Science.gov

Sample records for induces compact cell-cell

  1. Modeling compaction-induced energy dissipation of granular HMX

    SciTech Connect

    Gonthier, K.A.; Menikoff, R.; Son, S.F.; Asay, B.W.

    1998-12-31

    A thermodynamically consistent model is developed for the compaction of granular solids. The model is an extension of the single phase limit of two-phase continuum models used to describe Deflagration-to-Detonation Transition (DDT) experiments. The focus is on the energetics and dissipation of the compaction process. Changes in volume fraction are partitioned into reversible and irreversible components. Unlike conventional DDT models, the model is applicable from the quasi-static to dynamic compaction regimes for elastic, plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle material), the model predicts results commensurate with experiments including stress relaxation, hysteresis, and energy dissipation. The model provides a suitable starting point for the development of thermal energy localization sub-scale models based on compaction-induced dissipation.

  2. Cell-Cell Fusion Induced by Measles Virus Amplifies the Type I Interferon Response▿ †

    PubMed Central

    Herschke, F.; Plumet, S.; Duhen, T.; Azocar, O.; Druelle, J.; Laine, D.; Wild, T. F.; Rabourdin-Combe, C.; Gerlier, D.; Valentin, H.

    2007-01-01

    Measles virus (MeV) infection is characterized by the formation of multinuclear giant cells (MGC). We report that beta interferon (IFN-β) production is amplified in vitro by the formation of virus-induced MGC derived from human epithelial cells or mature conventional dendritic cells. Both fusion and IFN-β response amplification were inhibited in a dose-dependent way by a fusion-inhibitory peptide after MeV infection of epithelial cells. This effect was observed at both low and high multiplicities of infection. While in the absence of virus replication, the cell-cell fusion mediated by MeV H/F glycoproteins did not activate any IFN-α/β production, an amplified IFN-β response was observed when H/F-induced MGC were infected with a nonfusogenic recombinant chimerical virus. Time lapse microscopy studies revealed that MeV-infected MGC from epithelial cells have a highly dynamic behavior and an unexpected long life span. Following cell-cell fusion, both of the RIG-I and IFN-β gene deficiencies were trans complemented to induce IFN-β production. Production of IFN-β and IFN-α was also observed in MeV-infected immature dendritic cells (iDC) and mature dendritic cells (mDC). In contrast to iDC, MeV infection of mDC induced MGC, which produced enhanced amounts of IFN-α/β. The amplification of IFN-β production was associated with a sustained nuclear localization of IFN regulatory factor 3 (IRF-3) in MeV-induced MGC derived from both epithelial cells and mDC, while the IRF-7 up-regulation was poorly sensitive to the fusion process. Therefore, MeV-induced cell-cell fusion amplifies IFN-α/β production in infected cells, and this indicates that MGC contribute to the antiviral immune response. PMID:17898060

  3. [Molecular Mechanism of Glycoprotein-induced Cell-Cell Fusion of Herpesviruses].

    PubMed

    Feng, Daishen; Jia, Renyong

    2016-01-01

    Herpesviridae is a large family comprising linear, double-stranded DNA viruses. Herpesviridae contains three subfamilies: α-, β- and γ-herpesviruses. The glycoproteins gB, gH and gL of each subfamily form the "core fusion function" in cell-cell fusion. Other herpesviruses also need additional glycoproteins to promote fusion, such as gD of the Herpes simplex virus, gp42 of the Epstein-Barr virus, and gO or UL128-131 of the Human cytomegalovirus. In contrast, glycoproteins gM or gM/gN of herpesvirus inhibit fusion. We describe the molecular mechanisms of glycoprotein-induced fusion and entry of herpesviruses. It will be helpful to further study the pathogenic mechanism of herpesvirus.

  4. Electrostatic origin of salt-induced nucleosome array compaction.

    PubMed

    Korolev, Nikolay; Allahverdi, Abdollah; Yang, Ye; Fan, Yanping; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2010-09-22

    The physical mechanism of the folding and unfolding of chromatin is fundamentally related to transcription but is incompletely characterized and not fully understood. We experimentally and theoretically studied chromatin compaction by investigating the salt-mediated folding of an array made of 12 positioning nucleosomes with 177 bp repeat length. Sedimentation velocity measurements were performed to monitor the folding provoked by addition of cations Na(+), K(+), Mg(2+), Ca(2+), spermidine(3+), Co(NH(3))(6)(3+), and spermine(4+). We found typical polyelectrolyte behavior, with the critical concentration of cation needed to bring about maximal folding covering a range of almost five orders of magnitude (from 2 μM for spermine(4+) to 100 mM for Na(+)). A coarse-grained model of the nucleosome array based on a continuum dielectric description and including the explicit presence of mobile ions and charged flexible histone tails was used in computer simulations to investigate the cation-mediated compaction. The results of the simulations with explicit ions are in general agreement with the experimental data, whereas simple Debye-Hückel models are intrinsically incapable of describing chromatin array folding by multivalent cations. We conclude that the theoretical description of the salt-induced chromatin folding must incorporate explicit mobile ions that include ion correlation and ion competition effects.

  5. Roles for Cell-Cell Adhesion and Contact in Obesity-Induced Hepatic Myeloid Cell Accumulation and Glucose Intolerance.

    PubMed

    Miyachi, Yasutaka; Tsuchiya, Kyoichiro; Komiya, Chikara; Shiba, Kumiko; Shimazu, Noriko; Yamaguchi, Shinobu; Deushi, Michiyo; Osaka, Mizuko; Inoue, Kouji; Sato, Yuta; Matsumoto, Sayaka; Kikuta, Junichi; Wake, Kenjiro; Yoshida, Masayuki; Ishii, Masaru; Ogawa, Yoshihiro

    2017-03-14

    Obesity promotes infiltration of inflammatory cells into various tissues, leading to parenchymal and stromal cell interaction and development of cellular and organ dysfunction. Liver sinusoidal endothelial cells (LSECs) are the first cells that contact portal blood cells and substances in the liver, but their functions in the development of obesity-associated glucose metabolism remain unclear. Here, we find that LSECs are involved in obesity-associated accumulation of myeloid cells via VLA-4-dependent cell-cell adhesion. VLA-4 blockade in mice fed a high-fat diet attenuated myeloid cell accumulation in the liver to improve hepatic inflammation and systemic glucose intolerance. Ex vivo studies further show that cell-cell contact between intrahepatic leukocytes and parenchymal hepatocytes induces gluconeogenesis via a Notch-dependent pathway. These findings suggest that cell-cell interaction between parenchymal and stromal cells regulates hepatic glucose metabolism and offers potential strategies for treatment or prevention of obesity-associated glucose intolerance.

  6. Contribution of stress wave and cavitation bubble in evaluation of cell-cell adhesion by femtosecond laser-induced impulse

    NASA Astrophysics Data System (ADS)

    Iino, Takanori; Li, Po-Lin; Wang, Wen-Zhe; Deng, Jia-Huei; Lu, Yun-Chang; Kao, Fu-Jen; Hosokawa, Yoichiroh

    2014-10-01

    When an intense femtosecond laser is focused in a cell culture medium, shock wave, stress wave, and cavitation bubble are generated at the laser focal point. Cell-cell adhesion can be broken at the cellular level by the impacts of these factors. We have applied this breaking of the adhesion to an estimation of the cell-cell adhesion strength. In this application, it is important to identify which of these factors is the dominant factor that breaks the adhesion. Here we investigated this issue using streptavidin-coated microbeads adhering to a biotin-coated substrate as a mimic of the cell-cell adhesion. The results indicated that the break was induced mainly by the stress wave, not by the impact of the cavitation bubble.

  7. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    SciTech Connect

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-02-05

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis.

  8. Regulation of HSV glycoprotein induced cascade of events governing cell-cell fusion.

    PubMed

    Atanasiu, Doina; Saw, Wan Ting; Eisenberg, Roselyn J; Cohen, Gary H

    2016-09-14

    Receptor dependent HSV-induced fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers transformation of the pre-fusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor dependent cell-cell fusion we took advantage of our discovery that fusion by wild type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH2/gL2, thereby enhancing their activity. We also found that deregulated forms of gD1 and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process and the critical role of gH/gL in regulating HSV induced fusion.

  9. Coherent entropy induced and acoustic noise separation in compact nozzles

    NASA Astrophysics Data System (ADS)

    Tao, Wenjie; Schuller, Thierry; Huet, Maxime; Richecoeur, Franck

    2017-04-01

    A method to separate entropy induced noise from an acoustic pressure wave in an harmonically perturbed flow through a nozzle is presented. It is tested on an original experimental setup generating simultaneously acoustic and temperature fluctuations in an air flow that is accelerated by a convergent nozzle. The setup mimics the direct and indirect noise contributions to the acoustic pressure field in a confined combustion chamber by producing synchronized acoustic and temperature fluctuations, without dealing with the complexity of the combustion process. It allows generating temperature fluctuations with amplitude up to 10 K in the frequency range from 10 to 100 Hz. The noise separation technique uses experiments with and without temperature fluctuations to determine the relative level of acoustic and entropy fluctuations in the system and to identify the nozzle response to these forcing waves. It requires multi-point measurements of acoustic pressure and temperature. The separation method is first validated with direct numerical simulations of the nonlinear Euler equations. These simulations are used to investigate the conditions for which the separation technique is valid and yield similar trends as the experiments for the investigated flow operating conditions. The separation method then gives successfully the acoustic reflection coefficient but does not recover the same entropy reflection coefficient as predicted by the compact nozzle theory due to the sensitivity of the method to signal noises in the explored experimental conditions. This methodology provides a framework for experimental investigation of direct and indirect combustion noises originating from synchronized perturbations.

  10. Ordered Packing Induced by Simultaneous Shear and Compaction

    NASA Astrophysics Data System (ADS)

    Hancock, Bruno; Dutt, Meenakshi; Bentham, Craig; Elliott, James

    2005-03-01

    We study a system of monodisperse frictional particles confined between two surfaces and being simultaneously sheared and unaxially compacted by the upper surface. The upper surface is made of particles identical to those in the bulk, arranged randomly, or in a square or triangular lattice. The particles between the surfaces are allowed to compact under gravity after being poured onto the bottom surface, followed by simultaneous constant strain compaction and shear by the upper surface. We focus on the evolution of the packing structure with interparticle friction, arrangements of the particles on the surfaces, initial height of the confined gravitationally compacted particles and the shear and compaction strain rates. We compute the coordination number, packing fraction, contact orientation, distribution of contacts and other relevant quantities to provide quantitative insight on the packing structure. We have found, for a 5 diameter layer of confined particles, the compaction speed has a greater effect on the packing structure of the particles in comparison to the shear speed. For a shearing surface formed of particles arranged in a square lattice, the packing structure of the confined particles evolves to interdigitating layers of 3D close-packed spheres. The numerical experiments have been performed via Discrete Element Method simulations (Dutt et al., 2004 to be published) using Microcrystalline Cellulose spheres.

  11. Targeting Fyn in Ras-transformed cells induces F-actin to promote adherens junction-mediated cell-cell adhesion.

    PubMed

    Fenton, Sarah E; Hutchens, Kelli A; Denning, Mitchell F

    2015-10-01

    Fyn, a member of the Src family kinases (SFK), is an oncogene in murine epidermis and is associated with cell-cell adhesion turnover and induction of cell migration. Additionally, Fyn upregulation has been reported in multiple tumor types, including cutaneous squamous cell carcinoma (cSCC). Introduction of active H-Ras(G12V) into the HaCaT human keratinocyte cell line resulted in upregulation of Fyn mRNA (200-fold) and protein, while expression of other SFKs remained unaltered. Transduction of active Ras or Fyn was sufficient to induce an epithelial-to-mesenchymal transition in HaCaT cells. Inhibition of Fyn activity, using siRNA or the clinical SFK inhibitor Dasatinib, increased cell-cell adhesion and rapidly (5-60 min) increased levels of cortical F-actin. Fyn inhibition with siRNA or Dasatinib also induced F-actin in MDA-MB-231 breast cancer cells, which have elevated Fyn. F-actin co-localized with adherens junction proteins, and Dasatinib-induced cell-cell adhesion could be blocked by Cytochalasin D, indicating that F-actin polymerization was a key initiator of cell-cell adhesion through the adherens junction. Conversely, inhibiting cell-cell adhesion with low Ca(2+) media did not block Dasatinib-induced F-actin polymerization. Inhibition of the Rho effector kinase ROCK blocked Dasatinib-induced F-actin and cell-cell adhesion, implicating relief of Rho GTPase inhibition as a mechanism of Dasatinib-induced cell-cell adhesion. Finally, topical Dasatinib treatment significantly reduced total tumor burden in the SKH1 mouse model of UV-induced skin carcinogenesis. Together these results identify the promotion of actin-based cell-cell adhesion as a newly described mechanism of action for Dasatinib and suggest that Fyn inhibition may be an effective therapeutic approach in treating cSCC.

  12. Gluon Vortices and Induced Magnetic Field in Compact Stars

    SciTech Connect

    Ferrer, Efrain J.

    2007-10-26

    The natural candidates for the realization of color superconductivity are the extremely dense cores of compact stars, many of which have very large magnetic fields, especially the so called magnetars. In this paper we discuss how a color superconducting core can serve to generate and enhance the stellar magnetic field without appealing to a magnetohydrodynamic dynamo mechanism.

  13. Flow-induced compaction of soft poroelastic materials

    NASA Astrophysics Data System (ADS)

    Nijjer, Japinder S.; Hewitt, Duncan R.; Worster, M. Grae; Neufeld, Jerome A.

    2016-11-01

    Fluid flows through poroelastic materials can result in solid deformation driven by the distribution of viscous shear stresses. The porosity and permeability of the solid matrix is altered spatially through a non-trivial coupling to the fluid flow. This behaviour is studied experimentally by examining fluid flow through a packing of soft hydrogel spheres driven by an imposed pressure head. The pressure head is varied, and, for each pressure, the steady-state mass flux and solid deformation are measured. For large pressure gradients, the fluid flow is found to decrease the permeability in such a way as to produce a flux that is independent of the applied pressure gradient. Measurements of the internal deformation, obtained by particle tracking, show that the medium compacts non-uniformly, with the porosity being lower at the outlet compared to the inlet. Intriguingly, we find a reproducible hysteresis of the poroelastic deformation between increasing and decreasing increments of the applied pressure head. The experimental results are compared to a simple one-dimensional model that accounts for non-linear elasticity of the solid and non-constant permeability.

  14. Entropic attraction: Polymer compaction and expansion induced by nano-particles in confinement.

    PubMed

    Liao, Guo-Jun; Chien, Fan-Tso; Luzhbin, Dmytro; Chen, Yeng-Long

    2015-05-07

    We investigated nanoparticle (NP)-induced coil-to-globule transition of a semi-flexible polymer in a confined suspension of ideal NP using Langevin dynamics. DNA molecules are often found to be highly compact, bound with oppositely charged proteins in a crowded environment within cells and viruses. Recent studies found that high concentration of electrostatically neutral NP also condenses DNA due to entropically induced depletion attraction between DNA segments. Langevin dynamics simulations with a semi-flexible chain under strong confinement were performed to investigate the competition between NP-induced monomer-monomer and monomer-wall attraction under different confinement heights and NP volume fractions. We found that whether NP induce polymer segments to adsorb to the walls and swell or to attract one another and compact strongly depends on the relative strength of the monomer-wall and the NP-wall interactions.

  15. Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel

    PubMed Central

    Zhang, Ce; Shao, Pei Ge; van Kan, Jeroen A.; van der Maarel, Johan R. C.

    2009-01-01

    The effect of dextran nanoparticles on the conformation and compaction of single DNA molecules confined in a nanochannel was investigated with fluorescence microscopy. It was observed that the DNA molecules elongate and eventually condense into a compact form with increasing volume fraction of the crowding agent. Under crowded conditions, the channel diameter is effectively reduced, which is interpreted in terms of depletion in DNA segment density in the interfacial region next to the channel wall. Confinement in a nanochannel also facilitates compaction with a neutral crowding agent at low ionic strength. The threshold volume fraction for condensation is proportional to the size of the nanoparticle, due to depletion induced attraction between DNA segments. We found that the effect of crowding is not only related to the colligative properties of the agent and that confinement is also important. It is the interplay between anisotropic confinement and osmotic pressure which gives the elongated conformation and the possibility for condensation at low ionic strength. PMID:19805352

  16. Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel.

    PubMed

    Zhang, Ce; Shao, Pei Ge; van Kan, Jeroen A; van der Maarel, Johan R C

    2009-09-29

    The effect of dextran nanoparticles on the conformation and compaction of single DNA molecules confined in a nanochannel was investigated with fluorescence microscopy. It was observed that the DNA molecules elongate and eventually condense into a compact form with increasing volume fraction of the crowding agent. Under crowded conditions, the channel diameter is effectively reduced, which is interpreted in terms of depletion in DNA segment density in the interfacial region next to the channel wall. Confinement in a nanochannel also facilitates compaction with a neutral crowding agent at low ionic strength. The threshold volume fraction for condensation is proportional to the size of the nanoparticle, due to depletion induced attraction between DNA segments. We found that the effect of crowding is not only related to the colligative properties of the agent and that confinement is also important. It is the interplay between anisotropic confinement and osmotic pressure which gives the elongated conformation and the possibility for condensation at low ionic strength.

  17. Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver.

    PubMed

    Gamal, Wesam; Treskes, Philipp; Samuel, Kay; Sullivan, Gareth J; Siller, Richard; Srsen, Vlastimil; Morgan, Katie; Bryans, Anna; Kozlowska, Ada; Koulovasilopoulos, Andreas; Underwood, Ian; Smith, Stewart; Del-Pozo, Jorge; Moss, Sharon; Thompson, Alexandra Inés; Henderson, Neil C; Hayes, Peter C; Plevris, John N; Bagnaninchi, Pierre-Olivier; Nelson, Leonard J

    2017-01-30

    Dysfunction of cell-cell tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. Liver TJs preserve cellular polarity by delimiting functional bile-canalicular structures, forming the blood-biliary barrier. In acetaminophen-hepatotoxicity, the mechanism by which tissue cohesion and polarity are affected remains unclear. Here, we demonstrate that acetaminophen, even at low-dose, disrupts the integrity of TJ and cell-matrix adhesions, with indicators of cellular stress with liver injury in the human hepatic HepaRG cell line, and primary hepatocytes. In mouse liver, at human-equivalence (therapeutic) doses, dose-dependent loss of intercellular hepatic TJ-associated ZO-1 protein expression was evident with progressive clinical signs of liver injury. Temporal, dose-dependent and specific disruption of the TJ-associated ZO-1 and cytoskeletal-F-actin proteins, correlated with modulation of hepatic ultrastructure. Real-time impedance biosensing verified in vitro early, dose-dependent quantitative decreases in TJ and cell-substrate adhesions. Whereas treatment with NAPQI, the reactive metabolite of acetaminophen, or the PKCα-activator and TJ-disruptor phorbol-12-myristate-13-acetate, similarly reduced TJ integrity, which may implicate oxidative stress and the PKC pathway in TJ destabilization. These findings are relevant to the clinical presentation of acetaminophen-hepatotoxicity and may inform future mechanistic studies to identify specific molecular targets and pathways that may be altered in acetaminophen-induced hepatic depolarization.

  18. Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver

    PubMed Central

    Gamal, Wesam; Treskes, Philipp; Samuel, Kay; Sullivan, Gareth J.; Siller, Richard; Srsen, Vlastimil; Morgan, Katie; Bryans, Anna; Kozlowska, Ada; Koulovasilopoulos, Andreas; Underwood, Ian; Smith, Stewart; del-Pozo, Jorge; Moss, Sharon; Thompson, Alexandra Inés; Henderson, Neil C.; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre-Olivier; Nelson, Leonard J.

    2017-01-01

    Dysfunction of cell-cell tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. Liver TJs preserve cellular polarity by delimiting functional bile-canalicular structures, forming the blood-biliary barrier. In acetaminophen-hepatotoxicity, the mechanism by which tissue cohesion and polarity are affected remains unclear. Here, we demonstrate that acetaminophen, even at low-dose, disrupts the integrity of TJ and cell-matrix adhesions, with indicators of cellular stress with liver injury in the human hepatic HepaRG cell line, and primary hepatocytes. In mouse liver, at human-equivalence (therapeutic) doses, dose-dependent loss of intercellular hepatic TJ-associated ZO-1 protein expression was evident with progressive clinical signs of liver injury. Temporal, dose-dependent and specific disruption of the TJ-associated ZO-1 and cytoskeletal-F-actin proteins, correlated with modulation of hepatic ultrastructure. Real-time impedance biosensing verified in vitro early, dose-dependent quantitative decreases in TJ and cell-substrate adhesions. Whereas treatment with NAPQI, the reactive metabolite of acetaminophen, or the PKCα-activator and TJ-disruptor phorbol-12-myristate-13-acetate, similarly reduced TJ integrity, which may implicate oxidative stress and the PKC pathway in TJ destabilization. These findings are relevant to the clinical presentation of acetaminophen-hepatotoxicity and may inform future mechanistic studies to identify specific molecular targets and pathways that may be altered in acetaminophen-induced hepatic depolarization. PMID:28134251

  19. Combinatorial Polymer Matrices Enhance In Vitro Maturation of Human Induced Pluripotent Cell Cell-Derived Cardiomyocytes

    PubMed Central

    Chun, Young Wook; Balikov, Daniel A.; Feaster, Tromondae K.; Williams, Charles H.; Sheng, Calvin C.; Lee, Jung-Bok; Boire, Timothy C.; Neely, M. Diana; Bellan, Leon M.; Ess, Kevin C.; Bowman, Aaron B.; Sung, Hak-Joon; Hong, Charles C.

    2015-01-01

    Cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs) hold great promise for modeling human heart diseases. However, iPSC-CMs studied to date resemble immature embryonic myocytes and therefore do not adequately recapitulate native adult cardiomyocyte phenotypes. Since extracellular matrix plays an essential role in heart development and maturation in vivo, we sought to develop a synthetic culture matrix that could enhance functional maturation of iPSC-CMs in vitro. In this study, we employed a library of combinatorial polymers comprising of three functional subunits - poly-ε-caprolacton (PCL), polyethylene glycol (PEG), and carboxylated PCL (cPCL) - as synthetic substrates for culturing human iPSC-CMs. Of these, iPSC-CMs cultured on 4%PEG-96%PCL (each % indicates the corresponding molar ratio) exhibit the greatest contractility and mitochondrial function. These functional enhancements are associated with increased expression of cardiac myosin light chain-2v, cardiac troponin I and integrin alpha-7. Importantly, iPSC-CMs cultured on 4%PEG-95%PCL demonstrate troponin I (TnI) isoform switch from the fetal slow skeletal TnI (ssTnI) to the postnatal cardiac TnI (cTnI), the first report of such transition in vitro. Finally, culturing iPSC-CMs on 4%PEG-96%PCL also significantly increased expression of genes encoding intermediate filaments known to transduce integrin-mediated mechanical signals to the myofilaments. In summary, our study demonstrates that synthetic culture matrices engineered from combinatorial polymers can be utilized to promote in vitro maturation of human iPSC-CMs through the engagement of critical matrix-integrin interactions. PMID:26204225

  20. Experimentally induced compaction and coalification in peat from the Okefenokee Swamp

    SciTech Connect

    Cecil, C.B.; Stanton, R.W.; Dulong, F.T.; Neuzil, S.G.; Ruppert, L.F.

    1985-01-01

    The effects of temperature (T) and pressure (P) on compaction and coalification of peat were studied in experiments that simulated open and closed systems of burial. In the open system, normal hydrostatic and lithostatic pressure conditions were simulated; in the closed system, hydrostatic and lithostatic pressures were equal. Samples consisted of fibric Taxodium peat and wood collected from the Okefenokee peat swamp. The experimental conditions were increased from ambient T and P to conditions simulating a depth of 900m at 100/sup 0/C over the span of one month and held constant for a second month until the experiment was terminated. The results indicate that more compaction and coalification occurred in the open system than in the closed system. The relative amount of CO/sub 2/ and CH/sub 4/ evolved in the open-system was more than four times the amount evolved in the closed system. The fluorescence spectra of pollen grains also indicate that the artificially induced coalification was greatest in the open system. The experimental data indicate that both compaction and coalification are controlled by peat composition and by P and T conditions during burial. At least in the early stages of coalification, wood in peat is not as compactible as the fibric peat. Anomalies in coal rank and in organic-maturation indicators may be the result of variable pressure conditions that affected or controlled the fugacity or activity of the reaction products during coalification.

  1. Antibodies to CD9, a tetraspan transmembrane protein, inhibit canine distemper virus-induced cell-cell fusion but not virus-cell fusion.

    PubMed

    Schmid, E; Zurbriggen, A; Gassen, U; Rima, B; ter Meulen, V; Schneider-Schaulies, J

    2000-08-01

    Canine distemper virus (CDV) causes a life-threatening disease in several carnivores including domestic dogs. Recently, we identified a molecule, CD9, a member of the tetraspan transmembrane protein family, which facilitates, and antibodies to which inhibit, the infection of tissue culture cells with CDV (strain Onderstepoort). Here we describe that an anti-CD9 monoclonal antibody (MAb K41) did not interfere with binding of CDV to cells and uptake of virus. In addition, in single-step growth experiments, MAb K41 did not induce differences in the levels of viral mRNA and proteins. However, the virus release of syncytium-forming strains of CDV, the virus-induced cell-cell fusion in lytically infected cultures, and the cell-cell fusion of uninfected with persistently CDV-infected HeLa cells were strongly inhibited by MAb K41. These data indicate that anti-CD9 antibodies selectively block virus-induced cell-cell fusion, whereas virus-cell fusion is not affected.

  2. HDAC6 inhibition prevents TNF-α-induced caspase 3 activation in lung endothelial cell and maintains cell-cell junctions

    PubMed Central

    Yu, Jinyan; Ma, Mengshi; Ma, Zhongsen; Fu, Jian

    2016-01-01

    Pro-inflammatory mediators such as TNF-α induce caspase activation in endothelial cells, which leads to degradation of cellular proteins, induction of apoptotic signaling, and endothelial cell dysfunction. New therapeutic agents that can inhibit caspase activation may provide protection against inflammatory injury to endothelial cells. In the present study, we examined the effects of selective histone deacetylase 6 (HDAC6) inhibition on TNF-α induced caspase 3 activation and cell-cell junction dysfunction in lung endothelial cells. We also assessed the protective effects of HDAC6 inhibition against lung inflammatory injury in a mouse model of endotoxemia. We demonstrated that selective HDAC6 inhibition or knockdown of HDAC6 expression was able to prevent caspase 3 activation in lung endothelial cells and maintain lung endothelial cell-cell junctions. Mice pre-treated with HDAC6 inhibitors exhibited decreased endotoxin-induced caspase 3 activation and reduced lung vascular injury as indicated by the retention of cell-cell junction protein VE-Cadherin level and alleviated lung edema. Collectively, our data suggest that HDAC6 inhibition is a potent therapeutic strategy against inflammatory injury to endothelial cells. PMID:27419634

  3. Modeling energy dissipation induced by quasi-static compaction of granular HMX

    SciTech Connect

    Gonthier, K.A.; Menikoff, R.; Son, S.F.; Asay, B.W.

    1998-07-01

    A simple extension of a conventional two-phase continuum model of Deflagration-to-Detonation Transition (DDT) in energetic granular material is given to account for energy dissipation induced by quasi-static compaction. To this end, the conventional model equations are supplemented by a relaxation equation that accounts for irreversible changes in solid volume fraction due to intergranular friction, plastic deformation of granules, and granule fracture. The proposed model, which is consistent with the Second Law of Thermodynamics for a two-phase mixture, is demonstrated by applying it to the quasi-static compaction of granular HMX. The model predicts results commensurate with experimental data including stress relaxation and substantial dissipation; such phenomena have not been previously accounted for by two-phase DDT models. {copyright} {ital 1998 American Institute of Physics.}

  4. Hidden secrets of deformation: Impact-induced compaction within a CV chondrite

    NASA Astrophysics Data System (ADS)

    Forman, L. V.; Bland, P. A.; Timms, N. E.; Collins, G. S.; Davison, T. M.; Ciesla, F. J.; Benedix, G. K.; Daly, L.; Trimby, P. W.; Yang, L.; Ringer, S. P.

    2016-10-01

    The CV3 Allende is one of the most extensively studied meteorites in worldwide collections. It is currently classified as S1-essentially unshocked-using the classification scheme of Stöffler et al. (1991), however recent modelling suggests the low porosity observed in Allende indicates the body should have undergone compaction-related deformation. In this study, we detail previously undetected evidence of impact through use of Electron Backscatter Diffraction mapping to identify deformation microstructures in chondrules, AOAs and matrix grains. Our results demonstrate that forsterite-rich chondrules commonly preserve crystal-plastic microstructures (particularly at their margins); that low-angle boundaries in deformed matrix grains of olivine have a preferred orientation; and that disparities in deformation occur between chondrules, surrounding and non-adjacent matrix grains. We find heterogeneous compaction effects present throughout the matrix, consistent with a highly porous initial material. Given the spatial distribution of these crystal-plastic deformation microstructures, we suggest that this is evidence that Allende has undergone impact-induced compaction from an initially heterogeneous and porous parent body. We suggest that current shock classifications (Stöffler et al., 1991) relying upon data from chondrule interiors do not constrain the complete shock history of a sample.

  5. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption

    PubMed Central

    Jones, Emmalee M.; Dubey, Manish; Camp, Phillip J.; Vernon, Briana C.; Biernat, Jacek; Mandelkow, Eckhard; Majewski, Jaroslaw; Chi, Eva Y.

    2012-01-01

    The misfolding and aggregation of the intrinsically disordered, microtubule-associated tau protein into neurofibrillary tangles is implicated in the pathogenesis of Alzheimer's disease. However, the mechanisms of tau aggregation and toxicity remain unknown. Recent work has shown that lipid membrane can induce tau aggregation and that membrane permeabilization may serve as a pathway by which protein aggregates exert toxicity, suggesting that the plasma membrane may play dual roles in tau pathology. This prompted our investigation to assess tau's propensity to interact with membranes and to elucidate the mutually disruptive structural perturbations the interactions induce in both tau and the membrane. We show that although highly charged and soluble, the full-length tau (hTau40) is also highly surface active, selectively inserts into anionic DMPG lipid monolayers and induces membrane morphological changes. To resolve molecular-scale structural details of hTau40 associated with lipid membranes, X-ray and neutron scattering techniques are utilized. X-ray reflectivity indicates hTau40's presence underneath a DMPG monolayer and penetration into the lipid headgroups and tailgroups, whereas grazing incidence X-ray diffraction shows that hTau40 insertion disrupts lipid packing. Moreover, both air/water and DMPG lipid membrane interfaces induce the disordered hTau40 to partially adopt a more compact conformation with density similar to that of a folded protein. Neutron reflectivity shows that tau completely disrupts supported DMPG bilayers while leaving the neutral DPPC bilayer intact. Our results show that hTau40's strong interaction with anionic lipids induces tau structural compaction and membrane disruption, suggesting possible membrane-based mechanisms of tau aggregation and toxicity in neurodegenerative diseases. PMID:22401494

  6. Pressure–temperature evolution of primordial solar system solids during impact-induced compaction

    PubMed Central

    Bland, P. A.; Collins, G. S.; Davison, T. M.; Abreu, N. M.; Ciesla, F. J.; Muxworthy, A. R.; Moore, J.

    2014-01-01

    Prior to becoming chondritic meteorites, primordial solids were a poorly consolidated mix of mm-scale igneous inclusions (chondrules) and high-porosity sub-μm dust (matrix). We used high-resolution numerical simulations to track the effect of impact-induced compaction on these materials. Here we show that impact velocities as low as 1.5 km s−1 were capable of heating the matrix to >1,000 K, with pressure–temperature varying by >10 GPa and >1,000 K over ~100 μm. Chondrules were unaffected, acting as heat-sinks: matrix temperature excursions were brief. As impact-induced compaction was a primary and ubiquitous process, our new understanding of its effects requires that key aspects of the chondrite record be re-evaluated: palaeomagnetism, petrography and variability in shock level across meteorite groups. Our data suggest a lithification mechanism for meteorites, and provide a ‘speed limit’ constraint on major compressive impacts that is inconsistent with recent models of solar system orbital architecture that require an early, rapid phase of main-belt collisional evolution. PMID:25465283

  7. Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends.

    PubMed

    Driessen, Rosalie P C; Meng, He; Suresh, Gorle; Shahapure, Rajesh; Lanzani, Giovanni; Priyakumar, U Deva; White, Malcolm F; Schiessel, Helmut; van Noort, John; Dame, Remus Th

    2013-01-07

    Archaeal chromatin proteins share molecular and functional similarities with both bacterial and eukaryotic chromatin proteins. These proteins play an important role in functionally organizing the genomic DNA into a compact nucleoid. Cren7 and Sul7 are two crenarchaeal nucleoid-associated proteins, which are structurally homologous, but not conserved at the sequence level. Co-crystal structures have shown that these two proteins induce a sharp bend on binding to DNA. In this study, we have investigated the architectural properties of these proteins using atomic force microscopy, molecular dynamics simulations and magnetic tweezers. We demonstrate that Cren7 and Sul7 both compact DNA molecules to a similar extent. Using a theoretical model, we quantify the number of individual proteins bound to the DNA as a function of protein concentration and show that forces up to 3.5 pN do not affect this binding. Moreover, we investigate the flexibility of the bending angle induced by Cren7 and Sul7 and show that the protein-DNA complexes differ in flexibility from analogous bacterial and eukaryotic DNA-bending proteins.

  8. Compact acid-induced state of Clitoria ternatea agglutinin retains its biological activity.

    PubMed

    Naeem, A; Saleemuddin, M; Khan, R H

    2009-10-01

    The effects of pH on Clitoria ternatea agglutinin (CTA) were studied by spectroscopy, size-exclusion chromatography, and by measuring carbohydrate specificity. At pH 2.6, CTA lacks well-defined tertiary structure, as seen by fluorescence and near-UV CD spectra. Far-UV CD spectra show retention of 50% native-like secondary structure. The mean residue ellipticity at 217 nm plotted against pH showed a transition around pH 4.0 with loss of secondary structure leading to the formation of an acid-unfolded state. This state is relatively less denatured than the state induced by 6 M guanidine hydrochloride. With a further decrease in pH, this unfolded state regains ~75% secondary structure at pH 1.2, leading to the formation of the A-state with native-like near-UV CD spectral features. Enhanced 8-anilino-1-naphthalene-sulfonate binding was observed in A-state, indicating a "molten-globule" like conformation with exposed hydrophobic residues. Acrylamide quenching data exhibit reduced accessibility of quencher to tryptophan, suggesting a compact conformation at low pH. Size-exclusion chromatography shows the presence of a compact intermediate with hydrodynamic size corresponding to a monomer. Thermal denaturation of the native state was cooperative single-step transition and of the A-state was non-cooperative two-step transition. A-State regains 72% of the carbohydrate-binding activity.

  9. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0 μ s with 0.5 μ s increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  10. Tidally induced oscillations and orbital decay in compact triple-star systems

    NASA Astrophysics Data System (ADS)

    Fuller, Jim; Derekas, A.; Borkovits, T.; Huber, D.; Bedding, T. R.; Kiss, L. L.

    2013-03-01

    We investigate the nature of tidal effects in compact triple-star systems. The hierarchical structure of a triple system produces tidal forcing at high frequencies unobtainable in binary systems, allowing for the tidal excitation of high-frequency p-modes in the stellar components. The tidal forcing exists even for circular, aligned and synchronized systems. We calculate the magnitude and frequencies of three-body tidal forcing on the central primary star for circular and coplanar orbits, and we estimate the amplitude of the tidally excited oscillation modes. We also calculate the secular orbital changes induced by the tidally excited modes and show that they can cause significant orbital decay. During certain phases of stellar evolution, the tidal dissipation may be greatly enhanced by resonance locking. We then compare our theory to observations of HD 181068, which is a hierarchical triply eclipsing star system in the Kepler field of view. The observed oscillation frequencies in HD 181068 can be naturally explained by three-body tidal effects. We then compare the observed oscillation amplitudes and phases in HD 181068 to our predictions, finding mostly good agreement. Finally, we discuss the past and future evolution of compact triple systems like HD 181068.

  11. Condensin II Promotes the Formation of Chromosome Territories by Inducing Axial Compaction of Polyploid Interphase Chromosomes

    PubMed Central

    Bauer, Christopher R.; Hartl, Tom A.; Bosco, Giovanni

    2012-01-01

    The eukaryotic nucleus is both spatially and functionally partitioned. This organization contributes to the maintenance, expression, and transmission of genetic information. Though our ability to probe the physical structure of the genome within the nucleus has improved substantially in recent years, relatively little is known about the factors that regulate its organization or the mechanisms through which specific organizational states are achieved. Here, we show that Drosophila melanogaster Condensin II induces axial compaction of interphase chromosomes, globally disrupts interchromosomal interactions, and promotes the dispersal of peri-centric heterochromatin. These Condensin II activities compartmentalize the nucleus into discrete chromosome territories and indicate commonalities in the mechanisms that regulate the spatial structure of the genome during mitosis and interphase. PMID:22956908

  12. Compact low-cost detector for in vivo assessment of microphytobenthos using laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Utkin, A. B.; Vieira, S.; Marques da Silva, J.; Lavrov, A.; Leite, E.; Cartaxana, P.

    2013-03-01

    The development of a compact low-cost detector for non-destructive assessment of microphytobenthos using laser induced fluorescence was described. The detector was built from a specially modified commercial miniature fiber optic spectrometer (Ocean Optics USB4000). Its usefulness is experimentally verified by the study of diatom-dominated biofilms inhabiting the upper layers of intertidal sediments of the Tagus Estuary, Portugal. It is demonstrated that, operating with a laser emitter producing 30 mJ pulses at the wavelength of 532 nm, the detector is capable to record fluorescence signals with sufficient intensity for the quantitative biomass characterization of the motile epipelic microphytobenthic communities and to monitor their migratory activity. This paves the way for building an entire emitter-detector LIF system for microphytobenthos monitoring, which will enable microalgae communities occupying hardly accessible intertidal flats to be monitored in vivo at affordable cost.

  13. Thy-1-mediated Cell -Cell Contact Induces Astrocyte Migration through the Engagement of αVβ3 Integrin and Syndecan-4

    PubMed Central

    Kong, Milene; Muñoz, Nicolás; Valdivia, Alejandra; Alvarez, Alvaro; Herrera-Molina, Rodrigo; Cárdenas, Areli; Schneider, Pascal; Burridge, Keith; Quest, Andrew F. G.; Leyton, Lisette

    2013-01-01

    Cell adhesion to the extracellular matrix (ECM) proteins occurs through interactions with integrins that bind to Arg-Gly-Asp (RGD) tripeptides, and syndecan-4, which recognizes the heparin-binding domain (HBD) of other proteins. Both receptors trigger signaling pathways, including those that activate RhoGTPases such as RhoA and Rac1. This sequence of events modulates cell adhesion to the ECM and cell migration. Using a neuron-astrocyte model, we have reported that the neuronal protein Thy-1 engages αVβ3 integrin and syndecan-4 to induce RhoA activation and strong astrocyte adhesion to their underlying substrate. Thus, because cell-cell interactions and strong cell attachment to the matrix are considered antagonistic to cell migration, we hypothesized that Thy-1 stimulation of astrocytes should preclude cell migration. Here, we studied the effect of Thy-1 expressing neurons on astrocyte polarization and migration using a wound-healing assay and immunofluorescence analysis. Signaling molecules involved were studied by affinity precipitations, western blots and the usage of specific antibodies. Intriguingly, Thy-1 interaction with its two receptors was found to increase astrocyte polarization and migration. The latter events required interactions of these receptors with both the RGD-like sequence and the HBD of Thy-1. Additionally, prolonged Thy-1-receptor interactions inhibited RhoA activation while activating FAK, PI3K and Rac1. Therefore, sustained engagement of integrin and syndecan-4 with the neuronal surface protein Thy-1 induces astrocyte migration. Interestingly we identify here, a cell-cell interaction that although initially induces strong cell attachment, upon persistant stimulation favors cell migration by engaging the same signaling receptors and molecules as those utilized by ECM proteins to stimulate cell movement. PMID:23481656

  14. EB1 levels are elevated in ascorbic Acid (AA)-stimulated osteoblasts and mediate cell-cell adhesion-induced osteoblast differentiation.

    PubMed

    Pustylnik, Sofia; Fiorino, Cara; Nabavi, Noushin; Zappitelli, Tanya; da Silva, Rosa; Aubin, Jane E; Harrison, Rene E

    2013-07-26

    Osteoblasts are differentiated mesenchymal cells that function as the major bone-producing cells of the body. Differentiation cues including ascorbic acid (AA) stimulation provoke intracellular changes in osteoblasts leading to the synthesis of the organic portion of the bone, which includes collagen type I α1, proteoglycans, and matrix proteins, such as osteocalcin. During our microarray analysis of AA-stimulated osteoblasts, we observed a significant up-regulation of the microtubule (MT) plus-end binding protein, EB1, compared with undifferentiated osteoblasts. EB1 knockdown significantly impaired AA-induced osteoblast differentiation, as detected by reduced expression of osteoblast differentiation marker genes. Intracellular examination of AA-stimulated osteoblasts treated with EB1 siRNA revealed a reduction in MT stability with a concomitant loss of β-catenin distribution at the cell cortex and within the nucleus. Diminished β-catenin levels in EB1 siRNA-treated osteoblasts paralleled an increase in phospho-β-catenin and active glycogen synthase kinase 3β, a kinase known to target β-catenin to the proteasome. EB1 siRNA treatment also reduced the expression of the β-catenin gene targets, cyclin D1 and Runx2. Live immunofluorescent imaging of differentiated osteoblasts revealed a cortical association of EB1-mcherry with β-catenin-GFP. Immunoprecipitation analysis confirmed an interaction between EB1 and β-catenin. We also determined that cell-cell contacts and cortically associated EB1/β-catenin interactions are necessary for osteoblast differentiation. Finally, using functional blocking antibodies, we identified E-cadherin as a major contributor to the cell-cell contact-induced osteoblast differentiation.

  15. Contact inhibition of phagocytosis in epithelial sheets: alterations of cell surface properties induced by cell-cell contacts.

    PubMed

    Vasiliev, J M; Gelfand, I M; Domnina, L V; Zacharova, O S; Ljubimov, A V

    1975-02-01

    Contact inhibition of phagocytosis was found to be characteristic for epithelial sheets formed in cultures by several cell types: normal and transformed mouse kidney cells, and differentiated mouse hepatoma cells. In these sheets most central cells surrounded by other cells had very low phagocytic activity. In contrast, marginal cells having a free edge were able to perform an active phagocytosis. Contact inhibition of phagocytosis was absent in dense cultures of mouse embryo fibroblasts and in cultures of anaplastic mouse hepatoma 22a. The upper surface of epithelial sheets was nonadhesive for prelabeled epithelial cells and fibroblasts. In contrast, the upper surface of dense cultures of mouse fibroblasts was adhesive for these cells. These and other data strengthen the suggestion that contact inhibition of phagocytosis is a result of different adhesiveness of the upper cell surface and of the surfaces near the free edge. Agents inhibiting cell surface movements at the free edges of marginal epithelial cells (cytochalasin, azide, sorbitol, low temperature) prevented adhesion of particles to these edges. Possibly, the surface of actively moving cytoplasmic processes is the only cell part that has adhesive properties necessary for the formation of attachments with other cellular and noncellular surfaces. In epithelial sheets, in contrast to fibroblast cultures, Colcemid did not activate movements of immobile contacting cell edges. These results indicate that mechanisms of contact immobilization of cell surface may be different in epithelium and fibroblasts. Firm contacts formed between epithelial cells are sufficient for stable immobilization of the surface; additional stabilization of the surface by microtubules is not essential. Fibroblasts do not form firm contacts and the Colcemid-sensitive stabilization process is essential for maintenance of the immobile state of their surfaces. Differences in the stability of cell surface immobilization produced by cell-cell

  16. Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition.

    PubMed

    Ryckman, Judson D; Hallman, Kent A; Marvel, Robert E; Haglund, Richard F; Weiss, Sharon M

    2013-05-06

    Vanadium dioxide (VO(2)) is a promising reconfigurable optical material and has long been a focus of condensed matter research owing to its distinctive semiconductor-to-metal phase transition (SMT), a feature that has stimulated recent development of thermally reconfigurable photonic, plasmonic, and metamaterial structures. Here, we integrate VO(2) onto silicon photonic devices and demonstrate all-optical switching and reconfiguration of ultra-compact broadband Si-VO(2) absorption modulators (L < 1 μm) and ring-resonators (R ~ λ(0)). Optically inducing the SMT in a small, ~0.275 μm(2), active area of polycrystalline VO(2) enables Si-VO(2) structures to achieve record values of absorption modulation, ~4 dB μm(-1), and intracavity phase modulation, ~π/5 rad μm(-1). This in turn yields large, tunable changes to resonant wavelength, |Δλ(SMT)| ~ 3 nm, approximately 60 times larger than Si-only control devices, and enables reconfigurable filtering and optical modulation in excess of 7 dB from modest Q-factor (~10(3)), high-bandwidth ring resonators (>100 GHz). All-optical integrated Si-VO(2) devices thus constitute platforms for reconfigurable photonics, bringing new opportunities to realize dynamic on-chip networks and ultrafast optical shutters and modulators.

  17. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Wiechec, Anna; Wachulak, Przemyslaw; Ayele, Mesfin Getachew; Lekki, Janusz; Kwiatek, Wojciech M.; Bartnik, Andrzej; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, Ladislav; Fiedorowicz, Henryk

    2016-03-01

    Application of a compact laser plasma source of soft X-rays in radiobiology studies is demonstrated. The source is based on a laser produced plasma as a result of irradiation of a double-stream gas puff target with nanosecond laser pulses from a commercially available Nd:YAG laser. The source allows irradiation of samples with soft X-ray pulses in the "water window" spectral range (wavelength: 2.3-4.4 nm; photon energy: 280-560 eV) in vacuum or a helium atmosphere at very high-dose rates and doses exceeding the kGy level. Single-strand breaks (SSB) and double-strand breaks (DBS) induced in DNA plasmids pBR322 and pUC19 have been measured. The different conformations of the plasmid DNA were separated by agarose gel electrophoresis. An exponential decrease in the supercoiled form with an increase in linear and relaxed forms of the plasmids has been observed as a function of increasing photon fluence. Significant difference between SSB and DSB in case of wet and dry samples was observed that is connected with the production of free radicals in the wet sample by soft X-ray photons and subsequent affecting the plasmid DNA. Therefore, the new source was validated to be useful for radiobiology experiments.

  18. Effects of root-induced compaction on rhizosphere hydraulic properties--X-ray microtomography imaging and numerical simulations.

    PubMed

    Aravena, Jazmín E; Berli, Markus; Ghezzehei, Teamrat A; Tyler, Scott W

    2011-01-15

    Soil compaction represents one of the most ubiquitous environmental impacts of human development, decreasing bulk-scale soil porosity and hydraulic conductivity, thereby reducing soil productivity and fertility. At the aggregate-scale however, this study shows that natural root-induced compaction increases contact areas between aggregates, leading to an increase in unsaturated hydraulic conductivity of the soils adjacent to the roots. Contrary to intuition, water flow may therefore be locally enhanced due to root-induced compaction. This study investigates these processes by using recent advances in X-ray microtomography (XMT) imaging and numerical water flow modeling to show evolution in interaggregate contact and its implications for water flow between aggregates under partially saturated conditions. Numerical modeling showed that the effective hydraulic conductivity of a pair of aggregates undergoing uniaxial deformation increased following a nonlinear relationship as the interaggregate contact area increased due to increasing aggregate deformation. Numerical modeling using actual XMT images of aggregated soil around a root surrogate demonstrated how root-induced deformation increases unsaturated water flow toward the root, providing insight into the growth, function, and water uptake patterns of roots in natural soils.

  19. Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict Its Propensity To Induce Cell-Cell Fusion

    PubMed Central

    Roy, Nathan H.; Chan, Jany; Lambelé, Marie

    2013-01-01

    HIV-1 Env mediates virus attachment to and fusion with target cell membranes, and yet, while Env is still situated at the plasma membrane of the producer cell and before its incorporation into newly formed particles, Env already interacts with the viral receptor CD4 on target cells, thus enabling the formation of transient cell contacts that facilitate the transmission of viral particles. During this first encounter with the receptor, Env must not induce membrane fusion, as this would prevent the producer cell and the target cell from separating upon virus transmission, but how Env's fusion activity is controlled remains unclear. To gain a better understanding of the Env regulation that precedes viral transmission, we examined the nanoscale organization of Env at the surface of producer cells. Utilizing superresolution microscopy (stochastic optical reconstruction microscopy [STORM]) and fluorescence recovery after photobleaching (FRAP), we quantitatively assessed the clustering and dynamics of Env upon its arrival at the plasma membrane. We found that Gag assembly induced the aggregation of small Env clusters into larger domains and that these domains were completely immobile. Truncation of the cytoplasmic tail (CT) of Env abrogated Gag's ability to induce Env clustering and restored Env mobility at assembly sites, both of which correlated with increased Env-induced fusion of infected and uninfected cells. Hence, while Env trapping by Gag secures Env incorporation into viral particles, Env clustering and its sequestration at assembly sites likely also leads to the repression of its fusion function, and thus, by preventing the formation of syncytia, Gag helps to secure efficient transfer of viral particles to target cells. PMID:23637402

  20. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    SciTech Connect

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.; Williams, A.C.; Howarth, J.L.; Glover, C.P.; Uney, J.B.; Hague, A.

    2010-08-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.

  1. Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lin, Ching-Yen; Chen, Yih-Yuan; Chen, Ping-Tzu; Tseng, Ya-Shih

    2016-01-01

    Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation. PMID:27385117

  2. Self-Consolidation Mechanism of Nanostructured Ti5Si3 Compact Induced by Electrical Discharge

    PubMed Central

    Lee, W. H.; Cheon, Y. W.; Jo, Y. H.; Seong, J. G.; Jo, Y. J.; Kim, Y. H.; Noh, M. S.; Jeong, H. G.; Van Tyne, C. J.; Chang, S. Y.

    2015-01-01

    Electrical discharge using a capacitance of 450 μF at 7.0 and 8.0 kJ input energies was applied to mechanical alloyed Ti5Si3 powder without applying any external pressure. A solid bulk of nanostructured Ti5Si3 with no compositional deviation was obtained in times as short as 159 μsec by the discharge. During an electrical discharge, the heat generated is the required parameter possibly to melt the Ti5Si3 particles and the pinch force can pressurize the melted powder without allowing the formation of pores. Followed rapid cooling preserved the nanostructure of consolidated Ti5Si3 compact. Three stepped processes during an electrical discharge for the formation of nanostructured Ti5Si3 compact are proposed: (a) a physical breakdown of the surface oxide of Ti5Si3 powder particles, (b) melting and condensation of Ti5Si3 powder by the heat and pinch pressure, respectively, and (c) rapid cooling for the preservation of nanostructure. Complete conversion yielding a single phase Ti5Si3 is primarily dominated by the solid-liquid mechanism. PMID:25884039

  3. Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy

    PubMed Central

    1995-01-01

    Cryoelectron microscopy has been used to examine the three-dimensional (3-D) conformation of small oligonucleosomes from chicken erythrocyte nuclei after vitrification in solutions of differing ionic strength. From tilt pairs of micrographs, the 3-D location and orientation of the nucleosomal disks, and the paths of segments of exposed linker can be obtained. In "low-salt" conditions (5 mM NaCl, 1 mM EDTA, pH 7.5), the average trinucleosome assumes the shape of an equilateral triangle, with nucleosomes at the vertices, and a length of exposed linker DNA between consecutive nucleosomes equivalent to approximately 46 bp. The two linker DNA segments converge at the central nucleosome. Removal of histones H1 and H5 results in a much more variable trinucleosome morphology, and the two linker DNA segments usually join the central nucleosome at different locations. Trinucleosomes vitrified in 20 mM NaCl, 1 mM EDTA, (the salt concentration producing the maximal increase in sedimentation), reveal that compaction occurs by a reduction in the included angle made by the linker DNA segments at the central nucleosome, and does not involve a reduction in the distance between consecutive nucleosomes. Frequently, there is also a change in morphology at the linker entry-exit site. At 40 mM NaCl, there is no further change in trinucleosome morphology, but polynucleosomes are appreciably more compact. Nevertheless, the 3-D zig-zag conformation observed in polynucleosomes at low salt is retained at 40 mM NaCl, and individual nucleosome disks remain separated from each other. There is no evidence for the formation of solenoidal arrangements within polynucleosomes. Comparison of the solution conformation of individual oligonucleosomes with data from physical measurements on bulk chromatin samples suggests that the latter should be reinterpreted. The new data support the concept of an irregular zig-zag chromatin conformation in solution over a range of ionic strengths, in agreement with

  4. A novel mammalian myosin I from rat with an SH3 domain localizes to Con A-inducible, F-actin-rich structures at cell-cell contacts

    PubMed Central

    1995-01-01

    In an effort to determine diversity and function of mammalian myosin I molecules, we report here the cloning and characterization of myr 3 (third unconventional myosin from rat), a novel mammalian myosin I from rat tissues that is related to myosin I molecules from protozoa. Like the protozoan myosin I molecules, myr 3 consists of a myosin head domain, a single light chain binding motif, and a tail region that includes a COOH-terminal SH3 domain. However, myr 3 lacks the regulatory phosphorylation site present in the head domain of protozoan myosin I molecules. Evidence was obtained that the COOH terminus of the tail domain is involved in regulating F-actin binding activity of the NH2-terminal head domain. The light chain of myr 3 was identified as the Ca(2+)-binding protein calmodulin. Northern blot and immunoblot analyses revealed that myr 3 is expressed in many tissues and cell lines. Immunofluorescence studies with anti-myr 3 antibodies in NRK cells demonstrated that myr 3 is localized in the cytoplasm and in elongated structures at regions of cell-cell contact. These elongated structures contained F-actin and alpha-actinin but were devoid of vinculin. Incubation of NRK cells with Con A stimulated the formation of myr 3-containing structures along cell-cell contacts. These results suggest for myr 3 a function mediated by cell-cell contact. PMID:7730414

  5. Shear-induced porosity bands in a compacting porous medium with damage rheology

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2017-03-01

    Shear-induced porosity bands have been observed experimentally and have been the subject of a number of theoretical and numerical analyses in which a number of rheological laws governing the partial melt system have been proposed. These bands have been suggested to be important in Earth's interior in focussing melt to Earth's mid-ocean ridges, in reducing the effective viscosity of the asthenosphere, and in affecting seismic and electrical properties. Recently, a linear analysis of the formation of melt bands has been presented in which the viscosity of the solid matrix depends on the grain size and a parameter characterizing the roughness of the grain-liquid interface For some parameter values, this ;damage; rheology mimics the effect of very strongly strain-rate dependent viscosity which can produce low angle bands, similar to those seen in experiments. In the present paper, I show full nonlinear simulations of melt bands with damage rheology. In agreement with the linear analysis, low angle bands are possible when the grain size and grain roughness evolve rapidly compared with the deformation of the sample. The grain size field evolves to form bands where grain-size anticorrelates with porosity. The effective viscosity and electrical conductivity of bands are also investigated. For low angle bands, the effective viscosity relative to the mean viscosity decreases and the electrical conductivity anisotropy increases with strain, indicating significant strain and electrical conduction localization.

  6. Universal scaling of crowding-induced DNA mobility is coupled with topology-dependent molecular compaction and elongation.

    PubMed

    Gorczyca, Stephanie M; Chapman, Cole D; Robertson-Anderson, Rae M

    2015-10-21

    Using single-molecule fluorescence microscopy and particle-tracking techniques, we elucidate the role DNA topology plays in the diffusion and conformational dynamics of crowded DNA molecules. We focus on large (115 kbp), double-stranded ring and linear DNA crowded by varying concentrations (0-40%) of dextran (10, 500 kDa) that mimic cellular conditions. By tracking the center-of-mass and measuring the lengths of the major and minor axes of single DNA molecules, we characterize both DNA mobility reduction as well as crowding-induced conformational changes (from random spherical coils). We reveal novel topology-dependent conformations, with single ring molecules undergoing compaction to ordered spherical configurations ∼20% smaller than dilute random coils, while linear DNA elongates by ∼2-fold. Surprisingly, these highly different conformations result in nearly identical exponential mobility reduction dependent solely on crowder volume fraction Φ, revealing a universal critical crowding concentration of Φc≅ 2.3. Beyond Φc DNA exhibits topology-independent conformational relaxation dynamics despite highly distinct topology-driven conformations. Our collective results reveal that topology-dependent conformational changes, unique to crowded environments, enable DNA to overcome the classically expected mobility reduction that high-viscosity crowded environments impose. Such coupled universal dynamics suggest a mechanism for DNA to maintain sufficient mobility required for wide-ranging biological processes despite severe cellular crowding.

  7. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  8. Dual-Frequency Observations of 140 Compact, Flat-Spectrum Active Galactic Nuclei for Scintillation-Induced Variability

    NASA Technical Reports Server (NTRS)

    Koay, J. Y.; Macquart, J.- P.; Rickett, B. J.; Bignall, H. E.; Lovell, J. E. J.; Reynolds, C.; Jauncey, D. L.; Pursimo, T.; Kedziora-Chudczer, L.; Ojha, R.

    2012-01-01

    The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in Interstellar Scintillation (ISS) for sources at red shifts z > or approx. 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources, relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the Intergalactic Medium (IGM) , in excess of the expected (1+z)1/2 angular diameter scaling of brightness temperature limited sources resulting from cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a sample of 140 compact, fiat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H(alpha) intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15 to 3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at alpha < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of 3 decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM, but the interpretation is complicated by subtle selection effects that will be explored

  9. The effects of buoyancy on shear-induced melt bands in a compacting porous medium

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2009-03-01

    It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The

  10. Compact Femtosecond Pulse Approach to Explosives Detection Combining InN-Based Time Domain Terahertz Spectroscopy and Laser-Induced Breakdown Spectroscopy

    DTIC Science & Technology

    2008-08-01

    Terahertz radiation field amplitude as a function of sample rotation angle for nonpolar GaN samples with varying stacking fault densities (top). Conceptual...1E6cm-1 (MOCVD), V m- GaN : SFD ~3E6cm-1 (MBE), V TH z si gn al (d V/ V ) sample angle (deg) Figure 2. Terahertz radiation field amplitude as a...Compact Femtosecond Pulse Approach to Explosives Detection Combining InN-Based Time Domain Terahertz Spectroscopy and Laser- Induced

  11. CREG1 Interacts with Sec8 to Promote Cardiomyogenic Differentiation and Cell-Cell Adhesion.

    PubMed

    Liu, Jie; Qi, Yanmei; Li, Shaohua; Hsu, Shu-Chan; Saadat, Siavash; Hsu, June; Rahimi, Saum A; Lee, Leonard Y; Yan, Chenghui; Tian, Xiaoxiang; Han, Yanling

    2016-06-22

    Understanding the regulation of cell-cell interactions during the formation of compact myocardial structures is important for achieving true cardiac regeneration through enhancing the integration of stem cell-derived cardiomyocytes into the recipient myocardium. In this study, we found that cellular repressor of E1A-stimulated genes 1 (CREG1) is highly expressed in both embryonic and adult hearts. Gain- and loss-of-function analyses demonstrated that CREG1 is required for differentiation of mouse embryonic stem (ES) cell into cardiomyocytes and the formation of cohesive myocardium-like structures in a cell-autonomous fashion. Furthermore, CREG1 directly interacts with Sec8 of the exocyst complex, which tethers vesicles to the plasma membrane. Site-directed mutagenesis and rescue of CREG1 knockout ES cells showed that CREG1 binding to Sec8 is required for cardiomyocyte differentiation and cohesion. Mechanistically, CREG1, Sec8, and N-cadherin colocalize at intercalated discs in vivo and are enriched at cell-cell junctions in cultured cardiomyocytes. CREG1 overexpression enhances the assembly of adherens and gap junctions. By contrast, its knockout inhibits the Sec8-N-cadherin interaction and induces their degradation. These results suggest that the CREG1 binding to Sec8 enhances the assembly of intercellular junctions and promotes cardiomyogenesis. Stem Cells 2016.

  12. Engineering Cell-Cell Signaling

    PubMed Central

    Milano, Daniel F.; Natividad, Robert J.; Asthagiri, Anand R.

    2014-01-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling based on quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilizing synthetic cells, advanced ‘chassis’ and predictive modeling to engineer the form and function of living tissues. PMID:23856592

  13. Engineering cell-cell signaling.

    PubMed

    Blagovic, Katarina; Gong, Emily S; Milano, Daniel F; Natividad, Robert J; Asthagiri, Anand R

    2013-10-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling on the basis of quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilize synthetic cells, advanced 'chassis' and predictive modeling to engineer the form and function of living tissues.

  14. Compact vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; Zafalan, I.

    2017-02-01

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane.

  15. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  16. Evaluating energy sorghum harvest thresholds and tillage cropping systems to offset negative environmental impacts and harvesting equipment-induced soil compaction

    NASA Astrophysics Data System (ADS)

    Meki, M. N.; Snider, J. L.; Kiniry, J. R.; Raper, R. L.; Rocateli, A. C.

    2011-12-01

    Energy sorghum (Sorghum bicolor L. Moench) could be the ideal feedstock for the cellulosic ethanol industry because of its robust establishment, broader adaptability and drought tolerance, water and nutrient use efficiency, and the relatively high annual biomass yields. Of concern, however, is the limited research data on harvest thresholds, subsequent environmental impacts and the potential cumulative effects of harvesting equipment-induced soil compaction. Indiscriminate harvests of the high volume wet energy sorghum biomass, coupled with repeated field passes, could cause irreparable damage to the soil due to compaction. Furthermore, biomass harvests result in lower soil organic matter returns to the soil, making the soil even more susceptible to soil compaction. Compacted soils result in poor root zone aeration and drainage, more losses of nitrogen from denitrification, and restricted root growth, which reduces yields. Given the many positive attributes of conservation tillage and crop residue retention, our research and extension expectations are that sustainable energy sorghum cropping systems ought to include some form of conservation tillage. The challenge is to select cropping and harvesting systems that optimize feedstock production while ensuring adequate residue biomass to sustainably maintain soil structure and productivity. Producers may have to periodically subsoil-till or plow-back their lands to alleviate problems of soil compaction and drainage, weeds, insects and disease infestations. Little, however, is known about the potential impact of these tillage changes on soil productivity, environmental integrity, and sustainability of bioenergy agro-ecosystems. Furthermore, 'safe' energy sorghum feedstock removal thresholds have yet to be established. We will apply the ALMANAC biophysical model to evaluate permissible energy sorghum feedstock harvest thresholds and the effects of subsoil tillage and periodically plowing no-tilled (NT) energy sorghum

  17. Regulation of cell-cell fusion by nanotopography

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Jagannath; Augelli, Michael J.; Cheung, Bettina; Kinser, Emily R.; Cleary, Barnett; Kumar, Priyanka; Wang, Renhao; Sawyer, Andrew J.; Li, Rui; Schwarz, Udo D.; Schroers, Jan; Kyriakides, Themis R.

    2016-09-01

    Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions.

  18. Regulation of cell-cell fusion by nanotopography

    PubMed Central

    Padmanabhan, Jagannath; Augelli, Michael J.; Cheung, Bettina; Kinser, Emily R.; Cleary, Barnett; Kumar, Priyanka; Wang, Renhao; Sawyer, Andrew J.; Li, Rui; Schwarz, Udo D.; Schroers, Jan; Kyriakides, Themis R.

    2016-01-01

    Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions. PMID:27615159

  19. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  20. Compactness of lateral shearing interferometers

    NASA Astrophysics Data System (ADS)

    Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre

    2011-08-01

    Imaging lateral shearing interferometers are good candidates for airborne or spaceborne Fourier-transform spectral imaging. For such applications, compactness is one key parameter. In this article, we compare the size of four mirror-based interferometers, the Michelson interferometer with roof-top (or corner-cube) mirrors, and the cyclic interferometers with two, three, and four mirrors, focusing more particularly on the last two designs. We give the expression of the translation they induce between the two exiting rays. We then show that the cyclic interferometer with three mirrors can be made quite compact. Nevertheless, the Michelson interferometer is the most compact solution, especially for highly diverging beams.

  1. A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Brackley, C. A.; Cook, P. R.; Marenduzzo, D.

    2015-02-01

    We present computer simulations of the phase behaviour of an ensemble of proteins interacting with a polymer, mimicking non-specific binding to a piece of bacterial DNA or eukaryotic chromatin. The proteins can simultaneously bind to the polymer in two or more places to create protein bridges. Despite the lack of any explicit interaction between the proteins or between DNA segments, our simulations confirm previous results showing that when the protein-polymer interaction is sufficiently strong, the proteins come together to form clusters. Furthermore, a sufficiently large concentration of bridging proteins leads to the compaction of the swollen polymer into a globular phase. Here we characterise both the formation of protein clusters and the polymer collapse as a function of protein concentration, protein-polymer affinity and fibre flexibility.

  2. A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction.

    PubMed

    Johnson, J; Brackley, C A; Cook, P R; Marenduzzo, D

    2015-02-18

    We present computer simulations of the phase behaviour of an ensemble of proteins interacting with a polymer, mimicking non-specific binding to a piece of bacterial DNA or eukaryotic chromatin. The proteins can simultaneously bind to the polymer in two or more places to create protein bridges. Despite the lack of any explicit interaction between the proteins or between DNA segments, our simulations confirm previous results showing that when the protein-polymer interaction is sufficiently strong, the proteins come together to form clusters. Furthermore, a sufficiently large concentration of bridging proteins leads to the compaction of the swollen polymer into a globular phase. Here we characterise both the formation of protein clusters and the polymer collapse as a function of protein concentration, protein-polymer affinity and fibre flexibility.

  3. High and compact formation of baculoviral polyhedrin-induced inclusion body by co-expression of baculoviral FP25 in Escherichia coli.

    PubMed

    Li, Lin; Kim, Young Soo; Hwang, Dong Soo; Seo, Jeong Hyun; Jung, Hee Jung; Du, Juan; Cha, Hyung Joon

    2007-04-15

    Previously, we found that baculoviral polyhedrin (Polh) can successfully be used in Escherichia coli as a fusion partner for the expression of special foreign proteins as inclusion bodies, and the resulting, easily isolatable Polh-induced fusion inclusion bodies had almost the same characteristics as the native Polh. Here, we investigated the effects of co-expression of baculoviral FP25 protein on Polh-induced inclusion-body production in an E. coli expression system, as FP25 is known to be involved specifically in polyhedra formation. Using several analytical tools, including SDS-PAGE, pronase proteolysis, solubilization under alkaline conditions, and electron microscopy, we found that co-expressed FP25 was associated with Polh-induced inclusion bodies and that its co-expression led to formation of compact inclusion bodies as well as high production levels. We confirmed that FP25 co-expression induced higher production levels of other heterologous protein, antimicrobial peptide Hal18, fused with aggregation-prone Polh. Therefore, co-expression of baculoviral FP25 can be promisingly used to increase the levels of baculoviral Polh-fused foreign proteins, especially harmful proteins, expressed as inclusion bodies in an E. coli expression system.

  4. Calculation of eddy-currents induced in a compact synchrotron superconducting magnet structure during a current ramp

    SciTech Connect

    Kalsi, S. . Space and Electronics Systems Div.); Heese, R. )

    1991-01-01

    Under DARPA sponsorship, a compact Superconducting X-Ray Light Source (SXSL) is being designed and built by the Brookhaven National Laboratory (BNL) with industry participation from Grumman Corporation and General Dynamics. The SXLS machine employs two 180{degrees} curved 4 telsa superconducting dipole magnets. These magnets are required to produce a dipole field for bending the beam but at the same time they must produce finite amounts of higher multipoles which are required for conditioning the beam. In fact uniformity of the field to less than 1 part in 10,000 must be maintained under all operating conditions. When a superconducting magnet is ramped from zero to full field, the changing magnetic field produces eddy-currents in the magnet structure which in turn can produce undesirable multipoles. This paper discusses a simple method for estimating these eddy-currents and their effect on the field harmonics. The paper present the analysis basis and its application to the SXLS magnet support structure and to the beam chamber components. 5 figs., 1 tab.

  5. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior.

  6. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  7. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines.

    PubMed

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H(α) (656 nm) and H(β) (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  8. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    NASA Astrophysics Data System (ADS)

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission Hα (656 nm) and Hβ (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  9. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  10. A solvent induced crystallisation method to imbue bioactive ingredients of neem oil into the compact structure of poly (ethylene terephthalate) polyester.

    PubMed

    Ali, Wazed; Sultana, Parveen; Joshi, Mangala; Rajendran, Subbiyan

    2016-07-01

    Neem oil, a natural antibacterial agent from neem tree (Azadarichtaindica) has been used to impart antibacterial activity to polyester fabrics. Solvent induced polymer modification method was used and that facilitated the easy entry of neem molecules into the compact structure of polyethylene terephthalate (PET) polyester. The polyester fabric was treated with trichloroacetic acid-methylene chloride (TCAMC) solvent system at room temperature prior to treatment with neem oil. The concentration of TCAMC and the treatment time were optimised. XRD and SEM results showed that the TCAMC treatment causes polymer modification and morphological changes in the PET polyester. Antibacterial activity of TCAMC pre-treated and neem-oil-treated polyester fabric was tested using AATCC qualitative and quantitative methods. Both Gram-positive and Gram-negative organisms were used to determine the antimicrobial activity. It was observed that the treated fabric registers substantial antimicrobial activity against both the Staphylococcus aureus (Gram-positive) and the Escherichia coli (Gram-negative) and the effect increases with the increase in concentration of TCAMC treatment. The antibacterial effect remains substantial even after 25 launderings. A kinetic growth study involving the effect of antibacterial activity at various incubation times was carried out.

  11. EFFECTS OF ROTATIONALLY INDUCED MIXING IN COMPACT BINARY SYSTEMS WITH LOW-MASS SECONDARIES AND IN SINGLE SOLAR-TYPE STARS

    SciTech Connect

    Chatzopoulos, E.; Robinson, Edward L.; Wheeler, J. Craig

    2012-08-20

    Many population synthesis and stellar evolution studies have addressed the evolution of close binary systems in which the primary is a compact remnant and the secondary is filling its Roche lobe, thus triggering mass transfer. Although tidal locking is expected in such systems, most studies have neglected the rotationally induced mixing that may occur. Here we study the possible effects of mixing in mass-losing stars for a range of secondary star masses and metallicities. We find that tidal locking can induce rotational mixing prior to contact and thus affect the evolution of the secondary star if the effects of the Spruit-Tayler dynamo are included both for angular momentum and chemical transport. Once contact is made, the effect of mass transfer tends to be more rapid than the evolutionary timescale, so the effects of mixing are no longer directly important, but the mass-transfer strips matter to inner layers that may have been affected by the mixing. These effects are enhanced for secondaries of 1-1.2 M{sub Sun} and for lower metallicities. We discuss the possible implications for the paucity of carbon in the secondaries of the cataclysmic variable SS Cyg and the black hole candidate XTE J1118+480 and for the progenitor evolution of Type Ia supernovae. We also address the issue of the origin of blue straggler stars in globular and open clusters. We find that for models that include rotation consistent with that observed for some blue straggler stars, evolution is chemically homogeneous. This leads to tracks in the H-R diagram that are brighter and bluer than the non-rotating main-sequence turn-off point. Rotational mixing could thus be one of the factors that contribute to the formation of blue stragglers.

  12. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  13. The Compact for Education.

    ERIC Educational Resources Information Center

    Harrington, Fred Harvey

    The Compact for Education is not yet particularly significant either for good or evil. Partly because of time and partly because of unreasonable expectations, the Compact is not yet a going concern. Enthusiasts have overestimated Compact possibilities and opponents have overestimated its dangers, so if the organization has limited rather than…

  14. Dynamical compactness and sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Khilko, Danylo; Kolyada, Sergiĭ; Zhang, Guohua

    2016-05-01

    To link the Auslander point dynamics property with topological transitivity, in this paper we introduce dynamically compact systems as a new concept of a chaotic dynamical system (X , T) given by a compact metric space X and a continuous surjective self-map T : X → X. Observe that each weakly mixing system is transitive compact, and we show that any transitive compact M-system is weakly mixing. Then we discuss the relationships between it and other several stronger forms of sensitivity. We prove that any transitive compact system is Li-Yorke sensitive and furthermore multi-sensitive if it is not proximal, and that any multi-sensitive system has positive topological sequence entropy. Moreover, we show that multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity for M-systems. We also give a quantitative analysis for multi-sensitivity of a dynamical system.

  15. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  16. Self-consolidation mechanism of porous-surfaced Ti implant compacts induced by electro-discharge-sintering of spherical Ti powders

    NASA Astrophysics Data System (ADS)

    Jo, Y. H.; Kim, Y. H.; Jo, Y. J.; Seong, J. G.; Chang, S. Y.; Reucroft, P. J.; Kim, S. B.; Lee, W. H.

    2015-03-01

    Porous-surfaced Ti implant compacts, with a solid core surrounded by a porous layer, were self-assembled by electro-discharge-sintering directly from spherical Ti powders. During an electro-discharge, instant high temperatures through the Ti powder column ranged from 1093 to 4925 °C were generated in times as short as 86-153 µsec. At the same time, pinch pressures ranging from 11 to 38 MPa were applied, especially to the middle of the Ti powder column. The solid core size depended on both the pinch pressure magnitude and the heat generated during a discharge. Both the pinch pressure (to squeeze and deform Ti powder particles), and the heat (to weld them together), were key factors in the production of porous-surfaced Ti implant compacts. It is thus suggested that the input energy at constant capacitance is a controllable electro-discharge parameter affecting the porosity and strength of the porous-surfaced Ti implant compacts.

  17. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  18. Proteomics of cell-cell interactions in health and disease.

    PubMed

    Lindoso, Rafael S; Sandim, Vanessa; Collino, Federica; Carvalho, Adriana B; Dias, Juliana; da Costa, Milene R; Zingali, Russolina B; Vieyra, Adalberto

    2016-01-01

    The mechanisms of cell-cell communications are now under intense study by proteomic approaches. Proteomics has unraveled changes in protein profiling as the result of cell interactions mediated by ligand/receptor, hormones, soluble factors, and the content of extracellular vesicles. Besides being a brief overview of the main and profitable methodologies now available (evaluating theory behind the methods, their usefulness, and pitfalls), this review focuses on-from a proteome perspective-some signaling pathways and post-translational modifications (PTMs), which are essential for understanding ischemic lesions and their recovery in two vital organs in mammals, the heart, and the kidney. Knowledge of misdirection of the proteome during tissue recovery, such as represented by the convergence between fibrosis and cancer, emerges as an important tool in prognosis. Proteomics of cell-cell interaction is also especially useful for understanding how stem cells interact in injured tissues, anticipating clues for rational therapeutic interventions. In the effervescent field of induced pluripotency and cell reprogramming, proteomic studies have shown what proteins from specialized cells contribute to the recovery of infarcted tissues. Overall, we conclude that proteomics is at the forefront in helping us to understand the mechanisms that underpin prevalent pathological processes.

  19. Cell-cell contact mediates cAMP secretion in Dictyostelium discoideum.

    PubMed

    Fontana, D R; Price, P L; Phillips, J C

    1991-01-01

    Cyclic adenosine 3':5' monophosphate (cAMP) and cell-cell contact regulate developmental gene expression in Dictyostelium discoideum. Developing D. discoideum amoebae synthesize and secrete cAMP following the binding of cAMP to their surface cAMP receptor, a response called cAMP signaling. We have demonstrated two responses of developing D. discoideum amoebae to cell-cell contact. Cell-cell contact elicits cAMP secretion and alters the amount of cAMP secreted in a subsequent cAMP signaling response. Depending upon experimental conditions, bacterial-amoebal contact and amoebal-amoebal contact can enhance or diminish the amount of cAMP secreted during a subsequent cAMP signaling response. We have hypothesized that cell-cell contact regulates D. discoideum development by altering cellular and extracellular levels of cAMP. To begin testing this hypothesis, these responses were further characterized. The two responses to cell-cell contact are independent, i.e., they can each occur in the absence of the other. The responses to cell-cell contact also have unique temperature dependences when compared to each other, cAMP signaling, and phagocytosis. This suggests that these four responses have unique steps in their transduction mechanisms. The secretion of cAMP in response to cell-cell contact appears to be a non-specific response; contact between D. discoideum amoebae and Enterobacter aerogenes, latex beads, or other amoebae elicits cAMP secretion. Despite the apparent similarities of the effects of bacterial-amoebal and amoebal-amoebal contact on the cAMP signaling response, this contact-induced response appears to be specific. Latex beads addition does not alter the magnitude of a subsequent cAMP signaling response.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Physically detached 'compact groups'

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  1. Cell-cell connection to cardiac disease.

    PubMed

    Sheikh, Farah; Ross, Robert S; Chen, Ju

    2009-08-01

    Intercalated disks (ICDs) are highly organized cell-cell adhesion structures, which connect cardiomyocytes to one another. They are composed of three major complexes: desmosomes, fascia adherens, and gap junctions. Desmosomes and fascia adherens junction are necessary for mechanically coupling and reinforcing cardiomyocytes, whereas gap junctions are essential for rapid electrical transmission between cells. Because human genetics and mouse models have revealed that mutations and/or deficiencies in various ICD components can lead to cardiomyopathies and arrhythmias, considerable attention has focused on the biologic function of the ICD. This review will discuss recent scientific developments related to the ICD and focus on its role in regulating cardiac muscle structure, signaling, and disease.

  2. Cell-cell connectivity: desmosomes and disease.

    PubMed

    Brooke, Matthew A; Nitoiu, Daniela; Kelsell, David P

    2012-01-01

    Cell-cell connectivity is an absolute requirement for the correct functioning of cells, tissues and entire organisms. At the level of the individual cell, direct cell-cell adherence and communication is mediated by the intercellular junction complexes: desmosomes, adherens, tight and gap junctions. A broad spectrum of inherited, infectious and auto-immune diseases can affect the proper function of intercellular junctions and result in either diseases affecting specific individual tissues or widespread syndromic conditions. A particularly diverse group of diseases result from direct or indirect disruption of desmosomes--a consequence of their importance in tissue integrity, their extensive distribution, complex structure, and the wide variety of functions their components accomplish. As a consequence, disruption of desmosomal assembly, structure or integrity disrupts not only their intercellular adhesive function but also their functions in cell communication and regulation, leading to such diverse pathologies as cardiomyopathy, epidermal and mucosal blistering, palmoplantar keratoderma, woolly hair, keratosis, epidermolysis bullosa, ectodermal dysplasia and alopecia. Here, as well as describing the importance of the other intercellular junctions, we focus primarily on the desmosome, its structure and its role in disease. We will examine the various pathologies that result from impairment of desmosome function and thereby demonstrate the importance of desmosomes to tissues and to the organism as a whole.

  3. Effects of Ti charge state, ion size and beam-induced compaction on the formation of Ag metal nanoparticles in fused silica

    NASA Astrophysics Data System (ADS)

    Magruder, R. H.; Meldrum, A.; Haglund, R. F.

    2015-04-01

    Metal nanoparticles formed by ion implantation in fused silica exhibit linear and nonlinear optical properties that can be altered by co-doping the silica substrate with transition-metal ions. For example, implantation of scandium in fused silica creates a directional optical dichroism due to the different spatial distribution of silver nanoparticles subsequently formed by Ag ion implantation. In this paper, we show that implantation of titanium ions alters the short- and intermediate-range order in the silica and thereby alters the diffusion and nucleation processes that lead to formation of silver nanoparticles. In particular, the dichroic response observed for Ag nanoparticles in Sc-implanted silica is, with one exception, in Ti-implanted silica. Compaction of the silica due to the ion implantation process appears to be similar for both Sc and Ti implantations, based on the observed shift of the 1,124 cm-1 transverse-optical phonon mode in the infrared reflectance spectrum. However, differences in chemical reactivity, bond lengths and electronic structure of Sc and Ti produce changes in electronic structure and strain that are sensitively reflected in the reflectance spectra of the Ag nanoparticles. These differences lead to modifications in the size, shape and spatial distributions of the silver nanoparticles and offer a powerful means of controlling their optical properties.

  4. From Compact to String—The Role of Secondary and Tertiary Structure in Charge-Induced Unzipping of Gas-Phase Proteins

    NASA Astrophysics Data System (ADS)

    Warnke, Stephan; Hoffmann, Waldemar; Seo, Jongcheol; De Genst, Erwin; von Helden, Gert; Pagel, Kevin

    2016-12-01

    In the gas phase, protein ions can adopt a broad range of structures, which have been investigated extensively in the past using ion mobility-mass spectrometry (IM-MS)-based methods. Compact ions with low number of charges undergo a Coulomb-driven transition to partially folded species when the charge increases, and finally form extended structures with presumably little or no defined structure when the charge state is high. However, with respect to the secondary structure, IM-MS methods are essentially blind. Infrared (IR) spectroscopy, on the other hand, is sensitive to such structural details and there is increasing evidence that helices as well as β-sheet-like structures can exist in the gas phase, especially for ions in low charge states. Very recently, we showed that also the fully extended form of highly charged protein ions can adopt a distinct type of secondary structure that features a characteristic C5-type hydrogen bond pattern. Here we use a combination of IM-MS and IR spectroscopy to further investigate the influence of the initial, native conformation on the formation of these structures. Our results indicate that when intramolecular Coulomb-repulsion is large enough to overcome the stabilization energies of the genuine secondary structure, all proteins, regardless of their sequence or native conformation, form C5-type hydrogen bond structures. Furthermore, our results suggest that in highly charged proteins the positioning of charges along the sequence is only marginally influenced by the basicity of individual residues.

  5. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  6. Compact rotating cup anemometer

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1968-01-01

    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.

  7. Compact, Integrated Photoelectron Linacs

    NASA Astrophysics Data System (ADS)

    Yu, David

    2000-12-01

    The innovative compact high energy iniector which has been developed by DULY Research Inc., will have wide scientific industrial and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injector and the linac. By focusing the beam with solenoid or permanent magnets, and producing high current with low emittance, extremely high brightness is achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerance and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. DULY Research is also presently engaged in the development of an X-band photoelectron linear accelerator in another SBIR project. The higher frequency structure when completed will be approximately three times smaller, and capable of a beam brightness ten times higher than the S-band structure.

  8. Compact Solar Camera.

    ERIC Educational Resources Information Center

    Juergens, Albert

    1980-01-01

    Describes a compact solar camera built as a one-semester student project. This camera is used for taking pictures of the sun and moon and for direct observation of the image of the sun on a screen. (Author/HM)

  9. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  10. Limestone compaction: an enigma

    USGS Publications Warehouse

    Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.

    1977-01-01

    Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.

  11. Compact Information Representations

    DTIC Science & Technology

    2016-08-02

    proposal aims at developing mathematically rigorous and general- purpose statistical methods based on stable random projections, to achieve compact...faced with very large, inherently high-dimensional, or naturally streaming datasets. This pro- posal aims at developing mathematically rigorous and

  12. Dictyostelium discoideum lipids modulate cell-cell cohesion and cyclic AMP signaling.

    PubMed Central

    Fontana, D R; Luo, C S; Phillips, J C

    1991-01-01

    During Dictyostelium discoideum development, cell-cell communication is mediated through cyclic AMP (cAMP)-induced cAMP synthesis and secretion (cAMP signaling) and cell-cell contact. Cell-cell contact elicits cAMP secretion and modulates the magnitude of a subsequent cAMP signaling response (D. R. Fontana and P. L. Price, Differentiation 41:184-192, 1989), demonstrating that cell-cell contact and cAMP signaling are not independent events. To identify components involved in the contact-mediated modulation of cAMP signaling, amoebal membranes were added to aggregation-competent amoebae in suspension. The membranes from aggregation-competent amoebae inhibited cAMP signaling at all concentrations tested, while the membranes from vegetative amoebae exhibited a concentration-dependent enhancement or inhibition of cAMP signaling. Membrane lipids inhibited cAMP signaling at all concentrations tested. The lipids abolished cAMP signaling by blocking cAMP-induced adenylyl cyclase activation. The membrane lipids also inhibited amoeba-amoeba cohesion at concentrations comparable to those which inhibited cAMP signaling. The phospholipids and neutral lipids decreased cohesion and inhibited the cAMP signaling response. The glycolipid/sulfolipid fraction enhanced cohesion and cAMP signaling. Caffeine, a known inhibitor of cAMP-induced adenylyl cyclase activation, inhibited amoeba-amoeba cohesion. These studies demonstrate that endogenous lipids are capable of modulating amoeba-amoeba cohesion and cAMP-induced activation of the adenylyl cyclase. These results suggest that cohesion may modulate cAMP-induced adenylyl cyclase activation. Because the complete elimination of cohesion is accompanied by the complete elimination of cAMP signaling, these results further suggest that cohesion may be necessary for cAMP-induced adenylyl cyclase activation in D. discoideum. PMID:1846024

  13. Compact oleic acid in HAMLET.

    PubMed

    Fast, Jonas; Mossberg, Ann-Kristin; Nilsson, Hanna; Svanborg, Catharina; Akke, Mikael; Linse, Sara

    2005-11-07

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex between alpha-lactalbumin and oleic acid that induces apoptosis in tumor cells, but not in healthy cells. Heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of 13C-oleic acid in HAMLET, and to study the 15N-labeled protein. Nuclear Overhauser enhancement spectroscopy shows that the two ends of the fatty acid are in close proximity and close to the double bond, indicating that the oleic acid is bound to HAMLET in a compact conformation. The data further show that HAMLET is a partly unfolded/molten globule-like complex under physiological conditions.

  14. Cell-cell and intracellular lactate shuttles.

    PubMed

    Brooks, George A

    2009-12-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. 'Cell-cell' and 'intracellular lactate shuttle' concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell-cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other.

  15. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  16. Compact spreader schemes

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C.

    2014-12-01

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  17. Compact optical isolator.

    PubMed

    Sansalone, F J

    1971-10-01

    This paper describes a compact Faraday rotation isolator using terbium aluminum garnet (TAG) as the Faraday rotation material and small high field permanent magnets made of copper-rare earth alloys. The nominal isolation is 26 dB with a 0.4-dB forward loss. The present isolator can be adjusted to provide effective isolation from 4880 A to 5145 A. Details of the design, fabrication, and performance of the isolator are presented.

  18. Compact Torsatron configurations

    SciTech Connect

    Carreras, B. A.; Dominguez, N.; Garcia, L.; Lynch, V. E.; Lyon, J. F.; Cary, J. R.; Hanson, J. D.; Navarro, A. P.

    1987-09-01

    Low-aspect-ratio stellarator configurations can be realized by using torsatron winding. Plasmas with aspect ratios in the range of 3.5 to 5 can be confined by these Compact Torsatron configurations. Stable operation at high BETA should be possible in these devices, if a vertical field coil system is adequately designed to avoid breaking of the magnetic surfaces at finite BETA. 17 refs., 21 figs., 1 tab.

  19. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  20. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  1. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions

    PubMed Central

    Cain, Stuart A.; Mularczyk, Ewa J.; Singh, Mukti; Massam-Wu, Teresa; Kielty, Cay M.

    2016-01-01

    ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10. PMID:27779234

  2. Compact gate valve

    DOEpatents

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  3. COMPACT CASCADE IMPACTS

    DOEpatents

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  4. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  5. Oil shale compaction experimental results

    SciTech Connect

    Fahy, L.J.

    1985-11-01

    Oil shale compaction reduces the void volume available for gas flow in vertical modified in situ (VMIS) retorts. The mechanical forces caused by the weight of the overlying shale can equal 700 kPa near the bottom of commercial retorts. Clear evidence of shale compaction was revealed during postburn investigation of the Rio Blanco retorts at the C-a lease tract in Colorado. Western Research Institute conducted nine laboratory experiments to measure the compaction of Green River oil shale rubble during retorting. The objectives of these experiments were (1) to determine the effects of particle size, (2) to measure the compaction of different shale grades with 12 to 25 percent void volume and (3) to study the effects of heating rate on compaction. The compaction recorded in these experiments can be separated into the compaction that occurred during retorting and the compaction that occurred as the retort cooled down. The leaner oil shale charges compacted about 3 to 4 percent of the bed height at the end of retorting regardless of the void volume or heating rate. The richer shale charges compacted by 6.6 to 22.9 percent of the bed height depending on the shale grade and void volume used. Additional compaction of approximately 1.5 to 4.3 percent of the bed height was measured as the oil shale charges cooled down. Compaction increased with an increase in void volume for oil shale grades greater than 125 l/Mg. The particle size of the oil shale brick and the heating rate did not have a significant effect on the amount of compaction measured. Kerogen decomposition is a major factor in the compaction process. The compaction may be influenced by the bitumen intermediate acting as a lubricant, causing compaction to occur over a narrow temperature range between 315 and 430/sup 0/C. While the majority of the compaction occurs early in the retorting phase, mineral carbonate decomposition may also increase the amount of compaction. 14 refs., 12 figs., 4 tabs.

  6. Scalable Nonlinear Compact Schemes

    SciTech Connect

    Ghosh, Debojyoti; Constantinescu, Emil M.; Brown, Jed

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  7. Compaction of Titanium Powders

    SciTech Connect

    Gerdemann, Stephen,J; Jablonski, Paul, J

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines<150 {micro}m,<75 {micro}m, and<45 {micro}m; two different sizes of a hydride-dehydride [HDH]<75 {micro}m and<45 {micro}m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  8. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  9. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  10. Compact Infrasonic Windscreen

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Shams, Qamar A.; Sealey, Bradley S.; Comeaux, Toby

    2005-01-01

    A compact windscreen has been conceived for a microphone of a type used outdoors to detect atmospheric infrasound from a variety of natural and manmade sources. Wind at the microphone site contaminates received infrasonic signals (defined here as sounds having frequencies <20 Hz), because a microphone cannot distinguish between infrasonic pressures (which propagate at the speed of sound) and convective pressure fluctuations generated by wind turbulence. Hence, success in measurement of outdoor infrasound depends on effective screening of the microphone from the wind. The present compact windscreen is based on a principle: that infrasound at sufficiently large wavelength can penetrate any barrier of practical thickness. Thus, a windscreen having solid, non-porous walls can block convected pressure fluctuations from the wind while transmitting infrasonic acoustic waves. The transmission coefficient depends strongly upon the ratio between the acoustic impedance of the windscreen and that of air. Several materials have been found to have impedance ratios that render them suitable for use in constructing walls that have practical thicknesses and are capable of high transmission of infrasound. These materials (with their impedance ratios in parentheses) are polyurethane foam (222), space shuttle tile material (332), balsa (323), cedar (3,151), and pine (4,713).

  11. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo.

    PubMed

    Maître, Jean-Léon; Niwayama, Ritsuya; Turlier, Hervé; Nédélec, François; Hiiragi, Takashi

    2015-07-01

    Mammalian embryos initiate morphogenesis with compaction, which is essential for specifying the first lineages of the blastocyst. The 8-cell-stage mouse embryo compacts by enlarging its cell-cell contacts in a Cdh1-dependent manner. It was therefore proposed that Cdh1 adhesion molecules generate the forces driving compaction. Using micropipette aspiration to map all tensions in a developing embryo, we show that compaction is primarily driven by a twofold increase in tension at the cell-medium interface. We show that the principal force generator of compaction is the actomyosin cortex, which gives rise to pulsed contractions starting at the 8-cell stage. Remarkably, contractions emerge as periodic cortical waves when cells are disengaged from adhesive contacts. In line with this, tension mapping of mzCdh1(-/-) embryos suggests that Cdh1 acts by redirecting contractility away from cell-cell contacts. Our study provides a framework to understand early mammalian embryogenesis and original perspectives on evolutionary conserved pulsed contractions.

  12. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  13. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  14. Multipurpose Compact Spectrometric Unit

    SciTech Connect

    Bocarov, Viktor; Cermak, Pavel; Mamedov, Fadahat; Stekl, Ivan

    2009-11-09

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  15. Compact photonic spin filters

    NASA Astrophysics Data System (ADS)

    Ke, Yougang; Liu, Zhenxing; Liu, Yachao; Zhou, Junxiao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2016-10-01

    In this letter, we propose and experimentally demonstrate a compact photonic spin filter formed by integrating a Pancharatnam-Berry phase lens (focal length of ±f ) into a conventional plano-concave lens (focal length of -f). By choosing the input port of the filter, photons with a desired spin state, such as the right-handed component or the left-handed one, propagate alone its original propagation direction, while the unwanted spin component is quickly diverged after passing through the filter. One application of the filter, sorting the spin-dependent components of vector vortex beams on higher-order Poincaré sphere, is also demonstrated. Our scheme provides a simple method to manipulate light, and thereby enables potential applications for photonic devices.

  16. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  17. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  18. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  19. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  20. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  1. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  2. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (Inventor)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  3. Downregulation of Rap1GAP in Human Tumor Cells Alters Cell/Matrix and Cell/Cell Adhesion▿ †

    PubMed Central

    Tsygankova, Oxana M.; Ma, Changqing; Tang, Waixing; Korch, Christopher; Feldman, Michael D.; Lv, Yu; Brose, Marcia S.; Meinkoth, Judy L.

    2010-01-01

    Rap1GAP expression is decreased in human tumors. The significance of its downregulation is unknown. We show that Rap1GAP expression is decreased in primary colorectal carcinomas. To elucidate the advantages conferred on tumor cells by loss of Rap1GAP, Rap1GAP expression was silenced in human colon carcinoma cells. Suppressing Rap1GAP induced profound alterations in cell adhesion. Rap1GAP-depleted cells exhibited defects in cell/cell adhesion that included an aberrant distribution of adherens junction proteins. Depletion of Rap1GAP enhanced adhesion and spreading on collagen. Silencing of Rap expression normalized spreading and restored E-cadherin, β-catenin, and p120-catenin to cell/cell contacts, indicating that unrestrained Rap activity underlies the alterations in cell adhesion. The defects in adherens junction protein distribution required integrin signaling as E-cadherin and p120-catenin were restored at cell/cell contacts when cells were plated on poly-l-lysine. Unexpectedly, Src activity was increased in Rap1GAP-depleted cells. Inhibition of Src impaired spreading and restored E-cadherin at cell/cell contacts. These findings provide the first evidence that Rap1GAP contributes to cell/cell adhesion and highlight a role for Rap1GAP in regulating cell/matrix and cell/cell adhesion. The frequent downregulation of Rap1GAP in epithelial tumors where alterations in cell/cell and cell/matrix adhesion are early steps in tumor dissemination supports a role for Rap1GAP depletion in tumor progression. PMID:20439492

  4. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells

    PubMed Central

    2014-01-01

    Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis. PMID:25012153

  5. Compaction with Automatic Jog Introduction,

    DTIC Science & Technology

    1985-10-01

    The compaction algorithm This section defines mathematically the problem of compaction with auto- matk jog introduction, and presents a practical...t(5) of potential cuts of S, and usng their mutability cmndi to constrain the positiokn of modulo in S. The proof that this technique gen - erates a

  6. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  7. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  8. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  9. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  10. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  11. Fragmentation and constitutive response of tailored mesostructured aluminum compacts

    NASA Astrophysics Data System (ADS)

    Marquez, Andrew M.; Braithwaite, Christopher H.; Weihs, Timothy P.; Krywopusk, Nicholas M.; Gibbins, David J.; Vecchio, Kenneth S.; Meyers, Marc A.

    2016-04-01

    The fragmentation and constitutive response of aluminum-based compacts were examined under dynamic conditions using mesostructured powder compacts in which the interfaces between the powders (sizes of 40, 100, and 400 μm) were tailored during the swaging fabrication process. Fragmentation was induced in ring samples of this material through explosive loading and was examined through high speed photography, laser interferometry, and soft capture of fragments. Fragment velocities of around 100 m/s were recorded. The fragment mass distributions obtained correlated in general with the interfacial strength of the compacts as well as with the powder size. Experimental results are compared with fragmentation theories to characterize the behavior of reactive powders based on the material's mesostructure by introducing the fracture toughness of the compacts. The mean fragment size is calculated using a modified form of Mott's theory and successfully compared with experimental results.

  12. Star Formation and Environment in Compact Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    Iglesias-Páramo, J.; Vílchez, J. M.

    H &alpha luminosities are presented in order to study the Star Formation Rates (SFRs) of a sample of galaxies in compact groups from Hickson's (1982) catalogue. Although the comparison of the SFRs of the disk galaxies in our sample with those of a sample of field galaxies yielded no difference between the average SFRs for disk galaxies in compact groups and in the field, environmental effects seem to influence the H &alpha luminosities of late and early-type galaxies in compact groups. No relationship was found between the total normalized H &alpha luminosities of the groups and some dynamical parameters, indicating that the dynamical state of the group does not influence the SFR of the group. The lack of dominant interaction induced starbursts in our sample is compatible with a scenario for compact groups of galaxies in which the dark matter of the group is arranged in a common halo, thereby preventing a fast collapse of the galaxies.

  13. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  14. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts

    PubMed Central

    Sancho, Ana; Vandersmissen, Ine; Craps, Sander; Luttun, Aernout; Groll, Jürgen

    2017-01-01

    Intercellular adhesion plays a major role in tissue development and homeostasis. Yet, technologies to measure mature cell-cell contacts are not available. We introduce a methodology based on fluidic probe force microscopy to assess cell-cell adhesion forces after formation of mature intercellular contacts in cell monolayers. With this method we quantify that L929 fibroblasts exhibit negligible cell-cell adhesion in monolayers whereas human endothelial cells from the umbilical artery (HUAECs) exert strong intercellular adhesion forces per cell. We use a new in vitro model based on the overexpression of Muscle Segment Homeobox 1 (MSX1) to induce Endothelial-to-Mesenchymal Transition (EndMT), a process involved in cardiovascular development and disease. We reveal how intercellular adhesion forces in monolayer decrease significantly at an early stage of EndMT and we show that cells undergo stiffening and flattening at this stage. This new biomechanical insight complements and expands the established standard biomolecular analyses. Our study thus introduces a novel tool for the assessment of mature intercellular adhesion forces in a physiological setting that will be of relevance to biological processes in developmental biology, tissue regeneration and diseases like cancer and fibrosis. PMID:28393890

  15. Compact, Reliable EEPROM Controller

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2010-01-01

    A compact, reliable controller for an electrically erasable, programmable read-only memory (EEPROM) has been developed specifically for a space-flight application. The design may be adaptable to other applications in which there are requirements for reliability in general and, in particular, for prevention of inadvertent writing of data in EEPROM cells. Inadvertent writes pose risks of loss of reliability in the original space-flight application and could pose such risks in other applications. Prior EEPROM controllers are large and complex and do not provide all reasonable protections (in many cases, few or no protections) against inadvertent writes. In contrast, the present controller provides several layers of protection against inadvertent writes. The controller also incorporates a write-time monitor, enabling determination of trends in the performance of an EEPROM through all phases of testing. The controller has been designed as an integral subsystem of a system that includes not only the controller and the controlled EEPROM aboard a spacecraft but also computers in a ground control station, relatively simple onboard support circuitry, and an onboard communication subsystem that utilizes the MIL-STD-1553B protocol. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD- 1553B is commonly used in defense and space applications.) The intent was to both maximize reliability while minimizing the size and complexity of onboard circuitry. In operation, control of the EEPROM is effected via the ground computers, the MIL-STD-1553B communication subsystem, and the onboard support circuitry, all of which, in combination, provide the multiple layers of protection against inadvertent writes. There is no controller software, unlike in many prior EEPROM controllers; software can be a major contributor to unreliability, particularly in fault

  16. Compact Star Time Scales

    NASA Astrophysics Data System (ADS)

    Swank, J. H.

    1996-12-01

    A major goal of RXTE is to investigate the fastest timing signals from compact stars, especially neutron stars and black holes. Signals have now been found from many (at least nine) low mass X-ray binaries containing neutron stars in the frequency range (100-1200 Hz) expected for the rotation period of the neutron star after being spun up by accretion over a long period. The kilohertz frequency domain for these sources is simpler than the domain of oscillations below about 50 Hz in that a few isolated features can dominate over white noise. However there are three main features to consider (not all present at the same time) and at least two are quasiperiodic with varying widths and frequencies. Several models are pitting their predictions against the behavior of these features, but the bursters, especially, appear to be revealing the neutron stars's spin. It is consistent with our beliefs that no black hole candidate has shown the same complex of signals, although at least one QPO frequency of a few hundred Hz could be expected in black hole candidates by analogy to the 67 Hz observed from GRS 1915+105. The observations also provide critical tests of the interpretions of the lower frequency (5-50 Hz) QPO and the variable noise seen in both low magnetic field neutron stars and black hole candidates. The kilohertz features have not been seen from the accreting pulsars with relatively high magnetic fields, but high luminosity pulsars (such as last year's transient, GRO J1744-28) reveal signatures of the dynamic interaction between the accretion flow, the magnetic field, and perhaps the neutron star surface in addition to their coherent pulsations.

  17. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  18. The origin of ultra-compact binaries

    NASA Astrophysics Data System (ADS)

    Hachisu, Izumi; Miyaji, Shigeki; Saio, Hideyuki

    The origin of ultra-compact binaries composed of a neutron star and a low-mass (about 0.06 solar mass) white dwarf is considered. Taking account of the systemic losses of mass and angular momentum, it was found that a serious difficulty exists in the scenarios which involve tidal captures of a normal star (a main sequence star or a red giant) by a neutron star. This difficulty can be avoided if a red giant star is captured by a massive white dwarf (M is approx. greater than 1.2 solar masses), which becomes a neutron star through the accretion induced collapse.

  19. Compact Shelving Ten Years Later.

    ERIC Educational Resources Information Center

    Morris, Leslie R.

    1998-01-01

    Discusses experiences at the Niagara University Library with compact shelving. Highlights include citations to other relevant articles; patron use; selection of vendor; reliability; possible problems; and installation considerations, such as floor-load requirements. (LRW)

  20. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  1. A Compact Beam Measurement Setup

    NASA Astrophysics Data System (ADS)

    Graf, Urs U.

    2016-08-01

    We present the design of a compact measurement device to determine the position of a beam in a radio optical setup. The unit is used to align the Terahertz optics of the GREAT instrument on the airborne astronomical observatory SOFIA.

  2. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  3. Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1

    PubMed Central

    McNerney, Gregory P.; Hübner, Wolfgang; Chen, Benjamin K.; Huser, Thomas

    2011-01-01

    Cell-cell interactions through direct contact are very important for cellular communication and coordination – especially for immune cells. The human immunodeficiency virus type I (HIV-1) induces immune cell interactions between CD4+ cells to shuttle between T cells via a virological synapse. A goal to understand the process of cell-cell transmission through virological synapses is to determine the cellular states that allow a chance encounter between cells to become a stable cell-cell adhesion. Here we demonstrate the use of optical tweezers to manipulate uninfected primary CD4+ T cells near HIV Gag-iGFP transfected Jurkat T cells to probe the determinants that induce stable adhesion. When combined with fast 4D confocal fluorescence microscopy, optical tweezers can be utilized to not only facilitate cell-cell contact, but to also allow one to simultaneously track the formation of a virological synapse, and ultimately to enable us to precisely determine all events preceding virus transfer. HIV-1 infected T cell (green) decorated with uninfected primary T cells (red) by manipulating the primary cells with an optical tweezers system PMID:20301121

  4. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  5. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, F. M.

    1985-10-01

    A novel polynomial-time algorithm for compacting a VLSI layout is presented. Compared to previous algorithms, the algorithm promises to produce higher quality output while reducing the need for designer intervention. The performance gain is realized by converting wires into constraints on the positions of the active devices. These constraints can be solved by graph-theoretic techniques to yield optimal positions for chip components. A single-layer router is then used to restore the wires to the layout, using as many as jogs as necessary. An automated compaction procedure is an effective tool for cutting production costs of a VLSI circuit at low cost to the designer, because the yield of fabricated chips is strongly dependent on the total circuit area. Sect 1 is an introduction. Sect 2 states the definitions and theoretical results that underlie the new compaction method. Sect 3 shows how the circuit layout is converted to a data structure appropriate for compaction, and Sect 4 details the body of the compaction algorithm. Sect 5 covers several improvements to the algorithm that should make it run considerably faster. Sect 6 comments on the algorithms of results, and a discussion of the practical value of the compaction algorithm.

  6. Programming microbial population dynamics by engineered cell-cell communication.

    PubMed

    Song, Hao; Payne, Stephen; Tan, Cheemeng; You, Lingchong

    2011-07-01

    A major aim of synthetic biology is to program novel cellular behavior using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behavior at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications.

  7. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    and still be able to maintain a stable operation under extreme radioactivity and the ability to separate fission fragments from {alpha}'s. In the following sections, the description is given for the design and performance of this new compact PPAC, for studying the neutron-induced reactions on actinides using DANCE at LANL.

  8. Transfer of extracellular vesicles during immune cell-cell interactions

    PubMed Central

    Gutiérrez-Vázquez, Cristina; Villarroya-Beltri, Carolina; Mittelbrunn, María; Sánchez-Madrid, Francisco

    2013-01-01

    SUMMARY The transfer of molecules between cells during cognate immune cell interactions has been reported, and recently a novel mechanism of transfer of proteins and genetic material such as small RNA between T cells and APCs has been described, involving exchange of extracellular vesicles (EVs) during the formation of the immunological synapse (IS). EVs – a term that encompasses exosomes and microvesicles – have been implicated in cell-cell communication during immune responses associated with tumors, pathogens, allergies and autoimmune diseases. This review focuses on EV transfer as a mechanism for the exchange of molecules during immune cell-cell interactions. PMID:23278745

  9. Cell-cell Interactions in Rheumatoid Arthritis Synovium

    PubMed Central

    Gizinski, Alison; Morgan, Rachel; Lundy, Steven K

    2010-01-01

    Synopsis Understanding the pathogenesis of joint inflammation and destruction in rheumatoid arthritis involves dissection of the cellular and molecular interactions that occur in synovial tissue. Development of effective targeted therapies has been based on progress in achieving such insights. Safer and more specific approaches to treatment could flow from discovery of cell-cell interaction pathways that are relatively specific for inflammation of the joint, and less important in defense against systemic infection. This chapter highlights selected cell-cell interactions in rheumatoid arthritis synovium that may be worthy of evaluation as future therapeutic targets. PMID:20510236

  10. Compact Intracloud Discharges

    SciTech Connect

    Smith, David A.

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  11. Compact intracloud discharges

    NASA Astrophysics Data System (ADS)

    Smith, David Adam

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackbeard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackbeard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackbeard observations. On two occasions, the ground-based systems and Blackbeard even recorded emissions that were produced by the same exact events. From the ground-based observations, it has been determined that TIPP events are produced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDs, an acronym for compact intracloud discharges. During the summer of 1996, ground- based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDs. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDs were recorded from three

  12. Natural examples of Valdivia compact spaces

    NASA Astrophysics Data System (ADS)

    Kalenda, Ondrej F. K.

    2008-04-01

    We collect examples of Valdivia compact spaces, their continuous images and associated classes of Banach spaces which appear naturally in various branches of mathematics. We focus on topological constructions generating Valdivia compact spaces, linearly ordered compact spaces, compact groups, L1 spaces, Banach lattices and noncommutative L1 spaces.

  13. On singular and sincerely singular compact patterns

    NASA Astrophysics Data System (ADS)

    Rosenau, Philip; Zilburg, Alon

    2016-08-01

    A third order dispersive equation ut +(um)x +1/b[ua∇2ub]x = 0 is used to explore two very different classes of compact patterns. In the first, the prevailing singularity at the edge induces traveling compactons, solitary waves with a compact support. In the second, the singularity induced at the perimeter of the initial excitation, entraps the dynamics within the domain's interior (nonetheless, certain very singular excitations may escape it). Here, overlapping compactons undergo interaction which may result in an interchange of their positions, or form other structures, all confined within their initial support. We conjecture, and affirm it empirically, that whenever the system admits more than one type of compactons, only the least singular compactons may be evolutionary. The entrapment due to singularities is also unfolded and confirmed numerically in a class of diffusive equations ut =uk∇2un with k > 1 and n > 0 with excitations entrapped within their initial support observed to converge toward a space-time separable structure. A similar effect is also found in a class of nonlinear Klein-Gordon Equations.

  14. Soil Compaction and Root Growth under Field Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While plow pans (a thin layer of compacted soil at the bottom of the normal tillage depth) in the Central and Southern US tend to be genetic in origin, they were believed to be wheel-induced in the upper Midwest by running the rear tractor wheel in the plow furrow. But it was also believed that annu...

  15. Viral RNAs Are Unusually Compact

    PubMed Central

    Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030

  16. Viral RNAs are unusually compact.

    PubMed

    Gopal, Ajaykumar; Egecioglu, Defne E; Yoffe, Aron M; Ben-Shaul, Avinoam; Rao, Ayala L N; Knobler, Charles M; Gelbart, William M

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly.

  17. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  18. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  19. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  20. Compressibility Characteristics of Compacted Snow

    DTIC Science & Technology

    1976-06-01

    Cornpressibility characteristics 7Jj i C’p of compacted snowifAG2� 004 t Cover: ~ ~ ~ ~ ~ ~ ~ ~ a - Thn***o htgrp fpoyrsaliekAmgife i ote rm...nwcmrse to7 asa 10 Phtgahb nhn Gow1 CRREL Report 76-21 Compressibility characteristics of compacted snow %i" Gunars Abele and Anthony J. Cow I ~ June 1976 A ...c , I fu. A AD,:j ly M3rs CORPS OF ENGINEERS, U.S. ARMY COLD REGIONS RESEARCH AND ENGINEERZ]NG LABORATORY HANOVER, NEW HAMPSHIRE Approved for public

  1. From the Cover: Design of artificial cell-cell communication using gene and metabolic networks

    NASA Astrophysics Data System (ADS)

    Bulter, Thomas; Lee, Sun-Gu; Waichun Wong, Wilson; Fung, Eileen; Connor, Michael R.; Liao, James C.

    2004-02-01

    Artificial transcriptional networks have been used to achieve novel, nonnative behavior in bacteria. Typically, these artificial circuits are isolated from cellular metabolism and are designed to function without intercellular communication. To attain concerted biological behavior in a population, synchronization through intercellular communication is highly desirable. Here we demonstrate the design and construction of a gene-metabolic circuit that uses a common metabolite to achieve tunable artificial cell-cell communication. This circuit uses a threshold concentration of acetate to induce gene expression by acetate kinase and part of the nitrogen-regulation two-component system. As one application of the cell-cell communication circuit we created an artificial quorum sensor. Engineering of carbon metabolism in Escherichia coli made acetate secretion proportional to cell density and independent of oxygen availability. In these cells the circuit induced gene expression in response to a threshold cell density. This threshold can be tuned effectively by controlling pH over the cell membrane, which determines the partition of acetate between medium and cells. Mutagenesis of the enhancer sequence of the glnAp2 promoter produced variants of the circuit with changed sensitivity demonstrating tunability of the circuit by engineering of its components. The behavior of the circuit shows remarkable predictability based on a mathematical design model.

  2. 76 FR 66326 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... address this session of the Council should notify the Federal Bureau Of Investigation (FBI) Compact..., FBI Compact Officer, Compact Council Office, Module D3, 1000 Custer Hollow Road, Clarksburg,...

  3. 75 FR 62568 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... of the Council should notify the Federal Bureau of Investigation (FBI) Compact Officer, Mr. Gary S..., FBI Compact Officer, Compact Council Office, Module D3, 1000 Custer Hollow Road, Clarksburg,...

  4. Mouse blastomeres acquire ability to divide asymmetrically before compaction

    PubMed Central

    Kłoś, Piotr; Maleszewski, Marek

    2017-01-01

    The mouse preimplantation embryo generates the precursors of trophectoderm (TE) and inner cell mass (ICM) during the 8- to 16-cell stage transition, when the apico-basal polarized blastomeres undergo divisions that give rise to cells with different fate. Asymmetric segregation of polar domain at 8–16 cell division generate two cell types, polar cells which adopt an outer position and develop in TE and apolar cells which are allocated to inner position as the precursors of ICM. It is still not know when the blastomeres of 8-cell stage start to be determined to undergo asymmetric division. Here, we analyze the frequency of symmetric and asymmetric divisions of blastomeres isolated from 8-cell stage embryo before and after compaction. Using p-Ezrin as the polarity marker we found that size of blastomeres in 2/16 pairs cannot be used as a criterion for distinguishing symmetric and asymmetric divisions. Our results showed that at early 8-cell stage, before any visible signs of cortical polarity, a subset of blastomeres had been already predestined to divide asymmetrically. We also showed that almost all of 8-cell stage blastomeres isolated from compacted embryo divide asymmetrically, whereas in intact embryos, the frequency of asymmetric divisions is significantly lower. Therefore we conclude that in intact embryo the frequency of symmetric and asymmetric division is regulated by cell-cell interactions. PMID:28362853

  5. Compact Photon Source Conceptual Design

    SciTech Connect

    Degtyarenko, Pavel V.; Wojtsekhowski, Bogdan B.

    2016-04-01

    We describe options for the production of an intense photon beam at the CEBAF Hall D Tagger facility, needed for creating a high-quality secondary K 0 L delivered to the Hall D detector. The conceptual design for the Compact Photon Source apparatus is presented.

  6. Upwind Compact Finite Difference Schemes

    NASA Astrophysics Data System (ADS)

    Christie, I.

    1985-07-01

    It was shown by Ciment, Leventhal, and Weinberg ( J. Comput. Phys.28 (1978), 135) that the standard compact finite difference scheme may break down in convection dominated problems. An upwinding of the method, which maintains the fourth order accuracy, is suggested and favorable numerical results are found for a number of test problems.

  7. Compact CFB: The next generation CFB boiler

    SciTech Connect

    Utt, J.

    1996-12-31

    The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.

  8. NET23/STING promotes chromatin compaction from the nuclear envelope.

    PubMed

    Malik, Poonam; Zuleger, Nikolaj; de las Heras, Jose I; Saiz-Ros, Natalia; Makarov, Alexandr A; Lazou, Vassiliki; Meinke, Peter; Waterfall, Martin; Kelly, David A; Schirmer, Eric C

    2014-01-01

    Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture.

  9. NET23/STING Promotes Chromatin Compaction from the Nuclear Envelope

    PubMed Central

    de las Heras, Jose I.; Saiz-Ros, Natalia; Makarov, Alexandr A.; Lazou, Vassiliki; Meinke, Peter; Waterfall, Martin; Kelly, David A.; Schirmer, Eric C.

    2014-01-01

    Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture. PMID:25386906

  10. DNA Compaction by Yeast Mitochondrial Protein ABF2p

    SciTech Connect

    Friddle, R W; Klare, J E; Noy, A; Corzett, M; Balhorn, R; Baskin, R J; Martin, S S; Baldwin, E P

    2003-05-09

    We used high resolution Atomic Force Microscopy (AFM) to image compaction of linear and circular DNA by the yeast mitochondrial protein ABF2p , which plays a major role in maintaining mitochondrial DNA. AFM images show that protein binding induces drastic bends in the DNA backbone for both linear and circular DNA. At high concentration of ABF2p DNA collapses into a tight globular structure. We quantified the compaction of linear DNA by measuring the end-to-end distance of the DNA molecule at increasing concentrations of ABF2p. We also derived a polymer statistical mechanics model that gives quantitative description of compaction observed in our experiments. This model shows that a number of sharp bends in the DNA backbone is often sufficient to cause DNA compaction. Comparison of our model with the experimental data showed excellent quantitative correlation and allowed us to determine binding characteristics for ABF2. Our studies indicate that ABF2 compacts DNA through a novel mechanism that involves bending of DNA backbone. We discuss the implications of such a mechanism for mitochondrial DNA maintenance.

  11. High Impact Technology Compact Combustion (HITCC) Compact Core Technologies

    DTIC Science & Technology

    2016-01-01

    correlation as the chemical “timescale.” The resulting correlation equation is Eq 22. Including laminar flame speed improved the R-squared value from...including: 1) ultra-compact combustors, 2) inter-turbine burner concepts, 3) bluff-body stabilized turbulent flames, 4) well-stirred reactors for... chemical kinetics, and 5) detonation-stabilized turbulent flames. Lean blowout data was collected on propane and jet fuel bluff-body stabilized flames

  12. Compact Photon Source for Polarized Target Experiments

    NASA Astrophysics Data System (ADS)

    Niculescu, Gabriel; Wojtsekhowski, Bogdan

    2017-01-01

    High energy photon beams are one of the tools of choice in nuclear and particle physics. However, most of the current techniques used for producing such beams have substantial drawbacks that limit their usefulness (low intensity, large beam size, mixed electron-photon beams). In this presentation we will outline the design of a Compact Photon Source (CPS) capable of providing narrow ( 1 mm) untagged photon beams of an intensity suitable for carrying out polarized target experiments. Compared with existing technology the CPS will provide a substantial (10-100) increase in the figure-of-merit. While optimized for a Wide Angle Compton Scattering experiment proposed at JLab, the source described here can be used in a variety of photon-induced physics experiments as well as for industrial applications.

  13. Invariant distributions on compact homogeneous spaces

    SciTech Connect

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  14. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells

    PubMed Central

    Ottone, Cristina; Krusche, Benjamin; Whitby, Ariadne; Clements, Melanie; Quadrato, Giorgia; Pitulescu, Mara E.; Adams, Ralf H.; Parrinello, Simona

    2014-01-01

    The vasculature is a prominent component of the subventricular zone neural stem cell niche. Although quiescent neural stem cells physically contact blood vessels at specialised endfeet, the significance of this interaction is not understood. In contrast, it is well established that vasculature-secreted soluble factors promote lineage progression of committed progenitors. Here we specifically investigated the role of cell-cell contact-dependent signalling in the vascular niche. Unexpectedly, we find that direct cell-cell interactions with endothelial cells enforces quiescence and promotes stem cell identity. Mechanistically, endothelial ephrinB2 and Jagged1 mediate these effects by suppressing cell-cycle entry downstream of mitogens and inducing stemness genes to jointly inhibit differentiation. In vivo, endothelial-specific ablation of either of the genes which encode these proteins, Efnb2 and Jag1 respectively, aberrantly activates quiescent stem cells, resulting in depletion. Thus, we identify the vasculature as a critical niche compartment for stem cell maintenance, furthering our understanding of how anchorage to the niche maintains stem cells within a pro-differentiative microenvironment. PMID:25283993

  15. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation.

    PubMed

    Tornavaca, Olga; Chia, Minghao; Dufton, Neil; Almagro, Lourdes Osuna; Conway, Daniel E; Randi, Anna M; Schwartz, Martin A; Matter, Karl; Balda, Maria S

    2015-03-16

    Intercellular junctions are crucial for mechanotransduction, but whether tight junctions contribute to the regulation of cell-cell tension and adherens junctions is unknown. Here, we demonstrate that the tight junction protein ZO-1 regulates tension acting on VE-cadherin-based adherens junctions, cell migration, and barrier formation of primary endothelial cells, as well as angiogenesis in vitro and in vivo. ZO-1 depletion led to tight junction disruption, redistribution of active myosin II from junctions to stress fibers, reduced tension on VE-cadherin and loss of junctional mechanotransducers such as vinculin and PAK2, and induced vinculin dissociation from the α-catenin-VE-cadherin complex. Claudin-5 depletion only mimicked ZO-1 effects on barrier formation, whereas the effects on mechanotransducers were rescued by inhibition of ROCK and phenocopied by JAM-A, JACOP, or p114RhoGEF down-regulation. ZO-1 was required for junctional recruitment of JACOP, which, in turn, recruited p114RhoGEF. ZO-1 is thus a central regulator of VE-cadherin-dependent endothelial junctions that orchestrates the spatial actomyosin organization, tuning cell-cell tension, migration, angiogenesis, and barrier formation.

  16. Dynamics of compact homogeneous universes

    SciTech Connect

    Tanimoto, M.; Koike, T.; Hosoya, A.

    1997-01-01

    A complete description of dynamics of compact locally homogeneous universes is given, which, in particular, includes explicit calculations of Teichm{umlt u}ller deformations and careful counting of dynamical degrees of freedom. We regard each of the universes as a simply connected four-dimensional space{endash}time with identifications by the action of a discrete subgroup of the isometry group. We then reduce the identifications defined by the space{endash}time isometries to ones in a homogeneous section, and find a condition that such spatial identifications must satisfy. This is essential for explicit construction of compact homogeneous universes. Some examples are demonstrated for Bianchi II, VI{sub 0}, VII{sub 0}, and I universal covers. {copyright} {ital 1997 American Institute of Physics.}

  17. Marginally compact hyperbranched polymer trees.

    PubMed

    Dolgushev, M; Wittmer, J P; Johner, A; Benzerara, O; Meyer, H; Baschnagel, J

    2017-03-29

    Assuming Gaussian chain statistics along the chain contour, we generate by means of a proper fractal generator hyperbranched polymer trees which are marginally compact. Static and dynamical properties, such as the radial intrachain pair density distribution ρpair(r) or the shear-stress relaxation modulus G(t), are investigated theoretically and by means of computer simulations. We emphasize that albeit the self-contact density diverges logarithmically with the total mass N, this effect becomes rapidly irrelevant with increasing spacer length S. In addition to this it is seen that the standard Rouse analysis must necessarily become inappropriate for compact objects for which the relaxation time τp of mode p must scale as τp ∼ (N/p)(5/3) rather than the usual square power law for linear chains.

  18. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  19. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  20. Compaction of Global Data Fields

    DTIC Science & Technology

    1990-05-01

    AD- A225 856 Naval Oceanographic and Technical Note 27 Atmospheric Research Laboratory May 1990 nC II FILF Copy Compaction of Global Data Fields A. H...IU 0 Ij P\\ I -’ as - -O - - YrŘ 5/ ii Ch Cc I 4" IIJ /1 1 att, 14 o c qu 0 in 64 low Ln u Ln U Ln LLJ KA E0 U-j u odd LD x 0 LL- cr - -1 Ap 0 Ln 00

  1. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  2. Compact optical microfiber phase modulator.

    PubMed

    Zhang, Xueliang; Belal, M; Chen, G Y; Song, Zhangqi; Brambilla, G; Newson, T P

    2012-02-01

    A compact optical microfiber phase modulator with MHz bandwidth is presented. A micrometer-diameter microfiber is wound on a millimeter-diameter piezoelectric ceramic rod with two electrodes. When a voltage is applied to the piezoelectric ceramic, the rod is strained, leading to a phase change along the microfiber; because of the small size, the optical microfiber phase modulator can have as high as a few MHz bandwidth response.

  3. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  4. COMB: Compact embedded object simulations

    NASA Astrophysics Data System (ADS)

    McEwen, Jason D.

    2016-06-01

    COMB supports the simulation on the sphere of compact objects embedded in a stochastic background process of specified power spectrum. Support is provided to add additional white noise and convolve with beam functions. Functionality to support functions defined on the sphere is provided by the S2 code (ascl:1606.008); HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001) are also required.

  5. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  6. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  7. Compaction of forest soil by logging machinery favours occurrence of prokaryotes.

    PubMed

    Schnurr-Pütz, Silvia; Bååth, Erland; Guggenberger, Georg; Drake, Harold L; Küsel, Kirsten

    2006-12-01

    Soil compaction caused by passage of logging machinery reduces the soil air capacity. Changed abiotic factors might induce a change in the soil microbial community and favour organisms capable of tolerating anoxic conditions. The goals of this study were to resolve differences between soil microbial communities obtained from wheel-tracks (i.e. compacted) and their adjacent undisturbed sites, and to evaluate differences in potential anaerobic microbial activities of these contrasting soils. Soil samples obtained from compacted soil had a greater bulk density and a higher pH than uncompacted soil. Analyses of phospholipid fatty acids demonstrated that the eukaryotic/prokaryotic ratio in compacted soils was lower than that of uncompacted soils, suggesting that fungi were not favoured by the in situ conditions produced by compaction. Indeed, most-probable-number (MPN) estimates of nitrous oxide-producing denitrifiers, acetate- and lactate-utilizing iron and sulfate reducers, and methanogens were higher in compacted than in uncompacted soils obtained from one site that had large differences in bulk density. Compacted soils from this site yielded higher iron-reducing, sulfate-reducing and methanogenic potentials than did uncompacted soils. MPN estimates of H2-utilizing acetogens in compacted and uncompacted soils were similar. These results indicate that compaction of forest soil alters the structure and function of the soil microbial community and favours occurrence of prokaryotes.

  8. Compact Stellarator Path to DEMO

    NASA Astrophysics Data System (ADS)

    Lyon, J. F.

    2007-11-01

    Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.

  9. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, F. M.

    1986-05-01

    This thesis presents an algorithm for one-dimensional compaction of VLSI layouts. It differs from older methods in treating wires not as objects to be moved, but as constraints on the positions of other circuit components. These constraints are determined for each wiring layer using the theory of planar routing. Assuming that the wiring layers can be treated independently, the algorithm minimizes the width of a layout, automatically inserting as many jogs in wires as necessary. It runs in time 0(n4) on input of size n. Several heuristics are suggested for improving the algorithm's practical performance. The compaction algorithm takes as input a data structure called a sketch, which explicitly distinguishes between flexible components (wires) and rigid components (modules). The algorithm first finds constraints on the positions of modules that ensure enough space is left for wires. Next, it solves the system of constraints by a standard graph-theoretic technique, obtaining a placement for the modules. It then relies on a single-layer router to restore the wires to each circuit layer. An efficient single-layer router is already known; it is able to minimize the length of every wire, though not the number of jogs. As given, the compaction algorithm applies only to a VLSI model that requires wires to run a rectilinear grid. This restriction is needed only because the theory of planar routing (and single-layer routers) has not yet been extended to other models.

  10. 76 FR 20044 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and... this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact). Thus far,...

  11. 75 FR 17161 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and... purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact)....

  12. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  13. Two Piece Compaction Die Design

    SciTech Connect

    Coffey, Ethan N

    2010-03-01

    Compaction dies used to create europium oxide and tantalum control plates were modeled using ANSYS 11.0. Two-piece designs were considered in order to make the dies easier to assemble than the five-piece dies that were previously used. The two areas of concern were the stresses at the interior corner of the die cavity and the distortion of the cavity wall due to the interference fit between the two pieces and the pressure exerted on the die during the compaction process. A successful die design would have stresses less than the yield stress of the material and a maximum wall distortion on the order of 0.0001 in. Design factors that were investigated include the inner corner radius, the value of the interference fit, the compaction force, the size of the cavity, and the outer radius and geometry of the outer ring. The results show that for the europium oxide die, a 0.01 in. diameter wire can be used to create the cavity, leading to a 0.0055 in. radius corner, if the radial interference fit is 0.003 in. For the tantalum die, the same wire can be used with a radial interference fit of 0.001 in. Also, for the europium oxide die with a 0.003 in. interference fit, it is possible to use a wire with a diameter of 0.006 in. for the wire burning process. Adding a 10% safety factor to the compaction force tends to lead to conservative estimates of the stresses but not for the wall distortion. However, when the 10% safety factor is removed, the wall distortion is not affected enough to discard the design. Finally, regarding the europium oxide die, when the cavity walls are increased by 0.002 in. per side or the outer ring is made to the same geometry as the tantalum die, all the stresses and wall distortions are within the desired range. Thus, the recommendation is to use a 0.006 in. diameter wire and a 0.003 in. interference fit for the europium oxide die and a 0.01 in. diameter wire and a 0.001 in. interference fit for the tantalum die. The dies can also be made to have the

  14. Compact Radiometers Expand Climate Knowledge

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  15. Exceptionally bright, compact starburst nucleus

    SciTech Connect

    Margon, B.; Anderson, S.F.; Mateo, M.; Fich, M.; Massey, P.

    1988-11-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies. 30 references.

  16. Shock compaction of molybdenum powder

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  17. Compact inline optical electron polarimeter.

    PubMed

    Pirbhai, M; Ryan, D M; Richards, G; Gay, T J

    2013-05-01

    A compact optical electron polarimeter using a helium target is described. It offers a maximum fluorescence detection efficiency of ~20 Hz/nA, which is an order of magnitude higher than that of earlier designs. With an argon target, this device is expected to have a polarimetric figure-of-merit of 270 Hz/nA. By relying on a magnetic field to guide a longitudinally spin-polarized electron beam, the present instrument employs fewer electrodes. It also uses a commercially available integrated photon counting module. These features allow it to occupy a smaller volume and make it easier to operate.

  18. Comparison of Obturation Quality in Modified Continuous Wave Compaction, Continuous Wave Compaction, Lateral Compaction and Warm Vertical Compaction Techniques

    PubMed Central

    Aminsobhani, Mohsen; Ghorbanzadeh, Abdollah; Sharifian, Mohammad Reza; Namjou, Sara; Kharazifard, Mohamad Javad

    2015-01-01

    Objectives: The aim of this study was to introduce modified continuous wave compaction (MCWC) technique and compare its obturation quality with that of lateral compaction (LC), warm vertical compaction (WVC) and continuous wave compaction techniques (CWC). The obturation time was also compared among the four techniques. Materials and Methods: Sixty-four single-rooted teeth with 0–5° root canal curve and 64 artificially created root canals with 15° curves in acrylic blocks were evaluated. The teeth and acrylic specimens were each divided into four subgroups of 16 for testing the obturation quality of four techniques namely LC, WVC, CWC and MCWC. Canals were prepared using the Mtwo rotary system and filled with respect to their group allocation. Obturation time was recorded. On digital radiographs, the ratio of area of voids to the total area of filled canals was calculated using the Image J software. Adaptation of the filling materials to the canal walls was assessed at three cross-sections under a stereomicroscope (X30). Data were statistically analyzed using ANOVA, Tukey’s post hoc HSD test, the Kruskal Wallis test and t-test. Results: No significant difference existed in adaptation of filling materials to canal walls among the four subgroups in teeth samples (P ≥ 0.139); but, in artificially created canals in acrylic blocks, the frequency of areas not adapted to the canal walls was significantly higher in LC technique compared to MCWC (P ≤ 0.02). The void areas were significantly more in the LC technique than in other techniques in teeth (P < 0.001). The longest obturation time belonged to WVC technique followed by LC, CW and MCWC techniques (P<0.05). The difference between the artificially created canals in blocks and teeth regarding the obturation time was not significant (P = 0.41). Conclusion: Within the limitations of this in vitro study, MCWC technique resulted in better adaptation of gutta-percha to canal walls than LC at all cross-sections with

  19. Differential compaction as a control on depositional architectures across the Maiella carbonate platform margin (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Rusciadelli, Giovanni; Di Simone, Salvatore

    2007-03-01

    The role of differential compaction as a control in the creation of accommodation and on compaction-modified depositional features and stratal geometries across the Maiella platform margin, has been investigated through a combined analysis of seismic scale outcrops, porosity evaluation and modeling. Geologic evolution and large exposures make the platform margin of the Maiella an ideal place to investigate the effects of differential compaction. A high-relief cemented carbonate platform, a deep basin filled with highly compactable deposits, and a prograding grain-rich succession sealing morphologic differences across the platform margin, represent suitable features for promoting differential compaction. Stratal relationships across the platform margin exhibit evidence of differential compaction-induced effects, such as basinward divergence and thickening of strata, updip pinch-out of wedge-shaped stratal packages, and an anticline hinge. Porosity analysis and modeling indicate that, through progressive loading, mechanical and chemical processes act in concert to destroy most of the depositional porosity. Mechanical compaction appears to have played the greatest part in the total budget of compaction. However, chemical compaction seems to have played a prominent role in the formation of geometrically consistent depositional profiles during progradation. Due to differential compaction across the platform margin a compaction hinge formed concomitantly with the beginning of progradation, producing a basin-facing monocline characterized by the progressive steepening of basinward stratal dips. The resulting compaction-induced stratal deformation, together with sea level changes, controls the distribution, and depositional timing of wedge-shaped stratal packages during late Cretaceous and Paleocene and the distribution of coral-algal reef buildups, during the late Eocene-early Oligocene. The development of the compaction hinge usually follows the progressive increase of

  20. A compact THz imaging system

    NASA Astrophysics Data System (ADS)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  1. Cold compaction of water ice

    USGS Publications Warehouse

    Durham, W.B.; McKinnon, W.B.; Stern, L.A.

    2005-01-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.

  2. Incompletely compacted equilibrated ordinary chondrites

    SciTech Connect

    Sasso, M.R.; Macke, R.J.; Boesenberg, J.S.; Britt, D.T.; Rovers, M.L.; Ebel, D.S.; Friedrich, J.M.

    2010-01-22

    We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high-resolution synchrotron X-ray microtomography ({mu}CT) and helium pycnometry. We found total porosities ranging from {approx}10 to 20% within these chondrites, and with {mu}CT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1-S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not 'fluffed' on their parent body by impact-related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.

  3. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  4. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, E. M.

    1986-11-01

    This thesis presents an algorithm for one-dimensional compaction of VLSI layouts. It differs from older methods in treating wires not as objects to be moved, but as constraints on the positions of other circuit components. These constraints are determined for each wiring layer using the theory of planar routing. Assuming that the wiring layers can be treated independently, the algorithm minimizes the width of a layout, automatically inserting as many jogs in wires as necessary. It runs in time O(n4) on input of size n. Several heuristics are suggested for improving the algorithm's practical performance. The compaction algorithm takes as input a data structure called a sketch, which explicitly distinguished between flexible components (wires) and rigid components (modules). The algorithms first finds constraints on the positions of modules that ensure enough space is left for wires. Next, it solves the system of constraints by a standard graph-theoretic technique, obtaining a placement for the modules. It then relies on a single-layer router to restore the wires to each circuit layer.

  5. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  6. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1997-01-01

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

  7. Hydrostatic compaction of Microtherm HT.

    SciTech Connect

    Broome, Scott Thomas; Bauer, Stephen J.

    2010-09-01

    Two samples of jacketed Microtherm{reg_sign}HT were hydrostatically pressurized to maximum pressures of 29,000 psi to evaluate both pressure-volume response and change in bulk modulus as a function of density. During testing, each of the two samples exhibited large irreversible compactive volumetric strains with only small increases in pressure; however at volumetric strains of approximately 50%, the Microtherm{reg_sign}HT stiffened noticeably at ever increasing rates. At the maximum pressure of 29,000 psi, the volumetric strains for both samples were approximately 70%. Bulk modulus, as determined from hydrostatic unload/reload loops, increased by more than two-orders of magnitude (from about 4500 psi to over 500,000 psi) from an initial material density of {approx}0.3 g/cc to a final density of {approx}1.1 g/cc. An empirical fit to the density vs. bulk modulus data is K = 492769{rho}{sup 4.6548}, where K is the bulk modulus in psi, and {rho} is the material density in g/cm{sup 3}. The porosity decreased from 88% to {approx}20% indicating that much higher pressures would be required to compact the material fully.

  8. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  9. Dense and Homogeneous Compaction of Fine Ceramic and Metallic Powders: High-Speed Centrifugal Compaction Process

    SciTech Connect

    Suzuki, Hiroyuki Y.

    2008-02-15

    High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.

  10. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  11. Inhibition of HIV-1 Env-Mediated Cell-Cell Fusion by Lectins, Peptide T-20, and Neutralizing Antibodies

    PubMed Central

    Yee, Michael; Konopka, Krystyna; Balzarini, Jan; Düzgüneş, Nejat

    2011-01-01

    Background: Broadly cross-reactive, neutralizing human monoclonal antibodies, including 2F5, 2G12, 4E10 and IgG1 b12, can inhibit HIV-1 infection in vitro at very low concentrations. We examined the ability of these antibodies to inhibit cell-cell fusion between Clone69TRevEnv cells induced to express the viral envelope proteins, gp120/gp41 (Env), and highly CD4-positive SupT1 cells. The cells were loaded with green and red-orange cytoplasmic fluorophores, and fusion was monitored by fluorescence microscopy. Results: Cell-cell fusion was inhibited completely by the carbohydrate binding proteins (CBPs), Hippeastrum hybrid (Amaryllis) agglutinin (HHA), and Galanthus nivalis (Snowdrop) agglutinin (GNA), and by the peptide, T-20, at relatively low concentrations. Anti-gp120 and anti-gp41 antibodies, at concentrations much higher than those required for neutralization, were not particularly effective in inhibiting fusion. Monoclonal antibodies b12, m14 IgG and 2G12 had moderate inhibitory activity; the IC50 of 2G12 was about 80 µg/ml. Antibodies 4E10 and 2F5 had no inhibitory activity at the concentrations tested. Conclusions: These observations raise concerns about the ability of neutralizing antibodies to inhibit the spread of viral genetic material from infected cells to uninfected cells via cell-cell fusion. The interaction of gp120/gp41 with cell membrane CD4 may be different in cell-cell and virus-cell membrane fusion reactions, and may explain the differential effects of antibodies in these two systems. The fluorescence assay described here may be useful in high throughput screening of potential HIV fusion inhibitors. PMID:21660189

  12. Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module

    SciTech Connect

    2010-10-01

    BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

  13. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  14. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  15. Rapid Sintering of Nano-Diamond Compacts

    SciTech Connect

    Osipov, A.; Nauyoks, S; Zerda, T; Zaporozhets, O

    2009-01-01

    Diamond compacts were sintered from nano-size diamond crystals at high pressure, 8 GPa, and temperature above 1500 degrees C for very short times ranging from 5 to 11 s. Structure and mechanical properties of the compacts have been characterized. Although we have not completely avoided graphitization of diamonds, the amount of graphite produced was low, less than 2%, and despite relatively high porosity, the compacts were characterized by high hardness, bulk and Young moduli.

  16. Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery.

    PubMed

    Heijink, I H; Brandenburg, S M; Postma, D S; van Oosterhout, A J M

    2012-02-01

    Cigarette smoking, the major cause of chronic obstructive pulmonary disease (COPD), induces aberrant airway epithelial structure and function. The underlying mechanisms are unresolved so far. We studied effects of cigarette smoke extract (CSE) on epithelial barrier function and wound regeneration in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBECs) from COPD patients, nonsmokers and healthy smokers. We demonstrate that CSE rapidly and transiently impairs 16HBE barrier function, largely due to disruption of cell-cell contacts. CSE induced a similar, but stronger and more sustained, defect in PBECs. Application of the specific epidermal growth factor receptor (EGFR) inhibitor AG1478 showed that EGFR activation contributes to the CSE-induced defects in both 16HBE cells and PBECs. Furthermore, our data indicate that the endogenous protease calpain mediates these defects through tight junction protein degradation. CSE also delayed the reconstitution of 16HBE intercellular contacts during wound healing and attenuated PBEC barrier function upon wound regeneration. These findings were comparable between PBECs from smokers, healthy smokers and COPD patients. In conclusion, we demonstrate for the first time that CSE reduces epithelial integrity, probably by EGFR and calpain-dependent disruption of intercellular contacts. This may increase susceptibility to environmental insults, e.g. inhaled pathogens. Thus, EGFR may be a promising target for therapeutic strategies to improve mucosal barrier function in cigarette smoking-related disease.

  17. Compact high-voltage structures

    SciTech Connect

    Wilson, M. J.; Goerz, D.A.

    1997-06-09

    A basic understanding of the critical issues limiting the compactness of high-voltage systems is required for the next generation of impulse generators. In the process of optimizing the design of a highly reliable solid-dielectric over-voltage switch, an understanding of the limiting factors found are shown. Results of a l3O kV operating switch, having a modest field enhancement of 16% above the average field stress in the switching region, are reported. The resulting high reliability is obtained by reducing the standard deviation of the switch to 6.8%. The total height of the switch is 1 mm. The resulting operating parameters are obtained by controlling field distribution across the entire switch package and field shaping the desired point of switch closure. The disclosed field management technique provides an approach to improve other highly stressed components and structures.

  18. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  19. Saloplastics: processing compact polyelectrolyte complexes.

    PubMed

    Schaaf, Pierre; Schlenoff, Joseph B

    2015-04-17

    Polyelectrolyte complexes (PECs) are prepared by mixing solutions of oppositely charged polyelectrolytes. These diffuse, amorphous precipitates may be compacted into dense materials, CoPECs, by ultracentrifugation (ucPECs) or extrusion (exPECs). The presence of salt water is essential in plasticizing PECs to allow them to be reformed and fused. When hydrated, CoPECs are versatile, rugged, biocompatible, elastic materials with applications including bioinspired materials, supports for enzymes and (nano)composites. In this review, various methods for making CoPECs are described, as well as fundamental responses of CoPEC mechanical properties to salt concentration. Possible applications as synthetic cartilage, enzymatically active biocomposites, self-healing materials, and magnetic nanocomposites are presented.

  20. Compact anti-radon facility

    SciTech Connect

    Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I.

    2015-08-17

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  1. Experimental studies of compact toroids

    SciTech Connect

    Not Available

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 {mu}s pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity.

  2. Gravitational waves from compact objects

    NASA Astrophysics Data System (ADS)

    de Freitas Pacheco, José Antonio

    2010-11-01

    Large ground-based laser beam interferometers are presently in operation both in the USA (LIGO) and in Europe (VIRGO) and potential sources that might be detected by these instruments are revisited. The present generation of detectors does not have a sensitivity high enough to probe a significant volume of the universe and, consequently, predicted event rates are very low. The planned advanced generation of interferometers will probably be able to detect, for the first time, a gravitational signal. Advanced LIGO and EGO instruments are expected to detect few (some): binary coalescences consisting of either two neutron stars, two black holes or a neutron star and a black hole. In space, the sensitivity of the planned LISA spacecraft constellation will allow the detection of the gravitational signals, even within a “pessimistic" range of possible signals, produced during the capture of compact objects by supermassive black holes, at a rate of a few tens per year.

  3. Physics of Compact Advanced Stellarators

    SciTech Connect

    M.C. Zarnstorff; L.A. Berry; A. Brooks; E. Fredrickson; G.-Y. Fu; S. Hirshman; S. Hudson; L.-P. Ku; E. Lazarus; D. Mikkelsen; D. Monticello; G.H. Neilson; N. Pomphrey; A. Reiman; D. Spong; D. Strickler; A. Boozer; W.A. Cooper; R. Goldston; R. Hatcher; M. Isaev; C. Kessel; J. Lewandowski; J. Lyon; P. Merkel; H. Mynick; B.E. Nelson; C. Nuehrenberg; M. Redi; W. Reiersen; P. Rutherford; R. Sanchez; J. Schmidt; R.B. White

    2001-08-14

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.

  4. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  5. Cell-Cell Communication in Yeast Using Auxin Biosynthesis and Auxin Responsive CRISPR Transcription Factors.

    PubMed

    Khakhar, Arjun; Bolten, Nicholas J; Nemhauser, Jennifer; Klavins, Eric

    2016-04-15

    An engineering framework for synthetic multicellular systems requires a programmable means of cell-cell communication. Such a communication system would enable complex behaviors, such as pattern formation, division of labor in synthetic microbial communities, and improved modularity in synthetic circuits. However, it remains challenging to build synthetic cellular communication systems in eukaryotes due to a lack of molecular modules that are orthogonal to the host machinery, easy to reconfigure, and scalable. Here, we present a novel cell-to-cell communication system in Saccharomyces cerevisiae (yeast) based on CRISPR transcription factors and the plant hormone auxin that exhibits several of these features. Specifically, we engineered a sender strain of yeast that converts indole-3-acetamide (IAM) into auxin via the enzyme iaaH from Agrobacterium tumefaciens. To sense auxin and regulate transcription in a receiver strain, we engineered a reconfigurable library of auxin-degradable CRISPR transcription factors (ADCTFs). Auxin-induced degradation is achieved through fusion of an auxin-sensitive degron (from IAA corepressors) to the CRISPR TF and coexpression with an auxin F-box protein. Mirroring the tunability of auxin perception in plants, our family of ADCTFs exhibits a broad range of auxin sensitivities. We characterized the kinetics and steady-state behavior of the sender and receiver independently as well as in cocultures where both cell types were exposed to IAM. In the presence of IAM, auxin is produced by the sender cell and triggers deactivation of reporter expression in the receiver cell. The result is an orthogonal, rewireable, tunable, and, arguably, scalable cell-cell communication system for yeast and other eukaryotic cells.

  6. Cell-Cell Interactions during pollen tube guidance

    SciTech Connect

    Daphne Preuss

    2009-03-31

    The long-term goal of this research is to identify the signaling molecules that mediate plant cell-cell interactions during pollination. The immediate goals of this project are to perform genetic and molecular analysis of pollen tube guidance. Specifically, we proposed to: 1. Characterize the pistil components that direct pollen tube navigation using the Arabidopsis thaliana in vitro pollen tube guidance system 2. Identify pistil signals that direct pollen tube guidance by a) using microarrays to profile gene expression in developing pistils, and b) employing proteomics and metabolomics to isolate pollen tube guidance signals. 3. Explore the genetic basis of natural variation in guidance signals, comparing the in vitro interactions between pollen and pistils from A. thaliana and its close relatives.

  7. Cell-cell interactions stabilize emerging collective migration modes

    NASA Astrophysics Data System (ADS)

    Parker, Joshua; Guven, Can; Wang, Chenlu; Ott, Ed; Losert, Wolfgang

    2014-03-01

    We propose a coarse-grained mechanistic model for simulating the dynamics of the biological model organism Dictyostelium discoideum, incorporating gradient sensing, random motility via actin protrusions, persistent random motion and signal relay. We demonstrate that our simple cell model does result in the macroscopic group migration patterns seen in no-flow gradient chambers, namely a transition from individual motion to multi-cell ``streaming'' to aggregation as the external signal is decreased. We also find that cell-cell adhesion further stabilizes the contact network independent of chemical signaling, suggesting no indirect feedback between mechanical forces and gradient sensing. We discuss further modifications to the model and as well as further applications to quantifying dynamics using spatio-temporal contact networks. Co-first author

  8. 77 FR 20051 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... notify the Federal Bureau of Investigation (FBI) Compact Officer, Mr. Gary S. Barron at (304) 625-2803... CONTACT: Inquiries may be addressed to Mr. Gary S. Barron, FBI Compact Officer, Module D3, 1000 Custer...: March 27, 2012. Gary S. Barron, FBI Compact Officer, Criminal Justice Information Services...

  9. Resistance and resilience of the forest soil microbiome to logging-associated compaction

    PubMed Central

    Hartmann, Martin; Niklaus, Pascal A; Zimmermann, Stephan; Schmutz, Stefan; Kremer, Johann; Abarenkov, Kessy; Lüscher, Peter; Widmer, Franco; Frey, Beat

    2014-01-01

    Soil compaction is a major disturbance associated with logging, but we lack a fundamental understanding of how this affects the soil microbiome. We assessed the structural resistance and resilience of the microbiome using a high-throughput pyrosequencing approach in differently compacted soils at two forest sites and correlated these findings with changes in soil physical properties and functions. Alterations in soil porosity after compaction strongly limited the air and water conductivity. Compaction significantly reduced abundance, increased diversity, and persistently altered the structure of the microbiota. Fungi were less resistant and resilient than bacteria; clayey soils were less resistant and resilient than sandy soils. The strongest effects were observed in soils with unfavorable moisture conditions, where air and water conductivities dropped well below 10% of their initial value. Maximum impact was observed around 6–12 months after compaction, and microbial communities showed resilience in lightly but not in severely compacted soils 4 years post disturbance. Bacteria capable of anaerobic respiration, including sulfate, sulfur, and metal reducers of the Proteobacteria and Firmicutes, were significantly associated with compacted soils. Compaction detrimentally affected ectomycorrhizal species, whereas saprobic and parasitic fungi proportionally increased in compacted soils. Structural shifts in the microbiota were accompanied by significant changes in soil processes, resulting in reduced carbon dioxide, and increased methane and nitrous oxide emissions from compacted soils. This study demonstrates that physical soil disturbance during logging induces profound and long-lasting changes in the soil microbiome and associated soil functions, raising awareness regarding sustainable management of economically driven logging operations. PMID:24030594

  10. Evaluation of factors affecting diffusion in compacted bentonite

    SciTech Connect

    Lehikoinen, J.; Carlsson, T.; Muurinen, A.; Olin, M.; Salonen, P.

    1996-08-01

    The information available from the open literature and studies on exclusion, sorption and diffusion mechanisms of ionic and neutral species in bentonite has been compiled and re-examined in relation to the microstructure of bentonite. The emphasis is placed on a more thorough understanding of the diffusion processes taking place in compacted bentonite. Despite the scarcity of experiments performed with neutral diffusants, these imply that virtually all the pores in compacted bentonite are accessible to neutral species. Anion exclusion, induced by the overlap of electrical double layers, may render the accessible porosity for anions considerably less than the porosity obtained from the water content of the clay. On the basis of the compiled data, it is highly probable that surface diffusion plays a significant role in the transport of cations in bentonite clays. Moreover, easily soluble compounds in bentonite can affect the ionic strength of porewater and, consequently, exclusion, equilibrium between cations, and surface diffusion.

  11. Finding Extremely Compact Sources Using the ASKAP VAST Survey

    NASA Technical Reports Server (NTRS)

    Bignall, Hayley E.; Jauncey, David L.; Lovell, James E J.; Ojha, Roopesh; Reynolds, Cormac

    2010-01-01

    VLBI observations of intraday variable (IDV) quasars found in the MASIV (Micro-Arcsecond Scintillation-Induced Variability) 5 GHz VLA Survey of 500 flat-spectrum sources in the northern sky have shown that these sources are extremely compact, often unresolved, on milliarcsecond scales, and more core-dominated than their non-IDV counterparts. VAST: an ASKAP Survey for Variables and Slow Transients, proposes to observe 10,000 square degrees of southern sky daily for 2 years in the VAST-Wide survey component. This is expected to reveal of order 30,000 compact sources brighter than 10 mJy showing refractive interstellar scintillation (the cause of centimeter-wavelength IDV) at the survey frequency of about 1.4 GHz. Many of these sources may be suitable astrometric calibrators for VLBI at higher frequencies.

  12. Cell-ECM traction force modulates endogenous tension at cell-cell contacts.

    PubMed

    Maruthamuthu, Venkat; Sabass, Benedikt; Schwarz, Ulrich S; Gardel, Margaret L

    2011-03-22

    Cells in tissues are mechanically coupled both to the ECM and neighboring cells, but the coordination and interdependency of forces sustained at cell-ECM and cell-cell adhesions are unknown. In this paper, we demonstrate that the endogenous force sustained at the cell-cell contact between a pair of epithelial cells is approximately 100 nN, directed perpendicular to the cell-cell interface and concentrated at the contact edges. This force is stably maintained over time despite significant fluctuations in cell-cell contact length and cell morphology. A direct relationship between the total cellular traction force on the ECM and the endogenous cell-cell force exists, indicating that the cell-cell tension is a constant fraction of the cell-ECM traction. Thus, modulation of ECM properties that impact cell-ECM traction alters cell-cell tension. Finally, we show in a minimal model of a tissue that all cells experience similar forces from the surrounding microenvironment, despite differences in the extent of cell-ECM and cell-cell adhesion. This interdependence of cell-cell and cell-ECM forces has significant implications for the maintenance of the mechanical integrity of tissues, mechanotransduction, and tumor mechanobiology.

  13. Ultrasonic compaction of granular geological materials.

    PubMed

    Feeney, Andrew; Sikaneta, Sakalima; Harkness, Patrick; Lucas, Margaret

    2017-04-01

    It has been shown that the compaction of granular materials for applications such as pharmaceutical tableting and plastic moulding can be enhanced by ultrasonic vibration of the compaction die. Ultrasonic vibrations can reduce the compaction pressure and increase particle fusion, leading to higher strength products. In this paper, the potential benefits of ultrasonics in the compaction of geological granular materials in downhole applications are explored, to gain insight into the effects of ultrasonic vibrations on compaction of different materials commonly encountered in sub-sea drilling. Ultrasonic vibrations are applied, using a resonant 20kHz compactor, to the compaction of loose sand and drill waste cuttings derived from oolitic limestone, clean quartz sandstone, and slate-phyllite. For each material, a higher strain for a given compaction pressure was achieved, with higher sample density compared to that in the case of an absence of ultrasonics. The relationships between the operational parameters of ultrasonic vibration amplitude and true strain rate are explored and shown to be dependent on the physical characteristics of the compacting materials.

  14. Compact Process Development at Babcock & Wilcox

    SciTech Connect

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  15. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Consumer Standards for Celery Stalks Definitions § 51.608 Fairly compact. Fairly compact means that...

  16. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are...

  17. Compact noninvasive electron bunch-length monitor

    SciTech Connect

    Roberts, Brock; Poelker, Matt; Mammei, Russell R.; McCarter, James L.

    2012-12-01

    A compact RF cavity was constructed that simultaneously resonates at many harmonic modes when excited by a bunched electron beam passing through its bore. The excitation of these modes provides a Fourier description of the temporal characteristics of the bunchtrain. The cavity was used to non-invasively characterize electron bunches produced from thin and thick GaAs photocathodes inside a DC high voltage photogun illuminated with 37 ps (FWHM) laser pulses at repetition rates near 500 and 1500 MHz, at average beam current from 5 uA to 500 uA and at beam energy from 75 keV to 195 keV. The cavity bunchlength monitor could detect electron bunches as short as 57 ps (FWHM) when connected directly to a sampling oscilloscope, and could clearly distinguish bunches with varying degrees of space-charge induced growth and with different tail signatures. Efforts are underway to detect shorter bunches, by designing cavities with increased bandwidth and improved coupling uniformity. This demonstration lends credibility to the idea that these cavities could also be used for other applications, including bunching and shaping, when driven with external RF.

  18. Compact Nonlinear Yagi-Uda Nanoantennas.

    PubMed

    Xiong, Xiaoyan Y Z; Jiang, Li Jun; Sha, Wei E I; Lo, Yat Hei; Chew, Weng Cho

    2016-01-07

    Nanoantennas have demonstrated unprecedented capabilities for manipulating the intensity and direction of light emission over a broad frequency range. The directional beam steering offered by nanoantennas has important applications in areas including microscopy, spectroscopy, quantum computing, and on-chip optical communication. Although both the physical principles and experimental realizations of directional linear nanoantennas has become increasingly mature, angular control of nonlinear radiation using nanoantennas has not been explored yet. Here we propose a novel concept of nonlinear Yagi-Uda nanoantenna to direct second harmonic radiation from a metallic nanosphere. By carefully tuning the spacing and dimensions of two lossless dielectric elements, which function respectively as a compact director and reflector, the second harmonic radiation is deflected 90 degrees with reference to the incident light (pump) direction. This abnormal light-bending phenomenon is due to the constructive and destructive interference between the second harmonic radiation governed by a special selection rule and the induced electric dipolar and magnetic quadrupolar radiation from the two dielectric antenna elements. Simultaneous spectral and spatial isolation of scattered second harmonic waves from incident fundamental waves pave a new way towards nonlinear signal detection and sensing.

  19. Compact Nonlinear Yagi-Uda Nanoantennas

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoyan Y. Z.; Jiang, Li Jun; Sha, Wei E. I.; Lo, Yat Hei; Chew, Weng Cho

    2016-01-01

    Nanoantennas have demonstrated unprecedented capabilities for manipulating the intensity and direction of light emission over a broad frequency range. The directional beam steering offered by nanoantennas has important applications in areas including microscopy, spectroscopy, quantum computing, and on-chip optical communication. Although both the physical principles and experimental realizations of directional linear nanoantennas has become increasingly mature, angular control of nonlinear radiation using nanoantennas has not been explored yet. Here we propose a novel concept of nonlinear Yagi-Uda nanoantenna to direct second harmonic radiation from a metallic nanosphere. By carefully tuning the spacing and dimensions of two lossless dielectric elements, which function respectively as a compact director and reflector, the second harmonic radiation is deflected 90 degrees with reference to the incident light (pump) direction. This abnormal light-bending phenomenon is due to the constructive and destructive interference between the second harmonic radiation governed by a special selection rule and the induced electric dipolar and magnetic quadrupolar radiation from the two dielectric antenna elements. Simultaneous spectral and spatial isolation of scattered second harmonic waves from incident fundamental waves pave a new way towards nonlinear signal detection and sensing.

  20. Modeling of oil shale compaction during retorting

    SciTech Connect

    Schreiber, J.D.

    1986-06-01

    A model of oil shale compacting during retorting has been developed and incorporated into a one-dimensional retorting model. The model calculates the vertical stress distribution in a column of oil shale rubble and the degree of compaction that these stresses cause. A correlation was developed that relates shale grade, initial void volume, and vertical stress to the final compaction of the shale bed. The model then determines the gas pressure drip through the retort and the effects of the varying pressure on the retorting process. The model has been tested by simulating the Rio Blanco Oil Shale Company's Tract C-a Retort 1. The model calculates 8.1% compaction, whereas 12 to 16 compaction was measured in the retort; causes of the discrepancy between calculated and measured values are discussed. 14 refs., 10 figs., 2 tabs.

  1. Flow Control in a Compact Inlet

    NASA Astrophysics Data System (ADS)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  2. p38 Mitogen-activated protein kinase and c-Jun NH2-terminal protein kinase regulate the accumulation of a tight junction protein, ZO-1, in cell-cell contacts in HaCaT cells.

    PubMed

    Minakami, Masahiko; Kitagawa, Norio; Iida, Hiroshi; Anan, Hisashi; Inai, Tetsuichiro

    2015-02-01

    To investigate the involvement of stress-activated protein kinases, JNK and p38 MAPK, in the assembly of tight junctions in keratinocytes, we treated HaCaT cells with various combinations of SP600125 (an inhibitor of JNK), SB202190 (an inhibitor of p38 MAPK) and anisomycin (an activator of both JNK and p38 MAPK) and examined the localization of ZO-1, an undercoat constitutive protein of the tight junction. Short-term (8h) incubation with SP600125, SB202190 or anisomycin induced the accumulation of ZO-1 in the cell-cell contacts, with reduced ZO-1 staining in the cytoplasm, while only long-term (24h) incubation with SP600125 induced the accumulation of ZO-1. SP600125, SB202190 or SP600125 plus SB202190 treatment induced thin linear staining for ZO-1 in the cell-cell contacts. Anisomycin treatment induced thick and irregular linear staining for ZO-1, while anisomycin plus SP600125 treatment induced zipper-like staining for ZO-1. Anisomycin plus SB202190 treatment or anisomycin plus both SP600125 and SB202190 treatment for 8h failed to lead to the accumulation of ZO-1 in cell-cell contacts, but induced thin linear staining with several gaps 16 h after removal of these agents. These results suggest that the localization of ZO-1 in cell-cell contacts is differently regulated by activation and inhibition of JNK and/or p38 MAPK depending on the incubation period.

  3. Proliferation, angiogenesis and differentiation related markers in compact and follicular-compact thyroid carcinomas in dogs

    PubMed Central

    Pessina, P.; Castillo, V.A.; César, D.; Sartore, I.; Meikle, A.

    2016-01-01

    Immunohistochemical markers (IGF-1, IGF-1R, VEGF, FGF-2, RARα and RXR) were evaluated in healthy canine thyroid glands (n=8) and in follicular-compact (n=8) and compact thyroid carcinomas (n=8). IGF-1, IGF-1R and VEGF expression was higher in fibroblasts and endothelial cells of compact carcinoma than in healthy glands (P < 0.05). Compared to follicular-compact carcinoma, compact carcinoma had higher IGF-1R expression in fibroblasts, and higher FGF-2 expression in endothelial cells (P < 0.05). RARα expression was higher in endothelial cells of compact carcinoma than in those of other groups (P < 0.05). The upregulation of these proliferation- and angiogenesis-related factors in endothelial cells and/or fibroblasts and not in follicular cells of compact carcinoma compared to healthy glands supports the relevance of stromal cells in cancer progression. PMID:28116249

  4. A compact optical fiber positioner

    NASA Astrophysics Data System (ADS)

    Hu, Hongzhuan; Wang, Jianping; Liu, Zhigang; Zhou, Zengxiang; Zhai, Chao; Chu, Jiaru

    2016-07-01

    In this paper, a compact optical fiber positioner is proposed, which is especially suitable for small scale and high density optical fiber positioning. Based on the positioning principle of double rotation, positioner's center shaft depends on planetary gear drive principle, meshing with the fixed annular gear central motor gear driving device to rotate, and the eccentric shaft rotated driving by a coaxial eccentric motor, both center and the eccentric shaft are supported by a rolling bearings; center and eccentric shaft are both designed with electrical zero as a reference point, and both of them have position-limiting capability to ensure the safety of fiber positioning; both eccentric and center shaft are designed to eliminating clearance with spring structure, and can eliminate the influence of gear gap; both eccentric and center motor and their driving circuit can be installed in the positioner's body, and a favorable heat sink have designed, the heat bring by positioning operation can be effectively transmit to design a focal plane unit through the aluminum component, on sleeve cooling spiral airway have designed, when positioning, the cooling air flow is inlet into install hole on the focal plate, the cooling air flow can effectively take away the positioning's heat, to eliminate the impact of the focus seeing. By measuring position device's sample results show that: the unit accuracy reached 0.01mm, can meet the needs of fiber positioning.

  5. Compact stellarators with modular coils.

    PubMed

    Garabedian, P R

    2000-07-18

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan.

  6. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  7. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  8. Ultra Compact Imaging Spectrometer (UCIS)

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  9. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  10. Compact IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2017-03-01

    Third-generation storage rings are massively evolving due to the very compact nature of the multi-bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration-free beams in the near- to mid-IR domain (1-30 µm) is proposed and analyzed, and which can be integrated into space-restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo-mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration-free IR synchrotron sources on current and `ultimate' MBA storage rings.

  11. The classification of 2 -compact groups

    NASA Astrophysics Data System (ADS)

    Andersen, Kasper K. S.; Grodal, Jesper

    2009-04-01

    We prove that any connected 2 -compact group is classified by its 2 -adic root datum, and in particular the exotic 2 -compact group operatorname{DI}(4) , constructed by Dwyer-Wilkerson, is the only simple 2 -compact group not arising as the 2 -completion of a compact connected Lie group. Combined with our earlier work with Mo/ller and Viruel for p odd, this establishes the full classification of p -compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected p -compact groups and root data over the p -adic integers. As a consequence we prove the maximal torus conjecture, giving a one-to-one correspondence between compact Lie groups and finite loop spaces admitting a maximal torus. Our proof is a general induction on the dimension of the group, which works for all primes. It refines the Andersen-Grodal-Mo/ller-Viruel methods by incorporating the theory of root data over the p -adic integers, as developed by Dwyer-Wilkerson and the authors. Furthermore we devise a different way of dealing with the rigidification problem by utilizing obstruction groups calculated by Jackowski-McClure-Oliver in the early 1990s.

  12. Foster Wheeler compact CFB boiler with INTREX

    SciTech Connect

    Hyppaenen, T.; Rainio, A.; Kauppinen, K.V.O.; Stone, J.E.

    1997-12-31

    Foster Wheeler has introduced a new COMPACT Circulating Fluidized Bed (CFB) boiler design based on the rectangular hot solids separator. The Compact design also enables easy implementation of new designs for INTREX fluid bed heat exchangers. These new products result in many benefits which affect the boiler economy and operation. After initial development of the Compact CFB design it has been applied in demonstration and industrial scale units. The performance of Compact CFB has been proved to be equivalent to conventional Foster Wheeler CFB has been proved to be equivalent to conventional Foster Wheeler CFB boilers with high availability. Several new Foster Wheeler Compact boilers are being built or already in operation. Operational experiences from different units will be discussed in this paper. There are currently Compact units with 100--150 MW{sub e} capacity under construction. With the scale-up experience with conventional CFB boilers and proven design approach and scale-up steps, Foster Wheeler will have the ability to provide large Compact CFB boilers up to 400--600 MW{sub e} capacity.

  13. Growth of compaction bands: A new deformation mode for porous rock

    SciTech Connect

    OLSSON,WILLIAM A.; HOLCOMB,DAVID J.

    2000-03-14

    Compaction bands are thin, tabular zones of grain breakage and reduced porosity that are found in sandstones. These structures may form due to tectonic stresses or as a result of local stresses induced during production of fluids from wells, resulting in barriers to fluid (oil, gas, water) movement in sandstone reservoirs. To gain insight into the formation of compaction bands the authors have produced them in the laboratory. Acoustic emission locations were used to define and track the thickness of compaction bands throughout the stress history during axisymmetric compression experiments. Narrow zones of intense acoustic emission, demarcating the boundaries between the uncompacted and compacted regions were found to develop. Unexpectedly, these boundaries moved at velocities related to the fractional porosity reduction across the boundary and to the imposed specimen compression stress. This appears to be a previously unrecognized, fundamental mode of deformation of a porous, granular material subjected to compressive loading with significant implications for the production of hydrocarbons.

  14. Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fibre

    NASA Astrophysics Data System (ADS)

    Xin, Hongbao; Zhang, Yao; Lei, Hongxiang; Li, Yayi; Zhang, Huixian; Li, Baojun

    2013-06-01

    Studies reveal that there exists much interaction and communication between bacterial cells, with parts of these social behaviors depending on cell-cell contacts. The cell-cell contact has proved to be crucial for determining various biochemical processes. However, for cell culture with relatively low cell concentration, it is difficult to precisely control and retain the contact of a small group of cells. Particularly, the retaining of cell-cell contact is difficult when flows occur in the medium. Here, we report an optofluidic method for realization and retaining of Escherichia coli cell-cell contact in a microfluidic channel using an abrupt tapered optical fibre. The contact process is based on launching a 980-nm wavelength laser into the fibre, E. coli cells were trapped onto the fibre tip one after another, retaining cell-cell contact and forming a highly organized cell chain. The formed chains further show the ability as bio-optical waveguides.

  15. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  16. Model building with non-compact cosets

    NASA Astrophysics Data System (ADS)

    Croon, Djuna Lize

    2016-11-01

    We explore Goldstone boson potentials in non-compact cosets of the form SO (n , 1) / SO (n). We employ a geometric approach to find the scalar potential, and focus on the conditions under which it is compact in the large field limit. We show that such a potential is found for a specific misalignment of the vacuum. This result has applications in different contexts, such as in Composite Higgs scenarios and theories for the Early Universe. We work out an example of inflation based on a non-compact coset which makes predictions which are consistent with the current observational data.

  17. Compacting a Kentucky coal for quality logs

    SciTech Connect

    Lin, Y.; Li, Z.; Mao, S.

    1999-07-01

    A Kentucky coal was found more difficult to be compacted into large size strong logs. Study showed that compaction parameters affecting the strength of compacted coal logs could be categorized into three groups. The first group is coal inherent properties such as elasticity and coefficient of friction, the second group is machine properties such as mold geometry, and the third group is the coal mixture preparation parameters such as particle size distribution. Theoretical analysis showed that an appropriate backpressure can reduce surface cracks occurring during ejection. This has been confirmed by the experiments conducted.

  18. Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents

    SciTech Connect

    Clancy, Eileen K.; Barry, Chris; Ciechonska, Marta; Duncan, Roy

    2010-02-05

    The reovirus fusion-associated small transmembrane (FAST) proteins evolved to induce cell-cell, rather than virus-cell, membrane fusion. It is unclear whether the FAST protein fusion reaction proceeds in the same manner as the enveloped virus fusion proteins. We now show that fluorescence-based cell-cell and cell-RBC hemifusion assays are unsuited for detecting lipid mixing in the absence of content mixing during FAST protein-mediated membrane fusion. Furthermore, membrane curvature agents that inhibit hemifusion or promote pore formation mediated by influenza hemagglutinin had no effect on p14-induced cell-cell fusion, even under conditions of limiting p14 concentrations. Standard assays used to detect fusion intermediates induced by enveloped virus fusion proteins are therefore not applicable to the FAST proteins. These results suggest the possibility that the nature of the fusion intermediates or the mechanisms used to transit through the various stages of the fusion reaction may differ between these distinct classes of viral fusogens.

  19. The effect of ultrasonic vibration on the compaction characteristics of ibuprofen.

    PubMed

    Levina, Marina; Rubinstein, Michael H

    2002-05-01

    . When ibuprofen was mixed with a second material, such as dibasic calcium phosphate dihydrate (DCP) or microcrystalline cellulose (MCC), stronger tablets were prepared by ultrasound-assisted compaction compared to the compacts containing no filler. Positive interactions were considered to have occurred due to ultrasound-induced bonding between the two materials. With an increase in DCP and MCC concentration in ibuprofen formulations, disintegration and drug dissolution rates of the tablets produced with ultrasound significantly increased. Using temperature-sensitive labels it was found that thermal changes occurred in powdered solids undergoing ultrasound-assisted compaction. Increases in the temperature of tablets were related to US amplitude and US time. With an increase in US amplitude from 5 to 13 microns, the temperature of the DCP tablet surface increased from 40 to 99 degrees C. With an increase in US time from 1 to 5 sec, the temperature of the surface of ibuprofen tablets increased from 43 to 60 degrees C. Increased tablet temperature was thought to be due to ultrasonic energy dissipation turned into heat. X-ray powder diffraction (XRD) studies of ibuprofen tablets prepared by ultrasound-assisted compaction at 32 MPa revealed that no changes in chemical or/and crystalline structure of the material occurred when ultrasound was applied for up to 5 sec (US amplitude 7 microns). An XRD study of DCP tablets produced by ultrasound-assisted compaction at 32 MPa with ultrasound of different amplitudes (5, 7, 13 microns) applied for 2 sec indicated that no material deterioration occurred in all the tested samples.

  20. Risk assessment of soil compaction in Walloon Region (Belgium)

    NASA Astrophysics Data System (ADS)

    Charlotte, Rosiere; Marie-France, Destain; Jean-Claude, Verbrugge

    2010-05-01

    ) was used to estimate the distribution of the vertical stresses z in the soil. Comparison was performed between z and Pc. The following data simulated the passage of a beet harvester machine (mass: 23 580 kg; load: 18 000 kg) in a silty soil located in Hesbaye and classified as Aba (Sirjacobs et al., 2000). The passage of the machine would create a Pc of around 100 kPa at 30 cm depth, while the stress induced by the machine would reach 240 kPa. In the field borders, where more vehicle traffic was usually observed and where the soil was over consolidated, Pc would reach 180 kPa, while z would be 220 kPa. In both cases, the risk of compaction created by the passage of the machine would be high. - Lebert, M. and Horn, R. (1991). A method to predict the mechanical strength of agricultural soils. Soil & Tillage Res. 19, 275-286. - Keller T., Défossez P., Weisskopf P., Arvidson J., Richard G. (2007). SoilFlex : A model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches. Soil & Tillage Research 93, 391-411. - Sirjacobs D., Hanquet B., Lebeau F., Destain M.-F. (2002). On-line mechanical resistance mapping and correlation with soil physical properties for precision agriculture. Soil and Tillage Research, 64, 231-242.

  1. Precision of multicellular gradient sensing with cell-cell communication

    NASA Astrophysics Data System (ADS)

    Mugler, Andrew; Levchenko, Andre; Nemenman, Ilya

    Gradient sensing underlies diverse biological processes. In principle, bigger ``detectors'' (cells or groups of cells) make better sensors, since then concentrations measured at the front and back of a detector are more different, and the gradient can be determined with higher precision. Indeed, experiments have shown that populations of cells detect gradients more precisely than single cells. However, this argument neglects the fact that information must be communicated between different parts of the detector, and the communication process introduces its own noise. Here we derive the fundamental limits to the precision of gradient sensing with cell-cell communication and temporal integration. We find that communication imposes its own sensory length scale, beyond which the precision cannot increase no matter how large the cell population grows. We also find that temporal integration couples the internal communication with the external signal diffusion, imposing an additional limit on the precision. We discuss how these limits can be improved by a strategy with two communicated molecular species, which we term ``regional excitation--global inhibition''. We compare our findings to experiments with communicating epithelial cells, and infer a sensor length scale of about 4 cells.

  2. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity.

    PubMed

    Molumby, Michael J; Keeler, Austin B; Weiner, Joshua A

    2016-05-03

    Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  3. The Evolutionary Origin of Epithelial Cell-Cell Adhesion Mechanisms

    PubMed Central

    Miller, Phillip W.; Clarke, Donald N.; Weis, William I.; Lowe, Christopher J.; Nelson, W. James

    2014-01-01

    SUMMARY A simple epithelium forms a barrier between the outside and the inside of an organism, and is the first organized multicellular tissue found in evolution. We examine the relationship between the evolution of epithelia and specialized cell-cell adhesion proteins comprising the classical cadherin/β-catenin/α-catenin complex (CCC). A review of the divergent functional properties of the CCC in metazoans and non-metazoans, and an updated phylogenetic coverage of the CCC using recent genomic data reveal: 1) The core CCC likely originated before the last common ancestor of unikonts and their closest bikont sister taxa. 2) Formation of the CCC may have constrained sequence evolution of the classical cadherin cytoplasmic domain and β-catenin in metazoa. 3) The α-catenin binding domain in β-catenin appears to be the favored mutation site for disrupting β-catenin function in the CCC. 4) The ancestral function of the α/β-catenin heterodimer appears to be an actin-binding module. In some metazoan groups, more complex functions of α-catenin were gained by sequence divergence in the non-actin binding (N-, M-) domains. 5) Allosteric regulation of α-catenin, rather than loss of function mutations, may have evolved for more complex regulation of the actin cytoskeleton. PMID:24210433

  4. Heterochrony as Diachronically Modified Cell-Cell Interactions

    PubMed Central

    Torday, John S.

    2016-01-01

    Heterochrony is an enabling concept in evolution theory that metaphorically captures the mechanism of biologic change due to mechanisms of growth and development. The spatio-temporal patterns of morphogenesis are determined by cell-to-cell signaling mediated by specific soluble growth factors and their cognate receptors on nearby cells of different germline origins. Subsequently, down-stream production of second messengers generates patterns of form and function. Environmental upheavals such as Romer’s hypothesized drying up of bodies of water globally caused the vertebrate water-land transition. That transition caused physiologic stress, modifying cell-cell signaling to generate terrestrial adaptations of the skeleton, lung, skin, kidney and brain. These tissue-specific remodeling events occurred as a result of the duplication of the Parathyroid Hormone-related Protein Receptor (PTHrPR) gene, expressed in mesodermal fibroblasts in close proximity to ubiquitously expressed endodermal PTHrP, amplifying this signaling pathway. Examples of how and why PTHrPR amplification affected the ontogeny, phylogeny, physiology and pathophysiology of the lung are used to substantiate and further our understanding through insights to the heterochronic mechanisms of evolution, such as the fish swim bladder evolving into the vertebrate lung, interrelated by such functional homologies as surfactant and mechanotransduction. Instead of the conventional description of this phenomenon, lung evolution can now be understood as adaptive changes in the cellular-molecular signaling mechanisms underlying its ontogeny and phylogeny. PMID:26784244

  5. A compact laser target designator

    NASA Astrophysics Data System (ADS)

    Lee, S. T.; Silver, M.; Barron, A.; Borthwick, A.; Morton, G.; McRae, I.; Coghill, M.; Smith, C.; Scouler, C.; Gardiner, G.; Imlach, N.; McNeill, C.; McSporran, D.; Rodgers, D.; Kerr, D.; Alexander, W.

    2016-05-01

    Lasers intended for application to man-portable and hand-held laser target designators are subject to significant constraints on size, weight, power consumption and cost. These constraints must be met while maintaining adequate performance across a challenging environmental specification. One of the challenges of operating a Nd3+:YAG laser over a broad ambient temperature range is that of diode-pump-tuning. This system is specified to operate over an ambient temperature range of -46°C to +71°C, and the system electrical power consumption requirements preclude active temperature control. As a result the laser must tolerate a 32.8nm pump wavelength range. The optical absorption of Nd3+:YAG varies dramatically over this wavelength range. This paper presents a laser that minimizes the effect of this change on laser output. A folded U-shaped geometry laser resonator is presented, made up of a corner cube at one end and a plane mirror substrate at the other. The action of the corner cube coupled with this configuration of end mirrors results in a resonator that is significantly less sensitive to misalignment of the end mirror and/or the corner cube. This Ushaped resonator is then further folded to fit the laser into a smaller volume. Insensitivity of this compact folded resonator to mirror misalignments was analyzed in Zemax via a Monte-Carlo analysis and the results of this analysis are presented. The resulting laser output energy, pulse duration and beam quality of this athermally pumped, misalignment insensitive folded laser resonator are presented over an ambient temperature range of -46°C to +71°C.

  6. Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator.

    PubMed

    Mazel, Vincent; Busignies, Virginie; Diarra, Harona; Tchoreloff, Pierre

    2012-06-01

    The elastic properties of pharmaceutical powders play an important role during the compaction process. The elastic behavior can be represented by Young's modulus (E) and Poisson's ratio (v). However, during the compaction, the density of the powder bed changes and the moduli must be determined as a function of the porosity. This study proposes a new methodology to determine E and v as a function of the porosity using double compaction in an instrumented compaction simulator. Precompression is used to form the compact, and the elastic properties are measured during the beginning of the main compaction. By measuring the axial and radial pressure and the powder bed thickness, E and v can be determined as a function of the porosity. Two excipients were studied, microcrystalline cellulose (MCC) and anhydrous calcium phosphate (aCP). The values of E measured are comparable to those obtained using the classical three-point bending test. Poisson's ratio was found to be close to 0.24 for aCP with only small variations with the porosity, and to increase with a decreasing porosity for MCC (0.23-0.38). The classical approximation of a value of 0.3 for ν of pharmaceutical powders should therefore be taken with caution.

  7. Deep Compaction Control of Sandy Soils

    NASA Astrophysics Data System (ADS)

    Bałachowski, Lech; Kurek, Norbert

    2015-02-01

    Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  8. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  9. Tidal deformability of compact boson stars

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Steinhoff, Jan; Hinderer, Tanja; Buonanno, Alessandra

    2017-01-01

    Gravitational waves can be used to probe the structure of compact objects in coalescing binary systems. This structure enters the pre-merger waveform through tidal interactions between the two bodies, characterized by each object's tidal deformability. We investigate whether these effects can differentiate binary black holes from systems containing compact boson stars. We compute the tidal deformability for various boson star models, including ultracompact non-topological solitonic solutions.

  10. Development of an optimized compact test range

    NASA Astrophysics Data System (ADS)

    Dudok, Evert; Fasold, Dietmar; Steiner, Hans-Juergen

    A method of measuring the electromagnetic far field characteristics of microwave antennas is introduced by means of compact test ranges. The performances of the front-fed Cassegrain system, which avoids the usually weak cross-polarization performance of the compact range geometries, are established. The chosen manufacturing process, milling of cast-iron reflectors, guaranteed highest achievable surface accuracies, even for very large reflectors. The structural analysis showed that extremely high surface accuracies require well regulated temperature conditions of the experiment.

  11. Rotating compact star with superconducting quark matter

    SciTech Connect

    Panda, P.K.; Nataraj, H.S.

    2006-02-15

    A compact star with a superconducting quark core, a hadron crust, and a mixed phase between the two is considered. The quark-meson coupling model for hadron matter and the color-flavor-locked quark model for quark matter is used to construct the equation of state for the compact star. The effect of pairing of quarks in the color-flavor-locked phase and the mixed phase on the mass, radius, and period of the rotating star is studied.

  12. Compact Proton Accelerator for Cancer Therapy

    SciTech Connect

    Chen, Y; Paul, A C

    2007-06-12

    An investigation is being made into the feasibility of making a compact proton dielectric wall (DWA) accelerator for medical radiation treatment based on the high gradient insulation (HGI) technology. A small plasma device is used for the proton source. Using only electric focusing fields for transporting and focusing the beam on the patient, the compact DWA proton accelerator m system can deliver wide and independent variable ranges of beam currents, energies and spot sizes.

  13. Technology Selections for Cylindrical Compact Fabrication

    SciTech Connect

    Jeffrey A. Phillips

    2010-10-01

    A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.

  14. Compact Solid State Terahertz Detectors

    DTIC Science & Technology

    2007-07-09

    bias voltages across the above temperature range. Two design, fabrication and optimisation cycles will be completed in 12 months. Each cycle will...measured the THz radiation-induced photocurrent in an in-plane geometry of the samples at liquid helium temperatures. The results are depicted in Fig...evaluated for each specific application geometry . Following on from this the noise equivalent power in the detectors at liquid helium temperatures is

  15. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells

    PubMed Central

    1991-01-01

    The ability of carcinomas to invade and to metastasize largely depends on the degree of epithelial differentiation within the tumors, i.e., poorly differentiated being more invasive than well-differentiated carcinomas. Here we confirmed this correlation by examining various human cell lines derived from bladder, breast, lung, and pancreas carcinomas. We found that carcinoma cell lines with an epithelioid phenotype were noninvasive and expressed the epithelium-specific cell- cell adhesion molecule E-cadherin (also known as Arc-1, uvomorulin, and cell-CAM 120/80), as visualized by immunofluorescence microscopy and by Western and Northern blotting, whereas carcinoma cell lines with a fibroblastoid phenotype were invasive and had lost E-cadherin expression. Invasiveness of these latter cells could be prevented by transfection with E-cadherin cDNA and was again induced by treatment of the transfected cells with anti-E-cadherin mAbs. These findings indicate that the selective loss of E-cadherin expression can generate dedifferentiation and invasiveness of human carcinoma cells, and they suggest further that E-cadherin acts as an invasion suppressor. PMID:2007622

  16. Disruption of glomerular cell-cell and cell-matrix interactions in hydrocarbon nephropathy.

    PubMed

    Nanez, Adrian; Alejandro, Napoleon F; Falahatpisheh, M Hadi; Kerzee, J Kevin; Roths, John B; Ramos, Kenneth S

    2005-12-01

    Environmental chemicals play an etiological role in greater than 50% of idiopathic glomerular diseases. The present studies were conducted to define mechanisms of renal cell-specific hydrocarbon injury. Female rats were given 10 mg/kg benzo(a)pyrene (BaP) once a week for 16 wk. Progressive elevations in total urinary protein, protein/creatinine ratios, and microalbuminuria were observed in rats treated with BaP for up to 16 wk. The nephropathic response involved early reductions in mesangial cell numbers and fibronectin levels by 8 wk, coupled to transient increases in podocyte cellularity. Changes in podocyte numbers subsided by 16 wk and correlated with rebound increases in mesangial cell numbers and fibronectin levels, along with increased alpha-smooth muscle actin and Cu/Zn superoxide dismutase and fusion of podocyte foot processes. In culture, mesangial cells were more sensitive than podocytes to hydrocarbon injury and expressed higher levels of inducible aryl hydrocarbon hydroxylase activity. Naïve mesangial cells exerted a strong inhibitory influence on podocyte proliferation under both direct and indirect coculture conditions, and this response involved a mesangial cell-derived matrix that selectively inhibited podocyte proliferation. These findings indicate that hydrocarbon nephropathy in rats involves disruption of glomerular cell-cell and cell-matrix interactions mediated by deposition of a mesangial cell-derived growth-inhibitory matrix that regulates podocyte proliferation.

  17. Spatio-Temporal Analysis of Cell-Cell Signaling in a Living Cell Microarray

    NASA Astrophysics Data System (ADS)

    Mirsaidov, Utkur; Timp, Winston; Timp, Kaethe; Matsudaira, Paul; Timp, Greg

    2007-03-01

    Cell-cell signaling plays a central role in biology, enabling individual cells to coordinate their activities. For example, bacteria show evidence of intercellular signaling through quorum sensing, a regulatory mechanism that launches a coordinated response, depending on the population density. To explore the spatio-temporal development of cell-to-cell signaling, we have created regular, heterotypic microarrays of living cells in hydrogel using time-multiplexed optical traps for submicron positional control of the cell orientation and location without loss of viability. We studied the Lux system for quorum sensing; splitting it into sender and receiver plasmids, which were subsequently introduced into E. Coli. Induced by IPTG, the sender cells express a fluorescent reporter (mRFP1) and the LuxI enzyme that catalyzes the synthesis of a molecular signal AHL that diffuses through the cell membrane and the extra-cellular scaffold. The receiver cells collect the AHL signal that binds to the LuxR regulator and reports it through GFP production. We have measured the time-delay between the onset of mRFP1 and GFP dependence on intercellular spacing in the array.

  18. There are no steady state processes in compaction

    NASA Astrophysics Data System (ADS)

    Dysthe, D. K.

    2003-04-01

    Compaction of sediments is normally thought to start with grain sliding and cataclastic grain crushing. Then the ductile dissolution-precipitation creep processes take over. Modeling of this process normally neglects all collective rearrangement processes and regard simple packings of grains that slowly deform by steady state pressure solution creep. From simple geometrical reasoning we know, however that imperfect packings of plastic grains must undergo rearrangement during compaction. Such rearrangement will drastically alter the microscopic, or "primitive processes" of compaction. Recent research has questioned the fundamental mechanisms ("primitive processes") of dissolution-precipitation creep. Do grain contacts heal or dissolve? Why is there asymmetric dissolution? Does pressure solution creep in single contacts ever reach steady state? Can transient free face dissolution feed back on pressure solution creep in the contacts? The emerging radical change in our understanding of dissolution-precipitation creep as a dynamic, transient process is driven by new experiments and reevaluation of the fundamental theory. The same change in viewpoint is necessary on all time and length scales. I will present experiments [1-8] and simulations [9-11] of complex compaction behaviour [1], transient primitive processes of pressure solution creep in the contacts [2-4], free face dissolution [5] and crack healing [6]. I will also show that macroscopic observation of compaction shows smooth, universal behaviour [7]. Microscopic observation of compaction shows transient collective behaviour at all scales. Evidence points in the direction that compaction is dominated by transient processes with interacting instabilities. The interaction causes intermittency or switching between processes. A new, more complex theory of compaction is necessary to explain how the cooperative microscopic phenomena contribute to the simple, universal, macroscopic behaviour. 1. Uri, L., et. al., in

  19. Removal of sialic acid from the surface of human MCF-7 mammary cancer cells abolishes E-cadherin-dependent cell-cell adhesion in an aggregation assay.

    PubMed

    Deman, J J; Van Larebeke, N A; Bruyneel, E A; Bracke, M E; Vermeulen, S J; Vennekens, K M; Mareel, M M

    1995-09-01

    MCF-7 human breast cancer cells express E-cadherin and show, at least in some circumstances, E-cadherin-dependent cell-cell adhesion (Bracke et al., 1993). The MCF-7/AZ variant spontaneously displays E-cadherin-dependent fast aggregation; in the MCF-7/6 variant, E-cadherin appeared not to be spontaneously functional in the conditions of the fast aggregation assay, but function could be induced by incubation of the suspended cells in the presence of insulinlike growth factor I (IGF-I) (Bracke et al., 1993). E-cadherin from MCF-7 cells was shown to contain sialic acid. Treatment with neuraminidase was shown to remove this sialic acid, as well as most of the sialic acid present at the cell surface. Applied to MCF-7/AZ, and MCF-7/6 cells, pretreatment with neuraminidase abolished spontaneous as well as IGF-I induced, E-cadherin-dependent fast cell-cell adhesion of cells in suspension, as measured in the fast aggregation assay. Treatment with neuraminidase did not, however, inhibit the possibly different, but equally E-cadherin-mediated, process of cell-cell adhesion of MCF-7 cells on a flat plastic substrate as assessed by determining the percentage of cells remaining isolated (without contact with other cells) 24 h after plating.

  20. Synergistic inhibition in cell-cell fusion mediated by the matrix and nucleocapsid protein of canine distemper virus.

    PubMed

    Wiener, Dominique; Plattet, Philippe; Cherpillod, Pascal; Zipperle, Ljerka; Doherr, Marcus G; Vandevelde, Marc; Zurbriggen, Andreas

    2007-11-01

    Canine distemper virus (CDV) causes a chronic, demyelinating, progressive or relapsing neurological disease in dogs, because CDV persists in the CNS. Persistence of virulent CDV, such as the A75/17 strain has been reproduced in cell cultures where it is associated with a non-cytolytic infection with very limited cell-cell fusion. This is in sharp contrast to attenuated CDV infection in cell cultures, such as the Onderstepoort (OP) CDV strain, which produces extensive fusion activity and cytolysis. Fusion efficiency may be determined by the structure of the viral fusion protein per se but also by its interaction with other structural proteins of CDV. This was studied by combining genes derived from persistent and non-persistent CDV strains in transient transfection experiments. It was found that fusion efficiency was markedly attenuated by the structure of the fusion protein of the neurovirulent A75/17-CDV. Moreover, we showed that the interaction of the surface glycoproteins with the M protein of the persistent strain greatly influenced fusion activity. Site directed mutagenesis showed that the c-terminus of the M protein is of particular importance in this respect. Interestingly, although the nucleocapsid protein alone did not affect F/H-induced cell-cell fusion, maximal inhibition occurred when the latter was added to combined glycoproteins with matrix protein. Thus, the present study suggests that very limited fusogenicity in virulent CDV infection, which favours persistence by limiting cell destruction involves complex interactions between all viral structural proteins.

  1. The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion.

    PubMed

    Vitiello, Elisa; Ferreira, Jorge G; Maiato, Helder; Balda, Maria S; Matter, Karl

    2014-12-18

    Dividing epithelial cells need to coordinate spindle positioning with shape changes to maintain cell-cell adhesion. Microtubule interactions with the cell cortex regulate mitotic spindle positioning within the plane of division. How the spindle crosstalks with the actin cytoskeleton to ensure faithful mitosis and spindle positioning is unclear. Here we demonstrate that the tumour suppressor DLC2, a negative regulator of Cdc42, and the interacting kinesin Kif1B coordinate cell junction maintenance and planar spindle positioning by regulating microtubule growth and crosstalk with the actin cytoskeleton. Loss of DLC2 induces the mislocalization of Kif1B, increased Cdc42 activity and cortical recruitment of the Cdc42 effector mDia3, a microtubule stabilizer and promoter of actin dynamics. Accordingly, DLC2 or Kif1B depletion promotes microtubule stabilization, defective spindle positioning, chromosome misalignment and aneuploidy. The tumour suppressor DLC2 and Kif1B are thus central components of a signalling network that guides spindle positioning, cell-cell adhesion and mitotic fidelity.

  2. Achromatic recirculated chicane with fixed geometry and independently variable path length and momentum compaction

    DOEpatents

    Douglas, David R.; Neil, George R.

    2005-04-26

    A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.

  3. Alfven Continuum and Alfven Eigenmodes in the National Compact Stellarator Experiment

    SciTech Connect

    Fesenyuk, O. P.; Kolesnichenko, Ya. I.; Lutsenko, V. V.; White, R. B.; Yakovenko, Yu. V.

    2004-09-17

    The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) is investigated with the AC code COBRA. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gaps of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E.

  4. Diagnostics of soil compaction in steppe zone

    NASA Astrophysics Data System (ADS)

    Sorokin, Alexey; Kust, German

    2014-05-01

    Land degradation and desertification are among the major challenges in steppe zone, and leads the risks of food security in affected areas. Soil compaction is one of the basic reasons of degradation of arable land. The processes of soil compaction have different genesis. Knowledge of soil compaction mechanisms and their early diagnostics permit to accurately forecast velocity and degree of degradation processes as well as to undertake effective preventive measures and land reclamation activities. Manifestations of soil compaction and degradation of soil structure due to vertic, alkaline and and mechanical (agro-) compaction, as well as caused by combination of these processes in irrigated and rainfed conditions were studied in four model plots in Krasnodar and Saratov regions of Russia. Typic chernozems, solonetz and kashtanozem solonetz, south chernozem and dark-kashtanozem soils were under investigation. Morphological (mesomorphological, micromorphological and microtomographic) features, as well as number of physical (particle size analyses, water-peptizable clays content (WPC), swelling and shrinking, bulk density and moisture), chemical (humus, pH, CAC, EC), and mineralogical (clay fraction) properties were investigated. Method for grouping soil compaction types by morphological features was proposed. It was shown that: - overcompacted chernozems with vertic features has porosity close to natural chernozems (about 40%), but they had the least pore diameter (7-12 micron) among studied soils. Solonetzic soils had the least amount of "pore-opening" (9%). - irrigation did not lead to the degradation of soil structure on micro-level. - "mechanically" (agro-) compacted soils retained an intra-aggregate porosity. - studied soils are characterized by medium and heavy particle size content (silt [<0.1mm] of 30-60%). Subsoil horizons of chernozems with vertic and alkaline features were the heaviest by particle size content. - the share of WPC to clay ratio was 40% in

  5. 78 FR 20355 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... this session of the Council should notify the Federal Bureau of Investigation (FBI) Compact Officer, Mr... (502) 581-1234. FOR FURTHER INFORMATION CONTACT: Inquiries may be addressed to Mr. Gary S. Barron, FBI...-2803, facsimile (304) 625-2868. Dated: March 26, 2013. Gary S. Barron, FBI Compact Officer,...

  6. 77 FR 60475 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... address this session of the Council should notify the Federal Bureau Of Investigation (FBI) Compact..., FBI Compact Officer, Module D3, 1000 Custer Hollow Road, Clarksburg, West Virginia 26306, telephone (304) 625-2803, facsimile (304) 625-2868. Dated: September 19, 2012. Gary S. Barron, FBI...

  7. 78 FR 61384 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Council should notify the Federal Bureau of Investigation (FBI) Compact Officer, Mr. Gary S. Barron at... (813) 289- 8200. FOR FURTHER INFORMATION CONTACT: Inquiries may be addressed to Mr. Gary S. Barron, FBI...-2803, facsimile (304) 625-2868. Dated: September 25, 2013. Gary S. Barron, FBI Compact...

  8. Soil Compaction Investigation. Report No. 3: Compaction Studies on Sand Subgrade

    DTIC Science & Technology

    1949-10-01

    TRACKING After Com.J2actlon ~Dr~) After Com:12action ~Wet) After Grading Prior to Com11action Water Dry Water Dry Water Dry Compaction Number of...Water Dry Water Dry Depth Content Density , Depth Content Density , Ft ; Lb/CuFt Cam;paction Ft ! Lb/CuFt Compaction Before SoeJ.d.ns 5-Min Soaking

  9. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  10. DNA compaction by azobenzene-containing surfactant

    SciTech Connect

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana

    2011-08-15

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  11. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  12. Counterintuitive compaction behavior of clopidogrel bisulfate polymorphs.

    PubMed

    Khomane, Kailas S; More, Parth K; Bansal, Arvind K

    2012-07-01

    Being a density violator, clopidogrel bisulfate (CLP) polymorphic system (forms I and II) allows us to study individually the impact of molecular packing (true density) and thermodynamic properties such as heat of fusion on the compaction behavior. These two polymorphs of CLP were investigated for in-die and out-of-die compaction behavior using CTC profile, Heckel, and Walker equations. Compaction studies were performed on a fully instrumented rotary tabletting machine. Detailed examinations of the molecular packing of each form revealed that arrangement of the sulfate anion differs significantly in both crystal forms, thus conferring different compaction behavior to two forms. Close cluster packing of molecules in form I offers a rigid structure, which has poor compressibility and hence resists deformation under compaction pressure. This results into lower densification, higher yield strength, and mean yield pressure, as compared with form II at a given pressure. However, by virtue of higher bonding strength, form I showed superior tabletability, despite its poor compressibility and deformation behavior. Form I, having higher true density and lower heat of fusion showed higher bonding strength. Hence, true density and not heat of fusion can be considered predictor of bonding strength of the pharmaceutical powders.

  13. 77 FR 22805 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ..., concerning the date and location of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact). The document listed... Privacy Compact; Correction AGENCY: Federal Bureau of Investigation. ACTION: Notice; Correction....

  14. Soil microbial biomass nitrogen and Beta-Glucosaminidase activity response to compaction, poultry litter application and cropping in a claypan soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compaction-induced changes in soil physical properties may significantly affect soil microbial activity, especially nitrogen-cycling processes, in many agroecosystems. The objective of this study was to determine the effect of soil compaction on soil microbiological properties related to N in a clay...

  15. Mechanical guidance through cell-cell and cell-surface contact during multicellular streaming

    NASA Astrophysics Data System (ADS)

    Wang, Chenlu; Driscoll, Meghan; Gupta, Satyandra K.; Parent, Carole; Losert, Wolfgang

    2014-03-01

    During collective cell migration, mechanical forces arise from the extracellular matrix (ECM) through cell-surface contact and from other cells through cell-cell contact. These forces regulate the motion of migrating cell groups. To determine how these mechanical interactions balance during cell migration, we measured the shape dynamics of Dictyostelium discoideum cells at the multicellular streaming stage. We found that cells can coordinate their motion by synchronizing protrusion waves that travel along their membranes when they form proper cell-cell adhesion and cell-surface adhesion. In addition, our experiments on live actin labeled cells show that intracellular actin polymerization actively responds to the change of cell-cell/surface adhesion and helps to stabilize multicellular migration streams. Our finding suggests that the coordination of motion between neighboring cells in collective migration requires a balance between cell-cell adhesion and cell-surface adhesion, and that the cell cytoskeleton plays an important role in this balance.

  16. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    SciTech Connect

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  17. Activation analysis of the compact ignition tokamak

    SciTech Connect

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak.

  18. Lacunary Fourier Series for Compact Quantum Groups

    NASA Astrophysics Data System (ADS)

    Wang, Simeng

    2017-02-01

    This paper is devoted to the study of Sidon sets, {Λ(p)}-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, {Λ(p)}-sets and lacunarities for L p -Fourier multipliers, generalizing a previous work by Blendek and Michalic̆ek. We also prove the existence of {Λ(p)}-sets for orthogonal systems in noncommutative L p -spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included.

  19. Impacts by Compact Ultra Dense Objects

    NASA Astrophysics Data System (ADS)

    Birrell, Jeremey; Labun, Lance; Rafelski, Johann

    2012-03-01

    We propose to search for nuclear density or greater compact ultra dense objects (CUDOs), which could constitute a significant fraction of the dark matter [1]. Considering their high density, the gravitational tidal forces are significant and atomic-density matter cannot stop an impacting CUDO, which punctures the surface of the target body, pulverizing, heating and entraining material near its trajectory through the target [2]. Because impact features endure over geologic timescales, the Earth, Moon, Mars, Mercury and large asteroids are well-suited to act as time-integrating CUDO detectors. There are several potential candidates for CUDO structure such as strangelet fragments or more generally dark matter if mechanisms exist for it to form compact objects. [4pt] [1] B. J. Carr, K. Kohri, Y. Sendouda, & J.'i. Yokoyama, Phys. Rev. D81, 104019 (2010). [0pt] [2] L. Labun, J. Birrell, J. Rafelski, Solar System Signatures of Impacts by Compact Ultra Dense Objects, arXiv:1104.4572.

  20. Compaction dynamics of wet granular packings

    NASA Astrophysics Data System (ADS)

    Vandewalle, Nicolas; Ludewig, Francois; Fiscina, Jorge E.; Lumay, Geoffroy

    2013-03-01

    The extremely slow compaction dynamics of wet granular assemblies has been studied experimentally. The cohesion, due to capillary bridges between neighboring grains, has been tuned using different liquids having specific surface tension values. The characteristic relaxation time for compaction τ grows strongly with cohesion. A kinetic model, based on a free volume kinetic equations and the presence of a capillary energy barrier (due to liquid bridges), is able to reproduce quantitatively the experimental curves. This model allows one to describe the cohesion in wet granular packing. The influence of relative humidity (RH) on the extremely slow compaction dynamics of a granular assembly has also been investigated in the range 20 % - 80 % . Triboelectric and capillary condensation effects have been introduced in the kinetic model. Results confirm the existence of an optimal condition at RH ~ 45 % for minimizing cohesive interactions between glass beads.

  1. Hall MHD Equilibrium of Accelerated Compact Toroids

    NASA Astrophysics Data System (ADS)

    Howard, S. J.; Hwang, D. Q.; Horton, R. D.; Evans, R. W.; Brockington, S. J.

    2007-11-01

    We examine the structure and dynamics of the compact toroid's magnetic field. The compact toroid is dramatically accelerated by a large rail-gun Lorentz force density equal to j xB. We use magnetic data from the Compact Toroid Injection Experiment to answer the question of exactly where in the system j xB has nonzero values, and to what extent we can apply the standard model of force-free equilibrium. In particular we present a method of analysis of the magnetic field probe signals that allows direct comparison to the predictions of the Woltjer-Taylor force-free model and Turner's generalization of magnetic relaxation in the presence of a non-zero Hall term and fluid vorticity.

  2. Explaining compact groups as change alignments

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    The physical nature of the apparently densest groups of galaxies, known as compact groups is a topic of some recent controversy, despite the detailed observations of a well-defined catalog of 100 isolated compact groups compiled by Hickson (1982). Whereas many authors have espoused the view that compact groups are bound systems, typically as dense as they appear in projection on the sky (e.g., Williams & Rood 1987; Sulentic 1987; Hickson & Rood 1988), others see them as the result of chance configurations within larger systems, either in 1D (chance alignments: Mamon 1986; Walke & Mamon 1989), or in 3D (transient cores: Rose 1979). As outlined in the companion review to this contribution (Mamon, in these proceedings), the implication of Hickson's compact groups (HCGs) being dense bound systems is that they would then constitute the densest isolated systems of galaxies in the Universe and the privileged site for galaxy interactions. In a previous paper (Mamon 1986), the author reviewed the arguments given for the different theories of compact groups. Since then, a dozen papers have been published on the subject, including a thorough and perceptive review by White (1990), thus more than doubling the amount written on the subject. Here, the author first enumerates the arguments that he brought up in 1986 substantiating the chance alignment hypothesis, then he reviews the current status of the numerous recent arguments arguing against chance alignments and/or for the bound dense group hypothesis (both for the majority of HCGs but not all of them), and finally he reconsiders each one of these anti-chance alignment arguments and shows that, rather than being discredited, the chance alignment hypothesis remains a fully consistent explanation for the nature of compact groups.

  3. Observational properties of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Hickson, Paul

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications.

  4. Portable compact cold atoms clock topology

    NASA Astrophysics Data System (ADS)

    Pechoneri, R. D.; Müller, S. T.; Bueno, C.; Bagnato, V. S.; Magalhães, D. V.

    2016-07-01

    The compact frequency standard under development at USP Sao Carlos is a cold atoms system that works with a distributed hardware system principle and temporal configuration of the interrogation method of the atomic sample, in which the different operation steps happen in one place: inside the microwave cavity. This type of operation allows us to design a standard much more compact than a conventional one, where different interactions occur in the same region of the apparatus. In this sense, it is necessary to redefine all the instrumentation associated with the experiment. This work gives an overview of the topology we are adopting for the new system.

  5. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  6. Compact Focal Plane Assembly for Planetary Science

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind

    2013-01-01

    A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles

  7. Features of the compact photon storage ring

    NASA Astrophysics Data System (ADS)

    Yamada, Hironari; Tsutsui, Hiroshi; Shimoda, Koichi; Mima, Kunioki

    1993-07-01

    The compact photon storage ring (PhSR) is a hybrid machine that features both linac driven FEL and storage ring driven FEL. The lasing condition is determined by the exactly circular electron storage ring, but a continuous electron injection is possible without disturbing the lasing. An effect of coherent synchrotron radiation takes an important role in the lasing. It is found that the compact PhSR is promising in lasing up to a wavelength of less than 10 μm with 10 A accumulated current.

  8. Momentum compaction and phase slip factor

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2010-10-01

    Section 2.3.11 of the Handbook of Accelerator Physics and Engineering on Landau damping is updated. The slip factor and its higher orders are given in terms of the various orders of the momentum compaction. With the aid of a simplified FODO lattice, formulas are given for the alteration of the lower orders of the momentum compaction by various higher multipole magnets. The transition to isochronicity is next demonstrated. Formulas are given for the extraction of the first three orders of the slip factor from the measurement of the synchrotron tune while changing the rf frequency. Finally bunch-length compression experiments in semi-isochronous rings are reported.

  9. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  10. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  11. Compact, Robust Chips Integrate Optical Functions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Located in Bozeman, Montana, AdvR Inc. has been an active partner in NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Langley Research Center engineers partnered with AdvR through the SBIR program to develop new, compact, lightweight electro-optic components for remote sensing systems. While the primary customer for this technology will be NASA, AdvR foresees additional uses for its NASA-derived circuit chip in the fields of academic and industrial research anywhere that compact, low-cost, stabilized single-frequency lasers are needed.

  12. VizieR Online Data Catalog: Star-forming compact groups (Hernandez-Fernandez+, 2015)

    NASA Astrophysics Data System (ADS)

    Hernandez-Fernandez, J. D.; Mendes de Oliveira, C.

    2016-03-01

    This article provides a local sample (z<~0.15) of compact groups of star-forming galaxies. In this type of groups, galaxies strongly interact among themselves and with the rest of the group components (ICM, dark matter halo). This induces morphological changes and star formation events which are currently taking place. The peculiar evolutionary stage of these groups provides a wealth of galaxy observables that may clarify the theoretical framework about galaxy evolution in groups. We have performed an all-sky search for compact groups of star-forming galaxies in the GALEX UV catalogues. (3 data files).

  13. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  14. Differential compaction behaviour of roller compacted granules of clopidogrel bisulphate polymorphs.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2014-09-10

    In the present work, in-die and out-of-die compaction behaviour of dry-granulated powders of clopidogrel bisulphate (CLP) polymorphs, form I and form II, was investigated using a fully instrumented rotary tablet press. Each polymorph was compacted at three different roller pressures [70.3 (S1), 105.5 (S2) and 140.6 (S3)kgf/cm(2)], and obtained granules were characterized for their physico-mechanical properties. Compaction data were analyzed for out-of-die compressibility, tabletability and compactibility profiles, and in-die Heckel, Kawakita and Walker analysis. The roller compacted granules of both forms showed markedly different tabletting behaviour. Roller pressure exhibited a trend on compaction behaviour of form I granules, whereas, in case of form II, the effect was insignificant. Tabletability of the six granule batches follows the order; I_S1>I_S2>I_S3>II_S1≈II_S2≈II_S3. In case of form I, the reduced tabletability of the granules compacted at higher roller pressure was attributed to the decreased compressibility and plastic deformation. This was confirmed by compressibility plot and various mathematical parameters derived from Heckel (Py), Kawakita (1/b) and Walker (W) equations. The reduced tabletability of form I granules was due to 'granule hardening' during roller compaction. On the other hand, insignificant effect of roller compaction on tabletting behaviour of form II granules was attributed to brittle fragmentation. The extensive fragmentation of granules offered new 'clean' surfaces and higher contact points that negated the effect of granule hardening.

  15. Compact dimension of denatured states of staphylococcal nuclease.

    PubMed

    Chow, C-Y; Wu, Ming-Chya; Fang, Huey-Jen; Hu, Chin-Kun; Chen, Hueih-Min; Tsong, Tian-Yow

    2008-08-15

    Fluorescence and circular dichroism stopped-flow have been widely used to determine the kinetics of protein folding including folding rates and possible folding pathways. Yet, these measurements are not able to provide spatial information of protein folding/unfolding. Especially, conformations of denatured states cannot be elaborated in detail. In this study, we apply the method of fluorescence energy transfer with a stopped-flow technique to study global structural changes of the staphylococcal nuclease (SNase) mutant K45C, where lysine 45 is replaced by cysteine, during folding and unfolding. By labeling the thiol group of cysteine with TNB (5,5'-dithiobis-2-nitrobenzoic acid) as an energy acceptor and the tryptophan at position 140 as a donor, distance changes between the acceptor and the donor during folding and unfolding are measured from the efficiency of energy transfer. Results indicate that the denatured states of SNase are highly compact regardless of how the denatured states (pH-induced or GdmCl-induced) are induced. The range of distance changes between two probes is between 25.6 and 25.4 A while it is 20.4 A for the native state. Furthermore, the folding process consists of three kinetic phases while the unfolding process is a single phase. These observations agree with our previous sequential model: N(0) left arrow over right arrow D(1) left arrow over right arrow D(2) left arrow over right arrow D(3) (Chen et al., J Mol Biol 1991;220:771-778). The efficiency of protein folding may be attributed to initiating the folding process from these compact denatured structures.

  16. Realisation of a compact methane optical clock

    SciTech Connect

    Gubin, M A; Kireev, A N; Konyashchenko, A V; Kryukov, P G; Tausenev, A V; Tyurikov, D A; Shelkovnikov, A S

    2008-07-31

    A compact optical clock based on a double-mode He-Ne/CH{sub 4} optical frequency standard and a femtosecond Er{sup 3+} fibre laser is realised and its stability against a commercial hydrogen frequency standard is measured. (letters)

  17. Compact, Flexible Telemetry-Coding Circuits

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Tooley, Matthew; Settles, Beverly

    1993-01-01

    Circuits encoding binary telemetry data designed to synthesize any number of selectable codes. Designed for use aboard spacecraft, with features also making them attractive for terrestrial applications: Simple and compact relative to prior coding circuits, built with commercial integrated circuits, and incorporate protective redundancy. Output distortions minimized, and spurious attenuated and/or abbreviated output pulses eliminated.

  18. Compact range for variable-zone measurements

    DOEpatents

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-01-01

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  19. Compact range for variable-zone measurements

    DOEpatents

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-08-02

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  20. Compact range for variable-zone measurements

    DOEpatents

    Burnside, W.D.; Rudduck, R.C.; Yu, J.S.

    1987-02-27

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector. 2 figs.

  1. Soil compaction across the old rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluating soil compaction levels across the Old Rotation, the world’s oldest continuous cotton (Gossypium hirsutum L.) experiment, has not been conducted since the experiment transitioned to conservation tillage and high residue cover crops with and without irrigation. Our objective was to charact...

  2. Compact Electric- And Magnetic-Field Sensor

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  3. Compact Hydraulic Excavator and Support Unit

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1985-01-01

    Continuous-coal-mining machine maneuverable. Hydraulic coal excavator combined with chock, or roof-support structure, in self-contained unit that moves itself forward as it removes coal from seam. Unlike previous such units, new machine compact enough to be easily maneuverable; even makes small-radius right-angle turns.

  4. HI absorption in nearby compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-01-01

    HI absorption studies yield information on both AGN feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for HI absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3% to 87%). Of the detections, 71% exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disk. Comparing mid-infrared colours of our galaxies with HI detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic disks. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of HI content within the host galaxy. This sample extends previous HI surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  5. Compact microwave cavity for hydrogen atomic clock

    NASA Technical Reports Server (NTRS)

    Zhang, Dejun; Zhang, Yan; Fu, Yigen; Zhang, Yanjun

    1992-01-01

    A summary is presented that introduces the compact microwave cavity used in the hydrogen atomic clock. Special emphasis is placed on derivation of theoretical calculating equations of main parameters of the microwave cavity. A brief description is given of several methods for discriminating the oscillating modes. Experimental data and respective calculated values are also presented.

  6. Materials needs for compact fusion reactors

    SciTech Connect

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m/sup 3/ versus 0.3 to 0.5 MW/m/sup 3/), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.).

  7. Compaction and Wear Concerns on Sports Fields.

    ERIC Educational Resources Information Center

    Gillan, John

    1999-01-01

    Describes relatively simple measures athletic-facility managers can use to alleviate the turf destruction and compaction of athletic fields including seed and soil amendments and modifications on team practice. Ways of enhancing surface traction and lessen surface hardness are explored. (GR)

  8. Compact Tactile Sensors for Robot Fingers

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa

    2004-01-01

    Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.

  9. Compact, Lightweight Servo-Controllable Brakes

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  10. Compact Radar at Empire Challenge 2011

    DTIC Science & Technology

    2011-09-01

    Harrison, Eric D. Adler, David A. Wikner , Russell W. Harris, and Ronald J. Wellman) to the Compact Radar crew (Edward A. Viveiros, Jr., Steven...RDRL SER M A ZAGHLOUL ATTN RDRL SER M B NELSON ATTN RDRL SER M C DIETLEIN ATTN RDRL SER M C PATTERSON ATTN RDRL SER M D WIKNER

  11. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2006-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  12. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  13. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  14. Compact Apparatus For Growth Of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Miller, Teresa Y.

    1991-01-01

    Compact apparatus proposed specifically for growth of protein crystals in microgravity also used in terrestrial laboratories to initiate and terminate growth at prescribed times automatically. Has few moving parts. Also contains no syringes difficult to clean, load, and unload and introduces contaminant silicon grease into crystallization solution. After growth of crystals terminated, specimens retrieved and transported simply.

  15. Analysis of Technology for Compact Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance. The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work. a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected. b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor. c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.

  16. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-07

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  17. Investigation of HMA compactability using GPR technique

    NASA Astrophysics Data System (ADS)

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2014-05-01

    In-situ field density is often regarded as one of the most important controls used to ensure that an asphalt pavement being placed is of high quality. The achieved density results from the effectiveness of the applied compaction mode on the Hot Mix Asphalt (HMA) layer. It is worthwhile mentioning that the proper compaction of HMA increases pavement fatigue life, decreases the amount of permanent deformation or rutting, reduces the amount of oxidation or aging, decreases moisture damage or stripping, increases strength and internal stability, and may decrease slightly the amount of low-temperature cracking that may occur in the mix. Conventionally, the HMA density in the field is assessed by direct destructive methods, including through the cutting of samples or drilling cores. These methods are characterized by a high accuracy, although they are intrusive and time consuming. In addition, they provide local information, i.e. information only for the exact test location. To overcome these limitations, the use of non-intrusive techniques is often recommended. The Ground Penetrating Radar (GPR) technique is an example of a non-intrusive technique that has been increasingly used for pavement investigations over the years. GPR technology is practical and application-oriented with the overall design concept, as well as the hardware, usually dependent on the target type and the material composing the target and its surroundings. As the sophistication of operating practices increases, the technology matures and GPR becomes an intelligent sensor system. The intelligent sensing deals with the expanded range of GPR applications in pavements such as determining layer thickness, detecting subsurface distresses, estimating moisture content, detecting voids and others. In addition, the practice of using GPR to predict in-situ field density of compacted asphalt mixture material is still under development and research; however the related research findings seem to be promising

  18. COLLISIONS OF POROUS CLUSTERS: A GRANULAR-MECHANICS STUDY OF COMPACTION AND FRAGMENTATION

    SciTech Connect

    Ringl, Christian; Urbassek, Herbert M.; Bringa, Eduardo M.; Bertoldi, Dalia S.

    2012-06-20

    The collision of granular clusters can result in a number of complex outcomes from sticking to partial or full destruction of the clusters. These outcomes will contribute to the size distribution of dust aggregates, changing their optical properties and their capability to contribute to solid-state astrochemistry. We study the collision of two clusters of equal size, formed by approximately 7000 sub-{mu}m grains each, with a mass and velocity range that is difficult to sample in experiments. We obtain the outcome of the collision: compaction, fragmentation, and size distribution of ejecta, and type of outcome, as a function of velocity and impact parameter. We compare our results to other models and simulations, at both atomistic and continuum scales, and find some agreement together with some discrepancies. We also study collision-induced compaction as a function of cluster size, up to sizes of N = 250, 000, and find that for large clusters considerably higher compactions result at higher velocities.

  19. Conserved roles of the prion protein domains on subcellular localization and cell-cell adhesion.

    PubMed

    Solis, Gonzalo P; Radon, Yvonne; Sempou, Emily; Jechow, Katharina; Stuermer, Claudia A O; Málaga-Trillo, Edward

    2013-01-01

    Analyses of cultured cells and transgenic mice expressing prion protein (PrP) deletion mutants have revealed that some properties of PrP -such as its ability to misfold, aggregate and trigger neurotoxicity- are controlled by discrete molecular determinants within its protein domains. Although the contributions of these determinants to PrP biosynthesis and turnover are relatively well characterized, it is still unclear how they modulate cellular functions of PrP. To address this question, we used two defined activities of PrP as functional readouts: 1) the recruitment of PrP to cell-cell contacts in Drosophila S2 and human MCF-7 epithelial cells, and 2) the induction of PrP embryonic loss- and gain-of-function phenotypes in zebrafish. Our results show that homologous mutations in mouse and zebrafish PrPs similarly affect their subcellular localization patterns as well as their in vitro and in vivo activities. Among PrP's essential features, the N-terminal leader peptide was sufficient to drive targeting of our constructs to cell contact sites, whereas lack of GPI-anchoring and N-glycosylation rendered them inactive by blocking their cell surface expression. Importantly, our data suggest that the ability of PrP to homophilically trans-interact and elicit intracellular signaling is primarily encoded in its globular domain, and modulated by its repetitive domain. Thus, while the latter induces the local accumulation of PrPs at discrete punctae along cell contacts, the former counteracts this effect by promoting the continuous distribution of PrP. In early zebrafish embryos, deletion of either domain significantly impaired PrP's ability to modulate E-cadherin cell adhesion. Altogether, these experiments relate structural features of PrP to its subcellular distribution and in vivo activity. Furthermore, they show that despite their large evolutionary history, the roles of PrP domains and posttranslational modifications are conserved between mouse and zebrafish.

  20. Tunable UV and compact 2- to 12-micron laser development

    NASA Astrophysics Data System (ADS)

    Swim, Cynthia R.; Fox, Jay A.

    1998-07-01

    The Edgewood Research, Development, and Engineering Center (ERDEC) within the Chemical and Biological Defense Command (CBDCOM) is the Army's principal R&D center for chemical and biological defense technology, engineering, and service. ERDEC has been developing tunable 9 - 11 micron CO2 lidar systems for remote sensing of chemical agents for many years. However, due to the extended range requirements for conventional missions such as fixed site defense and reconnaissance, these systems are relatively large. Smaller, even handheld, standoff detection lidar systems would be useful for the individual warfighter or for decontamination efforts, as well as for numerous environmental monitoring applications. Lidar modeling calculations have been performed for such a system at the Night Vision and Electronic Sensors Directorate, (NVESD) the Army's lead laboratory for low energy lasers. The modeling indicates that fewer than 5 mJ of solid-state laser pulse energy would achieve the required detection sensitivity criteria for standoff chemical agent detection at ranges of several kilometers. This result coupled with recent advances in solid-state laser and frequency conversion technologies allow for extremely compact, tunable lasers and lidars to be produced which are suitable for a handheld standoff detection device. ERDEC has therefore begun an effort in development of compact 2 - 12 micron lasers and lidars. Three different approaches are being investigated and will be described. A review of completed efforts in tunable UV laser source development for remote sensing of biological agents via laser induced fluorescence (LIF) will also be presented.

  1. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  2. Compaction of DNA using C12EO4 cooperated with Fe(3.).

    PubMed

    Wang, Ling; Xu, Lu; Li, Guihua; Feng, Lei; Dong, Shuli; Hao, Jingcheng

    2016-08-01

    Nonionic surfactant, tetraethylene glycol monododecyl ether (C12EO4), cannot compact DNA because of its low efficiency in neutralizing the negative charges of the phosphate groups of DNA. It is also well-known that nonionic surfactants as a decompaction agent can help DNA be released from cationic surfactant aggregates. Herein, with the "bridge" Fe(3+) of C12EO4, we found that C12EO4 can efficiently compact DNA molecules into globular states with a narrow size distribution, indicating that the cooperative Fe(3+) can transform C12EO4 molecules from decompaction agents to compaction ones. The mechanism of the interaction of DNA and C12EO4 by "bridge" Fe(3+) is that the Fe(3+)-C12EO4 complexes act as multivalent ions by cooperative and hydrophobic interaction. The improved colloidal-stability and endosome escape effect induced by C12EO4 would provide the potential applications of nonionic surfactant in the physiological characteristics of DNA complexes. Cell viability assay demonstrates that Fe(3+)-C12EO4 complexes possess low cytotoxicity, ensuring good biocompatibility. Another advantage of this system is that the DNA complexes can be de-compacted by glutathione in cell without any other agents. This suggests the metal ion-nonionic surfactant complexes as compaction agent can act as the potential delivery tool of DNA in future nonviral gene delivery systems.

  3. Study of Underwater Shock Compaction Device for Compaction of Titanium Diboride Powder

    NASA Astrophysics Data System (ADS)

    Kennedy, G. B.; Kim, Y. K.; Hokamoto, K.; Itoh, S.

    2007-06-01

    Shock compaction for powders has been used to study bulk consolidation of powder materials. Shock compaction has the advantage of processing at low temperatures and short duration to limit effects of high temperatures for long times, such as increased grain size and high energy cost. Many methods of shock loading of powders have been employed: direct contact with explosive, explosively driven flyer plates, and flyer plates launched with light gas or propellant gun. Another method, using explosives to create a shockwave in water that is in contact with a powder container, has been used extensively at Kumamoto University. This work presents a study of the development of the underwater shockwave device and investigates the water container geometry for control of parameters for shockwave peak pressure, duration, and distribution through the powder compaction process. Results of simulations for optimization of shock compaction properties are presented along with measurements from input and propagated manganin gauge pressure measurements obtained from underwater shock compaction of titanium diboride. The hardness measurements throughout the bulk of the shock compacted titanium diboride are discussed.

  4. Study of Underwater Shock Compaction Device for Compaction of Titanium Diboride

    NASA Astrophysics Data System (ADS)

    Kennedy, G. B.; Kim, Y. K.; Hokamoto, K.; Itoh, S.

    2007-12-01

    Shock compaction for powders has been used to study bulk consolidation of powder materials. Shock compaction has the advantage of processing at low temperatures and short duration to limit effects of high temperatures for long times, such as increased grain size and high energy cost. Many methods of shock loading of powders have been employed: direct contact with explosive, explosively driven flyer plates, and flyer plates launched with light gas or propellant gun. Another method, using explosives to create a shockwave in water that is then contact with a powder container, has been used extensively at Kumamoto University. This work presents a study of the development of the underwater shockwave device and investigates the water container geometry for control of parameters for shockwave peak pressure, duration, and distribution through the powder compaction process. Results of simulations for optimization of shock compaction properties are presented along with measurements from manganin gauge pressure measurements obtained from underwater shock compaction of titanium diboride. The goal of this work is to develop a better understanding of the entire compaction process to utilize the in-situ data to modify numerical simulations to predict performance.

  5. Soil microbial activity as influenced by compaction and straw mulching

    NASA Astrophysics Data System (ADS)

    Siczek, A.; Frąc, M.

    2012-02-01

    Field study was performed on Haplic Luvisol soil to determine the effects of soil compaction and straw mulching on microbial parameters of soil under soybean. Treatments with different compaction were established on unmulched and mulched with straw soil. The effect of soil compaction and straw mulching on the total bacteria number and activities of dehydrogenases, protease, alkaline and acid phosphatases was studied. The results of study indicated the decrease of enzymes activities in strongly compacted soil and their increase in medium compacted soil as compared to no-compacted treatment. Mulch application caused stimulation of the bacteria total number and enzymatic activity in the soil under all compaction levels. Compaction and mulch effects were significant for all analyzed microbial parameters (P<0.001).

  6. Compact endoscopic fluorescence detection system for gastrointestinal cancers

    NASA Astrophysics Data System (ADS)

    Nadeau, Valerie; Padgett, Miles J.; Hewett, Jacqueline; Sibbett, Wilson; Hamdan, Khaled; Mohammed, Sami; Tait, Iain; Cushieri, Alfred

    2001-04-01

    We describe a compact endoscopic imaging system for the detection of gastro-intestinal cancers. This system is designed to image ALA-induced PpIX fluorescence and allows the clinician to perform fluorescence endoscopy and white light endoscopy simultaneously. The system comprises a filtered mercury arclamp for illumination and fluorescence excitation, a dual camera system coupled to an endoscope for detection and a desktop PC for processing and display of images. The result is a real-time colour image onto which fluorescence information is superimposed. Preliminary in vivo results indicate an increased fluorescence level within cancers in comparison with normal tissue. In addition, the system allows point spectroscopy to be carried out by the insertion of an optical fibre probe down the biopsy channel of the endoscope.

  7. Ultra compact triplexing filters based on SOI nanowire AWGs

    NASA Astrophysics Data System (ADS)

    Jiashun, Zhang; Junming, An; Lei, Zhao; Shijiao, Song; Liangliang, Wang; Jianguang, Li; Hongjie, Wang; Yuanda, Wu; Xiongwei, Hu

    2011-04-01

    An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion.

  8. Higher order spin effects in inspiralling compact objects binaries

    NASA Astrophysics Data System (ADS)

    Marsat, Sylvain

    2015-04-01

    We present recent progress on higher order spin effects in the post-Newtonian dynamics of compact objects binaries. We present first an extension of a Lagrangian formalism for point particle with spins, where finite size effects are represented by an additional multipolar structure. When applied to the case of a spin-induced octupole, the formalism allows for the computation of the cubic-in-spin effects that enter at the order 3.5PN. We also report on results obtained for quadratic-in-spin effects at the next-to-leading order 3PN. In both cases, we recover existing results for the dynamics, and derive for the first time the gravitational wave energy flux and orbital phasing. These results will be useful for the data analysis of the upcoming generation of advanced detectors of gravitational waves. NASA Grant 11-ATP-046.

  9. Compact, high power electron beam based terahertz sources.

    SciTech Connect

    Biedron, S. G.; Lewellen, J. W.; Milton, S. V.; Gopalsami, N.; Schneider, J. F.; Skubal, L.; Li, Y. L.; Virgo, M.; Gallerano, G. P.; Doria, A.; Giovenale, E.; Messina, G.; Spasovsky, I. P.; Office of The Director-Applied Science and Technology; Univ. of Maryland; ENEA

    2007-08-01

    Although terahertz (THz) radiation was first observed about 100 years ago, this portion of the electromagnetic spectrum at the boundary between the microwaves and the infrared has been, for a long time, rather poorly explored. This situation changed with the rapid development of coherent THz sources such as solid-state oscillators, quantum cascade lasers, optically pumped solid-state devices, and novel coherent radiator devices. These in turn have stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. Recently, there have been two related compact coherent radiation devices invented able to produce up to megawatts of peak THz power by inducing a ballistic bunching effect on the electron beam, forcing the beam to radiate coherently. An introduction to the two systems and the corresponding output photon beam characteristics will be provided.

  10. Method for Detecting Perlite Compaction in Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert

    2010-01-01

    Perlite is the most typical insulating powder used to separate the inner and outer shells of cryogenic tanks. The inner tank holds the low-temperature commodity, while the outer shell is exposed to the ambient temperature. Perlite minimizes radiative energy transfer between the two tanks. Being a powder, perlite will settle over time, leading to the danger of transferring any loads from the inner shell to the outer shell. This can cause deformation of the outer shell, leading to damaged internal fittings. The method proposed is to place strain or displacement sensors on several locations of the outer shell. Loads induced on the shell by the expanding inner shell and perlite would be monitored, providing an indication of the location and degree of compaction.

  11. Cell-Cell Communication Via Extracellular Membrane Vesicles and Its Role in the Immune Response

    PubMed Central

    Hwang, Inkyu

    2013-01-01

    The host immune response involves a variety of cell types, including specialized immune and non-immune cells. The delicate coordination among these cells via close communication is central for the proper operation of immune system. Cell-cell communication is mediated by a complex network that includes soluble factors such as cytokines, chemokines, and metabolites exported from cells, as well as membrane-bound receptors and their ligands. Cell-cell communication is also mediated by membrane vesicles (e.g., exosomes, ectosomes), which are either shed by distant cells or exchanged by cells that are making direct contact. Intercellular communication via extracellular membrane vesicles has drawn much attention recently, as they have been shown to carry various biomolecules that modulate the activities of recipient cells. In this review, I will discuss current views on cell-cell communication via extra-cellular membrane vesicles, especially shedded membrane vesicles, and their effects on the control of the immune system. PMID:23807045

  12. Spatiotemporal control of cell-cell reversible interactions using molecular engineering

    NASA Astrophysics Data System (ADS)

    Shi, Peng; Ju, Enguo; Yan, Zhengqing; Gao, Nan; Wang, Jiasi; Hou, Jianwen; Zhang, Yan; Ren, Jinsong; Qu, Xiaogang

    2016-10-01

    Manipulation of cell-cell interactions has potential applications in basic research and cell-based therapy. Herein, using a combination of metabolic glycan labelling and bio-orthogonal click reaction, we engineer cell membranes with β-cyclodextrin and subsequently manipulate cell behaviours via photo-responsive host-guest recognition. With this methodology, we demonstrate reversible manipulation of cell assembly and disassembly. The method enables light-controllable reversible assembly of cell-cell adhesion, in contrast with previously reported irreversible effects, in which altered structure could not be reused. We also illustrate the utility of the method by designing a cell-based therapy. Peripheral blood mononuclear cells modified with aptamer are effectively redirected towards target cells, resulting in enhanced cell apoptosis. Our approach allows precise control of reversible cell-cell interactions and we expect that it will promote further developments of cell-based therapy.

  13. Compact coverings for Baire locally convex spaces

    NASA Astrophysics Data System (ADS)

    Ka[Combining Cedilla]Kol, J.; Lopez Pellicer, M.

    2007-08-01

    Very recently Tkachuk has proved that for a completely regular Hausdorff space X the space Cp(X) of continuous real-valued functions on X with the pointwise topology is metrizable, complete and separable iff Cp(X) is Baire (i.e. of the second Baire category) and is covered by a family of compact sets such that K[alpha][subset of]K[beta] if [alpha][less-than-or-equals, slant][beta]. Our general result, which extends some results of De Wilde, Sunyach and Valdivia, states that a locally convex space E is separable metrizable and complete iff E is Baire and is covered by an ordered family of relatively countably compact sets. Consequently every Baire locally convex space which is quasi-Suslin is separable metrizable and complete.

  14. Compact fast analyzer of rotary cuvette type

    DOEpatents

    Thacker, Louis H.

    1976-01-01

    A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.

  15. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (~100 keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  16. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (˜100keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  17. Acoustic Scattering from Compact Bubble Clouds.

    NASA Astrophysics Data System (ADS)

    Schindall, Jeffrey Alan

    In this study, a simple model describing the low -frequency scattering properties of high void fraction bubble clouds in both the free field and near the ocean surface is developed. This model, which is based on an effective medium approximation and acoustically compact scatters, successfully predicts the results of the bubble cloud scattering experiment carried out at Lake Seneca in New York state for frequencies consistent with the model assumptions (Roy et al., 1992). The introduction of the surface is facilitated by the method of images and is subject to the same constraint of low-acoustic frequency imposed by the compact scatterer assumption. This model is not intended to serve as an exact replicate of oceanic bubble cloud scattering. The model herein was kept simple by design, for only then can the complex physical behavior be expressed in a simple analytical form. Simple, analytic theories facilitate the exploration of parameter space, and more importantly serve to illuminate the underlying physics.

  18. The Atacama Compact Array: An Overview

    NASA Astrophysics Data System (ADS)

    Iguchi, S.; Wilson, T. L.

    2010-01-01

    When completed, ALMA will comprise a 12-meter diameter antennas array (12-m Array) of a minimum of fifty antennas, and the ACA (Atacama Compact Array), composed of four 12-meter diameter antennas and twelve 7-meter diameter antennas. Out of the fifty antennas of the 12-m Array, one-half are provided by the North American partners of ALMA, the other half by the European partners. The sixteen antennas that will comprise the ACA are provided by the East Asian Partners of ALMA. In the last issue of the ALMA Science Newsletter, we outlined the testing of the prototype ALMA 12-meter diameter antennas and the procurement process for these antennas. In that article, only a short account was given of the antennas for the Atacama Compact Array (ACA). In the following we give an overview of the ACA, starting with an introduction to imaging using interferometers.

  19. Compact dusty clouds in a cosmic environment

    SciTech Connect

    Tsytovich, V. N.; Ivlev, A. V.; Burkert, A.; Morfill, G. E.

    2014-01-10

    A novel mechanism of the formation of compact dusty clouds in astrophysical environments is discussed. It is shown that the balance of collective forces operating in space dusty plasmas can result in the effect of dust self-confinement, generating equilibrium spherical clusters. The distribution of dust and plasma density inside such objects and their stability are investigated. Spherical dusty clouds can be formed in a broad range of plasma parameters, suggesting that this process of dust self-organization might be a generic phenomenon occurring in different astrophysical media. We argue that compact dusty clouds can represent condensation seeds for a population of small-scale, cold, gaseous clumps in the diffuse interstellar medium. They could play an important role in regulating its small-scale structure and its thermodynamical evolution.

  20. Compact inductive energy storage pulse power system.

    PubMed

    K, Senthil; Mitra, S; Roy, Amitava; Sharma, Archana; Chakravarthy, D P

    2012-05-01

    An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 μs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data.

  1. Chemical Abundances of Compact Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Lee, Ting-Hui; Shaw, Richard A.; Stanghellini, letizia; Riley, Ben

    2015-08-01

    We present preliminary results from an optical spectroscopic survey of compact planetary nebulae (PNe) in the Galactic disk. This is an ongoing optical+infrared spectral survey of 150 compact PNe to build a deep sample of PN chemical abundances. We obtained optical spectra of PNe with the Southern Astrophysical Research (SOAR) Telescope and Goodman High-Throughput Spectrograph between 2012 and 2015. These data were used to calculate the nebulae diagnostics such as electron temperature and density for each PN, and to derive the elemental abundances of He, N, O Ne, S and Ar. These abundances are vital to understanding the nature of the PNe, and their low- to intermediate-mass progenitor stars.

  2. RNA isolation and fractionation with compaction agents

    NASA Technical Reports Server (NTRS)

    Murphy, J. C.; Fox, G. E.; Willson, R. C.

    2001-01-01

    A new approach to the isolation of RNA from bacterial lysates employs selective precipitation by compaction agents, such as hexammine cobalt and spermidine. Using 3.5 mM hexammine cobalt, total RNA can be selectively precipitated from a cell lysate. At a concentration of 2 mM hexammine cobalt, rRNA can be fractionated from low molecular weight RNA. The resulting RNA mixture is readily resolved to pure 5S and mixed 16S/23S rRNA by nondenaturing anion-exchange chromatography. Using a second stage of precipitation at 8 mM hexammine cobalt, the low molecular weight RNA fraction can be isolated by precipitation. Compaction precipitation was also applied to the purification of an artificial stable RNA derived from Escherichia coli 5S rRNA and to the isolation of an Escherichia coli-expressed ribozyme. Copyright 2001 Academic Press.

  3. Rapid Compact Binary Coalescence Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Pankow, Chris; Brady, Patrick; O'Shaughnessy, Richard; Ochsner, Evan; Qi, Hong

    2016-03-01

    The first observation run with second generation gravitational-wave observatories will conclude at the beginning of 2016. Given their unprecedented and growing sensitivity, the benefit of prompt and accurate estimation of the orientation and physical parameters of binary coalescences is obvious in its coupling to electromagnetic astrophysics and observations. Popular Bayesian schemes to measure properties of compact object binaries use Markovian sampling to compute the posterior. While very successful, in some cases, convergence is delayed until well after the electromagnetic fluence has subsided thus diminishing the potential science return. With this in mind, we have developed a scheme which is also Bayesian and simply parallelizable across all available computing resources, drastically decreasing convergence time to a few tens of minutes. In this talk, I will emphasize the complementary use of results from low latency gravitational-wave searches to improve computational efficiency and demonstrate the capabilities of our parameter estimation framework with a simulated set of binary compact object coalescences.

  4. Sequence Compaction to Preserve Transition Frequencies

    SciTech Connect

    Pinar, Ali; Liu, C.L.

    2002-12-12

    Simulation-based power estimation is commonly used for its high accuracy despite excessive computation times. Techniques have been proposed to speed it up by compacting an input sequence while preserving its power-consumption characteristics. We propose a novel method to compact a sequence that preserves transition frequencies. We prove the problem is NP-Complete, and propose a graph model to reduce it to that of finding a heaviest weighted trail on a directed graph, along with a heuristic utilizing this model. We also propose using multiple sequences for better accuracy with even shorter sequences. Experiments showed that power dissipation can be estimated with an error of only 2.3 percent, while simulation times are reduced by 10. Proposed methods effectively preserve transition frequencies and generated solutions that are very close to an optimal. Experiments also showed that multiple sequences granted more accurate results with even shorter sequences.

  5. Dynamics and function of compact nucleosome arrays.

    PubMed

    Poirier, Michael G; Oh, Eugene; Tims, Hannah S; Widom, Jonathan

    2009-09-01

    The packaging of eukaryotic DNA into chromatin sterically occludes polymerases, recombinases and repair enzymes. How chromatin structure changes to allow their actions is unknown. We constructed defined fluorescently labeled trinucleosome arrays, allowing analysis of chromatin conformational dynamics via fluorescence resonance energy transfer (FRET). The arrays undergo reversible Mg2+-dependent folding similar to that of longer arrays studied previously. We define two intermediate conformational states in the reversible folding of the nucleosome arrays and characterize the microscopic rate constants. Nucleosome arrays are highly dynamic even when compact, undergoing conformational fluctuations on timescales in the second to microsecond range. Compact states of the arrays allow binding to DNA within the central nucleosome via site exposure. Protein binding can also drive decompaction of the arrays. Thus, our results reveal multiple modes by which spontaneous chromatin fiber dynamics allow for the invasion and action of DNA-processing protein complexes.

  6. Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection.

    PubMed

    Oliver, Stefan L; Yang, Edward; Arvin, Ann M

    2017-01-01

    The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection.

  7. Histological Architecture Underlying Brain-Immune Cell-Cell Interactions and the Cerebral Response to Systemic Inflammation.

    PubMed

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2017-01-01

    Although the brain is now known to actively interact with the immune system under non-inflammatory conditions, the site of cell-cell interactions between brain parenchymal cells and immune cells has been an open question until recently. Studies by our and other groups have indicated that brain structures such as the leptomeninges, choroid plexus stroma and epithelium, attachments of choroid plexus, vascular endothelial cells, cells of the perivascular space, circumventricular organs, and astrocytic endfeet construct the histological architecture that provides a location for intercellular interactions between bone marrow-derived myeloid lineage cells and brain parenchymal cells under non-inflammatory conditions. This architecture also functions as the interface between the brain and the immune system, through which systemic inflammation-induced molecular events can be relayed to the brain parenchyma at early stages of systemic inflammation during which the blood-brain barrier is relatively preserved. Although brain microglia are well known to be activated by systemic inflammation, the mechanism by which systemic inflammatory challenge and microglial activation are connected has not been well documented. Perturbed brain-immune interaction underlies a wide variety of neurological and psychiatric disorders including ischemic brain injury, status epilepticus, repeated social defeat, and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Proinflammatory status associated with cytokine imbalance is involved in autism spectrum disorders, schizophrenia, and depression. In this article, we propose a mechanism connecting systemic inflammation, brain-immune interface cells, and brain parenchymal cells and discuss the relevance of basic studies of the mechanism to neurological disorders with a special emphasis on sepsis-associated encephalopathy and preterm brain injury.

  8. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.

    PubMed

    Markosyan, Ruben M; Miao, Chunhui; Zheng, Yi-Min; Melikyan, Gregory B; Liu, Shan-Lu; Cohen, Fredric S

    2016-01-01

    Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.

  9. Compact Reconfigurable HF-UHF Antennas

    DTIC Science & Technology

    2007-11-02

    7] P. J. Rainville, F. J. Harackewiez, Magnetic Tuning of a Microstrip Patch Antenna Fabricated on a Ferrite Film, IEEE Microwave and Guided Wave...Letters, 1992, Vol. 2 pp. 483-5. [8] R. K. Misra, S. S. Pattnaik, N. Das, Tuning of Microstrip Antenna on Ferrite Substrate, IEEE Transactions on...DATES COVERED Final , 01 June 1999 to 31 Dec., 2003 4. TITLE AND SUBTITLE Compact Reconfigurable HF-UHF antennas 5. FUNDING

  10. Optimal Design of Compact Spur Gear Reductions

    DTIC Science & Technology

    1992-09-01

    stress, psi Lundberg and Palmgren (1952) developed a theory for the life and pressure angle, deg capacity of ball and roller bearings . This life model is... bearings (Lundberg and Paimgren, 1952). Lundberg and Palmgren determined that the scatter in the life of a bearing can be modeled with a two-parameter...optimal design of compact spur gear reductions includes the Vf unit gradient in the feasible direction selection of bearing and shaft proportions in

  11. VLA neutral hydrogen imaging of compact groups

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Mcmahon, P. M.; Vangorkom, J. H.

    1990-01-01

    Images of the neutral hydrogen (H I) in the direction of the compact groups of galaxies, HCG 31, HCG 44, and HCG 79 are presented. The authors find in HCG 31 and HCG 79, emission contained within a cloud much larger than the galaxies as well as the entire group. The H I emission associated with HCG 44 is located within the individual galaxies but shows definite signs of tidal interactions. The authors imaged the distribution and kinematics of neutral hydrogen at the two extremes of group sizes represented in Hickson's sample. HCG 44 is at the upper limit while HCG 18, HCG 31, and HCG 79 are at the lower end. Although the number of groups that have been imaged is still very small, there may be a pattern emerging which describes the H I morphology of compact groups. The true nature of compact groups has been the subject of considerable debate and controversy. The most recent observational and theoretical evidence strongly suggests that compact groups are physically dense, dynamical systems that are in the process of merging into a single object (Williams and Rood 1987, Hickson and Rood 1988, Barnes 1989). The neutral hydrogen deficiency observed by Williams and Rood (1987) is consistent with a model in which frequent galactic collisions and interactions have heated some of the gas during the short lifetime of the group. The H I disks which are normally more extended than the luminous ones are expected to be more sensitive to collisions and to trace the galaxy's response to recent interactions. Very Large Array observations can provide in most cases the spatial resolution needed to confirm the dynamical interactions in these systems.

  12. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  13. Growing Magnetic Fields in Central Compact Objects

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Page, D.

    2011-10-01

    We study the effects of growth models of magnetic fields in Central Compact Objects (CCOs). Such a field evolution is not a new idea (Blandford, Applegate, & Hernquist 1983) but the evolutionary implications not have been followed up completely (Michel 1994). We discussed the new class of neutron stars which belong to five main types that have mainly been recognized in the last ten years. The possibility that a rapid weakly magnetized pulsar might have formed in SN1987A is commented.

  14. Iterative solution of high order compact systems

    SciTech Connect

    Spotz, W.F.; Carey, G.F.

    1996-12-31

    We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.

  15. Compact, Automated, Frequency-Agile Microspectrofluorimeter

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.; Guignon, Ernest F.

    1995-01-01

    Compact, reliable, rugged, automated cell-culture and frequency-agile microspectrofluorimetric apparatus developed to perform experiments involving photometric imaging observations of single live cells. In original application, apparatus operates mostly unattended aboard spacecraft; potential terrestrial applications include automated or semiautomated diagnosis of pathological tissues in clinical laboratories, biomedical instrumentation, monitoring of biological process streams, and portable instrumentation for testing biological conditions in various environments. Offers obvious advantages over present laboratory instrumentation.

  16. Compact quiescent galaxies at intermediate redshifts {sup ,}

    SciTech Connect

    Hsu, Li-Yen; Stockton, Alan; Shih, Hsin-Yi

    2014-12-01

    From several searches of the area common to the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we have selected 22 luminous galaxies between z ∼ 0.4 and z ∼ 0.9 that have colors and sizes similar to those of the compact quiescent galaxies at z > 2. By exploring structural parameters and stellar populations, we found that most of these galaxies actually formed most of their stars at z < 2 and are generally less compact than those found at z > 2. Several of these young objects are disk-like or possibly prolate. This lines up with several previous studies that found that massive quiescent galaxies at high redshifts often have disk-like morphologies. If these galaxies were to be confirmed to be disk-like, their formation mechanism must be able to account for both compactness and disks. On the other hand, if these galaxies were to be confirmed to be prolate, the fact that prolate galaxies do not exist in the local universe would indicate that galaxy formation mechanisms have evolved over cosmic time. We also found five galaxies forming over 80% of their stellar masses at z > 2. Three of these galaxies appear to have been modified to have spheroid-like morphologies, in agreement with the scenario of 'inside-out' buildup of massive galaxies. The remaining galaxies, SDSS J014355.21+133451.4 and SDSS J115836.93+021535.1, have truly old stellar populations and disk-like morphologies. These two objects would be good candidates for nearly unmodified compact quiescent galaxies from high redshifts that are worth future study.

  17. Compaction Characteristics of Earth-Rock Mixtures

    DTIC Science & Technology

    1991-08-01

    position unless so designated by other authorized documents. The contents of this report are not to be used for advertising, publication, or...materials. In addition, these materials are " designed " as compacted fill by assessment of their properties through laboratory testing to establish fill...very sporadic and has mostly fallen to organizations engaged in regular major design and construction activities involving these materials such as the

  18. Light, Compact Pumper for Harbor Fires

    NASA Technical Reports Server (NTRS)

    Burns, R. A.

    1983-01-01

    Report describes development of new transportable water-pumping unit for fire-fighting. Compact, self-contained unit provides fire protection at coastal and inland ports and is lighter than standard firetruck pumper of same capacity. Used to fight fires in harbors, cities, forests, refineries, chemical plants, and offshore drilling platforms. Other possible applications include cleaning up oilspills, pumping out ships, and flood control pumping.

  19. Al Ager Water Compact Unit, Nassriya, Iraq

    DTIC Science & Technology

    2008-07-22

    plant was to contain a reverse osmosis unit, an above-ground storage reservoir, a pipe network connecting to the existing water network , and a...the existing water network , and a perimeter fence for the new facility. To date, the Al Ager Water Compact Unit project results are consistent with...of 110 millimeter (mm) polyvinyl chloride (PVC), connection to the existing water network , and a perimeter fence measuring approximately 50-m x 30-m

  20. Optical Omega network: a compact implementation technique

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Cheng, L. M.

    1995-10-01

    We propose a technique for the compact implementation of an optical Omega network. This technique utilizes the concept that both the perfect-shuffle interconnection and the switching stages can be realized by the same procedures, i.e., duplicate, shift, superimpose, and mask. As a result, a single set of optics is sufficient to realize the whole Omega network in a time-multiplexed recursive manner. Optical setups were designed and a proof-of-principle experiment was performed.

  1. Understanding the mechanical and acoustical characteristics of sand aggregates compacting under triaxial conditions

    NASA Astrophysics Data System (ADS)

    Hangx, Suzanne; Brantut, Nicolas

    2016-04-01

    Mechanisms such as grain rearrangement, coupled with elastic deformation, grain breakage, grain rearrangement, grain rotation, and intergranular sliding, play a key role in determining porosity and permeability reduction during burial of clastic sediments. Similarly, in poorly consolidated, highly porous sands and sandstones, grain rotation, intergranular sliding, grain failure, and pore collapse often lead to significant reduction in porosity through the development of compaction bands, with the reduced porosity and permeability of such bands producing natural barriers to flow within reservoir rocks. Such time-independent compaction processes operating in highly porous water- and hydrocarbon-bearing clastic reservoirs can exert important controls on production-related reservoir deformation, subsidence, and induced seismicity. We performed triaxial compression experiments on sand aggregates consisting of well-rounded Ottawa sand (d = 300-400 μm; φ = 36.1-36.4%) at room temperature, to systematically investigate the effect of confining pressure (Pceff = 5-100 MPa), strain rate (10-6-10-4 s-1) and chemical environment (decane vs. water; Pf = 5 MPa) on compaction. For a limited number of experiments grain size distribution (d = 180-500 μm) and grain shape (subangular Beaujean sand; d = 180-300 μm) were varied to study their effect. Acoustic emission statistics and location, combined with microstructural and grain size analysis, were used to verify the operating microphysical compaction mechanisms. All tests showed significant pre-compaction during the initial hydrostatic (set-up) phase, with quasi-elastic loading behaviour accompanied by permanent deformation during the differential loading stage. This permanent volumetric strain involved elastic grain contact distortion, particle rearrangement, and grain failure. From the acoustic data and grain size analysis, it was evident that at low confining pressure grain rearrangement controlled compaction, with grain

  2. Infiltration tests on fractured compacted clay

    SciTech Connect

    McBrayer, M.C.; Mauldon, M.; Drumm, E.C.; Wilson, G.V.

    1997-05-01

    Desiccation and freeze-thaw of compacted clay barriers may result in cracks that serve as preferential flow paths. A series of infiltration tests on compacted kaolin samples was conducted to explore the importance of preferential flow paths during infiltration, and their effect on the infiltration rate. Clod size at the time of compaction was found to have a strong influence on both the rate and depth of infiltration. The authors suggest that flow and infiltration through fractured clay may be described in terms of two stages: an initial dynamic stage in which the infiltration rate is initially high but decreases rapidly due to the clay swelling and closing fractures, and a steady-state stage usually characterized by k{sub sat}, during which the infiltration rate is relatively constant. The study has shown that cracks do not fully heal upon hydration and readily reopen during subsequent dehydration. Infiltration rates during the dynamic stage of infiltration, while cracks are closing, are orders of magnitude higher than the steady-state rate used to estimate k{sub sat}, for barrier evaluation.

  3. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  4. Differentiation and compaction in the Skaergaard intrusion

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Thy, P.; Holness, M.; Jakobsen, J. K.; Salmonsen, L.; Humphreys, M.; Lesher, C. E.

    2009-12-01

    Although it is largely agreed that crystallization occurs inwardly in crystal mushes along the margins of magma chambers, the efficiency and mechanisms of differentiation are contended. The fractionation paradigm hinges on mass exchange between a crystal mush and the main magma reservoir resulting in coarse-grained, refractory (cumulate) rocks of primary crystals, and complementary enrichment of incompatible elements in the main magma. Diffusion, convection, liquid immiscibility and compaction have been proposed as mechanisms driving this mass exchange. We examine the efficiency of differentiation in basaltic crystal mushes of the Skaergaard magma chamber. The contents of incompatible elements such as phosphorus and calculated final porosities are smallest in cumulate rocks at the floor (~5% final porosity above the level of magnetite-in), intermediate at the walls (~20%) and highest at the roof (~55%). Mass exchange and differentiation are thus highly efficient at the floor but inefficient at the roof. This is best explained by compaction squeezing interstitial liquid out of the crystal mush preferentially at the floor. At the walls only mush with porosity less than ~20% was able to stick rather than collapsing into the chamber, resulting in moderately efficient differentiation. We conclude that compaction moderates the final crystal mush porosity and the efficiency of magma differentiation depending on chamber dynamics.

  5. Electrothermal Defect Detection in Powder Metallurgy Compacts

    NASA Astrophysics Data System (ADS)

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2006-03-01

    Faced with increasing market pressures, metal part manufacturers have turned to new processes and fabrication technologies. One of these processes is powder metallurgy (P/M), which is employed for low-cost, high-volume precision part manufacturing. Despite many advantages, the P/M process has created a number of challenges, including the need for high-speed quality assessment and control, ideally for each compact. Consequently, sophisticated quality assurance is needed to rapidly detect flaws early in the manufacturing cycle and at minimal cost. In this paper we will discuss our progress made in designing and refining an active infrared (IR) detection system for P/M compacts. After discussing the theoretical background in terms of underlying equations and boundary conditions, analytical and numerical solutions are presented that are capable of predicting temperature responses for various defect sizes and orientations of a dynamic IR testing system. Preliminary measurements with controlled and industrial samples have shown that this active IR methodology can successfully be employed to test both green-state and sintered P/M compacts. The developed system can overcome many limitations observed with a standard IR testing methodology such as emissivity, background calibration, and contact resistance.

  6. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van der Klis, Michiel

    2006-04-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  7. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter; van der Klis, Michiel

    2010-11-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  8. Design of optics for compact star sensors

    NASA Astrophysics Data System (ADS)

    Xu, Minyi; Shi, Rongbao; Shen, Weimin

    2016-10-01

    In order to adapt to small size and low cost space platform such as mini-satellites, this paper studies the design of optics for compact star sensor. At first, the relationship between limiting magnitude and optical system specifications which includes field of view and entrance pupil diameter is analyzed, based on its Pyramid identification algorithm and signal-to-noise ratio requirement. The specifications corresponding to different limiting magnitude can be obtained after the detector is selected, and both of the complexity of optical lens and the size of baffle can be estimated. Then the range of the limiting magnitude can be determined for the miniaturization of the optical system. Taking STAR1000 CMOS detector as an example, the compact design of the optical system can be realized when the limiting magnitude is in the interval of 4.9Mv 5.5Mv. At last, the lens and baffle of a CMOS compact star sensor is optimally designed, of which length and weight is respectively 124 millimeters and 300 grams.

  9. Compact x-ray source and panel

    SciTech Connect

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  10. Flotillins control zebrafish epiboly through their role in cadherin-mediated cell-cell adhesion.

    PubMed

    Morris, Eduardo A Rios; Bodin, Stéphane; Delaval, Bénédicte; Comunale, Franck; Georget, Virginie; Costa, Manoel L; Lutfalla, Georges; Gauthier-Rouvière, Cécile

    2017-02-22

    Zebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement. At the molecular level, we identified that Flotillins are required for the formation of E-cadherin-mediated cell-cell junctions. These results provide the first in vivo evidence that Flotillins regulate E-cadherin-mediated cell-cell junctions to allow epiboly progression.

  11. Roll compaction of mannitol: compactability study of crystalline and spray-dried grades.

    PubMed

    Wagner, Carl Moritz; Pein, Miriam; Breitkreutz, Jörg

    2013-09-10

    Purpose of this project was to investigate the roll compaction behavior of various mannitol grades. Therefore, five spray-dried grades as well as unprocessed β-d-mannitol were roll compacted with different compaction forces. The resulting granules were characterized with regard to their particle size distribution, flow properties, and BET surface area and compressed to tablets. Granules of unprocessed mannitol, even when applying high compaction forces during dry granulation, were characterized by a high amount of fines (about 21%), a small surface area (0.83 m(2)/g), and solely fair flowability (ffc=7.2). Tablets revealed either high friability or insufficient disintegration behavior. However, the use of spray-dried mannitol led to better results. Granules showed improved flow properties and a reduced amount of fines. Robust tablets with low friability were produced. Within the various spray-dried grades huge differences concerning the compactability were observed. Large BET surface areas of the granules resulted in advanced tensile strengths of the tablets, but acceptable disintegration behavior was maintained. These findings are relevant for the development of mannitol based drug formulations, in particular (oro)dispersible tablets containing a low dose or poor flowing active pharmaceutical ingredient, where direct compression is inappropriate and a granulation process prior to tableting is mandatory.

  12. LagC is required for cell-cell interactions that are essential for cell-type differentiation in Dictyostelium.

    PubMed

    Dynes, J L; Clark, A M; Shaulsky, G; Kuspa, A; Loomis, W F; Firtel, R A

    1994-04-15

    Strain AK127 is a developmental mutant of Dictyostelium discoideum that was isolated by restriction enzyme-mediated integration (REMI). Mutant cells aggregate normally but are unable to proceed past the loose aggregate stage. The cloned gene, lagC (loose aggregate C), encodes a novel protein of 98 kD that contains an amino-terminal signal sequence and a putative carboxy-terminal transmembrane domain. The mutant strain AK127 shows no detectable lagC transcript upon Northern analysis, indicating that the observed phenotype is that of a null allele. Expression of the lagC cDNA in AK127 cells complements the arrest at the loose aggregate stage, indicating that the mutant phenotype results from disruption of the lagC gene. In wild-type cells, lagC mRNA is induced at the loose aggregate stage and is expressed through the remainder of development. lagC- null cells aggregate but then disaggregate and reaggregate to form small granular mounds. Mature spores are produced at an extremely low efficiency (< 0.1% of wild type), appearing only after approximately 72 hr, whereas wild-type strains produce mature spores by 26 hr. lagC- null cells accumulate reduced levels of transcripts for the prestalk-enriched genes rasD and CP2 and do not express the DIF-induced prestalk-specific gene ecmA or the cAMP-induced prespore-specific gene SP60 to significant levels. In chimeric organisms resulting from the coaggregation of lagC- null and wild-type cells, cell-type-specific gene expression is rescued in the lagC- null cells; however, lagC- prespore cells are localized to the posterior of the prespore region and do not form mature spores, suggesting that LagC protein has both no cell-autonomous and cell-autonomous functions. Overexpression of lagC from an actin promoter in both wild-type and lagC- cells causes a delay at the tight aggregate stage, the first stage requiring LagC activity. These results suggest that the LagC protein functions as a nondiffusible cell-cell signaling molecule

  13. The Glycoprotein B Cytoplasmic Domain Lysine Cluster Is Critical for Varicella-Zoster Virus Cell-Cell Fusion Regulation and Infection.

    PubMed

    Yang, Edward; Arvin, Ann M; Oliver, Stefan L

    2017-01-01

    The conserved glycoproteins gB and gH-gL are essential for herpesvirus entry and cell-cell fusion induced syncytium formation, a characteristic of varicella-zoster virus (VZV) pathology in skin and sensory ganglia. VZV syncytium formation, which has been implicated in the painful condition of postherpetic neuralgia, is regulated by the cytoplasmic domains of gB (gBcyt) via an immunoreceptor tyrosine-based inhibition motif (ITIM) and gH (gHcyt). A lysine cluster (K894, K897, K898, and K900) in the VZV gBcyt was identified by sequence alignment to be conserved among alphaherpesviruses, suggesting a functional role. Alanine and arginine substitutions were used to determine if the positive charge and susceptibility to posttranslational modifications of these lysines contributed to gB/gH-gL cell-cell fusion. Critically, the positive charge of the lysine residues was necessary for fusion regulation, as alanine substitutions induced a 440% increase in fusion compared to that of the wild-type gBcyt while arginine substitutions had wild-type-like fusion levels in an in vitro gB/gH-gL cell fusion assay. Consistent with these results, the alanine substitutions in the viral genome caused exaggerated syncytium formation, reduced VZV titers (-1.5 log10), and smaller plaques than with the parental Oka (pOka) strain. In contrast, arginine substitutions resulted in syncytia with only 2-fold more nuclei, a -0.5-log10 reduction in titers, and pOka-like plaques. VZV mutants with both an ITIM mutation and either alanine or arginine substitutions had reduced titers and small plaques but differed in syncytium morphology. Thus, effective VZV propagation is dependent on cell-cell fusion regulation by the conserved gBcyt lysine cluster, in addition to the gBcyt ITIM and the gHcyt.

  14. Compact moving least squares: An optimization framework for generating high-order compact meshless discretizations

    NASA Astrophysics Data System (ADS)

    Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe

    2016-12-01

    A generalization of the optimization framework typically used in moving least squares is presented that provides high-order approximation while maintaining compact stencils and a consistent treatment of boundaries. The approach, which we refer to as compact moving least squares, resembles the capabilities of compact finite differences but requires no structure in the underlying set of nodes. An efficient collocation scheme is used to demonstrate the capabilities of the method to solve elliptic boundary value problems in strong form stably without the need for an expensive weak form. The flexibility of the approach is demonstrated by using the same framework to both solve a variety of elliptic problems and to generate implicit approximations to derivatives. Finally, an efficient preconditioner is presented for the steady Stokes equations, and the approach's efficiency and high order of accuracy is demonstrated for domains with curvi-linear boundaries.

  15. Real-time monitoring of suspension cell-cell communication using an integrated microfluidics.

    PubMed

    Xu, Tao; Yue, Wanqing; Li, Cheuk-Wing; Yao, Xinsheng; Cai, Guoping; Yang, Mengsu

    2010-09-07

    For the first time, we have developed a microfluidic device for on-chip monitoring of suspension cell-cell communication from stimulated to recipient HL-60 cells. A deformable PDMS membrane was developed as a compressive component to perform cell entrapment and exert different modes of mechanical stimulation. The number of cells trapped by this component could be modulated by flushing excessive cells towards the device outlet. The trapped cells could be triggered to release mediators by mechanical stimulation. Sandbag microstructures were used to immobilize recipient cells at well-defined positions. These recipient cells were evoked by mediators released from mechanically stimulated cells trapped in the compressive component. Normally closed microvalves were integrated to provide continuous-flow and static environment. We studied cell-cell communication between stimulated (in compressive component) and recipient (in sandbag structures) cells. Calcium oscillations were observed in some recipient cells only when a low number of cells were stimulated. Different mechanical stimulation and flow environment were also employed to study their impact on the behavior of cell-cell communication. We observed that both the duration and intensity of intracellular calcium responses increased in persistent stimulation and decreased in flowing environment. This microdevice may open up new avenues for real-time monitoring of suspension cell-cell communication, which propagates via gap-junction independent mechanism, with multiple variables under control.

  16. Physical Explanation of Coupled Cell-Cell Rotational Behavior and Interfacial Morphology: A Particle Dynamics Model

    PubMed Central

    Leong, Fong Yew

    2013-01-01

    Previous studies have reported persistent rotational behavior between adherent cell-cell pairs cultured on micropatterned substrates, and this rotation is often accompanied by a sigmoidal deflection of the cell-cell interface. Interestingly, the cell-cell rotation runs in the opposite reference frame from what could be expected of single cell locomotion. Specifically, the rotation of the cell pair consists of each individual cell protruding from the inwardly regressive arm of the cell-cell interface, and retracting from the other outwardly protrusive arm. To this author’s knowledge, the cause of this elusive behavior has not yet been clarified. Here, we propose a physical model based on particle dynamics, accounting for actomyosin forcing, viscous dissipation, and cortical tension. The results show that a correlation in actomyosin force vectors leads to both persistent rotational behavior and interfacial deflection in a simulated cell cluster. Significantly, the model, without any artificial cues, spontaneously and consistently reproduces the same rotational reference frame as experimentally observed. Further analyses show that the interfacial deflection depends predominantly on cortical tension, whereas the cluster rotation depends predominantly on actomyosin forcing. Together, these results corroborate the hypothesis that both rotational and morphological phenomena are, in fact, physically coupled by an intracellular torque of a common origin. PMID:24268142

  17. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells

    PubMed Central

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-01-01

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na+/H+ exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade. PMID:28205573

  18. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells.

    PubMed

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-02-13

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na(+)/H(+) exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade.

  19. Physical explanation of coupled cell-cell rotational behavior and interfacial morphology: a particle dynamics model.

    PubMed

    Leong, Fong Yew

    2013-11-19

    Previous studies have reported persistent rotational behavior between adherent cell-cell pairs cultured on micropatterned substrates, and this rotation is often accompanied by a sigmoidal deflection of the cell-cell interface. Interestingly, the cell-cell rotation runs in the opposite reference frame from what could be expected of single cell locomotion. Specifically, the rotation of the cell pair consists of each individual cell protruding from the inwardly regressive arm of the cell-cell interface, and retracting from the other outwardly protrusive arm. To this author's knowledge, the cause of this elusive behavior has not yet been clarified. Here, we propose a physical model based on particle dynamics, accounting for actomyosin forcing, viscous dissipation, and cortical tension. The results show that a correlation in actomyosin force vectors leads to both persistent rotational behavior and interfacial deflection in a simulated cell cluster. Significantly, the model, without any artificial cues, spontaneously and consistently reproduces the same rotational reference frame as experimentally observed. Further analyses show that the interfacial deflection depends predominantly on cortical tension, whereas the cluster rotation depends predominantly on actomyosin forcing. Together, these results corroborate the hypothesis that both rotational and morphological phenomena are, in fact, physically coupled by an intracellular torque of a common origin.

  20. Working Together for the Common Good: Cell-Cell Communication in Bacteria

    PubMed Central

    Schuster, Martin; Rumbaugh, Kendra P.

    2012-01-01

    The 4th ASM Conference on Cell-Cell Communication in Bacteria was held in Miami, FL, from 6 to 9 November 2011. This review highlights three key themes that emerged from the many exciting talks and poster presentations in the area of quorum sensing: sociomicrobiology, signal transduction mechanisms, and interspecies communication. PMID:22389476

  1. Shale seismic anisotropy vs. compaction trend

    NASA Astrophysics Data System (ADS)

    Pervukhina, M.

    2015-12-01

    Shales comprise more than 60% of sedimentary rocks and form natural seals above hydrocarbon reservoirs. Their sealing capacity is also used for storage of nuclear wastes. Shales are notorious for their strong elastic anisotropy, so-called, vertical transverse isotropy or VTI. This VTI anisotropy is of practical importance as it is required for correct surface seismic data interpretation, seismic to well tie and azimuth versus offset analysis. A number of competing factors are responsible for VTI anisotropy in shales, namely, (1) micro-scale elastic anisotropy of clay particles, (2) anisotropic orientation distribution function of clay particles, (3) anisotropic orientation of pores and organic matter. On the contrary, silt (non-clay mineralogy grains with size between 0.06 -0.002 mm) is known to reduce elastic anisotropy of shales. Methods developed for calculations of anisotropy in polycrystalline materials can be used to estimate elastic anisotropy of shales from orientation distribution function (ODF) of clay platelets if elastic properties of individual clay platelets are known. Unfortunately, elastic properties of individual clay platelets cannot be directly measured. Recently, elastic properties of properties of individual clay platelets with different mineralogy were calculated from first principles based on density functional theory. In this work we use these elastic properties of individual platelets of muscovite, illite-smectite and kaolinite to obtain correlations between elastic anisotropy and Legendre coefficients W200 and W400 of different ODFs. Comparison of the Legendre coefficients calculated for more than 800 shales from depths 0 - 6 km (www.rockphysicists.org/data) with those of compaction ODFs shows that compaction has no first order effect on elastic anisotropy. Thus, elastic anisotropy is to large extent determined by factors other than compaction processes, such as depositional environment, chemical composition of fluid, silt fraction, etc.

  2. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2013-09-01

    Infrared sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection has become application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive infrared (IR) sensors, the Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage and 2-stage cold-head architectures with an inventive set of warm-end mechanisms into a single mechanical module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (<20% improvement) and exported vibration performance (<=25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing techniques and hardware can be utilized to null all motion along the common axis. Low vibration translates to better sensor performance resulting in simpler, more direct mechanical mounting configurations, eliminating the need for convoluted, expensive, massive, long lead damping hardware.

  3. CYANATE ION IN COMPACT AMORPHOUS WATER ICE

    SciTech Connect

    Mate, Belen; Herrero, Victor J.; Rodriguez-Lazcano, Yamilet; Moreno, Miguel A.; Escribano, Rafael; Fernandez-Torre, Delia; Gomez, Pedro C.

    2012-11-10

    The 4.62 {mu}m infrared (2164.5 cm{sup -1}) absorption band, observed in ice mantels toward many young stellar objects, has been mostly attributed to the {nu}{sub 3} (CN stretch) band of OCN{sup -} ions. We present in this work a spectroscopic study of OCN{sup -} ions embedded in compact amorphous ice in a range of concentrations and temperatures relevant to astronomical observations together with quantum mechanical calculations of the {nu}{sub 3} band of OCN{sup -} in various H{sub 2}O environments. The ice samples containing the ions are prepared through hyperquenching of liquid droplets of K{sup +}OCN{sup -} solutions on a substrate at 14 K. The {nu}{sub 3} OCN{sup -} band appears as a broad feature peaking at 4.64 {mu}m with a secondary maximum at 4.54 {mu}m and is much weaker than the corresponding peak in the liquid solution or in the solid salt. A similar weakening is observed for other OCN{sup -} absorption peaks at 7.66 {mu}m (2{nu}{sub 2}) and 8.20 {mu}m ({nu}{sub 1}). The theoretical calculations for the {nu}{sub 3} vibration lead to a range of frequencies spanning the experimentally observed width. This frequency spread could help explain the pronounced drop in the band intensity in the ice. The OCN{sup -} {nu}{sub 3} band in the present compact ices is also broader and much weaker than that reported in the literature for OCN{sup -} ions obtained by variously processing porous ice samples containing suitable neutral precursors. The results of this study indicate that the astronomical detection of OCN{sup -} in ice mantels could be significantly impaired if the ion is embedded in a compact water network.

  4. Spin supplementary conditions for spinning compact binaries

    NASA Astrophysics Data System (ADS)

    Mikóczi, Balázs

    2017-03-01

    We consider different spin supplementary conditions (SSC) for a spinning compact binary with the leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed, but it is acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed by Ostrogradsky and compute the conserved quantities and the dissipative part of relative motion during the gravitational radiation of each SSC. We give the orbital elements and observed quantities of the SO dynamics, for instance, the energy and the orbital angular momentum losses and waveforms, and discuss their SSC dependence.

  5. Winds from disks in compact binaries

    SciTech Connect

    Mauche, C.W.

    1993-10-27

    We herein present an observational and theoretical review of the winds of compact binaries. After a brief consideration of the accretion disk coronae and winds of X-ray binaries, the review concentrates on the winds of cataclysmic variables (CVs). Specifically, we consider the related problems of the geometry and mass-loss rate of the winds of CVs, their ionization state and variability, and the results from studies of eclipsing CVs. Finally, the properties of bona fide accretion disk wind models are reviewed.

  6. Compact telescope for free-space communications

    NASA Astrophysics Data System (ADS)

    Draganov, Vladimir; James, Daryl G.

    2002-10-01

    Several types of telescopes are used for free space telecommunications. The most common are Cassegrain and Gregorian telescopes. The main difference between Cassegrain and Gregorian optical systems is that Gregorian telescopes employ a concave secondary mirror located beyond the focus of the primary mirror. This results in longer tube lengths, as the distance between mirrors is slightly more than the sum of their focal lengths, which is the reason Cassegrain systems are the most common. In addition, Gregorian telescopes produce an upright image, while Cassegrain telescopes produce an inverted image. FSONA is presenting a new compact optical system, which can be described as a modified Gregorian telescope. This telescope is ideally suited for free space optical communications but also has many other applications. The compact telescope is created from a standard Gregorian system by flipping the secondary mirror over a folding mirror installed approximately in the middle of the optical path between primary and secondary mirrors. In this manner, the primary mirror is constructed with a concentric "double curved" geometry, and a central obscuring folding mirror which matches the diameter of the smaller curve of the primary is mounted a short distance in front. This "double curved" geometry is easily produced using diamond turning technology, and the result is a compact telescope approximately 1/2 the length of a regular Gregorian telescope and roughly 2/3 the length of a Cassegrain telescope. There are several advantages to using this type of telescope: 1. The system is very compact. Telescope can be as short as 1/7 of the focal length of the system. 2. For Cassegrain and Gregorian systems it is very critical to keep tight tolerances on the centration between primary and secondary mirrors. The modified Gregorian telescope will always have perfect centration because both curved surfaces are machined at the same time on a diamond turning lathe. The folding mirror is flat

  7. Impact compaction of a granular material

    SciTech Connect

    Fenton, Gregg; Asay, Blaine; Dalton, Devon

    2015-05-19

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequently used for computational modeling.

  8. Fungal bioturbation paths in a compact disk.

    PubMed

    Garcia-Guinea, J; Cárdenes, V; Martínez, A T; Martínez, M J

    2001-08-01

    We report here on bioturbation traces, with micro-dendrite textures, composed of a mixture of altered aluminum and polycarbonate, which have been developed in a common compact disk (CD), destroying information pits. Fungal hyphae proliferated in these deteriorated zones, and Geotrichum-type fungus was isolated from surface-sterilized CD fragments. The severe biodeterioration described is attributed to the slow growth of this arthroconidial fungus on the CD material in the tropical indoor environment of Belize, Central America (approximately 30 degrees C, approximately 90% humidity).

  9. Compact fluorescent lamp applications in luxury hotels

    SciTech Connect

    Gilleskie, R.J.

    1996-01-01

    Over the past several years, consumers, lighting designers, and energy conservationists have paid increasing attention to the special characteristics of compact fluorescent lamps (CFLs). CFLs can typically be used to replace incandescent lamps of three to four times their own wattage, and their color rendering indices (CRIs)-80 to 85-make them virtually indistinguishable from incandescents. The typical 10,0000-hour life of a CFL often makes savings in labor its most desirable feature when compared to a shorter-lived incandescent lamp.

  10. Nonlinearly stable compact schemes for shock calculations

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1992-01-01

    The applications of high-order, compact finite difference methods in shock calculations are discussed. The main concern is to define a local mean which will serve as a reference for introducing a local nonlinear limiting to control spurious numerical oscillations while maintaining the formal accuracy of the scheme. For scalar conservation laws, the resulting schemes can be proven total-variation stable in one space dimension and maximum-norm stable in multiple space dimensions. Numerical examples are shown to verify accuracy and stability of such schemes for problems containing shocks. These ideas can also be applied to other implicit schemes such as the continuous Galerkin finite element methods.

  11. Compaction Control of Earth-Rock Mixtures

    DTIC Science & Technology

    1991-08-01

    Branch, Soils Section, USACE, Washington, DC. Thc Program Manager is Mr. G. P. Hale, Chief, Soils Research Center (SRC), Soil and Rock Mechanics...components are accor~t ig t hr, ’ r:if, I V 1 "S , sii ficatio System . particles (say, up to 24 in.*) and compacted in much thicker lifts (say, upto 36 in...weight of manage - able sizes, or even the creation of a "parallel" gradation with a smaller maximum particle size. Formal research to assess the

  12. Panel sees limited interest in compact nukes

    SciTech Connect

    Not Available

    1983-11-01

    Participants in the Joint Power Generation conference thought compact (200- to 300-MW) nuclear reactors would be useful to developing countries, but only the Canadians showed interest in becoming suppliers. Others said they would simply downsize existing designs. A 300-MW mini-Candu that can be built in 48 months will use proven components and have the same price tag as a full-sized unit. A market may develop in the future in the US and other industrialized countries for low-temperature heat sources. Another 5 to 10 developing countries would likely join the 7 now using nuclear power. (DCK)

  13. Physics of accretion flows around compact objects

    NASA Astrophysics Data System (ADS)

    Lasota, Jean-Pierre

    2007-01-01

    Several physical and astrophysical problems related to accretion onto black holes and neutron stars are briefly reviewed. I discuss the observed differences between these two types of compact objects in quiescent Soft X-ray Transients. Then I review the status of various non-standard objects suggested as an alternative to black holes. Finally, I present new results and a suggestion about the nature of the jet activity in Active Galactic Nuclei. To cite this article: J.-P. Lasota, C. R. Physique 8 (2007).

  14. Compact component for integrated quantum optic processing

    NASA Astrophysics Data System (ADS)

    Sahu, Partha Pratim

    2015-11-01

    Quantum interference is indispensable to derive integrated quantum optic technologies (1-2). For further progress in large scale integration of quantum optic circuit, we have introduced first time two mode interference (TMI) coupler as an ultra compact component. The quantum interference varying with coupling length corresponding to the coupling ratio is studied and the larger HOM dip with peak visibility ~0.963 ± 0.009 is found at half coupling length of TMI coupler. Our results also demonstrate complex quantum interference with high fabrication tolerance and quantum visibility in TMI coupler.

  15. Proposal to produce large compact toroids

    SciTech Connect

    Phillips, J.A.

    1981-03-01

    Relatively large, hot compact toroids might be produced in the annular space between two concentric one-turn coils. With currents in the two coils flowing in the same direction, the magnetic fields on each side of the plasma are in opposite directions. As the fields are raised, the plasma ring is heated and compressed radially towards the center of the annular space. By the addition of two sets of auxiliary coils, the plasma ring can be ejected out one end of the two-coil system into a long axial magnetic field.

  16. Raytheon's next generation compact inline cryocooler architecture

    SciTech Connect

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-29

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  17. Renewing the compact between science and government

    SciTech Connect

    Stokes, D.E.

    1995-12-31

    The historical relationship between science and government was profoundly changed by World War II and the vast nature of government sponsored research which continued in the post-war era but is now by threatened government budget deficits. The concepts advanced by the scientific community to justify continued government support are examined and compared to specific research and development program funding decisions. The use-inspired basic research justification is addressed in detail as an approach to strengthen the bridge between science and government. Some methodology to institutionalizing a new compact for government funded research is presented in detail. 8 refs., 4 figs.

  18. Compact proton spectrometers for measurements of shock

    SciTech Connect

    Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M G; Casey, D T; Sinenian, N; Manuel, M; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G; Dewald, E; Doeppner, T; Edwards, M J; Glenzer, S H; Hicks, D; Landen, O L; London, R; Meezan, N B

    2012-05-02

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  19. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  20. Dynamic Hysteresis in Compacted Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chowdary, Krishna M.

    The frequency and temperature dependent magnetic response of a bulk soft magnetic nanocomposite made by compacting Fe10Co 90 nanoparticles was measured and modeled. Electron microscopy and x-ray diffraction were used to characterize the size, composition, and structure of the nanoparticles and nanocomposite. Polyol synthesis was used to produce 200 nm particles with average grain size 20 nm and large superparamagnetic fraction. The nanoparticles were consolidated to 90% theoretical density by plasma pressure compaction. The compacted nanoparticles retained the 20 nm average grain size and large superparamagnetic fraction. The nanocomposite resistivity was more than three times that of the bulk alloy. Vibrating sample and SQUID-MPMS magnetometers were used for low frequency magnetic measurements of the nanoparticles and nanocomposite. Compaction reduced the coercivity from 175 Oe to 8 Oe and the effective anisotropy from 124 x 10 3 ergs/cc to 7.9 x 103 ergs/cc. These reductions were caused by increased exchange coupling between surface nanograins, consistent with predictions from the Random Anisotropy model. Varying degrees of exchange coupling existed within the nanocomposite, contributing to a distribution of energy barriers. A permeameter was used for frequency dependent magnetic measurements on a toroid cut from the nanocomposite. Complex permeability, coercivity, and power loss were extracted from dynamic minor hysteresis loops measured over a range of temperatures (77 K - 873 K) and frequencies (0.1 kHz - 100 kHz). The real and imaginary parts of the complex permeability spectrum showed asymmetries consistent with a distribution of energy barriers and high damping. When the complex permeability, power loss, and coercivity were scaled relative to the peak frequency of the imaginary permeability, all fell on universal curves. Various microscopic and macroscopic models for the complex permeability were investigated. The complex permeability was successfully fit

  1. Compact Plasma Accelerator for Micropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.

  2. Overview of the Compact Ignition tokamak

    SciTech Connect

    Flanagan, C. A.; Peng, Yueng Kay Martin

    1986-01-01

    The Compact Ignition Tokamak (CIT) mission is to achieve ignition and provide the capability to experimentally study burning plasma behavior. A national team has developed a baseline concept including definition of the necessary research and development. The baseline concept satisfies the physics performance objectives established for the project and complies with defined design specifications. To ensure that the mission is achieved, the design requires large magnetic fields on axis (10 T) and use of large plasma currents (10 MA). The design is capable of accommodating significant auxiliary heating to enter the ignited regime. The CIT is designed to operate in plasma parameter regimes that a are directly relevant to future fusion power reactors.

  3. Upscaling spatially heterogeneous parameterisations of soil compaction to investigate catchment scale flood risk.

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian

    2016-04-01

    Upscaling land management signals observed at the point scale to the regional scale is challenging for three reasons. Individual catchments are unique and at the point scale land management signals are spatially and temporally variable, depending on topography, soil characteristics and on the individual characteristics of a rainfall event. However at larger scales land management effects diffuse and climatic or human induced signals have a larger impact. This does not mean that there is no influence on river flows, just that the effect is not discernible. Land management practices in different areas of the catchment vary spatially and temporally and their influence on the flood hydrograph will be different at different points within the catchment. Once the water enters the river, the land management effects are disturbed further by hydrodynamic and geomorphological dispersion. Pastoral agriculture is the dominant rural land cover in the UK (40% is classified as improved/ semi-natural grassland - Land Cover Map 2007). The intensification of agriculture has resulted in greater levels of soil compaction associated with higher stocking densities in fields. Natural flood management is the alteration, restoration or use of landscape features to reduce flood risk. Soil compaction has been shown to change the partitioning of rainfall into runoff. However the link between locally observed hydrological changes and catchment scale flood risk has not yet been proven. This paper presents the results of a hydrological modelling study on the impact of soil compaction on downstream flood risk. Field experiments have been conducted in multiple fields in the River Skell catchment, in Yorkshire, UK (area of 120km2) to determine soil characteristics and compaction levels under different types of land-use. We use this data to parameterise and validate the Distributed Physically-based Connectivity of Runoff model. A number of compaction scenarios have been tested that represent

  4. Modelling dynamic compaction of porous materials with the overstress approach

    NASA Astrophysics Data System (ADS)

    Partom, Y.

    2014-05-01

    To model compaction of a porous material we need 1) an equation of state of the porous material in terms of the equation of state of its matrix, and 2) a compaction law. For an equation of state it is common to use Herrmann's suggestion, as in his Pα model. For a compaction law it is common to use a quasi-static compaction relation obtained from 1) a meso-scale model (as in Carroll and Holt's spherical shell model), or from 2) quasi-static tests. Here we are interested in dynamic compaction, like in a planar impact test. In dynamic compaction the state may change too fast for the state point to follow the quasi-static compaction curve. We therefore get an overstress situation. The state point moves out of the quasi-static compaction boundary, and only with time collapses back towards it at a certain rate. In this way the dynamic compaction event becomes rate dependent. In the paper we first write down the rate equations for dynamic compaction according to the overstress approach. We then implement these equations in a hydro-code and run some examples. We show how the overstress rate parameter can be calibrated from tests.

  5. Modeling Dynamic Compaction of Porous Materials with the Overstress Approach

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-06-01

    To model compaction of a porous material (PM) we need 1) an equation of state (EOS) of the PM in terms of the EOS of its matrix, and 2) a compaction law. For the EOS it is common to use Herrmann's suggestion, as in his P α model. For a compaction law it is common to use a quasi-static compaction relation obtained from 1) a mezzo-scale model (as in Carroll and Holt's spherical shell model), or from 2) quasi-static tests. Here we are interested in dynamic compaction, like in a planar impact test. In dynamic compaction, the state may change too fast for the state point to follow the quasi-static compaction curve. We therefore get an overstress situation. The state point moves out of the quasi-static compaction boundary, and only with time collapses back towards it at a certain rate. In this way the dynamic compaction event becomes rate dependent. In the paper we first write down the rate equations for dynamic compaction according to this overstress approach. We then implement these equations in a hydro-code, and run some examples. We show how the overstress rate parameter can be calibrated from tests.

  6. Recent developments in the tidal deformability of spinning compact objects

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2016-04-01

    We review recent work on the theory of tidal deformability and the tidal Love numbers of a slowly spinning compact object within general relativity. Angular momentum introduces couplings between distortions of different parity and new classes of spin-induced, tidal Love numbers emerge. Due to spin-tidal effects, a rotating object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second-order in the spin. The tidal Love numbers depend strongly on the object’s internal structure. All tidal Love numbers of a Kerr black hole (BH) were proved to be exactly zero to first-order in the spin and also to second-order in the spin, at least in the axisymmetric case. For a binary system close to the merger, various components of the tidal field become relevant. Preliminary results suggest that spin-tidal couplings can introduce important corrections to the gravitational waveforms of spinning neutron star (NS) binaries approaching the merger.

  7. Time-dependent compaction band formation in sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Brantut, Nicolas; Baud, Patrick; Meredith, Philip G.

    2015-07-01

    Compaction bands in sandstone are laterally extensive planar deformation features that are characterized by lower porosity and permeability than the surrounding host rock. As a result, this form of localization has important implications for both strain partitioning and fluid flow in the Earth's upper crust. To better understand the time dependency of compaction band growth, we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (initial porosity = 0.24) under constant stress (creep) conditions in the compactant regime. Our experiments show that inelastic strain accumulates at a constant stress in the compactant regime, manifest as compaction bands. While creep in the dilatant regime is characterized by an increase in porosity and, ultimately, an acceleration in axial strain rate to shear failure, compaction creep is characterized by a reduction in porosity and a gradual deceleration in axial strain rate. The global decrease in the rates of axial strain, acoustic emission energy, and porosity change during creep compaction is punctuated at intervals by higher rate excursions, interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence, background creep strain rate, is decreased. However, the inelastic strain associated with the growth of a compaction band remains constant over strain rates spanning several orders of magnitude (from 10-8 to 10-5 s-1). We find that despite the large differences in strain rate and growth rate (from both creep and constant strain rate experiments), the characteristics (geometry and thickness) of the compaction bands remain essentially the same. Several lines of evidence, notably the similarity between the differential stress dependence of creep strain rate in the dilatant and compactant regimes, suggest that as for dilatant creep, subcritical stress corrosion cracking is the mechanism responsible for

  8. On quantum symmetries of compact metric spaces

    NASA Astrophysics Data System (ADS)

    Chirvasitu, Alexandru

    2015-08-01

    An action of a compact quantum group on a compact metric space (X , d) is (D)-isometric if the distance function is preserved by a diagonal action on X × X. In this study, we show that an isometric action in this sense has the following additional property: the corresponding action on the algebra of continuous functions on X by the convolution semigroup of probability measures on the quantum group contracts Lipschitz constants. In other words, it is isometric in another sense due to Li, Quaegebeur, and Sabbe, which partially answers a question posed by Goswami. We also introduce other possible notions of isometric quantum actions in terms of the Wasserstein p-distances between probability measures on X for p ≥ 1, which are used extensively in optimal transportation. Indeed, all of these definitions of quantum isometry belong to a hierarchy of implications, where the two described above lie at the extreme ends of the hierarchy. We conjecture that they are all equivalent.

  9. Compact designer TALENs for efficient genome engineering.

    PubMed

    Beurdeley, Marine; Bietz, Fabian; Li, Jin; Thomas, Severine; Stoddard, Thomas; Juillerat, Alexandre; Zhang, Feng; Voytas, Daniel F; Duchateau, Philippe; Silva, George H

    2013-01-01

    Transcription activator-like effector nucleases are readily targetable 'molecular scissors' for genome engineering applications. These artificial nucleases offer high specificity coupled with simplicity in design that results from the ability to serially chain transcription activator-like effector repeat arrays to target individual DNA bases. However, these benefits come at the cost of an appreciably large multimeric protein complex, in which DNA cleavage is governed by the nonspecific FokI nuclease domain. Here we report a significant improvement to the standard transcription activator-like effector nuclease architecture by leveraging the partially specific I-TevI catalytic domain to create a new class of monomeric, DNA-cleaving enzymes. In vivo yeast, plant and mammalian cell assays demonstrate that the half-size, single-polypeptide compact transcription activator-like effector nucleases exhibit overall activity and specificity comparable to currently available designer nucleases. In addition, we harness the catalytic mechanism of I-TevI to generate novel compact transcription activator-like effector nuclease-based nicking enzymes that display a greater than 25-fold increase in relative targeted gene correction efficacy.

  10. Compact solid source of hydrogen gas

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2004-06-08

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  11. Compact spatial multiplexers for mode division multiplexing.

    PubMed

    Chen, Haoshuo; van Uden, Roy; Okonkwo, Chigo; Koonen, Ton

    2014-12-29

    Spatial multiplexer (SMUX) for mode division multiplexing (MDM) has evolved from mode-selective excitation, multiple-spot and photonic-lantern based solutions in order to minimize both mode-dependent loss (MDL) and coupler insertion loss (CIL). This paper discusses the implementation of all the three solutions by compact components in a small footprint. Moreover, the compact SMUX can be manufactured in mass production and packaged to assure high reliability. First, push-pull scheme and center launch based SMUXes are demonstrated on two mostly-popular photonic integration platforms: Silicon-on-insulator (SOI) and Indium Phosphide (InP) for selectively exciting LP01 and LP11 modes. 2-dimensional (2D) top-coupling by using vertical emitters is explored to provide a coupling interface between a few-mode fiber (FMF) and the photonic integrated SMUX. SOI-based grating couplers and InP-based 45° vertical mirrors are proposed and researched as vertical emitters in each platform. Second, a 3-spot SMUX is realized on an InP-based circuit through employing 45° vertical mirrors. Third, as a newly-emerging photonic integration platform, laser-inscribed 3D waveguide (3DW) technology is applied for a fully-packaged dual-channel 6-mode SMUX including two 6-core photonic lantern structures as mode multiplexer and demultiplexer, respectively.

  12. Meltwater percolation and refreezing in compacting snow

    NASA Astrophysics Data System (ADS)

    Meyer, Colin; Hewitt, Ian

    2016-11-01

    Meltwater is produced on the surface of glaciers and ice sheets when the seasonal surface energy forcing warms the ice above its melting temperature. This meltwater percolates through the porous snow matrix and potentially refreezes, thereby warming the surrounding ice by the release of latent heat. Here we model this process from first principles using a continuum model. We determine the internal ice temperature and glacier surface height based on the surface forcing and the accumulation of snow. When the surface temperature exceeds the melting temperature, we compute the amount of meltwater produced and lower the glacier surface accordingly. As the meltwater is produced, we solve for its percolation through the snow. Our model results in traveling regions of meltwater with sharp fronts where refreezing occurs. We also allow the snow to compact mechanically and we analyze the interplay of compaction with meltwater percolation. We compare these models to observations of the temperature and porosity structure of the surface of glaciers and ice sheets and find excellent agreement. Our models help constrain the role that meltwater percolation and refreezing will have on ice-sheet mass balance and hence sea level. Thanks to the 2016 WHOI GFD Program, which is supported by the National Science Foundation and the Office of Naval Research.

  13. Compaction of Norphlet sandstones, Rankin County, Mississippi

    SciTech Connect

    McBride, E.F.

    1987-09-01

    Fabric and porosity changes resulting from compaction were studied in sandstones from three cores sampled at depths between 15,900 and 22,500 ft. Point counts of 30 thin sections indicate that 0.4% of the rock volume was lost by ductile grain deformation and 3% by pressure solution at both grain contacts and at widely spaced stylolites. Pre-cement porosities of eolian sandstone range from 27 to 35% (mean = 29%), indicating that a total of from 10 to 18% porosity (mean = 16%) was lost by compaction (assuming 45% initial porosity). The difference between the total porosity loss and the sum of the other two processes is assumed to be the porosity lost by grain rearrangement (mean = 12.6%). The amount of pressure solution at grain contacts for each well is independent of depth, temperature, and amount of both quartz cement and total cement. Stylolites transect both grains and cements, which indicates they formed late in the diagenetic sequence. Silica released by pressure solution at quartz grain contacts could not be the sole source and was probably not even the major source of quartz cement in the formation, because cementation by quartz preceded the episode of strong pressure solution. In addition, the volume of silica released by pressure solution appears to have been inadequate to provide the volume of quartz cement present.

  14. Inclination Excitation in Compact Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Becker, Juliette; Adams, Fred C.

    2015-05-01

    The Kepler Mission has detected dozens of compact planetary systems with more than four transiting planets. This sample provides a collection of close-packed planetary systems with relatively little spread in the inclination angles of the inferred orbits. We have explored the effectiveness of dynamical mechanisms in exciting orbital inclination in this class of solar systems. The two mechanisms we discuss are self-excitation of orbital inclination in initially (nearly) coplanar planetary systems and perturbations by additional unseen larger bodies in the outer regions of the solar systems. For both of these scenarios, we determine the regimes of parameter space for which orbital inclination can be effectively excited. For compact planetary systems with the observed architectures, we find that the orbital inclination angles are not spread out appreciably through self-excitation, resulting in a negligible scatter in impact parameter and a subsequently stable transiting system. In contrast, companions in the outer solar system can be effective in driving variations of the inclination angles of the inner planetary orbits, leading to significant scatter in impact parameter and resultantly non-transiting systems. We present the results of our study, the regimes in which each excitation method - self-excitation of inclination and excitation by a perturbing secondary - are relevant, and the magnitude of the effects.

  15. Results of Compact Stellarator Engineering Trade Studies

    SciTech Connect

    Tom Brown, L. Bromberg, M. Cole

    2009-05-27

    number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study.

  16. Compact starbursts in ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Condon, J. J.; Huang, Z.-P.; Yin, Q. F.; Thuan, T. X.

    1991-01-01

    The 40 ultraluminous galaxies in the IRAS Bright Galaxy Sample of sources stronger than S = 5.24 Jy at lambda = 60 microns were mapped with approximately 0.25 arcsec resolution at 8.44 GHz. Twenty-five contain diffuse radio sources obeying the FIR-radio correlation; these are almost certainly starburst galaxies. Fourteen other galaxies have nearly blackbody FIR spectra with color temperatures between 60 and 80 K so their (unmeasured) FIR angular sizes must exceed approximately 0.25 arcsec, yet they contain compact (but usually resolved) radio sources smaller than this limit. The unique radio and FIR properties of these galaxies can be modeled by ultraluminous nuclear starbursts so dense that they 67 are optically thick to free-free absorption at about 1.49 GHz and dust absorption at about 25 microns. Only one galaxy (UGC 08058 = Mrk 231) is a dominated by a variable radio source too compact to be an ultraluminous starburst; it must be powered by a 'monster'.

  17. Compact Directional Microwave Antenna for Localized Heating

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Lin, Gregory Y.; Chu, Andrew W.; Dobbins, Justin A.; Arndt, G. Dickey; Ngo, Phong

    2008-01-01

    A directional, catheter-sized cylindrical antenna has been developed for localized delivery of microwave radiation for heating (and thus killing) diseased tissue without excessively heating nearby healthy tissue. By "localized" is meant that the antenna radiates much more in a selected azimuthal direction than in the opposite radial direction, so that it heats tissue much more on one side than it does on the opposite side. This antenna can be inserted using either a catheter or a syringe. A 2.4-mm prototype was tested, although smaller antennas are possible. Prior compact, cylindrical antennas designed for therapeutic localized hyperthermia do not exhibit such directionality; that is, they radiate in approximately axisymmetric patterns. Prior directional antennas designed for the same purpose have been, variously, (1) too large to fit within catheters or (2) too large, after deployment from catheters, to fit within the confines of most human organs. In contrast, the present antenna offers a high degree of directionality and is compact enough to be useable as a catheter in some applications.

  18. Pyroflow Compact: The next generation CFB boiler

    SciTech Connect

    Darling, S.L.

    1995-12-31

    CFB technology is the modern way to burn coal and other solid fuels. This technology was specifically developed to address today`s needs for fuel flexibility and low emissions. The low furnace temperatures characteristic of CFB technology provide for (a) low NO{sub x} emissions, (b) low SO{sub 2} emissions via simple furnace limestone injection and (c) the ability to fire a wide range of fuels because slagging is avoided. Lack of pulverizers and stack gas scrubbers results in a simple design with low maintenance costs and high availability. Ahlstrom, responsible for many innovations in CFB technology, has recently developed an improved CFB boiler design called the Pyroflow Compact. This new design retains all the benefits of the proven AHLSTROM PYROFLOW{reg_sign}CFB boiler while providing many advantages. This paper will describe the design features of the new Pyroflow Compact design, the advantages of this new design, operating experience, an up-to-date list of projects and Ahlstrom`s future plans for the new design.

  19. Results of Compact Stellarator Eengineering Trade Studies

    SciTech Connect

    T. Brown, L. Bromberg, and M. Cole

    2009-09-25

    A number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study.

  20. Broadband electromagnetic analysis of compacted kaolin

    NASA Astrophysics Data System (ADS)

    Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.

  1. Thermodynamics of magnetized binary compact objects

    SciTech Connect

    Uryu, Koji; Gourgoulhon, Eric; Markakis, Charalampos

    2010-11-15

    Binary systems of compact objects with electromagnetic field are modeled by helically symmetric Einstein-Maxwell spacetimes with charged and magnetized perfect fluids. Previously derived thermodynamic laws for helically symmetric perfect-fluid spacetimes are extended to include the electromagnetic fields, and electric currents and charges; the first law is written as a relation between the change in the asymptotic Noether charge {delta}Q and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetized fluid. Using the conservation laws of the circulation of magnetized flow found by Bekenstein and Oron for the ideal magnetohydrodynamic fluid, and also for the flow with zero conducting current, we show that, for nearby equilibria that conserve the quantities mentioned above, the relation {delta}Q=0 is satisfied. We also discuss a formulation for computing numerical solutions of magnetized binary compact objects in equilibrium with emphasis on a first integral of the ideal magnetohydrodynamic-Euler equation.

  2. Soil microbial activity and functional diversity changed by compaction, poultry litter and cropping in a claypan soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in soil physical characteristics induced by soil compaction may alter soil microhabitats and, therefore, play a significant role in governing soil microorganisms and their activities. Laboratory incubation and field experiments were conducted in 2001 and 2002 to investigate the effects of so...

  3. Lipopolysaccharide O-Chain Core Region Required for Cellular Cohesion and Compaction of In Vitro and Root Biofilms Developed by Rhizobium leguminosarum

    PubMed Central

    Russo, Daniela M.; Abdian, Patricia L.; Posadas, Diana M.; Williams, Alan; Vozza, Nicolás; Giordano, Walter; Kannenberg, Elmar; Downie, J. Allan

    2014-01-01

    The formation of biofilms is an important survival strategy allowing rhizobia to live on soil particles and plant roots. Within the microcolonies of the biofilm developed by Rhizobium leguminosarum, rhizobial cells interact tightly through lateral and polar connections, forming organized and compact cell aggregates. These microcolonies are embedded in a biofilm matrix, whose main component is the acidic exopolysaccharide (EPS). Our work shows that the O-chain core region of the R. leguminosarum lipopolysaccharide (LPS) (which stretches out of the cell surface) strongly influences bacterial adhesive properties and cell-cell cohesion. Mutants defective in the O chain or O-chain core moiety developed premature microcolonies in which lateral bacterial contacts were greatly reduced. Furthermore, cell-cell interactions within the microcolonies of the LPS mutants were mediated mostly through their poles, resulting in a biofilm with an altered three-dimensional structure and increased thickness. In addition, on the root epidermis and on root hairs, O-antigen core-defective strains showed altered biofilm patterns with the typical microcolony compaction impaired. Taken together, these results indicate that the surface-exposed moiety of the LPS is crucial for proper cell-to-cell interactions and for the formation of robust biofilms on different surfaces. PMID:25416773

  4. Compact radio sources in luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Parra, Rodrigo

    2007-08-01

    Radio interferometry is an observational technique of high sensitivity and incomparably high spatial resolution. Moreover, because radio waves can freely propagate through interstellar dust and gas, it allows the study of regions of the universe completely obscured at other wavelengths. This thesis reports the observational and theoretical results of my research during the past four years which are mostly based on interferometric radio data. The COLA sample is an infrared selected sample of active star forming galaxies. We conducted 6 cm VLA and VLBI snapshot observations of the northern half of this sample. The radio emission seen at VLA scales is consistent with being powered by star formation activity because it follows the far infrared to radio correlation. We detect 22% of the sample sources in our VLBI snapshots. Based on luminosity arguments, we argue that these sub-parsec VLBI sources are powered by AGN activity. Furthermore, we find that VLBI detections are preferentially found in sources whose VLA scale structures have the highest peak brightnesses suggesting a strong correlation between compact starburst and AGN activity. This observational result is consistent with the theoretical picture of an Eddington-limited nuclear starburst acting as the last valve in the pipeline transporting the gas from kiloparsec scales onto the accretion disc of a buried AGN. Arp 220 is the archetypical ultra luminous infrared galaxy. For many years this source has been known to harbour a compact (~100 pc) cluster of unresolved 18 cm bright sources believed to be bright core collapse supernovae. Using multiwavelength VLBI observations, we obtained for the first time radio spectra for 18 of these sources. We find that over a half of them have spectra consistent with young supernovae. The rest can be better explained as older supernova remnants interacting with the high density starburst ISM. This finding allowed us to constrain the number of possible scenarios for the Arp 220

  5. Cooling of Compact Stars with Color Superconducting Quark Matter

    NASA Astrophysics Data System (ADS)

    Noda, T.; Yasutake, N.; Hashimoto, M.; Maruyama, T.; Tatsumi, T.; Fujimoto, M. Y.

    2015-11-01

    We show a scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A).The Cas A observation shows that the central source is a compact star with a high effective temperature, and it is consistent with the cooling without exotic phases. The Cas A observation also gives the mass range of M ≥ 1.5 M_⊙.It may conflict with the current cooling scenarios of compact stars that heavy stars show rapid cooling. We include the effect of the color superconducting (CSC) quark matter phase on the thermal evolution of compact stars.We assume the gap energy of CSC quark phase is large (Δ ≳ 10 MeV),and we simulate the cooling of compact stars. We present cooling curves obtained from the evolutionary calculations of compact stars: while heavier stars cool slowly, and lighter ones indicate the opposite tendency.

  6. The local geometry of compact homogeneous Lorentz spaces

    NASA Astrophysics Data System (ADS)

    Günther, Felix

    2015-03-01

    In 1995, S. Adams and G. Stuck as well as A. Zeghib independently provided a classification of non-compact Lie groups which can act isometrically and locally effectively on compact Lorentzian manifolds. In the case that the corresponding Lie algebra contains a direct summand isomorphic to the two-dimensional special linear algebra or to a twisted Heisenberg algebra, Zeghib also described the geometric structure of the manifolds. Using these results, we investigate the local geometry of compact homogeneous Lorentz spaces whose isometry groups have non-compact connected components. It turns out that they all are reductive. We investigate the isotropy representation and curvatures. In particular, we obtain that any Ricci-flat compact homogeneous Lorentz space is flat or has compact isometry group.

  7. Characteristic variation of spark plasma-sintered Ta compacts

    NASA Astrophysics Data System (ADS)

    Cho, Gue-Serb; Lim, Jung-Kyu; Choe, Kyeong-Hwan; Shin, Seung-Yong

    2010-05-01

    In the present study, we applied the SPS process to obtain a tantalum (Ta) compact for a sputtering target. Sintered Ta compacts were characterized with respect to microstructure, relative density, Vickers hardness and phase composition of the inside and the surface. By radio frequency (RF) thermal plasma treatment, a spherical ultra-fine Ta powder was obtained; however, the oxygen content increased due to severe passivation during powder handling. Higher sintering temperature and the RF plasma treatment increased the densification of the sintered compact and also the Vickers hardness. From XRD analysis, only Ta was identified in the cross section of compacts, and TaC formed by the reaction between Ta and the graphite mould was found in the surface of the compacts. The evacuation of the chamber and the reduction by the graphite mould promote the purification of the compact.

  8. Dynamic patterns of compaction in brittle porous media

    NASA Astrophysics Data System (ADS)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdes, Julio R.; Einav, Itai

    2015-10-01

    Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks, foams, cereal packs and snow. We have recently found moving compaction bands in cereal packs; similar bands have been detected in snow. However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation.

  9. Subsoil compaction in Flanders: from soil map to susceptibility map and risk map for subsoil compaction

    NASA Astrophysics Data System (ADS)

    van de Vreken, Philippe; van Holm, Lieven; Diels, Jan; van Orshoven, Jos

    2010-05-01

    In contrast to topsoil compaction, which can be remediated by normal soil tillage and natural loosening processes, subsoil compaction must be considered as a long term threat to soil productivity as this form of compaction is much more persistent and not easy to alleviate. Therefore we focused on subsoil compaction with a view to demarcate areas prone to soil compaction in Flanders, Belgium. The susceptibility of soil material to compaction is inversely related to its structural strength which can be expressed in terms of precompression stress (PCS). In order to construct maps of subsoil susceptibility we upgraded the soil map of Flanders, originally printed at a scale of 1:20.000, by attributing a ‘typical' PCS-value to the legend units. These PCS-values were estimated by means of pedotransfer functions (PTFs), valid either at pF 1.8 or pF 2.5, elaborated from PCS-measurements on soils in Germany by Lebert and Horn (1991). Predictor values for the PTFs were supplied by or derived by means of other PTFs from a historical database of georeferenced soil profiles, which were analysed between 1947 and 1971. After regional stratification, soil profiles with associated horizons were linked to soil map units based on corresponding classification units. Next, for each map unit the horizon at 40 cm of depth was selected and its characteristics retrieved for use in the PTFs. The two resulting PCS-maps (pF 1.8 or 2.5) show the susceptibility to compaction of almost uncompacted or little compacted arable soils as they were present in the period 1950-1970, when the wheel loads of the agricultural equipment of that time were much lower compared to the wheel loads that are common today. Both maps of inherent susceptibility at fixed pF were combined into a ‘hybrid map' of the inherent susceptibility to subsoil compaction in spring, when the groundwater table is at its highest level and correspondingly also the susceptibility to compaction is highest. Each soil map unit was

  10. Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan.

    PubMed

    Kakkar, Akanksha; Nizampatnam, Narasimha Rao; Kondreddy, Anil; Pradhan, Binod Bihari; Chatterjee, Subhadeep

    2015-11-01

    Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell-cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell-cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery.

  11. Compact Assumption Applied to the Monopole Term of Farassat's Formulations

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.

    2015-01-01

    Farassat's formulations provide an acoustic prediction at an observer location provided a source surface, including motion and flow conditions. This paper presents compact forms for the monopole term of several of Farassat's formulations. When the physical surface is elongated, such as the case of a high aspect ratio rotorcraft blade, compact forms can be derived which are shown to be a function of the blade cross sectional area by reducing the computation from a surface integral to a line integral. The compact forms of all formulations are applied to two example cases: a short span wing with constant airfoil cross section moving at three forward flight Mach numbers and a rotor at two advance ratios. Acoustic pressure time histories and power spectral densities of monopole noise predicted from the compact forms of all the formulations at several observer positions are shown to compare very closely to the predictions from their non-compact counterparts. A study on the influence of rotorcraft blade shape on the high frequency portion of the power spectral density shows that there is a direct correlation between the aspect ratio of the airfoil and the error incurred by using the compact form. Finally, a prediction of pressure gradient from the non-compact and compact forms of the thickness term of Formulation G1A shows that using the compact forms results in a 99.6% improvement in computation time, which will be critical when noise is incorporated into a design environment.

  12. Faithful actions of locally compact quantum groups on classical spaces

    NASA Astrophysics Data System (ADS)

    Goswami, Debashish; Roy, Sutanu

    2017-03-01

    We construct examples of locally compact quantum groups coming from bicrossed product construction, including non-Kac ones, which can faithfully and ergodically act on connected classical (noncompact) smooth manifolds. However, none of these actions can be isometric in the sense of Goswami (Commun Math Phys 285(1):141-160, 2009), leading to the conjecture that the result obtained by Goswami and Joardar (Rigidity of action of compact quantum groups on compact, connected manifolds, 2013. arXiv:1309.1294) about nonexistence of genuine quantum isometry of classical compact connected Riemannian manifolds may hold in the noncompact case as well.

  13. Compact heat exchangers for condensation applications: Yesterday, today and tomorrow

    SciTech Connect

    Panchal, C.B.

    1993-07-01

    Compact heat exchangers are being increasingly considered for condensation applications in the process, cryogenic, aerospace, power and refrigeration industries. In this paper, different configurations available for condensation applications are analyzed and the current state-of-the-knowledge for the design of compact condensers is evaluated. The key technical issues for the design and development of compact heat exchangers for condensation applications are analyzed and major advantages are identified. The experimental data and performance prediction methods reported in the literature are analyzed to evaluate the present design capabilities for different compact heat-exchanger configurations. The design flexibility is evaluated for the development of new condensation applications, including integration with other process equipment.

  14. Soil compaction vulnerability at Organ Pipe Cactus National Monument, Arizona

    USGS Publications Warehouse

    Webb, Robert H.; Nussear, Kenneth E.; Carmichael, Shinji; Esque, Todd C.

    2014-01-01

    Compaction vulnerability of different types of soils by hikers and vehicles is poorly known, particularly for soils of arid and semiarid regions. Engineering analyses have long shown that poorly sorted soils (for example, sandy loams) compact to high densities, whereas well-sorted soils (for example, eolian sand) do not compact, and high gravel content may reduce compaction. Organ Pipe Cactus National Monument (ORPI) in southwestern Arizona, is affected greatly by illicit activities associated with the United States–Mexico border, and has many soils that resource managers consider to be highly vulnerable to compaction. Using geospatial soils data for ORPI, compaction vulnerability was estimated qualitatively based on the amount of gravel and the degree of sorting of sand and finer particles. To test this qualitative assessment, soil samples were collected from 48 sites across all soil map units, and undisturbed bulk densities were measured. A scoring system was used to create a vulnerability index for soils on the basis of particle-size sorting, soil properties derived from Proctor compaction analyses, and the field undisturbed bulk densities. The results of the laboratory analyses indicated that the qualitative assessments of soil compaction vulnerability underestimated the area of high vulnerability soils by 73 percent. The results showed that compaction vulnerability of desert soils, such as those at ORPI, can be quantified using laboratory tests and evaluated using geographic information system analyses, providing a management tool that managers potentially could use to inform decisions about activities that reduce this type of soil disruption in protected areas.

  15. Compact instrument for fluorescence image-guided surgery.

    PubMed

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V Paul; Yazdanfar, Siavash

    2010-01-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  16. Green strength of zirconium sponge and uranium dioxide powder compacts

    SciTech Connect

    Balakrishna, Palanki Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-07-15

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO{sub 2}) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO{sub 2} powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO{sub 2} powder was higher than that from unattrited category, accompanied by an improvement in UO{sub 2} green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel.

  17. Compact instrument for fluorescence image-guided surgery

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  18. [The cell theory. Progress in studies on cell-cell communications].

    PubMed

    Brodskiĭ, V Ia

    2009-01-01

    Current data confirm the fundamental statement of the cell theory concerning the cell reproduction in a series of generations (omnis cellula e cellula). Cell communities or ensembles integrated by the signaling systems established in prokaryotes and protists and functioning in multicellular organisms including mammals are considered as the structural and functional unit of a multicellular organism. The cell is an elementary unit of life and basis of organism development and functioning. At the same time, the adult organism is not just a totality of cells. Multinucleated cells in some tissues, syncytial structure, and structural-functional units of organs are adaptations for optimal functioning of the multicellular organism and manifestations of cell-cell communications in development and definitive functioning. The cell theory was supplemented and developed by studies on cell-cell communications; however, these studies do not question the main generalizations of the theory.

  19. Quantitating Cell-Cell Interaction Functions, with Applications to Glioblastoma Multiforme Cancer Cells

    PubMed Central

    Wang, Jun; Tham, Douglas; Wei, Wei; Shin, Young Shik; Ma, Chao; Ahmad, Habib; Shi, Qihui; Yu, Jenkan; Levine, Raphael D.; Heath, James R.

    2013-01-01

    We report on a method for quantitating the distance dependence of cell-cell interactions. We employ a microchip design that permits a multiplex, quantitative protein assay from statistical numbers of cell pairs, as a function of cell separation, with a 0.15 nanoliter volume microchamber. We interrogate interactions between pairs of model brain cancer cells by assaying for 6 functional proteins associated with PI3k signaling. At short incubation times, cells do not appear to influence each other, regardless of cell separation. For 6 hour incubation times, the cells exert an inhibiting influence on each other at short separations, and a predominately activating influence at large separation. Protein-specific cell-cell interaction functions are extracted, and by assuming pairwise additivity of those interactions, the functions are shown to correctly predict the results from 3-cell experiments carried out under the identical conditions. PMID:23130660

  20. Role and organization of the actin cytoskeleton during cell-cell fusion.

    PubMed

    Martin, Sophie G

    2016-12-01

    Cell-cell fusion is a ubiquitous process that underlies fertilization and development of eukaryotes. This process requires fusogenic machineries to promote plasma membrane merging, and also relies on the organization of dedicated sub-cortical cytoskeletal assemblies. This review describes the role of actin structures, so called actin fusion foci, essential for the fusion of two distinct cell types: Drosophila myoblast cells, which fuse to form myotubes, and sexually differentiated cells of the fission yeast Schizosaccharomyces pombe, which fuse to form a zygote. I describe the respective composition and organization of the two structures, discuss their proposed role in promoting plasma membrane apposition, and consider the universality of similar structures for cell-cell fusion.

  1. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    PubMed

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.

  2. Reptilian reovirus utilizes a small type III protein with an external myristylated amino terminus to mediate cell-cell fusion.

    PubMed

    Corcoran, Jennifer A; Duncan, Roy

    2004-04-01

    Reptilian reovirus is one of a limited number of nonenveloped viruses that are capable of inducing cell-cell fusion. A small, hydrophobic, basic, 125-amino-acid fusion protein encoded by the first open reading frame of a bicistronic viral mRNA is responsible for this fusion activity. Sequence comparisons to previously characterized reovirus fusion proteins indicated that p14 represents a new member of the fusion-associated small transmembrane (FAST) protein family. Topological analysis revealed that p14 is a representative of a minor subset of integral membrane proteins, the type III proteins N(exoplasmic)/C(cytoplasmic) (N(exo)/C(cyt)), that lack a cleavable signal sequence and use an internal reverse signal-anchor sequence to direct membrane insertion and protein topology. This topology results in the unexpected, cotranslational translocation of the essential myristylated N-terminal domain of p14 across the cell membrane. The topology and structural motifs present in this novel reovirus membrane fusion protein further accentuate the diversity and unusual properties of the FAST protein family and clearly indicate that the FAST proteins represent a third distinct class of viral membrane fusion proteins.

  3. CtpB Assembles a Gated Protease Tunnel Regulating Cell-Cell Signaling during Spore Formation in Bacillus subtilis

    PubMed Central

    Mastny, Markus; Heuck, Alexander; Kurzbauer, Robert; Heiduk, Anja; Boisguerin, Prisca; Volkmer, Rudolf; Ehrmann, Michael; Rodrigues, Christopher D.A.; Rudner, David Z.; Clausen, Tim

    2013-01-01

    Summary Spore formation in Bacillus subtilis relies on a regulated intramembrane proteolysis (RIP) pathway that synchronizes mother-cell and forespore development. To address the molecular basis of this SpoIV transmembrane signaling, we carried out a structure-function analysis of the activating protease CtpB. Crystal structures reflecting distinct functional states show that CtpB constitutes a ring-like protein scaffold penetrated by two narrow tunnels. Access to the proteolytic sites sequestered within these tunnels is controlled by PDZ domains that rearrange upon substrate binding. Accordingly, CtpB resembles a minimal version of a self-compartmentalizing protease regulated by a unique allosteric mechanism. Moreover, biochemical analysis of the PDZ-gated channel combined with sporulation assays reveal that activation of the SpoIV RIP pathway is induced by the concerted activity of CtpB and a second signaling protease, SpoIVB. This proteolytic mechanism is of broad relevance for cell-cell communication, illustrating how distinct signaling pathways can be integrated into a single RIP module. PMID:24243021

  4. Characterization of the plasma membrane localization and orientation of HPV16 E5 for cell-cell fusion

    SciTech Connect

    Hu Lulin; Ceresa, Brian P.

    2009-10-10

    Human papillomavirus (HPV) is a non-enveloped DNA virus with an approx 8000 base pair genome. Infection with certain types of HPV is associated with cervical cancer, although the molecular mechanism by which HPV induces carcinogenesis is poorly understood. Three genes encoded by HPV16 are regarded as oncogenic - E5, E6, and E7. The role of E5 has been controversial. Expression of HPV16 E5 causes cell-cell fusion, an event that can lead to increased chromosomal instability, particularly in the presence of cell cycle checkpoint inhibitors like HPV16 E6 and E7. Using biochemical and cell biological assays to better understand HPV16 E5, we find that HPV16 E5 localizes to the plasma membrane with an intracellular amino terminus and an extracellular carboxyl-terminus. Further, HPV16 E5 must be expressed on both cells for cell fusion to occur. When the extracellular epitope of HPV16 E5 is targeted with an antibody, the number of bi-nucleated cells decreases.

  5. CtpB assembles a gated protease tunnel regulating cell-cell signaling during spore formation in Bacillus subtilis.

    PubMed

    Mastny, Markus; Heuck, Alexander; Kurzbauer, Robert; Heiduk, Anja; Boisguerin, Prisca; Volkmer, Rudolf; Ehrmann, Michael; Rodrigues, Christopher D A; Rudner, David Z; Clausen, Tim

    2013-10-24

    Spore formation in Bacillus subtilis relies on a regulated intramembrane proteolysis (RIP) pathway that synchronizes mother-cell and forespore development. To address the molecular basis of this SpoIV transmembrane signaling, we carried out a structure-function analysis of the activating protease CtpB. Crystal structures reflecting distinct functional states show that CtpB constitutes a ring-like protein scaffold penetrated by two narrow tunnels. Access to the proteolytic sites sequestered within these tunnels is controlled by PDZ domains that rearrange upon substrate binding. Accordingly, CtpB resembles a minimal version of a self-compartmentalizing protease regulated by a unique allosteric mechanism. Moreover, biochemical analysis of the PDZ-gated channel combined with sporulation assays reveal that activation of the SpoIV RIP pathway is induced by the concerted activity of CtpB and a second signaling protease, SpoIVB. This proteolytic mechanism is of broad relevance for cell-cell communication, illustrating how distinct signaling pathways can be integrated into a single RIP module.

  6. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    SciTech Connect

    Fuller, Jim; Lai Dong

    2012-09-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.

  7. Radioactive powered transients from compact object mergers

    NASA Astrophysics Data System (ADS)

    Roberts, Luke

    2017-01-01

    The origin of the r-process elements remains the biggest unsolved question in our understanding of chemical evolution in the Milky Way. The most likely astrophysical sites for the formation of these nuclei involve dynamical events in the lives of neutron stars: the merger of a neutron star and another compact object. In these environments, nuclear physics plays a paramount role in determining both the evolution of the dense object itself and what nuclei are synthesized in material that is ejected from the system. When the radioactive nuclei produced in these events decay, they can heat material that is unbound during the merger and power optical or infrared transients. In this talk, I will discuss nucleosynthesis and matter ejection in neutron star mergers, with an eye toward electromagnetic observables associated with these events that may give us a direct window into the formation of the r-process elements.

  8. Compact and highly efficient laser pump cavity

    DOEpatents

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  9. Compact and Thermosensitive Nature-inspired Micropump.

    PubMed

    Kim, Hyejeong; Kim, Kiwoong; Lee, Sang Joon

    2016-10-31

    Liquid transportation without employing a bulky power source, often observed in nature, has been an essential prerequisite for smart applications of microfluidic devices. In this report, a leaf-inspired micropump (LIM) which is composed of thermo-responsive stomata-inspired membrane (SIM) and mesophyll-inspired agarose cryogel (MAC) is proposed. The LIM provides a durable flow rate of 30 μl/h · cm(2) for more than 30 h at room temperature without external mechanical power source. By adapting a thermo-responsive polymer, the LIM can smartly adjust the delivery rate of a therapeutic liquid in response to temperature changes. In addition, as the LIM is compact, portable, and easily integrated into any liquid, it might be utilized as an essential component in advanced hand-held drug delivery devices.

  10. Physics of compaction of fine cohesive particles.

    PubMed

    Castellanos, A; Valverde, J M; Quintanilla, M A S

    2005-02-25

    Fluidized fractal clusters of fine particles display critical-like dynamics at the jamming transition, characterized by a power law relating consolidation stress with volume fraction increment [sigma--(c) proportional, variant(Deltaphi)(beta)]. At a critical stress clusters are disrupted and there is a crossover to a logarithmic law (Deltaphi = nu logsigma--(c)) resembling the phenomenology of soils. We measure lambda identical with- partial differentialDelta(1/phi)/ partial log(sigma--(c) proportional, variant Bo(0.2)(g), where Bo(g) is the ratio of interparticle attractive force (in the fluidlike regime) to particle weight. This law suggests that compaction is ruled by the internal packing structure of the jammed clusters at nearly zero consolidation.

  11. Determination of porewater chemistry in compacted bentonite

    SciTech Connect

    Lehikoinen, J.; Muurinen, A.; Melamed, A.; Pitkaenen, P.

    1997-12-31

    Laboratory experiments were performed to study the interaction between groundwater and compacted sodium bentonite (Volclay MX-80). The solutions used were the fresh and saline groundwater simulants. The experiments were carried out in aerobic and anaerobic conditions at elevated temperature. Of main interest in the present study were the chemical changes in the reacting solution, bentonite porewater, and bentonite itself. The results for major cations display a principal difference between the interactions with fresh and saline solutions, while the differences between aerobic and anaerobic conditions within each solution case seem to be minor. The experimental results for the bentonite-water equilibria were interpreted in terms of a multi-site surface complexation model and the computer program HYDRAQL. The apparent diffusivities for sodium and sulfate in bentonite samples sandwiched between two filter plates were also determined.

  12. Diffusion of uranium in compacted sodium bentonite

    SciTech Connect

    Muurinen, A.; Ollila, K.; Lehikoinen, J.

    1993-12-31

    In this study the diffusion of uranium dissolved from uranium oxide fuel was studied experimentally in compacted sodium bentonite (Wyoming bentonite MX-80). The parameters varied in the study were the density of bentonite, the salt content of the solution and the redox conditions. In the studies with non-saline water of total dissolved solids about 300 ppm, uranium was both in aerobic and anaerobic experiments as anionic complexes and followed the anionic diffusion mechanism. Anion exclusion decreased effective diffusion coefficients, especially in more dense samples. In the studies with saline water of total dissolves solids about 35000 ppm, uranium appeared in the aerobic experiments probably as cationic complexes and followed the cationic diffusion mechanism. Uranium in the saline, anaerobic experiment was probably U(OH){sub 4} and followed the diffusion mechanism of neutral species.

  13. Zero branes on a compact orbifold

    NASA Astrophysics Data System (ADS)

    Ramgoolam, Sanjaye; Waldram, Daniel

    1998-07-01

    The non-commutative algebra which defines the theory of zero-branes on T4/Z2 allows a unified description of moduli spaces associated with zero-branes, two-branes and four-branes on the orbifold space. Bundles on a dual space hat T4/Z2 play an important role in this description. We discuss these moduli spaces in the context of dualities of K3 compactifications, and in terms of properties of instantons on T4. Zero-branes on the degenerate limits of the compact orbifold lead to fixed points with six-dimensional scale but not conformal invariance. We identify some of these in terms of the ADS dual of the (0,2) theory at large N, giving evidence for an interesting picture of ``where the branes live'' in ADS.

  14. Collective Deceleration: Toward a Compact Beam Dump

    SciTech Connect

    Wu, H.-C.; Tajima, T.; Habs, D.; Chao, A.W.; Meyer-ter-Vehn, J.; /Munich, Max Planck Inst. Quantenopt.

    2011-11-28

    With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological hazards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of the gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.

  15. Design and development of compact multiphoton microscopes

    NASA Astrophysics Data System (ADS)

    Mehravar, SeyedSoroush

    A compact multi-photon microscope (MPM) was designed and developed with the use of low-cost mode-locked fiber lasers operating at 1040nm and 1560nm. The MPM was assembled in-house and the system aberration was investigated using the optical design software: Zemax. A novel characterization methodology based on 'nonlinear knife-edge' technique was also introduced to measure the axial, lateral resolution, and the field curvature of the multi-photon microscope's image plane. The field curvature was then post-corrected using data processing in MATLAB. A customized laser scanning software based on LabVIEW was developed for data acquisition, image display and controlling peripheral electronics. Finally, different modalities of multi-photon excitation such as second- and third harmonic generation, two- and three-photon fluorescence were utilized to study a wide variety of samples from cancerous cells to 2D-layered materials.

  16. Compact waves in microscopic nonlinear diffusion.

    PubMed

    Hurtado, P I; Krapivsky, P L

    2012-06-01

    We analyze the spread of a localized peak of energy into vacuum for nonlinear diffusive processes. In contrast with standard diffusion, the nonlinearity results in a compact wave with a sharp front separating the perturbed region from vacuum. In d spatial dimensions, the front advances as t^{1/(2+da)} according to hydrodynamics, with a the nonlinearity exponent. We show that fluctuations in the front position grow as ∼t^{μ}η, where μ<1/2+da is an exponent that we measure and η is a random variable whose distribution we characterize. Fluctuating corrections to hydrodynamic profiles give rise to an excess penetration into vacuum, revealing scaling behaviors and robust features. We also examine the discharge of a nonlinear rarefaction wave into vacuum. Our results suggest the existence of universal scaling behaviors at the fluctuating level in nonlinear diffusion.

  17. Anisotropic compact stars in Karmarkar spacetime

    NASA Astrophysics Data System (ADS)

    Newton Singh, Ksh.; Pant, Neeraj; Govender, M.

    2017-01-01

    We present a new class of solutions to the Einstein field equations for an anisotropic matter distribution in which the interior space-time obeys the Karmarkar condition. The necessary and sufficient condition required for a spherically symmetric space-time to be of Class One reduces the gravitational behavior of the model to a single metric function. By assuming a physically viable form for the grr metric potential we obtain an exact solution of the Einstein field equations which is free from any singularities and satisfies all the physical criteria. We use this solution to predict the masses and radii of well-known compact objects such as Cen X-3, PSR J0348+0432, PSR B0943+10 and XTE J1739-285.

  18. Compact and Thermosensitive Nature-inspired Micropump

    NASA Astrophysics Data System (ADS)

    Kim, Hyejeong; Kim, Kiwoong; Lee, Sang Joon

    2016-10-01

    Liquid transportation without employing a bulky power source, often observed in nature, has been an essential prerequisite for smart applications of microfluidic devices. In this report, a leaf-inspired micropump (LIM) which is composed of thermo-responsive stomata-inspired membrane (SIM) and mesophyll-inspired agarose cryogel (MAC) is proposed. The LIM provides a durable flow rate of 30 μl/h · cm2 for more than 30 h at room temperature without external mechanical power source. By adapting a thermo-responsive polymer, the LIM can smartly adjust the delivery rate of a therapeutic liquid in response to temperature changes. In addition, as the LIM is compact, portable, and easily integrated into any liquid, it might be utilized as an essential component in advanced hand-held drug delivery devices.

  19. A Compact Quasi-axisymmetric Stellarator Reactor

    SciTech Connect

    L.P. Ku; the ARIES-CS Team

    2003-10-20

    We report the progress made in assessing the potential of compact, quasi-axisymmetric stellarators as power-producing reactors. Using an aspect ratio A=4.5 configuration derived from NCSX and optimized with respect to the quasi-axisymmetry and MHD stability in the linear regime as an example, we show that a reactor of 1 GW(e) maybe realizable with a major radius *8 m. This is significantly smaller than the designs of stellarator reactors attempted before. We further show the design of modular coils and discuss the optimization of coil aspect ratios in order to accommodate the blanket for tritium breeding and radiation shielding for coil protection. In addition, we discuss the effects of coil aspect ratio on the peak magnetic field in the coils.

  20. Compact and stable multibeam fiber injector

    SciTech Connect

    Collins, L. F., LLNL

    1998-07-01

    A compact and stable 20-beam injector was built for launching laser light into fibers for Fabry Perot velocity measurements of shock-driven surfaces. The fiber injector uses commercial mounts on mini-rails. Dielectric-coated beamsplitters provide accurate amplitude division. Minimal adjustments for stable operation are permitted by the use of a real-time video-viewer. The video system includes a non-linear camera for CW alignment and a linearized camera with a frame grabber for pulsed measurement and analysis. All 20-injection points are displayed on a single monitor. Optical requirements are given for image relay and magnification. Stimulated Brillouin scattering limitations on high-power are quantified.

  1. A compact, coherent light source system architecture

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.

    2016-09-01

    Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.

  2. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  3. Aggregating local image descriptors into compact codes.

    PubMed

    Jégou, Hervé; Perronnin, Florent; Douze, Matthijs; Sánchez, Jorge; Pérez, Patrick; Schmid, Cordelia

    2012-09-01

    This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image data set takes about 250 ms on one processor core.

  4. Compact stars in Eddington inspired gravity.

    PubMed

    Pani, Paolo; Cardoso, Vitor; Delsate, Térence

    2011-07-15

    A new, Eddington inspired theory of gravity was recently proposed by Bañados and Ferreira. It is equivalent to general relativity in vacuum, but differs from it inside matter. This viable, one-parameter theory was shown to avoid cosmological singularities and turns out to lead to many other exciting new features that we report here. First, for a positive coupling parameter, the field equations have a dramatic impact on the collapse of dust, and do not lead to singularities. We further find that the theory supports stable, compact pressureless stars made of perfect fluid, which provide interesting models of self-gravitating dark matter. Finally, we show that the mere existence of relativistic stars imposes a strong, near optimal constraint on the coupling parameter, which can even be improved by observations of the moment of inertia of the double pulsar.

  5. Compact Radiative Control Structures for Millimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Brown, Ari D.; Chuss, David T.; Chervenak, James A.; Henry, Ross M.; Moseley, s. Harvey; Wollack, Edward J.

    2010-01-01

    We have designed, fabricated, and tested compact radiative control structures, including antireflection coatings and resonant absorbers, for millimeter through submillimeter wave astronomy. The antireflection coatings consist of micromachined single crystal silicon dielectric sub-wavelength honeycombs. The effective dielectric constant of the structures is set by the honeycomb cell geometry. The resonant absorbers consist of pieces of solid single crystal silicon substrate and thin phosphorus implanted regions whose sheet resistance is tailored to maximize absorption by the structure. We present an implantation model that can be used to predict the ion energy and dose required for obtaining a target implant layer sheet resistance. A neutral density filter, a hybrid of a silicon dielectric honeycomb with an implanted region, has also been fabricated with this basic approach. These radiative control structures are scalable and compatible for use large focal plane detector arrays.

  6. Cooldown of the Compact Ignition Tokamak

    SciTech Connect

    Keeton, D.C.

    1987-08-01

    Cooldown of the Compact Ignition Tokamak (CIT) with the baseline liquid nitrogen cooling system was analyzed. On the basis of this analysis and present knowledge of the two-phase heat transfer, the current baseline CIT can be cooled down in about 1.5 h. An extensive heat transfer test program is recommended to reduce uncertainty in the heat transfer performance and to explore methods for minimizing the cooldown time. An alternate CIT cooldown system is described which uses a pressurized gaseous helium coolant in a closed-loop system. It is shown analytically that this system will cool down the CIT well within 1 h. Confidence in this analysis is sufficiently high that a heat transfer test program would not be necessary. The added cost of this alternate system is estimated to be about $5.3 million. This helium cooling system represents a reasonable backup approach to liquid nitrogen cooling of the CIT. 3 refs., 12 figs., 3 tabs.

  7. Compact hydrogen/helium isotope mass spectrometer

    DOEpatents

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  8. Compact stars and accretion disks: Workshop summary

    NASA Astrophysics Data System (ADS)

    Li, J.

    1998-07-01

    A workshop on `Compact Stars and Accretion Disks' was held on 11-12 August 1997 at the Australian National University. The workshop was opened by Professor Jeremy Mould, the Director of Mount Stromlo Observatory. The workshop was organised to coincide with visits to the ANU Astrophysical Theory Centre by Professor Ron Webbink from the University of Illinois, Professor Rainer Wehrse from the University of Heidelberg and Dr Chris Tout from the University of Cambridge. The workshop attracted over 25 participants nationwide. Participants included members of the Special Research Centre for Theoretical Astrophysics, University of Sydney, led by Professor Don Melrose, Professor Dick Manchester from the ATNF, Professor Ravi Sood from ADFA, Dr John Greenhill from the University of Tasmania and Dr Rosemary Mardling from Monash University. Dr Helen Johnston from AAO and Dr Kurt Liffman from AFDL also attended the workshop. The abstracts of twelve of the workshop papers are presented in this summary.

  9. Stirling Air Conditioner for Compact Cooling

    SciTech Connect

    2010-09-01

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry to make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.

  10. A compact multichannel spectrometer for Thomson scatteringa)

    NASA Astrophysics Data System (ADS)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te < 100 eV are achieved by a 2971 l/mm VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  11. A compact multichannel spectrometer for Thomson scattering.

    PubMed

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l∕mm VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  12. Generation of surface plasmons with compact devices

    NASA Astrophysics Data System (ADS)

    Baron, A.; Lalanne, P.; Gan, C. H.; Hugonin, J. P.

    2013-03-01

    We review the properties of the generation of surface plasmons by subwavelength isolated slits in metal films and by small ensembles of slits. After an introduction, in Section 2, we recall the theoretical modal formalism that allows us to calculate the generation efficiency of SPP from the total field scattered by an indentation on a metal film. We also rapidly discuss the main results known of the SPP generation efficiency by subwavelength tiny slits or grooves. In Section 3, we consider the special case of wavelength-large slits that support two propagative modes and that allow us to dynamically control the direction of generated surface plasmons. In Section 4, we conclude by describing a compact and efficient device capable of launching SPPs in a single direction with a normally incident beam.

  13. Compaction agent clarification of microbial lysates

    NASA Technical Reports Server (NTRS)

    DeWalt, Brad W.; Murphy, Jason C.; Fox, George E.; Willson, Richard C.

    2003-01-01

    Recombinant proteins are often purified from microbial lysates containing high concentrations of nucleic acids. Pre-purification steps such as nuclease addition or precipitation with polyethyleneimine or ammonium sulfate are normally required to reduce viscosity and to eliminate competing polyanions before anion exchange chromatography. We report that small polycationic compaction agents such as spermine selectively precipitate nucleic acids during or after Escherichia coli lysis, allowing DNA and RNA to be pelleted with the insoluble cell debris. Analysis by spectrophotometry and protein assay confirmed a significant reduction in the concentration of nucleic acids present, with preservation of protein. Lysate viscosity is greatly reduced, facilitating subsequent processing. We have used 5mM spermine to remove nucleic acids from E. coli lysate in the purification of a hexahistidine-tagged HIV reverse transcriptase.

  14. Durable fiber reinforced self-compacting concrete

    SciTech Connect

    Corinaldesi, V.; Moriconi, G

    2004-02-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture.

  15. Do triaxial supramassive compact stars exist?

    NASA Astrophysics Data System (ADS)

    Uryū, Kōji; Tsokaros, Antonios; Baiotti, Luca; Galeazzi, Filippo; Sugiyama, Noriyuki; Taniguchi, Keisuke; Yoshida, Shin'ichirou

    2016-11-01

    We study quasiequilibrium solutions of triaxially deformed rotating compact stars—a generalization of Jacobi ellipsoids under relativistic gravity and compressible equations of state (EOSs). For relatively stiff (piecewise) polytropic EOSs, we find supramassive triaxial solutions whose masses exceed the maximum mass of the spherical solution, but are always lower than those of axisymmetric equilibriums. The difference in the maximum masses of triaxial and axisymmetric solutions depends sensitively on the EOSs. If the difference turns out to be only about 10%, it will be strong evidence that the EOS of high density matter becomes substantially softer in the core of neutron stars. This finding opens a novel way to probe phase transitions of high density nuclear matter using detections of gravitational waves from new born neutron stars or magnetars under fallback accretion.

  16. Specific energy requirement for compacting corn stover.

    PubMed

    Mani, Sudhagar; Tabil, Lope G; Sokhansanj, Shahab

    2006-08-01

    Corn stover is a major crop residue for biomass conversion to produce chemicals and fuels. One of the problems associated with the supply of corn stover to conversion plants is the delivery of feedstock at a low cost. Corn stover has low bulk density and it is difficult to handle. In this study, chopped corn stover samples were compacted in a piston cylinder under three pressure levels (5, 10, 15 MPa) and at three moisture content levels (5%, 10%, 15% (wb)) to produce briquettes. The total energy requirement to compress and extrude briquette ranged from 12 to 30 MJ/t. The briquette density ranged from 650 to 950 kg/m3 increasing with pressure. Moisture content had also a significant effect on briquette density, durability and stability. Low moisture stover (5-10%) resulted in denser, more stable and more durable briquettes than high moisture stover (15%).

  17. Compact chopper spectrometers for pulsed sources

    NASA Astrophysics Data System (ADS)

    Voigt, J.; Violini, N.; Schweika, W.

    2016-09-01

    We report on the opportunities for direct geometry chopper spectrometers (DGCS) by polychromatic illumination of the sample. At pulsed sources the use of multiple initial neutron energies appears naturally, if the repetition rate of chopper in front of the sample is larger than the repetition rate of the source. As a consequence, a large part of the spectrum is measured redundantly with variable energy and momentum transfer resolution. This can be used to optimize a chopper instrument for deep inelastic scattering, relaxing the requirements on the pulse length, by which the sample is illuminated, and on the secondary flight path, while the width of the spectral distribution must be narrowed down. This can open the path to new types of compact direct geometry chopper spectrometers, which need comparably small areas of detector coverage and allow very high repetition rates to provide a high intensity even if sample size and divergence distributions are limited.

  18. Compact 6-DOF Stage for Optical Adjustments

    NASA Technical Reports Server (NTRS)

    Shafaat, Syed; Chang, Daniel

    2008-01-01

    The figure depicts selected aspects of a six-degree-of-freedom (6-DOF) stage for mechanical adjustment of an optical component. The six degrees of freedom are translations along the Cartesian axes (x, y, and z) and rotations about these axes (theta x, theta y, and theta z, respectively). Relative to prior such stages, this stage offers advantages of compactness, stability, and robustness, plus other advantages as described below. The stage was designed specifically as part of a laser velocimeter and altimeter in which light reflected by a distant object is collected by a Cassegrainian telescope and focused into a single-mode, polarization-maintaining optical fiber. The stage is used to position and orient the input end of the optical fiber with respect to the focal point of the telescope. Stages like this one can also be adapted for use in positioning and orienting other optical components, including lenses, prisms, apertures, and photodetectors.

  19. Development of compact linear accelerator in KBSI

    SciTech Connect

    Yoon, Jang-Hee; Lee, Byoung-Seob; Choi, Seyong; Park, Jin Yong; Ok, Jung-Woo; Won, Mi-Sook

    2012-02-15

    The compact linear accelerator using a 28 GHz ECRIS is under construction in KBSI, South Korea. The main capability of this facility is the production of fast neurons for the neutron radiography. The designing of a superconducting magnet, microwave transmission system, beam extraction, and plasma chamber of ECRIS were finished. The nominal axial design fields of the magnets are 3.6 T at injection and 2.2 T at extraction; the nominal radial design field strength at the plasma chamber wall is 2.1 T. We already installed 10 kW, 28 GHz gyrotron, and tested a microwave power from gyrotron using a dummy load. The current status will be discussed in this paper.

  20. Development of compact linear accelerator in KBSI.

    PubMed

    Yoon, Jang-Hee; Lee, Byoung-Seob; Choi, Seyong; Park, Jin Yong; Ok, Jung-Woo; Won, Mi-Sook

    2012-02-01

    The compact linear accelerator using a 28 GHz ECRIS is under construction in KBSI, South Korea. The main capability of this facility is the production of fast neurons for the neutron radiography. The designing of a superconducting magnet, microwave transmission system, beam extraction, and plasma chamber of ECRIS were finished. The nominal axial design fields of the magnets are 3.6 T at injection and 2.2 T at extraction; the nominal radial design field strength at the plasma chamber wall is 2.1 T. We already installed 10 kW, 28 GHz gyrotron, and tested a microwave power from gyrotron using a dummy load. The current status will be discussed in this paper.