including enhanced allergic responses against Der p 1 and also, for some patients, against Bet v 1. Moreover elevated

  19. Toll-like receptor-induced expression of epithelial cytokine receptors on haemopoietic progenitors is altered in allergic asthma.

    PubMed

    Tworek, D; Heroux, D; O'Byrne, S N; Mitchell, P; O'Byrne, P M; Denburg, J A

    2017-07-01

    Haemopoietic progenitor cells (HPC) migrate to sites of allergic inflammation where, upon stimulation with epithelial cytokines, they produce Th2 cytokines and differentiate into mature eosinophils and basophils. They also express Toll-like receptors (TLR) involved in antimicrobial responses. The objective of this study was to compare TLR expression on peripheral blood HPC and TLR-induced responses, in particular changes in epithelial cytokine receptors, in healthy and asthmatic subjects at baseline and following allergen challenge. Ten healthy and 11 allergic asthmatic subjects were studied. HPC-enriched cell populations were stimulated with TLR-2, TLR-4 or TLR-9 ligands. TLR expression by circulating HPC and interleukin (IL)-25 (IL-17RB), IL-33 (ST2) and thymic stromal lymphopoietin receptor (TSLPR) expression after TLR ligation were examined by flow cytometry at baseline and, in asthmatics, following allergen challenge. The effects of dexamethasone (Dex) on TLR-induced responses were also assessed. Asthmatics had significantly lower circulating HPC expressing TLR-2 and TLR-9 with a similar trend for TLR-4. TLR-4 stimulation of HPC yielded higher numbers of TSLPR+ cells in asthmatics compared with healthy subjects. A similar trend was seen for TLR-9 ligation, an effect further augmented by allergen inhalation. Allergen challenge also enhanced TLR-induced ST2 expression on HPC. Treatment with Dex in vitro increased TLR-4-induced TSLPR expression but had no effect on other epithelial cytokine receptors. These data demonstrate an interaction between allergen and TLR ligand exposure in asthmatics. Allergen inhalation augments the TLR-induced inflammatory response by HPC, possibly leading to increased "in situ haemopoiesis" through up-regulation of TSLPR. These findings show that HPC may be a part of the pro-inflammatory cascade in pathogen-induced asthma exacerbation through their increased responsiveness to TLR stimulation. © 2017 John Wiley & Sons Ltd.

  20. Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7.

    PubMed

    Hammad, Hamida; Lambrecht, Bart N; Pochard, Pierre; Gosset, Philippe; Marquillies, Philippe; Tonnel, André-Bernard; Pestel, Joël

    2002-08-01

    In rodents, airway dendritic cells (DCs) capture inhaled Ag, undergo maturation, and migrate to the draining mediastinal lymph nodes (MLN) to initiate the Ag-specific T cell response. However, the role of human DCs in the pathogenesis of the Th2 cell-mediated disease asthma remains to be clarified. Here, by using SCID mice engrafted with T cells from either house dust mite (HDM)-allergic patients or healthy donors, we show that DCs pulsed with Der p 1, one of the major allergens of HDM, and injected intratracheally into naive animals migrated into the MLN. In the MLN, Der p 1-pulsed DCs from allergic patients induced the proliferation of IL-4-producing CD4(+) T cells, whereas those from healthy donors induced IFN-gamma-secreting cells. In reconstituted human PBMC-reconstituted SCID mice primed with pulsed DCs from allergic patients, repeated exposure to aerosols of HDM induced 1) a strong pulmonary inflammatory reaction rich in T cells and eosinophils, 2) an increase in IL-4 and IL-5 production in the lung lavage fluid, and 3) increased IgE production compared with that in mice primed with unpulsed DCs. All these effects were reduced following in vivo neutralization of the CCR7 ligand secondary lymphoid tissue chemokine. These data in human PBMC-reconstituted SCID mice show that monocyte-derived DCs might play a key role in the pathogenesis of the pulmonary allergic response by inducing Th2 effector function following migration to the MLN.

  1. Inhibitory effects of l-theanine on airway inflammation in ovalbumin-induced allergic asthma.

    PubMed

    Hwang, Yong Pil; Jin, Sun Woo; Choi, Jae Ho; Choi, Chul Yung; Kim, Hyung Gyun; Kim, Se Jong; Kim, Yongan; Lee, Kyung Jin; Chung, Young Chul; Jeong, Hye Gwang

    2017-01-01

    l-theanine, a water-soluble amino acid isolated from green tea (Camellia sinensis), has anti-inflammatory activity, antioxidative properties, and hepatoprotective effects. However, the anti-allergic effect of l-theanine and its underlying molecular mechanisms have not been elucidated. In this study, we investigated the protective effects of l-theanine on asthmatic responses, particularly airway inflammation and oxidative stress modulation in an ovalbumin (OVA)-induced murine model of asthma. Treatment with l-theanine dramatically attenuated the extensive trafficking of inflammatory cells into bronchoalveolar lavage fluid (BALF). Histological studies revealed that l-theanine significantly inhibited OVA-induced mucus production and inflammatory cell infiltration in the respiratory tract and blood vessels. l-theanine administration also significantly decreased the production of IgE, monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-4, IL-5, IL-13, tumor necrosis factor-alpha (TNF-α), and interferon-gamma in BALF. The lung weight decreased with l-theanine administration. l-theanine also markedly attenuated the OVA-induced generation of reactive oxygen species and the activation of nuclear factor kappa B (NF-κB) and matrix metalloprotease-9 in BALF. Moreover, l-theanine reduced the TNF-α-induced NF-κB activation in A549 cells. Together, these results suggest that l-theanine alleviates airway inflammation in asthma, which likely occurs via the oxidative stress-responsive NF-κB pathway, highlighting its potential as a useful therapeutic agent for asthma management.

  2. Dietary Compound Kaempferol Inhibits Airway Thickening Induced by Allergic Reaction in a Bovine Serum Albumin-Induced Model of Asthma.

    PubMed

    Shin, Daekeun; Park, Sin-Hye; Choi, Yean-Jung; Kim, Yun-Ho; Antika, Lucia Dwi; Habibah, Nurina Umy; Kang, Min-Kyung; Kang, Young-Hee

    2015-12-16

    Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an in vitro model of dinitrophenylated bovine serum albumin (DNP-BSA)-sensitized rat basophilic leukemia (RBL-2H3) mast cells and an in vivo model of BSA-challenged asthmatic mice. Nontoxic kaempferol at 10-20 μM suppressed β-hexosaminidase release and cyclooxygenase 2 (COX2)-mediated production of prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) in sensitized mast cells. Oral administration of ≤20 mg/kg kaempferol blocked bovine serum albumin (BSA) inhalation-induced epithelial cell excrescence and smooth muscle hypertrophy by attenuating the induction of COX2 and the formation of PGD2 and PGF2α, together with reducing the anti-α-smooth muscle actin (α-SMA) expression in mouse airways. Kaempferol deterred the antigen-induced mast cell activation of cytosolic phospholipase A2 (cPLA2) responsive to protein kinase Cμ (PKCμ) and extracellular signal-regulated kinase (ERK). Furthermore, the antigen-challenged activation of Syk-phospholipase Cγ (PLCγ) pathway was dampened in kaempferol-supplemented mast cells. These results demonstrated that kaempferol inhibited airway wall thickening through disturbing Syk-PLCγ signaling and PKCμ-ERK-cPLA2-COX2 signaling in antigen-exposed mast cells. Thus, kaempferol may be a potent anti-allergic compound targeting allergic asthma typical of airway hyperplasia and hypertrophy.

  3. Ingestion of milk containing the Dp2 peptide, a dust mite allergen, protects mice from allergic airway inflammation and hyper-responsiveness

    PubMed Central

    2013-01-01

    Background Allergen-specific immunotherapy has been demonstrated to have potential for the treatment of allergic diseases. Transgenic animals are currently the best available bioreactors to produce recombinant proteins, which can be secreted in milk. It has not been clearly demonstrated whether milk from transgenic animals expressing recombinant allergens has immunomodulatory effects on allergic asthma. Methods We aimed to determine whether the oral administration of milk containing a mite allergen can down-regulate allergen-specific airway inflammation. Transgenic CD-1 mice that express a recombinant group 2 allergen from Dermatophagoides pteronyssinus (Dp2) in their milk were generated using an embryonic gene-microinjection technique. Mouse pups were fed transgenic Dp2-containing milk or wild-type milk. Subsequently, these mice were sensitized and challenged with Dp2 to induce allergic airway inflammation. Results Upon sensitization and challenge, mice fed transgenic Dp2 milk had decreased T-helper 2 (Th2) and increased T-helper 1 (Th1) responses in the airway compared with mice fed wild-type milk. Moreover, pre-treatment with transgenic Dp2 milk attenuated airway inflammation and decreased airway hyper-responsiveness. Conclusions This study provides new evidence that oral administration of transgenic milk containing the Dp2 allergen down-regulated and moderately protected against allergic airway inflammation. Milk from transgenic animals expressing allergens may have potential use in the prevention of allergic asthma. PMID:23763898

  4. SUPPRESSION OF ALLERGIC IMMUNE RESPONSES TO HOUSE DUST MITE (HDM) IN RATS EXPOSED TO 2,3,7,8-TCDD

    EPA Science Inventory

    Abstract
    Exposure to various xenobiotics, including oxidant gases, diesel exhaust and certain pesticides, has been reported to exacerbate pulmonary allergic hypersensitivity responses. Increased lymphocyte proliferative responses to parasite antigens or increased antibody r...

  5. SUPPRESSION OF ALLERGIC IMMUNE RESPONSES TO HOUSE DUST MITE (HDM) IN RATS EXPOSED TO 2,3,7,8-TCDD

    EPA Science Inventory

    Abstract
    Exposure to various xenobiotics, including oxidant gases, diesel exhaust and certain pesticides, has been reported to exacerbate pulmonary allergic hypersensitivity responses. Increased lymphocyte proliferative responses to parasite antigens or increased antibody r...

  6. NEUROTROPHINS OPERATE AT DIFFERENT LEVELS OF THE RESPIRATORY TRACT IN RESPONSES OF ALLERGIC MICE TO DIESEL EXHAUST PARTICLES (DEP)

    EPA Science Inventory

    Neurotrophins including NGF, NT-3, and BDNF are linked to allergic responses. Treatment with anti-p75 (pan-neurotrophin receptor) prevents the increase in airflow obstruction caused by exposure to DEP in ovalbumin (OVA)-allergic mice (Toxicol Sci 84(S1):91, 2005). Our present goa...

  7. NEUROTROPHINS OPERATE AT DIFFERENT LEVELS OF THE RESPIRATORY TRACT IN RESPONSES OF ALLERGIC MICE TO DIESEL EXHAUST PARTICLES (DEP)

    EPA Science Inventory

    Neurotrophins including NGF, NT-3, and BDNF are linked to allergic responses. Treatment with anti-p75 (pan-neurotrophin receptor) prevents the increase in airflow obstruction caused by exposure to DEP in ovalbumin (OVA)-allergic mice (Toxicol Sci 84(S1):91, 2005). Our present goa...

  8. [Apoptosis in allergic disease].

    PubMed

    Rojas Ramos, E; Martínez Jiménez, N E; Martínez Aguilar, N E; Garfias Becerra, J

    2000-01-01

    Apoptosis (cell programmed death) it is a mechanism that implicate a physiological suicide, to keep the cellular homeostasis in big amount of tissues. Fas (APO-1; CD95) system is one of the most important cellular responsible via to induce apoptosis on different tissues. Eosinophillia on peripheral blood and tissues are the main characteristics on allergic like asthma. Eosinophil apoptosis is upper regulated in those diseases by IL-5 y GM-CSF. Corticoids, teophyllin and some macrolids have been used like apoptosis inductors on eosinophills, these could be a novel mechanism to promote a better solution on inflammatory allergic diseases.

  9. Inhibitory Effect of Pycnogenol® on Airway Inflammation in Ovalbumin-Induced Allergic Rhinitis

    PubMed Central

    Günel, Ceren; Demirci, Buket; Eryılmaz, Aylin; Yılmaz, Mustafa; Meteoğlu, İbrahim; Ömürlü, İmran Kurt; Başal, Yeşim

    2016-01-01

    Background The supplement Pycnogenol® (PYC) has been used for the treatment of several chronic diseases including allergic rhinitis (AR). However, the in vivo effects on allergic inflammation have not been identified to date. Aims To investigate the treatment results of PYC on allergic inflammation in a rat model of allergic rhinitis. Study Design Animal experimentation. Methods Allergic rhinitis was stimulated in 42 rats by intraperitoneal sensitization and intranasal challenge with Ovalbumin. The animals were divided into six subgroups: healthy controls, AR group, AR group treated with corticosteroid (dexamethasone 1 mg/kg; CS+AR), healthy rats group that were given only PYC of 10 mg/kg (PYC10), AR group treated with PYC of 3mg/kg (PYC3+AR), and AR group treated with PYC of 10 mg/kg (PYC10+AR). Interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10), and OVA-specific immunoglobulin E (Ig-E) levels of serum were measured. Histopathological changes in nasal mucosa and expression of tumor necrosis factor-α (TNF-α) and IL-1β were evaluated. Results The levels of the IL-4 were significantly decreased in the PYC3+AR, PYC10+AR and CS+AR groups compared with the AR group (p=0.002, p<0.001, p=0.006). The production of the IFN-γ was significantly decreased in the PYC3+AR and PYC10+AR groups compared with the AR group (p=0.013, p=0.001). The administration of PYC to allergic rats suppressed the elevated IL-10 production, especially in the PYC3+AR group (p=0.006). Mucosal edema was significantly decreased respectively after treatment at dose 3 mg/kg and 10 mg/kg PYC (both, p<0.001). The mucosal expression of TNF-α has significantly decreased in the PYC3+AR and PYC10+AR groups (p=0.005, p<0.001), while the IL-1β expression significantly decreased in the CS+AR, PYC3+AR, and PYC10+AR groups (p<0.001, p=0.003, p=0.001). Conclusion PYC has multiple suppressive effects on allergic response. Thus, PYC may be used as a supplementary agent in allergic response

  10. Factor XI deficiency enhances the pulmonary allergic response to house dust mite in mice independent of factor XII.

    PubMed

    Stroo, Ingrid; Yang, Jack; de Boer, J Daan; Roelofs, Joris J T H; van 't Veer, Cornelis; Castellino, Francis J; Zeerleder, Sacha; van der Poll, Tom

    2017-02-01

    Asthma is associated with activation of coagulation in the airways. The coagulation system can be initiated via the extrinsic tissue factor-dependent pathway or via the intrinsic pathway, in which the central player factor XI (FXI) can be either activated via active factor XII (FXIIa) or via thrombin. We aimed to determine the role of the intrinsic coagulation system and its possible route of activation in allergic lung inflammation induced by the clinically relevant human allergen house dust mite (HDM). Wild-type (WT), FXI knockout (KO), and FXII KO mice were subjected to repeated exposure to HDM via the airways, and inflammatory responses were compared. FXI KO mice showed increased influx of eosinophils into lung tissue, accompanied by elevated local levels of the main eosinophil chemoattractant eotaxin. Although gross lung pathology and airway mucus production did not differ between groups, FXI KO mice displayed an impaired endothelial/epithelial barrier function, as reflected by elevated levels of total protein and IgM in bronchoalveolar lavage fluid. FXI KO mice had a stronger systemic IgE response with an almost completely absent HDM-specific IgG1 response. The phenotype of FXII KO mice was, except for a higher HDM-specific IgG1 response, similar to that of WT mice. In conclusion, FXI attenuates part of the allergic response to repeated administration of HDM in the airways by a mechanism that is independent of activation via FXII.

  11. Experimental extrinsic allergic alveolitis and pulmonary angiitis induced by intratracheal or intravenous challenge with Corynebacterium parvum in sensitized rats.

    PubMed Central

    Yi, E. S.; Lee, H.; Suh, Y. K.; Tang, W.; Qi, M.; Yin, S.; Remick, D. G.; Ulich, T. R.

    1996-01-01

    Extrinsic allergic alveolitis and pulmonary sarcoidosis are granulomatous diseases of the lung for which clinical presentation and anatomic site of granuloma formation differ. Extrinsic allergic alveolitis is caused by inhaled antigens, whereas the nature and source of the inciting antigen in sarcoidosis is unknown. To test the hypothesis that the route via which antigen is introduced to the lung contributes to the clinicopathological presentation of pulmonary granulomatous disease, rats immunized with intravenous (i.v.) Corynebacterium parvum were challenged after 2 weeks with either intratracheal (i.t.) or i.v. C. parvum. The granulomatous inflammation elicited by i.t. challenge predominantly involved alveolar spaces and histologically simulated extrinsic allergic alveolitis. In contrast, the inflammation induced by i.v. challenge was characterized by granulomatous angiitis and interstitial inflammation simulating sarcoidosis. Elevations of leukocyte counts and TNF levels in bronchoalveolar fluid, which reflect inflammation in the intra-alveolar compartment, were much more pronounced after i.t. than after i.v. challenge. Tumor necrosis factor, interleukin-6, CC chemokine, CXC chemokine, and adhesion molecule mRNA and protein expression occurred in each model. In conclusion, i.t. or i.v. challenge with C. parvum in sensitized rats caused pulmonary granulomatous inflammation that was histologically similar to human extrinsic allergic alveolitis and sarcoidosis, respectively. Although the soluble and cellular mediators of granulomatous inflammation were qualitatively similar in both disease models, the differing anatomic source of the same antigenic challenge was responsible for differing clinicopathological presentations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 11 Figure 13 Figure 12 Figure 14 PMID:8863677

  12. Suppression of allergic and inflammatory responses by essential oils derived from herbal plants and citrus fruits.

    PubMed

    Mitoshi, Mai; Kuriyama, Isoko; Nakayama, Hiroto; Miyazato, Hironari; Sugimoto, Keiichiro; Kobayashi, Yuko; Jippo, Tomoko; Kuramochi, Kouji; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2014-06-01

    The aim of the present study was to investigate the biological activity of 20 essential oils (EOs) derived from herbal plants and citrus fruits. The in vitro anti-allergic and anti-inflammatory activities of these oils were investigated, and the EO which was found to have the strongest activity of the 20 EOs examined, was investigated further to identify its components and bioactive compounds. The in vitro anti-allergic activity was determined by measuring the release of β-hexosaminidase from rat basophilic leukemia (RBL-2H3) cells treated with the calcium ionophore, A23187. The in vitro anti-inflammatory activity was determined by measuring the production of tumor necrosis factor-α (TNF-α) in RAW264.7 murine macrophages treated with lipopolysaccharide. Among the EOs examined, lemongrass [Cymbopogon citratus (DC.) Stapf] elicited the strongest anti-allergic and anti-inflammatory effects. A principal component of this EO is citral (3,7-dimethyl-2,6-octadien-1-al) (74.5%), a mixture of the stereoisomers, geranial (trans-citral, 40.16%) and neral (cis-citral, 34.24%), as determined by chromatography-mass spectrometry analysis. The activities of citral and geranial are similar to those of lemongrass EO. These compounds elicited significant in vivo anti-allergic and anti-inflammatory effects, suppressing an immunoglobulin E (IgE)-induced passive cutaneous anaphylactic reaction in mice and a 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory mouse ear edema, respectively. Our data demonstrate that lemongrass EO and its constituents, citral and geranial, may be a therapeutic candidate for allergic and inflammatory diseases.

  13. Allergic Non-Asthmatic Adults Have Regional Pulmonary Responses to Segmental Allergen Challenge

    PubMed Central

    Kelly, Vanessa J.; Winkler, Tilo; Venegas, Jose G.; Kone, Mamary; Hamilos, Daniel L.; Afshar, Roshi; Cho, Josalyn L.; Luster, Andrew D.; Medoff, Benjamin D.; Harris, R. Scott

    2015-01-01

    Background Allergic non-asthmatic (ANA) adults experience upper airway symptoms of allergic disease such as rhinorrhea, congestion and sneezing without symptoms of asthma. The aim of this study was to utilize PET-CT functional imaging to determine whether allergen challenge elicits a pulmonary response in ANA subjects or whether their allergic disease is truly isolated to the upper airways. Methods In 6 ANA subjects, bronchoalveolar lavages (BAL) were performed at baseline and 24h after instillation of an allergen and a diluent in separate lung lobes. After instillation (10h), functional imaging was performed to quantify and compare regional perfusion, ventilation, fractional gas content (Fgas), and glucose uptake rate (Ki) between the baseline, diluent and allergen lobes. BAL cell counts were also compared. Results In ANA subjects, compared to the baseline and diluent lobes, perfusion and ventilation were significantly lower in the allergen lobe (median [inter-quartile range], baseline vs. diluent vs. allergen: Mean-normalized perfusion; 0.87 [0.85–0.97] vs. 0.90 [0.86–0.98] vs. 0.59 [0.55–0.67]; p<0.05. Mean-normalized ventilation 0.89 [0.88–0.98] vs. 0.95 [0.89–1.02] vs. 0.63 [0.52–0.67], p<0.05). In contrast, no significant differences were found in Fgas between baseline, diluent and allergen lobes or in Ki. Total cell counts, eosinophil and neutrophil cell counts (cells/ml BAL) were significantly greater in the allergen lobe compared to the baseline lobe (all P<0.05). Conclusions Despite having no clinical symptoms of a lower airway allergic response (cough and wheeze) allergic non-asthmatic subjects have a pulmonary response to allergen exposure which manifests as reduced ventilation and perfusion. PMID:26640951

  14. Allergic Rhinitis

    PubMed Central

    Gibson, Margaret M.; Day, James H.

    1982-01-01

    Allergic rhinitis is the result of an immediate hypersensitivity immune response of the nasal mucosa to one or more allergens. Clinical features may be indistinguishable from non-allergic rhinitis. Accurate diagnosis demands specialized laboratory investigations, meticulous history and careful physical examination. Management includes control of allergen and irritant exposures, pharmacotherapy and immunotherapy. Recent development of intranasal corticosteroid aerosols has significantly reduced morbidity. Modified allergens for immunotherapy show promise but require further study. PMID:21286562

  15. Recruited Alveolar Macrophages, in Response to Airway Epithelial–Derived Monocyte Chemoattractant Protein 1/CCL2, Regulate Airway Inflammation and Remodeling in Allergic Asthma

    PubMed Central

    Lee, Yong Gyu; Jeong, Jong Jin; Nyenhuis, Sharmilee; Berdyshev, Evgeny; Chung, Sangwoon; Ranjan, Ravi; Karpurapu, Manjula; Deng, Jing; Qian, Feng; Kelly, Elizabeth A. B.; Jarjour, Nizar N.; Ackerman, Steven J.; Natarajan, Viswanathan; Christman, John W.

    2015-01-01

    Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. PMID:25360868

  16. In vivo regulation of the allergic response by the IL-4 receptor alpha chain immunoreceptor tyrosine-based inhibitory motif.

    PubMed

    Tachdjian, Raffi; Al Khatib, Shadi; Schwinglshackl, Andreas; Kim, Hong Sook; Chen, Andrew; Blasioli, Julie; Mathias, Clinton; Kim, Hye Young; Umetsu, Dale T; Oettgen, Hans C; Chatila, Talal A

    2010-05-01

    Signaling by IL-4 and IL-13 through the IL-4 receptor alpha chain (IL-4Ralpha) plays a critical role in the pathology of allergic diseases. The IL-4Ralpha is endowed with an immunoreceptor tyrosine-based inhibitory motif (ITIM) centered on tyrosine 709 (Y709) in the cytoplasmic domain that binds a number of regulatory phosphatases. The function of the ITIM in the in vivo regulation of IL-4 receptor signaling remains unknown. We sought to determine the in vivo function of the IL-4Ralpha ITIM by using mice in which the ITIM was inactivated by mutagenesis of the tyrosine Y709 residue into phenylalanine (F709). F709 ITIM mutant mice were derived by means of knock-in mutagenesis. Activation of intracellular signaling cascades by IL-4 and IL-13 was assessed by means of intracellular staining of phosphorylated signaling intermediates and gene expression analysis. In vivo responses to allergic sensitization were assessed by using models of allergic airway inflammation. The F709 mutation increased signal transducer and activator of transcription 6 phosphorylation by IL-4 and, disproportionately, by IL-13. This was associated with exaggerated T(H)2 polarization, enhanced alternative macrophage activation by IL-13, augmented basal and antigen-induced IgE responses, and intensified allergen-induced eosinophilic airway inflammation and hyperreactivity. These results point to a physiologic negative regulatory role for the Y709 ITIM in signaling through IL-4Ralpha, especially by IL-13. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  17. Orally administered conjugated linoleic acid ameliorates allergic dermatitis induced by repeated applications of oxazolone in mice.

    PubMed

    Nakanishi, Tomonori; Tokunaga, Yuzo; Yamasaki, Masao; Erickson, Laurie; Kawahara, Satoshi

    2016-12-01

    Conjugated linoleic acid (CLA) is one of the constituents of animal products with possible health benefits such as anti-carcinogenic and anti-obesity effects. In this study, we investigated the immunomodulatory effects of CLA using a mouse model of allergic dermatitis. Mice were orally administered either a CLA mixture containing equal amounts of 9c, 11 t-CLA and 10 t, 12c-CLA, or high linoleic acid safflower oil, and allergic dermatitis was induced on the ear by repeated topical applications of oxazolone. Oral administration of the CLA mixture but not the high linoleic safflower oil attenuated the symptoms of allergic dermatitis in both ear weights and clinical scores. This effect was associated with decreased levels of ear interleukin-4 (IL-4) and plasma immunoglobulin E. The immunomodulatory effects of the CLA isomers were compared by an in vitro cytokine production assay. The results showed that 9c, 11 t-CLA, the most predominant isomer in animal products, significantly inhibited IL-4 and interferon-γ production from mouse splenocytes with similar potency to 10 t, 12c-CLA. These findings suggest that CLA, a constituent of animal products, has a potentially beneficial effect for amelioration of allergic dermatitis. © 2016 Japanese Society of Animal Science.

  18. Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: a comparison of field exposure studies

    PubMed Central

    2012-01-01

    Background Increases in ambient particulate matter of aerodynamic diameter of 2.5 μm (PM2.5) are associated with asthma morbidity and mortality. The overall objective of this study was to test the hypothesis that PM2.5 derived from two distinct urban U.S. communities would induce variable responses to aggravate airway symptoms during experimental asthma. Methods We used a mobile laboratory to conduct community-based inhalation exposures to laboratory rats with ovalbumin-induced allergic airways disease. In Grand Rapids exposures were conducted within 60 m of a major roadway, whereas the Detroit was located in an industrial area more than 400 m from roadways. Immediately after nasal allergen challenge, Brown Norway rats were exposed by whole body inhalation to either concentrated air particles (CAPs) or filtered air for 8 h (7:00 AM - 3:00 PM). Both ambient and concentrated PM2.5 was assessed for mass, size fractionation, and major component analyses, and trace element content. Sixteen hours after exposures, bronchoalveolar lavage fluid (BALF) and lung lobes were collected and evaluated for airway inflammatory and mucus responses. Results Similar CAPs mass concentrations were generated in Detroit (542 μg/m3) and Grand Rapids (519 μg/m3). Exposure to CAPs at either site had no effects in lungs of non-allergic rats. In contrast, asthmatic rats had 200% increases in airway mucus and had more BALF neutrophils (250% increase), eosinophils (90%), and total protein (300%) compared to controls. Exposure to Detroit CAPs enhanced all allergic inflammatory endpoints by 30-100%, whereas inhalation of Grand Rapids CAPs suppressed all allergic responses by 50%. Detroit CAPs were characterized by high sulfate, smaller sized particles and were derived from local combustion sources. Conversely Grand Rapids CAPs were derived primarily from motor vehicle sources. Conclusions Despite inhalation exposure to the same mass concentration of urban PM2.5, disparate health

  19. Effect of the oral thrombin inhibitor dabigatran on allergic lung inflammation induced by repeated house dust mite administration in mice.

    PubMed

    de Boer, Johannes D; Berkhout, Lea C; de Stoppelaar, Sacha F; Yang, Jack; Ottenhoff, Roelof; Meijers, Joost C M; Roelofs, Joris J T H; van't Veer, Cornelis; van der Poll, Tom

    2015-10-15

    Asthma is a chronic disease of the airways; asthma patients are hampered by recurrent symptoms of dyspnoea and wheezing caused by bronchial obstruction. Most asthma patients suffer from chronic allergic lung inflammation triggered by allergens such as house dust mite (HDM). Coagulation activation in the pulmonary compartment is currently recognized as a feature of allergic lung inflammation, and data suggest that coagulation proteases further drive inflammatory mechanisms. Here, we tested whether treatment with the oral thrombin inhibitor dabigatran attenuates allergic lung inflammation in a recently developed HDM-based murine asthma model. Mice were fed dabigatran (10 mg/g) or placebo chow during a 3-wk HDM airway exposure model. Dabigatran treatment caused systemic thrombin inhibitory activity corresponding with dabigatran levels reported in human trials. Surprisingly, dabigatran did not lead to inhibition of HDM-evoked coagulation activation in the lung as measured by levels of thrombin-antithrombin complexes and D-dimer. Repeated HDM administration caused an influx of eosinophils and neutrophils into the lungs, mucus production in the airways, and a T helper 2 response, as reflected by a rise in bronchoalveolar IL-4 and IL-5 levels and a systemic rise in IgE and HDM-IgG1. Dabigatran modestly improved HDM-induced lung pathology (P < 0.05) and decreased IL-4 levels (P < 0.01), without influencing other HDM-induced responses. Considering the limited effects of dabigatran in spite of adequate plasma levels, these results argue against clinical evaluation of dabigatran in patients with asthma.

  20. Selective, tight-binding inhibitors of integrin alpha4beta1 that inhibit allergic airway responses.

    PubMed

    Lin, K c; Ateeq, H S; Hsiung, S H; Chong, L T; Zimmerman, C N; Castro, A; Lee, W C; Hammond, C E; Kalkunte, S; Chen, L L; Pepinsky, R B; Leone, D R; Sprague, A G; Abraham, W M; Gill, A; Lobb, R R; Adams, S P

    1999-03-11

    Integrin alpha4beta1 mediates leukocyte recruitment, activation, mediator release, and apoptosis inhibition, and it plays a central role in inflammatory pathophysiology. High-affinity, selective inhibitors of alpha4beta1, based on the Leu-Asp-Val (LDV) sequence from the alternatively spliced connecting segment-1 (CS-1) peptide of cellular fibronectin, are described that employ a novel N-terminal peptide "cap" strategy. One inhibitor, BIO-1211, was approximately 10(6)-fold more potent than the starting peptide and exhibited tight-binding properties (koff = 1.4 x 10(-4) s-1, KD = 70 pM), a remarkable finding for a noncovalent, small-molecule inhibitor of a protein receptor. BIO-1211 was also 200-fold selective for the activated form of alpha4beta1, and it stimulated expression of ligand-induced epitopes on the integrin beta1 subunit, a property consistent with occupancy of the receptor's ligand-binding site. Pretreatment of allergic sheep with a 3-mg nebulized dose of BIO-1211 inhibited early and late airway responses following antigen challenge and prevented development of nonspecific airway hyperresponsiveness to carbachol. These results show that highly selective and potent small-molecule antagonists can be identified to integrins with primary specificity for peptide domains other than Arg-Gly-Asp (RGD); they confirm the generality of integrins as small molecule targets; and they validate alpha4beta1 as a therapeutic target for asthma.

  1. Stress and anxiety effects on positive skin test responses in young adults with allergic rhinitis.

    PubMed

    Heffner, Kathi L; Kiecolt-Glaser, Janice K; Glaser, Ronald; Malarkey, William B; Marshall, Gailen D

    2014-07-01

    Anxiety and psychological stress affect allergy-related immune function. How these relations influence the evaluations of patients with allergic rhinitis is unknown. To examine whether anxiety and stress exposure affect skin prick test (SPT) responses to common allergens for which patients with atopy showed no prior positive SPT response. Patients with allergic rhinitis, evidenced by clinical history and SPT results, were admitted twice to a hospital research unit for 4 hours. In a crossover design, SPT wheals were assessed before and after the Trier Social Stress Test and then the following morning; for comparison, SPT wheals were assessed before and after a laboratory session without a stressor. Analyses focused on wheal responses for common allergens that tested negative (wheal size <3 mm larger than saline) from SPTs performed at multiple baseline assessments. After the Trier Social Stress Test, more anxious patients with atopy had a higher incidence of positive SPT reactions to antigens that previously tested negative. Anxiety was unrelated to positive SPT incidence under nonstressful conditions. Based on clinical symptom reports, newly positive SPT reactions after the stressor were apparently corrections of previously false-negative SPT reactions. The SPT wheal responses for allergens previously testing negative were enhanced after a stressor. Histamine (positive control) or saline (negative control) SPT responses were not affected. A laboratory stressor affected allergen SPT responses in more anxious patients with allergic rhinitis. In addition to clinical history, assessment of anxiety and current stress at the time of the SPT may provide valuable information about a patient's allergic status and aid in clinical decision making. Copyright © 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Distinct modulation of allergic T cell responses by subcutaneous versus sublingual allergen-specific immunotherapy

    PubMed Central

    Schulten, Véronique; Tripple, Victoria; Aasbjerg, Kristian; Backer, Vibeke; Lund, Gitte; Würtzen, Peter Adler; Sette, Alessandro; Peters, Bjoern

    2015-01-01

    Background Allergen-specific immunotherapy is the only curative treatment for type I allergy. It can be administered subcutaneously (SCIT) or sublingually (SLIT). The clinical efficacy of these two treatment modalities appears to be similar, but potential differences in the immunological mechanisms involved have not been fully explored. Objective To compare changes in the allergen-specific T cell response induced by subcutaneous versus sublingual administration of allergen-specific immunotherapy (AIT). Methods Grass pollen allergic patients were randomized into groups receiving either SCIT injections, or SLIT tablets or neither. PBMC were tested for Timothy grass (TG)-specific cytokine production by ELISPOT after in vitro expansion with TG peptide pools. Phenotypic characterization of cytokine producing cells was performed by FACS. Results In the SCIT group, decreased IL-5 production was observed starting 10 months after treatment was commenced. At 24 months, T cell responses showed IL-5 levels significantly below the before treatment baseline. No significant reduction of IL-5 was observed in the SLIT or untreated group. However, a significant transient increase in IL-10 production after 10 months of treatment compared to baseline was detected in both treatment groups. FACS analysis revealed that IL-10 production was associated with CD4+ T cells that also produced IFNγ, and therefore may be associated with an IL-10-secreting type 1 cell phenotype. Conclusion and clinical relevance The most dominant immunological changes on a cellular level was a decrease in IL-5 in the SCIT group and a significant, transient increase of IL-10 observed after 10 months of treatment in both treated groups. The distinct routes of AIT administration may induce different immune-modulatory mechanisms at the cellular level. PMID:26436865

  3. IL-17-induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease.

    PubMed

    Mukherjee, Sumanta; Lindell, Dennis M; Berlin, Aaron A; Morris, Susan B; Shanley, Thomas P; Hershenson, Marc B; Lukacs, Nicholas W

    2011-07-01

    Severe respiratory syncytial virus (RSV) infections are characterized by airway epithelial cell damage, mucus hypersecretion, and Th2 cytokine production. Less is known about the role of IL-17. We observed increased IL-6 and IL-17 levels in tracheal aspirate samples from severely ill infants with RSV infection. In a mouse model of RSV infection, time-dependent increases in pulmonary IL-6, IL-23, and IL-17 expression were observed. Neutralization of IL-17 during infection and observations from IL-17(-/-) knockout mice resulted in significant inhibition of mucus production during RSV infection. RSV-infected animals treated with anti-IL-17 had reduced inflammation and decreased viral load, compared with control antibody-treated mice. Blocking IL-17 during infection resulted in significantly increased RSV-specific CD8 T cells. Factors associated with CD8 cytotoxic T lymphocytes, T-bet, IFN-γ, eomesodermin, and granzyme B were significantly up-regulated after IL-17 blockade. Additionally, in vitro analyses suggest that IL-17 directly inhibits T-bet, eomesodermin, and IFN-γ in CD8 T cells. The role of IL-17 was also investigated in RSV-induced exacerbation of allergic airway responses, in which neutralization of IL-17 led to a significant decrease in the exacerbated disease, including reduced mucus production and Th2 cytokines, with decreased viral proteins. Taken together, our data demonstrate that IL-17 plays a pathogenic role during RSV infections.

  4. Pollen-induced antigen presentation by mesenchymal stem cells and T cells from allergic rhinitis.

    PubMed

    Desai, Mauli B; Gavrilova, Tatyana; Liu, Jianjun; Patel, Shyam A; Kartan, Saritha; Greco, Steven J; Capitle, Eugenio; Rameshwar, Pranela

    2013-10-01

    Mesenchymal stem cells (MSCs) are promising cellular suppressor of inflammation. This function of MSCs is partly due to their licensing by inflammatory mediators. In cases with reduced inflammation, MSCs could become immune-enhancer cells. MSCs can suppress the inflammatory response of antigen-challenged lymphocytes from allergic asthma. Although allergic rhinitis (AR) is also an inflammatory response, it is unclear if MSCs can exert similar suppression. This study investigated the immune effects (suppressor vs enhancer) of MSCs on allergen-stimulated lymphocytes from AR subjects (grass or weed allergy). In contrast to subjects with allergic asthma, MSCs caused a significant (P<0.05) increase in the proliferation of antigen-challenged lymphocytes from AR subjects. The increase in lymphocyte proliferation was caused by the MSCs presenting the allergens to CD4(+) T cells (antigen-presenting cells (APCs)). This correlated with increased production of inflammatory cytokines from T cells, and increased expressions of major histocompatibility complex (MHC)-II and CD86 on MSCs. The specificity of APC function was demonstrated in APC assay using MSCs that were knocked down for the master regulator of MHC-II transcription, CIITA. The difference in the effects of MSCs on allergic asthma and AR could not be explained by the sensitivity to the allergen, based on skin tests. Thus, we deduced that the contrasting immune effects of MSCs for antigen-challenged lymphocytes on AR and allergic asthma could be disease specific. It is possible that the enhanced inflammation from asthma might be required to license the MSCs to become suppressor cells. This study underscores the need for robust preclinical studies to effectively translate MSCs for any inflammatory disorder.

  5. Development of Allergic Conjunctivitis Induced by House Dust Mite Extract From Dermatophagoides pteronyssinus.

    PubMed

    Lee, Young Ji; Han, Soo Jung; Lee, Hun; Kim, Jin Sun; Seo, Kyoung Yul

    2016-04-01

    The purpose of this study was to develop a murine model of allergic conjunctivitis induced by house dust mite (HDM) extract from Dermatophagoides pteronyssinus, a major allergen in humans. Forty BALB/c mice were divided into five groups, immunized with placebo, ovalbumin (10 μg), or HDM extract following a schedule. Twenty minutes after topical challenge, mice were examined clinically. Material collected from mice was used for measuring total and specific IgE, antigen-specific lymphocyte proliferation, and supernatant cytokine levels and for conjunctival histopathology and flow cytometric analysis of conjunctival cells. This murine model showed similar clinical signs and laboratory findings to human allergy and the ovalbumin-induced allergic conjunctivitis model. Total IgE levels and conjunctival infiltration of mast cells and eosinophils in immunized mice were significantly higher than in the control group. Cervical lymphocyte proliferation was increased in antigen-stimulated cultures in immunized mice, concomitant with significantly higher IL-4 and IL-5 levels in the culture supernatant. The proportion of conjunctival CD4+ T cells expressing the ST2 receptor was increased, and conjunctival CD4+ST2+ T cells exhibited an increase in intracellular IL-5. House dust mite extract successfully induced allergic conjunctivitis in BALB/c mice. Ten micrograms of HDM extract was the optimal dose for systemic immunization in this model. This murine model is suitable for further studies on HDM-induced allergic conjunctivitis, and the data show that conjunctival CD4+ T cells expressing ST2 may play an important role in IL-5 secretion, recruiting eosinophils into conjunctiva on ocular allergen challenge.

  6. Extrinsic allergic alveolitis.

    PubMed

    Ismail, Tengku; McSharry, Charles; Boyd, Gavin

    2006-05-01

    Extrinsic allergic alveolitis (also known as hypersensitivity pneumonitis) is caused by repeated inhalation of mainly organic antigens by sensitized subjects. This induces a hypersensitivity response in the distal bronchioles and alveoli and subjects may present clinically with a variety of symptoms. The aims of this review are to describe the current concepts of the immunological response, the diverse clinical presentation of this disease, the relevant investigations and management, and areas for future studies.

  7. Phenotypic comparison of allergic airway responses to house dust mite in three rat strains.

    PubMed

    Singh, Pramila; Daniels, Mary; Winsett, Darrell W; Richards, Judy; Doerfler, Donald; Hatch, Gary; Adler, Kenneth B; Gilmour, M Ian

    2003-04-01

    Brown Norway (BN) rats develop a robust response to antigens in the lung, characterized by a large increase in allergen-specific immune function and pulmonary eosinophilia. The objective of this study was to investigate alternative models by determining whether other rat strains could be sensitized to house dust mite (HDM) antigen and whether the allergic disease process could be worsened with repeated allergen exposure. In general, BN rats sensitized by either subcutaneous or intratracheal routes exhibited increased pulmonary allergy compared with Sprague-Dawley (SD) and Lewis (L) rats. Multiple intratracheal allergen exposures incrementally increased HDM-specific immune function in BN rats but progressively decreased eosinophil recruitment and markers of lung injury. SD rats had more moderate responses, whereas L rats were relatively unresponsive. Because BN rats developed stronger clinical hallmarks of allergic asthma under various immunization regimes compared with SD and L rats, we conclude that the BN is the most appropriate strain for studying allergic asthma-like responses in rats. Phenotypic differences in response to HDM were associated with differences in the Th1/Th2 cytokine balance and antioxidant capacity.

  8. Studies on bronchial hyperreactivity, allergic responsiveness, and asthma in rural and urban children of the highlands of Papua New Guinea.

    PubMed

    Turner, K J; Dowse, G K; Stewart, G A; Alpers, M P

    1986-04-01

    The prevalence of asthma and allergic responsiveness in rural and urban children of the highlands of Papua New Guinea was studied. Bronchial provocation studies with histamine demonstrated significant bronchial hyperreactivity in 0.5% (1 in 195) rural and 1.7% (1 in 59) urban children, rates which were significantly lower than those observed in corresponding adult populations (7%). Urban children demonstrated a higher incidence of skin test reactivity toward Dermatophagoides pteronyssinus, Aspergillus fumigatus, and dog dander than did the rural children. However, there were no significant differences between these populations with regard to total serum IgE levels, the degree of parasitism as judged by stool examination, or allergic responses to Ascaris suum, plantain, and coffee bean husk. A more detailed study demonstrated age- and sex-related differences in total IgE and mite-specific RAST scores in the rural but not the urban population. These data suggest an active suppression of the capacity of children to mount an IgE response to environmental allergens such as the mite manifesting itself as low asthma prevalence. The data also indicate that, although the underlying defect of bronchial hyperreactivity in asthma may be genetically inherited, it is not revealed until the lung has received an allergen-induced inflammatory insult.

  9. Cutting Edge: Drebrin-Regulated Actin Dynamics Regulate IgE-Dependent Mast Cell Activation and Allergic Responses.

    PubMed

    Law, Mankit; Lee, YongChan; Morales, J Luis; Ning, Gang; Huang, Weishan; Pabon, Jonathan; Kannan, Arun K; Jeong, Ah-Reum; Wood, Amie; Carter, Chavez; Mohinta, Sonia; Song, Jihong; August, Avery

    2015-07-15

    Mast cells play critical roles in allergic responses. Calcium signaling controls the function of these cells, and a role for actin in regulating calcium influx into cells has been suggested. We have previously identified the actin reorganizing protein Drebrin as a target of the immunosuppressant 3,5-bistrifluoromethyl pyrazole, which inhibits calcium influx into cells. In this study, we show that Drebrin(-/-) mice exhibit reduced IgE-mediated histamine release and passive systemic anaphylaxis, and Drebrin(-/-) mast cells also exhibit defects in FcεRI-mediated degranulation. Drebrin(-/-) mast cells exhibit defects in actin cytoskeleton organization and calcium responses downstream of the FcεRI, and agents that relieve actin reorganization rescue mast cell FcεRI-induced degranulation. Our results indicate that Drebrin regulates the actin cytoskeleton and calcium responses in mast cells, thus regulating mast cell function in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Der p 1-pulsed myeloid and plasmacytoid dendritic cells from house dust mite-sensitized allergic patients dysregulate the T cell response.

    PubMed

    Charbonnier, Anne-Sophie; Hammad, Hamida; Gosset, Philippe; Stewart, Geoffrey A; Alkan, Sefik; Tonnel, André-Bernard; Pestel, Joël

    2003-01-01

    Although reports suggest that dendritic cells (DC) are involved in the allergic reaction characterized by a T helper cell type 2 (Th2) profile, the role of myeloid (M-DC) and plasmacytoid DC (P-DC), controlling the balance Th1/Th2, remains unknown. Here, we showed that in Dermatophagoides pteronyssinus (Dpt)-sensitized allergic patients and in healthy donors, M-DC displayed a higher capacity to capture Der p 1, a major allergen of Dpt, than did P-DC. However, Der p 1-pulsed M-DC from healthy subjects overexpressed CD80 and secreted interleukin (IL)-10, whereas M-DC from allergic patients did not. In contrast, with Der p 1-pulsed P-DC from both groups, no increase in human leukocyte antigen-DR, CD80, and CD86 and no IL-10 secretion were detected. When cocultured with allogeneic naive CD4(+) T cells from healthy donors, Der p 1-pulsed M-DC from allergic patients favored a Th1 profile [interferon (IFN)-gamma(high)/IL-4(low)] and Der p 1-pulsed P-DC, a Th2 profile (IFN-gamma(low)/IL-4(high)). In healthy donors, no T cell polarization (IFN-gamma(low)/IL-4(low)) was induced by Der p 1-pulsed M-DC or P-DC, but in response to Der p 1-pulsed M-DC, T cells secreted IL-10. The neutralization of IL-10 produced by Der p 1-pulsed M-DC from healthy donors led to an inhibition of IL-10 production by T cells and a polarization toward a type 1. Thus, IL-10 produced by M-DC might be an essential mediator controlling the balance between tolerance and allergic status. In addition, P-DC could contribute to the steady state in healthy donors or to the development of a Th2 response in allergic donors.

  11. Sesamin attenuates mast cell-mediated allergic responses by suppressing the activation of p38 and nuclear factor-κB.

    PubMed

    Li, Liang Chang; Piao, Hong Mei; Zheng, Ming Yu; Lin, Zhen Hua; Li, Guangzhao; Yan, Guang Hai

    2016-01-01

    Establishing therapeutic agents for the treatment of allergic diseases is an important focus of human health research. Sesamin, a lignan in sesame oil, exhibits a diverse range of pharmacological properties. However, to the best of our knowledge, the effect of sesamin on mast cell‑mediated allergic responses has not yet been investigated. Thus, the aim of the present study was to investigate the effect of sesamin on mast cell‑mediated allergic responses and the underlying mechanisms by which it produces this effect. In rats, oral administration of sesamin inhibited passive cutaneous anaphylaxis. Sesamin exposure attenuated immunoglobulin E‑induced histamine release from rat peritoneal mast cells, which was indicated to be mediated by the modulation of intracellular calcium. In human mast cells, sesamin reduced the stimulatory effects of phorbol 12‑myristate 13‑acetate and calcium ionophore A23187 on the production and secretion of pro‑inflammatory cytokines, including tumor necrosis factor‑α and interleukin‑6. The inhibitory effect of sesamin on pro‑inflammatory cytokine production was dependent on nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) and p38 mitogen‑activated protein kinase (MAPK). The present study demonstrates that sesamin inhibits mast cell‑derived inflammatory allergic reactions by blocking histamine release, and pro‑inflammatory cytokine production and secretion. In addition, the findings indicate that the effect of sesamin is mediated by its effect on p38 MAPK/NF‑κB signaling. Furthermore, the in vivo and in vitro anti‑allergic effects of sesamin reported in the present study suggest that it is a promising therapeutic agent for the treatment of inflammatory allergic diseases.

  12. DIESEL PARTICLE INSTILLATION ENHANCES INFLAMMATORY AND NEUROTROPHIN RESPONSES IN THE LUNGS OF ALLERGIC BALB/C MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airways resistance and inflammation. Antibody blockade of NGF attenuates airways resistance associated with the allergen-specific airways responses in mice. ...

  13. DIESEL PARTICLE INSTILLATION ENHANCES INFLAMMATORY AND NEUROTROPHIN RESPONSES IN THE LUNGS OF ALLERGIC BALB/C MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airways resistance and inflammation. Antibody blockade of NGF attenuates airways resistance associated with the allergen-specific airways responses in mice. ...

  14. Effects of Swimming on the Inflammatory and Redox Response in a Model of Allergic Asthma.

    PubMed

    Brüggemann, T R; Ávila, L C M; Fortkamp, B; Greiffo, F R; Bobinski, F; Mazzardo-Martins, L; Martins, D F; Duarte, M M M F; Dafre, A; Santos, A R S; Silva, M D; Souza, L F; Vieira, R P; Hizume-Kunzler, D C

    2015-06-01

    In this study we hypothesized that swimming during sensitization phase could result in a preventive effect in mice with allergic asthma. Swiss mice were divided into 4 groups: Control and Swimming (non-sensitized), OVA and OVA+Swimming (sensitized). The allergic inflammation was induced by 2 intraperitoneal injections and 4 aerosol challenges using ovalbumin. Swimming sessions were performed at high intensity over 3 weeks. 48 h after the last challenge mice were euthanized. Swimming decreased OVA-increased total IgE, IL-1, IL-4, IL-5 and IL-6 levels, as well as the number of total cells, lymphocytes and eosinophils in bronchoalveolar lavage fluid, (p<0.05). Simultaneously, swimming also increased IL-10 and glutathione levels in the Swimming and OVA+Swimming groups (p<0.05). The levels of glutathione peroxidase and catalase were increased only in the Swimming group when compared to all groups (p<0.05). 21 days of swimming resulted in an attenuation of pulmonary allergic inflammation followed by an increase of glutathione levels in the OVA group. Swimming only increased the levels of glutathione peroxidase and catalase in non-sensitized mice (p<0.05). These data suggest that the pulmonary anti-inflammatory effects produced by 3 weeks of high-intensity swimming in this model of OVA-induced asthma may be, at least partly, modulated by reduced oxidative stress and increased IL-10 production. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Oralair(®): a causal treatment for grass pollen-induced allergic rhinoconjunctivitis.

    PubMed

    Köberlein, Juliane; Mösges, Ralph

    2013-01-01

    Grass pollen-induced allergic rhinoconjunctivitis is a common disease, comprising more than just the classic symptoms of nasal obstruction, sneezing, rhinorrhea and itchy, watery eyes. Sufferers deal with severe impairments in daily life. Allergic rhinoconjunctivitis is also considered an important risk factor in the development of asthma. Allergen avoidance, medication for symptomatic treatment and allergen-specific immunotherapy are cornerstones in therapeutic management, but immunotherapy is the only available treatment that is able to affect the natural course of allergy. In recent decades, clinical trials have investigated the efficacy and safety of subcutaneous immunotherapy. To date, efforts have been made to develop more convenient routes of administration. Substantial improvement may be achieved through the application of sublingual tablets. This article discusses the development process of immunotherapy and the clinical background of the Oralair(®) (Stallergènes, Hauts-de-Seine, France) five-grass pollen tablet. Furthermore, it outlines this tablet's efficacy and safety properties.

  16. P2Y6 contributes to ovalbumin-induced allergic asthma by enhancing mast cell function in mice

    PubMed Central

    Shi, Jue-ping; Wang, Shao-ying; Chen, Li-li; Zhang, Xiao-yu; Zhao, Yi-han; Du, Bing; Jiang, Wen-zheng; Qian, Min; Ren, Hua

    2016-01-01

    Extracelluar nucleotides have been identified as regulatory factors in asthmatic pathogenesis by activating purinergic receptors. This research aimed to investigate the function of the purinergic receptor P2Y6 in mediating airway inflammation in allergic asthma. Wild-type (WT) and P2Y6-deficient mice were stimulated with ovalbumin (OVA) to construct asthmatic mouse models. Overexpression of P2Y6 and uridine 5′-diphosphate (UDP)-releasing were demonstrated in lung tissues in ovalbumin-induced asthmatic mice. The release of the cytokine IL-4, mast cell invasion, and the airway remodeling phenotypes were more severe following the application of UDP in asthmatic mice. However, P2Y6 deficiency reduced these asthmatic pathogeneticsymptoms markedly in a mouse model. In vitro, we found that P2Y6 in purified mast cells enhanced the functions of mast cells in the inflammatory response in the asthmatic process by triggering their capability for migration, cytokine secretion and granule release. Moreover, P2Y6 stimulated the function of mast cells through activation of the AKT signaling pathway. Our data provides evidence that P2Y6 contributes to allergic airway inflammation and remodeling by enhancing the functions of mast cells in ovalbumin-induced asthmatic mice. PMID:27590515

  17. Novel concept of iSALT (inducible skin-associated lymphoid tissue) in the elicitation of allergic contact dermatitis

    PubMed Central

    HONDA, Tetsuya; KABASHIMA, Kenji

    2016-01-01

    Allergic contact dermatitis (ACD) is one of the most common inflammatory skin diseases, which is classified as a delayed-type hypersensitivity immune response. The development of ACD is divided into two phases: sensitization and elicitation. In the sensitization phase, antigen-specific effector T cells are induced in the draining lymph nodes by antigen-captured cutaneous dendritic cells (DCs) that migrate from the skin. In the elicitation phase, the effector T cells are activated in the skin by antigen-captured cutaneous DCs and produce various chemical mediators, which create antigen-specific inflammation. In this review, we discuss the recent advancements in the immunological mechanisms of ACD, focusing on the mechanisms in the elicitation phase. The observations of elicitation of CHS lead to the emerging novel concept of iSALT (inducible skin-associated lymphoid tissue). PMID:26755397

  18. The beneficial properties of marine polysaccharides in alleviation of allergic responses.

    PubMed

    Vo, Thanh-Sang; Ngo, Dai-Hung; Kang, Kyong-Hwa; Jung, Won-Kyo; Kim, Se-Kwon

    2015-01-01

    Marine polysaccharides have been found as the principle component in cell wall structures of seaweeds or exoskeletons of crustaceans. Due to numerous pharmaceutical properties of marine polysaccharides such as antioxidant, anti-inflammatory, antiallergic, antitumor, antiobesity, antidiabetes, anticoagulant, antiviral, immunomodulatory, cardioprotective, and antihepatopathy activities, they have been applied in many fields of biomaterials, food, cosmetic, and pharmacology. Recently, several marine polysaccharides such alginate, porphyran, fucoidan, and chitin and its derivatives have been evidenced as downregulators of allergic responses due to enhancement of innate immune system, alteration of Th1/Th2 balance forward to Th1 cells, inhibition of IgE production, and suppression of mast cell degranulation. This contribution, therefore, focuses on antiallergic properties of marine polysaccharides and emphasizes their potential application as bioactive food ingredients as well as nutraceuticals for prevention of allergic disorders.

  19. Allergic responses and aryl hydrocarbon receptor novel pathway of mast cell activation.

    PubMed

    Sibilano, Riccardo; Pucillo, Carlo E; Gri, Giorgia

    2015-01-01

    The activation of the transcription factor aryl hydrocarbon receptor (AhR) is modulated by a wide variety of xenobiotics and ligands deriving from products of metabolism. The study of the contribution of AhR to allergic diseases has gained much interest in recent years. Here we discuss the role that environmental factors and metabolic products, particularly acting on AhR-expressing mast cells (MCs), could have in the development of local allergic/atopic response. Thus, this review will cover: a brief overview of the AhR mechanism of action in the immune system; a description of different AhR ligands and their effects to IgE-mediated MC activation in the allergic response, with particular attention to the role of IL-17; a discussion about the potential involvement of AhR in immune tolerance; and a conclusion on human diseases in which direct AhR activation of MC might have a major impact. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Allergic Potential and Immunotoxicity Induced by Topical Application of 1-Chloro-4-(Trifluoromethyl)Benzene (PCBTF) in a Murine Model

    PubMed Central

    Franko, Jennifer; Jackson, Laurel G.; Meade, B. Jean; Anderson, Stacey E.

    2011-01-01

    The purpose of the studies in this paper was to evaluate the allergic potential, immunotoxicity, and irritancy of the occupationally relevant chemical, 1-chloro-4-(trifluoromethyl)benzene, also known as parachlorobenzotrifluoride (PCBTF), following dermal exposure in a murine model. Evaluation of the sensitization potential, conducted using the local lymph node assay (LLNA) at concentrations ranging from 50% to 100%, identified a dose-dependent increase in lymphocyte proliferation with a calculated EC3 value of 53.1%. While no elevations in total or specific IgE were observed after exposure to any concentration of the chemical, significant increases in IFN-γ protein production by stimulated draining lymphoid cells were observed, indicating a T-cell-mediated response. Dermal exposure to PCBTF was not found to alter the immune response to a T-cell-dependant antigen. These results demonstrate that PCBTF has the potential to induce allergic sensitization following dermal exposure and based on LLNA results would be classified as a weak sensitizer. PMID:21747864

  1. Regulatory effect of baicalin on the imbalance of Th17/Treg responses in mice with allergic asthma.

    PubMed

    Xu, Lu; Li, Jinxia; Zhang, Yu; Zhao, Peng; Zhang, Xuemei

    2017-08-17

    Baicalin, a flavonoid compound, was isolated from traditional Chinese medicine Scutellaria baicalensis Georgi. The study aimed to explore the regulatory effect of baicalin on immunological balance of Th17/Treg responses and the possible mechanisms in mice with allergic asthma. Mice were sensitized and challenged with OVA+LPS by intranasal instillation, and were intragastrically treated with baicalin from days 22-36 after sensitization. The organ coefficient of lung was determined. Immunoglobulin E (IgE) level in serum and cytokine IL-17A, IL-6, IL-10 levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA. Histological changes in lung and airway tissues were observed by hematoxylin and eosin (H&E) and periodic acid-Schiff staining (PAS). The expressions of signal transducer and activator of transcription 3 (STAT3) and forkhead box P3 (FOXP3) in lung tissues were evaluated by immunohistochemistry and western blot methods. Baicalin obviously decreased OVA+LPS-induced organ coefficient of lung, inhibited serum IgE and BALF IL-7A and IL-6 secrection, promoted BALF IL-10 secrection in a dose-dependent manner. Histological studies demonstrated that baicalin significantly alleviated OVA+LPS-induced inflammatory responses and mucus secretion in lung and airway tissues. Immunohistochemistry and western blot studies showed that baicalin substantially suppressed STAT3 expression and promoted FOXP3 expression in lung tissues of mice. These findings suggest that baicalin effectively protects against OVA+LPS-induced allergic asthma in mice by regulating the immunological imbalance of Th17/Treg responses. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. Effect of ozone inhalation on the response to nasal challenge with antigen of allergic subjects

    SciTech Connect

    Bascom, R.; Naclerio, R.M.; Fitzgerald, T.K.; Kagey-Sobotka, A.; Proud, D. )

    1990-09-01

    The effect of oxidant inhalation on allergic illness is of interest because allergic patients often report increased respiratory symptoms during episodes of poor air quality, and epidemiologic studies demonstrate an association between increased levels of the air pollutant ozone and exacerbations of asthma. The purpose of this study was to characterize the upper respiratory response to ozone inhalation in asymptomatic, allergic subjects and to determine whether ozone pre-exposure increased the acute response to nasal challenge with antigen in these subjects. A group of 12 asymptomatic subjects with a history of allergic rhinitis were exposed in a randomized, cross-over design, at rest, on each of 2 days, separated by 2 wk, to 4 h of clean air or 0.5 ppm ozone in an environmental chamber. Following the exposure period, subjects underwent nasal challenge with four doses of antigen (1 to 1,000 PNU ragweed or grass). Symptoms were rated and nasal lavage performed after each dose. Measurement of histamine and albumin concentration and TAME-esterase activity and determination of cell counts and differentials were performed. Exposure to ozone caused significant increases in upper and lower respiratory symptoms, a mixed inflammatory cell influx with a sevenfold increase in naval lavage neutrophils, a 20-fold increase in eosinophils, and a tenfold increase in mononuclear cells, as well as an apparent sloughing of epithelial cells. There was a significant increase in nasal lavage albumin concentration on the ozone exposure day and a small increase in nasal lavage histamine concentration on both the ozone and clean air exposure days. TAME-esterase activity showed no significant increase overall, but increased at least twofold in 5 of 12 subjects.

  3. Notch ligand delta-like 4 regulates development and pathogenesis of allergic airway responses by modulating IL-2 production and Th2 immunity.

    PubMed

    Jang, Sihyug; Schaller, Matthew; Berlin, Aaron A; Lukacs, Nicholas W

    2010-11-15

    Activation of the canonical Notch pathways has been implicated in Th cell differentiation, but the role of specific Notch ligands in Th2-mediated allergic airway responses has not been completely elucidated. In this study, we show that delta-like ligand 4 (Dll4) was upregulated on dendritic cells in response to cockroach allergen. Blocking Dll4 in vivo during either the primary or secondary response enhanced allergen-induced pathogenic consequences including airway hyperresponsiveness and mucus production via increased Th2 cytokines. In vitro assays demonstrated that Dll4 regulates IL-2 in T cells from established Th2 responses as well as during primary stimulation. Notably, Dll4 blockade during the primary, but not the secondary, response increased IL-2 levels in lung and lymph node of allergic mice. The in vivo neutralization of Dll4 was associated with increased expansion and decreased apoptosis during the primary allergen sensitization. Moreover, Dll4-mediated Notch activation of T cells during primary stimulation in vitro increased apoptosis during the contraction/resting phase of the response, which could be rescued by exogenous IL-2. Consistent with the role for Dll4-mediated IL-2 regulation in overall T cell function, the frequency of IL-4-producing cells was also significantly altered by Dll4 both in vivo and in vitro. These data demonstrate a regulatory role of Dll4 both in initial Th2 differentiation and in Th2 cytokine production in established allergic responses.

  4. Patients with oral allergic syndrome to apple have intense proliferative response to BET V 1.

    PubMed

    Ciprandi, G; Fenoglio, G; Kalli, F; De Amici, M; Leonardi, S; Miraglia Del Giudice, M; Salpietro, C; La Rosa, M; Caimmi, S; Marseglia, G L

    2012-01-01

    Patients with pollen allergy may frequently present an additional food-related allergy (Oral Allergic Syndrome, OAS), as consequence of cross-reactivity between pollen allergens (mainly birch, hazelnut, alder, mugwort) and vegetable allergens. The aim of this study was to evaluate the effect on Bet v 1-induced T cell proliferation exerted by the presence of OAS in birch patients. Fourteen allergic patients were evaluated (6 males, mean age 35.8 years). All of them were monosensitized to birch and suffered from allergic rhinitis: 4 had also OAS to apple. Proliferation of peripheral mononuclear cells was evaluated using Bet v 1 and non-specific stimuli. OAS had higher proliferation than non-OAS patients. In addition, there were significant relationships between immunological and clinical parameters in OAS patients. This study evidences that OAS characterizes a more severe form of birch allergy: as OAS patients had higher SI, circulating eosinophils, and IgE levels. Thus, this study confirms the previous report and underlines the relevance of measuring recombinant birch allergen as higher values may suggest a reliable prediction of OAS.

  5. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function.

    PubMed

    van der Vlugt, L E; Obieglo, K; Ozir-Fazalalikhan, A; Sparwasser, T; Haeberlein, S; Smits, H H

    2017-04-04

    Chronic schistosome infections protect against allergic airway inflammation (AAI) via the induction of IL-10-producing splenic regulatory B (Breg) cells. Previous experiments have demonstrated that schistosome-induced pulmonary B cells can also reduce AAI, but act independently of IL-10. We have now further characterized the phenotype and inhibitory activity of these protective pulmonary B cells. We excluded a role for regulatory T (Treg) cell induction as putative AAI-protective mechanisms. Schistosome-induced B cells showed increased CD86 expression and reduced cytokine expression in response to Toll-like receptor (TLR) ligands compared with control B cells. To investigate the consequences for T cell activation we cultured ovalbumin (OVA)-pulsed, schistosome-induced B cells with OVA-specific transgenic T cells and observed less Th2 cytokine expression and T cell proliferation compared with control conditions. This suppressive effect was preserved even under optimal T cell stimulation by anti-CD3/28. Blocking of the inhibitory cytokines IL-10 or TGF-β only marginally restored Th2 cytokine induction. These data suggest that schistosome-induced pulmonary B cells are impaired in their capacity to produce cytokines to TLR ligands and to induce Th2 cytokine responses independent of their antigen-presenting function. These findings underline the presence of distinct B cell subsets with different stimulatory or inhibitory properties even if induced by the same type of helminth.

  6. The herbal medicine shoseiryu-to inhibits allergen-induced synthesis of tumour necrosis factor alpha by peripheral blood mononuclear cells in patients with perennial allergic rhinitis.

    PubMed

    Tanaka, A; Ohashi, Y; Kakinoki, Y; Washio, Y; Yamada, K; Nakai, Y; Nakano, T; Nakai, Y; Ohmoto, Y

    1998-01-01

    The herbal medicine shoseiryu-to is an effective agent in the treatment of allergic rhinitis. However, the mechanism by which it exerts its action in improving patient symptoms remains unclear. It might affect the allergen-induced TH1 and/or TH2 responses. This study investigated whether the herbal medicine could affect cytokine synthesis by peripheral blood mononuclear cells (PBMCs) in response to the major Dermatophagoides farinae (D. farinae) allergen, Der f 1. PBMCs were obtained from 15 patients with perennial allergic rhinitis due to D. farinae, and were stimulated for 96 h with 10 micrograms/ml Der f 1 in the presence or absence of 45 mg/ml shoseiryu-to. The culture supernatants were harvested to determine the synthesis of IgE, interleukin 5 (IL-5), IL-6, IL-10, interferon-gamma (IFN-gamma) and tumour necrosis factor alpha (TNF-alpha). The agent did not affect the allergen-induced synthesis of IL-5, IL-6 and IFN-gamma, but somewhat decreased the synthesis of IgE and IL-10. This study highlighted an interesting pharmacological action of shoseiryu-to to substantially inhibit the allergen-induced synthesis of TNF-alpha. Our study suggests that the shoseiryu-to may alleviate nasal symptoms in allergic rhinitis through control of the allergen-induced inflammatory process.

  7. Oroxylin A Inhibits Allergic Airway Inflammation in Ovalbumin (OVA)-Induced Asthma Murine Model.

    PubMed

    Zhou, De-Gang; Diao, Bao-Zhong; Zhou, Wen; Feng, Jia-Long

    2016-04-01

    Oroxylin A, a natural flavonoid isolated from the medicinal herb Scutellaria baicalensis Georgi, has been reported to have anti-inflammatory property. In this study, we aimed to investigate the protective effects and mechanism of oroxylin A on allergic inflammation in OVA-induced asthma murine model. BABL/c mice were sensitized and airway-challenged with OVA to induce asthma. Oroxylin A (15, 30, and 60 mg/kg) was administered by oral gavage 1 h before the OVA treatment on day 21 to 23. The results showed that oroxylin A attenuated OVA-induced lung histopathologic changes, airway hyperresponsiveness, and the number of inflammatory cells. Oroxylin A also inhibited the levels of IL-4, IL-5, IL-13, and OVA-specific IgE in BALF. Furthermore, oroxylin A significantly inhibited OVA-induced NF-κB activation. In conclusion, these results suggested that oroxylin A inhibited airway inflammation in OVA-induced asthma murine model by inhibiting NF-κB activation. These results suggested that oroxylin A was a potential therapeutic drug for treating allergic asthma.

  8. Expression of the protein serum amyloid A in response to Aspergillus fumigatus in murine models of allergic airway inflammation.

    PubMed

    Moran, Gabriel; Carcamo, Carolina; Concha, Margarita; Folch, Hugo

    2015-01-01

    Serum amyloid A (SAA) is an acute phase protein that is elevated in blood during inflammation. The role of this protein in allergic diseases of airways remains unclear. The objective of this study was to evaluate the SAA in blood, lung and bronchial cells in a murine model of bronchial hypersensitivity to Aspergillus fumigatus. To achieve this purpose, different groups of 5-month-old mice were housed in cages containing hay bedding that was contaminated with A. fumigatus and were kept in an isolation room for 16 days to allow for the induction of allergic airway inflammation. Subsequently, the mice were then exposed once again to Aspergillus spores at 0, 2, 8, 24 and 72 h, and they were bled to acquire serum and sacrificed to obtain bronchoalveolar lavage fluid (BALF) or lung tissues for analysis. SAA levels were measured in lung, serum and BALF by dot blot assay and RT-PCR (reverse transcription polymerase chain reaction). The results indicated that SAA protein levels increased in both serum and lung within 2-24h after mice were exposed to Aspergillus spores. Moreover, the SAA mRNA expression levels in the lungs and BALF cells demonstrated the same trend that was observed for the protein levels through the dot blot assay; in particular, SAA mRNA levels increased within the first hour after mice were exposed to A. fumigatus. In this allergic airway model, we conclude that A. fumigatus can induce an acute inflammatory response in the airways through the stimulation of the SAA protein, increasing its levels in serum, lung tissue and BALF samples during the early hours of exposure of mice that have been sensitised for this fungus. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  9. Celastrol suppresses allergen-induced airway inflammation in a mouse allergic asthma model.

    PubMed

    Kim, Dae Yong; Park, Jung Won; Jeoung, Dooil; Ro, Jai Youl

    2009-06-10

    Celastrol has anti-inflammatory and immunomodulatory activities, but its anti-allergic effects remain poorly understood. Therefore, we aimed to investigate the ability of celastrol to inhibit asthmatic reactions in a mouse allergic asthma model. BALB/c mice were sensitized and challenged with ovalbumin to induce asthma. We measured the recruitment of inflammatory cells into the bronchoalveolar lavage fluid or lung tissues by Diff-Quik and hematoxylin and eosin staining, respectively, goblet cell hyperplasia by periodic acid-Schiff (PAS) staining, airway hyperresponsiveness by Flexvent system, mRNA and protein expression of cytokines, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) by reverse transcriptase polymerase chain reaction and ELISA, respectively, and the activities of mitogen-activated protein (MAP) kinases and nuclear factor-kappa B (NF-kappaB) in the bronchoalveolar lavage cells and lung tissues by Western blot and electrophoretic mobility shift assay (EMSA), respectively. Celastrol reduced the total number of inflammatory cells in the bronchoalveolar lavage fluid and in peribronchial areas, and decreased the airway hyperresponsiveness, mRNA and protein expression levels for inflammatory cytokines such as interleukin (IL)-4, IL-13, TNF-alpha and IFN-gamma, and for MMPs and TIMPs, MAP kinases and NF-kappaB activities in the bronchoalveolar lavage cells and in the lung tissues increased in ovalbumin-induced allergic asthma in mice. Our data suggest that oral administration of celastrol suppresses ovalbumin-induced airway inflammation, hyperresponsiveness, and tissue remodeling by regulating the imbalance of MMP-2/-9 and TIMP-1/-2 by inflammatory cytokines via MAP kinases/NF-kappaB in inflammatory cells. Based on our findings, we suggest that celastrol may be used as a therapeutic agent for allergy-induced asthma.

  10. β-glucan curdlan induces IL-10-producing CD4+ T cells and inhibits allergic airway inflammation.

    PubMed

    Kawashima, Saki; Hirose, Koichi; Iwata, Arifumi; Takahashi, Kentaro; Ohkubo, Ayako; Tamachi, Tomohiro; Ikeda, Kei; Kagami, Shin-ichiro; Nakajima, Hiroshi

    2012-12-15

    A number of studies have suggested a correlation between a decreased incidence in infectious diseases and an increased incidence of allergic diseases, including asthma. Although several pathogen-derived products have been shown to possess therapeutic potential for allergic diseases, it remains largely unknown whether β-glucan, a cell wall component of a variety of fungi, yeasts, and bacteria, has a regulatory potential for allergic diseases. In this study, we examined the effect of curdlan, a linear β-(1-3)-glucan, on the development of allergic airway inflammation. We found that i.p. injection of curdlan significantly inhibited Ag-induced eosinophil recruitment and Th2 cytokine production in the airways. The activation of CD4(+) T cells in the presence of curdlan induced IL-10-producing CD4(+) T cells with high levels of c-Maf expression. Curdlan-induced development of IL-10-producing CD4(+) T cells required the presence of APCs and ICOS/ICOS ligand interaction. Curdlan-induced development of IL-10-producing CD4(+) T cells also required intrinsic expression of STAT6. Furthermore, the transfer of Ag-specific CD4(+) T cells that were stimulated in the presence of curdlan inhibited Ag-induced eosinophil recruitment into the airways. Taken together, these results suggest that curdlan is capable of inducing IL-10-producing CD4(+) T cells and inhibiting the development of eosinohilic airway inflammation, underscoring the therapeutic potential of curdlan for allergic diseases.

  11. Lentiviral shRNA against KCa3.1 inhibits allergic response in allergic rhinitis and suppresses mast cell activity via PI3K/AKT signaling pathway

    PubMed Central

    Lin, Hai; Zheng, Chunquan; Li, Jing; Yang, Chen; Hu, Li

    2015-01-01

    Calcium-activated potassium ion channel-3.1 (KCa3.1) plays a pivotal role in the potassium-calcium exchange involved in atopy. This study aimed to explore the impact of lentiviral-mediated shRNA silencing KCa3.1 on allergic response in a murine allergic rhinitis (AR) model. The BALB/c mice were divided into four groups: untreated AR group, negative control AR group, lentiviral KCa3.1-shRNA treated AR group and normal control group. Concentrations of ovalbumin (OVA)-specific IgE, histamine and leukotrienes C4 (LTC4) in serum, and IL-4, IL-9 and IL-17 in nasal lavage fluid (NLF) were analyzed. Goblet cells and mast cells were counted. KCa3.1 positive cells were counted after immunolabelling by immunofluorescence method. KCa3.1, Mucin 5AC (MUC5AC), and tryptase mRNA levels were determined using real-time polymerase chain reaction. Furthermore, P815 cell line was used to explore the role and mechanism of lentiviral KCa3.1-shRNA on mast cells. The results showed that LV-KCa3.1-shRNA intervention effectively attenuated allergic responses in LV-KCa3.1-shRNA treated mice. LV-KCa3.1-shRNA intervention effectively suppressed KCa3.1 levels and phosphorylation of AKT in P815 cells, leading to the downregulation of tryptase, IL-6 and IL-8 levels. LV-KCa3.1-shRNA intervention effectively attenuated the allergic responses in AR and suppressed mast cell activity by inhibiting PI3K/AKT signaling pathway. PMID:26272420

  12. Red meat allergic patients have a selective IgE response to the α-Gal glycan.

    PubMed

    Apostolovic, D; Tran, T A T; Sánchez-Vidaurre, S; Cirkovic Velickovic, T; Starkhammar, M; Hamsten, C; van Hage, M

    2015-11-01

    Galactose-α-1,3-galactose (α-Gal) is a mammalian carbohydrate with significance in a novel type of food allergy. Patients with IgE against α-Gal report severe allergic symptoms 3-6 h after consumption of red meat. We investigated whether IgE from red meat allergic patients recognizes other mammalian glycans than α-Gal or glycans from the plant kingdom and insects of importance in allergy. We found that none of the 24 red meat allergic patients investigated had an IgE antibody response against the other abundant mammalian glycan N-glycolylneuraminic acid or against cross-reactive carbohydrate determinants from plant or venom sources (nCup a 1, nArt v 1, and MUXF3). Deglycosylation of an α-Gal-containing protein, bovine thyroglobulin, significantly reduced the IgE response. In conclusion, we show that red meat allergic patients have a selective IgE response to the α-Gal glycan found in red meat. Other common glycans reactive in allergic disease are not targets of red meat allergic patients' IgE.

  13. Respiratory responses of subjects with allergic rhinitis to ozone exposure and their relationship to nonspecific airway reactivity

    SciTech Connect

    McDonnell, W.F.; Horstman, D.H.; Abdul-Salaam, S.; Raggio, L.J.; Green, J.A.

    1987-12-01

    Ozone exposure in man produces changes in respiratory function and symptoms. There is a large degree of unexplained intersubject variability in the magnitude of these responses. There is concern that individuals with chronic respiratory diseases may also be more responsive to ozone than normal individuals. The purpose of this study was to describe the responses of subjects with allergic rhinitis to ozone exposure and to compare these responses to those previously observed in normal individuals. A further purpose was to measure the association of baseline nonspecific airway reactivity with changes in lung function and respiratory symptoms following ozone exposure. A group of 26 nonasthmatic subjects with allergic rhinitis performed a bronchial inhalation challenge with histamine and subsequently underwent two hour exposures to both clean air and to 0.18 part per million ozone with alternating periods of rest and heavy exercise. The airway reactivity of this group of subjects was no greater than that of a comparable group of subjects without allergic rhinitis. The respiratory responses of these subjects to ozone exposure were similar to those previously reported for subjects without allergic rhinitis with the exception that the allergic rhinitis subjects appeared to have a modestly increased bronchoconstrictor response compared to normals. Furthermore, we observed no significant relationships between nonspecific airway reactivity and response to ozone as measured by changes in lung function or the induction of symptoms.

  14. Involvement of A1 adenosine receptors in altered vascular responses and inflammation in an allergic mouse model of asthma

    PubMed Central

    Ponnoth, Dovenia S.; Nadeem, Ahmed; Tilley, Stephen

    2010-01-01

    Poor lung function and respiratory disorders like asthma have a positive correlation with the development of adverse cardiovascular events. Increased adenosine levels are associated with lung inflammation that could lead to altered vascular responses and systemic inflammation. We hypothesized that asthmatic lung inflammation has systemic effects through A1 adenosine receptors (A1AR) and investigated the effects of aerosolized adenosine on vascular reactivity and inflammation, using A1AR knockout (A1KO) and corresponding wild-type (A1WT) mice that were divided into three experimental groups each: control (CON), allergen sensitized and challenged (SEN), and SEN + aerosolized adenosine (SEN + AD). Animals were sensitized with ragweed (200 μg ip; days 1 and 6), followed by 1% ragweed aerosol challenges (days 11 to 13). On day 14, the SEN + AD groups received one adenosine aerosol challenge (6 mg/ml) for 2 min, and aortae were collected on day 15. 5′-N-ethylcarboxamidoadenosine (NECA; nonselective adenosine analog) induced concentration-dependent aortic relaxation in the A1WT CON group, which was impaired in the A1WT SEN and SEN + AD groups. All groups of A1KO mice showed similar (no significant difference) concentration-dependent relaxation to NECA. The A1WT SEN and SEN + AD groups had a significantly higher contraction to selective A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA) compared with the CON group. Western blot data showed that aortic A1AR expression was significantly increased in WT SEN and SEN + AD mice compared with CON mice. Gene expression of ICAM-1 and IL-5 was significantly increased in allergic A1WT aorta and were undetected in the A1KO groups. A1WT allergic mice had significantly higher airway hyperresponsiveness (enhanced pause) to NECA, with adenosine aerosol further enhancing it. In conclusion, allergic A1WT mice showed altered vascular reactivity, increased airway hyperresponsiveness, and systemic inflammation. These data suggest that A1AR

  15. Effect of endocannabinoids on IgE-mediated allergic response in RBL-2H3 cells.

    PubMed

    Yoo, Jae-Myung; Sok, Dai-Eun; Kim, Mee Ree

    2013-09-01

    Recently, some endocannabinoids were reported to show anti-inflammatory and anti-allergic activities. In this respect, various arachidonoyl endocannabinoids were screened for the inhibition of allergic response in IgE-activated RBL-2H3 cells. Among arachidonoyl endocannabinoids with a low cytotoxicity, only NA-5HT remarkably inhibited the release of β-hexosaminidase (IC(50), 13.58 μM), a marker of degranulation, and tumor necrosis factor-α (IC(50), 12.52 μM), a pro-inflammatory cytokine, in IgE-activated RBL-2H3 cells. Additionally, NA-5HT markedly suppressed the formation of prostaglandin D(2) (PGD(2)) with IC(50) value of 1.27 μM and leukotriene B(4) (LTB(4)) with IC(50) value of 1.20 μM, and slightly LTC4. When effect of NA-5HT on early stage of FcεRI cascade was investigated, it significantly inhibited phosphorylation of Syk, but not Lyn. Furthermore, NA-5HT suppressed phosphorylation of PLCγ1/2 and PKCδ, related to degranulation process, as well as phosphorylation of LAT, ERK1/2, p38, JNK, Gab2, PI3K and Akt, implicated in the expression of pro-inflammatory cytokines. Relative to its effect on the late stage, NA-5HT slightly reduced phosphorylation of 5-lipoxygenase (5-LO) and cyclooxygenase-2 (COX-2). Additionally, NA-5HT significantly reduced the level of p40(phox), and partially inhibited the expression of p47(phox) and p67(phox). From these results, it is suggested that NA-5HT expresses anti-allergic action by suppressing the activation of Syk, LAT, p38, JNK, PI3K and Akt, as well as the expression of ERK1/2 and NADPH oxidase subunits. Further, a strong inhibition of PGD(2) or LTB(4) biosynthesis by NA-5HT may be an additional mechanism for its anti-allergic action. Such anti-allergic actions of NA-5HT may contribute to further information about its biological functions.

  16. Is a high-fiber diet able to influence ovalbumin-induced allergic airway inflammation in a mouse model?

    PubMed Central

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Wang, Xiaoting; Li, Jianfeng; Wang, Haibo

    2016-01-01

    Background: More recently, a large amount of experimental and clinical discovered that dietary- fiber intake would decrease the susceptibility to allergic airway disease (AAD) and respiratory inflammation. Objective: To investigate whether a fiber-intake supplement is able to influence the induction of AAD and to elucidate the interactive relationship. Methods: AAD model mice and control mice were raised on a fundamental diet with standard 4% fiber content, whereas other mice were fed a 10% fiber-content diet in the high fiber-content group, along with a 25% fiber-content diet instead in very-high fiber-content group. All experimental mice were sensitized and challenged with ovalbumin to induce allergic inflammation in both the upper and lower airways. Hallmarks of AAD were examined in terms of eosinophil infiltration and goblet cell metaplasia in subepithelial mucosa, T-helper type 1 (Th1) to Th2 skewing of the immune response. Furthermore, to elucidate the interrelations, we generated 16S ribosomal DNA from fecal samples and further validated the variation of colony composition in each group. Results: The excessive high-fiber supplement induced a promoting effect rather than a suppressive effect, including a rise in nasal rubbing and sneezing, an increase in eosinophil inflammation and goblet cell metaplasia in subepithelial mucosa, and promoted Th2 skewing of the immune response as well as the production of serum levels of ovalbumin-specific immunoglobulin E. Moreover, overconsumption of dietary fiber greatly altered the construction of bacterial flora in the intestinal tract, including an increased proportion of Firmicutes, Actinobacteria, and Proteobacteria, and a decreased proportion of Bacteroidetes. Conclusion: Our work indicated that, instead of a protecting impact, excessive fiber intake preformed a negative influence on the induction of AAD. Therefore, we suspected that an excessive supplement of dietary fiber might not be an advisable method for the

  17. Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction.

    PubMed

    Biet, F; Duez, C; Kremer, L; Marquillies, P; Amniai, L; Tonnel, A-B; Locht, C; Pestel, J

    2005-08-01

    Allergic reactions occur through the exacerbated induction of a Th2 cell type expression profile and can be prevented by agents favoring a Th1 profile. Bacillus Calmette-Guérin (BCG) is able to induce high IFN-gamma levels and has been shown to decrease experimentally induced allergy. The induction of IFN-gamma is mediated by interleukin (IL)-12 known to be secreted upon mycobacterial infections and can be enhanced by IL-18 acting in synergy with IL-12. We evaluated the ability of a recombinant BCG strain producing IL-18 (rBCG) to modify the Th2 type responses in a murine model of ovalbumin (OVA)-dependent allergic reaction. Mice were injected intraperitoneally or intranasally with OVA at days 0 and 15 and exposed to an OVA aerosol challenge at days 29, 30, 31 and 34. At days 0 and 15, two additional groups of mice received OVA together with 5 x 10(6) colony forming units of either rBCG or nonrecombinant BCG. A time-course analysis of OVA-specific immunoglobulin (Ig)E, IgG1 and IgG2a levels indicated no significant difference between the three groups of mice. However, following in vitro stimulation with OVA, lymph node cells from rBCG-treated mice produced less IL-5 and more IFN-gamma than those of mice injected with nonrecombinant BCG. In addition, 48 h after the last OVA challenge, a strong reduction of bronchoalveolar eosinophilia was found in the rBCG-injected mice compared to the nontreated or nonrecombinant BCG-treated groups. These results indicate that the production of IL-18 by rBCG may enhance the immunomodulatory properties of BCG that suppress pulmonary Th2 responses and, in particular, decrease airway eosinophilia.

  18. Involvement of K(+) channels in the augmented nasal venous responsiveness to nitric oxide in rat model of allergic rhinitis.

    PubMed

    Sakai, Hiroyasu; Enzaka, Jun; Sakai-Oshita, Michiko; Uto, Futa; Chiba, Yoshihiko; Misawa, Miwa

    2011-01-01

    one of the factors of nasal obstruction observed in allergic rhinitis is thought to be a dilatation of microveins in nasal mucosa, although the exact mechanism(s) is not fully understood. In nasal mucosae of repeatedly antigen challenged rats, NO-induced venodilatation itself is augmented. In the present study, the roles of K(+) channels in sodium nitroprusside (NO donor; SNP)-induced venodilatation of nasal mucosae in antigen-challenged rats were investigated. actively sensitized rats were repeatedly challenged with aerosolized antigen. Twenty-four hours after the final antigen challenge, nasal septum mucosa was exposed surgically and observed directly in vivo under a stereoscopic microscope. The 20μl reagents were administered onto the exposed septal mucosal surface, and the venous diameters of nasal mucosa were observed. the SNP-induced venodilatation of septal mucosa was markedly and significantly increased in the antigen-challenged rats. The SNP-induced venodilatation was significantly inhibited by pretreatment with either tetraethylammonium [TEA; a large-conductance Ca(2+) activated-K(+) (K(Ca)) and voltage dependent K(+) (Kv) channel inhibitor] or glibenclamide [an ATP sensitive K(+) (K(ATP)) channel inhibitor]. these findings suggest that NO-induced venodilatation is augmented in nasal mucosae of challenged rats, and K(+) channels play an important role in the augmented venous responsiveness to NO in nasal mucosae of repeatedly antigen challenged rats. 2010 Elsevier Inc. All rights reserved.

  19. A study of chromium induced allergic contact dermatitis with 54 volunteers: implications for environmental risk assessment.

    PubMed Central

    Nethercott, J; Paustenbach, D; Adams, R; Fowler, J; Marks, J; Morton, C; Taylor, J; Horowitz, S; Finley, B

    1994-01-01

    Over the past 60 years, dose-response patch test studies by various methods have been conducted in an attempt to identify the minimum elicitation threshold (MET) concentration of hexavalent chromium (Cr(VI)) that produces an allergic response in Cr(VI) sensitive subjects. These data are not adequate, however, to provide an accurate estimate of the MET because of the variability in the patch testing techniques and the variability in diagnostic criteria used. Furthermore, the data were not reported in terms of mass of allergen per surface area of skin (mg Cr/cm2-skin), which is necessary for conducting occupational or environmental health risk assessments. Thus the purpose of this study was to determine the MET (mg allergen/cm2) for Cr(VI) and trivalent chromium (Cr(III)) by patch testing techniques. A patch test method that delivers a controlled amount of allergen per surface area of skin was used. A group of 54 Cr(VI) sensitised volunteers were patch tested with serial dilutions of Cr(VI) and Cr(III) to determine the cumulative response rate at several concentrations. The results indicate that the 10% MET for Cr(VI) based on the cumulative response was 0.089 micrograms Cr(VI)/cm2-skin. Only one of the 54 volunteers may have responded to 33 micrograms Cr(III)/cm2-skin, otherwise Cr(III) was unable to produce allergic contact dermatitis in these highly sensitive volunteers. Two supplemental studies were also conducted to assess whether the surface area of the patch and the concentration of Cr(VI) in the patch (related to patch thickness) were likely to influence the results. The data from these studies were used to assess the risk of developing allergic contact dermatitis due to contact with Cr(VI) and Cr(III) in soil. The findings indicated that soil concentrations at least as high as 450 ppm Cr(VI) and 165,000 ppm Cr(III) should not pose an allergic contact dermatitis hazard for at least 99.99% of the people in the community who might be exposed. PMID:8044228

  20. Effects of palmitoylethanolamide on the cutaneous allergic inflammatory response in Ascaris hypersensitive Beagle dogs.

    PubMed

    Cerrato, Santiago; Brazis, Pilar; Della Valle, Maria Federica; Miolo, Alda; Petrosino, Stefania; Di Marzo, Vincenzo; Puigdemont, Anna

    2012-03-01

    Palmitoylethanolamide (PEA) is an endogenous lipid mediator with anti-inflammatory and anti-hyperalgesic properties. The main objective of the present study was to evaluate the effects of PEA on the cutaneous allergic inflammatory reaction induced by different immunological and non-immunological stimuli in hypersensitive dogs. Six spontaneously Ascaris hypersensitive Beagle dogs were challenged with intradermal injections of Ascaris suum extract, substance P and anti-canine IgE, before and after a single oral administration of PEA at doses of 3, 10 and 30 mg/kg. A significant reduction in wheal area induced by both antigen and anti-canine IgE challenge was observed after PEA administration. No significant differences were observed between the two higher doses studied, suggesting that the 10 mg/kg dose had exerted the maximum inhibitory effect. When blood levels of PEA were compared with the effects at different times, an evident correlation was obtained. However, the anti-inflammatory effects of PEA were more long-lasting than their plasma concentrations. The intradermal injection of substance P did not reveal any skin reaction (wheal or erythema formation) at any of the concentrations tested. In conclusion, PEA might constitute a new therapeutic strategy for the treatment of allergic inflammatory skin diseases in companion animals.

  1. Cyclic nitroxide radicals attenuate inflammation and Hyper-responsiveness in a mouse model of allergic asthma.

    PubMed

    Assayag, Miri; Goldstein, Sara; Samuni, Amram; Berkman, Neville

    2015-10-01

    The effects of stable cyclic nitroxide radicals have been extensively investigated both in vivo and in vitro demonstrating anti-inflammatory, radioprotective, anti-mutagenic, age-retardant, hypotensive, anti-cancer and anti-teratogenic activities. Yet, these stable radicals have not been evaluated in asthma and other airway inflammatory disorders. The present study investigated the effect of 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl (TPL) and 3-carbamoyl-proxyl (3-CP) in a mouse model of ovalbumin (OVA)-induced allergic asthma. Both 3-CP and TPL were non-toxic when administered either orally (1% w/w nitroxide-containing chow) or via intraperitoneal (IP) injection (∼300 mg/kg). Feeding the mice orally demonstrated that 3-CP was more effective than TPL in reducing inflammatory cell recruitment into the airway and in suppressing airway hyper-responsiveness (AHR) in OVA-challenged mice. To characterize the optimal time-window of intervention and mode of drug administration, 3-CP was given orally during allergen sensitization, during allergen challenge or during both sensitization and challenge stages, and via IP injection or intranasal instillation for 3 days during the challenge period. 3-CP given via all modes of delivery markedly inhibited OVA-induced airway inflammation, expression of cytokines, AHR and protein nitration of the lung tissue. Oral administration during the entire experiment was the most efficient delivery of 3-CP and was more effective than dexamethasone a potent corticosteroid used for asthma treatment. Under a similar administration regimen (IP injection before the OVA challenge), the effect of 3-CP was similar to that of dexamethasone and even greater on AHR and protein nitration. The protective effect of the nitroxides, which preferentially react with free radicals, in suppressing the increase of main asthmatic inflammatory markers substantiate the key role played by reactive oxygen and nitrogen species in the molecular mechanism of

  2. Safety of and Cellular Response to Segmental Bronchoprovocation in Allergic Asthma

    PubMed Central

    Denlinger, Loren C.; Kelly, Elizabeth A. B.; Dodge, Ann M.; McCartney, John G.; Meyer, Keith C.; Cornwell, Richard D.; Jackson, Mary Jo; Evans, Michael D.; Jarjour, Nizar N.

    2013-01-01

    Rationale Despite its incorporation into research studies, the safety aspects of segmental allergen bronchoprovocation and differences in cellular response among different allergens have received limited consideration. Methods We performed 87 segmental challenges in 77 allergic asthma subjects. Allergen dose was based on each subject’s response to whole lung allergen challenge. Bronchoalveolar lavage was performed at 0 and 48 hours. Safety indicators included spirometry, oxygen saturation, heart rate, and symptoms. Results Among subjects challenged with ragweed, cat dander, or house dust mite, there were no differences in safety indicators. Subjects demonstrated a modest oxygen desaturation and tachycardia during the procedure that returned to normal prior to discharge. We observed a modest reduction in forced vital capacity and forced expiratory volume in one second following bronchoscopy. The most common symptoms following the procedure were cough, sore throat and fatigue. Total bronchoalveolar lavage fluid cell numbers increased from 13±4 to 106±108×104 per milliliter and eosinophils increased from 1±2 to 44±20 percent, with no significant differences among the three allergens. Conclusions In mild allergic asthma, segmental allergen bronchoprovocation, using individualized doses of aeroallergens, was safe and yielded similar cellular responses. PMID:23341886

  3. Dietary supplementation of omega-3 fatty acid-containing fish oil suppresses F2-isoprostanes but enhances inflammatory cytokine response in a mouse model of ovalbumin-induced allergic lung inflammation.

    PubMed

    Yin, Huiyong; Liu, Wei; Goleniewska, Kasia; Porter, Ned A; Morrow, Jason D; Peebles, R Stokes

    2009-09-01

    Epidemiological and clinical evidence has suggested that increased dietary intake of fish oil containing omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may be associated with a reduced risk of asthma. However, interventional studies on these effects have been equivocal and controversial. Free radical oxidation products of lipids and cyclooxygenases-derived prostaglandins are believed to play an important role in asthma, and fish oil supplementation may modulate the levels of these critical lipid mediators. We employed a murine model of allergic inflammation produced by sensitization to ovalbumin (OVA) to study the effects of fish oil supplementation on airway inflammation. Our studies demonstrated that omega-3 fatty acids were dose dependently incorporated into mouse lung tissue after dietary supplementation. We examined the oxidative stress status by measuring the levels of isoprostanes (IsoPs), the gold standard for oxidative stress in vivo. OVA challenge caused significant increase of F(2)-IsoPs in mouse lung, suggesting an elevated level of oxidative stress. Compared to the control group, fish oil supplementation led to a significant reduction of F(2)-IsoP (from arachidonic acid) with a concomitant increase of F(3)-IsoPs (from EPA) and F(4)-IsoPs (from DHA). Surprisingly, however, fish oil supplementation enhanced production of proinflammatory cytokine IL-5 and IL-13. Furthermore, fish oil supplementation suppressed the production of pulmonary protective PGE(2) in the bronchoalveolar lavage (BAL) while the level of urinary metabolites of the PGE(2) was increased. Our data suggest that augmented lung inflammation after fish oil supplementation may be due to the reduction of PGE(2) production in the lung and these dichotomous results bring into question the role of fish oil supplementation in the treatment of asthma.

  4. Pollen-induced allergic rhinitis in 1360 Italian children: comorbidities and determinants of severity.

    PubMed

    Dondi, Arianna; Tripodi, Salvatore; Panetta, Valentina; Asero, Riccardo; Businco, Andrea Di Rienzo; Bianchi, Annamaria; Carlucci, Antonio; Ricci, Giampaolo; Bellini, Federica; Maiello, Nunzia; del Giudice, Michele Miraglia; Frediani, Tullio; Sodano, Simona; Dello Iacono, Iride; Macrì, Francesco; Massaccesi, Valerio; Caffarelli, Carlo; Rinaldi, Laura; Patria, Maria Francesca; Varin, Elena; Peroni, Diego; Chinellato, Iolanda; Chini, Loredana; Moschese, Viviana; Lucarelli, Sandra; Bernardini, Roberto; Pingitore, Giuseppe; Pelosi, Umberto; Tosca, Mariangela; Paravati, Francesco; La Grutta, Stefania; Meglio, Paolo; Calvani, Mauro; Plebani, Mario; Matricardi, Paolo Maria

    2013-12-01

    Pollen-induced allergic rhinoconjunctivitis (AR) is highly prevalent and rapidly evolving during childhood. General practitioners may not be fully aware of the nature and severity of symptoms experienced by patients and might underestimate the prevalence of moderate or severe disease. Thus, the relevance of early diagnosis and intervention may be overlooked. To investigate the severity of pollen-induced AR and its determinants in Italian children referred to allergy specialists and who had never received specific immunotherapy (SIT). Children (age 4-18 yr) affected by pollen-induced AR who had never undergone SIT were recruited between May 2009 and June 2011 in 16 pediatric outpatient clinics in 14 Italian cities. Recruited children's parents answered standardized questionnaires on atopic diseases (International Study of Allergy and Asthma in Childhood, Allergic Rhinitis and its Impact on Asthma, Global Initiative for Asthma). The children underwent skin-prick test (SPT) with several airborne allergens and six food allergens. Information on socio-demographic factors, parental history of allergic diseases, education, perinatal events, breastfeeding, nutrition and environmental exposure in early life was collected through an informatics platform shared by the whole network of clinical centers (AllergyCARD™). Among the 1360 recruited patients (68% males, age 10.5 ± 3.4 yr), 695 (51%) had moderate-to-severe AR, 533 (39%) asthma, and 325 (23.9%) oral allergy syndrome (OAS). Reported onset of pollen-induced AR was on average at 5.3 ± 2.8 yr, and its mean duration from onset was 5.2 ± 3.3 yr. Only 6.2% of the patients were pollen-monosensitized, and 84.9% were sensitized to ≥3 pollens. A longer AR duration was significantly associated with moderate-to-severe AR symptoms (p 0.004), asthma (p 0.030), and OAS comorbidities (p < 0.001). This nationwide study may raise awareness of the severity of pollen-induced AR among Italian children who have never received pollen

  5. Cytokines induce selective granulocyte chemotactic responses.

    PubMed

    Bittleman, D B; Erger, R A; Casale, T B

    1996-02-01

    Neutrophils, eosinophils and cytokines are important in allergic airway inflammatory responses. However, it is unclear how cytokines selectively influence neutrophils versus eosinophils to migrate to an inflammatory site. The cytokines, transforming growth factor-beta1 (TGF-beta1), interleukin (IL)-1alpha, IL-5, IL-8, granulocyte macrophage-colony stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF-alpha), are released subsequent to allergic reactions and affect both neutrophil and eosinophil functions. We studied whether these cytokines differed in capacity to induce human neutrophil versus eosinophil migration through naked filters and human umbilical vein endothelial cell (HUVEC) and human pulmonary type II-like epithelial (A549) cell monolayers grown on filters. Dose-response experiments using all barriers were performed for each granulocyte and cytokine. TGF-beta1 did not induce granulocyte migration. IL-5 induced eosinophil migration only through naked filters. IL-1alpha stimulated neutrophil migration through cellular barriers, but not through naked filters. TNF-alpha and GM-CSF induced neutrophil and eosinophil migration through filters, but only neutrophil migration through cellular monolayers. Only IL-8 induced significant neutrophil and eosinophil migration; however, there were clear-cut differences between the neutrophilotactic and eosinophilotactic responses through all barriers employed. Thus, our data show that these cytokines induce distinct chemotactic responses for neutrophils versus eosinophils. Moreover, by using relevant cellular barriers versus naked filters, our data better examines the capability of these cytokines to induce selective granulocyte migration to an inflammatory site in lung diseases such as asthma.

  6. Evidence of pathway-specific basophil anergy induced by peanut oral immunotherapy in peanut-allergic children.

    PubMed

    Thyagarajan, A; Jones, S M; Calatroni, A; Pons, L; Kulis, M; Woo, C S; Kamalakannan, M; Vickery, B P; Scurlock, A M; Wesley Burks, A; Shreffler, W G

    2012-08-01

    In Westernized countries, over 1% of the population is allergic to peanuts or tree nuts, which carries a risk of severe allergic reactions. Several studies support the efficacy of peanut oral immunotherapy (OIT) for reducing the clinical sensitivity of affected individuals; however, the mechanisms of this effect are still being characterized. One mechanism that may contribute is the suppression of effector cells, such as basophils. Basophil anergy has been characterized in vitro as a pathway-specific hyporesponsiveness; however, this has not been demonstrated to occur in vivo. To evaluate the hypothesis that basophil anergy occurs in vivo due to chronic allergen exposure in the setting of a clinical oral immunotherapy trial. Samples of peripheral blood were obtained from subjects during a placebo-controlled clinical trial of peanut OIT. Basophil reactivity to in vitro stimulation with peanut allergen and controls was assessed by the upregulation of activation markers, CD63 and CD203c, measured by flow cytometry. The upregulation of CD63 following stimulation of the IgE receptor, either specifically with peanut allergen or non-specifically with anti-IgE antibody, was strongly suppressed by active OIT. However, OIT did not significantly suppress this response in basophils stimulated by the distinct fMLP receptor pathway. In the subset of subjects with egg sensitization, active peanut OIT also suppressed CD63 upregulation in response to stimulation with egg allergen. Allergen OIT also suppressed the upregulation of CD203c including in response to stimulation with IL-3 alone. Peanut OIT induces a hyporesponsive state in basophils that is consistent with pathway-specific anergy previously described in vitro. This suggests the hypothesis that effector cell anergy could contribute to clinical desensitization. © 2012 Blackwell Publishing Ltd.

  7. Invariant natural killer T cells from food allergic versus non-allergic children exhibit differential responsiveness to milk-derived sphingomyelin

    PubMed Central

    Jyonouchi, Soma; Abraham, Valsamma; Orange, Jordan S.; Spergel, Jonathan M.; Gober, Laura; Dudek, Emily; Saltzman, Rushani; Nichols, Kim E.; Cianferoni, Antonella

    2011-01-01

    Background A key immunological feature of food allergy (FA) is the presence of a T-helper-2 (Th2)-type cytokine bias. Ligation of the invariant natural killer T cell (iNKT) T cell receptor (TCR) by sphingolipids (SL) presented via the CD1d molecule leads to copious secretion of Th2-type cytokines. Major food allergens (e.g. milk, egg) are the richest dietary source of SL (food-SL). Nonetheless, the role of iNKTs in FA is unknown. Objective To investigate the role of iNKTs in FA and to assess whether food-SL-CD1d complexes can engage the iNKT-TCR and induce iNKT cell functions. Methods Peripheral blood mononuclear cells from 15 children allergic to cow's milk (FA-MA), 12 children tolerant to cow's milk but with allergy to egg (FA-NMA) and 13 healthy controls were incubated with α-galactosylceramide (αGal), cow's milk-sphingomyelin-[SM] or hen's egg-ceramide-[CE]. iNKTs were quantified and their cytokine production and proliferation were assessed. Human CD1d tetramers loaded with milk-SM or egg-CE were used to determine food-SL binding to the iNKT-TCR. Results Milk-SM, but not egg-CE, can engage the iNKT-TCR and induce iNKT-proliferation and Th2-type cytokine secretion. FA-children, especially those with MA, had significantly fewer peripheral blood (PB) iNKTs and their iNKTs exhibited a greater Th2-response to αGal and milk-SM compared to iNKTs of healthy controls. Conclusion iNKTs from FA-children, especially those with MA, are reduced in number and exhibit a Th2-bias in response to αGal and milk-SM. These data suggest a potential role for iNKTs in FA. Clinical Implications Milk-SM activate PB-iNKTs to produce Th2-cytokines and this effect is greater in FA-MA-children. Hence, SL contained in milk may promote an iNKT cell-mediated-Th2-type-cytokine bias that facilitates sensitization to food allergens. PMID:21458849

  8. Immunomodulatory Effects of Different Lactic Acid Bacteria on Allergic Response and Its Relationship with In Vitro Properties

    PubMed Central

    Ai, Chunqing; Ma, Na; Zhang, Qiuxiang; Wang, Gang; Liu, Xiaoming; Tian, Fengwei; Chen, Pei; Chen, Wei

    2016-01-01

    Some studies reported that probiotic could relieve allergy-induced damage to the host, but how to get a useful probiotic is still a challenge. In this study, the protective effects of three lactic acid bacteria (La, Lp and Lc) were evaluated in a mouse model, and its relationship with the in vitro properties was analyzed. The in vitro results indicated that La with the capacity to inhibit IL-4 production could have a better anti-allergy effect in vivo than two others. However, the animal trials showed that all LAB strains could alleviate allergen-induced airway inflammation. Among them, LAB strain Lp had a better effect in inhibiting allergic response through a modulation of Th1/Th2 balance and an increase of regulatory T cells. This difference could be explained by that different LAB strains have a strain-specific effect on gut microbiota closely associated with host immune responses. Finally, this study did not only obtain an effective anti-allergy probiotic strain via animal study, but also indicate that probiotic-induced effect on intestinal microbiota should be considered as an important screening index, apart from its inherent characteristics. PMID:27764153

  9. Attenuated allergic responses to house dust mite antigen in feed-restricted rats.

    PubMed

    Dong, W; Kari, F W; Selgrade, M K; Gilmour, M I

    2000-12-01

    Caloric restriction has been shown to alter a broad range of immunological end points in both experimental animals and humans. The objective of this study was to investigate the effect of short-term moderate feed restriction (25% reduction) on allergic immune responses in Brown Norway rats. After 3 weeks of acclimation to their feed regimens, rats were sensitized and 2 weeks later challenged with house dust mite (HDM) antigen via intratracheal instillation. Feed restriction resulted in lower levels of antigen-specific IgE in serum and reduced antigen specific lymphoproliferative activity in pulmonary lymph nodes. Feed restriction also attenuated pulmonary inflammation, as evidenced by lower levels of lactate dehydrogenase and total protein, decreased infiltration of neutrophils and eosinophils, and reduced secretion of pro-inflammatory cytokine tumor necrosis factor (TNF)-[alpha] in bronchoalveolar lavage fluid. In addition, feed restriction decreased TNF-[alpha] secretion in serum and decreased mRNA expression of TNF-[alpha] and interleukin-6 in pulmonary lymph nodes. We conclude that feed restriction strongly dampened the allergic immune responses to HDM in rats and that this attenuation was associated with decreased expression and secretion of pro-inflammatory cytokines.

  10. α-Tocopherol supplementation of allergic female mice inhibits development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates

    PubMed Central

    Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Soveg, Frank W.

    2014-01-01

    α-Tocopherol blocks responses to allergen challenge in allergic adult mice, but it is not known whether α-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether α-tocopherol blocked development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with α-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to the allergen challenge, and α-tocopherol supplementation of allergic female mice resulted in a dose-dependent reduction in eosinophils in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also a reduction in pup lung CD11b+ dendritic cell subsets that are critical to development of allergic responses, but there was no change in several CD11b− dendritic cell subsets. Furthermore, maternal supplementation with α-tocopherol reduced the number of fetal liver CD11b+ dendritic cells in utero. In the pups, there was reduced allergen-induced lung mRNA expression of IL-4, IL-33, TSLP, CCL11, and CCL24. Cross-fostering pups at the time of birth demonstrated that α-tocopherol had a regulatory function in utero. In conclusion, maternal supplementation with α-tocopherol reduced fetal development of subsets of dendritic cells that are critical for allergic responses and reduced development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with α-tocopherol. PMID:25015974

  11. Resin Monomers Act as Adjuvants in Ni-induced Allergic Dermatitis in vivo

    PubMed Central

    Bando, K.; Takahashi, H.; Kinbara, M.; Tanaka, Y.; Kuroishi, T.; Sasaki, K.; Takano-Yamamoto, T.; Sugawara, S.; Endo, Y.

    2014-01-01

    Resin monomers (RMs) are inflammatory agents and are thought to cause allergic contact dermatitis (ACD). However, mouse models are lacking, possibly because of the weak antigenicities of RMs. We previously reported that inflammatory substances can promote the allergic dermatitis (AD) induced by intradermally injected nickel (Ni-AD) in mice. Here, we examined the effects of RMs on Ni-AD. To sensitize mice to Ni, a mixture containing non-toxic concentrations of NiCl2 and an RM [either methyl methacrylate (MMA) or 2-hydroxyethyl methacrylate (HEMA)] was injected intraperitoneally or into ear-pinnae intradermally. Ten days later, a mixture containing various concentrations of NiCl2 and/or an RM was intradermally injected into ear-pinnae, and ear-swelling was measured. In adoptive transfer experiments, spleen cells from sensitized mice were transferred intravenously into non-sensitized recipients, and 24 h later NiCl2 was challenged to ear-pinnae. Whether injected intraperitoneally or intradermally, RM plus NiCl2 mixtures were effective in sensitizing mice to Ni. AD-inducing Ni concentrations were greatly reduced in the presence of MMA or HEMA (at the sensitization step from 10 mM to 5 or 50 µM, respectively, and at the elicitation step from 10 µM to 10 or 100 nM, respectively). These effects of RMs were weaker in IL-1-knockout mice and in macrophage-depleted mice. Cell-transfer experiments in IL-1-knockout mice indicated that both the sensitization and elicitation steps depended on IL-1. Challenge with an RM alone did not induce allergic ear-swelling in mice given the same RM + NiCl2 10 days before the challenge. These results suggest that RMs act as adjuvants, not as antigens, to promote Ni-AD by reducing the AD-inducing concentration of Ni, and that IL-1 and macrophages are critically important for the adjuvant effects. We speculate that what were previously thought of as “RM-ACD” might include ACD caused by antigens other than RMs that have undergone promotion

  12. Psychological stress affects response to sublingual immunotherapy in asthmatic children allergic to house dust mite.

    PubMed

    Ippoliti, Flora; De Santis, Wladimiro; Volterrani, Anna; Canitano, Nicoletta; Frattolillo, Daniele; Lucarelli, Sandra; Frediani, Simone; Frediani, Tullio

    2006-08-01

    While the clinical and immunologic efficacy of sublingual immunotherapy (SLIT) in allergic diseases has been extensively demonstrated, some patients display a poor clinical response. Psychological stress has been shown to play a role in atopy and also to affect response to immunomodulating therapies such as vaccination with microbial antigens. This study addresses the possibility of response to SLIT being affected by psychological stress. Forty children with mild asthma caused by allergy to Dermatophagoides pteronyssinus and farinae were subjected to SLIT and then divided after 6 months into two groups based on the results of the stress integrated measure (SIM) test: group 1 (24 stressed patients, mean SIM value of 60.1) and group 2 (16 non-stressed patients, mean SIM value of 7.6). There was also a higher prevalence of psychosocial stressing factors (divorced/absent parents, low income households, non-working parents) among stressed patients. The symptom score, peak expiratory flow (PEF), forced expiratory volume in 1 s (FEV(1)) and serum eosinophie cationic protein (ECP) concentration were evaluated at both times. The serum concentration of neuroendocrine parameters [prolactin, cortisol, adrenocorticotropic hormone (ACTH)] was also measured after 6 months of therapy. While all the clinical parameters and ECP concentration improved after SLIT, symptom score, PEF and ECP showed a significantly greater improvement in non-stressed patients. The concentration of neuroendocrine parameters was significantly increased in stressed patients. Our findings show that psychological stress can affect response to SLIT also in allergic subjects and are consistent with data recently reported showing a correlation between stress and poor response to antimicrobial vaccines. Our data also suggest that stress evaluation may become a useful prognostic factor in immunotherapy.

  13. Potential immunotoxic effects of trichloroethylene-induced IV allergic reaction in renal impairment

    PubMed Central

    Yu, Jun-Feng; Feng, Yan-Yan

    2017-01-01

    Trichloroethylene (TCE) is known to induce allergic contact dermatitis and subsequent occupational medicamentosa-like dermatitis (OMLD) with multi-system injuries, including liver, kidney, and skin injuries. However, the mechanisms underlying immune system dysfunction that result in organ injury have not yet been clearly elucidated. In the present study, we measured the levels of secreted cytokines by effect or T cells in TCE-treated guinea pigs to better understand the contribution of allergic disorders in renal injuries. We immunized guinea pigs with trichloroethylene using the Guinea Pig Maximization Test (GPMT) and scored the inflammation on the guinea pigs’ skin. The kidney function and ultra-structural changes in the kidneys were detected using biochemical methods and electron microscopy. The deposition of cytokines was determined using immunohistochemistry. The sensitization rate was 63.16% in the TCE-sensitized groups. The electron microscopy results showed tubular epithelial cell mitochondrial swelling, vacuolar degeneration, and atrophy of the microvillus in the sensitized groups. A high degree of cytokine deposition was observed in the renal tubular proximal epithelial cells in the TCE-sensitized groups. As observed in this study, the variation in the level of immune system activation not only indicates that TCE can largely magnify the immune reaction but also suggests a potential role of immune dysfunction in renal impairment. PMID:28867961

  14. Correlations of nasal responses to leukotriene D4 and histamine nasal provocation with quality of life in allergic rhinitis

    PubMed Central

    Zhu, Zheng; Xie, Yanqing; Guan, Weijie; Gao, Yi; Xia, Shu; Shi, Xu

    2016-01-01

    Background The symptoms of allergic rhinitis (AR) greatly affect the quality of life (QoL) in the patients with AR. The correlations of nasal response to leukotriene D4 (LTD4) and histamine nasal provocation with health related QoL in AR are not clear. Objective To evaluate the correlations of nasal response to LTD4 and histamine nasal challenge with QoL in AR. Methods Patients randomly underwent LTD4 and histamine nasal challenge tests, completed the rhinoconjunctivitis quality of life questionnaire (RQoLQ), and rating the symptom severity score (total symptom score 4, TSS4) in the previous week. The correlations between nasal challenge tests induced nasal responses and QoL in RQoLQ were analyzed. Results A total of 25 eligible AR patients enrolled and finished both LTD4 and histamine nasal challenge and completed the questionnaire of RQoLQ. Histamine nasal challenge induced sneezing, increased nasal resistant were correlated with most of the dimensions (general, practical, nasal, eye problems, and quality of sleep, p < 0.05), while LTD4 nasal challenge induced sneeze, increased nasal resistant only correlated with nasal and ocular problems. On the contrary, the severity of the sneeze assessed by TSS4, was not correlated with QoL, while the severity of rhinorrhea, congestion, and nasal pruritus were correlated with nasal and practical problems, and nasal congestion was also correlated with ocular problems (r = 0.60, p = 0.01). Conclusion LTD4 and histamine nasal challenge induced nasal responses were correlated with different clinical symptoms severity and QoL, which can be used as a good diagnosis and evaluation methods for the management of AR. PMID:27803885

  15. Antileukotriene Reverts the Early Effects of Inflammatory Response of Distal Parenchyma in Experimental Chronic Allergic Inflammation

    PubMed Central

    Gobbato, Nathália Brandão; de Souza, Flávia Castro Ribas; Fumagalli, Stella Bruna Napolitano; Lopes, Fernanda Degobbi Tenório Quirino dos Santos; Prado, Carla Máximo; Martins, Milton Arruda; Tibério, Iolanda de Fátima Lopes Calvo; Leick, Edna Aparecida

    2013-01-01

    Aims. Compare the effects of montelukast or dexamethasone in distal lung parenchyma and airway walls of guinea pigs (GP) with chronic allergic inflammation. Methods. GP have inhaled ovalbumin (OVA group-2x/week/4weeks). After the 4th inhalation, GP were treated with montelukast or dexamethasone. After 72 hours of the 7th inhalation, GP were anesthetised, and lungs were removed and submitted to histopathological evaluation. Results. Montelukast and dexamethasone treatments reduced the number of eosinophils in airway wall and distal lung parenchyma compared to OVA group (P < 0.05). On distal parenchyma, both treatments were effective in reducing RANTES, NF-κB, and fibronectin positive cells compared to OVA group (P < 0.001). Montelukast was more effective in reducing eotaxin positive cells on distal parenchyma compared to dexamethasone treatment (P < 0.001), while there was a more expressive reduction of IGF-I positive cells in OVA-D group (P < 0.001). On airway walls, montelukast and dexamethasone were effective in reducing IGF-I, RANTES, and fibronectin positive cells compared to OVA group (P < 0.05). Dexamethasone was more effective in reducing the number of eotaxin and NF-κB positive cells than Montelukast (P < 0.05). Conclusions. In this animal model, both treatments were effective in modulating allergic inflammation and remodeling distal lung parenchyma and airway wall, contributing to a better control of the inflammatory response. PMID:24151607

  16. A small amount of tetrachloroethylene ingestion from drinking water accelerates antigen-stimulated allergic responses.

    PubMed

    Seo, Makoto; Yamagiwa, Takeo; Kobayashi, Ryo; Ikeda, Koji; Satoh, Masahiko; Inagaki, Naoki; Nagai, Hiroichi; Nagase, Hisamitsu

    2008-01-01

    Previously, we observed that tetrachloroethylene (perchloroethylene, PCE) increased histamine release and inflammatory mediator production from antigen-stimulated mast cells. In this study, we examined the enhancing effect of low concentrations of PCE in drinking water on antigen-stimulated allergic responses. After exposure of Wistar rats to PCE in drinking water for 2 or 4 weeks, we performed a passive cutaneous anaphylaxis (PCA) reaction. PCE exposure for 4 weeks enhanced PCA reaction in a dose-dependent manner. In pathological studies, PCE exposure for 2 weeks exacerbated inflammation characterized by infiltration of lymphocytes and accumulation of mast cells around the vessel. Non-purified mast cells (NPMCs) from rats treated with 1mg/L PCE in drinking water for 2 weeks increased antigen-stimulated histamine release. Furthermore, the leukocytes of rats treated with PCE in drinking water for 4 weeks showed increased interleukin (IL)-4 expression. The mechanism of enhancing the PCA reaction is assumed to be that PCE increases IL-4 production and PCE causes T helper (Th) 1/Th2-type helper T-cell imbalance and increases histamine release from excessively accumulated mast cells. The results suggest that the intake of PCE in drinking water, even at a low concentration, leads to the initiation and acceleration of allergic diseases.

  17. Transfer of allergic airway responses with serum and lymphocytes from rats sensitized to dust mite.

    PubMed

    Lambert, A L; Winsett, D W; Costa, D L; Selgrade, M K; Gilmour, M I

    1998-06-01

    House dust mite (HDM) antigen is one of the most common allergens associated with extrinsic asthma. In a model of allergic lung disease, Brown Norway (BN) rats sensitized to HDM with alum and Bordetella pertussis adjuvants produce high levels of IgE antibody and experience bronchoconstriction, increased airway hyperresponsiveness (AHR) to acetylcholine (ACh), and pulmonary inflammation after antigen challenge. The purpose of this study was to determine whether these asthmatic symptoms could be transferred from sensitized animals to naive recipients via humoral or cellular factors. Syngeneic recipient rats were injected (intraperitoneally with 4 x 10(7) cells (precultured overnight with either HDM or bovine serum albumin [BSA]) from lymph nodes of sensitized or control rats, respectively. Other groups received a tail-vein injection of serum from either HDM-sensitized or control rats. Antigen challenge in rats injected with sensitized cells caused increases in pulmonary inflammation and in AHR, but no changes in immediate bronchoconstriction as compared with control recipients. Antigen challenge in serum recipients resulted in immediate bronchoconstriction but had no effect on AHR or on pulmonary inflammation. These data show that immune-mediated lung inflammation and AHR are promoted by antigen-specific lymphocytes, whereas immediate allergic responses are caused by serum factors.

  18. Potent ameliorating effect of Hypoxia-inducible factor 1α (HIF-1α) antagonist YC-1 on combined allergic rhinitis and asthma syndrome (CARAS) in Rats.

    PubMed

    Wang, Xu; Liu, Chun; Wu, Liucheng; Zhu, Shunxing

    2016-10-05

    Recent studies have implicated that Hypoxia-inducible factor 1α (HIF-1α) plays an integral role in the pathogenesis of allergic rhinitis and asthma. In the present study, we showed that HIF-1α antagonist YC-1, 3-(5-hydroxymethyl-2-furyl)-1-benzylindazole, elicited a potent allergy-ameliorating effect in a rat model of ovalbumin (OVA)-sensitized combined allergic rhinitis and asthma syndrome (CARAS). We revealed that YC-1 administration markedly impaired the total number and percentage of eosinophil in bronchoalveolar lavage fluid (BAL Fluid) of the rats, suggesting that YC-1 might attenuate lung and nasal mucosal inflammation in OVA-sensitized rats. Moreover, histological examination found that OVA-induced pathological alterations were evidently attenuated following YC-1 administration. In addition, immunohistochemistrial analysis indicated that YC-1 treatment decreased the expression of HIF-1α in rat lungs and nasal mucosa. Notably, Nuclear factor kappa B (NF-κB) p65 and Peroxisome proliferator-activated receptor α (PPARα), two important regulators of inflammatory responses, were also significantly down-regulated following YC-1 administration. Real-time PCR analysis confirmed that YC-1 impaired the expression of HIF-1α, NF-κB and PPARα in CARAS model. These findings together indicated that YC-1 exerted remarkable anti-allergic effects through the modulation of inflammatory pathways, implying that YC-1 may potentially serve as a novel anti-CARAS medicine in clinical patients.

  19. Local Immune Responses in Children and Adults with Allergic and Nonallergic Rhinitis

    PubMed Central

    Choi, Hana; Jang, Man-Young; Kim, Kyung Rae; Choi, Jae-Hoon; Cho, Seok Hyun

    2016-01-01

    Background Allergic rhinitis (AR) is the most common allergic disease but little is known about the difference of local immune responses in children and adults with AR. Objective To compare local immune responses between children and adults with AR and nonallergic rhinitis (NAR), and to investigate whether the association of local and systemic immune responses is different between the two age groups. Methods Fifty-one patients with chronic rhinitis were enrolled and grouped into children (N = 27, mean age 7.2 years) and adults (N = 24, mean age 29.9 years). Diagnosis of AR was based on symptoms, skin prick tests and serum specific IgEs. Nasal lavage (NAL) fluids were collected from all subjects and used to measure the levels of total IgE, specific IgEs to house dust mites (Dp and Df), and cytokines (TNF-α, IL-4, IL-10, IL-17A and IFN-γ). Flow cytometry was used to measure inflammatory cell types in NAL fluids. Results AR had significantly increased local levels of total IgE and specific IgEs to Dp and Df compared with NAR in both age groups (P < 0.05). Nasal eosinophils % (P = 0.01) was significantly increased only in children with AR. Local-systemic correlations of total IgE (r = 0.662, P = 0.000) and eosinophil % (r = 0.461, P = 0.015) between the peripheral blood and NAL fluids were found only in children. Moreover, children had correlations between total IgE and eosinophil % in the peripheral blood (r = 0.629, P = 0.001) and in NAL fluids (r = 0.373, P = 0.061). Conclusion Elevated local IgE is a common feature of AR in children and adults. Local measures in NAR showed naïve state of immune response which disagree with the hypothesis of local allergic rhinitis. Children showed intense local inflammation and close local-systemic interactions compared to adults supporting pediatric AR as a distinct feature. PMID:27281182

  20. Effect of Mandarin Orange Yogurt on Allergic Conjunctivitis Induced by Conjunctival Allergen Challenge.

    PubMed

    Hara, Yuko; Shiraishi, Atsushi; Sakane, Yuri; Takezawa, Yuki; Kamao, Tomoyuki; Ohashi, Yuichi; Yasunaga, Sho; Sugahara, Takuya

    2017-06-01

    To evaluate the effects of mandarin orange yogurt containing nobiletin and β-lactoglobulin on the allergic conjunctivitis induced by a conjunctival allergen challenge (CAC). Experiment 1 was performed on 26 asymptomatic patients (age, 25.3 ± 5.3 years) with proven seasonal allergic conjunctivitis due to cedar pollen. We compared the degree of conjunctivitis induced by CAC before and after ingesting mandarin orange yogurt for 2 weeks. Experiment 2 was a double-blind, placebo-controlled trial performed on 31 patients (age, 32.5 ± 12.2 years). A diet containing mandarin orange yogurt was compared to a diet containing yogurt lacking the mandarin orange on the conjunctivitis induced by CAC. The temperature of the inferior bulbar conjunctiva was measured before and 20 minutes after the CAC with an ocular surface thermographer (OST). The degree of conjunctival injection and chemosis was graded by slit-lamp biomicroscopy. The changes in the symptoms were evaluated by a questionnaire. In experiment 1, the scores of redness (3.07 ± 3.03 vs. 1.05 ± 1.70), chemosis (2.84 ± 2.27 vs. 0.81 ± 1.11), itching (4.34 ± 3.05 vs. 1.39 ± 2.12), and temperature (0.73 ± 0.42°C vs. 0.45 ± 0.43°C) were significantly lower (P < 0.001) after a diet of mandarin orange yogurt for 2 weeks. In experiment 2, the scores of redness (1.03 ± 0.18 vs. 1.28 ± 0.52; P = 0.0156), itching (1.93 ± 1.92 vs. 2.82 ± 2.21; P = 0.0133), and surface temperature (0.54 ± 0.21°C vs. 0.31 ± 0.25°C; P < 0.001) were significantly lower in the mandarin orange yogurt group than in the control yogurt group. Mandarin orange yogurt can be an effective nutritional intervention for allergic conjunctivitis.

  1. Exposure to High Doses of Lipopolysaccharide during Ovalbumin Sensitization Prevents the Development of Allergic Th2 Responses to a Dietary Antigen

    PubMed Central

    Torii, Ikuko; Shimizu, Shigeki; Daimon, Takashi; Shinohara, Yoshiyasu; Kudo, Tomoo; Sato, Ayuko; Tsujimura, Tohru

    2014-01-01

    Food allergies are driven by aberrant T helper (Th) 2 cells. Lipopolysaccharide (LPS) influences the development of Th2-mediated diseases, but its role in food allergy and tolerance remains unclear. To address this issue, we established mouse models presenting allergic or tolerant responses to ovalbumin (OVA). Mice sensitized with crude OVA developed Th2 responses including acute diarrhea, increases in serum OVA-specific IgE, dominant production of serum OVA-specific IgG1, increases in Th2-type cytokines and proliferation of mast cells in duodenal and colonic tissues. Sensitization of mice with crude OVA and LPS abrogated Th2-type responses observed in allergic mice. The level of OVA-specific proliferation in mesenteric lymph node CD4+ T cells was comparable in allergic and tolerant mice, indicating that the tolerance is not caused by anergy and apoptosis of antigen-primed T cells. Expression of Th1- and Th2-type cytokines was suppressed in whole spleen cells and/or purified spleen CD4+ T cells of tolerant mice, indicating that the tolerance was not caused by the shift from Th2 to Th1. On the other hand, interleukin (IL)-10, a regulatory cytokine produced by regulatory T cells, was upregulated in whole spleen cells and purified spleen CD4+ T cells of tolerant mice. Furthermore, spleen CD4+ T cells from tolerant mice suppressed the growth of CD4+ T cells from DO11.10 mice in co-culture. These results indicate that tolerance is induced in allergic mice by simultaneous exposure to LPS during sensitization with OVA and that a population of T cells producing IL-10 plays an important role in the tolerance induction. PMID:25378805

  2. Effects of ultrafine particles-induced oxidative stress on Clara cells in allergic lung inflammation

    PubMed Central

    2010-01-01

    Background Clara cell protein (CC16), the main secretory product of bronchiolar Clara cells, plays an important protective role in the respiratory tract against oxidative stress and inflammation. The purpose of the study was to investigate the role of elemental carbon ultrafine particles (EC-UFP)-induced oxidative stress on Clara cells and CC16 in a mouse model of allergic lung inflammation. Methods Ovalbumin (OVA)-sensitized mice were exposed to EC-UFP (507 μg/m3 for 24 h) or filtered air immediately prior to allergen challenge and systemically treated with N-acetylcysteine (NAC) or vehicle prior and during EC-UFP inhalation. CC16 was measured up to one week after allergen challenge in bronchoalveolar lavage fluid (BALF) and in serum. The relative expression of CC16 and TNF-α mRNA were measured in lung homogenates. A morphometrical analysis of mucus hypersecretion and electron microscopy served to investigate goblet cell metaplasia and Clara cell morphological alterations. Results In non sensitized mice EC-UFP inhalation caused alterations in CC16 concentration, both at protein and mRNA level, and induced Clara cell hyperplasia. In sensitized mice, inhalation of EC-UFP prior to OVA challenge caused most significant alterations of BALF and serum CC16 concentration, BALF total protein and TNF-α relative expression compared to relevant controls; their Clara cells displayed the strongest morphological alterations and strongest goblet cell metaplasia occurred in the small airways. NAC strongly reduced both functional and morphological alterations of Clara cells. Conclusion Our findings demonstrate that oxidative stress plays an important role in EC-UFP-induced augmentation of functional and morphological alterations of Clara cells in allergic lung inflammation. PMID:20420656

  3. Effects of ultrafine particles-induced oxidative stress on Clara cells in allergic lung inflammation.

    PubMed

    Alessandrini, Francesca; Weichenmeier, Ingrid; van Miert, Erik; Takenaka, Shinji; Karg, Erwin; Blume, Cornelia; Mempel, Martin; Schulz, Holger; Bernard, Alfred; Behrendt, Heidrun

    2010-04-26

    Clara cell protein (CC16), the main secretory product of bronchiolar Clara cells, plays an important protective role in the respiratory tract against oxidative stress and inflammation. The purpose of the study was to investigate the role of elemental carbon ultrafine particles (EC-UFP)-induced oxidative stress on Clara cells and CC16 in a mouse model of allergic lung inflammation. Ovalbumin (OVA)-sensitized mice were exposed to EC-UFP (507 microg/m(3) for 24 h) or filtered air immediately prior to allergen challenge and systemically treated with N-acetylcysteine (NAC) or vehicle prior and during EC-UFP inhalation. CC16 was measured up to one week after allergen challenge in bronchoalveolar lavage fluid (BALF) and in serum. The relative expression of CC16 and TNF-alpha mRNA were measured in lung homogenates. A morphometrical analysis of mucus hypersecretion and electron microscopy served to investigate goblet cell metaplasia and Clara cell morphological alterations. In non sensitized mice EC-UFP inhalation caused alterations in CC16 concentration, both at protein and mRNA level, and induced Clara cell hyperplasia. In sensitized mice, inhalation of EC-UFP prior to OVA challenge caused most significant alterations of BALF and serum CC16 concentration, BALF total protein and TNF-alpha relative expression compared to relevant controls; their Clara cells displayed the strongest morphological alterations and strongest goblet cell metaplasia occurred in the small airways. NAC strongly reduced both functional and morphological alterations of Clara cells. Our findings demonstrate that oxidative stress plays an important role in EC-UFP-induced augmentation of functional and morphological alterations of Clara cells in allergic lung inflammation.

  4. Vascular permeability responses and the role of prostaglandin E2 in an experimental allergic inflammation of air pouch type in rats.

    PubMed Central

    Hirasawa, N.; Ohuchi, K.; Sugio, K.; Tsurufuji, S.; Watanabe, M.; Yoshino, S.

    1986-01-01

    Rats were sensitized with azobenzene arsonate-conjugated acetyl bovine serum albumin. An allergic inflammation was induced in the preformed air pouch in the dorsum of the sensitized rats by injecting the antigen dissolved in a 2% sodium carboxymethyl cellulose solution into the air pouch. Time course changes of vascular permeability, accumulated pouch fluid volume and prostaglandin E2 (PGE2) levels in the pouch fluid were compared in sensitized and non-sensitized rats to characterize the allergic inflammatory reaction. Effects of three cyclo-oxygenase inhibitors (indomethacin, diclofenac sodium and tiaprofenic acid) on vascular permeability and accumulated pouch fluid volume 4 and 24 h after the immunological challenge injection were examined to elucidate a possible role of PGE2 in the inflammatory response. Four h after initiating the allergic reaction, although the level of PGE2 in the pouch fluid reached a high level, the vascular permeability response, measured over the period 3.5-4 h, was not suppressed by treatment with the three cyclo-oxygenase inhibitors and neither was the pouch fluid volume measured over the period 0-4 h. However, vascular permeability and accumulated pouch fluid volume at 24 h were suppressed by the cyclo-oxygenase inhibitors in a dose-dependent manner. These observations suggest that in this model, endogenous PGE2 does not affect oedema formation measured at 4 h. However, oedema formation measured at 24 h may be dependent on PGE2 generation. PMID:3085758

  5. Identification of Microcystis aeruginosa Peptides Responsible for Allergic Sensitization and Characterization of Functional Interactions between Cyanobacterial Toxins and Immunogenic Peptides

    PubMed Central

    Geh, Esmond N.; Ghosh, Debajyoti; McKell, Melanie; de la Cruz, Armah A.; Stelma, Gerard

    2015-01-01

    Background The cyanobacterium species Microcystis aeruginosa produces microcystin and an array of diverse metabolites believed responsible for their toxicity and/or immunogenicity. Previously, chronic rhinitis patients were demonstrated to elicit a specific IgE response to nontoxic strains of M. aeruginosa by skin-prick testing, indicating that cyanobacteria allergenicity resides in a non-toxin–producing component of the organism. Objectives We sought to identify and characterize M. aeruginosa peptide(s) responsible for allergic sensitization in susceptible individuals, and we investigated the functional interactions between cyanobacterial toxins and their coexpressed immunogenic peptides. Methods Sera from patients and extracts from M. aeruginosa toxic [MC(+)] and nontoxic [MC(–)] strains were used to test IgE-specific reactivity by direct and indirect ELISAs; 2D gel electrophoresis, followed by immunoblots and mass spectrometry (MS), was performed to identify the relevant sensitizing peptides. Cytotoxicity and mediator release assays were performed using the MC(+) and MC(–) lysates. Results We found specific IgE to be increased more in response to the MC(–) strain than the MC(+) strain. This response was inhibited by preincubation of MC(–) lysate with increasing concentrations of microcystin. MS revealed that phycocyanin and the core-membrane linker peptide are the responsible allergens, and MC(–) extracts containing these proteins induced β-hexosaminidase release in rat basophil leukemia cells. Conclusions Phycobiliprotein complexes in M. aeruginosa have been identified as the relevant sensitizing proteins. Our finding that allergenicity is inhibited in a dose-dependent manner by microcystin toxin suggests that further investigation is warranted to understand the interplay between immunogenicity and toxicity of cyanobacteria under diverse environmental conditions. Citation Geh EN, Ghosh D, McKell M, de la Cruz AA, Stelma G, Bernstein JA. 2015

  6. NK cell deficiency predisposes to viral-induced Th2-type allergic inflammation via epithelial-derived IL-25.

    PubMed

    Kaiko, Gerard E; Phipps, Simon; Angkasekwinai, Pornpimon; Dong, Chen; Foster, Paul S

    2010-10-15

    Severe respiratory syncytial virus (RSV) infection has long been associated with an increased risk for the development of childhood asthma and exacerbations of this disorder. Despite much research into the induction of Th2 responses by allergens and helminths, the factors associated with viral infection that predispose to Th2-regulated asthma remain unknown. Recently, clinical studies have shown reduced numbers of NK cells in infants suffering from a severe RSV infection. Here we demonstrate that NK cell deficiency during primary RSV infection of BALB/c mice results in the suppression of IFN-γ production and the development of an RSV-specific Th2 response and subsequent allergic lung disease. The outgrowth of the Th2 responses was dependent on airway epithelial cell-derived IL-25, which induced the upregulation of the notch ligand Jagged1 on dendritic cells. This study identifies a novel pathway underlying viral-driven Th2 responses that may have functional relevance to viral-associated asthma.

  7. Role of macrophage migration inhibitory factor (MIF) in pollen-induced allergic conjunctivitis and pollen dermatitis in mice.

    PubMed

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyoshi; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis.

  8. Role of Macrophage Migration Inhibitory Factor (MIF) in Pollen-Induced Allergic Conjunctivitis and Pollen Dermatitis in Mice

    PubMed Central

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis. PMID:25647395

  9. Response to Nonallergenic Irritants in Children With Allergic and Nonallergic Rhinitis

    PubMed Central

    Baek, Ji Hyeon; Cho, Eunhae; Kim, Mi Ae; Lee, Seung Won; Kang, Yu Sun; Sheen, Youn Ho; Jee, Hye Mi; Jung, Young-Ho

    2016-01-01

    Purpose Nonallergenic irritants can aggravate the symptoms of rhinitis. We investigated the clinical responses of children with allergic rhinitis (AR) and nonallergic rhinitis (NAR) to nonallergenic irritants, and identified factors associated with these responses. Methods Children with chronic rhinitis (n=208) were classified as having AR or NAR based on the presence of aeroallergen-specific IgE. Healthy controls (n=24) were recruited for comparison. The Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines were used to classify patients, and their irritant score (0-21 points) and current symptom score (5-35 points) were measured. Subjects with irritant scores ≥3 and <3 were classified as having irritant and nonirritant rhinitis, respectively. Results The mean age of enrolled subjects was 6.8 years (range: 1.8-16.0 years). The AR and NAR groups had similar irritant scores (P=0.394) and proportions of subjects with irritant scores ≥3 (P=0.105). Irritant score correlated positively with symptom score (P=0.005), and the proportion of subjects with irritant scores ≥3 was greater in children with moderate-severe rhinitis than in those with mild rhinitis (P=0.046). Multiple logistic regression analysis indicated that the presence of atopic eczema increased the risk for sensitivity to a nonallergenic irritant (aOR=2.928, 95% CI 1.567-5.473, P=0.001). Conclusions Response to a nonallergenic irritant was useful for gauging the severity of rhinitis, but not for differentiating AR from NAR. AR and NAR patients with atopic eczema may increase nasal sensitivity to nonallergenic irritants. PMID:27126728

  10. [Allergic bronchopulmonary mycosis induced by Schizophyllum commune--case report and review of the literature].

    PubMed

    Amemiya, Yuka; Shirai, Ryo; Tokimatsu, Issei; Oka, Hiroaki; Iwata, Atsuko; Otani, Satoshi; Umeki, Kenji; Sakashita, Hiroyuki; Ishii, Hiroshi; Gendo, Yoshiko; Kishi, Kenji; Hiramatsu, Kazufumi; Kadota, Jun-ichi

    2009-08-01

    A 55-year-old man was admitted to our hospital because of pyrexia, cough and sputum. He suffered from bronchial asthma. Chest X-ray showed infiltrates in the left upper and right lower lung fields. Chest CT scans showed mucoid impaction and consolidation predominantly in the left upper lobe. Laboratory tests showed peripheral eosinophilia, elevated level of serum IgE, and the increased eosinophils in his sputum. Schizophyllum commune was isolated from the bronchoscopically-removed mucous plug. A diagnosis of allergic bronchopulmonary mycosis (ABPM) due to S. commune was made. Simultaneous daily administration of 400 mg itraconazole (ITCZ) and corticosteroid (prednisolone; 30 mg daily) provided sufficient improvement. However recurrence was recognized on chest CT scan findings one year later. There are not enough case reports concerning S. commune-induced ABPM to establish a therapeutic approach to the condition.

  11. Allergic Airway Disease in Mice Alters T and B Cell Responses during an Acute Respiratory Poxvirus Infection

    PubMed Central

    Walline, Crystal C.; Sehra, Sarita; Fisher, Amanda J.; Guindon, Lynette M.; Kratzke, Ian M.; Montgomery, Jessica B.; Lipking, Kelsey P.; Glosson, Nicole L.; Benson, Heather L.; Sandusky, George E.; Wilkes, David S.; Brutkiewicz, Randy R.; Kaplan, Mark H.; Blum, Janice S.

    2013-01-01

    Pulmonary viral infections can exacerbate or trigger the development of allergic airway diseases via multiple mechanisms depending upon the infectious agent. Respiratory vaccinia virus transmission is well established, yet the effects of allergic airway disease on the host response to intra-pulmonary vaccinia virus infection remain poorly defined. As shown here BALB/c mice with preexisting airway disease infected with vaccinia virus developed more severe pulmonary inflammation, higher lung virus titers and greater weight loss compared with mice inoculated with virus alone. This enhanced viremia was observed despite increased pulmonary recruitment of CD8+ T effectors, greater IFNγ production in the lung, and high serum levels of anti-viral antibodies. Notably, flow cytometric analyses of lung CD8+ T cells revealed a shift in the hierarchy of immunodominant viral epitopes in virus inoculated mice with allergic airway disease compared to mice treated with virus only. Pulmonary IL-10 production by T cells and antigen presenting cells was detected following virus inoculation of animals and increased dramatically in allergic mice exposed to virus. IL-10 modulation of host responses to this respiratory virus infection was greatly influenced by the localized pulmonary microenvironment. Thus, blocking IL-10 signaling in virus-infected mice with allergic airway disease enhanced pulmonary CD4+ T cell production of IFNγ and increased serum anti-viral IgG1 levels. In contrast, pulmonary IFNγ and virus-specific IgG1 levels were reduced in vaccinia virus-treated mice with IL-10 receptor blockade. These observations demonstrate that pre-existing allergic lung disease alters the quality and magnitude of immune responses to respiratory poxviruses through an IL-10-dependent mechanism. PMID:23620814

  12. Allergic airway disease in mice alters T and B cell responses during an acute respiratory poxvirus infection.

    PubMed

    Walline, Crystal C; Sehra, Sarita; Fisher, Amanda J; Guindon, Lynette M; Kratzke, Ian M; Montgomery, Jessica B; Lipking, Kelsey P; Glosson, Nicole L; Benson, Heather L; Sandusky, George E; Wilkes, David S; Brutkiewicz, Randy R; Kaplan, Mark H; Blum, Janice S

    2013-01-01

    Pulmonary viral infections can exacerbate or trigger the development of allergic airway diseases via multiple mechanisms depending upon the infectious agent. Respiratory vaccinia virus transmission is well established, yet the effects of allergic airway disease on the host response to intra-pulmonary vaccinia virus infection remain poorly defined. As shown here BALB/c mice with preexisting airway disease infected with vaccinia virus developed more severe pulmonary inflammation, higher lung virus titers and greater weight loss compared with mice inoculated with virus alone. This enhanced viremia was observed despite increased pulmonary recruitment of CD8(+) T effectors, greater IFNγ production in the lung, and high serum levels of anti-viral antibodies. Notably, flow cytometric analyses of lung CD8(+) T cells revealed a shift in the hierarchy of immunodominant viral epitopes in virus inoculated mice with allergic airway disease compared to mice treated with virus only. Pulmonary IL-10 production by T cells and antigen presenting cells was detected following virus inoculation of animals and increased dramatically in allergic mice exposed to virus. IL-10 modulation of host responses to this respiratory virus infection was greatly influenced by the localized pulmonary microenvironment. Thus, blocking IL-10 signaling in virus-infected mice with allergic airway disease enhanced pulmonary CD4(+) T cell production of IFNγ and increased serum anti-viral IgG1 levels. In contrast, pulmonary IFNγ and virus-specific IgG1 levels were reduced in vaccinia virus-treated mice with IL-10 receptor blockade. These observations demonstrate that pre-existing allergic lung disease alters the quality and magnitude of immune responses to respiratory poxviruses through an IL-10-dependent mechanism.

  13. Combination of specific allergen and probiotics induces specific regulatory B cells and enhances specific immunotherapy effect on allergic rhinitis

    PubMed Central

    Yang, Gui; Luo, Xiang-Qian; Miao, Bei-Ping; Geng, Xiao-Rui; Liu, Zhi-Qiang; Liu, Jun; Wen, Zhong; Wang, Shuai; Zhang, Huan-Ping; Li, Jing; Liu, Zhi-Gang; Li, Hua-Bin; Yang, Ping-Chang

    2016-01-01

    The therapeutic efficacy of allergen specific immunotherapy (SIT) on allergic diseases is to be improved. Probiotics can regulate immune response. This study aims to promote the effect of SIT on allergic rhinitis (AR) by co-administration with Clostridium butyricum (Cb). In this study, patients with AR sensitized to mite allergens were enrolled to this study, and treated with SIT or/and Cb. The therapeutic efficacy was evaluated by the total nasal symptom scores (NSS), medication scores, serum specific IgE levels and T helper (Th)2 cytokine levels. The improvement of immune regulation in the AR patients was assessed by immunologic approaches. The results showed that treating AR patients with SIT alone markedly reduced NSS and medication scores; but did not alter the serum specific IgE, Th2 cytokines and skin prick test (SPT) index. The clinical symptoms on AR in SIT group relapsed one month after stopping SIT. Co-administration of Cb significantly enhanced the efficacy of SIT on AR as shown by suppression of NSS, medication scores, serum specific IgE, Th2 cytokines and SPT index; the regulatory B cell frequency was also markedly increased. Such an effect on AR was maintained throughout the observation period even after stopping the treatment. Butyrate blocked the activation of histone deacetylase-1, the downstream activities of epsilon chain promoter activation, and the IgE production in the antigen specific B cells. On the other hand, butyrate induced the IL-10 expression in B cells with a premise of the B cell receptor activation by specific antigens. In conclusion, administration with Cb can markedly enhance the efficacy of SIT on AR. PMID:27486985

  14. Proteolytic activity in cowshed dust extracts induces C5a release in murine bronchoalveolar lavage fluids which may account for its protective properties in allergic airway inflammation.

    PubMed

    Stiehm, Matthias; Bufe, Albrecht; Peters, Marcus

    2013-01-01

    Intranasal application of cowshed dust extract (CDE) during sensitisation in a murine model of experimental asthma leads to a significant alleviation of the clinical parameters of the allergic immune response. However, neither the immunological mechanisms underlying this protective effect nor all of the protective substances included in CDE have yet been described. Recently, complement factor 5a (C5a) receptor signalling has been identified to play a regulatory role in allergic airway disease. Thus we investigated whether CDE can activate the complement system to release biologically active C5a in the lung. Proteins included in CDE were identified by mass spectrometry. Complement cleaving activity of a serine protease identified in CDE was validated with the purified enzyme, and the biological activity of the released C5a was determined. C5a was applied in a murine model of allergy to prove its protective impact on allergic airway disease. CDE induced the release of C5a in murine bronchoalveolar lavages (BAL). We identified a serine protease from the midgut of tenebrio molitor larvae in CDEs which was able to induce the release of biologically active C5a in murine BAL. We applied C5a in different doses to female Balb/c mice during the sensitisation phase and during the first antigen challenge and showed that C5a has the ability to dampen important parameters of allergic airway inflammation, such as infiltration of proinflammatory cells into lung tissue or Th2 cytokine secretion by lung cells. We conclude that the C5a generating enzyme included in CDE might account for some of the allergy protective effects of CDE by generation of C5a in murine lungs.

  15. Levodropropizine (LD) activity in allergic asthmatic patients, challenged with ultrasonically nebulized distilled water, metacholine and allergen-induced bronchospasm.

    PubMed

    Bossi, R; Banfi, P; Filipazzi, V; Castelli, C; Braga, P C

    1994-04-01

    The antitussive compound Levodropropizine (LD) is active in animal bronchoconstriction induced by histamine and capsaicin and in man protects from bronchoconstriction induced by capsaicin. The primary objective of this study was to evaluate the mechanism of action of LD given at 60 mg t.i.d. as oral drops, for 8 days by means of specific bronchial challenges (allergens) and of aspecific challenges acting via different receptors and fibers (i.e. metacholine via cholinergic receptors and ultrasonically nebulized distilled water (UNDW) via histamine and neuropeptide release). The study design is randomized, double-blind, cross-over versus placebo in 30 allergic asthmatic patients. Baseline bronchial tone and bronchoconstrictor response to metacholine (MCh) were not modified by active treatment nor by placebo. On the contrary, in airway responsiveness to UNDW, the active treatment showed an antagonist effect against induced bronchoconstriction of 59% [activity ratio (AR) as antilog = 0.41; 95% confidence interval 0.35-0.54; p < or = 0.05] in comparison to no effect for placebo. Similarly, in airway responsiveness to specific allergen, active treatment antagonized the bronchoconstrictor effect of grass pollen by 83% and of various allergens (dermatophagoides and grass pollen) by 72%, i.e. AR of 0.17 (95% confidence interval 0.045-0.65; p < 0.01) and of 0.28 (95% confidence interval 0.07-1.04; p < 0.05), respectively. No antagonist effect was evident with placebo at all times. Besides inhibiting cough, LD is also partially effective in inhibiting bronchial hyperreactive response against specific allergen and UNDW bronchoconstriction. Hence, LD might act by partly inhibiting histamine and neuropeptide release.

  16. Inhibiting pollen reduced nicotinamide adenine dinucleotide phosphate oxidase–induced signal by intrapulmonary administration of antioxidants blocks allergic airway inflammation

    PubMed Central

    Dharajiya, Nilesh; Choudhury, Barun K.; Bacsi, Attila; Boldogh, Istvan; Alam, Rafeul; Sur, Sanjiv

    2011-01-01

    Background Ragweed extract (RWE) contains NADPH oxidases that induce oxidative stress in the airways independent of adaptive immunity (signal 1) and augment antigen (signal 2)–induced allergic airway inflammation. Objective To test whether inhibiting signal 1 by administering antioxidants inhibits allergic airway inflammation in mice. Methods The ability of ascorbic acid (AA), N-acetyl cystenine (NAC), and tocopherol to scavenge pollen NADPH oxidase–generated reactive oxygen species (ROS) was measured. These antioxidants were administered locally to inhibit signal 1 in the airways of RWE-sensitized mice. Recruitment of inflammatory cells, mucin production, calcium-activated chloride channel 3, IL-4, and IL-13 mRNA expression was quantified in the lungs. Results Antioxidants inhibited ROS generation by pollen NADPH oxidases and intracellular ROS generation in cultured epithelial cells. AA in combination with NAC or Tocopherol decreased RWE-induced ROS levels in cultured bronchial epithelial cells. Coadministration of antioxidants with RWE challenge inhibited 4-hydroxynonenal adduct formation, upregulation of Clca3 and IL-4 in lungs, mucin production, recruitment of eosinophils, and total inflammatory cells into the airways. Administration of antioxidants with a second RWE challenge also inhibited airway inflammation. However, administration of AA+NAC 4 or 24 hours after RWE challenge failed to inhibit allergic inflammation. Conclusion Signal 1 plays a proinflammatory role during repeated exposure to pollen extract. We propose that inhibiting signal 1 by increasing antioxidant potential in the airways may be a novel therapeutic strategy to attenuate pollen-induced allergic airway inflammation. Clinical implications Administration of antioxidants in the airways may constitute a novel therapeutic strategy to prevent pollen induced allergic airway inflammation. PMID:17336614

  17. Cirsium maritimum Makino Inhibits the Antigen/Immunoglobulin-E-Mediated Allergic Response In Vitro and In Vivo.

    PubMed

    Tanaka, Mamoru; Suzuki, Masanobu; Takei, Yuichiro; Okamoto, Takeaki; Watanabe, Hiroyuki

    2017-09-27

    We investigated whether Cirsium maritimum Makino can inhibit immunoglobulin-E-mediated allergic response in rat basophilic leukemia (RBL-2H3) cells and passive cutaneous anaphylaxis (PCA) in BALB/c mice. In vitro, the ethyl acetate extract of C. maritimum Makino (ECMM) significantly inhibited β-hexosaminidase release and decreased intracellular Ca(2+) levels in RBL-2H3 cells. Moreover, ECMM leaves more strongly suppressed the release of β-hexosaminidase than ECMM flowers. ECMM leaves also significantly suppressed the PCA reaction in the murine model. High-performance liquid chromatography and (1)H and (13)C nuclear magnetic resonance indicated that cirsimaritin, a flavonoid, was concentrated in active fractions of the extract. Our findings suggest that ECMM leaves have a potential regulatory effect on allergic reactions that may be mediated by mast cells. Furthermore, cirsimaritin may be the active anti-allergic component in C. maritimum Makino.

  18. Hesperidin suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model.

    PubMed

    Wei, Dajun; Ci, Xinxin; Chu, Xiao; Wei, Miaomiao; Hua, Shucheng; Deng, Xuming

    2012-02-01

    Hesperidin, a flavanone glycoside comprised of the flavanone hesperetin and the disaccharide rutinose, is a plentiful and inexpensive by-product of citrus cultivation. It has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, and anticarcinogenic properties. In this study, we attempt to determine whether hesperidin inhibits inflammatory mediators in the mouse allergic asthma model. Mice were sensitized and challenged by ovalbumin (OVA) to induce chronic airway inflammation and airway remodeling. The administration of hesperidin significantly decreased the number of infiltrating inflammatory cells and Th2 cytokines in bronchoalveolar lavage (BAL) fluid compared with the OVA-induced group of mice. In addition, hesperidin reduced OVA-specific IgE levels in serum. Hesperidin markedly alleviated the OVA-induced airway hyperresponsiveness (AHR) to inhaled methacholine. Based on lung histopathological studies using hematoxylin and eosin and alcian blue-periodic acid-Schiff staining, hesperidin inhibited inflammatory cell infiltration and mucus hypersecretion compared with the OVA-induced group of mice. These findings provide new insight into the immunopharmacological role of hesperidin in terms of its effects in a murine model of asthma.

  19. EFFECTS OF ULTRAVIOLET RADIATION (UVR) ON THE RESPIRATORY ALLERGIC RESPONSES OF BALB/C MICE TO A FUNGAL ALLERGEN

    EPA Science Inventory

    EFFECTS OF ULTRAVIOLET RADIATION (UVR) ON THE RESPIRATORY ALLERGIC RESPONSES OF BALB/C MICE TO A FUNGAL ALLERGEN. M D W Ward, D M Sailstad, D L Andrews, E H Boykin, and MJ K Selgrade. National Health and Environmental Effects Research Laboratory, Office of Research and Developmen...

  20. EFFECTS OF DIESEL EXHAUST ON PULMONARY RESPONSES DURING ALLERGIC SENSITIZATION TO AEROSOLIZED OVALBUMIN IN BALB/C MICE

    EPA Science Inventory

    Effects of Diesel Exhaust on Pulmonary Responses During Allergic Sensitization to Aerosolized Ovalbumin in BALB/c Mice. P. Singh1, M.J. Daniels1, D. Andrews1, E. Boykin1, W. P. Linak2 and M.I. Gilmour1. 1USEPA, ORD, NHEERL, RTP, NC. 2 USEPA, ORD, NRMRL, RTP, NC.

    Inhala...

  1. EFFECTS OF DIESEL EXHAUST ON PULMONARY RESPONSES DURING ALLERGIC SENSITIZATION TO AEROSOLIZED OVALBUMIN IN BALB/C MICE

    EPA Science Inventory

    Effects of Diesel Exhaust on Pulmonary Responses During Allergic Sensitization to Aerosolized Ovalbumin in BALB/c Mice. P. Singh1, M.J. Daniels1, D. Andrews1, E. Boykin1, W. P. Linak2 and M.I. Gilmour1. 1USEPA, ORD, NHEERL, RTP, NC. 2 USEPA, ORD, NRMRL, RTP, NC.

    Inhala...

  2. RESPIRATORY PHYSIOLOGICAL AND ALLERGIC-TYPE RESPONSES TO AN EXTRACT OF STACHYBOTRYS CHARTARUM IN BALB/C MICE

    EPA Science Inventory

    RESPIRATORY PHYSIOLOGICAL AND ALLERGIC-TYPE RESPONSES TO AN EXTRACT OF Stachybotrys chartarum IN BALB/C MICE. ME Viana1, N Haykal-Coates2, S H Gavett2, MJ Selgrade2, and M D W Ward2. 1APR/CVM, NCSU, Raleigh, NC, USA. 2NHEERL, ORD, US EPA, RTP, NC, USA.
    Rationale: assess the ab...

  3. Effects of gasoline engine emissions on preexisting allergic airway responses in mice.

    PubMed

    Day, Kimberly C; Reed, Matthew D; McDonald, Jacob D; Seilkop, Steven K; Barrett, Edward G

    2008-10-01

    Gasoline-powered vehicle emissions contribute significantly to ambient air pollution. We hypothesized that exposure to gasoline engine emissions (GEE) may exacerbate preexisting allergic airway responses. Male BALB/c mice were sensitized by injection with ovalbumin (OVA) and then received a 10-min aerosolized OVA challenge. Parallel groups were sham-sensitized with saline. Mice were exposed 6 h/day to air (control, C) or GEE containing particulate matter (PM) at low (L), medium (M), or high (H) concentrations, or to the H level with PM removed by filtration (high-filtered, HF). Immediately after GEE exposure mice received another 10-min aerosol OVA challenge (pre-OVA protocol). In a second (post-OVA) protocol, mice were similarly sensitized but only challenged to OVA before air or GEE exposure. Measurements of airway hyperresponsiveness (AHR), bronchoalveolar lavage (BAL), and blood collection were performed approximately 24 h after the last exposure. In both protocols, M, H, and HF GEE exposure significantly decreased BAL neutrophils from nonsensitized mice but had no significant effect on BAL cells from OVA-sensitized mice. In the pre-OVA protocol, GEE exposure increased OVA-specific IgG(1) but had no effect on BAL interleukin (IL)-2, IL-4, IL-13, or interferon (IFN)-gamma in OVA-sensitized mice. Nonsensitized GEE-exposed mice had increased OVA-specific IgG(2a), IgE, and IL-2, but decreased total IgE. In the post-OVA protocol, GEE exposure reduced BAL IL-4, IL-5, and IFN-gamma in nonsensitized mice but had no effect on sensitized mice. These results suggest acute exposure to the gas-vapor phase of GEE suppressed inflammatory cells and cytokines from nonsensitized mice but did not substantially exacerbate allergic responses.

  4. Targeted HAS2 Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease.

    PubMed

    Walker, Julia K L; Theriot, Barbara S; Ghio, Michael; Trempus, Carol S; Wong, Jordan E; McQuade, Victoria L; Liang, Jiurong; Jiang, Dianhua; Noble, Paul W; Garantziotis, Stavros; Kraft, Monica; Ingram, Jennifer L

    2017-08-08

    Hyaluronan (HA), a major component of extracellular matrix, is secreted by airway structural cells. For example, airway fibroblasts in allergic asthma secrete elevated levels of HA in association with increased hyaluronan synthase 2 (HAS2) expression. Thus, we hypothesized that HA accumulation in the airway wall may contribute to airway remodeling and hyperresponsiveness in allergic airways disease. Transgenic mice were generated in which the smooth muscle α-actin (αSMA) promoter drives HAS2 expression. Mixed male and female αSMA-HAS2 mice (HAS2+ mice, n=16; HAS2- mice, n=13) were sensitized via intraperitoneal injection, and then chronically challenged with aerosolized ovalbumin (OVA) for 6 weeks. To test airway responsiveness, increasing doses of methacholine were delivered intravenously, and airway resistance was measured using the forced oscillation technique. HA, cytokines, and cell types were analyzed in bronchoalveolar lavage fluid, serum and whole lung homogenates. Lung sections were stained using antibodies specific for hyaluronan binding protein (HABP) and αSMA, as well as Masson's trichrome stain. Staining of lung tissue demonstrated significantly increased peribronchial HA, αSMA, and collagen deposition in OVA-challenged αSMA-HAS2+ mice compared to αSMA-HAS2- mice. Unexpectedly, OVA-challenged αSMA-HAS2+ displayed significantly reduced airway responsiveness to methacholine compared to similarly-treated αSMA-HAS2- mice. Total numbers of inflammatory cell types in the bronchoalveolar lavage fluid of OVA-challenged αSMA-HAS2+ mice were not significantly different from that of OVA-challenged αSMA-HAS2- mice. Allergen-challenged mice that overexpress HAS2 in myofibroblasts and smooth muscle cells develop increased airway fibrosis, which lessens airway hyperresponsiveness to bronchoconstrictors.

  5. Allergic manifestations and cutaneous histamine responses in patients with McCune Albright syndrome

    PubMed Central

    2013-01-01

    Background McCune Albright syndrome (MAS) is a rare disorder characterized by precocious puberty, café-au-lait spots, and fibrous dysplasia. Its cause is an activating mutation in the GNAS gene, encoding a subunit of the stimulatory G protein, Gsalpha (Gsα). The action of any mediator that signals via Gsα and cyclic AMP can be up regulated in MAS. We had observed gastritis, gastroesophageal reflux, and anaphylaxis in McCune Albright patients. Objective As histamine is known to signal via histamine 1 (H1) and histamine 2 (H2) receptors, which couple with stimulatory G proteins, we attempted to mechanistically link histamine responsiveness to the activating GNAS mutation. We hypothesized that responsiveness to histamine skin testing would differ between MAS patients and healthy controls. Patients and methods After obtaining informed consent, we performed a systematic review of histamine responsiveness and allergic manifestations in 11 MAS patients and 11 sex-matched, Tanner-stage matched controls. We performed skin prick testing, quantifying the orthogonal diameters of wheals and erythema. We also quantitated G protein mRNA expression. Results The peak wheal and flare responses to histamine were significantly higher in MAS patients compared to controls. Conclusions This study suggests that MAS patients may be at risk for exaggerated histamine responsiveness compared to unaffected controls. PMID:23663565

  6. Maternal allergic disease does not affect the phenotype of T and B cells or the immune response to allergens in neonates.

    PubMed

    Rindsjö, E; Joerink, M; Johansson, C; Bremme, K; Malmström, V; Scheynius, A

    2010-07-01

    It is hypothesized that the in utero environment in allergic mothers can affect the neonatal immune responses. The aim of this study was to analyse the effect of maternal allergic disease on cord blood mononuclear cell (CBMC) phenotype and proliferative responses upon allergen stimulation. Peripheral blood mononuclear cells (PBMC) from 12 allergic and 14 nonallergic mothers and CBMC from their children were analysed. In the mothers, we determined cell proliferation, production of IL-4 and expression of FOXP3 in response to allergen stimulation. In the children, we evaluated cell proliferation and FOXP3 expression following allergen stimulation. Furthermore, expression of different homing markers on T cells and regulatory T cells and maturity of the T cells and B cell subsets were evaluated directly ex vivo. The timothy- and birch-allergic mothers responded with increased proliferation and/or IL-4 production towards timothy and birch extract, respectively, when compared to nonallergic mothers. This could not be explained by impairment of FOXP3(+) regulatory T cells in the allergic mothers. CBMC proliferation and FOXP3 expression in response to allergens were not affected by the allergic status of the mother. Also, phenotype of T cells, FOXP3(+) regulatory T cells and B cells was not affected by the allergic status of the mother. Our results suggest that maternal allergic disease has no effect on the neonatal response to allergens or the phenotype of neonatal lymphocytes. The factors studied here could, however, still affect later development of allergy.

  7. An animal model for allergic penicilliosis induced by the intranasal instillation of viable Penicillium chrysogenum conidia

    PubMed Central

    Cooley, J; Wong, W; Jumper, C; Hutson, J; Williams, H; Schwab, C; Straus, D

    2000-01-01

    from the 104 non-viable group was similar to controls.
CONCLUSIONS—These data suggest that long term inhalation of viable P chrysogenum propagules induces type 2 T helper cell mediated (Th2) inflammatory responses such as increases in total and conidia-specific serum IgE and IgG1, together with BAL fluid levels of IL-4 and IL-5 and peripheral and airway eosinophilia, which are mediators of allergic reactions.

 PMID:10817798

  8. Effects of Low Level Laser Therapy on Ovalbumin-Induced Mouse Model of Allergic Rhinitis

    PubMed Central

    Choi, Binhye; Chang, Mun Seog; Ryu, Bongha; Kim, Jinsung

    2013-01-01

    Introduction. This study was designed to investigate the effects of low level laser therapy (LLLT) on experimental allergic rhinitis (AR) models induced by ovalbumin. Materials and Methods. AR was induced by 1% ovalbumin in mice. Twenty-four mice were divided into 4 groups: normal, control, low, and high dose irradiation. Low and high dose LLLT were irradiated once a day for 7 days. Total IgE, cytokines concentrations (IL-4 and IFN-γ), and thymus and activation regulated chemokine (TARC) were measured. Histological changes in the nasal mucosal tissue by laser irradiation were examined. Results. LLLT significantly inhibited total IgE, IL-4, and TARC expression in ovalbumin-induced mice at low dose irradiation. The protein expression level of IL-4 in spleen was inhibited in low dose irradiation significantly. IL-4 expression in EL-4 cells was inhibited in a dose dependent manner. Histological damages of the epithelium in the nasal septum were improved by laser irradiation with marked improvement at low dose irradiation. Conclusion. These results suggest that LLLT might serve as a new therapeutic tool in the treatment of AR with more effectiveness at low dose irradiation. To determine the optimal dose of laser irradiation and action mechanisms of laser therapy, further studies will be needed. PMID:24319484

  9. Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation

    PubMed Central

    Hosoki, Koa; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Purpose of review To discuss the presence and role of neutrophils in asthma and allergic diseases, and outline importance of pollen and cat dander-induced innate neutrophil recruitment in induction of allergic sensitization and allergic inflammation. Recent findings Uncontrolled asthma is associated with elevated numbers of neutrophils, and levels of neutrophil-attracting chemokine IL-8 and IL-17 in BAL fluids. These parameters negatively correlate with lung function. Pollen allergens and cat dander recruit neutrophils to the airways in a TLR4, MD2 and CXCR2-dependent manner. Repeated recruitment of activated neutrophils by these allergens facilitates allergic sensitization and airway inflammation. Inhibition of neutrophil recruitment with CXCR2 inhibitor, disruption of TLR4, or siRNA against MD2 also inhibits allergic inflammation. The molecular mechanisms by which neutrophils shift the inflammatory response of the airways to inhaled allergens to an allergic phenotype is an area of active research. Summary Recent studies have revealed that neutrophil recruitment is important in development of allergic sensitization and inflammation. Inhibition of neutrophils recruitment may be strategy to control allergic inflammation. PMID:26694038

  10. Oral administration of Enterococcus faecalis FK-23 suppresses Th17 cell development and attenuates allergic airway responses in mice.

    PubMed

    Zhang, Bei; An, Jun; Shimada, Takashi; Liu, Shuang; Maeyama, Kazutaka

    2012-08-01

    Evidence is increasing that oral administration of probiotics can attenuate asthmatic responses both in murine models and clinical trials. T-helper 17 (Th17) cells, a subset of CD4+ T cells have been implicated as having an important role in the development of several allergic disorders, but the relationship between oral administration of probiotics and Th17 development has not been well studied. BALB/c mice were given lysed Enterococcus faecalis FK-23 (LFK) orally for 28 days. After sensitization by subcutaneous injection of ovalbumin (OVA) on Days 14 and 21 and 1% OVA inhalation on Days 25, 26 and 27, they were challenged with a 5% OVA aerosol on Day 28. Twenty-four hours later, airway resistance and accumulation of inflammatory cells in bronchoalveolar lavage fluid (BALF) and lung tissues were determined. Ιnterleukin (IL)-17-expressing CD4+ lymphocytes isolated from lung, spleen and lamina propria of the intestine were detected by flow cytometry. The expression of IL-6 and TGF-β mRNA was assessed by real-time PCR. Increases in airway hyperresponsiveness, and numbers of total leukocytes and mast cells in BALF induced by OVA challenge were significantly suppressed by oral administration of LFK. The increased percentage of IL-17-expressing CD4+ cells from lung, spleen and intestine in OVA-challenged mice was reduced following LFK treatment. We conclude that the oral administration of LFK suppresses the asthmatic response and that this is associated with attenuation of Th17 cell development.

  11. CROSS REACTIVITY IN ALLERGIC ASTHMA-LIKE RESPONSES BETWEEN MOLD AND HOUSE DUST MITE IN MICE

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic asthma. Some mold allergens have been implicated as the causal agent for allergic asthma. Western blot analysis demonstrated IgE-binding cross-reactivity among m...

  12. CROSS REACTIVITY IN ALLERGIC ASTHMA-LIKE RESPONSES BETWEEN MOLD AND HOUSE DUST MITE IN MICE

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic asthma. Some mold allergens have been implicated as the causal agent for allergic asthma. Western blot analysis demonstrated IgE-binding cross-reactivity among m...

  13. Periostin facilitates eosinophil tissue infiltration in allergic lung and esophageal responses.

    PubMed

    Blanchard, C; Mingler, M K; McBride, M; Putnam, P E; Collins, M H; Chang, G; Stringer, K; Abonia, J P; Molkentin, J D; Rothenberg, M E

    2008-07-01

    Periostin is an extracellular matrix protein that has been primarily studied in the context of the heart, where it has been shown to promote cardiac repair and remodeling. In this study, we focused on the role of periostin in an allergic eosinophilic inflammatory disease (eosinophilic esophagitis (EE)) known to involve extensive tissue remodeling. Periostin was indeed markedly overexpressed (35-fold) in the esophagus of EE patients, particularly in the papillae, compared with control individuals. Periostin expression was downstream from transforming growth factor-beta and interleukin-13, as these cytokines were elevated in EE esophageal samples and markedly induced periostin production by primary esophageal fibroblasts (107- and 295-fold, respectively, at 10 ng ml(-1)). A functional role for periostin in eliciting esophageal eosinophilia was demonstrated, as periostin-null mice had a specific defect in allergen-induced eosinophil recruitment to the lungs and esophagus (66 and 72% decrease, respectively). Mechanistic analyses revealed that periostin increased (5.8-fold) eosinophil adhesion to fibronectin. As such, these findings extend the involvement of periostin to esophagitis and uncover a novel role for periostin in directly regulating leukocyte (eosinophil) accumulation in T helper type 2-associated mucosal inflammation in both mice and humans.

  14. Exposure to triclosan augments the allergic response to ovalbumin in a mouse model of asthma.

    PubMed

    Anderson, Stacey E; Franko, Jennifer; Kashon, Michael L; Anderson, Katie L; Hubbs, Ann F; Lukomska, Ewa; Meade, B Jean

    2013-03-01

    During the last decade, there has been a remarkable and unexplained increase in the prevalence of asthma. These studies were conducted to investigate the role of dermal exposure to triclosan, an endocrine-disrupting compound, on the hypersensitivity response to ovalbumin (OVA) in a murine model of asthma. Triclosan has had widespread use in the general population as an antibacterial and antifungal agent and is commonly found in consumer products such as soaps, deodorants, toothpastes, shaving creams, mouthwashes, and cleaning supplies. For these studies, BALB/c mice were exposed dermally to concentrations of triclosan ranging from 0.75 to 3% (0.375-1.5mg/mouse/day) for 28 consecutive days. Concordantly, mice were ip injected with OVA (0.9 µg) and aluminum hydroxide (0.5mg) on days 1 and 10 and challenged with OVA (125 µg) by pharyngeal aspiration on days 19 and 27. Compared with the animals exposed to OVA alone, increased spleen weights, OVA-specific IgE, interleukin-13 cytokine levels, and numbers of lung eosinophils were demonstrated when mice were coexposed to OVA and triclosan. Statistically significant increases in OVA-specific and nonspecific airway hyperreactivity were observed for all triclosan coexposed groups compared with the vehicle and OVA controls. In these studies, exposure to triclosan alone was not demonstrated to be allergenic; however, coexposure with a known allergen resulted in enhancement of the hypersensitivity response to that allergen, suggesting that triclosan exposure may augment the allergic responses to other environmental allergens.

  15. CD8α¯ DC is the major DC subset which mediates inhibition of allergic responses by Schistosoma infection.

    PubMed

    Liu, J-Y; Lu, P; Hu, L-Z; Shen, Y-J; Zhu, Y-J; Ren, J-L; Ji, W-H; Zhang, X-Z; Wu, Z-Q; Yang, X-Z; Yang, J; Li, L-Y; Yang, X; Liu, P-M

    2014-12-01

    Our and others' previous studies have shown that Schistosoma japonicum (SJ) infection can inhibit allergic reactions. We recently reported that DCs played an important role in SJ infection-mediated inhibition of allergy, which was associated with enhanced IL-10 and T regulatory cell responses. Here, we further compared the role of CD8α(+) DC and CD8α(-) DC subsets for the inhibitory effect. We sorted CD8α(+) DC (SJCD8α(+) DC) and CD8α(-) DC (SJCD8α(-) DC) from SJ-infected mice and tested their ability to modulate allergic responses in vivo. The data showed that the adoptive transfer of SJCD8α(-) DC was much more efficient than SJCD8α(+) DC for the suppression of allergic airway eosinophilia, mucus overproduction, antigen-specific IgE responses, and Th2 cytokines (IL-4 and IL-5). More importantly, we found that the transfer of SJCD8α(-) DC, but not SJCD8α(+) DC, significantly increased IL-10 and TGF-β production following OVA exposure. As control, the transfer of DC subsets from naïve mice had no significant effect on allergic inflammation. In addition, SJCD8α-DC expressed significantly higher IL-10 but lower IL-12, CD80 and CD86 than SJCD8α(+) DC, fitting a tolerogenic phenotype. The results suggest that CD8α(-) DC is the predominant DC subset which is involved in the parasitic infection-mediated inhibition of allergic inflammation and possibly through enhancing immunomodulatory cytokine (IL-10 and TGF-β) production. © 2014 John Wiley & Sons Ltd.

  16. Inducible CD4+LAP+Foxp3- regulatory T cells suppress allergic inflammation.

    PubMed

    Duan, Wei; So, Takanori; Mehta, Amit K; Choi, Heonsik; Croft, Michael

    2011-12-15

    Regulatory T cells (Tregs) play a critical role in the maintenance of airway tolerance. We report that inhaled soluble Ag induces adaptive Foxp3(+) Tregs, as well as a regulatory population of CD4(+) T cells in the lungs and lung-draining lymph nodes that express latency-associated peptide (LAP) on their cell surface but do not express Foxp3. Blocking the cytokine IL-10 or TGF-β prevented the generation of LAP(+) Tregs and Foxp3(+) Tregs in vivo, and the LAP(+) Tregs could also be generated concomitantly with Foxp3(+) Tregs in vitro by culturing naive CD4(+) T cells with Ag and exogenous TGF-β. The LAP(+) Tregs strongly suppressed naive CD4(+) T cell proliferation, and transfer of sorted OVA-specific LAP(+) Tregs in vivo inhibited allergic eosinophilia and Th2 cytokine expression in the lung, either when present at the time of Th2 sensitization or when injected after Th2 cells were formed. Furthermore, inflammatory innate stimuli from house dust mite extract, nucleotide-binding oligomerization domain containing 2 ligand, and LPS, which are sufficient for blocking airway tolerance, strongly decreased the induction of LAP(+) Tregs. Taken together, we concluded that inducible Ag-specific LAP(+) Tregs can suppress asthmatic lung inflammation and constitute a mediator of airway tolerance together with Foxp3(+) Tregs.

  17. Inducible CD4+LAP+ Foxp3 negative Regulatory T cells Suppress Allergic Inflammation

    PubMed Central

    Duan, Wei; So, Takanori; Mehta, Amit K.; Choi, Heonsik; Croft, Michael

    2011-01-01

    Regulatory T cells (Treg cells) play a critical role in the maintenance of airway tolerance. We report here that inhaled soluble antigen induces not only adaptive Foxp3+ Treg but also a regulatory population of CD4+ T cells in the lungs and lung-draining lymph nodes that express latency-associated peptide (LAP) on their cell surface but do not express Foxp3. Blocking the cytokines IL-10 or transforming growth factor-β (TGF-β) prevented the generation of the LAP+ Treg and Foxp3+ Treg cells in vivo, and the LAP+ Treg could also be generated concomitantly with Foxp3+ Treg in vitro by culturing naïve CD4+ T cells with antigen and exogenous TGF-β. The LAP+ Treg cells strongly suppressed naïve CD4+ T cell proliferation, and transfer of sorted OVA-specific LAP+ Treg cells in vivo inhibited allergic eosinophilia and Th2 cytokine expression in the lung, either when present at the time of Th2 sensitization or when injected after Th2 cells were formed. Furthermore, inflammatory innate stimuli from house dust mite (HDM) extract, nucleotide-binding oligomerization domain containing 2 (Nod2) ligand, and lipopolysacchride (LPS), that are sufficient for blocking airway tolerance, strongly decreased the induction of LAP+ Treg cells. Taken together, we conclude that inducible antigen-specific LAP+ Treg cells can suppress asthmatic lung inflammation and constitute a mediator of airway tolerance together with Foxp3+ Treg cells. PMID:22079987

  18. Breathing hot humid air induces airway irritation and cough in patients with allergic rhinitis.

    PubMed

    Khosravi, Mehdi; Collins, Paul B; Lin, Ruei-Lung; Hayes, Don; Smith, Jaclyn A; Lee, Lu-Yuan

    2014-07-01

    We studied the respiratory responses to an increase in airway temperature in patients with allergic rhinitis (AR). Responses to isocapnic hyperventilation (40% of maximal voluntary ventilation) for 4min of humidified hot air (HA; 49°C) and room air (RA; 21°C) were compared between AR patients (n=7) and healthy subjects (n=6). In AR patients, cough frequency increased pronouncedly from 0.10±0.07 before to 2.37±0.73 during, and 1.80±0.79coughs/min for the first 8min after the HA challenge, but not during the RA challenge. In contrast, neither HA nor RA had any significant tussive effect in healthy subjects. The HA challenge also caused respiratory discomfort (mainly throat irritation) measured by the handgrip dynamometry in AR patients, but not in healthy subjects. Bronchoconstriction was not detected after the HA challenge in either group of subjects. In conclusion, hyperventilation of HA triggered vigorous cough response and throat irritation in AR patients, indicating the involvement of sensory nerves innervating upper airways.

  19. TRPA1 mediated aggravation of allergic contact dermatitis induced by DINP and regulated by NF-κB activation

    PubMed Central

    Kang, Jun; Ding, Yong; Li, Baizhan; Liu, Hong; Yang, Xu; Chen, Mingqing

    2017-01-01

    The possible pathogenic role and mechanism of Di-iso-nonyl phthalate (DINP) in allergic dermatitis is still controversial. This work has shown that oral exposure to DINP exacerbated allergic dermatitis tissue lesions in FITC-sensitized mice. The lesions was accompanied by an enhancement of TRPA1 expression and an increase in IgG1, IL-6 and IL-13 levels. This work also found that blocking TRPA1 by HC030031 effectively prevented the development of allergic dermatitis resulting from oral exposure to DINP and/or FITC-sensitized mice. This result is marked by the down regulation of IgG1 levels, a reduction in mast cell degranulation and a decrease in IL-6 and IL-13 levels. We also showed that blocking NF-κB inhibited TRPA1 expression, and that blocking TRPA1 had no significant effect on the activation of NF-κB or TSLP expression. This study helps in understanding the role DINP exposure plays in the development of allergic dermatitis and provides new insight into the mechanisms behind the DINP-induced adjuvant effect. PMID:28240277

  20. Characteristics of children with food protein-induced enterocolitis and allergic proctocolitis.

    PubMed

    Arik Yilmaz, Ebru; Soyer, Ozge; Cavkaytar, Ozlem; Karaatmaca, Betul; Buyuktiryaki, Betul; Sahiner, Umit M; Sekerel, Bulent E; Sackesen, Cansin

    2017-01-01

    The aim of this study was to determine and compare the clinical and laboratory features of food protein-induced enterocolitis syndrome (FPIES) and food protein-induced allergic proctocolitis (FPIAP), and to provide information about the short-term prognoses. Children diagnosed with FPIES or FPIAP between 2010 and 2015 were enrolled in this study. Overall, 64 infants (37 FPIAP, 27 FPIES) were evaluated, with the average age at the onset of symptoms being significantly lower in the patients with FPIAP than in the patients with FPIES (2 months [1-3 months] versus 4 months [1.5-6 months]; p = 0.043). Fifteen of the patients with FPIAP (40.5%) and six of the patients with FPIES (22.2%) were exclusively breast-fed at the time of the onset of symptoms. Cow's milk was the most frequent trigger (100% FPIAP, 74% FPIES); solid foods caused FPIES more frequently. Forty-eight of the 64 patients were followed up until at least 2 years of age, with the resolution rates being 91.3% for FPIAP and 60% for FPIES. The solid food-induced cases of FPIES (27.3%) had a significantly lower rate of resolution than the liquid food-induced FPIES (83.3%) (p = 0.003). Cow's milk is the most common trigger of both FPIAP and FPIES. The symptom onset age seemed to be earlier in FPIAP. The resolution age was similar, however, the recovery in FPIES may be later if the trigger food is solid. To our knowledge, this was the first clinical study to compare the clinical and laboratory characteristics of patients with FPIAP and FPIES.

  1. "The value of pre- and co-seasonal sublingual immunotherapy in pollen-induced allergic rhinoconjunctivitis".

    PubMed

    Demoly, Pascal; Calderon, Moises A; Casale, Thomas B; Malling, Hans-Jørgen; Wahn, Ulrich

    2015-01-01

    Allergen immunotherapy (AIT) is a guidelines-approved, disease-modifying treatment option for respiratory allergies, including allergic rhinitis (AR) induced by pollen. The various AIT regimens employed to date in pollen-induced AR can be classified as continuous (i.e. year-round) or discontinuous (i.e. pre-seasonal alone, co-seasonal alone or pre- and co-seasonal). Pre-and co-seasonal regimens are typically used for sublingual allergen immunotherapy (SLIT) and have economic and compliance advantages over perennial (year-round) regimens. However, these advantages must not come at the expensive of poor efficacy or safety. The results of recent double-blind, placebo-controlled, randomized clinical trials show that pre- and co-seasonal SLIT is safe and effective in patients with AR induced by grass pollen (treated with a tablet formulation) or by birch pollen (treated with a liquid formulation). Progress in SLIT has been made in defining the optimal dose of major allergen, the administration frequency (daily), the duration of pre-seasonal treatment (four months) and the number of treatment seasons (at least three). Post-marketing, "real-life" trials of pre- and co-seasonal birch or grass pollen SLIT regimens have confirmed the efficacy and safety observed in the clinical trials. In the treatment of pollen-induced AR, pre- and co-seasonal SLIT regimens appear to be at least as effective and safe as perennial SLIT regimens, and are associated with lower costs and good compliance. Good compliance may mean that pre- and co-seasonal SLIT regimens are inherently more effective and safer than perennial SLIT regimens. When considering the pre- and co-seasonal discontinuous regimen in particular, a 300 IR five-grass-pollen formulation is the only SLIT tablet with a clinical development programme having provided evidence of short-term, sustained and post-treatment efficacy.

  2. Foxp3(+)-Treg cells enhanced by repeated low-dose gamma-irradiation attenuate ovalbumin-induced allergic asthma in mice.

    PubMed

    Park, Bum Soo; Hong, Gwan Ui; Ro, Jai Youl

    2013-05-01

    Gamma radiation is used for several therapeutic indications such as cancers and autoimmune diseases. Low-dose whole-body γ irradiation has been shown to activate immune responses in several ways, however, the effect and mechanism of irradiation on allergic asthma remains poorly understood. This study investigated whether or not irradiation exacerbates allergic asthma responses and its potential mechanism. C57BL/6 mice were sensitized and challenged with ovalbumin (OVA) to induce asthma. The mice received whole-body irradiation once daily for 3 consecutive days with a dose of 0.667 Gy using (137)Cs γ rays 24 h before every OVA challenge. Repeated low-dose irradiation reduced OVA-specific IgE levels, the number of inflammatory cells including mast cells, goblet cell hyperplasia, collagen deposition, airway hyperresponsiveness, expression of inflammatory cytokines, CCL2/CCR2, as well as nuclear factor kappa B (NF-κB) and activator protein-1 activities. All of these factors were increased in BAL cells and lung tissue of OVA-challenged mice. Irradiation increased the number of Treg cells, expression of interleukin (IL)-10, IL-2 and IL-35 in BAL cells and lung tissue. Irradiation also increased Treg cell-expressed Foxp3 and IL-10 by NF-κB and RUNX1 in OVA-challenged mice. Furthermore, while Treg cell-expressing OX40 and IL-10 were enhanced in lung tissue or act-bone marrow-derived mast cells (BMMCs) with Treg cells, but BMMCs-expressing OX40L and TGF-β were decreased. The data suggest that irradiation enhances Foxp3(+)- and IL-10-producing Treg cells, which reduce OVA-induced allergic airway inflammation and tissue remodeling through the down-regulation of migration by the CCL2/CCR2 axis and activation of mast cells via OX40/OX40L in lung tissue of OVA-challenged mice.

  3. Two cases with nickel-induced oral mucosal hyperplasia: a rare clinical form of allergic contact stomatitis?

    PubMed

    Özkaya, Esen; Babuna, Goncagül

    2011-03-15

    Allergic contact stomatitis (ACS) can occur with variable clinical presentations such as erythematous, erosive, and lichenoid forms. Burning mouth symptoms may also be a result of allergic contact stomatitis. Additionally, gingival hyperplasia has been reported in exceptional cases of ACS caused by dental metals. Here, two rare cases are presented of nickel-induced oral mucosal hyperplasia with gingival and upper palatal involvement from metal-porcelain crowns and metal-acrylic upper denture, respectively. In both cases the diagnosis was made on the basis of the positive patch test results to nickel sulfate and the regression of the lesions after removing the nickel containing dental materials. Nickel-induced ACS should be borne in mind in every case of oral mucosal hyperplasia appearing after dental procedures, especially in the presence of previous allergies and sensitization risks such as ear piercing. It might be further suggested to include this variant within the clinical forms of ACS.

  4. Th2 Allergic Immune Response to Inhaled Fungal Antigens is Modulated By TLR-4-Independent Bacterial Products

    PubMed Central

    Allard, Jenna B.; Rinaldi, Lisa; Wargo, Matt; Allen, Gilman; Akira, Shizuo; Uematsu, Satoshi; Poynter, Matthew E.; Hogan, Deborah A.; Rincon, Mercedes; Whittaker, Laurie A.

    2009-01-01

    SUMMARY Allergic airway disease is characterized by eosinophilic inflammation, mucus hypersecretion and increased airway resistance. Fungal antigens are ubiquitous within the environment and are well know triggers of allergic disease. Bacterial products are also frequently encountered within the environment and may alter the immune response to certain antigens. The consequence of simultaneous exposure to bacterial and fungal products on the lung adaptive immune response has not been explored. Here we show that oropharyngeal aspiration of fungal lysates (Candida albicans, Aspergillus fumigatus) promotes airway eosinophilia, secretion of Th2 cytokines and mucus cell metaplasia. In contrast, oropharyngeal exposure to bacterial lysates (Pseudomonas aeruginosa) promotes airway inflammation characterized by neutrophils, Th1 cytokine secretion and no mucus production. More importantly, administration of bacterial lysates together with fungal lysates deviates the adaptive immune response to a Th1 type associated with neutrophilia and diminished mucus production. The immunomodulatory effect that bacterial lysates have on the response to fungi is TLR4-independent but MyD88 dependent. Thus, different types of microbial products within the airway can alter the host's adaptive immune response, and potentially impact the development of allergic airway disease to environmental fungal antigens. PMID:19224641

  5. Mechanisms of chemical-induced innate immunity in allergic contact dermatitis.

    PubMed

    Martin, S F; Esser, P R; Weber, F C; Jakob, T; Freudenberg, M A; Schmidt, M; Goebeler, M

    2011-09-01

    Allergic contact dermatitis (ACD) is one of the most prevalent occupational skin diseases and causes severe and long-lasting health problems in the case of chronification. It is initiated by an innate inflammatory immune response to skin contact with low molecular weight chemicals that results in the priming of chemical-specific, skin-homing CD8(+) Tc1/Tc17 and CD4(+) Th1/Th17 cells. Following this sensitization step, T lymphocytes infiltrate the inflamed skin upon challenge with the same chemical. The T cells then exert cytotoxic function and secrete inflammatory mediators to produce an eczematous skin reaction. The recent characterization of the mechanisms underlying the innate inflammatory response has revealed that contact allergens activate innate effector mechanisms and signalling pathways that are also involved in anti-infectious immunity. This emerging analogy implies infection as a potential trigger or amplifier of the sensitization to contact allergens. Moreover, new mechanistic insights into the induction of ACD identify potential targets for preventive and therapeutic intervention. We summarize here the latest findings in this area of research.

  6. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    PubMed

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease.

    PubMed

    Schneider, Dina; Hong, Jun Young; Bowman, Emily R; Chung, Yutein; Nagarkar, Deepti R; McHenry, Christina L; Goldsmith, Adam M; Bentley, J Kelley; Lewis, Toby C; Hershenson, Marc B

    2013-02-01

    Human rhinovirus (HRV) infections lead to exacerbations of lower airways disease in asthmatic patients but not in healthy individuals. However, underlying mechanisms remain to be completely elucidated. We hypothesized that the Th2-driven allergic environment enhances HRV-induced CC chemokine production, leading to asthma exacerbations. Ovalbumin (OVA)-sensitized and -challenged mice inoculated with HRV showed significant increases in the expression of lung CC chemokine ligand (CCL)-2/monocyte chemotactic protein (MCP)-1, CCL4/macrophage inflammatory protein (MIP)-1β, CCL7/MCP-3, CCL19/MIP-3β, and CCL20/MIP3α compared with mice treated with OVA alone. Inhibition of CCL2 with neutralizing antibody significantly attenuated HRV-induced airways inflammation and hyperresponsiveness in OVA-treated mice. Immunohistochemical stains showed colocalization of CCL2 with HRV in epithelial cells and CD68-positive macrophages, and flow cytometry showed increased CCL2(+), CD11b(+) cells in the lungs of OVA-treated, HRV-infected mice. Compared with lung macrophages from naïve mice, macrophages from OVA-exposed mice expressed significantly more CCL2 in response to HRV infection ex vivo. Pretreatment of mouse lung macrophages and BEAS-2B human bronchial epithelial cells with interleukin (IL)-4 and IL-13 increased HRV-induced CCL2 expression, and mouse lung macrophages from IL-4 receptor knockout mice showed reduced CCL2 expression in response to HRV, suggesting that exposure to these Th2 cytokines plays a role in the altered HRV response. Finally, bronchoalveolar macrophages from children with asthma elaborated more CCL2 upon ex vivo exposure to HRV than cells from nonasthmatic patients. We conclude that CCL2 production by epithelial cells and macrophages contributes to HRV-induced airway hyperresponsiveness and inflammation in a mouse model of allergic airways disease and may play a role in HRV-induced asthma exacerbations.

  8. Predictors of response to therapy with omalizumab in patients with severe allergic asthma - a real life study.

    PubMed

    Kallieri, Maria; Papaioannou, Andriana I; Papathanasiou, Evgenia; Ntontsi, Polyxeni; Papiris, Spyridon; Loukides, Stelios

    2017-08-01

    Omalizumab is a recombinant humanized IgG1 monoclonal anti-IgE antibody, used for the treatment of severe refractory allergic asthma. However, not all patients with IgE levels within the limits of administration, respond to treatment. The aim of the present study, was to determine clinical and inflammatory characteristics that could predict response to omalizumab. We studied retrospectively patients treated with omalizumab as per GINA guidelines in one asthma tertiary referral center. Demographic and functional characteristics, level of asthma control, fractional exhaled nitric oxide, blood and eosinophils and IgE level, induced sputum cell count, eosinophil cationic protein and Interleukin-13 in sputum supernatant were recorded. All measurements were performed before starting treatment with omalizumab. Response to treatment was evaluated according to the physician's global evaluation of treatment effectiveness. Patients were characterized as early responders when improvement was achieved within 16 weeks and as late responders when improvement was achieved between 16 and 32 weeks. Patients who did not show any improvement after 32 weeks of therapy were considered as non-responders. Forty-one patients treated with omalizumab were included in the study. 28 (68.3%) patients were characterized as responders while 13 patients (31.7%) were considered as non-responders. Among responders, 25 (89%) were early responders and 3 (n = 11%) were late responders. Responders were characterized by lower baseline FEV1 and FEV1/FVC and higher IL-13 levels in induced sputum supernatant compared to non-responders. Late responders had higher serum IgE levels, shorter disease duration and higher number of blood eosinophils. Finally, using ROC curve analysis, the best predictors of response to omalizumab were FEV1 (AUC = 0.718) and IL-13 in sputum supernatant (AUC = 0.709). Lower baseline FEV1 and higher IL-13 levels in induced sputum supernatant were predictors of response to

  9. Diesel Exhaust Exposure and Nasal Response to Attenuated Influenza in Normal and Allergic Volunteers

    EPA Science Inventory

    Rationale: Diesel exhaust enhances allergic inflammation, and pollutants are associated with heightened susceptibility to viral respiratory infections. The effects of combined diesel and virus exposure in humans are unknown. Objective: Test whether acute exposure to diesel modif...

  10. Diesel Exhaust Exposure and Nasal Response to Attenuated Influenza in Normal and Allergic Volunteers

    EPA Science Inventory

    Rationale: Diesel exhaust enhances allergic inflammation, and pollutants are associated with heightened susceptibility to viral respiratory infections. The effects of combined diesel and virus exposure in humans are unknown. Objective: Test whether acute exposure to diesel modif...

  11. In vivo effects of antibodies to immune response gene products: prevention of experimental allergic encephalitis.

    PubMed Central

    Steinman, L; Rosenbaum, J T; Sriram, S; McDevitt, H O

    1981-01-01

    Prevention of experimental allergic encephalitis in SJL/J [H-2s] mice was achieved with in vivo administration of antibody reactive with I-As gene products prior to immunization with spinal cord antigen. No protection was evident in animals that received antisera specific for I-Js gene products. Administration of antibody to I-As beginning 5 days after immunization with spinal cord antigen delayed, but did not prevent, the onset of experimental allergic encephalitis. PMID:6947275

  12. Respiratory responses of subjects with allergic rhinitis to ozone exposure and their relationship to nonspecific airway reactivity

    SciTech Connect

    McDonnell, W.F.; Horstman, D.H.; Abdul-Salaam, S.; Raggio, L.J.; Green, J.A.

    1987-01-01

    Ozone exposure in man produces changes in respiratory function and symptoms. There is a large degree of unexplained intersubject variability in the magnitude of these responses. There is concern that individuals with chronic respiratory diseases may also be more responsive to ozone than normal individuals. The purpose of this study was to describe the responses of subjects with allergic rhinitis to ozone exposure and to compare these responses to those previously observed in normal individuals. A further purpose was to measure the association between baseline nonspecific airway reactivity and changes in lung function and respiratory symptoms following ozone exposure.

  13. Sulfasalazine-induced extrinsic allergic alveolitis in a patient with psoriatic arthritis.

    PubMed

    Woltsche, M; Woltsche-Kahr, I; Roeger, G M; Aberer, W; Popper, H

    2001-11-20

    We report the first case of a well defined extrinsic allergic alveolitis as a complication of sulfasalazine therapy in a patient treated for psoriatic arthritis. CT of the chest showed small nodular densities over both lungs, BAL demonstrated a highly active lymphocytic alveolitis and transbronchial biopsies revealed lymphoplasmocytic interstitial infiltration. Sulfasalazine as causative agent was proven by an inadvertent rechallenge three years later and a positive lymphocyte transformation test. sulfasalazine; psoriatic arthritis; extrinsic allergic alveolitis

  14. Rush Oral Immunotherapy Does Not Reduce Allergic Response in Mice with Mild Allergy to Egg White Ovomucoid.

    PubMed

    Maeta, Akihiro; Kaji, Mayuko; Nagaishi, Minami; Hirakawa, Aoi; Takahashi, Kyoko

    2015-01-01

    Oral immunotherapy (OIT) is a promising therapeutic approach for treating food allergy. Past studies have shown that OIT reduces allergic response only in severe allergy model mice. We worked to establish mild allergy model mice, and investigated whether 'rush' OIT for 10 d improved the allergic response and biomarkers in these mice. Balb/c mice were sensitized to ovomucoid (OM) in alum. The rush OIT was done for 10 d. Oral OM challenge was used to determine the impact of OIT on the allergic response. We measured allergic biomarkers, such as vascular permeability in the skin, plasma levels of total IgE, OM-specific IgE, IgG1 and IgG2a and cytokines in splenocyte culture supernatant. OIT for 10 d did not improve allergy symptoms and increased vascular permeability. Total IgE in the plasma of OIT-treated mice was significantly higher than in that of non-treated mice. OM-specific IgG1 and IgG2a plasma levels were not significantly different between OIT-treated and non-treated mice. Among the cytokine secretion of splenocyte from OIT-treated mice, IFN-γ and IL-10 were significantly lower than in non-treated mice, and IL-4 and IL-5 were significantly higher. Total TGF-β in the OIT-treated group was not detected. The IFN-γ/IL-4 ratio of the OIT-treated group was about 1/8 that of the non-treated group. OIT for 10 d was not effective and some biomarkers showed negative responses in the mild allergy model mice. We suggest OIT should be used very carefully as this treatment carries a risk of worsening allergy symptoms for mice with mild allergy.

  15. Exposure to Triclosan Augments the Allergic Response to Ovalbumin in a Mouse Model of Asthma

    PubMed Central

    Anderson, Stacey E.; Franko, Jennifer; Kashon, Michael L.; Anderson, Katie L.; Hubbs, Ann F.; Lukomska, Ewa; Meade, B. Jean

    2015-01-01

    During the last decade, there has been a remarkable and unexplained increase in the prevalence of asthma. These studies were conducted to investigate the role of dermal exposure to triclosan, an endocrine-disrupting compound, on the hypersensitivity response to ovalbumin (OVA) in a murine model of asthma. Triclosan has had widespread use in the general population as an antibacterial and antifungal agent and is commonly found in consumer products such as soaps, deodorants, toothpastes, shaving creams, mouthwashes, and cleaning supplies. For these studies, BALB/c mice were exposed dermally to concentrations of triclosan ranging from 0.75 to 3% (0.375–1.5 mg/mouse/day) for 28 consecutive days. Concordantly, mice were ip injected with OVA (0.9 μg) and aluminum hydroxide (0.5 mg) on days 1 and 10 and challenged with OVA (125 μg) by pharyngeal aspiration on days 19 and 27. Compared with the animals exposed to OVA alone, increased spleen weights, OVA-specific IgE, interleukin-13 cytokine levels, and numbers of lung eosinophils were demonstrated when mice were coexposed to OVA and triclosan. Statistically significant increases in OVA-specific and nonspecific airway hyperreactivity were observed for all triclosan coexposed groups compared with the vehicle and OVA controls. In these studies, exposure to triclosan alone was not demonstrated to be allergenic; however, coexposure with a known allergen resulted in enhancement of the hypersensitivity response to that allergen, suggesting that triclosan exposure may augment the allergic responses to other environmental allergens. PMID:23192912

  16. Allergic rhinitis-induced nasal congestion: its impact on sleep quality.

    PubMed

    Storms, William

    2008-03-01

    Allergic rhinitis (AR) is an extremely common health problem affecting 20 to 40 million Americans and between 10-25% of the world's population. Patients with AR suffer from both nasal symptoms (congestion, rhinorrhea, itching, and sneezing) and ocular symptoms (itching, redness, and tearing). The negative impact on sleep quality and quantity, and consequently on various aspects of the patient's life, is an under-recognised and under-treated component of AR morbidity. Nasal congestion, which is one of the most bothersome and prevalent symptoms of AR, is thought to be the leading symptom responsible for rhinitis-related sleep problems. In addition to reducing clinical symptoms, pharmacologic therapies for AR that specifically reduce inflammatory cells and mediators - and therefore nasal congestion and other symptoms - should also improve sleep quality and overall quality of life (QOL). Intranasal corticosteroids (INS) are the current mainstay of therapy for AR. Results of a number of clinical trials demonstrate that INS effectively reduce nasal congestion and ocular symptoms, improve sleep quality, and decrease daytime somnolence. Intranasal corticosteroids have also proved to be effective in reducing symptoms of acute rhinosinusitis and nasal polyposis, both of which also negatively impact on sleep quality. Intranasal corticosteroids are considered safe due to their low systemic bioavailability.

  17. High doses of gamma radiation suppress allergic effect induced by food lectin

    NASA Astrophysics Data System (ADS)

    Vaz, Antônio F. M.; Souza, Marthyna P.; Vieira, Leucio D.; Aguiar, Jaciana S.; Silva, Teresinha G.; Medeiros, Paloma L.; Melo, Ana M. M. A.; Silva-Lucca, Rosemeire A.; Santana, Lucimeire A.; Oliva, Maria L. V.; Perez, Katia R.; Cuccovia, Iolanda M.; Coelho, Luana C. B. B.; Correia, Maria T. S.

    2013-04-01

    One of the most promising areas for the development of functional foods lies in the development of effective methods to reduce or eliminate food allergenicity, but few reports have summarized information concerning the progress made with food irradiation. In this study, we investigated the relationship between allergenicity and molecular structure of a food allergen after gamma irradiation and evaluate the profile of the allergic response to irradiated allergens. Cramoll, a lectin isolated from a bean and used as a food allergen, was irradiated and the possible structural changes were accompanied by spectrofluorimetry, circular dichroism and microcalorimetry. Subsequently, sensitized animals subjected to intragastric administration of non-irradiated and irradiated Cramoll were treated for 7 days. Then, body weight, leukocytes, cytokine profiles and histological parameters were also determined. Cramoll showed complete inhibition of intrinsic activity after high radiation doses. Changes in fluorescence and CD spectra with a simultaneous collapse of the tertiary structure followed by a pronounced decrease of native secondary structure were observed after irradiation. After oral challenge, sensitized mice demonstrate an association between Cramoll intake, body weight loss, eosinophilia, lymphocytic infiltrate in the gut and Eotaxin secretion. Irradiation significantly reduces, according to the dose, the effects observed by non-irradiated food allergens. We confirm that high-dose radiation may render protein food allergens innocuous by irreversibly compromising their molecular structure.

  18. Allergic Reactions

    MedlinePlus

    ... AAAAI website. Allergic rhinitis may be seasonal or year-round. Seasonal allergic rhinitis, often called "hay fever," typically ... roof of the mouth. When the symptoms are year-round, they may be caused by exposure to indoor ...

  19. Effects of leukotriene D4 nasal challenge on bronchial responsiveness and inflammation in asthmatic patients with allergic rhinitis

    PubMed Central

    Zhu, Zheng; Xie, Yanqing; Guan, Weijie; Gao, Yi; Huang, Rongquan; Xia, Shu; Jian, Wenhua; Liang, Zhiyu

    2017-01-01

    Background In asthmatic patients with allergic rhinitis (AR), increased cysteinyl leukotrienes (CysLTs) production in the secretion of nasal mucosa has been associated with greater bronchial hyperresponsiveness (BHR) after nasal allergen challenge. However, the role of CysLTs in eliciting BHR after nasal allergen challenge has not been evaluated. The aim of this study is to evaluate the effect of LTD4 nasal challenge on BHR and inflammation in asthmatic patients with AR. Methods In this self-controlled study, fifteen eligible consecutively recruited subjects underwent methacholine (Mch) bronchial provocation test before and 30 minutes after LTD4 nasal provocation test. The cumulative concentration of LTD4 inducing a 60% increase in nasal airway resistance (PC60NAR) was calculated. The mean values of cumulative doses inducing a 20% decrease in forced expiratory flow in one second (PD20FEV1) for Mch before and after nasal challenge were compared. Fractional exhaled nitric oxide (FeNO), differential inflammatory cell counts in nasal lavage and induced sputum before and after nasal challenge were compared. Results House dust mites were the major allergens accounting for 10/15 (66.7%) of asthmatic patients with AR. The PC60NAR for LT was (8.39±3.48)×10−3 mg·mL−1. The PD20FEV1 before and after nasal challenge was 3.05±3.81 and 2.70±3.81 µmol, respectively (P=0.45). The percentages of eosinophils were (38.36±23.14)% and (45.70±24.86)% in nasal lavage, and (17.51±11.05)% and (24.29±16.52)% in induced sputum before and 24 hours after nasal challenge. The neutrophil counts were (60.64±23.14)% and (53.30±24.46)% in nasal lavage, and (53.83±23.27)% and (56.19±22.28)% in induced sputum before and 24 hours after nasal challenge. The values of FeNO were 40 [35] and 43 [30] ppb before and 24 hours after nasal challenge. No severe adverse effects were reported during the tests. Conclusions Although most asthmatic patients with AR were sensitive to LTD4 nasal

  20. Ultra-short-course booster is effective in recurrent grass pollen-induced allergic rhinoconjunctivitis.

    PubMed

    Pfaar, O; Lang, S; Pieper-Fürst, U; Astvatsatourov, A; Gerich, F; Klimek, L; Kramer, M F; Reydelet, Y; Shah-Hosseini, K; Mösges, R

    2017-07-04

    A relevant proportion of allergic rhinoconjunctivitis (ARC) patients experience recurrent symptoms after successfully completing allergen immunotherapy (AIT). This prospective, controlled, noninterventional study used internationally standardized instruments to determine the clinical effects of a preseasonal, ultra-short-course booster AIT on clinical outcome parameters. This two-arm study included patients aged ≥12 years with recurrent grass pollen-induced seasonal AR who had completed a successful course of any grass pollen AIT at least 5 years before enrolment. Overall, 56 patients received one preseasonal short-course booster AIT using tyrosine-absorbed grass pollen allergoids containing the adjuvant monophosphoryl lipid A (MPL(®) ); 51 control patients received symptomatic medication. The combined symptom and medication score (CSMS) was recorded in the (peak) grass pollen season. Furthermore, concomitant (antiallergic) medication use, the patients' state of health, Mini Rhinoconjunctivitis Quality of Life Questionnaire (MiniRQLQ) results and safety/tolerability of the treatment were assessed. The CSMS in the peak grass pollen season was significantly lower in the booster AIT group (Δ=38.4%, P<.01). Moreover, significantly more patients in this group used no concomitant antiallergic medication throughout the peak grass pollen season. Twice as many patients in the booster AIT group as in the control group reported having a better state of health than in the preceding season. MiniRQLQ results showed significant differences favouring the booster AIT. The booster AIT was generally well tolerated, with only two patients reporting mild, grade 1 systemic adverse events. Booster AIT using tyrosine-absorbed allergoids containing the adjuvant MPL(®) effectively prevents re-occurrence of symptoms in patients with grass pollen-induced ARC. © 2017 The Authors. Allergy Published by John Wiley & Sons Ltd.

  1. Allergic and asthmatic reactions to alcoholic drinks.

    PubMed

    Vally, Hassan; Thompson, Philip J

    2003-03-01

    Alcoholic drinks are capable of triggering a wide range of allergic and allergic-like responses, including rhinitis, itching, facial swelling, headache, cough and asthma. Limited epidemiological data suggests that many individuals are affected and that sensitivities occur to a variety of drinks, including wine, beer and spirits. In surveys of asthmatics, over 40% reported the triggering of allergic or allergic-like symptoms following alcoholic drink consumption and 30 - 35% reported worsening of their asthma. Sensitivity to ethanol itself can play a role in triggering adverse responses, particularly in Asians, which is due mainly to a reduced capacity to metabolize acetaldehyde. In Caucasians, specific non-alcohol components are the main cause of sensitivities to alcoholic drinks. Allergic sensitivities to specific components of beer, spirits and distilled liquors have been described. Wine is clearly the most commonly reported trigger for adverse responses. Sensitivities to wine appear to be due mainly to pharmacological intolerances to specific components, such as biogenic amines and the sulphite additives. Histamine in wine has been associated with the triggering of a wide spectrum of adverse symptoms, including sneezing, rhinitis, itching, flushing, headache and asthma. The sulphite additives in wine have been associated with triggering asthmatic responses. Clinical studies have confirmed sensitivities to the sulphites in wine in limited numbers of individuals, but the extent to which the sulphites contribute to wine sensitivity overall is not clear. The aetiology of wine-induced asthmatic responses may be complex and may involve several co-factors.

  2. Sublingual administration of Lactobacillus paracasei KW3110 inhibits Th2-dependent allergic responses via upregulation of PD-L2 on dendritic cells.

    PubMed

    Inamine, Ayako; Sakurai, Daijyu; Horiguchi, Shigetoshi; Yonekura, Syuji; Hanazawa, Toyoyuki; Hosokawa, Hiroyuki; Matuura-Suzuki, Asaka; Nakayama, Toshinori; Okamoto, Yoshitaka

    2012-05-01

    Lactic acid bacteria have potential in immunomodulation therapy, but their clinical efficacy and underlying mechanisms are unclear. We aimed to clarify the anti-allergic immune responses induced by intragastric and sublingual administration of heat-killed Lactobacillus paracasei KW3110 and Lactobacillus acidophilus L-92. The KW3110 strain (but not the L-92 strain) enhanced ovalbumin (OVA)-induced expression of CCR-7 and PD-L2 in murine dendritic cells (DCs), and strongly inhibited IL-5 and IL-13 production in vitro in co-cultures with Th2-skewed CD4(+) T cells from DO11.10 transgenic mice. Sublingual administration of low-dose KW3110 (but not L-92) to OVA-sensitized mice selectively suppressed serum IgE production and Th2 cytokine expression in cervical lymph nodes, and significantly improved symptoms after OVA provocation in vivo. KW3110 probably accelerates DC migration into the regional lymph nodes and inhibits Th2 cytokine production through enhanced CCR-7 and PD-L2 expression. Thus, sublingual KW3110 administration may be effective in reducing allergic inflammation.

  3. Intake of Diet Including 1% Ovomucoid for 4 Weeks Induces Oral Desensitization in Ovomucoid-Specific Allergic Mouse Model.

    PubMed

    Maeta, Akihiro; Sakamoto, Yoko; Yuki, Sayo; Takahashi, Kyoko

    2017-01-01

    We propose a new oral immunotherapy (OIT) method that includes a small amount of a food allergen in the diet. However, it is not clear whether this method will induce oral desensitization and immune tolerance. Therefore, we investigated the therapeutic effectiveness using a 1% food allergen diet in an allergic mouse model. C3H/HeJ mice were sensitized to ovomucoid (OM) in alum four times at 12-d intervals. Sensitized mice were divided into two groups: the OIT group (19% casein diet with 1% OM) and the non-treated group (20% casein diet without OM). The non-sensitized mice served as the non-allergy group. The OIT treatment was performed for 4 wk. To assess desensitization and immune tolerance, we performed oral and intraperitoneal OM challenges, assessed vascular permeability of the dorsal skin, and measured allergic biomarkers. The OIT group exhibited significantly lower oral symptom scores and vascular permeability than the non-treated group, but the two groups did not differ in intraperitoneal allergy symptom scores. Furthermore, the OIT group had significantly higher OM-specific IgA levels in their plasma than the non-treated group. However, the plasma levels of OM-specific IgE, IgG1, and IgG2a were not significantly different between the OIT and the non-treated groups. These results suggest that the proposed OIT using an OM-supplemented diet may induce desensitization, but not immune tolerance, in an OM allergic mouse model.

  4. Lansoprazole-induced acute allergic interstitial nephritis in a renal transplant recipient: a case report.

    PubMed

    Yildirim, Tolga; Yilmaz, Rahmi; Baydar, Dilek Ertoy; Kutlugun, Aysun Aybal; Aki, Tuncay; Turgan, Cetin

    2012-12-01

    Drug-induced interstitial nephritis is one of the causes of graft dysfunction in renal transplant recipients. Although commonly implicated as a cause of drug-induced interstitial nephritis in the general population, proton pump inhibitor-induced interstitial nephritis has not yet been reported in renal transplant recipients. Trimethoprim-sulfamethoxazole is responsible for most cases of interstitial nephritis in this population. Here, we describe the first case of proton pump inhibitor-related interstitial nephritis in a renal transplant recipient.

  5. F-fucoidan from Saccharina japonica is a novel inducer of galectin-9 and exhibits anti-allergic activity

    PubMed Central

    Tanino, Yuka; Hashimoto, Takashi; Ojima, Takao; Mizuno, Masashi

    2016-01-01

    Fucoidan is a sulfated polysaccharide from brown sea algae. In the present study, it was demonstrated that oral administration of F-fucoidan from Saccharina japonica possessed anti-allergic effects using the passive cutaneous anaphylaxis reaction, but not by intraperitoneal administration. The inhibitory mechanism was dependent on galectin-9, which belongs to a soluble lectin family that recognizes β-galactoside and prevents IgE binding to mast cells. The anti-allergy properties of F-fucoidan were cancelled by an intravenous dose of anti-galectin-9 antibody or lactose, which bind competitively with galectin-9 before the passive cutaneous anaphylaxis reaction. F-fucoidan increased the expression level of galectin-9 mRNA in intestinal epithelial cells and serum galectin-9 levels. Oral treatment with F-fucoidan suppressed allergic symptoms through the induction of galectin-9. This is the first report that F-fucoidan can induce the secretion of galectin-9. PMID:27499575

  6. F-fucoidan from Saccharina japonica is a novel inducer of galectin-9 and exhibits anti-allergic activity.

    PubMed

    Tanino, Yuka; Hashimoto, Takashi; Ojima, Takao; Mizuno, Masashi

    2016-07-01

    Fucoidan is a sulfated polysaccharide from brown sea algae. In the present study, it was demonstrated that oral administration of F-fucoidan from Saccharina japonica possessed anti-allergic effects using the passive cutaneous anaphylaxis reaction, but not by intraperitoneal administration. The inhibitory mechanism was dependent on galectin-9, which belongs to a soluble lectin family that recognizes β-galactoside and prevents IgE binding to mast cells. The anti-allergy properties of F-fucoidan were cancelled by an intravenous dose of anti-galectin-9 antibody or lactose, which bind competitively with galectin-9 before the passive cutaneous anaphylaxis reaction. F-fucoidan increased the expression level of galectin-9 mRNA in intestinal epithelial cells and serum galectin-9 levels. Oral treatment with F-fucoidan suppressed allergic symptoms through the induction of galectin-9. This is the first report that F-fucoidan can induce the secretion of galectin-9.

  7. Suppression of allergic immune responses to house dust mite (HDM) in rats exposed to 2,3,7,8-TCDD.

    PubMed

    Luebke, R W; Copeland, C B; Daniels, M; Lambert, A L; Gilmour, M I

    2001-07-01

    Exposure to various xenobiotics, including oxidant gases, diesel exhaust, and certain pesticides, has been reported to exacerbate pulmonary allergic hypersensitivity responses. Increased lymphocyte proliferative responses to parasite antigens or increased antibody responses to sheep erythrocyte have also been reported in rats exposed to TCDD before infection or immunization. As a result, these studies were conducted to test the hypothesis that TCDD exposure exacerbates the allergic response to house dust mite antigen. Brown Norway rats were injected, ip, with 0, 1, 10, or 30 microg TCDD/kg 7 days before intratracheal (it) sensitization to semipurified house dust mite allergen (HDM). Fourteen days later, rats were challenged with HDM and immediate bronchospasm was measured. At this time point, plus 2 and 7 days later, inflammatory cells in bronchoalveolar lavage fluid (BALF), HDM-specific IgE levels in serum, and HDM-driven cell proliferation in bronchial lymph nodes and spleen were evaluated. TCDD exposure decreased both immediate bronchoconstriction and specific IgE synthesis after the HDM challenge; 7 days later, HDM-specific IgE responses remained suppressed. Total serum IgE levels were similar in all groups. HDM challenge alone significantly increased cellular and biochemical indicators of lung injury, both of which were suppressed by TCDD exposure. The proliferative response of lymph node cells, but not of spleen cells, to HDM was also suppressed at the highest TCDD dose, although the splenic response to Concanavalin A was elevated. It appears that early events in the response to HDM are affected by TCDD exposure, since message for IL5 was dramatically reduced 2 days after sensitization, but not after challenge. We therefore conclude that TCDD exposure suppressed, rather than enhanced the development of allergic immune responses and the expression of immune-mediated lung disease.

  8. In vitro model for studying esophageal epithelial differentiation and allergic inflammatory responses identifies keratin involvement in eosinophilic esophagitis.

    PubMed

    Kc, Kiran; Rothenberg, Marc E; Sherrill, Joseph D

    2015-01-01

    Epithelial differentiation is an essential physiological process that imparts mechanical strength and barrier function to squamous epithelia. Perturbation of this process can give rise to numerous human diseases, such as atopic dermatitis, in which antigenic stimuli can penetrate the weakened epithelial barrier to initiate the allergic inflammatory cascade. We recently described a simplified air-liquid interface (ALI) culture system that facilitates the study of differentiated squamous epithelia in vitro. Herein, we use RNA sequencing to define the genome-wide transcriptional changes that occur within the ALI system during epithelial differentiation and in response to allergic inflammation. We identified 2,191 and 781 genes that were significantly altered upon epithelial differentiation or dysregulated in the presence of interleukin 13 (IL-13), respectively. Notably, 286 genes that were modified by IL-13 in the ALI system overlapped with the gene signature present within the inflamed esophageal tissue from patients with eosinophilic esophagitis (EoE), an allergic inflammatory disorder of the esophagus that is characterized by elevated IL-13 levels, altered epithelial differentiation, and pro-inflammatory gene expression. Pathway analysis of these overlapping genes indicated enrichment in keratin genes; for example, the gene encoding keratin 78, an uncharacterized type II keratin, was upregulated during epithelial differentiation (45-fold) yet downregulated in response to IL-13 and in inflamed esophageal tissue from patients. Thus, our findings delineate an in vitro experimental system that models epithelial differentiation that is dynamically regulated by IL-13. Using this system and analyses of patient tissues, we identify an altered expression profile of novel keratin differentiation markers in response to IL-13 and disease activity, substantiating the potential of this combined approach to identify relevant molecular processes that contribute to human allergic

  9. House Dust Mite-induced Allergic Airway Disease is Independent of IgE and FcɛRIα.

    PubMed

    McKnight, Christopher G; Jude, Joseph A; Zhu, Zhenqi; Panettieri, Reynold A; Finkelman, Fred D

    2017-07-12

    IgE contributes to disease exacerbations but not to baseline airway hyperresponsiveness (AHR) in human asthma. In rodent allergic airway disease (AAD), mast cell and IgE dependence for the induction of AHR has only been observed when mice are immunized with a relatively weak allergen without adjuvant. To evaluate the role of IgE in murine AAD that is induced by a potent allergen, we inoculated BALB/c and FVB/N background wild-type, and IgE- or FcεRIα-deficient mice intratracheally with large or limiting doses of house dust mite extract (HDM) and evaluated AHR, pulmonary eosinophilia, goblet cell metaplasia, serum IgE, and lung mastocytosis. We found that neither IgE nor FcεRIα contributed to AAD, even in mice inoculated with the lowest dose of HDM, which readily induced detectable disease but did not increase serum IgE or pulmonary mast cell levels. In contrast, high doses of HDM strikingly increased serum IgE and pulmonary mast cells, although both AHR and airway mast cell degranulation were equally elevated in wild-type and IgE-deficient mice. Surprisingly, allergen challenge of mice with severe AAD and pulmonary mastocytosis failed to acutely increase airway resistance, lung Newtonian resistance or hysteresis. Overall, this study shows that while mice may not reliably model acute asthma exacerbations, mechanisms that are IgE- and FcεRIα-independent are responsible for AHR and airway inflammation when low doses of a potent allergen are inhaled repetitively.

  10. Omalizumab Treatment Response in a Population With Severe Allergic Asthma and Overlapping COPD.

    PubMed

    Maltby, Steven; Gibson, Peter G; Powell, Heather; McDonald, Vanessa M

    2017-01-01

    Asthma and COPD are common airway diseases. Individuals with overlapping asthma and COPD experience increased health impairment and severe disease exacerbations. Efficacious treatment options are required for this population. Omalizumab (anti-IgE) therapy is effective in patients with severe persistent asthma, but limited data are available on efficacy in populations with overlapping asthma and COPD. Data from the Australian Xolair Registry were used to compare treatment responses in individuals with asthma-COPD overlap with responses in patients with severe asthma alone. Participants were assessed at baseline and after 6 months of omalizumab treatment. We used several different definitions of asthma-COPD overlap. First, we compared participants with a previous physician diagnosis of COPD to participants with no COPD diagnosis. We then made comparisons based on baseline lung function, comparing participants with an FEV1 < 80% predicted to those with an FEV1 > 80% predicted after bronchodilator use. In the population with an FEV1< 80%, analysis was further stratified based on smoking history. Omalizumab treatment markedly improved asthma control and health-related quality of life in all populations assessed based on the Asthma Control Questionnaire and Asthma Quality of Life Questionnaire scores. Omalizumab treatment did not improve lung function (FEV1, FVC, or FEV1/FVC ratio) in populations that were enriched for asthma-COPD overlap (diagnosis of COPD or FEV1 < 80%/ever smokers). Our study suggests that omalizumab improves asthma control and health-related quality of life in individuals with severe allergic asthma and overlapping COPD. These findings provide real-world efficacy data for this patient population and suggest that omalizumab is useful in the management of severe asthma with COPD overlap. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  11. Conjugates of ovalbumin and monomethoxypolyethylene glycol abolish late allergic responses and decrease IL-4 and IL-5 mRNA expression in the rat.

    PubMed

    Lavoie, J-P; Maghni, K; Taha, R; Yang, X-X; Lang, G M; Sehon, A H; Hamid, Q A; Martin, J G

    2003-01-01

    The purpose of this study was to test the therapeutic potential of monomethoxypolyethylene glycol (mPEG) conjugated-allergen using a rodent model of allergic asthma. Previously, this conjugate has been shown to possess the dual capacity of inducing long-term ovalbumin (OA)-specific suppression of the antibody response and inactivating rat mast cells that have been sensitized with murine IgE to OA. Ovalbumin sensitized and challenged Brown Norway rats were studied. Fourteen days after sensitization, a test group of six rats received mPEG-OA solution intratracheally and were challenged 30 min later with aerosolized OA. Another group of seven sensitized rats was similarly challenged with OA 30 min after intratracheal administration of normal saline. A group of six sensitized rats received mPEG-OA solution intratracheally but were challenged with normal saline. Another group of seven sensitized rats received mPEG-BSA solution intratracheally and were challenged 30 min later with aerosolized OA. A final group of five unsensitized rats were neither challenged nor medicated intratracheally. Pulmonary resistance was measured before and for 8 h following inhalation challenge. mPEG-OA treatment had an inhibitory effect on the allergic late airway response, but the early response was not significantly altered. Both mPEG-OA and mPEG-BSA reduced the total cells, eosinophils and neutrophils, in bronchoalveolar lavage and decreased the expression of IL-4, IL-5 and IFN-gamma mRNA. In conclusion, mPEG-OA can prevent the development of allergen-induced late airway responses and reduce airway Th2-type cytokine expression whereas mPEG conjugated to an irrelevant antigen (BSA) is anti-inflammatory but does not affect the late response.

  12. Educational clinical case series for pediatric allergy and immunology: allergic proctocolitis, food protein-induced enterocolitis syndrome and allergic eosinophilic gastroenteritis with protein-losing gastroenteropathy as manifestations of non-IgE-mediated cow's milk allergy.

    PubMed

    Maloney, Jennifer; Nowak-Wegrzyn, Anna

    2007-06-01

    Cow's milk protein allergy is the most common food allergy in infants and young children. It is estimated that up to 50% of pediatric cow's milk allergy is non-IgE-mediated. Allergic proctocolitis is a benign disorder manifesting with blood-streaked stools in otherwise healthy-appearing infants who are breast- or formula-fed. Symptoms resolve within 48-72 h following elimination of dietary cow's milk protein. Most infants tolerate cow's milk by their first birthday. Food protein-induced enterocolitis syndrome presents in young formula-fed infants with chronic emesis, diarrhea, and failure to thrive. Reintroduction of cow's milk protein following a period of avoidance results in profuse, repetitive emesis within 2-3 h following ingestion; 20% of acute exposures may be associated with hypovolemic shock. Treatment of acute reactions is with vigorous hydration. Most children become tolerant with age; attempts of re-introduction of milk must be done under physician supervision and with secure i.v. access. Allergic eosinophilic gastroenteritis affects infants as well as older children and adolescents. Abdominal pain, emesis, diarrhea, failure to thrive, or weight loss are the most common symptoms. A subset of patients may develop protein-losing enteropathy. Fifty percent of affected children are atopic and have evidence of food-specific IgE antibody but skin prick tests and serum food-IgE levels correlate with response to elimination diet poorly. Elemental diet based on the amino-acid formula leads to resolutions of gastrointestinal eosinophilic inflammation typically within 6 wk.

  13. Allergic Host Defenses

    PubMed Central

    Palm, Noah W.; Rosenstein, Rachel K.

    2012-01-01

    Allergies are generally thought to be a detrimental outcome of a mistargeted immune response that evolved to provide immunity to macro-parasites. Here we present arguments to suggest that allergic immunity plays an important role in host defense against noxious environmental substances, including venoms, hematophagous fluids, environmental xenobiotics and irritants. We argue that appropriately targeted allergic reactions are beneficial, although they can become detrimental when excessive. Furthermore, we suggest that allergic hypersensitivity evolved to elicit anticipatory responses and to promote avoidance of suboptimal environments. PMID:22538607

  14. Effects of routine prophylactic vaccination or administration of aluminum adjuvant alone on allergen-specific serum IgE and IgG responses in allergic dogs.

    PubMed

    Tater, Kathy C; Jackson, Hilary A; Paps, Judy; Hammerberg, Bruce

    2005-09-01

    To determine the acute corn-specific serum IgE and IgG, total serum IgE, and clinical responses to s.c. administration of prophylactic vaccines and aluminum adjuvant in corn-allergic dogs. 20 allergic and 8 nonallergic dogs. 17 corn-allergic dogs were vaccinated. Eight clinically normal dogs also were vaccinated as a control group. Serum corn-specific IgE, corn-specific IgG, and total IgE concentrations were measured in each dog before vaccination and 1 and 3 weeks after vaccination by use of an ELISA. The corn-allergic dogs also had serum immunoglobulin concentrations measured at 8 and 9 weeks after vaccination. Twenty allergic dogs received a s.c. injection of aluminum adjuvant, and serum immunoglobulin concentrations were measured in each dog 1, 2, 3, 4, and 8 weeks after injection. The allergic dogs were examined during the 8 weeks after aluminum administration for clinical signs of allergic disease. The allergic dogs had significant increases in serum corn-specific IgE and IgG concentrations 1 and 3 weeks after vaccination but not 8 or 9 weeks after vaccination. Control dogs did not have a significant change in serum immunoglobulin concentrations after vaccination. After injection of aluminum adjuvant, the allergic dogs did not have a significant change in serum immunoglobulin concentrations or clinical signs. Allergen-specific IgE and IgG concentrations increase after prophylactic vaccination in allergic dogs but not in clinically normal dogs. Prophylactic vaccination of dogs with food allergies may affect results of serologic allergen-specific immunoglobulin testing performed within 8 weeks after vaccination.

  15. Investigation of inflammatory and allergic responses to common mold species: results from in vitro experiments, from a mouse model of asthma and from a group of asthmatic patients.

    PubMed

    Vincent, Muriel; Percier, Pauline; Prins, Sofie De; Huygen, Kris; Potemberg, Georges; Muraille, Eric; Romano, Marta; Michel, Olivier; Denis, Olivier

    2017-04-02

    Most studies on molds focus on A. alternata and A. fumigatus. Here we report on inflammatory and allergenic properties of more typical indoor species A. versicolor, P. chrysogenum, C. cladosporioïdes and C. sphaerospermum that were compared to A. alternata and A. fumigatus. In a mouse model, after intranasal instillation, A. alternaria, A. versicolor and C. sphaerospermum induced the early recruitment of neutrophils and the strong expression of inflammatory markers in the broncho-alveolar lavages fluids. A. fumigatus also induced the early accumulation of neutrophils but with lower levels of inflammatory markers. Chronic treatment induced variable response according to species: P. chrysogenum and A. fumigatus appeared strong pro-allergenic inducers compared to A. alternata and C. sphaerospermum while A. versicolor, and C. cladosporioides induced a mixed pro-allergenic/pro-inflammatory response. In mold-sensitized asthmatics, mold-specific Immunoglobulin E (IgE) were detected with an in-house dot-blot assay. A. fumigatus and A. alternata were the most frequent sensitizers. Altogether, P. chrysogenum, P. brevicompactum, C. sphaerospermum and C. cladosporïoides were the "major sensitizer" (defined as the strongest response against a single mold species) for almost 30% of the asthmatics. These results show that, not only A. alternata and A. fumigatus, but also indoor species have strong inflammatory and allergic properties and a harmful potency. This article is protected by copyright. All rights reserved.

  16. A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response.

    PubMed

    Varshney, Pooja; Jones, Stacie M; Scurlock, Amy M; Perry, Tamara T; Kemper, Alex; Steele, Pamela; Hiegel, Anne; Kamilaris, Janet; Carlisle, Suzanne; Yue, Xiaohong; Kulis, Mike; Pons, Laurent; Vickery, Brian; Burks, A Wesley

    2011-03-01

    Open-label oral immunotherapy (OIT) protocols have been used to treat small numbers of patients with peanut allergy. Peanut OIT has not been evaluated in double-blind, placebo-controlled trials. To investigate the safety and effectiveness of OIT for peanut allergy in a double-blind, placebo-controlled study. In this multicenter study, children ages 1 to 16 years with peanut allergy received OIT with peanut flour or placebo. Initial escalation, build-up, and maintenance phases were followed by an oral food challenge (OFC) at approximately 1 year. Titrated skin prick tests (SPTs) and laboratory studies were performed at regular intervals. Twenty-eight subjects were enrolled in the study. Three peanut OIT subjects withdrew early in the study because of allergic side effects. During the double-blind, placebo-controlled food challenge, all remaining peanut OIT subjects (n = 16) ingested the maximum cumulative dose of 5000 mg (approximately 20 peanuts), whereas placebo subjects (n = 9) ingested a median cumulative dose of 280 mg (range, 0-1900 mg; P < .001). In contrast with the placebo group, the peanut OIT group showed reductions in SPT size (P < .001), IL-5 (P = .01), and IL-13 (P = .02) and increases in peanut-specific IgG(4) (P < .001). Peanut OIT subjects had initial increases in peanut-specific IgE (P < .01) but did not show significant change from baseline by the time of OFC. The ratio of forkhead box protein 3 (FoxP3)(hi): FoxP3(intermediate) CD4+ CD25+ T cells increased at the time of OFC (P = .04) in peanut OIT subjects. These results conclusively demonstrate that peanut OIT induces desensitization and concurrent immune modulation. The current study continues and is evaluating the hypothesis that peanut OIT causes long-term immune tolerance. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  17. Inhibitory effect of fermented Arctium lappa fruit extract on the IgE-mediated allergic response in RBL‑2H3 cells.

    PubMed

    Yoo, Jae-Myung; Yang, Ju Hye; Yang, Hye Jin; Cho, Won-Kyung; Ma, Jin Yeul

    2016-02-01

    Arctium lappa fruit has been used in traditional medicine, and it is known to exert beneficial effects, such as antioxidant, anti-inflammatory and anticancer effects. However, the effects of the Arctium lappa fruit on the allergic response remain unknown. In this study, we evaluated the anti-allergic effects of Arctium lappa fruit extract (AFE) and its fermented form (F-AFE) using immunoglobulin E (IgE)-activated RBL‑2H3 cells. To investigate the anti-allergic effects of AFE or F-AFE, we examined the release of β-hexosaminidase, a key biomarker of degranulation during an allergic reaction, and the production of pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) in the cells treated with or without the above-mentioned extracts. AFE weakly inhibited the release of β-hexosaminidase, whereas F-AFE significantly suppressed the release of β-hexosaminidase in a dose-dependent manner. Consistently, F-AFE suppressed the production of TNF-α and PGE2 in a dose-dependent manner. F-AFE exerted an inhibitory effect on the production of β-hexosaminidase, TNF-α and PGE2 with an IC50 value of 30.73, 46.96 and 36.27 µg/ml, respectively. Furthermore, F-AFE inhibited the phosphorylation of Lyn, Fyn and Syk, which are involved in the FcεRI signaling pathway, that of phosphoinositide phospholipase C (PLC)γ1/2 and protein kinase C (PKC)δ, which are associated with the degranulation process, as well as that of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK), p38 and Akt, which are associated with cytokine expression. In the late phase, F-AFE partially suppressed the phosphorylation of cytosolic phospholipase A2 (cPLA2), but not the expression of cyclooxygenase (COX)-2. To compare and identify the major components of the two extracts, we used high-performance liquid chromatography. The levels of arctigenin, one of the major compounds, were elevated 6-fold in F-AFE compared with AFE, whereas the

  18. The prevalence of dogs with lymphocyte proliferative responses to food allergens in canine allergic dermatitis.

    PubMed

    Kawano, K; Oumi, K; Ashida, Y; Horiuchi, Y; Mizuno, T

    2013-01-01

    The aim of the present study was to examine the correlation between the results of lymphocyte proliferative test (LPT) specific to food allergens and allergic skin diseases in dogs. Investigations were performed in 138 dogs with allergic skin diseases diagnosed in a private animal hospital. Of the 138 animals, 97 cases had positive reactions in LPT specific to food allergens. Of these 97 dogs, 67 animals were diagnosed with canine atopic dermatitis (CAD), but 30 dogs did not have IgE antibodies to environmental allergens. As 14 dogs out of 30 animals showed a positive result, 12 dogs underwent elimination diet trial based on the test results and all of them showed improvement in the pruritus score. Therefore, we conclude that LPT is an effective diagnostic test for allergic skin disease. Results of the lymphocyte test are useful in the identification of food allergens for the elimination diet trial.

  19. Inhibitory effects of Pycnogenol® (French maritime pine bark extract) on airway inflammation in ovalbumin-induced allergic asthma.

    PubMed

    Shin, In-Sik; Shin, Na-Rae; Jeon, Chan-Mi; Hong, Ju-Mi; Kwon, Ok-Kyoung; Kim, Jong-Choon; Oh, Sei-Ryang; Hahn, Kyu-Woung; Ahn, Kyung-Seop

    2013-12-01

    Pycnogenol® (PYC) is a standardized extracts from the bark of the French maritime pine (Pinus maritime) and used as a herbal remedy for various diseases. In this study, we evaluated the effects of PYC on airway inflammation using a model of ovalbumin (OVA)-induced allergic asthma and RAW264.7 cells. PYC decreased nitric oxide production and reduced the interleukine (IL)-1β and IL-6 levels in LPS-stimulated RAW264.7 cells. PYC also reduced the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase (MMP)-9 and enhanced the expression of hemeoxygenase (HO)-1. In the in vivo experiment, PYC decreased the inflammatory cell count and the levels of IL-4, IL-5, IL-13, and immunoglobulin (Ig) E in BALF or serum. These results are consistent with the histological analysis findings, which showed that PYC attenuated the airway inflammation and mucus hypersecretion induced by OVA challenge. In addition, PYC enhanced the expression of HO-1. In contrast, PYC inhibited the elevated expression of iNOS and MMP-9 proteins induced by OVA challenge. In conclusion, PYC exhibits protective effects against OVA-induced asthma and LPS-stimulated RAW264.7 cells. These results suggest that PYC has potential as a therapeutic agent for the treatment of allergic asthma.

  20. Contribution of anaphylatoxin C5a to late airway responses after repeated exposure of antigen to allergic rats.

    PubMed

    Abe, M; Shibata, K; Akatsu, H; Shimizu, N; Sakata, N; Katsuragi, T; Okada, H

    2001-10-15

    We attempted to elucidate the contribution of complement to allergic asthma. Rat sensitized to OVA received repeated intratracheal exposures to OVA for up to 3 consecutive days, and pulmonary resistance was then estimated for up to 6 h after the last exposure. Whereas the immediate airway response (IAR) in terms of R(L) tended to decrease in proportion to the number of OVA exposures, late airway response (LAR) became prominent only after three. Although premedication with two kinds of complement inhibitors, soluble complement receptor type 1 (sCR1) or nafamostat mesylate, resulted in inhibition of the IAR after either a single or a double exposure, the LAR was inhibited after the triple. Premedication with a C5a receptor antagonist (C5aRA) before every exposure to OVA also inhibited the LAR after three. Repeated OVA exposure resulted in eosinophil and neutrophil infiltration into the bronchial submucosa which was suppressed by premedication with sCR1 or C5aRA. Up-regulation of C5aR mRNA was shown in lungs after triple OVA exposure, but almost no up-regulation of C3aR. Pretreatment with sCR1 or C5aRA suppressed the up-regulation of C5aR expression as well as cytokine messages in the lungs. The suppression of LAR by pretreatment with sCR1 was reversed by intratracheal instillation of rat C5a desArg the action of which was inhibited by C5aRA. In contrast, rat C3a desArg or cytokine-induced neutrophil chemoattractant-1 induced cellular infiltration into the bronchial submucosa by costimulation with OVA, but these had no influence on the LAR. These differences might be explained by the fact that costimulation with OVA and C5a synergistically potentiated IAR, whereas that with OVA and either C3a or cytokine-induced neutrophil chemoattractant-1 did not. C5a generated by Ag-Ab complexes helps in the production of cytokines and contributes to the LAR after repeated exposure to Ag.

  1. IL-23 dampens the allergic response to Cryptococcus neoformans through IL-17-independent and -dependent mechanisms.

    PubMed

    Szymczak, Wendy A; Sellers, Rani S; Pirofski, Liise-anne

    2012-04-01

    The cytokines IL-23 and IL-17 have been implicated in resistance to cryptococcal disease, but it is not clear whether IL-23-mediated production of IL-17 promotes fungal containment following pulmonary challenge with Cryptococcus neoformans. We used mice lacking IL-23 (IL-23p19(-/-)) or IL-17RA (IL-17RA(-/-)), and wild type (WT) C57BL/6 mice to examine the IL-23/IL-17 axis after intranasal infection with the C. neoformans strain 52D. The absence of IL-23 or IL-17RA had no effect on pulmonary or brain fungal burden at 1 or 6 weeks after infection. However, survival of IL-23p19(-/-) mice was reduced compared to IL-17RA(-/-) mice. IL-I7 production by CD4 T cells and natural killer T (NKT) cells was impaired in IL-23p19(-/-) lungs, but was not completely abolished. Both IL-23p19(-/-) and IL-17RA(-/-) mice exhibited impaired neutrophil recruitment, increased serum levels of IgE and IgG2b, and increased deposition of YM1/YM2 crystals in the lung, but only IL-23p19(-/-) mice developed persistent lung eosinophilia. Although survival of IL-17RA(-/-) and WT mice was similar after 17 weeks of infection, only surviving IL-17RA(-/-) mice exhibited cryptococcal dissemination to the blood. These data demonstrate that IL-23 dampens the allergic response to cryptococcal infection through IL-17-independent suppression of eosinophil recruitment and IL-17-dependent regulation of antibody production and crystal deposition. Furthermore, IL-23, and to a lesser extent IL-17, contribute to disease resistance. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Using magnetic resonance imaging to quantify the inflammatory response following allergen challenge in allergic rhinitis.

    PubMed

    Leaker, Brian R; Scadding, Glenis; Jones, C Richard; Barnes, Peter J

    2015-12-01

    Current rhinometric and flow assessments measure nasal patency and are often poorly correlated with rhinitis symptoms. To evaluate magnetic resonance imaging (MRI) as a new method to measure inflammatory changes in nasal and sinus mucosa following nasal allergen challenge. A pilot study (n = 6) determined the optimal technical settings for MRI to measure inflammatory change which were then adopted for the main study. This study was a single blind, placebo-controlled, three-way crossover trial in 14 subjects with seasonal allergic rhinitis. Effects of cetirizine, cetirizine and pseudoephedrine (Cet+PE), or placebo on total nasal symptom scores (TNSS), peak nasal inspiratory flow (PNIF), nasal nitric oxide (nNO), acoustic rhinometry, and MRI end points following nasal intranasal allergen challenge were measured. There were significant changes in all parameters after allergen challenge (P < 0.01), except for nNO. MRI end points were less variable and more consistent than PNIF and acoustic rhinometry in detecting changes after allergen challenge. Total nasal airspace volume was the most sensitive and reproducible MRI measurement, with a mean reduction from -5.37 cm(3) (95%CI -7.35, -3.38; P < 0.001), which was maximal 60 min after allergen challenge. A change of one in TNSS corresponded to a change in MRI volume of -0.57 cm(3). There was an improvement in all parameters (except nNO) in subjects taking Cet+PE compared with placebo, however this did not achieve significance probably because of the small study size (overall analysis P > 0.07; comparison of active versus placebo P > 0.09). MRI provides novel insights into the anatomical inflammatory changes post allergen challenge and provides a new method for assessment of nasal patency and objective measurement of inflammatory responses.

  3. Severe allergic contact dermatitis induced by paraphenylenediamine in paint-on temporary 'tattoos'.

    PubMed

    Mohamed, M; Nixon, R

    2000-08-01

    Paraphenylenediamine (PPD) is a black dye with well known sensitizing properties. Its increasing use as a skin paint to produce temporary 'tattoos' has led to recent reports of allergic contact dermatitis. Hitherto, such cases of allergic contact dermatitis due to PPD have been localized to the original site of application of the skin paint. We report two cases of severe allergic reactions to paint-on 'tattoos'. Both of these patients had no prior history of sensitivity to PPD, although case 2 had previously used permanent hair dyes. In both cases, the primary eruption at the 'tattoo' site was followed within days by a generalized eruption which ultimately required treatment with oral corticosteroids, because the initially prescribed topical corticosteroids proved ineffective.

  4. Inhibitory effects of Juglans mandshurica leaf on allergic dermatitis-like skin lesions-induced by 2,4-dinitrochlorobenzene in mice.

    PubMed

    Park, Gunhyuk; Oh, Myung Sook

    2014-03-01

    Allergic dermatitis among common skin diseases is a chronic and recurrent inflammatory skin disorder caused by genetic, environmental, allergens as well as microbial factors. Allergic dermatitis patients clinically present skin erythematous plaques, eruption, elevated serum immunoglobulin E (IgE) and T helper cell type 2 (Th2) cytokine levels. The leaf of walnut tree Juglans mandshurica Maxim (JM) is consumed food and traditional phytomedicine in Asia, China, Siberia and Korea. JM has been reported to have various pharmacological activities, such as anti-tumor, anti-oxidative, and anti-bacterial effects. However, no study of the inhibitory effects of JM on allergic dermatitis has been reported. Here, we demonstrated the effect of JM against 2,4-dinitrochlorobenzene-induced allergic dermatitis-like skin lesions. 0.5% JM or 1% dexamethasone (positive control) applied to the dorsal skin inhibited development of allergic dermatitis-like skin lesions and scratching behavior. Moreover, the Th2-mediated inflammatory cytokines IgE, tumor necrosis factor-α, interleukin (IL)-1, and IL-13, were significantly reduced by JM treatment. Thus JM can inhibit development of allergic dermatitis-like skin lesions in mice by regulating immune mediators, and may be an effective alternative therapy for allergic dermatitis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. ALLERGIC IRRITABILITY

    PubMed Central

    Lewis, Paul A.; Loomis, Dorothy

    1928-01-01

    The allergic irritability of closely inbred guinea pigs as represented by their capacity to produce hemolytic antibodies for beef and sheep corpuscles, and agglutinins for Bacillus typhosus and Bacillus abortus (Bang) differs by families and therefore is at least partly dependent on inherited characteristics. These differences show an imperfect but suggestive correlation with the differences in resistance of the same families to inoculation tuberculosis as previously determined by Wright and Lewis. The differences in antibody production also show an imperfect correlation with the differences in response in the anaphylactic reaction complex as previously determined by Lewis and Loomis. These studies suggest very strongly that the allergic irritability is one of the several inheritable characters which form a partial basis for the natural resistance to tuberculosis. The antibody-producing capacity is only satisfactorily defined when minimal or moderate amounts of antigen are used and this in single treatments. The irregularities in experimental result when repeated treatments or very large single treatments are used suggest that antibody production in the second or "acquired capacity" phase may rest on a somewhat different fundamental basis than the latent or potential natural capacity. There is some very slight evidence that production in the second phase may also be influenced by inherited qualities. PMID:19869422

  6. Allergic Inflammation—Innately Homeostatic

    PubMed Central

    Cheng, Laurence E.; Locksley, Richard M.

    2015-01-01

    Allergic inflammation is associated closely with parasite infection but also asthma and other common allergic diseases. Despite the engagement of similar immunologic pathways, parasitized individuals often show no outward manifestations of allergic disease. In this perspective, we present the thesis that allergic inflammatory responses play a primary role in regulating circadian and environmental inputs involved with tissue homeostasis and metabolic needs. Parasites feed into these pathways and thus engage allergic inflammation to sustain aspects of the parasitic life cycle. In response to parasite infection, an adaptive and regulated immune response is layered on the host effector response, but in the setting of allergy, the effector response remains unregulated, thus leading to the cardinal features of disease. Further understanding of the homeostatic pressures driving allergic inflammation holds promise to further our understanding of human health and the treatment of these common afflictions. PMID:25414367

  7. Allergic airway inflammation induces the migration of dendritic cells into airway sensory ganglia

    PubMed Central

    2014-01-01

    Background A neuroimmune crosstalk between dendritic cells (DCs) and airway nerves in the lung has recently been reported. However, the presence of DCs in airway sensory ganglia under normal and allergic conditions has not been explored so far. Therefore, this study aims to investigate the localisation, distribution and proliferation of DCs in airway sensory ganglia under allergic airway inflammation. Methods Using the house dust mite (HDM) model for allergic airway inflammation BALB/c mice were exposed to HDM extract intranasally (25 μg/50 μl) for 5 consecutive days a week over 7 weeks. With the help of the immunohistochemistry, vagal jugular-nodose ganglia complex (JNC) sections were analysed regarding their expression of DC-markers (MHC II, CD11c, CD103), the neuronal marker PGP 9.5 and the neuropeptide calcitonin gene-related peptide (CGRP) and glutamine synthetase (GS) as a marker for satellite glia cells (SGCs). To address the original source of DCs in sensory ganglia, a proliferation experiment was also carried in this study. Results Immune cells with characteristic DC-phenotype were found to be closely located to SGCs and vagal sensory neurons under physiological conditions. The percentage of DCs in relation to neurons was significantly increased by allergic airway inflammation in comparison to the controls (HDM 51.38 ± 2.38% vs. control 28.16 ± 2.86%, p < 0.001). The present study also demonstrated that DCs were shown to proliferate in jugular-nodose ganglia, however, the proliferation rate of DCs is not significantly changed in the two treated animal groups (proliferating DCs/ total DCs: HDM 0.89 ± 0.38%, vs. control 1.19 ± 0.54%, p = 0.68). Also, increased number of CGRP-positive neurons was found in JNC after allergic sensitisation and challenge (HDM 31.16 ± 5.41% vs. control 7.16 ± 1.53%, p < 0.001). Conclusion The present findings suggest that DCs may migrate from outside into the ganglia to interact with

  8. [The incidence of occupationally-induced allergic skin diseases in a large flower market].

    PubMed

    Hausen, B M; Oestmann, G

    1988-01-01

    150 questionnaires as well as epicutaneous tests in 56 individuals from a total of 675 persons cultivating and selling ornamental plants at the largest German flower market revealed that half of those investigated were suffering from allergic contact dermatitis. The leading plant species with sensitizing properties was found to be the chrysanthemum, followed by tulips and Alstroemeria cultivars. Allergic reactions to daffodils and primulas were rarely observed. Most of the reactions obtained with other Compositae species such as arnica, marguerite, sunflower, tansy and yarrow must be interpreted as cross-reactions due to the fact that cross-reactivity predominates within the sesquiterpene lactone constituents of the various Compositae species.

  9. Dectin-2 promotes house dust mite-induced T helper type 2 and type 17 cell differentiation and allergic airway inflammation in mice.

    PubMed

    Norimoto, Ayako; Hirose, Koichi; Iwata, Arifumi; Tamachi, Tomohiro; Yokota, Masaya; Takahashi, Kentaro; Saijo, Shinobu; Iwakura, Yoichiro; Nakajima, Hiroshi

    2014-08-01

    The fact that sensitization against fungi is closely related to the severity of asthma suggests that immune systems recognizing fungi are involved in the pathogenesis of severe asthma. Recently, Dectin-2 (gene symbol, Clec4n), a C-type lectin receptor, has been shown to function as not only a major pattern-recognition receptor for fungi, but also a receptor for some components of house dust mite (HDM) extract, a major allergen for asthma. However, the roles of Dectin-2 in the induction of HDM-induced allergic airway inflammation remain largely unknown. Our objective was to determine the roles of Dectin-2 in HDM-induced allergic airway inflammation. We examined the roles of Dectin-2 in the induction of HDM-induced T helper (Th) 2 and Th17 cell differentiation and subsequent allergic airway inflammation by using Clec4n-deficient (Clec4n(-/-)) mice. We also investigated Dectin-2-expressing cells in the lung and their roles in HDM-induced allergic airway inflammation. Clec4n(-/-) mice showed significantly attenuated HDM-induced allergic airway inflammation and decreased Th2 and Th17 cell differentiation. Dectin-2 mRNA, together with Dectin-3 and Fc receptor-γ mRNAs, was expressed in CD11b(+) dendritic cells (DCs), but not in CD4(+) T cells or epithelial cells in the lung. CD11b(+) DCs isolated from Clec4n(-/-) mice expressed lower amounts of proinflammatory cytokines and costimulatory molecules, which could lead to Th2 and Th17 cell differentiation than those from wild-type mice. HDM-pulsed Clec4n(-/-) DCs were less efficient for the induction of allergic airway inflammation than HDM-pulsed wild-type DCs. In conclusion, Dectin-2 expressed on CD11b(+) DCs promotes HDM-induced Th2 and Th17 cell differentiation and allergic airway inflammation.

  10. [A preliminary study on the role of substance P in histamine-nasal-spray-induced allergic conjunctivitis in guinea pigs].

    PubMed

    Li, Tong; Zhao, Changqing

    2015-10-01

    = 4.51, P < 0.05). PT-PCR assays showed the relative expression of SP mRNA in ipsilateral conjunctival tissues of group A~E was (1.00 ± 0.04), (1.61 ± 0.09), (1.26 ± 0.03), (1.27 ± 0.06), (1.08 ± 0.05), respectively. There was statistically significant difference between group A and B (t = -22.04, P < 0.05), group B and C (t = 12.93, P < 0.05), group C and E (t = 11.85, P < 0.05). The expression of tryptase of ipsilateral conjunctiva was (1.00 ± 0.01), (1.01 ± 0.05), (1.02 ± 0.17), (1.00 ± 0.14), (1.01 ± 0.20), and the expression of MBP1 was (1.00 ± 0.03), (1.02 ± 0.15), (0.94 ± 0.08), (1.01 ± 0.07), (0.98 ± 0.13) in A~E groups. There was not statistically significant difference among five groups (F value was 1.93, 0.57, both P > 0.05). Histamine nasal provocation induced allergic inflammatory response of ipsilateral conjunctiva in guinea pigs. Neural factors including NANC nerves and its medium SP participated this nose-ocular reflex process. These data help to develop a more scientific clinical treatment strategy.

  11. Glutathione S-Transferases M1 and P1 Prevent Aggravation of Allergic Responses by Secondhand Smoke

    PubMed Central

    Gilliland, Frank D.; Li, Yu-Fen; Gong, Henry; Diaz-Sanchez, David

    2006-01-01

    Rationale: Secondhand tobacco smoke (SHS) and traffic-related air pollutants are associated with asthma and allergy. Diesel exhaust particles (DEPs) and SHS can interact with allergens in exacerbating allergic airway diseases through generation of reactive oxygen species. Glutathione S-transferases (GSTs) metabolize reactive oxygen species and detoxify electrophilic xenobiotics present in SHS and DEPs. Objectives: We tested the hypotheses that functional GSTM1-null genotype and GSTP1 codon 105 variants (Ile105 and Val105) are determinants of allergic responses to SHS, and that responses to SHS and DEPs are correlated. Methods and Measurements: In a randomized, placebo-controlled crossover trial, 19 ragweed allergen–sensitive subjects who had previously participated in a DEP trial were challenged intranasally with allergen after having been exposed to either clean air or SHS at separate visits. Nasal allergen–specific IgE, histamine, IL-4, and IFN-γ levels were measured before and after allergen challenge. Main Results: Individuals with GSTM1-null or GSTP1 Ile105 genotypes showed larger nasal responses to allergens with SHS compared with clean air. GSTM1-null subjects had a larger increase in IgE than GSTM1-present subjects (median, 173.3 vs. 46.7 U/ml; p = 0.03), and the Ile105 GSTP1 genotype subjects had increased histamine (median, 10.2 vs. 4.6 nM; p = 0.01) after SHS plus allergen challenge. Responses to SHS and DEPs were correlated. Enhancement of IgE and histamine was greatest in the subjects with both the GSTM1-null and GSTP1 Ile/Ile genotypes. Conclusions: GSTM1 and GSTP1 are important cytoprotective factors that reduce SHS and DEP exacerbation of allergic responses. PMID:17023730

  12. Repeated FcεRI triggering reveals modified mast cell function related to chronic allergic responses in tissue.

    PubMed

    Suurmond, Jolien; Habets, Kim L L; Tatum, Zuotian; Schonkeren, Joris J; Hoen, Peter A C 't; Huizinga, Tom W J; Laros, Jeroen F J; Toes, René E M; Kurreeman, Fina

    2016-09-01

    Activation of mast cells through FcεRI plays an important role in acute allergic reactions. However, little is known about the function of mast cells in patients with chronic allergic inflammation or the effect of repeated FcεRI triggering occurring in such responses. We aimed to identify changes in mast cell function after repeated FcεRI triggering and to correlate these changes to chronic allergic responses in tissue. Human cord blood-derived mast cells were treated for 2 weeks with anti-IgE. The function of naive or treated mast cells was analyzed by means of RNA sequencing, quantitative RT-PCR, flow cytometry, and functional assays. Protein secretion was measured with ELISAs and multiplex assays. We observed several changes in mast cell function after repeated anti-IgE triggering. Although the acute response was dampened, we identified 289 genes significantly upregulated after repeated anti-IgE. Most of these genes (84%) were not upregulated after a single anti-IgE stimulus, indicating a significantly different response mode characterized by increased antigen presentation, response to bacteria, and chemotaxis. Changes in mast cell function were related to changes in expression of the transcription factors RXRA and BATF and others. Importantly, we found a substantial overlap between genes upregulated after repeated anti-IgE triggering and genes upregulated in tissue from patients with chronic allergy, in particular those of patients with chronic rhinosinusitis. Our study provides evidence for intrinsic modulation of mast cell function on repeated FcεRI-mediated activation. The overlap with gene expression in tissues is suggestive of a direct link between repeated IgE-mediated activation of mast cells and chronic allergy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Treatment with grass allergen peptides improves symptoms of grass pollen-induced allergic rhinoconjunctivitis.

    PubMed

    Ellis, Anne K; Frankish, Charles W; O'Hehir, Robyn E; Armstrong, Kristen; Steacy, Lisa; Larché, Mark; Hafner, Roderick P

    2017-08-01

    Synthetic peptide immunoregulatory epitopes are a new class of immunotherapy to treat allergic rhinoconjunctivitis (ARC). Grass allergen peptides, comprising 7 synthetic T-cell epitopes derived from Cyn d 1, Lol p 5, Dac g 5, Hol l 5, and Phl p 5, is investigated for treatment of grass pollen-induced ARC. We sought to evaluate the efficacy, safety, and tolerability of intradermally administered grass allergen peptides. A multicenter, randomized, double-blind, placebo-controlled study evaluated 3 regimens of grass allergen peptides versus placebo in patients with grass pollen-induced allergy (18-65 years). After a 4-day baseline challenge to rye grass in the environmental exposure unit (EEU), subjects were randomized to receive grass allergen peptides at 6 nmol at 2-week intervals for a total of 8 doses (8x6Q2W), grass allergen peptides at 12 nmol at 4-week intervals for a total of 4 doses (4x12Q4W), or grass allergen peptides at 12 nmol at 2-week intervals for a total of 8 doses (8x12Q2W) or placebo and treated before the grass pollen season. The primary efficacy end point was change from baseline in total rhinoconjunctivitis symptom score across days 2 to 4 of a 4-day posttreatment challenge (PTC) in the EEU after the grass pollen season. Secondary efficacy end points and safety were also assessed. Two hundred eighty-two subjects were randomized. Significantly greater improvement (reduction of total rhinoconjunctivitis symptom score from baseline to PTC) occurred across days 2 to 4 with grass allergen peptide 8x6Q2W versus placebo (-5.4 vs -3.8, respectively; P = .0346). Greater improvement at PTC also occurred for grass allergen peptide 8x6Q2W versus placebo (P = .0403) in patients with more symptomatic ARC. No safety signals were detected. Grass allergen peptide 8x6Q2W significantly improved ARC symptoms after rye grass allergen challenge in an EEU with an acceptable safety profile. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  14. Spotlight on the diagnosis of extrinsic allergic alveolitis (hypersensitivity pneumonitis).

    PubMed

    Baur, Xaver; Fischer, Axel; Budnik, Lygia T

    2015-01-01

    Repeated inhalative exposures to antigenic material from a variety of sources, mainly from moulds, thermophilic Actinomycetes, and avians, respectively, can induce immune responses with the clinical picture of extrinsic allergic alveolitis (EAA) or hypersensitivity pneumonitis. Delays of years or even decades till the diagnosis is made are not uncommon; frequent misdiagnoses include allergic asthma, COPD, recurrent flue and other infections. We provide here the state of the art references, a detailed case description and recommend a current diagnostics schema.

  15. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation.

    PubMed

    Beale, Janine; Jayaraman, Annabelle; Jackson, David J; Macintyre, Jonathan D R; Edwards, Michael R; Walton, Ross P; Zhu, Jie; Ching, Yee Man; Shamji, Betty; Edwards, Matt; Westwick, John; Cousins, David J; Hwang, You Yi; McKenzie, Andrew; Johnston, Sebastian L; Bartlett, Nathan W

    2014-10-01

    Rhinoviruses (RVs), which are the most common cause of virally induced asthma exacerbations, account for much of the burden of asthma in terms of morbidity, mortality, and associated cost. Interleukin-25 (IL-25) activates type 2-driven inflammation and is therefore potentially important in virally induced asthma exacerbations. To investigate this, we examined whether RV-induced IL-25 could contribute to asthma exacerbations. RV-infected cultured asthmatic bronchial epithelial cells exhibited a heightened intrinsic capacity for IL-25 expression, which correlated with donor atopic status. In vivo human IL-25 expression was greater in asthmatics at baseline and during experimental RV infection. In addition, in mice, RV infection induced IL-25 expression and augmented allergen-induced IL-25. Blockade of the IL-25 receptor reduced many RV-induced exacerbation-specific responses including type 2 cytokine expression, mucus production, and recruitment of eosinophils, neutrophils, basophils, and T and non-T type 2 cells. Therefore, asthmatic epithelial cells have an increased intrinsic capacity for expression of a pro-type 2 cytokine in response to a viral infection, and IL-25 is a key mediator of RV-induced exacerbations of pulmonary inflammation.

  16. Effect of thermoneutral housing on fungal-induced respiratory allergic disease in mice

    EPA Science Inventory

    Climate change is projected to increase the number of fungal, bacterial, and pollen agents both indoors and outdoors and may become a significant health impact. Combined with the thermal stress from a rise in global temperatures, it is important to consider how respiratory allerg...

  17. Effect of thermoneutral housing on fungal-induced respiratory allergic disease in mice

    EPA Science Inventory

    Climate change is projected to increase the number of fungal, bacterial, and pollen agents both indoors and outdoors and may become a significant health impact. Combined with the thermal stress from a rise in global temperatures, it is important to consider how respiratory allerg...

  18. Role of Prostaglandin D2 and DP1 Receptor on Japanese Cedar Pollen-Induced Allergic Rhinitis in Mice.

    PubMed

    Nakano, Yoshiyuki; Kidani, Yujiro; Goto, Kumiko; Furue, Shingo; Tomita, Yasuhiko; Inagaki, Naoki; Tanaka, Hiroyuki; Shichijo, Michitaka

    2016-05-01

    Although we previously demonstrated the contribution of the DP1receptor in nasal obstruction using animals sensitized with ovalbumin in the presence of adjuvant, the contribution of the DP1receptor in sneezing is unclear. Here, we developed a mouse model of Japanese cedar (JC:Cryptomeria japonica) pollinosis to evaluate the symptoms of sneezing. To achieve this, we used JC pollen crude extract in the absence of adjuvant to sensitize mice to develop a model closer to the pathophysiology of human JC pollinosis. The immunologic and pharmacologic features of this model are highly similar to those observed in JC pollinosis in humans. Using this model, we found that DP1receptor antagonists suppressed JC pollen extract-induced sneezing and that a DP1receptor agonist induced sneezing. Moreover, JC pollen extract-induced sneezing was diminished in DP1receptor knockout mice. In conclusion, we developed a novel mouse model of allergic rhinitis that closely mimics human JC pollinosis. A strong contribution of DP1receptor signaling to sneezing was demonstrated using this model, suggesting that DP1receptor antagonists could suppress sneezing and nasal obstruction, and therefore these agents could be a new therapeutic option for allergic rhinitis.

  19. Rhinovirus induced IL-25 in asthma exacerbation drives type-2 immunity and allergic pulmonary inflammation

    PubMed Central

    Macintyre, Jonathan D. R.; Edwards, Michael R.; Walton, Ross P.; Zhu, Jie; Man Ching, Yee; Shamji, Betty; Edwards, Matt; Westwick, John; Cousins, David J.; Yi Hwang, You; McKenzie, Andrew

    2014-01-01

    Rhinoviruses are the most common cause of virally-induced asthma exacerbations which continue to account for the greatest burden in terms of morbidity, mortality and cost associated with this disease. IL-25 activates type-2-driven inflammation and is potentially important in virally-induced asthma exacerbations. Rhinovirus-infected cultured asthmatic bronchial epithelial cells exhibited a heightened intrinsic capacity for IL-25 expression which correlated with donor atopic status. In vivo human IL-25 expression was greater in asthmatics at baseline and during experimental rhinovirus infection. In mice rhinovirus infection induced IL-25 expression and augmented allergen-induced IL-25. Blockade of the IL-25 receptor reduced many RV-induced exacerbation-specific responses including type-2 cytokine expression, mucus production and recruitment of eosinophils, neutrophils, basophils, T and non-T type-2 cells. We have identified that asthmatic epithelial cells possess increased intrinsic capacity for expression of a pro-type-2 cytokine in response to a viral infection and identify IL-25 as a key mediator in RV-induced exacerbations of pulmonary inflammation. PMID:25273095

  20. Allergic rhinitis.

    PubMed

    Mims, James W

    2012-02-01

    Familiarity with the diagnosis and management of allergic rhinitis is important for physicians concerned with the nasal airway. Allergic rhinitis is a common and manageable condition that may cause persistent or intermittent symptoms that vary as to duration and severity. Allergic rhinitis impairs quality of life, sleep, school performance, and productivity on a scale that compares with other chronic diseases. Diagnosis is primarily clinical, but supported by allergy testing. Therapeutic options for allergic rhinitis include pharmacotherapy, environmental control, and immunotherapy. More recently, a role for sublingual immunotherapy and turbinate reduction has been reported. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The effect of tiotropium in combination with olodaterol on house dust mite-induced allergic airway disease.

    PubMed

    John-Schuster, Gerrit; de Kleijn, Stan; van Wijck, Yolanda; Kremer, Veerle; Smits, Hermelijn H; Pieper, Michael P; Hiemstra, Pieter S; Taube, Christian

    2017-08-01

    One of the major goals of asthma therapy is to maintain asthma control and prevent acute exacerbations. Long-acting bronchodilators are regularly used for the treatment of asthma patients and in clinical studies the anti-cholinergic tiotropium has recently been shown to reduce exacerbations in patients with asthma. So far it is unclear how tiotropium exerts this effect. For this purpose, we designed an allergen-driven rechallenge model of allergic airway inflammation in mice, to assess the effectiveness of tiotropium and the long-acting β-2 adrenoceptor agonist olodaterol on allergen-induced exacerbations of airway disease. Female C57BL/6J mice were sensitized intranasally (i.n.) with 1 μg of house dust mite (HDM) extract followed by a challenge regime (5 consecutive days 10 μg HDM extract i.n.) after one week. Mice were exposed to a secondary challenge five weeks after sensitization and were treated i.n. with different concentrations of tiotropium or olodaterol (1, 10 and 100 μg/kg) or a combination thereof (10 μg/kg each) prior to and during the secondary challenge period. Three days after the last challenge, bronchoalveolar lavage (BAL) fluid and lung tissue were collected for flow cytometry and histologic analysis, respectively. Secondary challenge with HDM extract strongly induced allergic airway disease reflected by inflammatory cell infiltration and goblet cell metaplasia. Treatment with tiotropium, but not with olodaterol reduced tissue inflammation and goblet cell metaplasia in a dose-dependent manner. The combination of tiotropium and olodaterol was more effective in significantly reducing tissue inflammation compared to tiotropium treatment alone, and also led to a decrease in BAL cell counts. These data suggest that in a model of relapsing allergic airway disease tiotropium directly prevents exacerbations by reducing inflammation and mucus production in the airways. In addition, the combination of tiotropium and olodaterol exerts synergistic

  2. Tryptophan Metabolism in Allergic Disorders.

    PubMed

    Gostner, Johanna M; Becker, Katrin; Kofler, Heinz; Strasser, Barbara; Fuchs, Dietmar

    2016-01-01

    Allergic diseases such as asthma and rhinitis, as well the early phase of atopic dermatitis, are characterized by a Th2-skewed immune environment. Th2-type cytokines are upregulated in allergic inflammation, whereas there is downregulation of the Th1-type immune response and related cytokines, such as interferon-x03B3; (IFN-x03B3;). The latter is a strong inducer of indoleamine 2,3-dioxygenase-1 (IDO-1), which degrades the essential amino acid tryptophan, as part of an antiproliferative strategy of immunocompetent cells to halt the growth of infected and malignant cells, and also of T cells - an immunoregulatory intervention to avoid overactivation of the immune system. Raised serum tryptophan concentrations have been reported in patients with pollen allergy compared to healthy blood donors. Moreover, higher baseline tryptophan concentrations have been associated with a poor response to specific immunotherapy. It has been shown that the increase in tryptophan concentrations in patients with pollen allergy only exists outside the pollen season, and not during the season. Interestingly, there is only a minor alteration of the kynurenine to tryptophan ratio (Kyn/Trp, an index of tryptophan breakdown). The reason for the higher tryptophan concentrations in patients with pollen allergy outside the season remains a matter of discussion. To this regard, the specific interaction of nitric oxide (NO∙) with the tryptophan-degrading enzyme IDO-1 could be important, because an enhanced formation of NO∙ has been reported in patients with asthma and allergic rhinitis. Importantly, NO∙ suppresses the activity of the heme enzyme IDO-1, which could explain the higher tryptophan levels. Thus, inhibitors of inducible NO∙ synthase should be reconsidered as candidates for antiallergic therapy out of season that may abrogate the arrest of IDO-1 by decreasing the production of NO∙. Considering its association with the pathophysiology of atopic disease, tryptophan metabolism may

  3. Management of Allergic Rhinitis

    PubMed Central

    Sausen, Verra O.; Marks, Katherine E.; Sausen, Kenneth P.; Self, Timothy H.

    2005-01-01

    Allergic rhinitis is the most common chronic childhood disease. Reduced quality of life is frequently caused by this IgE-mediated disease, including sleep disturbance with subsequent decreased school performance. Asthma and exercise-induced bronchospasm are commonly seen concurrently with allergic rhinitis, and poorly controlled allergic rhinitis negatively affects asthma outcomes. Nonsedating antihistamines or intranasal azelastine are effective agents to manage allergic rhinitis, often in combination with oral decongestants. For moderate to severe persistent disease, intranasal corticosteroids are the most effiective agents. Some patients require concomitant intranasal corticosteroids and nonsedating antihistamines for optimal management. Other available agents include leukotriene receptor antagonists, intranasal cromolyn, intranasal ipratropium, specific immunotherapy, and anti-IgE therapy. PMID:23118635

  4. Adjuvant effect of Asparagus racemosus Willd. derived saponins in antibody production, allergic response and pro-inflammatory cytokine modulation.

    PubMed

    Tiwari, Nimisha; Gupta, Vivek Kumar; Pandey, Pallavi; Patel, Dinesh Kumar; Banerjee, Suchitra; Darokar, Mahendra Pandurang; Pal, Anirban

    2017-02-01

    The study manifests the immunoadjuvant potential of saponin rich fraction from Asparagus racemosus in terms of cellular and humoral immune response that can be exploited against microbial infections. Asparagus racemosus (AR) has been attributed as an adaptogen and rasayana in traditional medication systems for enhancing the host defence mechanism. Spectrophotometric and HPTLC analysis ensured the presence of saponins. The saponin rich fractions were tested for immunoadjuvant property in ovalbumin immunised mice for the humoral response, quantified in terms of prolonged antibody production upto a duration of 56days. Proinflammatory cytokines (IL-6 and TNF) were estimated for the cellular immune response in LPS stimulated primary murine macrophages. The safety evaluation in terms of cytotoxicity and allergic response has also been evaluated through in-vitro (MTT) and in-vivo (IgE) respectively. ARS significantly inhibited the pro-inflammatory cytokines, in LPS stimulated murine macrophages with no intrinsic cytotoxicity. The significant increase in IgG production infers the utility of ARS for prolonged humoral response. Further, the antigen specific response of IL-12 at early stage and IgE titres also suggests the generation of cellular immune response and low allergic reaction respectively, as compared to conventional adjuvants. IL-6 and TNF fluctuations in LPS stimulated and non-stimulated macrophages along with IgG and IL-12 also confirmed the Th1/Th2 modulating effect of ARS. The study indicates potential effect of ARS as an adjuvant for the stimulation of cellular immune response in addition to generating a sustained adaptive response without any adverse effects paving way for further validation with pathogenic organisms. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Immunotherapy of allergic contact dermatitis.

    PubMed

    Spiewak, Radoslaw

    2011-08-01

    The term 'immunotherapy' refers to treating diseases by inducing, enhancing or suppressing immune responses. As allergy is an excessive, detrimental immune reaction to otherwise harmless environmental substances, immunotherapy of allergic disease is aimed at the induction of tolerance toward sensitizing antigens. This article focuses on the historical developments, present state and future outlook for immunotherapy with haptens as a therapeutic modality for allergic contact dermatitis. Inspired by the effectiveness of immunotherapy in respiratory allergies, attempts were undertaken at curing allergic contact dermatitis by means of controlled administration of the sensitizing haptens. Animal and human experiments confirmed that tolerance to haptens can be induced most effectively when the induction of tolerance precedes attempted sensitization. In real life, however, therapy is sought by people who are already sensitized and an effective reversal of hypersensitivity seems more difficult to achieve. Decades of research on Rhus hypersensitivity led to a conclusion that immunotherapy can suppress Rhus dermatitis, however, only to a limited degree, for a short period of time, and at a high risk of side effects, which makes this method therapeutically unprofitable. Methodological problems with most available studies of immunotherapy of contact allergy to nickel make any definite conclusions impossible at this stage.

  6. Model for Studying Anti- Allergic Drugs for Allergic Conjunctivitis in Animals

    PubMed Central

    Nakazawa, Yosuke; Oka, Mikako; Takehana, Makoto

    2017-01-01

    Abstract Allergic conjunctivitis (AC), which is characterized by ocular itching, hyperemia, and edema, deteriorates quality of life. In this study, effects of anti-allergic drugs were evaluated by assessing eye-scratching behavior, the number of eosinophils in conjunctiva epithelial tissues, and concentrations of chemical mediators in the tears of the guinea pig model of ovalbumin (OA)-induced AC. Methodology On day 0, 3-week-old guinea pigs were sensitized by OA subconjunctival injections. On days 15, 17, and 19, OA solution was administered. Anti-allergic eye drops were administered 5 and 15 min before the final OA challenge on day 19. Scratching behavior within 1 h after OA exposure was studied. Eosinophils in the conjunctiva were stained with Giemsa reagent. Histamine and substance P (SP) concentrations in tears were measured using ELISA. Results Subconjunctivally injected guinea pigs were observed for clinical symptoms. Scratching responses significantly reduced with ketotifen or olopatadine treatment. Eosinophil numbers reduced in animals treated with ketotifen, levocabastine, or tranilast. Histamine and/or SP concentrations in tears were inhibited by some of these anti-allergic drugs. Conclusions It is important to assess the anti-allergic AC drugs objectively because there are several of these drugs currently available. This model allows for an objective evaluation of anti-allergic drugs for AC. PMID:28848937

  7. Inhibitory Effect of Loranthus parasiticus on IgE-Mediated Allergic Responses in RBL-2H3 Cells

    PubMed Central

    Yang, Ju-Hye; Kim, Young Soo

    2016-01-01

    The mistletoe Loranthus parasiticus has been used as a compound for traditional medicine in Northeast Asia for a long time and is known to possess neuroprotective action. Nonetheless, the effect of Loranthus parasiticus on allergic responses remains unknown. In the present study, we evaluated whether the water extract of Loranthus parasiticus (LPE) could inhibit IgE-mediated allergic responses in RBL-2H3 cells. LPE inhibited the release of β-hexosaminidase (IC50, 184.5 μg/mL) and the formation of tumor necrosis factor-α (IC50, 84.27 μg/mL), interleukin-4 (IC50, 93.43 μg/mL), prostaglandin E2 (IC50, 84.10 μg/mL), prostaglandin D2, and leukotriene C4 (IC50, 43.27 μg/mL) in a concentration-dependent manner. Moreover, LPE inhibited phosphorylation of Syk, PLCγ1/2, PKCδ, ERK, JNK, p38, and Akt. In the late phase, LPE decreased 5-lipoxygenase phosphorylation and COX-2 expression but not cPLA2 phosphorylation. Additionally, LPE included total phenolic compounds (10.72 mg/g dry weight) and total flavonoids (56.20 mg/g dry weight). These results suggest that the phenolic compounds or flavonoids contained in LPE may be associated with antiallergic activity. The phenolic compounds and flavonoids in LPE are antiallergic phytochemicals capable of inhibiting the activation of the FcεRI signaling cascade in mast cells. Such effects may provide further information for the development of a phytomedicine for allergic diseases. PMID:27761061

  8. Protective Effects of Intratracheally-Administered Bee Venom Phospholipase A2 on Ovalbumin-Induced Allergic Asthma in Mice

    PubMed Central

    Jung, Kyung-Hwa; Baek, Hyunjung; Shin, Dasom; Lee, Gihyun; Park, Sangwon; Lee, Sujin; Choi, Dabin; Kim, Woojin; Bae, Hyunsu

    2016-01-01

    Asthma is a common chronic disease characterized by bronchial inflammation, reversible airway obstruction, and airway hyperresponsiveness (AHR). Current therapeutic options for the management of asthma include inhaled corticosteroids and β2 agonists, which elicit harmful side effects. In the present study, we examined the capacity of phospholipase A2 (PLA2), one of the major components of bee venom (BV), to reduce airway inflammation and improve lung function in an experimental model of asthma. Allergic asthma was induced in female BALB/c mice by intraperitoneal administration of ovalbumin (OVA) on days 0 and 14, followed by intratracheal challenge with 1% OVA six times between days 22 and 30. The infiltration of immune cells, such as Th2 cytokines in the lungs, and the lung histology, were assessed in the OVA-challenged mice in the presence and absence of an intratracheal administration of bvPLA2. We showed that the intratracheal administration of bvPLA2 markedly suppressed the OVA-induced allergic airway inflammation by reducing AHR, overall area of inflammation, and goblet cell hyperplasia. Furthermore, the suppression was associated with a significant decrease in the production of Th2 cytokines, such as IL-4, IL-5, and IL-13, and a reduction in the number of total cells, including eosinophils, macrophages, and neutrophils in the airway. PMID:27669297

  9. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction

    PubMed Central

    Gri, Giorgia; Piconese, Silvia; Frossi, Barbara; Manfroi, Vanessa; Merluzzi, Sonia; Tripodo, Claudio; Viola, Antonella; Odom, Sandra; Rivera, Juan; Colombo, Mario P.; Pucillo, Carlo E.

    2008-01-01

    Summary CD4+CD25+ T regulatory cells (Tregs) play a central role in the suppression of immune responses thus serving to induce tolerance and to control persistent immune responses that can lead to autoimmunity. Here we explore if Tregs also play a role in controlling the immediate hypersensitivity response of mast cells (MCs). Tregs directly inhibit the FcεRI-dependent degranulation of MCs through cell-cell contact involving OX40-OX40L interactions between Tregs and MCs, respectively. MCs show increased cAMP levels and reduced Ca2+ influx, independent of PLC-γ2 or Ca2+ release from intracellular stores. Antagonism of cAMP in MCs reverses the inhibitory effects of Tregs restoring normal Ca2+ responses and degranulation. Importantly, the in vivo depletion or inactivation of Tregs causes enhancement of the anaphylactic response. The demonstrated cross-talk between Tregs and MCs defines a previously unrecognized mechanism controlling MCs degranulation. Loss of this interaction may contribute to the severity of allergic responses. PMID:18993084

  10. Allergic enteritis in children

    PubMed Central

    Czerwionka-Szaflarska, Mieczysława; Gawryjołek, Julia

    2017-01-01

    The gastrointestinal form of food allergy is very common in children. The most frequently observed types are allergic proctitis and proctocolitis. In most cases the symptoms subside within the first 2 months of life. The babies seem healthy, and the only abnormality is a small amount of blood in stool. Symptoms can also include small intestine inflammation and colitis. Patients may present with irritability, abdominal pain, flatulence, colic, postprandial vomiting, chronic diarrhoea, and hindered physical development. The diagnosis of allergic enteritis is based on the clinical examination and the results of additional tests including an endoscopy of the lower digestive tract with histopathological assessment. Cow’s milk proteins are the most common nutrition proteins responsible for the development of the symptoms of allergic enteritis. The most essential method of treating allergic enteritis is the elimination diet. The symptoms should subside within 1–2 weeks from the beginning of the diet. PMID:28337229

  11. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  12. IL-33/ST2 axis controls Th2/IL-31 and Th17 immune response in allergic airway diseases.

    PubMed

    Vocca, Lavinia; Di Sano, Caterina; Uasuf, Carina G; Sala, Angelo; Riccobono, Loredana; Gangemi, Sebastiano; Albano, Giusy Daniela; Bonanno, Anna; Gagliardo, Rosalia; Profita, Mirella

    2015-08-01

    IL-33 targeting ST2 receptor (T1/ST2), expressed on Th2 cell surface, regulates the production of cytokines like IL-17A and IL-31. We studied the role of IL-33/ST2 axis in IL-31 and IL-17A production in patients with allergic rhinitis (AR) and with concomitant allergic asthma and rhinitis (AAR). 20 healthy control subjects (HC), 14 AR and 17 AAR subjects were recruited and blood samples collected. IL-33, soluble ST2 (sST2), IL-17A and IL-31 plasma concentrations were measured by ELISA method. T1/ST2, IL-31 and IL-17A cellular expression were studied in peripheral blood mononuclear cells (PBMC) from HC, AR and AAR (n=6 for each group) by flow-cytometry. In vitro, we also evaluated the effect of beclomethasone dipropionate (BDP) on T1/ST2, IL-31 and IL-17A expression in CD3(+)T-cells from PBMC of AAR (n=6). Plasma levels of IL-33, IL-31 and IL-17A were significantly higher and sST2 was lower in patients with AR and AAR than in HC. IL-31 and IL-17A intracellular levels significantly increased, whereas T1/ST2 expression was significantly lower, in CD3(+)T-cells from AR and AAR compared to HC. Positive correlations were observed between plasmatic components of IL-33/ST2 axis and IL-31 in both AR and AAR and IL-17A in AAR. In vitro IL-31 and IL-17A intracellular levels decreased after BDP treatment, whereas T1/ST2 expression increased in cultured CD3(+)T-cells obtained from AAR. IL-33/ST2 axis is involved in Th2/IL-31 and Th17 immune response during the progression of allergic airway disease. In vitro BDP is able to control Th2/IL-31 and Th17 immune response in PBMC from allergic patients. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Transcriptome analysis of proton pump inhibitor-responsive esophageal eosinophilia reveals proton pump inhibitor-reversible allergic inflammation.

    PubMed

    Wen, Ting; Dellon, Evan S; Moawad, Fouad J; Furuta, Glenn T; Aceves, Seema S; Rothenberg, Marc E

    2015-01-01

    Esophageal eosinophilia can be proton pump inhibitor (PPI) resistant or responsive, representing 2 entities known as eosinophilic esophagitis (EoE) and PPI-responsive esophageal eosinophilia (PPI-REE), respectively. Although they present with similar clinical features, EoE is accepted to be an antigen-driven, TH2-associated allergic disorder, whereas the cause of PPI-REE remains a mystery. In this study, our aim was to investigate the pathogenesis of PPI-REE by using a recently described EoE diagnostic panel (EDP) composed of a set of 94 esophageal transcripts and to determine whether PPI therapy reverses any esophageal transcriptional abnormalities. We evaluated the EDP signature in biopsy samples obtained from adult and pediatric patients with PPI-REE from 4 institutions and compared the pre- and post-PPI therapy expression profiles of these subjects with those of patients with active EoE. The EDP differentiated patients with EoE from control subjects with 100% accuracy among the 4 clinical sites. Bioinformatics analysis revealed largely overlapping transcriptomes between patients with PPI-REE and those with EoE, including the genes for eosinophil chemotaxis (eotaxin 3, CCL26), barrier molecules (desmoglein 1, DSG1), tissue remodeling (periostin, POSTN), and mast cells (carboxypeptidase A, CPA3). PPI monotherapy alone almost completely reversed the allergic inflammatory transcriptome of patients with PPI-REE. Furthermore, we identified a set of candidate genes to differentiate patients with EoE from those with PPI-REE before treatment. These findings provide definitive evidence that PPI-REE is a disease entity with significant molecular overlap with EoE, suggesting that many patients with PPI-REE represent a continuum of the same pathogenic allergic mechanisms that underlie EoE and thus might constitute a subphenotype of patients with EoE. The ability of PPI therapy to nearly entirely reverse gene expression associated with PPI-REE, particularly that associated

  14. Integrated Innate Mechanisms Involved in Airway Allergic Inflammation to the Serine Protease Subtilisin

    PubMed Central

    Florsheim, Esther; Yu, Shuang; Bragatto, Ivan; Faustino, Lucas; Gomes, Eliane; Ramos, Rodrigo N.; Barbuto, José Alexandre M.; Medzhitov, Ruslan; Russo, Momtchilo

    2015-01-01

    Proteases are recognized environmental allergens, but little is known about the mechanisms responsible for sensing enzyme activity and initiating the development of allergic inflammation. Because usage of the serine protease subtilisin in the detergent industry resulted in an outbreak of occupational asthma in workers, we sought to develop an experimental model of allergic lung inflammation to subtilisin and to determine the immunological mechanisms involved in type 2 responses. By using a mouse model of allergic airway disease, we have defined here that subcutaneous or intranasal sensitization followed by airway challenge to subtilisin induces prototypic allergic lung inflammation, characterized by airway eosinophilia, type 2 cytokines release, mucus production, high levels of serum IgE, and airway reactivity. These allergic responses were dependent on subtilisin protease activity, protease-activated receptor (PAR)-2, IL-33 receptor ST2, and MyD88 signaling. Also, subtilisin stimulated the expression of the pro-allergic cytokines IL-1α, IL-33, TSLP, and the growth factor amphiregulin in a human bronchial epithelial cell line. Notably, acute administration of subtilisin into the airways increased lung IL-5-producing type 2 innate lymphoid cells, which required PAR-2 expression. Finally, subtilisin activity acted as a Th2 adjuvant to an unrelated airborne antigen promoting allergic inflammation to inhaled OVA. Therefore, we established a murine model of occupational asthma to a serine protease and characterized the main molecular pathways involved in allergic sensitization to subtilisin that potentially contribute to initiate allergic airway disease. PMID:25876764

  15. Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin.

    PubMed

    Rivera, Dagmar García; Balmaseda, Ivones Hernández; León, Alina Alvarez; Hernández, Belkis Cancio; Montiel, Lucía Márquez; Garrido, Gabino Garrido; Cuzzocrea, Salvatore; Hernández, René Delgado

    2006-03-01

    Vimang is the brand name of formulations containing an extract of Mangifera indica L., ethnopharmacologically used in Cuba for the treatment of some immunopathological disorders, including bronchial asthma, atopic dermatitis and other allergic diseases. However, the effects of Vimang on allergic response have not been reported until now. In this study, the effects of Vimang and mangiferin, a C-glucosylxanthone isolated from the extract, on different parameters of allergic response are reported. Vimang and mangiferin showed a significant dose-dependent inhibition of IgE production in mice and anaphylaxis reaction in rats, histamine-induced vascular permeability and the histamine release induced by compound 48/80 from rat mast cells, and of lymphocyte proliferative response as evidence of the reduction of the amount of B and T lymphocytes able to contribute to allergic response. In these experiments, ketotifen, promethazine and disodium cromoglicate were used as reference drugs. Furthermore, we demonstrated that Vimang had an effect on an in-vivo model of inflammatory allergy mediated by mast cells. These results constitute the first report of the anti-allergic properties of Vimang on allergic models, as well as suggesting that this natural extract could be successfully used in the treatment of allergic disorders. Mangiferin, the major compound of Vimang, contributes to the anti-allergic effects of the extract.

  16. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction.

    PubMed

    Gri, Giorgia; Piconese, Silvia; Frossi, Barbara; Manfroi, Vanessa; Merluzzi, Sonia; Tripodo, Claudio; Viola, Antonella; Odom, Sandra; Rivera, Juan; Colombo, Mario P; Pucillo, Carlo E

    2008-11-14

    T regulatory (Treg) cells play a role in the suppression of immune responses, thus serving to induce tolerance and control autoimmunity. Here, we explored whether Treg cells influence the immediate hypersensitivity response of mast cells (MCs). Treg cells directly inhibited the FcvarepsilonRI-dependent MC degranulation through cell-cell contact involving OX40-OX40L interactions between Treg cells and MCs, respectively. When activated in the presence of Treg cells, MCs showed increased cyclic adenosine monophosphate (cAMP) concentrations and reduced Ca(2+) influx, independently of phospholipase C (PLC)-gamma2 or Ca(2+) release from intracellular stores. Antagonism of cAMP in MCs reversed the inhibitory effects of Treg cells, restoring normal Ca(2+) responses and degranulation. Importantly, the in vivo depletion or inactivation of Treg cells caused enhancement of the anaphylactic response. The demonstrated crosstalk between Treg cells and MCs defines a previously unrecognized mechanism controlling MC degranulation. Loss of this interaction may contribute to the severity of allergic responses.

  17. Diagnosis and treatment of grass pollen-induced allergic rhinitis in specialized current clinical practice in Spain.

    PubMed

    Valero, Antonio; Chivato, Tomás; Justicia, José L; Navarro, Ana M

    2011-01-01

    Allergic rhinitis (AR) is the leading cause of consultation at the allergy specialist's office, but detailed, reliable, and validated clinical data on this condition are limited. This study was designed to define the clinical features, diagnostic methods, and therapeutic approaches of patients with AR induced by grass pollen in Spain. Two hundred twelve specialists participated in a multicenter, observational, epidemiologic, questionnaire-based study. Each investigator had to recruit at least two patients consulting for the first time and with a diagnosis of AR induced by grass pollen. Five hundred twenty-four patients (52% men; mean age, 29.3 years) with grass pollen-induced rhinitis (mean disease duration, 8.7 years) were recruited. Just 18.4% of patients reported that their symptom status had improved since the beginning of the condition, 89.4% had moderate-severe rhinitis (Allergic Rhinitis and Its Impact on Asthma classification) and 35.1% had concomitant bronchial asthma. For 52.1% of patients, control of symptoms with previous drug treatment was poor. Most of the patients were polysensitized to other pollens (sensitization to olive tree pollen, 57.1%). Oral antihistamines (97.3%) and nasal corticosteroids (82.3%) were the most frequently prescribed drugs and 43.1% of patients received specific immunotherapy. The clinical profile for the majority of Spanish patients consulting an allergy specialist for AR induced by grass pollen corresponds to a young adult with a lengthy moderate-severe rhinitis, often accompanied by bronchial asthma. Their symptoms progressively worsen and rhinitis is poorly controlled by symptomatic treatment. Oral antihistamines and nasal corticosteroids are the most frequently used therapeutic approaches and less than one-half receive specific immunotherapy.

  18. The activating protein 1 transcription factor basic leucine zipper transcription factor, ATF-like (BATF), regulates lymphocyte- and mast cell-driven immune responses in the setting of allergic asthma.

    PubMed

    Übel, Caroline; Sopel, Nina; Graser, Anna; Hildner, Kai; Reinhardt, Cornelia; Zimmermann, Theodor; Rieker, Ralf Joachim; Maier, Anja; Neurath, Markus F; Murphy, Kenneth M; Finotto, Susetta

    2014-01-01

    Mice without the basic leucine zipper transcription factor, ATF-like (BATF) gene (Batf(-/-)) lack TH17 and follicular helper T cells, which demonstrates that Batf is a transcription factor important for T- and B-cell differentiation. In this study we examined whether BATF expression would influence allergic asthma. In a cohort of preschool control children and children with asthma, we analyzed BATF mRNA expression using real-time PCR in PBMCs. In a murine model of allergic asthma, we analyzed differences in this allergic disease between wild-type, Batf transgenic, and Batf(-/-) mice. In the absence of corticosteroid treatment, children with recurrent asthma have a significant increase in BATF mRNA expression in their PBMCs. Batf(-/-) mice display a significant reduction in the pathophysiologic responses seen in asthmatic wild-type littermates. Moreover, we discovered a decrease in IL-3 production and IL-3-dependent mast cell development in Batf(-/-) mice. By contrast, IFN-γ was induced in lung CD4(+) and CD8(+) T cells. Intranasal delivery of anti-IFN-γ antibodies induced airway hyperresponsiveness and inflammation in wild-type but not in Batf(-/-) mice. Transgenic overexpression of Batf under the control of the CD2 promoter/enhancer augmented lung inflammation and IgE levels in the setting of experimental asthma. BATF is increased in non-steroid-treated asthmatic children. Targeting BATF expression resulted in amelioration of the pathophysiologic responses seen in children with allergic asthma, and BATF has emerged as a novel target for antiasthma interventions. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. Falcarinol is a covalent cannabinoid CB1 receptor antagonist and induces pro-allergic effects in skin.

    PubMed

    Leonti, Marco; Casu, Laura; Raduner, Stefan; Cottiglia, Filippo; Floris, Costantino; Altmann, Karl-Heinz; Gertsch, Jürg

    2010-06-15

    The skin irritant polyyne falcarinol (panaxynol, carotatoxin) is found in carrots, parsley, celery, and in the medicinal plant Panax ginseng. In our ongoing search for new cannabinoid (CB) receptor ligands we have isolated falcarinol from the endemic Sardinian plant Seseli praecox. We show that falcarinol exhibits binding affinity to both human CB receptors but selectively alkylates the anandamide binding site in the CB(1) receptor (K(i)=594nM), acting as covalent inverse agonist in CB(1) receptor-transfected CHO cells. Given the inherent instability of purified falcarinol we repeatedly isolated this compound for biological characterization and one new polyyne was characterized. In human HaCaT keratinocytes falcarinol increased the expression of the pro-allergic chemokines IL-8 and CCL2/MCP-1 in a CB(1) receptor-dependent manner. Moreover, falcarinol inhibited the effects of anandamide on TNF-alpha stimulated keratinocytes. In vivo, falcarinol strongly aggravated histamine-induced oedema reactions in skin prick tests. Both effects were also obtained with the CB(1) receptor inverse agonist rimonabant, thus indicating the potential role of the CB(1) receptor in skin immunopharmacology. Our data suggest anti-allergic effects of anandamide and that falcarinol-associated dermatitis is due to antagonism of the CB(1) receptor in keratinocytes, leading to increased chemokine expression and aggravation of histamine action.

  20. Negative regulation of pulmonary Th17 responses by C3a anaphylatoxin during allergic inflammation in mice.

    PubMed

    Lim, Hoyong; Kim, Young Uk; Drouin, Scott M; Mueller-Ortiz, Stacey; Yun, Kyoungah; Morschl, Eva; Wetsel, Rick A; Chung, Yeonseok

    2012-01-01

    Activation of complement is one of the earliest immune responses to exogenous threats, resulting in various cleavage products including anaphylatoxin C3a. In addition to its contribution to host defense, C3a has been shown to mediate Th2 responses in animal models of asthma. However, the role of C3a on pulmonary Th17 responses during allergic inflammation remains unclear. Here, we show that mice deficient in C3a receptor (C3aR) exhibited (i) higher percentages of endogenous IL-17-producing CD4(+) T cells in the lungs, (ii) higher amounts of IL-17 in the bronchoalveolar lavage fluid, and (iii) more neutrophils in the lungs than wild-type mice when challenged with intranasal allergens. Moreover, adoptive transfer experiments showed that the frequencies of antigen-specific IL-17-producing CD4(+) T cells were significantly higher in the lungs and bronchial lymph nodes of C3aR-deficient recipients than those of wild-types recipients. Bone-marrow reconstitution study indicated that C3aR-deficiency on hematopoietic cells was required for the increased Th17 responses. Furthermore, C3aR-deficient mice exhibited increased percentages of Foxp3(+) regulatory T cells; however, depletion of these cells minimally affected the induction of antigen-specific Th17 cell population in the lungs. Neutralization of IL-17 significantly reduced the number of neutrophils in bronchoalveolar lavage fluid of C3aR-deficient mice. Our findings demonstrate that C3a signals negatively regulate antigen-specific Th17 responses during allergic lung inflammation and the size of Foxp3(+) regulatory T cell population in the periphery.

  1. Intelectin is required for IL-13-induced monocyte chemotactic protein-1 and -3 expression in lung epithelial cells and promotes allergic airway inflammation

    PubMed Central

    Gu, Naibing; Kang, Guannan; Jin, Chang'E; Xu, Yongjian; Zhang, Zhenxiang; Erle, David J.

    2010-01-01

    Asthma is characterized by airway inflammation, mucus overproduction, airway hyperreactivity, and peribronchial fibrosis. Intelectin has been shown to be increased in airway epithelium of asthmatics. However, the role of intelectin in the pathogenesis of asthma is unknown. Airway epithelial cells can secrete chemokines such as monocyte chemotactic protein (MCP)-1 and -3 that play crucial roles in asthmatic airway inflammation. We hypothesized that intelectin plays a role in allergic airway inflammation by regulating chemokine expression. In a mouse allergic asthma model, we found that mRNA expression of intelectin-2 as well as MCP-1 and -3 in mouse lung was increased very early (within 2 h) after allergen challenge. Expression of intelectin protein was localized to mucous cells in airway epithelium. Treatment of MLE12 mouse lung epithelial cells with interleukin IL-13, a critical mediator of allergic airway disease, induced expression of intelectin-1 and -2 as well as MCP-1 and -3. When IL-13-induced intelectin-1 and -2 expression was inhibited by RNA interference, IL-13-induced extracellular signal-regulated kinase 1/2 phosphorylation and MCP-1 and -3 production by MLE12 cells was inhibited. Furthermore, inhibition of intelectin expression by airway transfection with shRNA targeting intelectin-1 and -2 attenuated allergen-induced airway inflammation. We conclude that intelectin, a molecule expressed by airway epithelial cells and upregulated in asthma, is required for IL-13-induced MCP-1 and -3 production in mouse lung epithelial cells and contributes to allergic airway inflammation. PMID:19965981

  2. Intelectin is required for IL-13-induced monocyte chemotactic protein-1 and -3 expression in lung epithelial cells and promotes allergic airway inflammation.

    PubMed

    Gu, Naibing; Kang, Guannan; Jin, Chang'E; Xu, Yongjian; Zhang, Zhenxiang; Erle, David J; Zhen, Guohua

    2010-03-01

    Asthma is characterized by airway inflammation, mucus overproduction, airway hyperreactivity, and peribronchial fibrosis. Intelectin has been shown to be increased in airway epithelium of asthmatics. However, the role of intelectin in the pathogenesis of asthma is unknown. Airway epithelial cells can secrete chemokines such as monocyte chemotactic protein (MCP)-1 and -3 that play crucial roles in asthmatic airway inflammation. We hypothesized that intelectin plays a role in allergic airway inflammation by regulating chemokine expression. In a mouse allergic asthma model, we found that mRNA expression of intelectin-2 as well as MCP-1 and -3 in mouse lung was increased very early (within 2 h) after allergen challenge. Expression of intelectin protein was localized to mucous cells in airway epithelium. Treatment of MLE12 mouse lung epithelial cells with interleukin IL-13, a critical mediator of allergic airway disease, induced expression of intelectin-1 and -2 as well as MCP-1 and -3. When IL-13-induced intelectin-1 and -2 expression was inhibited by RNA interference, IL-13-induced extracellular signal-regulated kinase 1/2 phosphorylation and MCP-1 and -3 production by MLE12 cells was inhibited. Furthermore, inhibition of intelectin expression by airway transfection with shRNA targeting intelectin-1 and -2 attenuated allergen-induced airway inflammation. We conclude that intelectin, a molecule expressed by airway epithelial cells and upregulated in asthma, is required for IL-13-induced MCP-1 and -3 production in mouse lung epithelial cells and contributes to allergic airway inflammation.

  3. Genetics of Allergic Diseases

    PubMed Central

    Ortiz, Romina A.; Barnes, Kathleen C.

    2015-01-01

    The allergic diseases are complex phenotypes for which a strong genetic basis has been firmly established. Genome-wide association studies (GWAS) has been widely employed in the field of allergic disease, and to date significant associations have been published for nearly 100 asthma genes/loci, in addition to multiple genes/loci for AD, AR and IgE levels, for which the overwhelming number of candidates are novel and have given a new appreciation for the role of innate as well as adaptive immune-response genes in allergic disease. A major outcome of GWAS in allergic disease has been the formation of national and international collaborations leading to consortia meta-analyses, and an appreciation for the specificity of genetic associations to sub-phenotypes of allergic disease. Molecular genetics has undergone a technological revolution, leading to next generation sequencing (NGS) strategies that are increasingly employed to hone in on the causal variants associated with allergic diseases. Unmet needs in the field include the inclusion of ethnically and racially diverse cohorts, and strategies for managing ‘big data’ that is an outcome of technological advances such as sequencing. PMID:25459575

  4. Valdecoxib-induced toxic epidermal necrolysis in a patient allergic to sulfa drugs.

    PubMed

    Glasser, Denise L; Burroughs, Susan H

    2003-04-01

    A 55-year-old Caucasian woman with a previously documented sulfa allergy was admitted to the hospital after she developed toxic epidermal necrolysis; she had been taking valdecoxib for 8 days for knee pain. Four days later, her bullous lesions had progressed to 45-50% of her body surface area. She was transferred to a burn unit for aggressive wound care and fluid hydration. Valdecoxib, a cyclooxygenase-2 inhibitor, is a benzenesulfonamide prescribed for arthritis pain and inflammation, and dysmenorrhea. Clinicians should exercise caution when prescribing valdecoxib to patients who are allergic to sulfa drugs.

  5. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    SciTech Connect

    Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  6. Allergic Conjunctivitis Renders CD4+ T Cells Resistant to T Regulatory Cells and Exacerbates Corneal Allograft Rejection

    PubMed Central

    Reyes, Nancy J.; Chen, Peter W.; Niederkorn, Jerry Y.

    2013-01-01

    Allergic diseases rob corneal allografts of immune privilege and increase immune rejection. Corneal allograft rejection in BALB/c allergic hosts was analyzed using a short ragweed (SWR) pollen model of allergic conjunctivitis. Allergic conjunctivitis did not induce exaggerated T cell responses to donor C57BL/6 (B6) alloantigens or stimulate cytotoxic T lymphocyte (CTL) responses. Allergic conjunctivitis did affect T regulatory cells (Tregs) that support graft survival. Exogenous IL-4, but not IL-5 or IL-13, prevented Treg suppression of CD4+ effector T cells isolated from naïve mice. However, mice with allergic conjunctivitis developed Tregs that suppressed CD4+ effector T cell proliferation. In addition, IL-4 did not inhibit Treg suppression of IL-4Rα−/− CD4+ T cell responses, suggesting that IL-4 rendered effector T cells resistant to Tregs. SRW-sensitized IL-4Rα−/− mice displayed the same 50% graft survival as non-allergic WT mice, that was significantly less than the 100% rejection that occurred in allergic WT hosts, supporting the role of IL-4 in the abrogation of immune privilege. Moreover, exacerbation of corneal allograft rejection in allergic mice was reversed by administering anti-IL-4 antibody. Thus, allergy-induced exacerbation of corneal graft rejection is due to the production of IL-4, which renders effector T cells resistant to Treg suppression of alloimmune responses. PMID:23489547

  7. Anti-Interleukin-1 Beta/Tumor Necrosis Factor-Alpha IgY Antibodies Reduce Pathological Allergic Responses in Guinea Pigs with Allergic Rhinitis

    PubMed Central

    Wei-xu, Hu; Wen-yun, Zhou; Xi-ling, Zhu; Zhu, Wen; Li-hua, Wu; Xiao-mu, Wu; Hui-ping, Wei; Wen-ding, Wang; Dan, He; Qin, Xiang

    2016-01-01

    This study aims to determine whether the combined blockade of IL-1β and TNF-α can alleviate the pathological allergic inflammatory reaction in the nasal mucosa and lung tissues in allergic rhinitis (AR) guinea pigs. Healthy guinea pigs treated with saline were used as the healthy controls. The AR guinea pigs were randomly divided into (1) the AR model group treated with intranasal saline; (2) the 0.1% nonspecific IgY treatment group; (3) the 0.1% anti-TNF-α IgY treatment group; (4) the 0.1% anti-IL-1β IgY treatment group; (5) the 0.1% combined anti-IL-1β and TNF-α IgY treatment group; and (6) the fluticasone propionate treatment group. The inflammatory cells were evaluated using Wright's staining. Histopathology was examined using hematoxylin-eosin staining. The results showed that the number of eosinophils was significantly decreased in the peripheral blood, nasal lavage fluid, and bronchoalveolar lavage fluid (P < 0.05), and eosinophil, neutrophil, and lymphocyte infiltration and edema were significantly reduced or absent in the nasal mucosa and lung tissues (P < 0.05) in the combined 0.1% anti-IL-1β- and TNF-α IgY-treated guinea pigs. The data suggest that topical blockade of IL-1β and TNF-α could reduce pathological allergic inflammation in the nasal mucosa and lung tissues in AR guinea pigs. PMID:27046957

  8. Anti-Interleukin-1 Beta/Tumor Necrosis Factor-Alpha IgY Antibodies Reduce Pathological Allergic Responses in Guinea Pigs with Allergic Rhinitis.

    PubMed

    Wei-Xu, Hu; Wen-Yun, Zhou; Xi-Ling, Zhu; Zhu, Wen; Li-Hua, Wu; Xiao-Mu, Wu; Hui-Ping, Wei; Wen-Ding, Wang; Dan, He; Qin, Xiang; Guo-Zhu, Hu

    2016-01-01

    This study aims to determine whether the combined blockade of IL-1β and TNF-α can alleviate the pathological allergic inflammatory reaction in the nasal mucosa and lung tissues in allergic rhinitis (AR) guinea pigs. Healthy guinea pigs treated with saline were used as the healthy controls. The AR guinea pigs were randomly divided into (1) the AR model group treated with intranasal saline; (2) the 0.1% nonspecific IgY treatment group; (3) the 0.1% anti-TNF-α IgY treatment group; (4) the 0.1% anti-IL-1β IgY treatment group; (5) the 0.1% combined anti-IL-1β and TNF-α IgY treatment group; and (6) the fluticasone propionate treatment group. The inflammatory cells were evaluated using Wright's staining. Histopathology was examined using hematoxylin-eosin staining. The results showed that the number of eosinophils was significantly decreased in the peripheral blood, nasal lavage fluid, and bronchoalveolar lavage fluid (P < 0.05), and eosinophil, neutrophil, and lymphocyte infiltration and edema were significantly reduced or absent in the nasal mucosa and lung tissues (P < 0.05) in the combined 0.1% anti-IL-1β- and TNF-α IgY-treated guinea pigs. The data suggest that topical blockade of IL-1β and TNF-α could reduce pathological allergic inflammation in the nasal mucosa and lung tissues in AR guinea pigs.

  9. Recent developments in the role of reactive oxygen species in allergic asthma

    PubMed Central

    Qu, Jingjing; Li, Yuanyuan; Zhong, Wen

    2017-01-01

    Allergic asthma has a global prevalence, morbidity, and mortality. Many environmental factors, such as pollutants and allergens, are highly relevant to allergic asthma. The most important pathological symptom of allergic asthma is airway inflammation. Accordingly, the unique role of reactive oxygen species (ROS) had been identified as a main reason for this respiratory inflammation. Many studies have shown that inhalation of different allergens can promote ROS generation. Recent studies have demonstrated that several pro-inflammatory mediators are responsible for the development of allergic asthma. Among these mediators, endogenous or exogenous ROS are responsible for the airway inflammation of allergic asthma. Furthermore, several inflammatory cells induce ROS and allergic asthma development. Airway inflammation, airway hyper-responsiveness, tissue injury, and remodeling can be induced by excessive ROS production in animal models. Based on investigations of allergic asthma and ROS formation mechanisms, we have identified several novel anti-inflammatory therapeutic treatments. This review describes the recent data linking ROS to the pathogenesis of allergic asthma. PMID:28203435

  10. The role of peptides derived from Spirulina maxima in downregulation of FcεRI-mediated allergic responses.

    PubMed

    Vo, Thanh-Sang; Ngo, Dai-Hung; Kang, Kyong-Hwa; Park, Sun-Joo; Kim, Se-Kwon

    2014-11-01

    Spirulina has been found suitable for use as a bioactive additive. It is an excellent source of protein that can be hydrolyzed into bioactive peptides. Two peptides LDAVNR (P1) and MMLDF (P2) purified from enzymatic hydrolysate of Spirulina maxima have been reported to be effective against early atherosclerotic responses. In this study, the intracellular mechanism involved in the downregulation of these peptides on high-affinity IgE receptor-mediated allergic reaction was further investigated. RBL-2H3 mast cells were pretreated with P1 or P2 and sensitized with dinitrophenyl-specific IgE antibody before stimulation of antigen dinitrophenyl-BSA. It was revealed that P1 and P2 exhibited significant inhibition on mast-cell degranulation via decreasing histamine release and intracellular Ca(2+) elevation. The inhibitory activity of P1 was found due to blockade of calcium- and microtubule-dependent signaling pathways. Meanwhile, the inhibition of P2 was involved in suppression of phospholipase Cγ activation and reactive oxygen species production. Moreover, the suppressive effects of P1 and P2 on generation of IL-4 were evidenced via depression of nuclear factor-κB translocation. These findings indicate that peptides P1 and P2 from S. maxima may be promising candidates of antiallergic therapeutics, contributing to development of bioactive food ingredients for amelioration of allergic diseases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of Clinical and Immunological Responses: A 2-Year Follow-Up Study in Children with Allergic Rhinitis due to House Dust Mite

    PubMed Central

    Moed, Heleen; Gerth van Wijk, Roy; Hendriks, Rudi W.; van der Wouden, J. C.

    2013-01-01

    Background. Allergic rhinitis is a disease with polarization towards Th2 and a defect of regulatory T cells. Immunological changes have been reported after immunotherapy treatment. However, there is not much known about the natural course of allergic rhinitis with respect to clinical manifestation and the relation with immunological responses. Objective. To evaluate clinical symptoms of allergic rhinitis, in relation to in vivo allergen-specific skin responses and in vitro allergen-specific effector and regulatory T cells determined at baseline and after two years. Methods. From a large trial, 59 children were randomly selected. The following variables were compared: clinical symptoms, allergen skin tests, specific IgE, T-cell proliferation, IL-5, IL-13, IFN-gamma, IL-10, TGF-beta, CD4+CD25hi cells, and Foxp3 expression. Results. Allergic symptoms had decreased after two years. Whereas skin test reactions correlated between years 0 and 2, there was no change in the size of the reaction. Also, proinflammatory reactions did not change after two years, with a positive correlation between years 0 and 2. No relevant changes were observed with respect to regulatory cells. Conclusion. Whereas, comparable to immunotherapy, allergic complaints decrease, the immunological changes of specific T-cell activity (both effector cells and regulator cells) which are observed after immunotherapy, do not change. PMID:23737646

  12. T cell responses induced by allergen-specific immunotherapy

    PubMed Central

    Maggi, E

    2010-01-01

    Allergen-specific immunotherapy is recognized as a highly effective practice in the treatment of patients with severe allergic rhinitis and/or asthma and is recommended by World Health Organization as an integrated part of allergy management strategy. Several studies have shown that allergen-specific immunotherapy, based on the administration of increasing doses of allergen, achieves a hyposensitization and reduces both early and late responses occurring during the natural exposure to the allergen itself. This is the unique antigen-specific immunomodulatory treatment in current use for human diseases. Successful immunotherapy is associated with reductions in symptoms and medication scores and improved quality of life. After interruption it usually confers long-term remission of symptoms and prevents the onset of new sensitizations in children up to a number of years. Subcutaneous immunotherapy usually suppresses the allergen-induced late response in target organs, likely due to the reduction of the infiltration of T cells, eosinophils, basophils, mast cells and neutrophils. In addition to the reduction of cells of allergic inflammation, immunotherapy also decreases inflammatory mediators at the site of allergen exposure. This review provides an update on the immunological T cell responses induced by conventional subcutaneous and sublingual immunotherapy, and gives a unifying view to reconciling the old dualism between immunoredirecting and immunoregulating mechanisms. PMID:20408857

  13. Acrylate-induced allergic contact dermatitis in a car windscreen repairer.

    PubMed

    Fremlin, G; Sansom, J

    2014-10-01

    We report a case of an allergic skin reaction to ultraviolet-cured acrylates in a windscreen repair worker. The patient presented with a 6 month history of fingertip dryness, vesicles and desquamation. He had worked as a self-employed car windscreen repairer for 19 years. Previous management with vinyl glove protection and treatment with clobetasol propionate ointment had produced little improvement. He was patch tested to the British Society for Cutaneous Allergy standard and preservatives series and to the two acrylates used in his work environment, identified using safety data sheets, methyl methacrylate 2% pet and 2-hydroxyethylmethacrylate (2-HEMA) 2% pet. A positive reaction was seen at Day 4 to 2-HEMA, but all other patch tests were negative. An occupational allergic contact dermatitis to 2-HEMA was diagnosed. The patient was given avoidance advice and advised to use nitrile gloves. Although he was unable to give up his current work, he has continued his job using nitrile gloves with marked improvement.

  14. In Vitro and In Vivo Anti-Allergic and Anti-Inflammatory Effects of eBV, a Newly Developed Derivative of Bee Venom, through Modulation of IRF3 Signaling Pathway in a Carrageenan-Induced Edema Model.

    PubMed

    Chung, Hwa-Jin; Lee, Jinho; Shin, Joon-Shik; Kim, Me-Riong; Koh, Wonil; Kim, Min-Jeong; Lee, Jae-Woong; Kim, Eun Jee; Lee, In-Hee; Kim, Won Kyung; Lee, Yoon Jae; Lee, Sang Kook; Ha, In-Hyuk

    2016-01-01

    Bee venom (BV), a type of toxin extracted from honeybees (Apis mellifera), has been empirically and widely used to treat inflammatory diseases throughout Asia. Essential BV (eBV) was developed by removing phospholipase A2 (PLA2) and histamine to lower occurrence of allergic reaction. This study investigated the anti-allergic and anti-inflammatory activities of eBV in vitro and in vivo and its underlying mechanism of action. The anti-inflammatory potential of eBV was assessed in vivo using a carrageenan-induced paw edema model. To further investigate the mechanism by which eBV exerts anti-allergic and anti-inflammatory effects, compound 48/80-stimulated RBL-2H3 cells and lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells were studied in vitro. Release of β-hexosaminidase and histamine was increased by eBV in a dose-dependent manner, but these levels were lower in eBV compared to original BV at the same concentration. In addition, eBV suppressed compound 48/80-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RBL-2H3 cells. eBV was also shown to suppress nitric oxide (NO) production by down-regulating mRNA expression and subsequent protein expression of inflammatory mediators in LPS-induced RAW 264.7 cells. Phosphorylation of activators and signal transducers of transcription 1/interferon regulatory factor 3 (STAT1/IRF3) was attenuated by eBV treatment. eBV significantly inhibited carrageenan-induced acute edema in vivo. Serum levels of prostaglandin E2 (PGE2), TNF-α, and IL-1β were also down-regulated by eBV. These results demonstrate that eBV inhibits allergic and inflammatory response by reducing inflammatory mediator production via regulation of the STAT1/IRF3 signaling pathway, suggesting that eBV is a feasible candidate for regulation of allergic-inflammatory response in complementary and alternative medicine.

  15. In Vitro and In Vivo Anti-Allergic and Anti-Inflammatory Effects of eBV, a Newly Developed Derivative of Bee Venom, through Modulation of IRF3 Signaling Pathway in a Carrageenan-Induced Edema Model

    PubMed Central

    Chung, Hwa-Jin; Lee, Jinho; Shin, Joon-Shik; Kim, Me-riong; Koh, Wonil; Kim, Min-Jeong; Lee, Jae-woong; Kim, Eun Jee; Lee, In-Hee; Kim, Won Kyung; Lee, Yoon Jae; Lee, Sang Kook

    2016-01-01

    Background Bee venom (BV), a type of toxin extracted from honeybees (Apis mellifera), has been empirically and widely used to treat inflammatory diseases throughout Asia. Essential BV (eBV) was developed by removing phospholipase A2 (PLA2) and histamine to lower occurrence of allergic reaction. This study investigated the anti-allergic and anti-inflammatory activities of eBV in vitro and in vivo and its underlying mechanism of action. Methods The anti-inflammatory potential of eBV was assessed in vivo using a carrageenan-induced paw edema model. To further investigate the mechanism by which eBV exerts anti-allergic and anti-inflammatory effects, compound 48/80-stimulated RBL-2H3 cells and lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells were studied in vitro. Results Release of β-hexosaminidase and histamine was increased by eBV in a dose-dependent manner, but these levels were lower in eBV compared to original BV at the same concentration. In addition, eBV suppressed compound 48/80-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RBL-2H3 cells. eBV was also shown to suppress nitric oxide (NO) production by down-regulating mRNA expression and subsequent protein expression of inflammatory mediators in LPS-induced RAW 264.7 cells. Phosphorylation of activators and signal transducers of transcription 1/interferon regulatory factor 3 (STAT1/IRF3) was attenuated by eBV treatment. eBV significantly inhibited carrageenan-induced acute edema in vivo. Serum levels of prostaglandin E2 (PGE2), TNF-α, and IL-1β were also down-regulated by eBV. Conclusions These results demonstrate that eBV inhibits allergic and inflammatory response by reducing inflammatory mediator production via regulation of the STAT1/IRF3 signaling pathway, suggesting that eBV is a feasible candidate for regulation of allergic-inflammatory response in complementary and alternative medicine. PMID:27930719

  16. Effectiveness and response predictors of omalizumab in a severe allergic asthma population with a high prevalence of comorbidities: the Australian Xolair Registry.

    PubMed

    Gibson, P G; Reddel, H; McDonald, V M; Marks, G; Jenkins, C; Gillman, A; Upham, J; Sutherland, M; Rimmer, J; Thien, F; Katsoulotos, G P; Cook, M; Yang, I; Katelaris, C; Bowler, S; Langton, D; Robinson, P; Wright, C; Yozghatlian, V; Burgess, S; Sivakumaran, P; Jaffe, A; Bowden, J; Wark, P A B; Yan, K Y; Kritikos, V; Peters, M; Hew, M; Aminazad, A; Bint, M; Guo, M

    2016-09-01

    Severe asthma is a high impact disease. Omalizumab targets the allergic inflammatory pathway; however, effectiveness data in a population with significant comorbidities are limited. To describe severe allergic asthma, omalizumab treatment outcomes and predictors of response among the Australian Xolair Registry participants. A web-based post-marketing surveillance registry was established to characterise the use, effectiveness and adverse effects of omalizumab (Xolair) for severe allergic asthma. Participants (n = 192) (mean age 51 years, 118 female) with severe allergic asthma from 21 clinics in Australia were assessed, and 180 received omalizumab therapy. They had poor asthma control (Asthma Control Questionnaire, ACQ-5, mean score 3.56) and significant quality of life impairment (Asthma-related Quality of Life Questionnaire score 3.57), and 52% were using daily oral corticosteroid (OCS). Overall, 95% had one or more comorbidities (rhinitis 48%, obesity 45%, cardiovascular disease 23%). The omalizumab responder rate, assessed by an improvement of at least 0.5 in ACQ-5, was high at 83%. OCS use was significantly reduced. The response in participants with comorbid obesity and cardiovascular disease was similar to those without these conditions. Baseline ACQ-5 ≥ 2.0 (P = 0.002) and older age (P = 0.05) predicted the magnitude of change in ACQ-5 in response to omalizumab. Drug-related adverse events included anaphylactoid reactions (n = 4), headache (n = 2) and chest pains (n = 1). Australian patients with severe allergic asthma report a high disease burden and have extensive comorbidity. Symptomatic response to omalizumab was high despite significant comorbid disease. Omalizumab is an effective targeted therapy for severe allergic asthma with comorbidity in a real-life setting. © 2016 Royal Australasian College of Physicians.

  17. Allergic Conjunctivitis

    MedlinePlus

    ... conjunctivitis is not contagious.Some common allergens include:Pollen fromtrees, grass and ragweedAnimal skin andsecretions such as ... symptoms. For example, if you are allergic to pollen or mold, stay indoors when pollen and mold ...

  18. Superoxide dismutase 3 attenuates experimental Th2-driven allergic conjunctivitis.

    PubMed

    Lee, Hyun Jung; Kim, Bo-Mi; Shin, Soojung; Kim, Tae-Yoon; Chung, So-Hyang

    2017-03-01

    Allergic conjunctivitis is an inflammatory eye disease mediated by Th2 type immune response. The role of extracellular superoxide dismutase 3 (SOD3) in immune response and allergic conjunctival inflammation was examined in a murine model for experimental allergic conjunctivitis (EAC). Allergic conjunctivitis was induced in mice by allergen challenge with ovalbumin in alum via the conjunctival sac. SOD3 was topically applied and allergy indicators were compared. Clinical signs associated with conjunctivitis, such as OVA-specific IgE production, IgG1/G2a ratio and eosinophil infiltration, were drastically reduced in mice treated with SOD3. They also had less dendritic cells and CD4(+) T cells in conjunctiva than controls. Attenuated allergic inflammation was accredited to reduced Th2 type cytokine responses and increased Treg cytokine in draining lymph node. The characteristics of EAC were attributed to the absence of SOD3. Our findings suggest that SOD3 might be considered as a potential target for Th2-driven allergic conjunctival inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation

    PubMed Central

    Ooi, Aik T; Ram, Sonal; Kuo, Alan; Gilbert, Jennifer L; Yan, Weihong; Pellegrini, Matteo; Nickerson, Derek W; Chatila, Talal A; Gomperts, Brigitte N

    2012-01-01

    Epigenetic changes have been implicated in the pathogenesis of asthma. We sought to determine if IL13, a key cytokine in airway inflammation and remodeling, induced epigenetic DNA methylation and miRNAs expression changes in the airways in conjunction with its transcriptional gene regulation. Inducible expression of an IL13 transgene in the airways resulted in significant changes in DNA methylation in 177 genes, most of which were associated with the IL13 transcriptional signature in the airways. A large number of genes whose expression was induced by IL13 were found to have decreased methylation, including those involved in tissue remodeling (Olr1), leukocyte influx (Cxcl3, Cxcl5, CSFr2b), and the Th2 response (C3ar1, Chi3l4). Reciprocally, some genes whose expression was suppressed were found to have increased methylation (e.g. Itga8). In addition, miRNAs were identified with targets for lung development and Wnt signaling, amongst others. These results indicate that IL13 confers an epigenetic methylation and miRNA signature that accompanies its transcriptional program in the airways, which may play a critical role in airway inflammation and remodeling. PMID:22611474

  20. The relationship of serum vitamins A, D, E and LL-37 levels with allergic status, tonsillar virus detection and immune response

    PubMed Central

    Elenius, Varpu; Palomares, Oscar; Waris, Matti; Turunen, Riitta; Puhakka, Tuomo; Rückert, Beate; Vuorinen, Tytti; Allander, Tobias; Vahlberg, Tero; Akdis, Mübeccel; Camargo, Carlos A.; Akdis, Cezmi A.; Jartti, Tuomas

    2017-01-01

    Background Tonsils have an active role in immune defence and inducing and maintaining tolerance to allergens. Vitamins A, D, and E, and antimicrobial peptide LL-37 may have immunomodulatory effects. We studied how their serum levels were associated with allergy status, intratonsillar/nasopharyngeal virus detection and intratonsillar expression of T cell- and innate immune response-specific cytokines, transcription factors and type I/II/III interferons in patients undergoing tonsillectomy. Methods 110 elective tonsillectomy patients participated. Serum levels of vitamins A, 25(OH)D, and E, LL-37 and allergen-specific IgE as well as nasopharyngeal/intratonsillar respiratory viruses were analyzed. The mRNA expression of IFN-α, IFN-β, IFN-γ, IL-10, IL-13, IL-17, IL-28, IL-29, IL-37, TGF-β, FOXP3, GATA3, RORC2 and Tbet in tonsils were analyzed by quantitative RT-PCR. Results The median age of the patients was 16 years (range 3–60), 28% of subjects had atopy, and 57% carried ≥1 respiratory virus in nasopharynx. Detection of viruses decreased by age. Higher vitamin A levels showed borderline significance with less viral detection (P = 0.056). Higher 25(OH)D was associated with less allergic rhinitis and atopy (P < 0.05) and higher vitamin E with less self-reported allergy (P < 0.05). In gene expression analyses, 25(OH)D was associated with higher IL-37, vitamin A with higher IFN-γ and vitamin E with less IL-28 (P < 0.05). LL-37 was associated with less FOXP3, RORC2 and IL-17 in tonsils (P < 0.05). Conclusions Vitamin D and E levels were associated with less allergic disorders. Vitamin A was linked to antiviral and vitamin D with anti-inflammatory activity. LL-37 and was linked to T regulatory cell effects. PMID:28235040

  1. Non-Invasive Optical Imaging of Eosinophilia during the Course of an Experimental Allergic Airways Disease Model and in Response to Therapy

    PubMed Central

    Markus, M. Andrea; Dullin, Christian; Mitkovski, Miso; Prieschl-Grassauer, Eva; Epstein, Michelle M.; Alves, Frauke

    2014-01-01

    Background Molecular imaging of lung diseases, including asthma, is limited and either invasive or non-specific. Central to the inflammatory process in asthma is the recruitment of eosinophils to the airways, which release proteases and proinflammatory factors and contribute to airway remodeling. The aim of this study was to establish a new approach to non-invasively assess lung eosinophilia during the course of experimental asthma by combining non-invasive near-infrared fluorescence (NIRF) imaging with the specific detection of Siglec-F, a lectin found predominantly on eosinophils. Methodology/Principal Findings An ovalbumin (OVA)-based model was used to induce asthma-like experimental allergic airway disease (EAAD) in BALB/c mice. By means of a NIRF imager, we demonstrate that 48 h–72 h after intravenous (i.v.) application of a NIRF-labeled anti-Siglec-F antibody, mice with EAAD exhibited up to 2 times higher fluorescence intensities compared to lungs of control mice. Furthermore, average lung intensities of dexamethasone-treated as well as beta-escin-treated mice were 1.8 and 2 times lower than those of untreated, EAAD mice, respectively and correlated with the reduction of cell infiltration in the lung. Average fluorescence intensities measured in explanted lungs confirmed the in vivo findings of significantly higher values in inflamed lungs as compared to controls. Fluorescence microscopy of lung cryosections localized the i.v. applied NIRF-labeled anti-Siglec-F antibody predominantly to eosinophils in the peribronchial areas of EAAD lungs as opposed to control lungs. Conclusion/Significance We show that monitoring the occurrence of eosinophils, a prominent feature of allergic asthma, by means of a NIRF-labeled antibody directed against Siglec-F is a novel and powerful non-invasive optical imaging approach to assess EAAD and therapeutic response in mice over time. PMID:24587190

  2. Non-invasive optical imaging of eosinophilia during the course of an experimental allergic airways disease model and in response to therapy.

    PubMed

    Markus, M Andrea; Dullin, Christian; Mitkovski, Miso; Prieschl-Grassauer, Eva; Epstein, Michelle M; Alves, Frauke

    2014-01-01

    Molecular imaging of lung diseases, including asthma, is limited and either invasive or non-specific. Central to the inflammatory process in asthma is the recruitment of eosinophils to the airways, which release proteases and proinflammatory factors and contribute to airway remodeling. The aim of this study was to establish a new approach to non-invasively assess lung eosinophilia during the course of experimental asthma by combining non-invasive near-infrared fluorescence (NIRF) imaging with the specific detection of Siglec-F, a lectin found predominantly on eosinophils. An ovalbumin (OVA)-based model was used to induce asthma-like experimental allergic airway disease (EAAD) in BALB/c mice. By means of a NIRF imager, we demonstrate that 48 h-72 h after intravenous (i.v.) application of a NIRF-labeled anti-Siglec-F antibody, mice with EAAD exhibited up to 2 times higher fluorescence intensities compared to lungs of control mice. Furthermore, average lung intensities of dexamethasone-treated as well as beta-escin-treated mice were 1.8 and 2 times lower than those of untreated, EAAD mice, respectively and correlated with the reduction of cell infiltration in the lung. Average fluorescence intensities measured in explanted lungs confirmed the in vivo findings of significantly higher values in inflamed lungs as compared to controls. Fluorescence microscopy of lung cryosections localized the i.v. applied NIRF-labeled anti-Siglec-F antibody predominantly to eosinophils in the peribronchial areas of EAAD lungs as opposed to control lungs. We show that monitoring the occurrence of eosinophils, a prominent feature of allergic asthma, by means of a NIRF-labeled antibody directed against Siglec-F is a novel and powerful non-invasive optical imaging approach to assess EAAD and therapeutic response in mice over time.

  3. Reasons for prescribing second generation antihistamines to treat allergic rhinitis in real-life conditions and patient response

    PubMed Central

    2014-01-01

    Background Second generation H1 antihistamines (H1A) are currently recommended as first choice medications for allergic rhinitis and rhinoconjunctivitis. However, little is known about what influences the choice of prescription of one second generation (H1A) as opposed to another in real-life conditions. Objective The aim of the study was to identify the main criteria determining the choice of a second generation H1A by allergy specialists in mainland France. Methods Consecutive patients suffering from allergic rhinitis or rhinoconjunctivitis were included and followed prospectively for 30 days from the prescription of a second generation H1A in monotherapy. Patients were asked to fill in auto-questionnaires at baseline, daily during the first 10 days of the new treatment, and at the end of follow-up. Data on efficacy, tolerance, safety, rate and type of response to treatment, as well as patient satisfaction were recorded and analyzed. Results 1,080 patients were included between March 2011 and October 2012, mostly suffering from moderate to severe rhinitis (82.0%). The most frequently cited reason for choosing a specific H1A was the expected efficacy (85.3%). The mean time to nasal and ocular recovery was 6 days and 78.2% of patients responded to treatment within this interval. The presence of conjunctivitis was significantly associated with a more rapid response. At the end of follow-up, the satisfaction rate was higher for patients who were switched from a previous treatment (87.5%), compared to those receiving their first treatment (78.8%). Conclusion and clinical relevance The main reason for choosing a specific second generation H1A was its expected efficacy. Concomitant conjunctivitis is associated with a more rapid response to treatment. Symptom recovery necessitates a mean of 6 days. PMID:24944561

  4. The effect of mouth breathing on exercise induced fall in lung function in children with allergic asthma and rhinitis.

    PubMed

    Turkalj, Mirjana; Živković, Jelena; Lipej, Marcel; Bulat Lokas, Sandra; Erceg, Damir; Anzić, Srđan Ante; Magdić, Robert; Plavec, Davor

    2016-07-01

    Exercise induced bronchospasm (EIB) represents a common feature of childhood asthma which is most commonly revealed during free running. On the other hand aerobic exercise shows significant beneficial effects in asthmatics especially on the reduction of the level of systemic inflammation and is recommended as part of its treatment. The aim of this study was to test how mandatory mouth breathing influences the exercise induced level of decrease in lung function according to the level of severity of allergic rhinitis (AR). Free 6-minute running test preceded and followed by spirometry done with and without a nose clip a day apart was conducted in 55 children with moderate persistent asthma and AR. Children were divided into two groups according to the severity of nasal symptoms. There was a greater fall in forced expiratory volume in one second after exercise with a nose clip in childre