Science.gov

Sample records for induces epithelial-to-mesenchymal transition

  1. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1

    SciTech Connect

    Pei, Xin-Hong; Lv, Xin-Quan; Li, Hui-Xiang

    2014-03-28

    Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cells and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression.

  2. Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices

    PubMed Central

    Nasrollahi, Samila; Pathak, Amit

    2016-01-01

    Epithelial cells disengage from their clusters and become motile by undergoing epithelial-to-mesenchymal transition (EMT), an essential process for both embryonic development and tumor metastasis. Growing evidence suggests that high extracellular matrix (ECM) stiffness induces EMT. In reality, epithelial clusters reside in a heterogeneous microenvironment whose mechanical properties vary not only in terms of stiffness, but also topography, dimensionality, and confinement. Yet, very little is known about how various geometrical parameters of the ECM might influence EMT. Here, we adapt a hydrogel-microchannels based matrix platform to culture mammary epithelial cell clusters in ECMs of tunable stiffness and confinement. We report a previously unidentified role of ECM confinement in EMT induction. Surprisingly, confinement induces EMT even in the cell clusters surrounded by a soft matrix, which otherwise protects against EMT in unconfined environments. Further, we demonstrate that stiffness-induced and confinement-induced EMT work through cell-matrix adhesions and cytoskeletal polarization, respectively. These findings highlight that both the structure and the stiffness of the ECM can independently regulate EMT, which brings a fresh perspective to the existing paradigm of matrix stiffness-dependent dissemination and invasion of tumor cells. PMID:26728047

  3. Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices

    NASA Astrophysics Data System (ADS)

    Nasrollahi, Samila; Pathak, Amit

    2016-01-01

    Epithelial cells disengage from their clusters and become motile by undergoing epithelial-to-mesenchymal transition (EMT), an essential process for both embryonic development and tumor metastasis. Growing evidence suggests that high extracellular matrix (ECM) stiffness induces EMT. In reality, epithelial clusters reside in a heterogeneous microenvironment whose mechanical properties vary not only in terms of stiffness, but also topography, dimensionality, and confinement. Yet, very little is known about how various geometrical parameters of the ECM might influence EMT. Here, we adapt a hydrogel-microchannels based matrix platform to culture mammary epithelial cell clusters in ECMs of tunable stiffness and confinement. We report a previously unidentified role of ECM confinement in EMT induction. Surprisingly, confinement induces EMT even in the cell clusters surrounded by a soft matrix, which otherwise protects against EMT in unconfined environments. Further, we demonstrate that stiffness-induced and confinement-induced EMT work through cell-matrix adhesions and cytoskeletal polarization, respectively. These findings highlight that both the structure and the stiffness of the ECM can independently regulate EMT, which brings a fresh perspective to the existing paradigm of matrix stiffness-dependent dissemination and invasion of tumor cells.

  4. Montelukast suppresses epithelial to mesenchymal transition of bronchial epithelial cells induced by eosinophils.

    PubMed

    Hosoki, Koa; Kainuma, Keigo; Toda, Masaaki; Harada, Etsuko; Chelakkot-Govindalayathila, Ayshwarya-Lakshmi; Roeen, Ziaurahman; Nagao, Mizuho; D'Alessandro-Gabazza, Corina N; Fujisawa, Takao; Gabazza, Esteban C

    2014-07-04

    Epithelial to mesenchymal transition (EMT) is a mechanism by which eosinophils can induce airway remodeling. Montelukast, an antagonist of the cysteinyl leukotriene receptor, can suppress airway remodeling in asthma. The purpose of this study was to evaluate whether montelukast can ameliorate airway remodeling by blocking EMT induced by eosinophils. EMT induced was assessed using a co-culture system of human bronchial epithelial cells and human eosinophils or the eosinophilic leukemia cell lines, Eol-1. Montelukast inhibited co-culture associated morphological changes of BEAS-2b cells, decreased the expression of vimentin and collagen I, and increased the expression of E-cadherin. Montelukast mitigated the rise of TGF-β1 production and Smad3 phosphorylation. Co-culture of human eosinophils with BEAS-2B cells significantly enhanced the production of CysLTs compared with BEAS-2B cells or eosinophils alone. The increase of CysLTs was abolished by montelukast pre-treatment. Montelukast had similar effects when co-culture system of Eol-1 and BEAS-2B was used. This study showed that montelukast suppresses eosinophils-induced EMT of airway epithelial cells. This finding may explain the mechanism of montelukast-mediated amelioration of airway remodeling in bronchial asthma.

  5. FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer.

    PubMed

    Liu, Rui; Li, Jingyi; Xie, Ke; Zhang, Tao; Lei, Yunlong; Chen, Yi; Zhang, Lu; Huang, Kai; Wang, Kui; Wu, Hong; Wu, Min; Nice, Edouard C; Huang, Canhua; Wei, Yuquan

    2013-10-01

    Tumor cells evolve by interacting with the local microenvironment; however, the tumor-stroma interactions that govern tumor metastasis are poorly understood. In this study, proteomic analyses reveal that coculture with tumor-associated fibroblasts (TAF) induces significant overexpression of FGFR4, but not other FGFRs, in colorectal cancer cell lines. Mechanistic study shows that FGFR4 plays crucial roles in TAF-induced epithelial-to-mesenchymal transition (EMT) in colorectal cancer cell lines. Accumulated FGFR4 in cell membrane phosphorylates β-catenin, leading to translocation of β-catenin into the nucleus. Further, TAF-derived CCL2 and its downstream transcription factor, Ets-1, are prerequisites for TAF-induced FGFR4 upregulation. Furthermore, FGFR4-associated pathways are shown to be preferentially activated in colorectal tumor samples, and direct tumor metastasis in a mouse metastasis model. Our study shows a pivotal role of FGFR4 in tumor-stroma interactions during colorectal cancer metastasis, and suggests novel therapeutic opportunities for the treatment of colorectal cancer.

  6. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence

    SciTech Connect

    Cote, Marceline; Miller, A. Dusty; Liu, Shan-Lu . E-mail: shan-lu.liu@mcgill.ca

    2007-08-17

    The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here, we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induces cell cycle arrest and senescence, leading to impaired cell proliferation.

  7. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells.

    PubMed

    Cohen, Evan N; Gao, Hui; Anfossi, Simone; Mego, Michal; Reddy, Neelima G; Debeb, Bisrat; Giordano, Antonio; Tin, Sanda; Wu, Qiong; Garza, Raul J; Cristofanilli, Massimo; Mani, Sendurai A; Croix, Denise A; Ueno, Naoto T; Woodward, Wendy A; Luthra, Raja; Krishnamurthy, Savitri; Reuben, James M

    2015-01-01

    Inflammatory breast cancer (IBC) is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT) in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1), a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction.

  8. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition

    PubMed Central

    Zhang, Q; Liu, S; Parajuli, KR; Zhang, W; Zhang, K; Mo, Z; Liu, J; Chen, Z; Yang, S; Wang, AR; Myers, L; You, Z

    2016-01-01

    Chronic inflammation has been associated with a variety of human cancers including prostate cancer. Interleukin-17 (IL-17) is a critical pro-inflammatory cytokine, which has been demonstrated to promote development of prostate cancer, colon cancer, skin cancer, breast cancer, lung cancer, and pancreas cancer. IL-17 promotes prostate adenocarcinoma with a concurrent increase of matrix metalloproteinase 7 (MMP7) expression in mouse prostate. Whether MMP7 mediates IL-17’s action and the underlying mechanisms remain unknown. We generated Mmp7 and Pten double knockout (Mmp7−/− in abbreviation) mouse model and demonstrated that MMP7 promotes prostate adenocarcinoma through induction of epithelial-to-mesenchymal transition (EMT) in Pten-null mice. MMP7 disrupted E-cadherin/β-catenin complex to up-regulate EMT transcription factors in mouse prostate tumors. IL-17 receptor C and Pten double knockout mice recapitulated the weak EMT characteristics observed in Mmp7−/− mice. IL-17 induced MMP7 and EMT in human prostate cancer LNCaP, C4-2B, and PC-3 cell lines, while siRNA knockdown of MMP7 inhibited IL-17-induced EMT. Compound III, a selective MMP7 inhibitor, decreased development of invasive prostate cancer in Pten single knockout mice. In human normal prostates and prostate tumors, IL-17 mRNA levels were positively correlated with MMP7 mRNA levels. These findings demonstrate that MMP7 mediates IL-17’s function in promoting prostate carcinogenesis through induction of EMT, indicating IL-17-MMP7-EMT axis as potential targets for developing new strategies in the prevention and treatment of prostate cancer. PMID:27375020

  9. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition

    PubMed Central

    Roy, Lopamudra Das; Sahraei, Mahnaz; Subramani, Durai B.; Besmer, Dahlia; Nath, Sritama; Tinder, Teresa L.; Bajaj, Ekta; Shanmugam, Kandavel; Lee, Yong Yook; Hwang, Sun IL; Gendler, Sandra J.; Mukherjee, Pinku

    2010-01-01

    Increased motility and invasiveness of pancreatic cancer cells are associated with epithelial to mesenchymal transition (EMT). Snai1 and Slug are zinc-finger transcription factors that trigger this process by repressing E-cadherin and enhancing vimentin and N-Cadherin protein expression. However, the mechanisms that regulate this activation in pancreatic tumors remain elusive. MUC1, a transmembrane mucin glycoprotein, is associated with the most invasive forms of pancreatic adenocarcinomas (PDA). In this study, we show that over expression of MUC1 in pancreatic cancer cells triggers the molecular process of EMT which translates to increased invasiveness and metastasis. EMT was significantly reduced when Muc1 was genetically deleted in a mouse model of PDA or when all seven tyrosines in the cytoplasmic tail of MUC1 were mutated to phenylalanine (mutated MUC1 CT). Using proteomics, RT-PCR, and Western blotting, we revealed a significant increase in vimentin, Slug and Snail expression with repression of E-Cadherin in MUC1-expressing cells compared to cells expressing the mutated MUC1 CT. In the cells that carried the mutated MUC1 CT, MUC1 failed to co-immunoprecipitate with β-catenin and translocate to the nucleus thereby blocking transcription of the genes associated with EMT and metastasis. Thus, functional tyrosines are critical in stimulating the interactions between MUC1 and β-catenin and their nuclear translocation to initiate the process of EMT. This study signifies the oncogenic role of MUC1 CT and is the first to identify a direct role of the MUC1 in initiating EMT during pancreatic cancer. The data may have implications in future design of MUC1-targeted therapies for pancreatic cancer. PMID:21102519

  10. Salinomycin suppresses TGF-β1-induced epithelial-to-mesenchymal transition in MCF-7 human breast cancer cells.

    PubMed

    Zhang, Chunying; Lu, Ying; Li, Qing; Mao, Jun; Hou, Zhenhuan; Yu, Xiaotang; Fan, Shujun; Li, Jiazhi; Gao, Tong; Yan, Bing; Wang, Bo; Song, Bo; Li, Lianhong

    2016-03-25

    Epithelial-to-mesenchymal transition (EMT) is the major cause of breast cancer to initiate invasion and metastasis. Salinomycin (Sal) has been found as an effective chemical compound to kill breast cancer stem cells. However, the effect of Sal on invasion and metastasis of breast cancer is unclear. In the present study, we showed that Sal reversed transforming growth factor-β1 (TGF-β1) induced invasion and metastasis accompanied with down-regulation of MMP-2 by experiments on human breast cancer cell line MCF-7. Sal was able to inhibit TGF-β1-induced EMT phenotypic transition and the activation of key signaling molecules involved in Smad (p-Smad2/3,Snail1) and non-Smad (β-catenin, p-p38 MAPK) signals which cooperatively regulate the induction of EMT. Importantly, in a series of breast cancer specimens, we found strong correlation among E-cadherin expression, β-catenin expression, and the lymph node metastatic potential of breast cancer. Our research suggests that Sal is promised to be a chemotherapeutic drug by suppressing the metastasis of breast cancer.

  11. Thymosin β4 induces proliferation, invasion, and epithelial-to-mesenchymal transition of oral squamous cell carcinoma.

    PubMed

    Hong, Kyoung-Ok; Lee, Jae-Il; Hong, Sam-Pyo; Hong, Seong-Doo

    2016-01-01

    The epithelial-to-mesenchymal transition (EMT) plays a vital role in carcinogenesis, invasion, and metastasis of many epithelial tumors including oral squamous cell carcinoma (OSCC), a common malignancy of the head and neck. However, the functional role of the actin-sequestering protein thymosin β4 (Tβ4) in the EMT in OSCCs remains unclear. Thus, we investigated whether overexpression of Tβ4 could induce in vitro tumorigenesis such as cell proliferation and anchorage independency and an EMT-like phenotype in OSCCs. Also, we examined whether it affects invasiveness and cell motility-associated signaling molecules. Tβ4-overexpressing OSCCs, SCC-15_Tβ4 and SCC-25_Tβ4, enhanced cell proliferation and colony formation. In addition, we observed that Tβ4 overexpression induced an EMT-like phenotype, accompanied by a decrease in expression of the epithelial cell marker E-cadherin and an increase in expression of mesenchymal cell markers vimentin and N-cadherin. Also, the expression level of Twist1, an EMT-inducing transcription factor, was significantly enhanced in SCC-15_Tβ4 and SCC-25_Tβ4 cells. Tβ4 overexpression augmented in vitro invasion and MMP-2 activity and enhanced the phosphorylation of paxillin and cortactin and expression of LIMK1. Taken together, these results suggest that Tβ4 overexpression could be one of the causes of tumorigenesis and progression in OSCCs. Further investigation on the Tβ4 molecule would encourage the development of specific targets for cancer treatment.

  12. Chromatinized Protein Kinase C-θ Directly Regulates Inducible Genes in Epithelial to Mesenchymal Transition and Breast Cancer Stem Cells

    PubMed Central

    Zafar, Anjum; Wu, Fan; Hardy, Kristine; Li, Jasmine; Tu, Wen Juan; McCuaig, Robert; Harris, Janelle; Khanna, Kum Kum; Attema, Joanne; Gregory, Philip A.; Goodall, Gregory J.; Harrington, Kirsti; Dahlstrom, Jane E.; Boulding, Tara; Madden, Rebecca; Tan, Abel; Milburn, Peter J.

    2014-01-01

    Epithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. Signal transduction kinases play a pivotal role as chromatin-anchored proteins in eukaryotes. Here we report for the first time that protein kinase C-theta (PKC-θ) promotes EMT by acting as a critical chromatin-anchored switch for inducible genes via transforming growth factor β (TGF-β) and the key inflammatory regulatory protein NF-κB. Chromatinized PKC-θ exists as an active transcription complex and is required to establish a permissive chromatin state at signature EMT genes. Genome-wide analysis identifies a unique cohort of inducible PKC-θ-sensitive genes that are directly tethered to PKC-θ in the mesenchymal state. Collectively, we show that cross talk between signaling kinases and chromatin is critical for eliciting inducible transcriptional programs that drive mesenchymal differentiation and CSC formation, providing novel mechanisms to target using epigenetic therapy in breast cancer. PMID:24891615

  13. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis.

    PubMed

    Hou, P; Zhao, Y; Li, Z; Yao, R; Ma, M; Gao, Y; Zhao, L; Zhang, Y; Huang, B; Lu, J

    2014-06-12

    LncRNAs have critical roles in various biological processes ranging from embryonic development to human diseases, including cancer progression, although their detailed mechanistic functions remain illusive. The lncRNA linc-ROR has been shown to contribute to the maintenance of induced pluripotent stem cells and embryonic stem cells. In this study, we discovered that linc-ROR was upregulated in breast tumor samples, and ectopic overexpression of linc-ROR in immortalized human mammary epithelial cells induced an epithelial-to-mesenchymal transition (EMT) program. Moreover, we showed that linc-ROR enhanced breast cancer cell migration and invasion, which was accompanied by generation of stem cell properties. Contrarily, silencing of linc-ROR repressed breast tumor growth and lung metastasis in vivo. Mechanistically, our data revealed that linc-ROR was associated with miRNPs and functioned as a competing endogenous RNA to mi-205. Specifically, linc-ROR prevented the degradation of mir-205 target genes, including the EMT inducer ZEB2. Thus our results indicate that linc-ROR functions as an important regulator of EMT and can promote breast cancer progression and metastasis through regulation of miRNAs. Potentially, the findings of this study implicate the relevance of linc-ROR as a possible therapeutic target for aggressive and metastatic breast cancers.

  14. Snail-Induced Epithelial-to-Mesenchymal Transition Enhances P-gp-Mediated Multi Drug Resistance in HCC827 Cells.

    PubMed

    Tomono, Takumi; Yano, Kentaro; Ogihara, Takuo

    2017-03-17

    Overexpression and/or activation of P-glycoprotein (P-gp), which mediates efflux transport of various anti-cancer drugs in cancer cells, are associated with multi-drug resistance (MDR). On the other hand, malignant cancer cells frequently undergo epithelial-to-mesenchymal transition (EMT), thereby acquiring high migratory mobility and invasive ability. Snail is a transcriptional factor that represses multiple other factors, and its overexpression is a trigger of EMT. Since both P-gp and Snail are involved in malignant evolution of cancer, in this work, we evaluated whether or not EMT induced by overexpression of Snail influences P-gp expression and/or activity. Snail-overexpressing cells showed downregulation of epithelial markers, E-cadherin, occludin and claudin-1, and upregulation of mesenchymal markers, vimenin and ZEB1. Although Western blot analysis showed that P-gp expression levels were similar in Mock and Snail-overexpressing cells, the results of P-gp functional assays with P-gp substrates rhodamine123 and paclitaxel indicated that P-gp is activated in Snail-overexpressing cells. Indeed, Snail-overexpressing cells showed greater viability than Mock cells in the presence of paclitaxel. We observed caveolin-1 dephosphorylation and decreased GRB2 expression in Snail-overexpressing cells. These findings suggest a novel pathway leading to cancer MDR, in which Snail induces EMT concomitantly with a decrease of GRB2-mediated caveolin-1 phosphorylation, resulting in activation of P-gp.

  15. Erythropoietin Induces an Epithelial to Mesenchymal Transition-like Process in Mammary Epithelial Cells MCF10A.

    PubMed

    Ordoñez-Moreno, Alejandra; Rodriguez-Monterrosas, Cecilia; Cortes-Reynosa, Pedro; Perez-Carreon, Julio Isael; Perez Salazar, Eduardo

    2017-03-01

    Anemia is associated with chemotherapy treatment in cancer patients. Erythropoietin (EPO) has been used to treat anemia of cancer patients, because it stimulates erythropoiesis. However, treatment of breast cancer patients with EPO has been associated with poor prognosis and decrease of survival. Epithelial to mesenchymal transition (EMT) is a process by which epithelial cells are transdifferentiated to a mesenchymal state. It has been implicated in tumor progression, because epithelial cells acquire the capacity to execute the multiple steps of invasion/metastasis process. However, the role of EPO on EMT process in human mammary epithelial cells has not been studied. In the present study, we demonstrate that EPO promotes a decrease of E-cadherin expression, an increase of N-cadherin, vimentin and Snail2 expression, activation of FAK and Src kinases and an increase of MMP-2 and MMP-9 secretions. Moreover, EPO induces an increase of NFκB DNA binding activity, an increase of binding of p50 and p65 NFκB subunits to Snail1 promoter, migration and invasion in mammary non-tumorigenic epithelial cells MCF10A. In summary, these findings demonstrate, for the first time, that EPO induces an EMT-like process in mammary non-tumorigenic epithelial cells. This article is protected by copyright. All rights reserved.

  16. Discoidin domain receptor 1 (DDR1), a promising biomarker, induces epithelial to mesenchymal transition in renal cancer cells.

    PubMed

    Song, Jingyuan; Chen, Xiao; Bai, Jin; Liu, Qinghua; Li, Hui; Xie, Jianwan; Jing, Hui; Zheng, Junnian

    2016-08-01

    Discoidin domain receptor I (DDR1) is confirmed as a receptor tyrosine kinase (RTK), which plays a consequential role in a variety of cancers. Nevertheless, the influence of DDR1 expression and development in renal clear cell carcinoma (RCCC) are still not well corroborated. In our research, we firstly discovered that the expression level of DDR1 was remarkable related to TNM stage (p = 0.032), depth of tumor invasion (p = 0.047), and lymph node metastasis (p = 0.034) in 119 RCCC tissue samples using tissue microarray. The function of DDR1 was then evaluated in vitro using collagen I and DDR1 small interfering RNA (siRNA) to regulate the expression of DDR1 in OS-RC-2 and ACHN renal cancer cells (RCC). DDR1 expression correlated with increased RCC cell migration, invasion, and angiogenesis. Further study revealed that high expression of DDR1 can result in epithelial to mesenchymal transition (EMT) activation. Western blot assay showed that the N-cadherin protein and vimentin were induced while E-cadherin was reduced after DDR1 over expression. Our results suggest that DDR1 is both a prognostic marker for RCCC and a potential functional target for therapy.

  17. Genome-wide gain-of-function screen for genes that induce epithelial-to-mesenchymal transition in breast cancer.

    PubMed

    Škalamera, Dubravka; Dahmer-Heath, Mareike; Stevenson, Alexander J; Pinto, Cletus; Shah, Esha T; Daignault, Sheena M; Said, Nur Akmarina B M; Davis, Melissa; Haass, Nikolas K; Williams, Elizabeth D; Hollier, Brett G; Thompson, Erik W; Gabrielli, Brian; Gonda, Thomas J

    2016-09-20

    Epithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A. When overexpressed in this model, they increased the rate of cell invasion through Matrigel™, induced mesenchymal marker expression and reduced expression of the epithelial marker E-cadherin. In gene-expression datasets derived from breast cancer patients, the expression of several novel genes correlated with expression of known EMT marker genes, indicating their in vivo relevance. As EMT-associated properties are thought to contribute in several ways to cancer progression, genes identified in this study may represent novel targets for anti-cancer therapy.

  18. Genome-wide gain-of-function screen for genes that induce epithelial-to-mesenchymal transition in breast cancer

    PubMed Central

    Škalamera, Dubravka; Dahmer-Heath, Mareike; Stevenson, Alexander J.; Pinto, Cletus; Shah, Esha T.; Daignault, Sheena M.; Said, Nur Akmarina B.M.; Davis, Melissa; Haass, Nikolas K.; Williams, Elizabeth D.; Hollier, Brett G.; Thompson, Erik W.; Gabrielli, Brian; Gonda, Thomas J.

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A. When overexpressed in this model, they increased the rate of cell invasion through Matrigel™, induced mesenchymal marker expression and reduced expression of the epithelial marker E-cadherin. In gene-expression datasets derived from breast cancer patients, the expression of several novel genes correlated with expression of known EMT marker genes, indicating their in vivo relevance. As EMT-associated properties are thought to contribute in several ways to cancer progression, genes identified in this study may represent novel targets for anti-cancer therapy. PMID:27876705

  19. TGF-β induces global changes in DNA methylation during the epithelial-to-mesenchymal transition in ovarian cancer cells

    PubMed Central

    Cardenas, Horacio; Vieth, Edyta; Lee, Jiyoon; Segar, Mathew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-01-01

    A key step in the process of metastasis is the epithelial-to-mesenchymal transition (EMT). We hypothesized that epigenetic mechanisms play a key role in EMT and to test this hypothesis we analyzed global and gene-specific changes in DNA methylation during TGF-β-induced EMT in ovarian cancer cells. Epigenetic profiling using the Infinium HumanMethylation450 BeadChip (HM450) revealed extensive (P < 0.01) methylation changes after TGF-β stimulation (468 and 390 CpG sites altered at 48 and 120 h post cytokine treatment, respectively). The majority of gene-specific TGF-β-induced methylation changes occurred in CpG islands located in or near promoters (193 and 494 genes hypermethylated at 48 and 120 h after TGF-β stimulation, respectively). Furthermore, methylation changes were sustained for the duration of TGF-β treatment and reversible after the cytokine removal. Pathway analysis of the hypermethylated loci identified functional networks strongly associated with EMT and cancer progression, including cellular movement, cell cycle, organ morphology, cellular development, and cell death and survival. Altered methylation and corresponding expression of specific genes during TGF-β-induced EMT included CDH1 (E-cadherin) and COL1A1 (collagen 1A1). Furthermore, TGF-β induced both expression and activity of DNA methyltransferases (DNMT) -1, -3A, and -3B, and treatment with the DNMT inhibitor SGI-110 prevented TGF-β-induced EMT. These results demonstrate that dynamic changes in the DNA methylome are implicated in TGF-β-induced EMT and metastasis. We suggest that targeting DNMTs may inhibit this process by reversing the EMT genes silenced by DNA methylation in cancer. PMID:25470663

  20. TGF-β induces global changes in DNA methylation during the epithelial-to-mesenchymal transition in ovarian cancer cells.

    PubMed

    Cardenas, Horacio; Vieth, Edyta; Lee, Jiyoon; Segar, Mathew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-11-01

    A key step in the process of metastasis is the epithelial-to-mesenchymal transition (EMT). We hypothesized that epigenetic mechanisms play a key role in EMT and to test this hypothesis we analyzed global and gene-specific changes in DNA methylation during TGF-β-induced EMT in ovarian cancer cells. Epigenetic profiling using the Infinium HumanMethylation450 BeadChip (HM450) revealed extensive (P < 0.01) methylation changes after TGF-β stimulation (468 and 390 CpG sites altered at 48 and 120 h post cytokine treatment, respectively). The majority of gene-specific TGF-β-induced methylation changes occurred in CpG islands located in or near promoters (193 and 494 genes hypermethylated at 48 and 120 h after TGF-β stimulation, respectively). Furthermore, methylation changes were sustained for the duration of TGF-β treatment and reversible after the cytokine removal. Pathway analysis of the hypermethylated loci identified functional networks strongly associated with EMT and cancer progression, including cellular movement, cell cycle, organ morphology, cellular development, and cell death and survival. Altered methylation and corresponding expression of specific genes during TGF-β-induced EMT included CDH1 (E-cadherin) and COL1A1 (collagen 1A1). Furthermore, TGF-β induced both expression and activity of DNA methyltransferases (DNMT) -1, -3A, and -3B, and treatment with the DNMT inhibitor SGI-110 prevented TGF-β-induced EMT. These results demonstrate that dynamic changes in the DNA methylome are implicated in TGF-β-induced EMT and metastasis. We suggest that targeting DNMTs may inhibit this process by reversing the EMT genes silenced by DNA methylation in cancer.

  1. TRPC1-STIM1 activation modulates transforming growth factor β-induced epithelial-to-mesenchymal transition

    PubMed Central

    Schaar, Anne; Sukumaran, Pramod; Sun, Yuyang; Dhasarathy, Archana; Singh, Brij B

    2016-01-01

    Activation of Epithelial-to-Mesenchymal Transition (EMT) is important for tumor metastasis. Although growth factors such as TGFβ and EGF have been shown to induce EMT in breast epithelial cells, the mechanism resulting in migration is not well understood. Herein, we provide evidence that Ca2+ entry into the cell, especially upon store-depletion, plays an important role in TGFβ-induced EMT by promoting cellular migration and potentially leading to metastasis. The increased migration by TGFβ in non-cancerous cells was due to the loss of E-cadherin along with a subsequent increase in N-cadherin levels. Importantly, TGFβ-treatment increases store-mediated Ca2+ entry, which was essential for the activation of calpain leading to the loss of E-cadherin and MMP activation. Inhibition of Ca2+ entry by using Ca2+ channel blocker SKF-96365, significantly decreased Ca2+ entry, decreased TGFβ-induced calpain activation, and suppressed the loss of E-cadherin along with inhibiting cell migration. Furthermore, TRPC1 function as an endogenous Ca2+ entry channel and silencing of either TRPC1 or its activator, STIM1, significantly decreased TGFβ induced Ca2+ entry, inhibited TGFβ-mediated calpain activation and cell migration. In contrast, overexpression of TRPC1 showed increased Ca2+ entry and promoted TGFβ-mediated cell migration. Moreover, increased TRPC1 expression was observed in ductal carcinoma cells. Together these results suggest that disrupting Ca2+ influx via TRPC1/STIM1 mechanism reduces calpain activity, which could restore intercellular junction proteins thereby inhibiting EMT induced motility. PMID:27793015

  2. The Disintegrin and Metalloprotease ADAM12 Is Associated with TGF-β-Induced Epithelial to Mesenchymal Transition.

    PubMed

    Ruff, Michaël; Leyme, Anthony; Le Cann, Fabienne; Bonnier, Dominique; Le Seyec, Jacques; Chesnel, Franck; Fattet, Laurent; Rimokh, Ruth; Baffet, Georges; Théret, Nathalie

    2015-01-01

    The increased expression of the Disintegrin and Metalloprotease ADAM12 has been associated with human cancers, however its role remain unclear. We have previously reported that ADAM12 expression is induced by the transforming growth factor, TGF-β and promotes TGF-β-dependent signaling through interaction with the type II receptor of TGF-β. Here we explore the implication of ADAM12 in TGF-β-mediated epithelial to mesenchymal transition (EMT), a key process in cancer progression. We show that ADAM12 expression is correlated with EMT markers in human breast cancer cell lines and biopsies. Using a non-malignant breast epithelial cell line (MCF10A), we demonstrate that TGF-β-induced EMT increases expression of the membrane-anchored ADAM12L long form. Importantly, ADAM12L overexpression in MCF10A is sufficient to induce loss of cell-cell contact, reorganization of actin cytoskeleton, up-regulation of EMT markers and chemoresistance. These effects are independent of the proteolytic activity but require the cytoplasmic tail and are specific of ADAM12L since overexpression of ADAM12S failed to induce similar changes. We further demonstrate that ADAM12L-dependent EMT is associated with increased phosphorylation of Smad3, Akt and ERK proteins. Conversely, inhibition of TGF-β receptors or ERK activities reverses ADAM12L-induced mesenchymal phenotype. Together our data demonstrate that ADAM12L is associated with EMT and contributes to TGF-β-dependent EMT by favoring both Smad-dependent and Smad-independent pathways.

  3. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition.

    PubMed

    Andarawewa, Kumari L; Erickson, Anna C; Chou, William S; Costes, Sylvain V; Gascard, Philippe; Mott, Joni D; Bissell, Mina J; Barcellos-Hoff, Mary Helen

    2007-09-15

    Transforming growth factor beta1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT). Nonmalignant HMEC (MCF10A, HMT3522 S1, and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture or treated with a low concentration of TGFbeta (0.4 ng/mL) or double treated. All double-treated (IR + TGFbeta) HMEC underwent a morphologic shift from cuboidal to spindle shaped. This phenotype was accompanied by a decreased expression of epithelial markers E-cadherin, beta-catenin, and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin, and vimentin. Furthermore, double treatment increased cell motility, promoted invasion, and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGFbeta alone elicited EMT, although IR increased chronic TGFbeta signaling and activity. Gene expression profiling revealed that double-treated cells exhibit a specific 10-gene signature associated with Erk/mitogen-activated protein kinase (MAPK) signaling. We hypothesized that IR-induced MAPK activation primes nonmalignant HMEC to undergo TGFbeta-mediated EMT. Consistent with this, Erk phosphorylation was transiently induced by irradiation and persisted in irradiated cells treated with TGFbeta, and treatment with U0126, a MAP/Erk kinase (MEK) inhibitor, blocked the EMT phenotype. Together, these data show that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  4. Maresin 1 Inhibits Epithelial-to-Mesenchymal Transition in Vitro and Attenuates Bleomycin Induced Lung Fibrosis in Vivo.

    PubMed

    Wang, Yaxin; Li, Ruidong; Chen, Lin; Tan, Wen; Sun, Zhipeng; Xia, Haifa; Li, Bo; Yu, Yuan; Gong, Jie; Tang, Min; Ji, Yudong; Yuan, Shiying; Shanglong Yao; Shang, You

    2015-11-01

    Lung fibrosis is an aggressive disease with uncontrolled fibrotic response and no effective therapeutic treatment. Epithelial-to-mesenchymal transition (EMT) has been proved to be an important pathological feature in lung fibrosis. In this study, we investigated whether MaR1, a kind of proresolving lipid mediators, could inhibit TGF-β1-induced EMT in vitro and lung fibrosis in vivo. In vitro study, mouse type II alveolar epithelial cells were treated with different does of MaR1 for 30 min and were exposed to TGF-β1 for 48 h. In vivo study, C57BL/6 mice were administered bleomycin intratracheally. After 14 days, MaR1 was injected intraperitoneally daily for 7 days. In day 28, mice were sacrificed. The results demonstrate that treatment of mouse type II alveolar epithelial cells with MaR1 (10 nM) significantly prevents TGF-β1-induced fibronectin and α-SMA expression and restores E-Cadherin level. The down-regulation of profibrotic molecules of MaR1 is associated with suppression of Smad2/3 and Akt phosphorylation. In vivo, MaR1 treatment significantly prolongs survival rate and attenuates destruction of lung architecture, as well as collagen deposition after bleomycin inhalation. TGF-β1 concentration in bronchoalveolar lavage and fibrotic markers (fibronectin and α-SMA) in lung tissues are inhibited by MaR1 administration. These data indicate that MaR1 inhibits TGF-β1-induced EMT and attenuates bleomycin-induced pulmonary fibrosis. MaR1 may be a promising strategy for alleviation of lung fibrosis.

  5. The essential roles of CCR7 in epithelial-to-mesenchymal transition induced by hypoxia in epithelial ovarian carcinomas.

    PubMed

    Cheng, Shaomei; Han, Lin; Guo, Jingyan; Yang, Qing; Zhou, Jianfang; Yang, Xiangshan

    2014-12-01

    The chemokine receptor CCR7 and its ligands CCL19/21 mediate the tumor mobility, invasion, and metastasis (Wu et al. Curr Pharm Des. 15:742-57, 2009). Hypoxia induced epithelial-to-mesenchymal transition (EMT) to facilitate the tumor biology. Here, we addressed the roles of CCR7 in epithelial ovarian carcinoma tissues and hypoxia-induced serous papillary cystic adenocarcinoma (SKOV-3) EMT. The expression level of CCR7 protein was analyzed by immunohistochemistry in 30 specimens of epithelial ovarian carcinomas. Western blot was used to investigate the expression of hypoxia-induced CCR7, HIF-1α, and EMT markers (N-cadherin, Snail, MMP-9). In addition, wound healing and Transwell assay were introduced to observe the capacity of migration and invasiveness. Our data showed CCR7 expression was observed in 22 cases of tissues and closely associated with lymph node metastasis and FIGO stage (III + IV). At 6, 12, 24, and 36 h following hypoxia, CCR7 and HIF-1α proteins were both obviously upregulated in a time-dependent method, compared with normal oxygen. In vitro, SKOV-3 expressed N-cadherin, Snail, and MMP-9 once either CCL21 stimulation or hypoxia induction, while hypoxia accompanied with CCL21 induction exhibited strongest upregulation of N-cadherin, Snail, and MMP-9 proteins. Besides, wound healing and Transwell assay further identified that hypoxia with CCL21 stimulation can remarkably promote cell migration and invasiveness. Taken together, CCR7 can constitutively express in epithelial ovarian carcinomas and be induced rapidly in response to hypoxia, which indeed participates in EMT development and prompts the cell migration and invasion. Thus, this study suggested that the epithelial ovarian cancer invasion and metastasis can be inhibited by antagonizing CCR7.

  6. MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells

    PubMed Central

    Ponnusamy, MP; Lakshmanan, I; Jain, M; Das, S; Chakraborty, S; Dey, P; Batra, SK

    2010-01-01

    The acquisition of invasiveness in ovarian cancer (OC) is accompanied by the process of epithelial-to-mesenchymal transition (EMT). The MUC4 mucin is overexpressed in ovarian tumors and has a role in the invasiveness of OC cells. The present study was aimed at evaluating the potential involvement of MUC4 in the metastasis of OC cells by inducing EMT. Ectopic overexpression of MUC4 in OC cells (SKOV3-MUC4) resulted in morphological alterations along with a decreased expression of epithelial markers (E-cadherin and cytokeratin (CK)-18) and an increased expression of mesenchymal markers (N-cadherin and vimentin) compared with the control cells (SKOV3-vector). Also, pro-EMT transcription factors TWIST1, TWIST2 and SNAIL showed an upregulation in SKOV3-MUC4 cells. We further investigated the pathways upstream of N-cadherin, such as focal adhesion kinase (FAK), MKK7, JNK1/2 and c-Jun, which were also activated in the SKOV3-MUC4 cells compared with SKOV3-vector cells. Inhibition of phospho-FAK (pFAK) and pJNK1/2 decreased N-cadherin expression in the MUC4-overexpressing cells, which further led to a significant decrease in cellular motility. Knockdown of N-cadherin decreased the activation of extracellular signal-regulated kinase-1/2 (ERK1/2), AKT and matrix metalloproteinase 9 (MMP9), and inhibited the motility in the SKOV3-MUC4 cells. Upon in vivo tumorigenesis and metastasis analysis, the SKOV3-MUC4 cells produced significantly larger tumors and demonstrated a higher incidence of metastasis to distance organs (peritoneal wall, colon, intestine, stomach, lymph nodes, liver and diaphragm). Taken together, our study reveals a novel role for MUC4 in inducing EMT through the upregulation of N-cadherin and promoting metastasis of OC cells. PMID:20697346

  7. Commentary: acetaldehyde and epithelial-to-mesenchymal transition in colon.

    PubMed

    Rao, Radhakrishna K

    2014-02-01

    Elamin and colleagues in this issue report that acetaldehyde activates Snail, a transcription factor involved in epithelial-to-mesenchymal transition, in an intestinal epithelium. Snail mediates acetaldehyde-induced tight junction disruption and increase in paracellular permeability. Results of this study and other previous studies raise several important questions. This commentary addresses these questions by discussing the acetaldehyde concentration in colon, disruption of epical junctional complexes in the intestinal epithelium by acetaldehyde, and the consequence of long-term exposure to acetaldehyde on colonic epithelial regeneration, carcinogenesis, and metastases. The precise role of acetaldehyde in colonic epithelial modifications and promotion of colorectal cancers still remains to be understood.

  8. Dynamic Sialylation in Transforming Growth Factor-β (TGF-β)-induced Epithelial to Mesenchymal Transition*

    PubMed Central

    Du, Jun; Hong, Senlian; Dong, Lu; Cheng, Bo; Lin, Liang; Zhao, Bing; Chen, Ye-Guang; Chen, Xing

    2015-01-01

    Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and organ formation. Aberrant regulation of EMT often leads to tumor progression. Changes in cell surface sialylation have recently been implicated in mediating EMT. Herein we report the visualization of dynamic changes of sialylation and glycoproteomic analysis of newly synthesized sialylated proteins in EMT by metabolic labeling of sialylated glycans with azides, followed by click labeling with fluorophores or affinity tags. We discovered that sialylation was down-regulated during EMT but then reverted and up-regulated in the mesenchymal state after EMT, accompanied by mRNA expression level changes of genes involved in the sialic acid biosynthesis. Quantitative proteomic analysis identified a list of sialylated proteins whose biosynthesis was dynamically regulated during EMT. Sialylation of cell surface adherent receptor integrin β4 was found to be down-regulated, which may regulate integrin functions during EMT. Furthermore, a global sialylation inhibitor was used to probe the functional role of sialylation during EMT. We found that inhibition of sialylation promoted EMT. Taken together, our findings suggest the important role of sialylation in regulating EMT and imply its possible function in related pathophysiological events, such as cancer metastasis. PMID:25809486

  9. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition.

    PubMed

    Haraguchi, Takeshi; Kondo, Masayuki; Uchikawa, Ryo; Kobayashi, Kazuyoshi; Hiramatsu, Hiroaki; Kobayashi, Kyousuke; Chit, Ung Weng; Shimizu, Takanobu; Iba, Hideo

    2016-02-18

    Whereas miR-200 family is known to be involved in the epithelial-to-mesenchymal transition (EMT), a crucial biological process observed in normal and pathological contexts, it has been largely unclear how far the functional levels of these tiny RNAs alone can propagate the molecular events to accomplish this process within several days. By developing a potent inhibitor of miR-200 family members (TuD-141/200c), the expression of which is strictly regulatable by the Tet (tetracycline)-On system, we found using a human colorectal cell line, HCT116, that several direct gene target mRNAs (Zeb1/Zeb2, ESRP1, FN1and FHOD1) of miR-200 family were elevated with distinct kinetics. Prompt induction of the transcriptional suppressors, Zeb1/Zeb2 in turn reduced the expression levels of miR-200c/-141 locus, EpCAM, ESRP1 and E-Cad. The loss of ESRP1 subsequently switched the splicing isoforms of CD44 and p120 catenin mRNAs to mesenchymal type. Importantly, within 9 days after the release from the inhibition of miR-200 family, all of the expression changes in the 14 genes observed in this study returned to their original levels in the epithelial cells. This suggests that the inherent epithelial plasticity is supported by a weak retention of key regulatory gene expression in either the epithelial or mesenchymal states through epigenetic regulation.

  10. Effects of Chinese Medicine Tong xinluo on Diabetic Nephropathy via Inhibiting TGF-β1-Induced Epithelial-to-Mesenchymal Transition

    PubMed Central

    Zhang, Na; Gao, Yanbin; Zou, Dawei; Wang, Jinyang; Li, Jiaoyang; Zhou, Shengnan; Zhu, Zhiyao; Zhao, Xuan; Xu, Liping; Zhang, Haiyan

    2014-01-01

    Diabetic nephropathy (DN) is a major cause of chronic kidney failure and characterized by interstitial and glomeruli fibrosis. Epithelial-to-mesenchymal transition (EMT) plays an important role in the pathogenesis of DN. Tong xinluo (TXL), a Chinese herbal compound, has been used in China with established therapeutic efficacy in patients with DN. To investigate the molecular mechanism of TXL improving DN, KK-Ay mice were selected as models for the evaluation of pathogenesis and treatment in DN. In vitro, TGF-β1 was used to induce EMT. Western blot (WB), immunofluorescence staining, and real-time polymerase chain reaction (RT-PCR) were applied to detect the changes of EMT markers in vivo and in vitro, respectively. Results showed the expressions of TGF-β1 and its downstream proteins smad3/p-smad3 were greatly reduced in TXL group; meantime, TXL restored the expression of smad7. As a result, the expressions of collagen IV (Col IV) and fibronectin (FN) were significantly decreased in TXL group. In vivo, 24 h-UAER (24-hour urine albumin excretion ratio) and BUN (blood urea nitrogen) were decreased and Ccr (creatinine clearance ratio) was increased in TXL group compared with DN group. In summary, the present study demonstrates that TXL successfully inhibits TGF-β1-induced epithelial-to-mesenchymal transition in DN, which may account for the therapeutic efficacy in TXL-mediated renoprotection. PMID:24864150

  11. Free radical generation induces epithelial-to-mesenchymal transition in lung epithelium via a TGF-β1-dependent mechanism.

    PubMed

    Gorowiec, Marta R; Borthwick, Lee A; Parker, Sean M; Kirby, John A; Saretzki, Gabriele C; Fisher, Andrew J

    2012-03-15

    Fibrotic remodelling of lung parenchymal and airway compartments is the major contributor to life-threatening organ dysfunction in chronic lung diseases such as idiopathic pulmonary fibrosis (IPF) and Chronic Obstructive Pulmonary Disease (COPD). Since transforming growth factor-β1 (TGF-β1) is believed to play a key role in disease pathogenesis and markers of oxidative stress are also commonly detected in bronchoalveolar lavage (BAL) from such patients we sought to investigate whether both factors might be interrelated. Here we investigated the hypothesis that oxidative stress to the lung epithelium promotes fibrotic repair by driving epithelial-to-mesenchymal transition (EMT) via the augmentation of TGF-β1. We show that in response to 400μM hydrogen peroxide (H(2)O(2)) A549 cells, used a model for alveolar epithelium, and human primary bronchial epithelial cells (PBECs) undergo EMT displaying morphology changes, decreased expression of epithelial markers (E-cadherin and ZO-1), increased expression of mesenchymal markers (vimentin and α-smooth muscle actin) as well as increased secretion of extracelluar matrix components. The same oxidative stress also promotes expression of TGF-β1. Inhibition of TGF-β1 signalling as well as treatment with antioxidants such as phenyl tert-butylnitrone (PBN) and superoxide dismutase 3 (SOD3) prevent the oxidative stress driven EMT-like changes described above. Interventions also inhibited EMT-like changes. This study identifies a link between oxidative stress, TGF-β1 and EMT in lung epithelium and highlights the potential for antioxidant therapies to limit EMT and its potential contribution to chronic lung disease.

  12. Metformin against TGFβ-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis.

    PubMed

    Cufí, Silvia; Vazquez-Martin, Alejandro; Oliveras-Ferraros, Cristina; Martin-Castillo, Begoña; Joven, Jorge; Menendez, Javier A

    2010-11-15

    Transforming Growth Factor-b (TGFb) is a major driving force of the Epithelial-to-Mesenchymal (EMT) genetic program, which becomes overactive in the pathophysiology of many age-related human diseases.  TGFb-driven EMT is sufficient to generate migrating cancer stem cells by directly linking the acquisition of cellular motility with the maintenance of tumor-initiating (stemness) capacity.  Chronic diseases exhibiting excessive fibrosis can be caused by repeated and sustained infliction of TGFb-driven EMT, which increases collagen and extracellular matrix synthesis.  Pharmacological prevention and/or reversal of TGFb-induced EMT may therefore have important clinical applications in the management of cancer metastasis as well as in the prevention and/or treatment of end-state organ failures.  Earlier studies from our group have revealed that clinically-relevant concentrations of the biguanide derivative metformin, the most widely used oral agent to lower blood glucose concentration in patients with type 2 diabetes and metabolic syndrome, notably decreased both the self-renewal and the proliferation of trastuzumab-refractory breast cancer stem cell populations.  Given that: a.) tumor-initiating cancer stem cells display a significant enrichment in the expression of basal/mesenchymal or myoepithelial markers, including an increased secretion of TGFb; b.) metformin treatment impedes the ontogeny of generating the stem cell phenotype by transcriptionally repressing key drivers of the EMT genetic program (e.g. ZEB1, TWIST1, SNAIL2 [Slug], TGFbs), we recently hypothesized that prevention of TGFb-induced EMT might represent a common molecular mechanism underlying the anti-cancer stem cells and anti-fibrotic actions of metformin.  Remarkably, metformin exposure not only impedes TGFb-promoted loss of the epithelial marker E-cadherin in MCF-7 breast cancer cells but it prevents further TGF-induced cell scattering and accumulation of the mesenchymal marker vimentin in

  13. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells.

    PubMed

    Yasukawa, Atsushi; Hosoki, Koa; Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N; Suga, Shigeru; Kobayashi, Tetsu; Fujisawa, Takao; Taguchi, Osamu; Gabazza, Esteban C

    2013-01-01

    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF)-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.

  14. Vitamin D and the Epithelial to Mesenchymal Transition

    PubMed Central

    Larriba, María Jesús; García de Herreros, Antonio; Muñoz, Alberto

    2016-01-01

    Several studies support reciprocal regulation between the active vitamin D derivative 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and the epithelial to mesenchymal transition (EMT). Thus, 1,25(OH)2D3 inhibits EMT via the induction of a variety of target genes that encode cell adhesion and polarity proteins responsible for the epithelial phenotype and through the repression of key EMT inducers. Both direct and indirect regulatory mechanisms mediate these effects. Conversely, certain master EMT inducers inhibit 1,25(OH)2D3 action by repressing the transcription of VDR gene encoding the high affinity vitamin D receptor that mediates 1,25(OH)2D3 effects. Consequently, the balance between the strength of 1,25(OH)2D3 signaling and the induction of EMT defines the cellular phenotype in each context. Here we review the current understanding of the genes and mechanisms involved in the interplay between 1,25(OH)2D3 and EMT. PMID:26880977

  15. Parathyroid hormone induces epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway in human renal proximal tubular cells.

    PubMed

    Guo, Yunshan; Li, Zhen; Ding, Raohai; Li, Hongdong; Zhang, Lei; Yuan, Weijie; Wang, Yanxia

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT) has been shown to play an important role in renal fibrogenesis. Recent studies suggested parathyroid hormone (PTH) could accelerate EMT and subsequent organ fibrosis. However, the precise molecular mechanisms underlying PTH-induced EMT remain unknown. The present study was to investigate whether Wnt/β-catenin signaling pathway is involved in PTH-induced EMT in human renal proximal tubular cells (HK-2 cells) and to determine the profile of gene expression associated with PTH-induced EMT. PTH could induce morphological changes and gene expression characteristic of EMT in cultured HK-2 cells. Suppressing β-catenin expression or DKK1 limited gene expression characteristic of PTH-induced EMT. Based on the PCR array analysis, PTH treatment resulted in the up-regulation of 18 genes and down-regulation of 9 genes compared with the control. The results were further supported by a western blot analysis, which showed the increased Wnt4 protein expression. Wnt4 overexpression also promotes PTH-induced EMT in HK-2 cells. The findings demonstrated that PTH-induced EMT in HK-2 cells is mediated by Wnt/β-catenin signal pathway, and Wnt4 might be a key gene during PTH-induced EMT.

  16. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells.

    PubMed

    Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5'-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3

  17. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors

    PubMed Central

    ZHAO, LEI; LIU, SHIZHOU; CHE, XIAOFANG; HOU, KEZUO; MA, YANJU; LI, CE; WEN, TI; FAN, YIBO; HU, XUEJUN; LIU, YUNPENG; QU, XIUJUAN

    2015-01-01

    The epithelial-to-mesenchymal transition (EMT) is a well-known prerequisite for cancer cells to acquire the migratory and invasive capacity, and to subsequently metastasize. Bufalin is one of the major active components of the traditional Chinese medicine Chan Su, and accumulating evidence has shown its anticancer effect in multipe types of cancer. However, the role of bufalin in transforming growth factor-β (TGF-β)-induced EMT and migration remains unclear. In the present study, the effect of bufalin on TGF-β-induced EMT and migration was investigated in human lung cancer A549 cells. TGF-β induced EMT in A549 cells and increased their migratory ability, which were markedly suppressed by bufalin. Additionally, TGF-β-induced upregulation of Twist2 and zinc finger E-box binding homeobox 2 (ZEB2), as well as the phosphorylation of Smad2 and Smad3 were also inhibited by bufalin. However, the Smad-independent signaling pathways were not affected. Further analysis showed that the TGF-β receptor I (TβRI) and TGF-β receptor II (TβRII) were downregulated in the presence of bufalin. Pretreatment with SB431542, a potent inhibitor of the phosphorylation of TβRI, significantly attenuated TGF-β-induced EMT, mimicking the effect of bufalin on A549 cells. Taken together, these results suggest that bufalin suppresses TGF-β-induced EMT and migration by downregulating TβRI and TβRII in A549 cells. PMID:26133118

  18. MicroRNA Regulation of Epithelial to Mesenchymal Transition

    PubMed Central

    Abba, Mohammed L.; Patil, Nitin; Leupold, Jörg Hendrik; Allgayer, Heike

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is a central regulatory program that is similar in many aspects to several steps of embryonic morphogenesis. In addition to its physiological role in tissue repair and wound healing, EMT contributes to chemo resistance, metastatic dissemination and fibrosis, amongst others. Classically, the morphological change from epithelial to mesenchymal phenotype is characterized by the appearance or loss of a group of proteins which have come to be recognized as markers of the EMT process. As with all proteins, these molecules are controlled at the transcriptional and translational level by transcription factors and microRNAs, respectively. A group of developmental transcription factors form the backbone of the EMT cascade and a large body of evidence shows that microRNAs are heavily involved in the successful coordination of mesenchymal transformation and vice versa, either by suppressing the expression of different groups of transcription factors, or otherwise acting as their functional mediators in orchestrating EMT. This article dissects the contribution of microRNAs to EMT and analyzes the molecular basis for their roles in this cellular process. Here, we emphasize their interaction with core transcription factors like the zinc finger enhancer (E)-box binding homeobox (ZEB), Snail and Twist families as well as some pluripotency transcription factors. PMID:26784241

  19. Resveratrol inhibits transforming growth factor-β2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway

    PubMed Central

    Chen, Ching-Long; Chen, Yi-Hao; Tai, Ming-Cheng; Liang, Chang-Min; Lu, Da-Wen; Chen, Jiann-Torng

    2017-01-01

    Proliferative vitreoretinopathy (PVR) is the main cause of failure following retinal detachment surgery. Transforming growth factor (TGF)-β2-induced epithelial-to-mesenchymal transition (EMT) plays an important role in the development of PVR, and EMT inhibition decreases collagen gel contraction and fibrotic membrane formation, resulting in prevention of PVR. Resveratrol is naturally found in red wine and has inhibitory effects on EMT. Resveratrol is widely used in cardioprotection, neuroprotection, chemotherapy, and antiaging therapy. The purpose of this study was to investigate the effects of resveratrol on TGF-β2-induced EMT in ARPE-19 cells in vitro. We found that resveratrol suppressed the decrease of zona occludens-1 (ZO-1) and caused an increase of alpha-smooth muscle actin expression in TGF-β2-treated ARPE-19 cells, assessed using Western blots; moreover, it also suppressed the decrease in ZO-1 and the increase of vimentin expression, observed using immunocytochemistry. Resveratrol attenuated TGF-β2-induced wound closure and cell migration in ARPE-19 cells in a scratch wound test and modified Boyden chamber assay, respectively. We also found that resveratrol reduced collagen gel contraction – assessed by collagen matrix contraction assay – and suppressed the phosphorylation of Smad2 and Smad3 in TGF-β2-treated ARPE-19 cells. These results suggest that resveratrol mediates anti-EMT effects, which could be used in the prevention of PVR. PMID:28138219

  20. Role of α7-nicotinic acetylcholine receptor in nicotine-induced invasion and epithelial-to-mesenchymal transition in human non-small cell lung cancer cells

    PubMed Central

    Yang, Xin-Jie; An, Shi-Min; Wang, Hao; Xu, Lu; Zhu, Liang; Chen, Hong-Zhuan

    2016-01-01

    Nicotine via nicotinic acetylcholine receptors (nAChRs) stimulates non-small cell lung cancer (NSCLC) cell invasion and epithelial to mesenchymal transition (EMT) which underpin the cancer metastasis. However, the receptor subtype-dependent effects of nAChRs on NSCLC cell invasion and EMT, and the signaling pathway underlying the effects remain not fully defined. We identified that nicotine induced NSCLC cell invasion, migration, and EMT; the effects were suppressed by pharmacological intervention using α7-nAChR selective antagonists or by genetic intervention using α7-nAChR knockdown via RNA inference. Meanwhile, nicotine induced activation of MEK/ERK signaling in NSCLC cells; α7-nAChR antagonism or MEK/ERK signaling pathway inhibition suppressed NSCLC cell invasion and EMT marker expression. These results indicate that nicotine induces NSCLC cell invasion, migration, and EMT; the effects are mediated by α7-nAChRs and involve MEK/ERK signaling pathway. Delineating the effect of nicotine on the NSCLC cell invasion and EMT at receptor subtype level would improve the understanding of cancer biology and offer potentials for the exploitation of selective ligands for the control of the cancer metastasis. PMID:27409670

  1. Calcium oxalate crystals and oxalate induce an epithelial-to-mesenchymal transition in the proximal tubular epithelial cells: Contribution to oxalate kidney injury

    PubMed Central

    Convento, Marcia Bastos; Pessoa, Edson Andrade; Cruz, Edgar; da Glória, Maria Aparecida; Schor, Nestor; Borges, Fernanda Teixeira

    2017-01-01

    TGF-β1 is the main mediator of epithelial-to-mesenchymal transition (EMT). Hyperoxaluria induces crystalluria, interstitial fibrosis, and progressive renal failure. This study analyzed whether hyperoxaluria is associated with TGF-β1 production and kidney fibrosis in mice and if oxalate or calcium oxalate (CaOx) could induce EMT in proximal tubule cells (HK2) and therefore contribute to the fibrotic process. Hyperoxaluria was induced by adding hydroxyproline and ethylene glycol to the mice’s drinking water for up to 60 days. Renal function and oxalate and urinary crystals were evaluated. Kidney collagen production and TGF-β1 expression were assessed. EMT was analyzed in vitro according to TGF-β1 production, phenotypic characterization, invasion, cell migration, gene and protein expression of epithelial and mesenchymal markers. Hyperoxaluric mice showed a decrease in renal function and an increase in CaOx crystals and Ox urinary excretion. The deposition of collagen in the renal interstitium was observed. HK2 cells stimulated with Ox and CaOx exhibited a decreased expression of epithelial as well as increased expression mesenchymal markers; these cells presented mesenchymal phenotypic changes, migration, invasiveness capability and TGF-β1 production, characterizing EMT. Treatment with BMP-7 or its overexpression in HK2 cells was effective at preventing it. This mechanism may contribute to the fibrosis observed in hyperoxaluria. PMID:28387228

  2. The metastasis suppressor CD82/KAI1 inhibits fibronectin adhesion-induced epithelial-to-mesenchymal transition in prostate cancer cells by repressing the associated integrin signaling

    PubMed Central

    Lee, Moon-Sung; Jin, Young-June; Jeoung, Dooil; Kim, Young-Myeong; Lee, Hansoo

    2017-01-01

    The transmembrane protein CD82/KAI1 suppresses the metastatic potential of various cancer cell types. Moreover, decrease or loss of CD82 expression is closely associated with malignancy and poor prognosis in many human cancers including prostate cancer. Despite intense scrutiny, the mechanisms underlying the metastasis-suppressing role of CD82 are still not fully understood. Here, we found that a fibronectin matrix induced mesenchymal phenotypes in human prostate cancer cells with no or low CD82 expression levels. However, high CD82 expression rendered prostate cancer cells to have intensified epithelial characteristics upon fibronectin engagement, along with decreased cell motility and invasiveness. The CD82 function of inhibiting fibronectin-induced epithelial-to-mesenchymal transition (EMT) was dependent not only on CD82 interactions with fibronectin-binding α3β1/α5β1 integrins but also on the integrin-mediated intracellular signaling events. Notably, CD82 attenuated the FAK-Src and ILK pathways downstream of the fibronectin-receptor integrins. Immunofluorescence staining of human prostate cancer tissue specimens illustrated a negative association of CD82 with EMT-related gene expression as well as prostate malignancy. Altogether, these results suggest that CD82 suppresses EMT in prostate cancer cells adhered to the fibronectin matrix by repressing adhesion signaling through lateral interactions with the associated α3β1 and α5β1 integrins, leading to reduced cell migration and invasive capacities. PMID:27926483

  3. Augmenter of liver regeneration inhibits TGF-β1-induced renal tubular epithelial-to-mesenchymal transition via suppressing TβR II expression in vitro

    SciTech Connect

    Liao, Xiao-hui; Zhang, Ling; Chen, Guo-tao; Yan, Ru-yu; Sun, Hang; Guo, Hui; Liu, Qi

    2014-10-01

    Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD. - Highlights: • ALR is involved in the pathological progression of renal EMT in NRK-52E cells. • ALR suppresses the expression of TβRII and the phosphorylation of Smad2 and NF-κB. • ALR plays a role in inhibiting progression of renal tubular EMT.

  4. The differential expression of TGF-β1, ILK and wnt signaling inducing epithelial to mesenchymal transition in human renal fibrogenesis: an immunohistochemical study.

    PubMed

    Kim, Min-Kyung; Maeng, Young-In; Sung, Woo Jung; Oh, Hoon-Kyu; Park, Jae-Bok; Yoon, Ghil Suk; Cho, Chang-Ho; Park, Kwan-Kyu

    2013-01-01

    Epithelial-to-mesenchymal transition (EMT) is a process for fully differentiated epithelial cells to undergo a phenotypic change to fibroblasts via diverse intracellular signaling pathways. While the pivotal role of fibroblasts in renal fibrosis is widely accepted, their origin remains undefined. In addition, although a large number of studies have provided evidence of EMT in human kidney diseases, specific signaling pathways leading to EMT have not yet been discovered in humans. To evaluate the origin of interstitial fibroblasts and signaling pathways involved in the EMT process, we analyzed the differential expression of EMT-related molecules in paraffin-fixed sections from 19 human fibrotic kidneys and 4 control kidneys. In human fibrotic kidneys, tubular epithelial cells (TECs) with intact tubular basement membrane (TBM) showed loss or down-regulation of an epithelial marker (E-cadherin), de novo expression of mesenchymal markers (vimentin and fibronectin), and significant up-regulation of inducers and mediators controlling the EMT process (transforming growth factor-β1 (TGF-β1), p-Smad2/3, β1-integrin, p38 mitogen-activated protein kinase (MAPK), WNT5B and β-catenin) in the areas of interstitial inflammation and fibrosis, compared with their expression in control kidneys. In conclusion, the type II EMT process in humans is thought to be an adaptive response of TECs to chronic injury and is regulated by interconnections of TGF-β/Smad, integrin/integrin-linked kinase (ILK) and wnt/β-catenin signaling pathways.

  5. Gamma secretase inhibitor impairs epithelial-to-mesenchymal transition induced by TGF-β in ovarian tumor cell lines.

    PubMed

    Pazos, M C; Abramovich, D; Bechis, A; Accialini, P; Parborell, F; Tesone, M; Irusta, G

    2017-01-15

    Ovarian cancer is characterized by being highly metastatic, a feature that represents the main cause of failure of the treatment. This study investigated the effects of γ-secretase inhibition on the TGF-β-induced epithelial-mesenchymal transition (EMT) process in ovarian cancer cell lines. SKOV3 cells incubated in the presence of TGF-β showed morphological and biochemical changes related to EMT, which were blocked by co-stimulation with TGF-β and the γ-secretase inhibitor DAPT. In SKOV3 and IGROV1 cells, the co-stimulation blocked the cadherin switch and the increase in the transcription factors Snail, Slug, Twist and Zeb1 induced by TGF-β. DAPT impaired the translocation of phospho-β-catenin to the inner cell compartment observed in TGF-β-treated cells, but was not able to block the induction at protein level induced by TGF-β. Moreover, the inhibitor blocked the increased cell migration and invasiveness ability of both cell lines induced by TGF-β. Notch target genes (Hes1 and Hey1) were induced by TGF-β, decreased by DAPT treatment and remained low in the presence of both stimuli. However, DAPT alone caused no effects on most of the parameters analyzed. These results demonstrate that the γ-secretase inhibitor used in this study exerted a blockade on TGF-β-induced EMT in ovarian cancer cells.

  6. Hepatitis C virus represses E-cadherin expression via DNA methylation to induce epithelial to mesenchymal transition in human hepatocytes.

    PubMed

    Park, Jungmi; Jang, Kyung Lib

    2014-04-04

    Hepatitis C virus (HCV) core protein is known to induce promoter hypermethylation of tumor suppressor genes including E-cadherin to repress their expression when overexpressed in human hepatocytes; however, its actual role during HCV infection is still unknown. Here, we report that infection with HCV derived from pJFH-1 replicon system that mimics natural infection elevates protein levels of DNA methyltransferase 1 and 3b to enhance DNMT activity in human hepatocytes. As a consequence, HCV induced promoter hypermethylation of E-cadherin, resulting in repression of its expression. In addition down-regulation of E-cadherin by HCV led to epithelial-mesenchymal transition that is known to be a critical event during the late stage of tumorigenesis.

  7. β-Catenin/CBP–Dependent Signaling Regulates TGF-β–Induced Epithelial to Mesenchymal Transition of Lens Epithelial Cells

    PubMed Central

    Taiyab, Aftab; Korol, Anna; Deschamps, Paula A.; West-Mays, Judith A.

    2016-01-01

    Purpose Transforming growth factor-β–induced epithelial–mesenchymal transition (EMT) is one of the main causes of posterior capsular opacification (PCO) or secondary cataract; however, the signaling events involved in TGF-β–induced PCO have not been fully characterized. Here, we focus on examining the role of β-catenin/cyclic AMP response element–binding protein (CREB)-binding protein (CBP) and β-catenin/T-cell factor (TCF)-dependent signaling in regulating cytoskeletal dynamics during TGF-β–induced EMT in lens epithelial explants. Methods Rat lens epithelial explants were cultured in medium M199 in the absence of serum. Explants were treated with TGF-β2 in the presence or absence of the β-catenin/CBP interaction inhibitor, ICG-001, or the β-catenin/TCF interaction inhibitor, PNU-74654. Western blot and immunofluorescence experiments were carried out and analyzed. Results An increase in the expression of fascin, an actin-bundling protein, was observed in the lens explants upon stimulation with TGF-β, and colocalized with F-actin filaments. Inhibition of β-catenin/CBP interactions, but not β-catenin/TCF interactions, led to a decrease in TGF-β–induced fascin and stress fiber formation, as well as a decrease in the expression of known markers of EMT, α-smooth muscle actin (α-SMA) and matrix metalloproteinase 9 (MMP9). In addition, inhibition of β-catenin/CBP–dependent signaling also prevented TGF-β–induced downregulation of epithelial cadherin (E-cadherin) in lens explants. Conclusions We show that β-catenin/CBP–dependent signaling regulates fascin, MMP9, and α-SMA expression during TGF-β–induced EMT. We demonstrate that β-catenin/CBP–dependent signaling is crucial for TGF-β–induced EMT in the lens. PMID:27787561

  8. Induced Pluripotent Stem Cells Inhibit Bleomycin-Induced Pulmonary Fibrosis in Mice through Suppressing TGF-β1/Smad-Mediated Epithelial to Mesenchymal Transition

    PubMed Central

    Zhou, Yan; He, Zhong; Gao, Yuan; Zheng, Rui; Zhang, Xiaoye; Zhao, Li; Tan, Mingqi

    2016-01-01

    Pulmonary fibrosis is a progressive and irreversible fibrotic lung disorder with high mortality and few treatment options. Recently, induced pluripotent stem (iPS) cells have been considered as an ideal resource for stem cell-based therapy. Although, an earlier study demonstrated the therapeutic effect of iPS cells on pulmonary fibrosis, the exact mechanisms remain obscure. The present study investigated the effects of iPS cells on inflammatory responses, transforming growth factor (TGF)-β1 signaling pathway, and epithelial to mesenchymal transition (EMT) during bleomycin (BLM)-induced lung fibrosis. A single intratracheal instillation of BLM (5 mg/kg) was performed to induce pulmonary fibrosis in C57BL/6 mice. Then, iPS cells (c-Myc-free) were administrated intravenously at 24 h following BLM instillation. Three weeks after BLM administration, pulmonary fibrosis was evaluated. As expected, treatment with iPS cells significantly limited the pathological changes, edema, and collagen deposition in lung tissues of BLM-induced mice. Mechanically, treatment with iPS cells obviously repressed the expression ratios of matrix metalloproteinase-2 (MMP-2) to its tissue inhibitor -2 (TIMP-2) and MMP-9/TIMP-1 in BLM-induced pulmonary tissues. In addition, iPS cell administration remarkably suppressed BLM-induced up-regulation of pulmonary inflammatory mediators, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and prostaglandin E2. We further demonstrated that transplantation of iPS cells markedly inhibited BLM-mediated activation of TGF-β1/Mothers against decapentaplegic homolog 2/3 (Smad2/3) and EMT in lung tissues through up-regulating epithelial marker E-cadherin and down-regulating mesenchymal markers including fibronectin, vimentin and α-smooth muscle actin. Moreover, in vitro, iPS cell-conditioned medium (iPSC-CM) profoundly inhibited TGF-β1-induced EMT signaling pathway in mouse alveolar

  9. Jak2-Stat5a/b Signaling Induces Epithelial-to-Mesenchymal Transition and Stem-Like Cell Properties in Prostate Cancer

    PubMed Central

    Talati, Pooja G.; Gu, Lei; Ellsworth, Elyse M.; Girondo, Melanie A.; Trerotola, Marco; Hoang, David T.; Leiby, Benjamin; Dagvadorj, Ayush; McCue, Peter A.; Lallas, Costas D.; Trabulsi, Edouard J.; Gomella, Leonard; Aplin, Andrew E.; Languino, Lucia; Fatatis, Alessandro; Rui, Hallgeir; Nevalainen, Marja T.

    2016-01-01

    Active Stat5a/b predicts early recurrence and disease-specific death in prostate cancer (PC), which both typically are caused by development of metastatic disease. Herein, we demonstrate that Stat5a/b induces epithelial-to-mesenchymal transition (EMT) of PC cells, as shown by Stat5a/b regulation of EMT marker expression (Twist1, E-cadherin, N-cadherin, vimentin, and fibronectin) in PC cell lines, xenograft tumors in vivo, and patient-derived PCs ex vivo using organ explant cultures. Jak2-Stat5a/b signaling induced functional end points of EMT as well, indicated by disruption of epithelial cell monolayers and increased migration and adhesion of PC cells to fibronectin. Knockdown of Twist1 suppressed Jak2-Stat5a/b–induced EMT properties of PC cells, which were rescued by re-introduction of Twist1, indicating that Twist1 mediates Stat5a/b-induced EMT in PC cells. While promoting EMT, Jak2-Stat5a/b signaling induced stem-like properties in PC cells, such as sphere formation and expression of cancer stem cell markers, including BMI1. Mechanistically, both Twist1 and BMI1 were critical for Stat5a/b induction of stem-like features, because genetic knockdown of Twist1 suppressed Stat5a/b-induced BMI1 expression and sphere formation in stem cell culture conditions, which were rescued by re-introduction of BMI1. By using human prolactin knock-in mice, we demonstrate that prolactin-Stat5a/b signaling promoted metastases formation of PC cells in vivo. In conclusion, our data support the concept that Jak2-Stat5a/b signaling promotes metastatic progression of PC by inducing EMT and stem cell properties in PC cells. PMID:26362718

  10. Vitamin D Can Ameliorate Chlorhexidine Gluconate-Induced Peritoneal Fibrosis and Functional Deterioration through the Inhibition of Epithelial-to-Mesenchymal Transition of Mesothelial Cells

    PubMed Central

    Lee, Yi-Che; Hung, Shih-Yuan; Liou, Hung-Hsiang; Lin, Tsun-Mei; Tsai, Chu-Hung; Lin, Sheng-Hsiang; Tsai, Yau-Sheng; Chang, Min-Yu; Wang, Hsi-Hao; Ho, Li-Chun; Chen, Yi-Ting; Wu, Ching-Fang; Chen, Ho-Ching; Chen, Hsin-Pao; Liu, Kuang-Wen; Chen, Chih-I.; She, Kuan Min; Wang, Hao-Kuang; Lin, Chi-Wei; Chiou, Yuan-Yow

    2015-01-01

    Background. Peritoneal dialysis (PD) can induce fibrosis and functional alterations in PD patients' peritoneal membranes, due to long-term unphysiological dialysate exposure, partially occurring via triggering of epithelial-to-mesenchymal transition (EMT) in peritoneal mesothelial cells (MCs). Vitamin D can ameliorate these negative effects; however, the mechanism remains unexplored. Therefore, we investigated its possible links to MCs EMT inhibition. Methods. Peritoneal fibrosis was established in Sprague-Dawley rats by chlorhexidine gluconate (CG) intraperitoneal injection for 21 days, with and without 1α,25(OH)2D3 treatment. Morphological and functional evaluation and western blot analysis of EMT marker were performed upon peritoneum tissue. In vitro study was also performed in a primary human peritoneal MC culture system; MCs were incubated with transforming growth factor-β1 (TGF-β1) in the absence or presence of 1α,25(OH)2D3. EMT marker expression, migration activities, and cytoskeleton redistribution of MCs were determined. Results. 1α,25(OH)2D3 ameliorated CG-induced morphological and functional deterioration in animal model, along with CG-induced upregulation of α-SMA and downregulation of E-cadherin expression. Meanwhile, 1α,25(OH)2D3 also ameliorated TGF-β1-induced decrease in E-cadherin expression, increase in Snai1 and α-SMA expression, intracellular F-actin redistribution, and migration activity in vitro. Conclusion. 1α,25(OH)2D3 can ameliorate CG-induced peritoneal fibrosis and attenuate functional deterioration through inhibiting MC EMT. PMID:26495304

  11. The impact of metformin and salinomycin on transforming growth factor β-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cell lines.

    PubMed

    Koeck, Stefan; Amann, Arno; Huber, Julia M; Gamerith, Gabriele; Hilbe, Wolfgang; Zwierzina, Heinz

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is highly involved in the development of metastases. EMT transforms epithelial carcinoma cells into mesenchymal-like cells, characterized by increased cell migration and invasiveness. Transforming growth factor β (TGFβ) appears to be crucial in this process. Metformin and salinomycin have demonstrated an EMT inhibitory effect. The current experiments indicate that these substances specifically inhibit TGFβ-induced EMT in non-small cell lung cancer (NSCLC) cell lines. The NSCLC cell lines A549 and HCC4006 were stimulated with TGFβ for 48 h to induce EMT. Metformin or salinomycin was added simultaneously with TGFβ to inhibit TGFβ-induced EMT. Western blot analyses of E-cadherin and vimentin were performed to detect changes in EMT marker expression, and a wound healing assay was conducted to determine the potential effects on cell migration. The effects of the two drugs on cell viability were also investigated using MTS tetrazolium dye assays. The results revealed that cells undergoing EMT by application of TGFβ exhibited a downregulation of E-cadherin and an upregulation of vimentin protein expression on western blot analyses, and an increased capacity for cell migration. Simultaneous application of TGFβ and metformin specifically inhibited EMT and increased E-cadherin expression. At the higher dose tested, salinomycin also inhibited EMT, despite an increase in vimentin expression in the two cell lines. Furthermore, metformin and salinomycin, at the two concentrations tested, inhibited cell migration. These findings demonstrate that metformin and salinomycin are able to block EMT and inhibit EMT-induced cell migration. Thus, these two substances are novel EMT inhibiting drugs that have the potential to specifically control EMT and metastatic spread in NSCLC.

  12. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    PubMed

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  13. Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells.

    PubMed

    Wang, Yan-Yang; Yang, Yin-Xue; Zhao, Ren; Pan, Shu-Ting; Zhe, Hong; He, Zhi-Xu; Duan, Wei; Zhang, Xueji; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me) on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC) cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl), B-cell lymphoma 2 (Bcl-2), cleaved caspase-9, and cleaved poly ADP ribose polymerase (PARP) levels but increased the expression level of Bcl-2-associated X (Bax). Furthermore, CDDO-Me induced autophagy in both Ec109 and KYSE70 cells via suppression of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. There were interactions between the autophagic and apoptotic pathways in Ec109 and KYSE70 cells subject to CDDO-Me treatment. CDDO-Me also scavenged reactive oxygen species through activation of the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) pathway in Ec109 and KYSE70 cells. CDDO-Me inhibited cell invasion, epithelial-mesenchymal transition, and stemness in Ec109 and KYSE70 cells. CDDO-Me significantly downregulated E-cadherin but upregulated Snail, Slug, and zinc finger E-box-binding homeobox 1 (TCF-8/ZEB1) in Ec109 and KYSE70 cells. CDDO-Me significantly decreased the expression of octamer-4, sex determining region Y-box 2 (Sox-2), Nanog, and B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), all markers of cancer cell stemness, in Ec109 and KYSE70 cells. Taken together, these results indicate that CDDO-Me is a promising anticancer agent

  14. Highly Expressed Integrin-α8 Induces Epithelial to Mesenchymal Transition-Like Features in Multiple Myeloma with Early Relapse

    PubMed Central

    Ryu, Jiyeon; Koh, Youngil; Park, Hyejoo; Kim, Dae Yoon; Kim, Dong Chan; Byun, Ja Min; Lee, Hyun Jung; Yoon, Sung-Soo

    2016-01-01

    Despite recent groundbreaking advances in multiple myeloma (MM) treatment, most MM patients ultimately experience relapse, and the relapse biology is not entirely understood. To define altered gene expression in MM relapse, gene expression profiles were examined and compared among 16 MM patients grouped by 12 months progression-free survival (PFS) after autologous stem cell transplantation. To maximize the difference between prognostic groups, patients at each end of the PFS spectrum (the four with the shortest PFS and four with the longest PFS) were chosen for additional analyses. We discovered that integrin-α8 (ITGA8) is highly expressed in MM patients with early relapse. The integrin family is well known to be involved in MM progression; however, the role of integrin-α8 is largely unknown. We functionally overexpressed integrin-α8 in MM cell lines, and surprisingly, stemness features including HIF1α, VEGF, OCT4, and Nanog, as well as epithelial mesenchymal transition (EMT)-related phenotypes, including N-cadherin, Slug, Snail and CXCR4, were induced. These, consequently, enhanced migration and invasion abilities, which are crucial to MM pathogenesis. Moreover, the gain of integrin-α8 expression mediated drug resistance against melphalan and bortezomib, which are the main therapeutic agents in MM. The cBioPortal genomic database revealed that ITGA8 have significant tendency to co-occur with PDGFRA and PDGFRB and their mRNA expression were up-regulated in ITGA8 overexpressed MM cells. In summary, integrin-α8, which was up-regulated in MM of early relapse, mediates EMT-like phenotype, enhancing migration and invasion; therefore, it could serve as a potential marker of MM relapse and be a new therapeutic target. PMID:28008160

  15. Conditioned media from human ovarian cancer endothelial progenitor cells induces ovarian cancer cell migration by activating epithelial-to-mesenchymal transition.

    PubMed

    Teng, L; Peng, S; Guo, H; Liang, H; Xu, Z; Su, Y; Gao, L

    2015-11-01

    Bone marrow-derived endothelial progenitor cells (EPCs) migrate to and engraft at ovarian cancer sites. Understanding the interactions between ovarian cancer cells and EPCs is fundamental for determining whether to harness EPC-tumor interactions for delivery of therapeutic agents or target them for intervention. Ovarian cancer cell lines (SKOV-3 and OVCAR-3) were cultured alone or in EPC-conditioned media (EPC-CM). Migration of ovarian cancer cells was detected by transwell chamber. N-cadherin and E-cadherin expression were analyzed by real-time reverse transcription PCR and western blot. EPC-CM can increase transforming growth factor-beta (TGF-β) secretion in SKOV-3 and OVCAR-3 cells. EPC-CM induced loss of ovarian cancer cell-cell junctions, downregulation of E-cadherin, upregulation of N-cadherin and acquisition of a fibroblastic phenotype, consistent with an epithelial-to-mesenchymal transition (EMT). The specific TGF-β inhibitor SB431542 abolished the SKOV-3 and OVCAR-3 ovarian cancer cell migration induced by EPC-CM. In SKOV-3 and OVCAR-3 cells, EPC-CM downregulated E-cadherin and concurrently upregulated N-cadherin. EPC-CM upregulated the expression of transcriptional repressors of E-cadherin, Snail and Twist. Treatment with SB431542 abolished the effects of EPC-CM on the relative expression levels of cadherin, Snail and Twist. This study demonstrates that TGF-β has a role in EPC-CM-induced ovarian cancer migration by activating EMT.

  16. Membrane Type 1 Matrix Metalloproteinase induces an epithelial to mesenchymal transition and cancer stem cell-like properties in SCC9 cells

    PubMed Central

    2013-01-01

    Background Tissue invasion and metastasis are acquired abilities of cancer and related to the death in oral squamous cell carcinoma (OSCC). Emerging observations indicate that the epithelial-to-mesenchymal transition (EMT) is associated with tumor progression and the generation of cells with cancer stem cells (CSCs) properties. Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) is a cell surface proteinase, which is involved in degrading extracellular matrix components that can promote tumor invasion and cell migration. Methods In the current study, we utilized SCC9 cells stably transfected with an empty vector (SCC9-N) or a vector encoding human MT1-MMP (SCC9-M) to study the role of MT1-MMP in EMT development. Results Upon up-regulation of MT1-MMP, SCC9-M cells underwent EMT, in which they presented a fibroblast-like phenotype and had a decreased expression of epithelial markers (E-cadherin, cytokeratin18 and β-catenin) and an increased expression of mesenchymal markers (vimentin and fibronectin). We further demonstrated that MT1-MMP-induced morphologic changes increased the level of Twist and ZEB, and were dependent on repressing the transcription of E-cadherin. These activities resulted in low adhesive, high invasive abilities of the SCC9-M cells. Furthermore, MT1-MMP-induced transformed cells exhibited cancer stem cell (CSC)-like characteristics, such as low proliferation, self-renewal ability, resistance to chemotherapeutic drugs and apoptosis, and expression of CSCs surface markers. Conclusions In conclusion, our study indicates that overexpression of MT1-MMP induces EMT and results in the acquisition of CSC-like properties in SCC9 cells. Our growing understanding of the mechanism regulating EMT may provide new targets against invasion and metastasis in OSCC. PMID:23548172

  17. The coordinated roles of miR-26a and miR-30c in regulating TGFβ1-induced epithelial-to-mesenchymal transition in diabetic nephropathy

    PubMed Central

    Zheng, Zongji; Guan, Meiping; Jia, Yijie; Wang, Dan; Pang, Ruoyu; Lv, Fuping; Xiao, Zhizhou; Wang, Ling; Zhang, Hongbin; Xue, Yaoming

    2016-01-01

    MicroRNAs (miRNAs) play vital roles in the development of diabetic nephropathy. Here, we compared the protective efficacies of miR-26a and miR-30c in renal tubular epithelial cells (NRK-52E) and determined whether they demonstrated additive effects in the attenuation of renal fibrosis. TGFβ1 suppressed miR-26a and miR-30c expression but up-regulated pro-fibrotic markers in NRK-52E cells, and these changes were also found in the kidney cortex of 40-week-old diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Bioinformatic analyses and luciferase assays further demonstrated that both miR-26a and miR-30c targeted connective tissue growth factor (CTGF); additionally, Snail family zinc finger 1 (Snail1), a potent epithelial-to-mesenchymal transition (EMT) inducer, was targeted by miR-30c. Overexpression of miR-26a and miR-30c coordinately decreased CTGF protein levels and subsequently ameliorated TGFβ1-induced EMT in NRK-52E cells. Co-silencing of miR-26a and miR-30c exhibited the opposite effect. Moreover, miR-26a and miR-30c co-silenced CTGF to decrease ERK1/2 and p38 MAPK activation. Furthermore, miR-26a was up-regulated in urinary extracellular vesicles of diabetic nephropathy patients. Our study provides evidence for the cooperative roles of miR-26a and miR-30c in the pathogenesis of diabetic nephropathy, and the co-targeting of miR-26a and miR-30c could provide a new direction for diabetic nephropathy treatment. PMID:27874055

  18. Smoking induces epithelial-to-mesenchymal transition in non-small cell lung cancer through HDAC-mediated downregulation of E-cadherin.

    PubMed

    Nagathihalli, Nagaraj S; Massion, Pierre P; Gonzalez, Adriana L; Lu, Pengcheng; Datta, Pran K

    2012-11-01

    Epidemiological studies have shown that most cases of lung cancers (85%-90%) are directly attributable to tobacco smoking. Although association between cigarette smoking and lung cancer is well documented, surprisingly little is known about the molecular mechanisms of how smoking is involved in epithelial-to-mesenchymal transition (EMT) through epigenetic changes. Here, we show that lung cancer patients with a smoking history have low E-cadherin levels and loss of E-cadherin is a poor prognostic factor in smokers. Moreover, the downregulation of E-cadherin correlates with the number of pack years. In an attempt to determine the role of long-term cigarette smoking on EMT, we observed that treatment of lung cell lines with cigarette smoke condensate (CSC) induces EMT through downregulation of epithelial markers, including E-cadherin and upregulation of mesenchymal markers. CSC decreases E-cadherin expression at the transcriptional level through upregulation of LEF1 and Slug, and knockdown of these two proteins increases E-cadherin expression. Importantly, chromatin immunoprecipitation assays suggest that LEF-1 and Slug binding to E-cadherin promoter is important for CSC-mediated downregulation of E-cadherin. The histone deacetylase (HDAC) inhibitor MS-275 reverses CSC-induced EMT, migration, and invasion through the restoration of E-cadherin expression. These results suggest that recruitment of HDACs by transcriptional repressors LEF-1 and Slug is responsible for E-cadherin suppression and EMT in cigarette smokers and provide a potential drug target toward the treatment of lung cancer.

  19. Role of BCL9L in transforming growth factor-β (TGF-β)-induced epithelial-to-mesenchymal-transition (EMT) and metastasis of pancreatic cancer

    PubMed Central

    Sannino, Giuseppina; Armbruster, Nicole; Bodenhöfer, Mona; Haerle, Ursula; Behrens, Diana; Buchholz, Malte; Rothbauer, Ulrich; Sipos, Bence; Schmees, Christian

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has a low overall survival rate, which is approximately 20% during the first year and decreases to less than 6% within five years of the disease. This is due to premature dissemination accompanied by a lack of disease-specific symptoms during the initial stages. Additionally, to date there are no biomarkers for an early prognosis available. A growing number of studies indicate that epithelial to mesenchymal transition (EMT), triggered by WNT-, TGF-β- and other signaling pathways is crucial for the initiation of the metastatic process in PDAC. Here we show, that BCL9L is up-regulated in PDAC cell lines and patient tissue compared to non-cancer controls. RNAi-induced BCL9L knockdown negatively affected proliferation, migration and invasion of pancreatic cancer cells. On a molecular basis, BCL9L depletion provoked an increment of E-cadherin protein levels, with concomitant increase of β-catenin retention at the plasma membrane. This is linked to the induction of a strong epithelial phenotype in pancreatic cancer cells upon BCL9L knockdown even in the presence of the EMT-inducer TGF-β. Finally, xenograft mouse models of pancreatic cancer revealed a highly significant reduction in the number of liver metastases upon BCL9L knockdown. Taken together, our findings underline the key importance of BCL9L for EMT and thus progression and metastasis of pancreatic cancer cells. Direct targeting of this protein might be a valuable approach to effectively antagonize invasion and metastasis of PDAC. PMID:27713160

  20. Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelial-to-mesenchymal transition in breast cancer cells

    PubMed Central

    Stadler, Sonja C.; Vincent, C. Theresa; Fedorov, Victor D.; Patsialou, Antonia; Cherrington, Brian D.; Wakshlag, Joseph J.; Mohanan, Sunish; Zee, Barry M.; Zhang, Xuesen; Garcia, Benjamin A.; Condeelis, John S.; Brown, Anthony M. C.; Coonrod, Scott A.; Allis, C. David

    2013-01-01

    Peptidylarginine deiminase 4 (PAD4) is a Ca2+-dependent enzyme that converts arginine and methylarginine residues to citrulline, with histone proteins being among its best-described substrates to date. However, the biological function of this posttranslational modification, either in histones or in nonhistone proteins, is poorly understood. Here, we show that PAD4 recognizes, binds, and citrullinates glycogen synthase kinase-3β (GSK3β), both in vitro and in vivo. Among other functions, GSK3β is a key regulator of transcription factors involved in tumor progression, and its dysregulation has been associated with progression of human cancers. We demonstrate that silencing of PAD4 in breast cancer cells leads to a striking reduction of nuclear GSK3β protein levels, increased TGF-β signaling, induction of epithelial-to-mesenchymal transition, and production of more invasive tumors in xenograft assays. Moreover, in breast cancer patients, reduction of PAD4 and nuclear GSK3β is associated with increased tumor invasiveness. We propose that PAD4-mediated citrullination of GSK3β is a unique posttranslational modification that regulates its nuclear localization and thereby plays a critical role in maintaining an epithelial phenotype. We demonstrate a dynamic and previously unappreciated interplay between histone-modifying enzymes, citrullination of nonhistone proteins, and epithelial-to-mesenchymal transition. PMID:23818587

  1. Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelial-to-mesenchymal transition in breast cancer cells.

    PubMed

    Stadler, Sonja C; Vincent, C Theresa; Fedorov, Victor D; Patsialou, Antonia; Cherrington, Brian D; Wakshlag, Joseph J; Mohanan, Sunish; Zee, Barry M; Zhang, Xuesen; Garcia, Benjamin A; Condeelis, John S; Brown, Anthony M C; Coonrod, Scott A; Allis, C David

    2013-07-16

    Peptidylarginine deiminase 4 (PAD4) is a Ca(2+)-dependent enzyme that converts arginine and methylarginine residues to citrulline, with histone proteins being among its best-described substrates to date. However, the biological function of this posttranslational modification, either in histones or in nonhistone proteins, is poorly understood. Here, we show that PAD4 recognizes, binds, and citrullinates glycogen synthase kinase-3β (GSK3β), both in vitro and in vivo. Among other functions, GSK3β is a key regulator of transcription factors involved in tumor progression, and its dysregulation has been associated with progression of human cancers. We demonstrate that silencing of PAD4 in breast cancer cells leads to a striking reduction of nuclear GSK3β protein levels, increased TGF-β signaling, induction of epithelial-to-mesenchymal transition, and production of more invasive tumors in xenograft assays. Moreover, in breast cancer patients, reduction of PAD4 and nuclear GSK3β is associated with increased tumor invasiveness. We propose that PAD4-mediated citrullination of GSK3β is a unique posttranslational modification that regulates its nuclear localization and thereby plays a critical role in maintaining an epithelial phenotype. We demonstrate a dynamic and previously unappreciated interplay between histone-modifying enzymes, citrullination of nonhistone proteins, and epithelial-to-mesenchymal transition.

  2. IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition

    PubMed Central

    2011-01-01

    Introduction TGF-β signaling has been extensively studied in many developmental contexts, amongst which is its ability to induce epithelial to mesenchymal transitions (EMT). EMTs play crucial roles during embryonic development and have also come under intense scrutiny as a mechanism through which breast cancers progress to become metastatic. Interestingly, while the molecular hallmarks of EMT progression (loss of cell adhesion, nuclear localization of β-catenin) are straightforward, the cellular signaling cascades that result in an EMT are numerous and diverse. Furthermore, most studies describing the biological effects of TGF-β have been performed using high concentrations of active, soluble TGF-β, despite the fact that TGF-β is produced and secreted as a latent complex. Methods MCF-7 breast cancer cells treated with recombinant IGF-1 were assayed for metalloproteinase activity and invasiveness through a matrigel coated transwell invasion chamber. IGF-1 treatments were then followed by the addition of latent-TGF-β1 to determine if elevated levels of IGF-1 together with latent-TGF-β1 could cause EMT. Results Results showed that IGF-1 - a molecule known to be elevated in breast cancer is a regulator of matrix metalloproteinase activity (MMP) and the invasive potential of MCF-7 breast cancer cells. The effects of IGF-1 appear to be mediated through signals transduced via the PI3K and MAPK pathways. In addition, increased IGF-1, together with latent TGF-β1 and active MMPs result in EMT. Conclusions Taken together our data suggest a novel a link between IGF-1 levels, MMP activity, TGF-β signaling, and EMT in breast cancer cells. PMID:21535875

  3. Astrocyte elevated gene-1 regulates CCL3/CCR5-induced epithelial-to-mesenchymal transition via Erk1/2 and Akt signaling in cardiac myxoma.

    PubMed

    Shi, Ping; Fang, Changcun; Pang, Xinyan

    2015-09-01

    In recent years, astrocyte elevated gene-1 (AEG-1) has been reported as a key mediator that is involved in the epithelial-to-mesenchymal transition (EMT) process. However, the mechanisms underlying CCL3/CCR5-AEG-1 pathway-mediated EMT in cardiac myxoma (CM) has not been well featured till now. We used immnohistochemistry and immunoblotting to assess the expression of CCR5 and AEG-1 in 30 cases of CM tissues and cells. Subsequently, cultured CM cells were treated with si-AEG-1 or si-CCR5 and then subjected to in vitro assays. We observed that CCR5 and AEG-1 proteins were highly expressed in CM tissues (73.3 and 76.7%, respectively) and closely correlated with tumor size (>5 cm). Importantly, we validated the expression of AEG-1, p-Erk1/2, p-Akt, vimentin, N-cadherin and MMP2 increased in the CM cell with CCL3 treatment in a time- and concentration-dependent manner. When CM cells were treated with si-CCR5, the expression of AEG-1, p-Erk1/2, p-Akt, vimentin, N-cadherin and MMP2 was downregulated. In addition, when CM cells were treated with si-AEG-1, the expression of p-Erk1/2, p-Akt, vimentin, N-cadherin and MMP2 was also downregulated. Using the cell cycle and proliferation assay, the knockdown of AEG-1 inhibited the entry of G1 into S phase and the proliferation capacity of CM cells. In conclusion, AEG-1 mediates CCL3/CCR5-induced EMT development via both Erk1/2 and Akt signaling pathway in CM patients, which indicates CCL3/CCR5-AEG-1-EMT pathway could be suggested as a useful target to affect the progression of CM.

  4. Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca{sup 2+} influx in breast cancer cells

    SciTech Connect

    Hu, Jiajia; Qin, Kunhua; Zhang, Yan; Gong, Junbo; Li, Na; Lv, Dan; Xiang, Rong; Tan, Xiaoyue

    2011-08-12

    Highlights: {yields} We examine the role of Oct4 in metastasis in cultured MCF-7 cells. {yields} The down regulation of Oct4 induces EMT and increases the capability of migration and invasion in MCF-7 cells. {yields} TGF-{beta}1 inhibits Oct4 expression in both time- and dose-dependent manners. {yields} The EMT induced by TGF-{beta}1 or down regulation of Oct4 could be abrogated by inhibitor of SOCE. {yields} The down regulation of STIM1 (one of the major components of the CRAC channel) alleviates the EMT induce by Oct4 silencing down. -- Abstract: The stem cell-related transcription factor Oct4 regulates tumor proliferation and apoptosis, but its role in tumor migration and invasion is still undefined. Here, we compared Oct4 expression in MCF-7 and MDA-MB-231 cells, two breast cancer cell lines with similar epithelial origins, but distinct invasive and metastatic characteristics. We found MCF-7 cells to express very high levels of Oct4, while no obvious expression was detected in MDA-MB-231 cells. We then downregulated Oct4 expression using small interfering RNA (siRNA) to explore its effects on migration and invasion. Transwell assays showed that silencing Oct4 in MCF-7 cells improved their migration and invasion capabilities. Reverse-transcriptase PCR and western blots showed that E-cadherin expression decreased, and {alpha}-smooth muscle actin expression increased with Oct4 downregulation, which suggests that epithelial-to-mesenchymal transition (EMT) occurred. A potent EMT stimulus, TGF-{beta}1, significantly inhibited Oct4 expression in both dose- and time course-dependent manners. Silencing Oct4 also upregulated expression of two major components of store-operated Ca{sup 2+} entry channels (SOCs), STIM1 and Orai1, and enhanced SOC-directed Ca{sup 2+} influx. Silencing STIM1 blocked the Ca{sup 2+} influx and rescued the EMT initiated by Oct4 downregulation. In conclusion, silencing Oct4 promotes invasion and metastasis in breast cancer cells by inducing EMT

  5. Gremlin-mediated decrease in bone morphogenetic protein signaling promotes aristolochic acid-induced epithelial-to-mesenchymal transition (EMT) in HK-2 cells.

    PubMed

    Li, Yi; Wang, Zihua; Wang, Shuai; Zhao, Jinghong; Zhang, Jingbo; Huang, Yunjian

    2012-07-16

    Ingestion of aristolochic acid (AA) is associated with the development of aristolochic acid nephropathy (AAN), which is characterized by progressive tubulointerstitial fibrosis, chronic renal failure and urothelial cancer. Our previous study showed that bone morphogenetic protein-7 (BMP-7) could attenuate AA-induced epithelial-to-mesenchymal transition (EMT) in human proximal tubule epithelial cells (PTEC). However, how gremlin (a BMP-7 antagonist) antagonizes the BMP-7 action in PTEC remained unsolved. The aim of the current study was to investigate the role of gremlin in AA-induced EMT in PTEC (HK-2 cells). HK-2 cells were treated with AA (10 μmol/L) for periods up to 72 h. Cell viability was determined by tetrazolium dye (MTT) assay. Morphological changes were assessed by phase-contrast microscopy. Markers of EMT, including E-cadherin and α-smooth muscle actin (α-SMA) were detected by indirect immunofluorescence stains. The BMP-7 and gremlin mRNA and protein expression in HK-2 cells were analyzed by quantitative real-time PCR (real-time RT-PCR) and western blotting after exposure to AA. The level of phosphorylated Smad1/5/8, a marker of BMP-7 activity, was also determined by western blot analysis. Cells were transfected with gremlin siRNA to determine the effects of gremlin knockdown on markers of EMT following treatment with AA. Our results indicated that AA-induced EMT was associated with acquisition of fibroblast-like cell shape, loss of E-cadherin, and increases of alpha-SMA and collagen type I. Interestingly, exposure of HK-2 cells to 10 μmol/L AA increased the mRNA and protein expression of gremlin in HK-2 cells. This increase was in parallel with a decrease in BMP-7 expression and a down-regulation of phosphorylated Smad1/5/8 protein levels. Moreover, transfection with siRNA to gremlin was able to recover BMP-7 signaling activity, and attenuate EMT-associated phenotypic changes induced by AA. Together, these observations strongly suggest that gremlin

  6. Overexpression of SDF-1 activates the NF-κB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells.

    PubMed

    Kong, Lingxin; Guo, Sufen; Liu, Chunfeng; Zhao, Yiling; Feng, Chong; Liu, Yunshuang; Wang, Tao; Li, Caijuan

    2016-03-01

    The formation of EMT and EMT-induced CSC-like phenotype is crucial for the metastasis of tumor cells. The stromal cell-derived factor-1 (SDF-1) is upregulated in various human carcinomas, which is closely associated with proliferation, migration, invasion and prognosis of malignancies. However, limited attention has been directed towards the effect of SDF-1 on epithelial to mesenchymal transition (EMT) or cancer stem cell (CSC)-like phenotype formation in breast cancer cells and the related mechanism. In the present study, we screened MCF-7 cells with low SDF-1 expression level for the purpose of evaluating whether SDF-1 is involved in EMT and CSC-like phenotype formation in MCF-7 cells. The pEGFP-N1-SDF-1 plasmid was transfected into MCF-7 cells, and the stably overexpressed SDF-1 in MCF-7 cells was confirmed by real-time PCR and western blot analysis. Colony formation assay, MTT, wound healing assay and Transwell invasion assay demonstrated that overexpression of SDF-1 significantly boosted the proliferation, migration and invasion of MCF-7 cells compared with parental (P<0.05). Flow cytometry analysis revealed a notable increase of CD44+/CD24- subpopulation in SDF-1 overexpressing MCF-7 cells (P<0.001), accompanied by the apparently elevated ALDH activity and the upregulation of the stem cell markers OCT-4, Nanog, and SOX2 compared with parental (P<0.01). Besides, western blot analysis and immunofluorescence assay observed the significant decreased expression of E-cadherin and enhanced expression of slug, fibronectin and vimentin in SDF-1 overexpressed MCF-7 cells in comparison with parental (P<0.01). Further study found that overexpression of SDF-1 induced the activation of NF-κB pathway in MCF-7 cells. Conversely, suppressing or silencing p65 expression by antagonist or RNA interference could remarkably increase the expression of E-cadherin in SDF-1 overexpressed MCF-7 cells (P<0.001). Overall, the above results indicated that overexpression of SDF-1 enhanced

  7. Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells.

    PubMed

    Ding, Yong-Hui; Zhou, Zhi-Wei; Ha, Chun-Fang; Zhang, Xue-Yu; Pan, Shu-Ting; He, Zhi-Xu; Edelman, Jeffrey L; Wang, Dong; Yang, Yin-Xue; Zhang, Xueji; Duan, Wei; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Ovarian cancer is a leading killer of women, and no cure for advanced ovarian cancer is available. Alisertib (ALS), a selective Aurora kinase A (AURKA) inhibitor, has shown potent anticancer effects, and is under clinical investigation for the treatment of advanced solid tumor and hematologic malignancies. However, the role of ALS in the treatment of ovarian cancer remains unclear. This study investigated the effects of ALS on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT), and the underlying mechanisms in human epithelial ovarian cancer SKOV3 and OVCAR4 cells. Our docking study showed that ALS, MLN8054, and VX-680 preferentially bound to AURKA over AURKB via hydrogen bond formation, charge interaction, and π-π stacking. ALS had potent growth-inhibitory, proapoptotic, proautophagic, and EMT-inhibitory effects on SKOV3 and OVCAR4 cells. ALS arrested SKOV3 and OVCAR4 cells in G2/M phase and induced mitochondria-mediated apoptosis and autophagy in both SKOV3 and OVCAR4 cell lines in a concentration-dependent manner. ALS suppressed phosphatidylinositol 3-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways but activated 5'-AMP-dependent kinase, as indicated by their altered phosphorylation, contributing to the proautophagic activity of ALS. Modulation of autophagy altered basal and ALS-induced apoptosis in SKOV3 and OVCAR4 cells. Further, ALS suppressed the EMT-like phenotype in both cell lines by restoring the balance between E-cadherin and N-cadherin. ALS downregulated sirtuin 1 and pre-B cell colony enhancing factor (PBEF/visfatin) expression levels and inhibited phosphorylation of AURKA in both cell lines. These findings indicate that ALS blocks the cell cycle by G2/M phase arrest and promotes cellular apoptosis and autophagy, but inhibits EMT via phosphatidylinositol 3-kinase/Akt/mTOR-mediated and sirtuin 1-mediated pathways in human epithelial ovarian cancer cells

  8. Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells

    PubMed Central

    Ding, Yong-Hui; Zhou, Zhi-Wei; Ha, Chun-Fang; Zhang, Xue-Yu; Pan, Shu-Ting; He, Zhi-Xu; Edelman, Jeffrey L; Wang, Dong; Yang, Yin-Xue; Zhang, Xueji; Duan, Wei; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Ovarian cancer is a leading killer of women, and no cure for advanced ovarian cancer is available. Alisertib (ALS), a selective Aurora kinase A (AURKA) inhibitor, has shown potent anticancer effects, and is under clinical investigation for the treatment of advanced solid tumor and hematologic malignancies. However, the role of ALS in the treatment of ovarian cancer remains unclear. This study investigated the effects of ALS on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT), and the underlying mechanisms in human epithelial ovarian cancer SKOV3 and OVCAR4 cells. Our docking study showed that ALS, MLN8054, and VX-680 preferentially bound to AURKA over AURKB via hydrogen bond formation, charge interaction, and π-π stacking. ALS had potent growth-inhibitory, proapoptotic, proautophagic, and EMT-inhibitory effects on SKOV3 and OVCAR4 cells. ALS arrested SKOV3 and OVCAR4 cells in G2/M phase and induced mitochondria-mediated apoptosis and autophagy in both SKOV3 and OVCAR4 cell lines in a concentration-dependent manner. ALS suppressed phosphatidylinositol 3-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways but activated 5′-AMP-dependent kinase, as indicated by their altered phosphorylation, contributing to the proautophagic activity of ALS. Modulation of autophagy altered basal and ALS-induced apoptosis in SKOV3 and OVCAR4 cells. Further, ALS suppressed the EMT-like phenotype in both cell lines by restoring the balance between E-cadherin and N-cadherin. ALS downregulated sirtuin 1 and pre-B cell colony enhancing factor (PBEF/visfatin) expression levels and inhibited phosphorylation of AURKA in both cell lines. These findings indicate that ALS blocks the cell cycle by G2/M phase arrest and promotes cellular apoptosis and autophagy, but inhibits EMT via phosphatidylinositol 3-kinase/Akt/mTOR-mediated and sirtuin 1-mediated pathways in human epithelial ovarian cancer

  9. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells.

    PubMed

    Li, Jin-Ping; Yang, Yin-Xue; Liu, Qi-Lun; Zhou, Zhi-Wei; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Pan, Si-Yuan; Duan, Wei; He, Shu-Ming; Chen, Xiao-Wu; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition

  10. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells

    PubMed Central

    Li, Jin-Ping; Yang, Yin-Xue; Liu, Qi-Lun; Zhou, Zhi-Wei; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Pan, Si-Yuan; Duan, Wei; He, Shu-Ming; Chen, Xiao-Wu; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition

  11. URG11 mediates hypoxia-induced epithelial-to-mesenchymal transition by modulation of E-cadherin and {beta}-catenin

    SciTech Connect

    Du, Rui; Huang, Chen; Bi, Qian; Zhai, Ying; Xia, Lin; Liu, Jie; Sun, Shiren; Fan, Daiming

    2010-01-01

    Upregulated gene 11 (URG11), recently identified as a new HBx-upregulated gene that may activate {beta}-catenin and Wnt signaling, was found to be upregulated in a human tubule cell line under low oxygen. Here, we investigated the potential role of URG11 in hypoxia-induced renal tubular epithelial-to-mesenchymal (EMT). Overexpression of URG11 in a human proximal tubule cell line (HK2) promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker E-cadherin and increased expression of the mesenchymal markers vimentin and {alpha}-SMA, while URG11 knockdown by siRNA effectively reversed hypoxia-induced EMT. URG11 promoted the expression of {beta}-catenin and increased its nuclear accumulation under normoxic conditions through transactivation of the {beta}-catenin promoter. This in turn upregulated {beta}-catenin/T-cell factor (TCF) and its downstream effector genes, vimentin, and {alpha}-SMA. In vivo, strong expression of URG11 was observed in the tubular epithelia of 5/6-nephrectomized rats, and a Western blot analysis demonstrated a close correlation between HIF-1{alpha} and URG11 protein levels. Altogether, our results indicate that URG11 mediates hypoxia-induced EMT through the suppression of E-cadherin and the activation of the {beta}-catenin/TCF pathway.

  12. Mesenchymal stromal cells induce epithelial-to-mesenchymal transition in human colorectal cancer cells through the expression of surface-bound TGF-β

    PubMed Central

    Mele, Valentina; Muraro, Manuele G; Calabrese, Diego; Pfaff, Dennis; Amatruda, Nunzia; Amicarella, Francesca; Kvinlaug, Brynn; Bocelli-Tyndall, Chiara; Martin, Ivan; Resink, Therese J; Heberer, Michael; Oertli, Daniel; Terracciano, Luigi; Spagnoli, Giulio C; Iezzi, Giandomenica

    2014-01-01

    Mesenchymal stem/stromal cells (MSC) are multipotent precursors endowed with the ability to home to primary and metastatic tumor sites, where they can integrate into the tumor-associated stroma. However, molecular mechanisms and outcome of their interaction with cancer cells have not been fully clarified. In this study, we investigated the effects mediated by bone marrow-derived MSC on human colorectal cancer (CRC) cells in vitro and in vivo. We found that MSC triggered epithelial-to-mesenchymal transition (EMT) in tumor cells in vitro, as indicated by upregulation of EMT-related genes, downregulation of E-cadherin and acquisition of mesenchymal morphology. These effects required cell-to-cell contact and were mediated by surface-bound TGF-β newly expressed on MSC upon coculture with tumor cells. In vivo tumor masses formed by MSC-conditioned CRC cells were larger and characterized by higher vessel density, decreased E-cadherin expression and increased expression of mesenchymal markers. Furthermore, MSC-conditioned tumor cells displayed increased invasiveness in vitro and enhanced capacity to invade peripheral tissues in vivo. Thus, by promoting EMT-related phenomena, MSC appear to favor the acquisition of an aggressive phenotype by CRC cells. PMID:24214914

  13. Mesenchymal stromal cells induce epithelial-to-mesenchymal transition in human colorectal cancer cells through the expression of surface-bound TGF-β.

    PubMed

    Mele, Valentina; Muraro, Manuele G; Calabrese, Diego; Pfaff, Dennis; Amatruda, Nunzia; Amicarella, Francesca; Kvinlaug, Brynn; Bocelli-Tyndall, Chiara; Martin, Ivan; Resink, Therese J; Heberer, Michael; Oertli, Daniel; Terracciano, Luigi; Spagnoli, Giulio C; Iezzi, Giandomenica

    2014-06-01

    Mesenchymal stem/stromal cells (MSC) are multipotent precursors endowed with the ability to home to primary and metastatic tumor sites, where they can integrate into the tumor-associated stroma. However, molecular mechanisms and outcome of their interaction with cancer cells have not been fully clarified. In this study, we investigated the effects mediated by bone marrow-derived MSC on human colorectal cancer (CRC) cells in vitro and in vivo. We found that MSC triggered epithelial-to-mesenchymal transition (EMT) in tumor cells in vitro, as indicated by upregulation of EMT-related genes, downregulation of E-cadherin and acquisition of mesenchymal morphology. These effects required cell-to-cell contact and were mediated by surface-bound TGF-β newly expressed on MSC upon coculture with tumor cells. In vivo tumor masses formed by MSC-conditioned CRC cells were larger and characterized by higher vessel density, decreased E-cadherin expression and increased expression of mesenchymal markers. Furthermore, MSC-conditioned tumor cells displayed increased invasiveness in vitro and enhanced capacity to invade peripheral tissues in vivo. Thus, by promoting EMT-related phenomena, MSC appear to favor the acquisition of an aggressive phenotype by CRC cells.

  14. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling.

    PubMed

    Wu, Jianguo; Ivanov, Andrei I; Fisher, Paul B; Fu, Zheng

    2016-03-22

    Polo-like kinase 1 (PLK1) is a key cell cycle regulator implicated in the development of various cancers, including prostate cancer. However, the functions of PLK1 beyond cell cycle regulation remain poorly characterized. Here, we report that PLK1 overexpression in prostate epithelial cells triggers oncogenic transformation. It also results in dramatic transcriptional reprogramming of the cells, leading to epithelial-to-mesenchymal transition (EMT) and stimulation of cell migration and invasion. Consistently, PLK1 downregulation in metastatic prostate cancer cells enhances epithelial characteristics and inhibits cell motility. The signaling mechanisms underlying the observed cellular effects of PLK1 involve direct PLK1-dependent phosphorylation of CRAF with subsequent stimulation of the MEK1/2-ERK1/2-Fra1-ZEB1/2 signaling pathway. Our findings highlight novel non-canonical functions of PLK1 as a key regulator of EMT and cell motility in normal prostate epithelium and prostate cancer. This study also uncovers a previously unanticipated role of PLK1 as a potent activator of MAPK signaling.

  15. Acquired resistance to BRAF inhibition induces epithelial-to-mesenchymal transition in BRAF (V600E) mutant thyroid cancer by c-Met-mediated AKT activation

    PubMed Central

    Byeon, Hyung Kwon; Na, Hwi Jung; Yang, Yeon Ju; Ko, Sooah; Yoon, Sun Och; Ku, Minhee; Yang, Jaemoon; Kim, Jae Wook; Ban, Myung Jin; Kim, Ji-Hoon; Kim, Da Hee; Kim, Jung Min; Choi, Eun Chang; Kim, Chang-Hoon; Yoon, Joo-Heon; Koh, Yoon Woo

    2017-01-01

    Previously, the authors have identified that c-Met mediates reactivation of the PI3K/AKT pathway following BRAF inhibitor treatment in BRAF (V600E) mutant anaplastic thyroid cancer, thereby contributing to the acquired drug resistance. Therefore dual inhibition of BRAF and c-Met led to sustained treatment response, thereby maximizing the specific anti-tumor effect of targeted therapy. The present study goes one step further and aims to investigate the effect of acquired resistance of BRAF inhibitor on epithelial-to-mesenchymal transition (EMT) in BRAF mutant thyroid cancer cells and the effect of dual inhibition from combinatorial therapy. Two thyroid cancer cell lines, 8505C and BCPAP were selected and treated with BRAF inhibitor, PLX4032 and its effect on EMT were examined and compared. Further investigation was carried out in orthotopic xenograft mouse models. Unlike BCPAP cells, the BRAF inhibitor resistant 8505C cells showed increased expressions of EMT related markers such as vimentin, β-catenin, and CD44. The combinatorial treatment of PLX4032 and PHA665752, a c-Met inhibitor reversed EMT. Similar results were confirmed in vivo. c-Met-mediated reactivation of the PI3K/AKT pathway contributes to the drug resistance to PLX4032 in BRAF (V600E) mutant anaplastic thyroid cancer cells and further promotes tumor cell migration and invasion by upregulated EMT mechanism. Dual inhibition of BRAF and c-Met leads to reversal of EMT, suggesting a maximal therapeutic response. PMID:27880942

  16. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling

    PubMed Central

    Wu, Jianguo; Ivanov, Andrei I; Fisher, Paul B; Fu, Zheng

    2016-01-01

    Polo-like kinase 1 (PLK1) is a key cell cycle regulator implicated in the development of various cancers, including prostate cancer. However, the functions of PLK1 beyond cell cycle regulation remain poorly characterized. Here, we report that PLK1 overexpression in prostate epithelial cells triggers oncogenic transformation. It also results in dramatic transcriptional reprogramming of the cells, leading to epithelial-to-mesenchymal transition (EMT) and stimulation of cell migration and invasion. Consistently, PLK1 downregulation in metastatic prostate cancer cells enhances epithelial characteristics and inhibits cell motility. The signaling mechanisms underlying the observed cellular effects of PLK1 involve direct PLK1-dependent phosphorylation of CRAF with subsequent stimulation of the MEK1/2-ERK1/2-Fra1-ZEB1/2 signaling pathway. Our findings highlight novel non-canonical functions of PLK1 as a key regulator of EMT and cell motility in normal prostate epithelium and prostate cancer. This study also uncovers a previously unanticipated role of PLK1 as a potent activator of MAPK signaling. DOI: http://dx.doi.org/10.7554/eLife.10734.001 PMID:27003818

  17. ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumor cells induced by truncated MUC1

    SciTech Connect

    Horn, Galit; Gaziel, Avital; Wreschner, Daniel H.; Smorodinsky, Nechama I.; Ehrlich, Marcelo

    2009-05-01

    Epithelial to mesenchymal transition (EMT) integrates changes to cell morphology and signaling pathways resulting from modifications to the cell's transcriptional response. Different combinations of stimuli ignite this process in the contexts of development or tumor progression. The human MUC1 gene encodes multiple alternatively spliced forms of a polymorphic oncoprotein that is aberrantly expressed in epithelial malignancies. MUC1 is endowed with various signaling modules and has the potential to mediate proliferative and morphological changes characteristic of the progression of epithelial tumors. The tyrosine-rich cytoplasmic domain and the heavily glycosylated extracellular domain both play a role in MUC1-mediated signal transduction. However, the attribution of function to specific domains of MUC1 is difficult due to the concomitant presence of multiple forms of the protein, which stem from alternative splicing and proteolytic cleavage. Here we show that DA3 mouse mammary tumor cells stably transfected with a truncated genomic fragment of human MUC1 undergo EMT. In their EMT, these cells demonstrate altered [i] morphology, [ii] signaling pathways and [iii] expression of epithelial and mesenchymal markers. Similarly to well characterized human breast cancer cell lines, cells transfected with truncated MUC1 show an ERK-dependent increased spreading on fibronectin, and a PI3K-dependent enhancement of their proliferative rate.

  18. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells.

    PubMed

    Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A; Entrena, José M; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A

    2016-01-11

    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies.

  19. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells

    PubMed Central

    Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A.; Entrena, José M.; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A.

    2016-01-01

    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies. PMID:26752044

  20. Metformin Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition via PKM2 Relative-mTOR/p70s6k Signaling Pathway in Cervical Carcinoma Cells

    PubMed Central

    Cheng, Keyan; Hao, Min

    2016-01-01

    Background: Epithelial-to-mesenchymal transition (EMT) plays a prominent role in tumorigenesis. Metformin exerts antitumorigenic effects in various cancers. This study investigated the mechanisms of metformin in TGF-β1-induced Epithelial-to-mesenchymal transition (EMT) in cervical carcinoma cells. Methods: cells were cultured with 10 ng/mL TGF-β1 to induce EMT and treated with or without metformin. Cell viability was evaluated by CCK-8 (Cell Counting Kit 8, CCK-8) assay; apoptosis were analyzed by flow cytometry; cell migration was evaluated by wound-healing assay. Western blotting was performed to detect E-cadherin, vimentin, signal transducer and activator of transcription 3 (STAT3), snail family transcriptional repressor 2 (SNAIL2), phosphorylation of p70s6k (p-p70s6k) and -Pyruvate kinase M2 (PKM2) Results: TGF-β1 promoted proliferation and migration, and it attenuated apoptosis compared with cells treated with metformin with or without TGF-β1 in cervical carcinoma cells. Moreover, metformin partially abolished TGF-β1-induced EMT cell proliferation and reversed TGF-β1-induced EMT. In addition, the anti-EMT effects of metformin could be partially in accord with rapamycin, a specific mTOR inhibitor. Metformin decreased the p-p70s6k expression and the blockade of mTOR/p70s6k signaling decreased PKM2 expression. Conclusion: Metformin abolishes TGF-β1-induced EMT in cervical carcinoma cells by inhibiting mTOR/p70s6k signaling to down-regulate PKM2 expression. Our study provides a novel mechanistic insight into the anti-tumor effects of metformin. PMID:27916907

  1. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia.

    PubMed

    Marie-Egyptienne, Delphine Tamara; Lohse, Ines; Hill, Richard Peter

    2013-11-28

    Numerous studies have demonstrated the presence of cancer stem cells (CSCs) within solid tumors. Although the precursor of these cells is not clearly established, recent studies suggest that the phenotype of CSCs may be quite plastic and associated with the epithelial-to-mesenchymal transition (EMT). In patients, the presence of EMT and CSCs has been implicated in increased resistance to radiotherapy. Hypoxia, a negative prognostic factor for treatment success, is a potent driver of a multitude of molecular signalling pathways that allow cells to survive and thrive in the hostile tumor microenvironment and can induce EMT. Hypoxia also provides tumor cells with cues for maintenance of a stem-like state and may help to drive the linkage between EMT and CSCs. Understanding the biology of CSCs, the EMT phenotype and their implications in therapeutic relapse may provide crucial new approaches in the development of improved therapeutic strategies.

  2. Epithelial to mesenchymal transition: new and old insights from the classical neural crest model

    PubMed Central

    Pablo H., Strobl-Mazzulla; Marianne E., Bronner

    2012-01-01

    The epithelial-to-mesenchymal transition (EMT) is an important event converting compact and ordered epithelial cells into migratory mesenchymal cells. Given the molecular and cellular similarities between pathological and developmental EMTs, studying this event during neural crest development offers and excellent in vivo model for understanding the mechanisms underlying this process. Here, we review new and old insight into neural crest EMT in search of commonalities with cancer progression that might aid in the design of specific therapeutic prevention. PMID:22575214

  3. Epithelial-to-mesenchymal transition: possible role in meningiomas.

    PubMed

    Pecina-Slaus, Nives; Cicvara-Pecina, Tatjana; Kafka, Anja

    2012-01-01

    Epithelial-to-mesenchimal transition (EMT) is a process involved in invasion and metastasis of tumors. The occurrence of EMT during tumor progression resembles the developmental scenario and sheds light on important mechanisms for the initial step of metastasis - invasion where noninvasive tumor cells acquire motility and ultimately disseminate to distant organs. The hallmark of EMT is the loss of expression of the cell-cell adhesion molecule E-cadherin. The numerous reports by many authors as well as our own results indicate that E-cadherin plays a role in CNS tumors - meningiomas. Our studies showed that 73 % of meningiomas had downregulation of E-cadherin. Moreover, loss of heterozygosity of E-cadherin was observed in 32 % of meningiomas. Bound to E-cadherin in adherens junctions is beta-catenin, whose translocation to the nucleus is yet another molecular event involved in EMT. In our study beta-catenin was progressively upregulated from meningothelial to atypical, while 60 % of anaplastic meningiomas showed upregulation and nuclear localization of the protein. The elucidation of molecular mechanisms that govern EMT will offer new approaches and targets to restrain metastasis.

  4. Danusertib Induces Apoptosis, Cell Cycle Arrest, and Autophagy but Inhibits Epithelial to Mesenchymal Transition Involving PI3K/Akt/mTOR Signaling Pathway in Human Ovarian Cancer Cells.

    PubMed

    Zi, Dan; Zhou, Zhi-Wei; Yang, Ying-Jie; Huang, Lin; Zhou, Zun-Lun; He, Shu-Ming; He, Zhi-Xu; Zhou, Shu-Feng

    2015-11-13

    Ovarian carcinoma (OC) is one of the most common gynecological malignancies, with a poor prognosis for patients at advanced stage. Danusertib (Danu) is a pan-inhibitor of the Aurora kinases with unclear anticancer effect and underlying mechanisms in OC treatment. This study aimed to examine the cancer cell killing effect and explore the possible mechanisms with a focus on proliferation, cell cycle progression, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT) in human OC cell lines C13 and A2780cp. The results showed that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both cell lines. Danu arrested cells in G₂/M phase and led to an accumulation of polyploidy through the regulation of the expression key cell cycle modulators. Danu induced mitochondria-dependent apoptosis and autophagy in dose and time-dependent manners. Danu suppressed PI3K/Akt/mTOR signaling pathway, evident from the marked reduction in the phosphorylation of PI3K/Akt/mTOR, contributing to the autophagy inducing effect of Danu in both cell lines. In addition, Danu inhibited EMT. In aggregate, Danu exerts potent inducing effect on cell cycle arrest, apoptosis, and autophagy, but exhibits a marked inhibitory effect on EMT. PI3K/Akt/mTOR signaling pathway contributes, partially, to the cancer cell killing effect of Danu in C13 and A2780cp cells.

  5. PUMA Cooperates with p21 to Regulate Mammary Epithelial Morphogenesis and Epithelial-To-Mesenchymal Transition.

    PubMed

    Zhang, Yanhong; Yan, Wensheng; Jung, Yong Sam; Chen, Xinbin

    2013-01-01

    Lumen formation is essential for mammary morphogenesis and requires proliferative suppression and apoptotic clearance of the inner cells within developing acini. Previously, we showed that knockdown of p53 or p73 leads to aberrant mammary acinus formation accompanied with decreased expression of p53 family targets PUMA and p21, suggesting that PUMA, an inducer of apoptosis, and p21, an inducer of cell cycle arrest, directly regulate mammary morphogenesis. To address this, we generated multiple MCF10A cell lines in which PUMA, p21, or both were stably knocked down. We found that morphogenesis of MCF10A cells was altered modestly by knockdown of either PUMA or p21 alone but markedly by knockdown of both PUMA and p21. Moreover, we found that knockdown of PUMA and p21 leads to loss of E-cadherin expression along with increased expression of epithelial-to-mesenchymal transition (EMT) markers. Interestingly, we found that knockdown of ΔNp73, which antagonizes the ability of wide-type p53 and TA isoform of p73 to regulate PUMA and p21, mitigates the abnormal morphogenesis and EMT induced by knockdown of PUMA or p21. Together, our data suggest that PUMA cooperates with p21 to regulate normal acinus formation and EMT.

  6. Transforming growth factor-β1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways.

    PubMed

    Chen, Xiao-Feng; Zhang, Hui-Jun; Wang, Hai-Bing; Zhu, Jun; Zhou, Wen-Yong; Zhang, Hui; Zhao, Ming-Chuan; Su, Jin-Mei; Gao, Wen; Zhang, Lei; Fei, Ke; Zhang, Hong-Tao; Wang, He-Yong

    2012-04-01

    Metastasis of tumor cells is associated with epithelial-to-mesenchymal transition (EMT), which is a process whereby epithelial cells lose their polarity and acquire new features of mesenchyme. EMT has been reported to be induced by transforming growth factor-β1 (TGF-β1), but its mechanism remains elusive. In this study, we performed a study to investigate whether PI3K/Akt and MAPK/Erk1/2 signaling pathways involved in EMT in the human lung cancer A549 cells. The results showed that after treated with TGF-β1 for 48 h, A549 cells displayed more fibroblast-like shape, lost epithelial marker E-cadherin and increased mesenchymal markers Vimentin and Fibronectin. Moreover, TGF-β1-induced EMT after 48 h was accompanied by increased of cell migration and change of Akt and Erk1/2 phosphorylation. In addition, EMT was reversed by PI3K inhibitor LY294002 and MEK1/2 inhibitor U0126, which suggested that A549 cells under stimulation of TGF-β1 undergo a switch into mesenchymal cells and PI3K/Akt and MAPK/Erk1/2 signaling pathways serve to regulate TGF-β1-induced EMT of A549 cells.

  7. Epigenetic plasticity: A central regulator of epithelial-to-mesenchymal transition in cancer

    PubMed Central

    Bedi, Upasana; Mishra, Vivek Kumar; Wasilewski, David; Scheel, Christina; Johnsen, Steven A.

    2014-01-01

    Tumor metastasis is the major cause of mortality and morbidity in most solid cancers. A growing body of evidence suggests that the epithelial-to-mesenchymal transition (EMT) plays a central role during tumor metastasis and frequently imparts a stem cell-like phenotype and therapeutic resistance to tumor cells. The induction of EMT is accompanied by a dynamic reprogramming of the epigenome involving changes in DNA methylation and several post-translational histone modifications. These changes in turn promote the expression of mesenchymal genes or repress those associated with an epithelial phenotype. Importantly, in order for metastatic colonization and the formation of macrometastases to occur, tumor cells frequently undergo a reversal of EMT referred to as the mesenchymal-to-epithelial transition (MET). Thus, a high degree of epigenetic plasticity is required in order to induce and reverse EMT during tumor progression. In this review, we describe various epigenetic regulatory mechanisms employed by tumor cells during EMT and elaborate on the importance of the histone code in controlling both the expression and activity of EMT-associated transcription factors. We propose that a more thorough understanding of the epigenetic mechanisms controlling EMT may provide new opportunities which may be harnessed for improved and individualized cancer therapy based on defined molecular mechanisms. PMID:24840099

  8. Directing epithelial to mesenchymal transition through engineered microenvironments displaying orthogonal adhesive and mechanical cues.

    PubMed

    Markowski, Marilyn C; Brown, Ashley C; Barker, Thomas H

    2012-08-01

    Cell interactions with their extracellular matrix (ECM) microenvironments play a major role in directing cellular processes that can drive wound healing and tissue regeneration but, if uncontrolled, lead to pathological progression. One such process, epithelial to mesenchymal transition (EMT), if finely controlled could have significant potential in regenerative medicine approaches. Despite recent findings that highlight the influence of biochemical and mechanical properties of the ECM on EMT, it is still unclear how these two orthogonal cues act synergistically to control epithelial cell phenotype. Here, we cultured lung epithelial cells on combinations of different mutants of fibronectin's cell binding domain that preferentially engage specific integrins and substrates of varying stiffness. Our results suggest that while stiff substrates induce spontaneous EMT, this response can be overcome by with fragments of fibronectin that support α3 and α5 integrin engagement. Furthermore, we found that substrate-induced EMT correlates with transforming growth factor beta activation by resident epithelial cells and is dependent on Rho/ROCK signaling. Suppressing cell-contractility was sufficient to maintain an epithelial phenotype. Our results suggest that integrin-specific engagement of fibronectin adhesive domains and the mechanics of the ECM act synergistically to direct EMT.

  9. Effect of Cigarette Smoking on Epithelial to Mesenchymal Transition (EMT) in Lung Cancer.

    PubMed

    Vu, Trung; Jin, Lin; Datta, Pran K

    2016-04-11

    Epithelial to mesenchymal transition (EMT) is a process that allows an epithelial cell to acquire a mesenchymal phenotype through multiple biochemical changes resulting in an increased migratory capacity. During cancer progression, EMT is found to be associated with an invasive or metastatic phenotype. In this review, we focus on the discussion of recent studies about the regulation of EMT by cigarette smoking. Various groups of active compounds found in cigarette smoke such as polycyclic aromatic hydrocarbons (PAH), nicotine-derived nitrosamine ketone (NNK), and reactive oxygen specicies (ROS) can induce EMT through different signaling pathways. The links between EMT and biological responses to cigarette smoke, such as hypoxia, inflammation, and oxidative damages, are also discussed. The effect of cigarette smoke on EMT is not only limited to cancer types directly related to smoking, such as lung cancer, but has also been found in other types of cancer. Altogether, this review emphasizes the importance of understanding molecular mechanisms of the induction of EMT by cigarette smoking and will help in identifying novel small molecules for targeting EMT induced by smoking.

  10. Effect of Cigarette Smoking on Epithelial to Mesenchymal Transition (EMT) in Lung Cancer

    PubMed Central

    Vu, Trung; Jin, Lin; Datta, Pran K.

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is a process that allows an epithelial cell to acquire a mesenchymal phenotype through multiple biochemical changes resulting in an increased migratory capacity. During cancer progression, EMT is found to be associated with an invasive or metastatic phenotype. In this review, we focus on the discussion of recent studies about the regulation of EMT by cigarette smoking. Various groups of active compounds found in cigarette smoke such as polycyclic aromatic hydrocarbons (PAH), nicotine-derived nitrosamine ketone (NNK), and reactive oxygen specicies (ROS) can induce EMT through different signaling pathways. The links between EMT and biological responses to cigarette smoke, such as hypoxia, inflammation, and oxidative damages, are also discussed. The effect of cigarette smoke on EMT is not only limited to cancer types directly related to smoking, such as lung cancer, but has also been found in other types of cancer. Altogether, this review emphasizes the importance of understanding molecular mechanisms of the induction of EMT by cigarette smoking and will help in identifying novel small molecules for targeting EMT induced by smoking. PMID:27077888

  11. Baicalin inhibits human osteosarcoma cells invasion, metastasis, and anoikis resistance by suppressing the transforming growth factor-β1-induced epithelial-to-mesenchymal transition.

    PubMed

    Wang, Yanmao; Wang, Huimin; Zhou, Runhua; Zhong, Wanrun; Lu, Shengdi; Ma, Zhongliang; Chai, Yimin

    2017-04-04

    The epithelial-mesenchymal transition (EMT) plays an important role in inducing cancer metastasis. Baicalin, a flavone derivative isolated from Scutellaria spp., shows a series of pharmacological and physiological activities. However, the possible role of baicalin in the EMT is unclear. In this study, we attempted to investigate the potential use of baicalin as an inhibitor of transforming growth factor-β1 (TGF-β1)-induced EMT in U2OS cells. We found that TGF-β1 induced the EMT to promote U2OS cells migration, invasion, and anoikis resistance. Western blotting showed that baicalin inhibited U2OS cells' invasion and migration, increased the expression of the epithelial phenotype marker E-cadherin, repressed the expression of the mesenchymal phenotype marker vimentin, as well as decreased the level of EMT-inducing transcription factors Snail1 and Slug during the initiation of TGF-β1-induced EMT. Baicalin also inhibited the TGF-β1-induced increase in cell migration, invasion, and anoikis resistance in TGF-β1-induced U2OS cells. In addition, the TGF-β1-mediated phosphorylated levels of Smad2/3 were inhibited by baicalin pretreatment. Above all, we conclude that baicalin suppresses human osteosarcoma cells' migration, invasion, and anoikis resistance in vitro through suppression of TGF-β1-induced EMT.

  12. MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition.

    PubMed

    Luo, Huacheng; Shenoy, Anitha K; Li, Xuehui; Jin, Yue; Jin, Lihua; Cai, Qingsong; Tang, Ming; Liu, Yang; Chen, Hao; Reisman, David; Wu, Lizi; Seto, Edward; Qiu, Yi; Dou, Yali; Casero, Robert A; Lu, Jianrong

    2016-06-21

    The histone demethylase LSD1 facilitates epithelial-to-mesenchymal transition (EMT) and tumor progression by repressing epithelial marker expression. However, little is known about how its function may be modulated. Here, we report that LSD1 is acetylated in epithelial but not mesenchymal cells. Acetylation of LSD1 reduces its association with nucleosomes, thus increasing histone H3K4 methylation at its target genes and activating transcription. The MOF acetyltransferase interacts with LSD1 and is responsible for its acetylation. MOF is preferentially expressed in epithelial cells and is downregulated by EMT-inducing signals. Expression of exogenous MOF impedes LSD1 binding to epithelial gene promoters and histone demethylation, thereby suppressing EMT and tumor invasion. Conversely, MOF depletion enhances EMT and tumor metastasis. In human cancer, high MOF expression correlates with epithelial markers and a favorable prognosis. These findings provide insight into the regulation of LSD1 and EMT and identify MOF as a critical suppressor of EMT and tumor progression.

  13. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells

    PubMed Central

    Shenoy, Anitha K.; Jin, Yue; Luo, Huacheng; Pampo, Christine; Shao, Rong; Siemann, Dietmar W.; Heldermon, Coy D.; Law, Brian K.; Chang, Lung-Ji

    2016-01-01

    Carcinoma cells can acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT). However, the significance of EMT in cancer metastasis has been controversial, and the exact fates and functions of EMT cancer cells in vivo remain inadequately understood. Here, we tracked epithelial cancer cells that underwent inducible or spontaneous EMT in various tumor transplantation models. Unlike epithelial cells, the majority of EMT cancer cells were specifically located in the perivascular space and closely associated with blood vessels. EMT markedly activated multiple pericyte markers in carcinoma cells, in particular PDGFR-β and N-cadherin, which enabled EMT cells to be chemoattracted towards and physically interact with endothelium. In tumor xenografts generated from carcinoma cells that were prone to spontaneous EMT, a substantial fraction of the pericytes associated with tumor vasculature were derived from EMT cancer cells. Depletion of such EMT cells in transplanted tumors diminished pericyte coverage, impaired vascular integrity, and attenuated tumor growth. These findings suggest that EMT confers key pericyte attributes on cancer cells. The resulting EMT cells phenotypically and functionally resemble pericytes and are indispensable for vascular stabilization and sustained tumor growth. This study thus proposes a previously unrecognized role for EMT in cancer. PMID:27721239

  14. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition

    PubMed Central

    Barriga, Elias H.; Maxwell, Patrick H.

    2013-01-01

    One of the most important mechanisms that promotes metastasis is the stabilization of Hif-1 (hypoxia-inducible transcription factor 1). We decided to test whether Hif-1α also was required for early embryonic development. We focused our attention on the development of the neural crest, a highly migratory embryonic cell population whose behavior has been likened to cancer metastasis. Inhibition of Hif-1α by antisense morpholinos in Xenopus laevis or zebrafish embryos led to complete inhibition of neural crest migration. We show that Hif-1α controls the expression of Twist, which in turn represses E-cadherin during epithelial to mesenchymal transition (EMT) of neural crest cells. Thus, Hif-1α allows cells to initiate migration by promoting the release of cell–cell adhesions. Additionally, Hif-1α controls chemotaxis toward the chemokine SDF-1 by regulating expression of its receptor Cxcr4. Our results point to Hif-1α as a novel and key regulator that integrates EMT and chemotaxis during migration of neural crest cells. PMID:23712262

  15. F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check.

    PubMed

    Díaz, Víctor M; de Herreros, Antonio García

    2016-02-01

    F-box proteins are the key recognition subunit of multimeric E3 ubiquitin ligase complexes that participate in the proteasome degradation of specific substrates. In the last years, a discrete number of F-box proteins have been shown to regulate the epithelial-to-mesenchymal transition (EMT), a process defined by a rapid change of cell phenotype, the loss of epithelial characteristics and the acquisition of a more invasive phenotype. Specific EMT transcription factors (EMT-TFs), such as Snail, Slug, Twist and Zeb, control EMT induction both during development and in cancer. These EMT-TFs are short-lived proteins that are targeted to the proteasome system by specific F-box proteins, keeping them at low levels. F-box proteins also indirectly regulate the EMT process by controlling EMT inducers, such as Notch, c-Myc or mTOR. Here we summarize the role that these F-box proteins (Fbxw1, Fbxw7, Fbxl14, Fbxl5, Fbxo11 and Fbxo45) play in controlling EMT during development and cancer progression, a process dependent on post-translational modifications that govern their interaction with target proteins.

  16. Substrate stiffness modulates lung cancer cell migration but not epithelial to mesenchymal transition.

    PubMed

    Shukla, V C; Higuita-Castro, N; Nana-Sinkam, P; Ghadiali, S N

    2016-05-01

    Biomechanical properties of the tumor microenvironment, including matrix/substrate stiffness, play a significant role in tumor evolution and metastasis. Epithelial to Mesenchymal Transition (EMT) is a fundamental biological process that is associated with increased cancer cell migration and invasion. The goal of this study was to investigate (1) how substrate stiffness modulates the migration behaviors of lung adenocarcinoma cells (A549) and (2) if stiffness-induced changes in cell migration correlate with biochemical markers of EMT. Collagen-coated polydimethylsiloxane (PDMS) substrates and an Ibidi migration assay were used to investigate how substrate stiffness alters the migration patterns of A549 cells. RT-PCR, western blotting and immunofluorescence were used to investigate how substrate stiffness alters biochemical markers of EMT, that is, E-cadherin and N-cadherin, and the phosphorylation of focal adhesion proteins. Increases in substrate stiffness led to slower, more directional migration but did not alter the biochemical markers of EMT. Interestingly, growth factor (i.e., Transforming Growth Factor-β) stimulation resulted in similar levels of EMT regardless of substrate stiffness. We also observed decreased levels of phosphorylated focal adhesion kinase (FAK) and paxillin on stiffer substrates which correlated with slower cell migration. These results indicate that substrate stiffness modulates lung cancer cell migration via focal adhesion signaling as opposed to EMT signaling.

  17. Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2.

    PubMed

    Yan, Chunli; Grimm, Wesley A; Garner, Warren L; Qin, Lan; Travis, Taryn; Tan, Neiman; Han, Yuan-Ping

    2010-05-01

    Epithelial-mesenchymal transition (EMT), characterized by loss of epithelial adhesion and gain of mesenchymal features, is an important mechanism to empower epithelial cells into the motility that occurs during embryonic development and recurs in cancer and fibrosis. Whether and how EMT occurs in wound healing and fibrosis in human skin remains unknown. In this study we found that migrating epithelial cells in wound margins and deep epithelial ridges had gained mesenchymal features such as vimentin and FSP1 expression. In hypertrophic scars, EMT-related genes were elevated along with inflammatory cytokines, indicating a causal relationship. To reconstitute EMT in vitro, normal human skin and primary keratinocytes were exposed to cytokines such as tumor necrosis factor-alpha (TNF-alpha), resulting in expression of vimentin, FSP1, and matrix metalloproteinases. Moreover, TNF-alpha-induced EMT was impaired by antagonists against bone morphogen proteins (BMP) 2/4, suggesting that BMP mediates the TNF-alpha-induced EMT in human skin. Indeed, TNF-alpha could induce BMP-2 and its receptor (BMPR1A) in human skin and primary keratinocytes, and BMP2 could induce EMT features in skin explants and primary keratinocytes. In summary, we uncovered EMT features in both acute and fibrotic cutaneous wound healing of human skin. Moreover, we propose that the mesenchymal induction in wound healing is motivated by TNF-alpha, in part, through induction of BMP.

  18. Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer.

    PubMed

    Buhrmann, Constanze; Shayan, Parviz; Kraehe, Patricia; Popper, Bastian; Goel, Ajay; Shakibaei, Mehdi

    2015-11-01

    5-Fluorouracil (5-FU), a common chemotherapeutic agent used for the treatment of colorectal cancer (CRC), by itself has inadequate response rates; highlighting the need for novel and improved treatment regimens for these patients. Resveratrol, a naturally-occurring polyphenol, has been linked with chemosensitizing potential and anticancer properties; however, the underlying mechanisms for these effects remain poorly understood. The effect of resveratrol in parental CRC cell lines (HCT116, SW480) and their corresponding isogenic 5-FU-chemoresistant derived clones (HCT116R, SW480R) was examined by MTT assays, intercellular junction formation and apoptosis by electron- and immunoelectron microscopy, nuclear factor-kappaB (NF-κB) and NF-κB regulated gene products by western blot analysis in a 3D-alginate microenvironment. Resveratrol blocked the proliferation of all four CRC cell lines and synergized the invasion inhibitory effects of 5-FU. Interestingly, resveratrol induced a transition from 5-FU-induced formation of microvilli to a planar cell surface, which was concomitant with up-regulation of desmosomes, gap- and tight junctions (claudin-2) and adhesion molecules (E-cadherin) expression in HCT116 and HCT116R cells. Further, resveratrol significantly attenuated drug resistance through inhibition of epithelial-mesenchymal transition (EMT) factors (decreased vimentin and slug, increased E-cadherin) and down-regulation of NF-κB activation and its translocation to the nucleus and abolished NF-κB-regulated gene end-products (MMP-9, caspase-3). Moreover, this suppression was mediated through inhibition of IκBα kinase and IκBα phosphorylation and degradation. Our results demonstrate that resveratrol can potentiate the anti-tumor effects of 5-FU on CRC cells by chemosensitizing them, inhibiting an EMT phenotype via up-regulation of intercellular junctions and by down-regulation of NF-κB pathway.

  19. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  20. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition.

    PubMed

    Espinoza, Ingrid; Pochampally, Radhika; Xing, Fei; Watabe, Kounosuke; Miele, Lucio

    2013-09-06

    Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT) have been reported. This review describes the role of Notch in the "stemness" program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process.

  1. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. | Office of Cancer Genomics

    Cancer.gov

    Increased expression of zinc finger E-box binding homeobox 1 (ZEB1) is associated with tumor grade and metastasis in lung cancer, likely due to its role as a transcription factor in epithelial-to-mesenchymal transition (EMT). Here, we modeled malignant transformation in human bronchial epithelial cells (HBECs) and determined that EMT and ZEB1 expression are early, critical events in lung cancer pathogenesis. Specific oncogenic mutations in TP53 and KRAS were required for HBECs to engage EMT machinery in response to microenvironmental (serum/TGF-β) or oncogenetic (MYC) factors.

  2. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition

    PubMed Central

    Espinoza, Ingrid; Pochampally, Radhika; Xing, Fei; Watabe, Kounosuke; Miele, Lucio

    2013-01-01

    Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT) have been reported. This review describes the role of Notch in the “stemness” program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process. PMID:24043949

  3. c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3.

    PubMed

    Velden, Jos L J van der; Alcorn, John F; Guala, Amy S; Badura, Elsbeth C H L; Janssen-Heininger, Yvonne M W

    2011-04-01

    Transforming growth factor (TGF)-β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF-β1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF-β1-induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF-β1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF-β1-induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF-β1-induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor-1, fibronectin-1, high-mobility group A2, CArG box-binding factor-A, and fibroblast-specific protein-1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF-β1-induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF-β1-induced EMT.

  4. Role of glycogen synthase kinase-3β and PPAR-γ on epithelial-to-mesenchymal transition in DSS-induced colorectal fibrosis

    PubMed Central

    Vetuschi, Antonella; Dubuquoy, Caroline; Desreumaux, Pierre; Pompili, Simona; Cristiano, Loredana; Gaudio, Eugenio; Flati, Vincenzo; Latella, Giovanni

    2017-01-01

    Background Intestinal fibrosis is characterized by abnormal production and deposition of extracellular matrix (ECM) proteins by activated myofibroblasts. The main progenitor cells of activated myofibroblasts are the fibroblasts and the epithelial cells, the latter through the epithelial-mesenchymal transition (EMT). Aim To evaluate the action of the new PPAR-γ modulator, GED-0507-34 Levo (GED) on the expression of EMT associated and regulatory proteins such as TGF-β, Smad3, E-cadherin, Snail, ZEB1, β-catenin, and GSK-3β, in a mouse model of DSS-induced intestinal fibrosis. Methods Chronic colitis and fibrosis were induced by oral administration of 2.5% DSS (w/v) for 6 weeks. GW9662 (GW), a selective PPAR-γ inhibitor, was also administered by intraperitoneal injection at the dose of 1 mg/kg/day combined with GED treatment. All drugs were administered at the beginning of the second cycle of DSS (day 12). 65 mice were randomly divided into five groups (H2O as controls n = 10, H2O+GED n = 10, DSS n = 15, DSS+GED n = 15, DSS+GED+GW n = 15). The colon was excised for macroscopic examination and histological and morphometric analyses. The level of expression of molecules involved in EMT and fibrosis, like TGF-β, Smad3, E-cadherin, Snail, ZEB1, β-catenin, GSK-3β and PPAR-γ, was assessed by immunohistochemistry, immunofluorescence, western blot and Real Time PCR. Results GED improved the DSS-induced chronic colitis and fibrosis. GED was able to reduce the expression of the main fibrosis markers (α-SMA, collagen I-III and fibronectin) as well as the pivotal pro-fibrotic molecules IL-13, TGF-β and Smad3, while it increased the anti-fibrotic PPAR-γ. All these GED effects were nullified by co-administration of GW with GED. Furthermore, GED was able to normalize the expression levels of E-cadherin and β-catenin and upregulated GSK-3β, that are all known to be involved both in EMT and fibrosis. Conclusions The DSS-induced intestinal fibrosis was improved by the new

  5. Curcumin inhibits cobalt chloride-induced epithelial-to-mesenchymal transition associated with interference with TGF-β/Smad signaling in hepatocytes.

    PubMed

    Kong, Desong; Zhang, Feng; Shao, Jiangjuan; Wu, Li; Zhang, Xiaoping; Chen, Li; Lu, Yin; Zheng, Shizhong

    2015-11-01

    Epithelial-mesenchymal transition (EMT) occurs during adult tissue remodeling responses including carcinogenesis and fibrosis. Existing evidence reveals that hepatocytes can undergo EMT in adult liver, which is critically involved in chronic liver injury. We herein established a hypoxia-induced EMT model in human LO2 hepatocytes treated with cobalt chloride (CoCl2) in vitro, and evaluated the effects of curcumin, a natural antifibrotic compound, on hepatocyte EMT and explored the underlying molecular mechanisms. We found that CoCl2 at non-toxic doses induced a mesenchymal cell phenotype in hepatocytes and upregulated several mesenchymal markers including α-smooth muscle actin, vimentin, N-cadherin, fibronectin and Snail (an EMT-related transcription factor), but downregulated the epithelial marker E-cadherin in hepatocytes. However, curcumin reversed the morphological changes, abrogated the increased expression of mesenchymal markers, and rescued E-cadherin expression in CoCl2-treated hepatocytes, suggesting the inhibition of hepatocyte EMT in vitro. We further found that curcumin interfered with the transforming growth factor-β (TGF-β) signaling by reducing the expression of TGF-β receptor I and inhibiting the expression and phosphorylation of Smad2 and Smad3. Use of SB431542, a specific inhibitor of TGF-β receptor I, demonstrated that interference with the TGF-β/Smad pathway was associated with curcumin suppression of hepatocyte EMT. Our in vivo data showed that curcumin affected hepatic EMT in rat fibrotic liver caused by carbon tetrachloride, which was associated with the inhibition of TGF-β/Smad signaling. These findings characterized a novel mechanism by which curcumin modulated hepatocyte EMT implicated in treatment of liver fibrosis.

  6. HSP72 inhibits Smad3 activation and nuclear translocation in renal epithelial-to-mesenchymal transition.

    PubMed

    Zhou, Yi; Mao, Haiping; Li, Shu; Cao, Shirong; Li, Zhijian; Zhuang, Shougang; Fan, Jinjin; Dong, Xiuqing; Borkan, Steven C; Wang, Yihan; Yu, Xueqing

    2010-04-01

    Although heat shock protein 72 (HSP72) ameliorates renal tubulointerstitial fibrosis by inhibiting epithelial-to-mesenchymal transition (EMT), the underlying mechanism is unknown. Because Smad proteins transduce TGF-beta signaling from the cytosol to the nucleus and HSP72 assists in protein folding and facilitates nuclear translocation, we investigated whether HSP72 inhibits TGF-beta-induced EMT by modulating Smad expression, activation, and nuclear translocation. To evaluate the roles of distinct HSP72 structural domains in these processes, we constructed vectors that expressed wild-type HSP72 or mutants lacking either the peptide-binding domain (HSP72-DeltaPBD), which is responsible for substrate binding and refolding, or the nuclear localization signal (HSP72-DeltaNLS). Overexpression of wild-type HSP72 or HSP72-DeltaNLS inhibited TGF-beta1-induced EMT, but HSP72-DeltaPBD did not, suggesting a critical role for the PBD in this inhibition. HSP72 overexpression inhibited TGF-beta1-induced phosphorylation and nuclear translocation of Smad3 and p-Smad3, but not Smad2; these inhibitory effects required the PBD but not the NLS. Coimmunoprecipitation assays suggested a physical interaction between Smad3 and the PBD. siRNA knockdown of endogenous HSP72 enhanced both TGF-beta1-induced Smad3 phosphorylation and EMT and confirmed the interaction of HSP72 with both Smad3 and p-Smad3. In vivo, induction of HSP72 by geranylgeranylacetone suppressed Smad3 phosphorylation in renal tubular cells after unilateral ureteral obstruction. In conclusion, HSP72 inhibits EMT in renal epithelial cells primarily by exerting domain-specific effects on Smad3 activation and nuclear translocation.

  7. Blockage of epithelial to mesenchymal transition and upregulation of let 7b are critically involved in ursolic acid induced apoptosis in malignant mesothelioma cell

    PubMed Central

    Sohn, Eun Jung; Won, Gunho; Lee, Jihyun; Yoon, Sang Wook; Lee, Ilho; Kim, Hee Jeong; Kim, Sung-Hoon

    2016-01-01

    Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas. PMID:28090191

  8. Blockage of epithelial to mesenchymal transition and upregulation of let 7b are critically involved in ursolic acid induced apoptosis in malignant mesothelioma cell.

    PubMed

    Sohn, Eun Jung; Won, Gunho; Lee, Jihyun; Yoon, Sang Wook; Lee, Ilho; Kim, Hee Jeong; Kim, Sung-Hoon

    2016-01-01

    Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas.

  9. Neutrophil Granulocytes in Ovarian Cancer - Induction of Epithelial-To-Mesenchymal-Transition and Tumor Cell Migration

    PubMed Central

    Mayer, Christine; Darb-Esfahani, Silvia; Meyer, Anne-Sophie; Hübner, Katrin; Rom, Joachim; Sohn, Christof; Braicu, Ioana; Sehouli, Jalid; Hänsch, G. Maria; Gaida, Matthias M.

    2016-01-01

    Background: Ovarian cancer (OvCa) is a highly aggressive malignoma with a tumor-promoting microenvironment. Infiltration of polymorphonuclear neutrophils (PMN) is frequently seen, raising the question of their impact on tumor development. In that context, effects of PMN on human ovarian cancer cells were assessed. Methods: Human epithelial ovarian cancer cells were incubated with human PMN, lysate of PMN, or neutrophil elastase. Morphological alterations were observed by time-lapse video-microscopy, and the underlying molecular mechanism was analyzed by flow cytometry and Western blotting. Functional alternations were assessed by an in vitro wound healing assay. In parallel, a large cohort of n=334 primary OvCa tissue samples of various histological subtypes was histologically evaluated. Results: Co-cultivation of cancer cells with either PMN or PMN lysate causes a change of the polygonal epithelial phenotype of the cells towards a spindle shaped morphology, causing a cribriform cell growth. The PMN-induced alteration could be attributed to elastase, a major protease of PMN. Elastase-induced shape change was most likely due to the degradation of membranous E-cadherin, which results in loss of cell contacts and polarity. Moreover, in response to elastase, epithelial cytokeratins were downmodulated, in parallel with a nuclear translocation of β-catenin. These PMN-elastase induced alterations of cells are compatible with an epithelial-to-mesenchymal transition (EMT) of the cancer cells. Following EMT, the cells displayed a more migratory phenotype. In human biopsies, neutrophil infiltration was seen in 72% of the cases. PMN infiltrates were detected preferentially in areas with low E-cadherin expression. Conclusion: PMN in the microenvironment of OvCa can alter tumor cells towards a mesenchymal and migratory phenotype. PMID:27053953

  10. Oxystressed tumor microenvironment potentiates epithelial to mesenchymal transition and alters cellular bioenergetics towards cancer progression.

    PubMed

    Sridaran, Dhivya; Ramamoorthi, Ganesan; MahaboobKhan, Rasool; Kumpati, Premkumar

    2016-10-01

    cytomorphological variations, alterations in expression patterns of adhesion markers, redox homeostasis, and metabolic reprogramming that supports epithelial to mesenchymal transition and cancer progression.

  11. Regulation of Epithelial-to-Mesenchymal Transition Using Biomimetic Fibrous Scaffolds.

    PubMed

    Ravikrishnan, Anitha; Ozdemir, Tugba; Bah, Mohamed; Baskerville, Karen A; Shah, S Ismat; Rajasekaran, Ayyappan K; Jia, Xinqiao

    2016-07-20

    Epithelial-to-mesenchymal transition (EMT) is a well-studied biological process that takes place during embryogenesis, carcinogenesis, and tissue fibrosis. During EMT, the polarized epithelial cells with a cuboidal architecture adopt an elongated fibroblast-like morphology. This process is accompanied by the expression of many EMT-specific molecular markers. Although the molecular mechanism leading to EMT has been well-established, the effects of matrix topography and microstructure have not been clearly elucidated. Synthetic scaffolds mimicking the meshlike structure of the basement membrane with an average fiber diameter of 0.5 and 5 μm were produced via the electrospinning of poly(ε-caprolactone) (PCL) and were used to test the significance of fiber diameter on EMT. Cell-adhesive peptide motifs were conjugated to the fiber surface to facilitate cell attachment. Madin-Darby Canine Kidney (MDCK) cells grown on these substrates showed distinct phenotypes. On 0.5 μm substrates, cells grew as compact colonies with an epithelial phenotype. On 5 μm scaffolds, cells were more individually dispersed and appeared more fibroblastic. Upon the addition of hepatocyte growth factor (HGF), an EMT inducer, cells grown on the 0.5 μm scaffold underwent pronounced scattering, as evidenced by the alteration of cell morphology, localization of focal adhesion complex, weakening of cell-cell adhesion, and up-regulation of mesenchymal markers. In contrast, HGF did not induce a pronounced scattering of MDCK cells cultured on the 5.0 μm scaffold. Collectively, our results show that the alteration of the fiber diameter of proteins found in the basement membrane may create enough disturbances in epithelial organization and scattering that might have important implications in disease progression.

  12. Regulation of Epithelial-to-Mesenchymal Transition Using Biomimetic Fibrous Scaffolds

    PubMed Central

    Ravikrishnan, Anitha; Ozdemir, Tugba; Bah, Mohamed; Baskerville, Karen A.; Shah, S. Ismat; Rajasekaran, Ayyappan K.; Jia, Xinqiao

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is a well-studied biological process that takes place during embryogenesis, carcinogenesis and tissue fibrosis. During EMT, the polarized epithelial cells with a cuboidal architecture adopt an elongated fibroblast-like morphology. This process is accompanied by the expression of many EMT-specific molecular markers. While the molecular mechanism leading to EMT has been well established, the effects of matrix topography and microstructure have not been clearly elucidated. Synthetic scaffolds mimicking the mesh-like structure of the basement membrane with an average fiber diameter of 0.5 μm and 5 μm were produced via electrospinning of poly(ε-caprolactone) (PCL) and were used to test the significance of fiber diameter on EMT. Cell-adhesive peptide motifs were conjugated to the fiber surface to facilitate cell attachment. Madin-Darby Canine Kidney (MDCK) cells grown on these substrates showed distinct phenotypes. On 0.5 μm substrates, cells grew as compact colonies with an epithelial phenotype. On 5 μm scaffolds, cells were more individually dispersed and appeared more fibroblastic. Upon addition of hepatocyte growth factor (HGF), an EMT inducer, cells grown on the 0.5 μm scaffold underwent pronounced scattering, as evidenced by the alteration of cell morphology, localization of focal adhesion complex, weakening of cell-cell adhesion, and upregulation of mesenchymal markers. By contrast, HGF did not induce a pronounced scattering of MDCK cells cultured on the 5.0 μm scaffold. Collectively, our results show that the alteration of the fiber diameter of proteins found in the basement membrane may create enough disturbances in epithelial organization and scattering that might have important implications in disease progression. PMID:27322677

  13. Population Heterogeneity in the Epithelial to Mesenchymal Transition Is Controlled by NFAT and Phosphorylated Sp1

    PubMed Central

    Chakrabarti, Anirikh; Varner, Jeffrey D.; Butcher, Jonathan

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is an essential differentiation program during tissue morphogenesis and remodeling. EMT is induced by soluble transforming growth factor β (TGF-β) family members, and restricted by vascular endothelial growth factor family members. While many downstream molecular regulators of EMT have been identified, these have been largely evaluated individually without considering potential crosstalk. In this study, we created an ensemble of dynamic mathematical models describing TGF-β induced EMT to better understand the operational hierarchy of this complex molecular program. We used ordinary differential equations (ODEs) to describe the transcriptional and post-translational regulatory events driving EMT. Model parameters were estimated from multiple data sets using multiobjective optimization, in combination with cross-validation. TGF-β exposure drove the model population toward a mesenchymal phenotype, while an epithelial phenotype was enhanced following vascular endothelial growth factor A (VEGF-A) exposure. Simulations predicted that the transcription factors phosphorylated SP1 and NFAT were master regulators promoting or inhibiting EMT, respectively. Surprisingly, simulations also predicted that a cellular population could exhibit phenotypic heterogeneity (characterized by a significant fraction of the population with both high epithelial and mesenchymal marker expression) if treated simultaneously with TGF-β and VEGF-A. We tested this prediction experimentally in both MCF10A and DLD1 cells and found that upwards of 45% of the cellular population acquired this hybrid state in the presence of both TGF-β and VEGF-A. We experimentally validated the predicted NFAT/Sp1 signaling axis for each phenotype response. Lastly, we found that cells in the hybrid state had significantly different functional behavior when compared to VEGF-A or TGF-β treatment alone. Together, these results establish a predictive mechanistic model of EMT

  14. EZH2 inhibition promotes epithelial-to-mesenchymal transition in ovarian cancer cells.

    PubMed

    Cardenas, Horacio; Zhao, Janice; Vieth, Edyta; Nephew, Kenneth P; Matei, Daniela

    2016-12-20

    Cancer cells acquire essential characteristics for metastatic dissemination through the process of epithelial-to-mesenchymal transition (EMT), which is regulated by gene expression and chromatin remodeling changes. The enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the polycomb repressive complex 2 (PRC2), catalyzes trimethylation of lysine 27 of histone H3 (H3K27me3) to repress gene transcription. Here we report the functional roles of EZH2-catalyzed H3K27me3 during EMT in ovarian cancer (OC) cells. TGF-β-induced EMT in SKOV3 OC cells was associated with decreased levels of EZH2 and H3K27me3 (P<0.05). These effects were delayed (~72 h relative to EMT initiation) and coincided with increased (>15-fold) expression of EMT-associated transcription factors ZEB2 and SNAI2. EZH2 knockdown (using siRNA) or enzymatic inhibition (by GSK126) induced EMT-like changes in OC cells. The EMT regulator ZEB2 was upregulated in cells treated with either approach. Furthermore, TGF-β enhanced expression of ZEB2 in EZH2 siRNA- or GSK126-treated cells (P<0.01), suggesting that H3K27me3 plays a role in TGF-β-stimulated ZEB2 induction. Chromatin immunoprecipitation assays confirmed that TGF-β treatment decreased binding of EZH2 and H3K27me3 to the ZEB2 promoter (P<0.05). In all, these results demonstrate that EZH2, by repressing ZEB2, is required for the maintenance of an epithelial phenotype in OC cells.

  15. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development

    PubMed Central

    Mandalos, Nikolaos; Rhinn, Muriel; Granchi, Zoraide; Karampelas, Ioannis; Mitsiadis, Thimios; Economides, Aris N.; Dollé, Pascal; Remboutsika, Eumorphia

    2014-01-01

    Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC) pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A “Conditional by Inversion” Sox2 allele (Sox2COIN) has been employed to generate an epiblast ablation of Sox2 function (Sox2EpINV). Sox2EpINV/+(H) haploinsufficient and conditional (Sox2EpINV/mosaic) mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions (EMT) that are important for the cell flow in the developing head. PMID:25309446

  16. Triclosan Potentiates Epithelial-To-Mesenchymal Transition in Anoikis-Resistant Human Lung Cancer Cells

    PubMed Central

    Winitthana, Thidarat; Lawanprasert, Somsong; Chanvorachote, Pithi

    2014-01-01

    Alteration of cancer cell toward mesenchymal phenotype has been shown to potentiate tumor aggressiveness by increasing cancer cell metastasis. Herein, we report the effect of triclosan, a widely used antibacterial agent found in many daily products, in enhancing the epithelial-to-mesenchymal transition (EMT) in aggressive anoikis resistant human H460 lung cancer cells. EMT has been long known to increase abilities of the cells to increase migration, invasion, and survival in circulating system. The present study reveals that treatment of the cancer cells with triclosan at the physiologically related concentrations significantly increased the colony number of the cancer cells assessed by tumor formation assay. Also, the mesenchymal-like morphology and decrease in cell-to-cell adhesion were observed in triclosan-treated cells. Importantly, western blot analysis revealed that triclosan-treated cells exhibited decreased E-cadherin, while the levels of EMT markers, namely N-cadherin, vimentin, snail and slug were found to be significantly up-regulated. Furthermore, EMT induced by triclosan treatment was accompanied by the activation of focal adhesion kinase/ATP dependent tyrosine kinase (FAK/Akt) and Ras-related C3 botulinum toxin substrate 1 (Rac1), which enhanced the ability of the cells to migrate and invade. In conclusion, we demonstrated for the first time that triclosan may potentiate cancer cells survival in detached condition and motility via the process of EMT. As mentioned capabilities are required for success in metastasis, the present study provides the novel toxicological information and encourages the awareness of triclosan use in cancer patients. PMID:25329306

  17. Meta-Analysis of Gene Expression Signatures Defining the Epithelial to Mesenchymal Transition during Cancer Progression

    PubMed Central

    Gröger, Christian J.; Grubinger, Markus; Waldhör, Thomas; Vierlinger, Klemens; Mikulits, Wolfgang

    2012-01-01

    The epithelial to mesenchymal transition (EMT) represents a crucial event during cancer progression and dissemination. EMT is the conversion of carcinoma cells from an epithelial to a mesenchymal phenotype that associates with a higher cell motility as well as enhanced chemoresistance and cancer stemness. Notably, EMT has been increasingly recognized as an early event of metastasis. Numerous gene expression studies (GES) have been conducted to obtain transcriptome signatures and marker genes to understand the regulatory mechanisms underlying EMT. Yet, no meta-analysis considering the multitude of GES of EMT has been performed to comprehensively elaborate the core genes in this process. Here we report the meta-analysis of 18 independent and published GES of EMT which focused on different cell types and treatment modalities. Computational analysis revealed clustering of GES according to the type of treatment rather than to cell type. GES of EMT induced via transforming growth factor-β and tumor necrosis factor-α treatment yielded uniformly defined clusters while GES of models with alternative EMT induction clustered in a more complex fashion. In addition, we identified those up- and downregulated genes which were shared between the multitude of GES. This core gene list includes well known EMT markers as well as novel genes so far not described in this process. Furthermore, several genes of the EMT-core gene list significantly correlated with impaired pathological complete response in breast cancer patients. In conclusion, this meta-analysis provides a comprehensive survey of available EMT expression signatures and shows fundamental insights into the mechanisms that are governing carcinoma progression. PMID:23251436

  18. Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition

    PubMed Central

    Place, Trenton L.; Nauseef, Jones T.; Peterson, Maina K.; Henry, Michael D.; Mezhir, James J.; Domann, Frederick E.

    2013-01-01

    Prolyl-4-hydroxylation by the intracellular prolyl-4-hydroxylase enzymes (PHD1-3) serves as a master regulator of environmental oxygen sensing. The activity of these enzymes is tightly tied to tumorigenesis, as they regulate cell metabolism and angiogenesis through their control of hypoxia-inducible factor (HIF) stability. PHD3 specifically, is gaining attention for its broad function and rapidly accumulating array of non-HIF target proteins. Data from several recent studies suggest a role for PHD3 in the regulation of cell morphology and cell migration. In this study, we aimed to investigate this role by closely examining the relationship between PHD3 expression and epithelial-to-mesenchymal transition (EMT); a transcriptional program that plays a major role in controlling cell morphology and migratory capacity. Using human pancreatic ductal adenocarcinoma (PDA) cell lines and Madin-Darby Canine Kidney (MDCK) cells, we examined the correlation between several markers of EMT and PHD3 expression. We demonstrated that loss of PHD3 expression in PDA cell lines is highly correlated with a mesenchymal-like morphology and an increase in cell migratory capacity. We also found that induction of EMT in MDCK cells resulted in the specific downregulation of PHD3, whereas the expression of the other HIF-PHD enzymes was not affected. The results of this study clearly support a model by which the basal expression and hypoxic induction of PHD3 is suppressed by the EMT transcriptional program. This may be a novel mechanism by which migratory or metastasizing cells alter signaling through specific pathways that are sensitive to regulation by O2. The identification of downstream pathways that are affected by the suppression of PHD3 expression during EMT may provide important insight into the crosstalk between O2 and the migratory and metastatic potential of tumor cells. PMID:24367580

  19. Triclosan potentiates epithelial-to-mesenchymal transition in anoikis-resistant human lung cancer cells.

    PubMed

    Winitthana, Thidarat; Lawanprasert, Somsong; Chanvorachote, Pithi

    2014-01-01

    Alteration of cancer cell toward mesenchymal phenotype has been shown to potentiate tumor aggressiveness by increasing cancer cell metastasis. Herein, we report the effect of triclosan, a widely used antibacterial agent found in many daily products, in enhancing the epithelial-to-mesenchymal transition (EMT) in aggressive anoikis resistant human H460 lung cancer cells. EMT has been long known to increase abilities of the cells to increase migration, invasion, and survival in circulating system. The present study reveals that treatment of the cancer cells with triclosan at the physiologically related concentrations significantly increased the colony number of the cancer cells assessed by tumor formation assay. Also, the mesenchymal-like morphology and decrease in cell-to-cell adhesion were observed in triclosan-treated cells. Importantly, western blot analysis revealed that triclosan-treated cells exhibited decreased E-cadherin, while the levels of EMT markers, namely N-cadherin, vimentin, snail and slug were found to be significantly up-regulated. Furthermore, EMT induced by triclosan treatment was accompanied by the activation of focal adhesion kinase/ATP dependent tyrosine kinase (FAK/Akt) and Ras-related C3 botulinum toxin substrate 1 (Rac1), which enhanced the ability of the cells to migrate and invade. In conclusion, we demonstrated for the first time that triclosan may potentiate cancer cells survival in detached condition and motility via the process of EMT. As mentioned capabilities are required for success in metastasis, the present study provides the novel toxicological information and encourages the awareness of triclosan use in cancer patients.

  20. Altered Death Receptor Signaling Promotes Epithelial-to-Mesenchymal Transition and Acquired Chemoresistance

    PubMed Central

    Antoon, James W.; Lai, Rongye; Struckhoff, Amanda P.; Nitschke, Ashley M.; Elliott, Steven; Martin, Elizabeth C.; Rhodes, Lyndsay V.; Yoon, Nam Seung; Salvo, Virgilio A.; Shan, Bin; Beckman, Barbara S.; Nephew, Kenneth P.; Burow, Matthew E.

    2012-01-01

    Altered death receptor signaling and resistance to subsequent apoptosis is an important clinical resistance mechanism. Here, we investigated the role of death receptor resistance in breast cancer progression. Resistance of the estrogen receptor alpha (ER)-positive, chemosensitive MCF7 breast cancer cell line to tumor necrosis factor (TNF) was associated with loss of ER expression and a multi-drug resistant phenotype. Changes in three major pathways were involved in this transition to a multidrug resistance phenotype: ER, Death Receptor and epithelial to mesenchymal transition (EMT). Resistant cells exhibited altered ER signaling, resulting in decreased ER target gene expression. The death receptor pathway was significantly altered, blocking extrinsic apoptosis and increasing NF-kappaB survival signaling. TNF resistance promoted EMT changes, resulting in a more aggressive phenotype. This first report identifying specific mechanisms underlying acquired resistance to TNF could lead to a better understanding of the progression of breast cancer in response to chemotherapy treatment. PMID:22844580

  1. Pathogenesis of Type 2 Epithelial to Mesenchymal Transition (EMT) in Renal and Hepatic Fibrosis

    PubMed Central

    Tennakoon, Anusha H.; Izawa, Takeshi; Kuwamura, Mitsuru; Yamate, Jyoji

    2015-01-01

    Epithelial to mesenchymal transition (EMT), particularly, type 2 EMT, is important in progressive renal and hepatic fibrosis. In this process, incompletely regenerated renal epithelia lose their epithelial characteristics and gain migratory mesenchymal qualities as myofibroblasts. In hepatic fibrosis (importantly, cirrhosis), the process also occurs in injured hepatocytes and hepatic progenitor cells (HPCs), as well as ductular reaction-related bile epithelia. Interestingly, the ductular reaction contributes partly to hepatocarcinogenesis of HPCs, and further, regenerating cholangiocytes after injury may be derived from hepatic stellate cells via mesenchymal to epithelia transition, a reverse phenomenon of type 2 EMT. Possible pathogenesis of type 2 EMT and its differences between renal and hepatic fibrosis are reviewed based on our experimental data. PMID:26729181

  2. Epithelial-to-mesenchymal transition (EMT) confers primary resistance to trastuzumab (Herceptin).

    PubMed

    Oliveras-Ferraros, Cristina; Corominas-Faja, Bruna; Cufí, Sílvia; Vazquez-Martin, Alejandro; Martin-Castillo, Begoña; Iglesias, Juan Manuel; López-Bonet, Eugeni; Martin, Ángel G; Menendez, Javier A

    2012-11-01

    The rate of inherent resistance to single-agent trastuzumab in HER2-overexpressing metastatic breast carcinomas is impressive at above 70%. Unfortunately, little is known regarding the distinctive genetic signatures that could predict trastuzumab refractoriness ab initio. The epithelial-to-mesenchymal transition (EMT) molecular features, HER2 expression status and primary responses to trastuzumab were explored in the public Lawrence Berkeley Laboratory (LBL) Breast Cancer Collection. Lentivirus-delivered small hairpin RNAs were employed to reduce specifically and stably the expression of EMT transcription factors in trastuzumab-refractory basal/HER2+ cells. Cell proliferation assays and pre-clinical nude mice xenograft-based studies were performed to assess the contribution of specific EMT transcription factors to inherent trastuzumab resistance. Primary sensitivity to trastuzumab was restricted to the SLUG/SNAIL2-negative subset of luminal/HER2+ cell lines, whereas all of the SLUG/SNAIL2-positive basal/HER2+ cell lines exhibited an inherent resistance to trastuzumab. The specific knockdown of SLUG/SNAIL2 suppressed the stem-related CD44+CD24(-/low) mesenchymal immunophenotype by transcriptionally upregulating the luminal epithelial marker CD24 in basal/HER2+ cells. Basal/HER2+ cells gained sensitivity to the growth-inhibitory effects of trastuzumab following SLUG/SNAIL2 gene depletion, which induced the expression of the mesenchymal-to-epithelial transition (MET) genes involved in promoting an epithelial phenotype. The isolation of CD44+CD24(-/low) mesenchymal cells by magnetic-activated cell sorting (MACS) confirmed their intrinsic unresponsiveness to trastuzumab. A reduction in tumor growth and dramatic gain in sensitivity to trastuzumab in vivo were confirmed when the SLUG/SNAIL2 knockdown basal/HER2+ cells were injected into nude mice. HER2 overexpression in a basal, rather than in a luminal molecular background, results in a basal/HER2+ breast cancer subtype

  3. TGFβ Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis

    PubMed Central

    2015-01-01

    Retaining the delicate balance in cell signaling activity is a prerequisite for the maintenance of physiological tissue homeostasis. Transforming growth factor-beta (TGFβ) signaling is an essential pathway that plays crucial roles during embryonic development as well as in adult tissues. Aberrant TGFβ signaling activity regulates tumor progression in a cancer cell-autonomous or non-cell-autonomous fashion and these effects may be tumor suppressing or tumor promoting depending on the cellular context. The fundamental role of this pathway in promoting cancer progression in multiple stages of the metastatic process, including epithelial-to-mesenchymal transition (EMT), is also becoming increasingly clear. In this review, we discuss the latest advances in the effort to unravel the inherent complexity of TGFβ signaling and its role in cancer progression and metastasis. These findings provide important insights into designing personalized therapeutic strategies against advanced cancers. PMID:25883652

  4. On the Origin of Prostate Cancer Stem Cells through Transmissible ER Stress-Mediated Epithelial to Mesenchymal Transition

    DTIC Science & Technology

    2013-10-01

    that transmissible ER stress (TERS) promotes the Epithelial to Mesenchymal Transition ( EMT ) in differentiated prostate cancer cells, programming...tumorigenesis. Through the work performed during the last year, we have been able to demonstrate a link between prostate tumor ER stress, EMT , and enhanced...Mesenchymal Transition ( EMT ) in differentiated prostate cancer cells, programming cancer towards a different phenotype and greater invasive

  5. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells.

    PubMed

    Wang, Feng; Li, Hai; Yan, Xiao-Gang; Zhou, Zhi-Wei; Yi, Zhi-Gang; He, Zhi-Xu; Pan, Shu-Ting; Yang, Yin-Xue; Wang, Zuo-Zheng; Zhang, Xueji; Yang, Tianxing; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5'-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and

  6. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    PubMed Central

    Wang, Feng; Li, Hai; Yan, Xiao-Gang; Zhou, Zhi-Wei; Yi, Zhi-Gang; He, Zhi-Xu; Pan, Shu-Ting; Yang, Yin-Xue; Wang, Zuo-Zheng; Zhang, Xueji; Yang, Tianxing; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5′-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and

  7. OVOL2 Maintains the Transcriptional Program of Human Corneal Epithelium by Suppressing Epithelial-to-Mesenchymal Transition.

    PubMed

    Kitazawa, Koji; Hikichi, Takafusa; Nakamura, Takahiro; Mitsunaga, Kanae; Tanaka, Azusa; Nakamura, Masahiro; Yamakawa, Tatsuya; Furukawa, Shiori; Takasaka, Mieko; Goshima, Naoki; Watanabe, Akira; Okita, Keisuke; Kawasaki, Satoshi; Ueno, Morio; Kinoshita, Shigeru; Masui, Shinji

    2016-05-10

    In development, embryonic ectoderm differentiates into neuroectoderm and surface ectoderm using poorly understood mechanisms. Here, we show that the transcription factor OVOL2 maintains the transcriptional program of human corneal epithelium cells (CECs), a derivative of the surface ectoderm, and that OVOL2 may regulate the differential transcriptional programs of the two lineages. A functional screen identified OVOL2 as a repressor of mesenchymal genes to maintain CECs. Transduction of OVOL2 with several other transcription factors induced the transcriptional program of CECs in fibroblasts. Moreover, neuroectoderm derivatives were found to express mesenchymal genes, and OVOL2 alone could induce the transcriptional program of CECs in neural progenitors by repressing these genes while activating epithelial genes. Our data suggest that the difference between the transcriptional programs of some neuroectoderm- and surface ectoderm-derivative cells may be regulated in part by a reciprocally repressive mechanism between epithelial and mesenchymal genes, as seen in epithelial-to-mesenchymal transition.

  8. Cadherin-11 Regulation of Fibrosis through Modulation of Epithelial-to-Mesenchymal Transition: Implications for Pulmonary Fibrosis in Scleroderma

    DTIC Science & Technology

    2016-05-01

    Role of cadherin-11 in lung fibrosis”. Baylor College of Medicine Biology of Inflammation Center Research Seminar. October 2015. Publications 1...of lung fibrosis and epithelial to mesenchymal transition. Likely to be submitted to Journal of Cell Biology . 2. Welschhans L, Mayes M, Assassi S

  9. IGF-IR signaling in epithelial to mesenchymal transition and targeting IGF-IR therapy: overview and new insights.

    PubMed

    Li, Heming; Batth, Izhar Singh; Qu, Xiujuan; Xu, Ling; Song, Na; Wang, Ruoyu; Liu, Yunpeng

    2017-01-30

    The insulin-like growth factor-I (IGF-I) signaling induces epithelial to mesenchymal transition (EMT) program and contributes to metastasis and drug resistance in several subtypes of tumors. In preclinical studies, targeting of the insulin-like growth factor-I receptor (IGF-IR) showed promising anti-tumor effects. Unfortunately, high expectations for anti-IGF-IR therapy encountered challenge and disappointment in numerous clinical trials. This review summarizes the regulation of EMT by IGF-I/IGF-IR signaling pathway and drug resistance mechanisms of targeting IGF-IR therapy. Most importantly, we address several factors in the regulation of IGF-I/IGF-IR-associated EMT progression that may be potential predictive biomarkers in targeted therapy.

  10. A comparison of epithelial-to-mesenchymal transition and re-epithelialization.

    PubMed

    Leopold, Philip L; Vincent, Jan; Wang, Hongjun

    2012-10-01

    Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.

  11. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos

    PubMed Central

    Katow, Hideki

    2015-01-01

    Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069

  12. La enhances IRES-mediated translation of laminin B1 during malignant epithelial to mesenchymal transition.

    PubMed

    Petz, Michaela; Them, Nicole; Huber, Heidemarie; Beug, Hartmut; Mikulits, Wolfgang

    2012-01-01

    The majority of transcripts that harbor an internal ribosome entry site (IRES) are involved in cancer development via corresponding proteins. A crucial event in tumor progression referred to as epithelial to mesenchymal transition (EMT) allows carcinoma cells to acquire invasive properties. The translational activation of the extracellular matrix component laminin B1 (LamB1) during EMT has been recently reported suggesting an IRES-mediated mechanism. In this study, the IRES activity of LamB1 was determined by independent bicistronic reporter assays. Strong evidences exclude an impact of cryptic promoter or splice sites on IRES-driven translation of LamB1. Furthermore, no other LamB1 mRNA species arising from alternative transcription start sites or polyadenylation signals were detected that account for its translational control. Mapping of the LamB1 5'-untranslated region (UTR) revealed the minimal LamB1 IRES motif between -293 and -1 upstream of the start codon. Notably, RNA affinity purification showed that the La protein interacts with the LamB1 IRES. This interaction and its regulation during EMT were confirmed by ribonucleoprotein immunoprecipitation. In addition, La was able to positively modulate LamB1 IRES translation. In summary, these data indicate that the LamB1 IRES is activated by binding to La which leads to translational upregulation during hepatocellular EMT.

  13. Glycosylation in Cancer: Interplay between Multidrug Resistance and Epithelial-to-Mesenchymal Transition?

    PubMed Central

    da Fonseca, Leonardo Marques; da Silva, Vanessa Amil; Freire-de-Lima, Leonardo; Previato, José Osvaldo; Mendonça-Previato, Lucia; Capella, Márcia Alves Marques

    2016-01-01

    The expression of unusual glycan structures is a hallmark of cancer progression, and their functional roles in cancer biology have been extensively investigated in epithelial-to-mesenchymal transition (EMT) models. EMT is a physiological process involved in embryonic development and wound healing. It is characterized by loss of epithelial cell polarity and cell adhesion, permitting cell migration, and thus formation of new epithelia. However, this process is unwanted when occurring outside their physiological limit, resulting in fibrosis of organs and progression of cancer and metastasis. Several studies observed that EMT is related to the acquisition of multidrug resistance (MDR) phenotype, a condition in which cancer cells acquire resistance to multiple different drugs, which has virtually nothing in common. However, although some studies suggested interplay between these two apparently distinct phenomena, almost nothing is known about this possible relationship. A common pathway to them is the need for glycosylation, a post-translational modification that can alter biological function. Thus, this review intends to compile the main facts obtained until now in these two areas, as an effort to unravel the relationship between EMT and MDR. PMID:27446804

  14. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors

    PubMed Central

    Morandi, Andrea; Taddei, Maria Letizia; Chiarugi, Paola; Giannoni, Elisa

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention. PMID:28352611

  15. Intratumoral heterogeneity: Clonal cooperation in epithelial-to-mesenchymal transition and metastasis

    PubMed Central

    Neelakantan, Deepika; Drasin, David J; Ford, Heide L

    2015-01-01

    Although phenotypic intratumoral heterogeneity was first described many decades ago, the advent of next-generation sequencing has provided conclusive evidence that in addition to phenotypic diversity, significant genotypic diversity exists within tumors. Tumor heterogeneity likely arises both from clonal expansions, as well as from differentiation hierarchies existent in the tumor, such as that established by cancer stem cells (CSCs) and non-CSCs. These differentiation hierarchies may arise due to genetic mutations, epigenetic alterations, or microenvironmental influences. An additional differentiation hierarchy within epithelial tumors may arise when only a few tumor cells trans-differentiate into mesenchymal-like cells, a process known as epithelial-to-mesenchymal transition (EMT). Again, this process can be influenced by both genetic and non-genetic factors. In this review we discuss the evidence for clonal interaction and cooperation for tumor maintenance and progression, particularly with respect to EMT, and further address the far-reaching effects that tumor heterogeneity may have on cancer therapy. PMID:25482627

  16. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance.

    PubMed

    Fischer, Kari R; Durrans, Anna; Lee, Sharrell; Sheng, Jianting; Li, Fuhai; Wong, Stephen T C; Choi, Hyejin; El Rayes, Tina; Ryu, Seongho; Troeger, Juliane; Schwabe, Robert F; Vahdat, Linda T; Altorki, Nasser K; Mittal, Vivek; Gao, Dingcheng

    2015-11-26

    The role of epithelial-to-mesenchymal transition (EMT) in metastasis is a longstanding source of debate, largely owing to an inability to monitor transient and reversible EMT phenotypes in vivo. Here we establish an EMT lineage-tracing system to monitor this process in mice, using a mesenchymal-specific Cre-mediated fluorescent marker switch system in spontaneous breast-to-lung metastasis models. We show that within a predominantly epithelial primary tumour, a small proportion of tumour cells undergo EMT. Notably, lung metastases mainly consist of non-EMT tumour cells that maintain their epithelial phenotype. Inhibiting EMT by overexpressing the microRNA miR-200 does not affect lung metastasis development. However, EMT cells significantly contribute to recurrent lung metastasis formation after chemotherapy. These cells survived cyclophosphamide treatment owing to reduced proliferation, apoptotic tolerance and increased expression of chemoresistance-related genes. Overexpression of miR-200 abrogated this resistance. This study suggests the potential of an EMT-targeting strategy, in conjunction with conventional chemotherapies, for breast cancer treatment.

  17. Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition.

    PubMed

    Millanes-Romero, Alba; Herranz, Nicolás; Perrera, Valentina; Iturbide, Ane; Loubat-Casanovas, Jordina; Gil, Jesús; Jenuwein, Thomas; García de Herreros, Antonio; Peiró, Sandra

    2013-12-12

    Although heterochromatin is enriched with repressive traits, it is also actively transcribed, giving rise to large amounts of noncoding RNAs. Although these RNAs are responsible for the formation and maintenance of heterochromatin, little is known about how their transcription is regulated. Here, we show that the Snail1 transcription factor represses mouse pericentromeric transcription, acting through the H3K4 deaminase LOXL2. Since Snail1 plays a key role in the epithelial-to-mesenchymal transition (EMT), we analyzed the regulation of heterochromatin transcription in this process. At the onset of EMT, one of the major structural heterochromatin proteins, HP1α, is transiently released from heterochromatin foci in a Snail1/LOXL2-dependent manner, concomitantly with a downregulation of major satellite transcription. Moreover, preventing the downregulation of major satellite transcripts compromised the migratory and invasive behavior of mesenchymal cells. We propose that Snail1 regulates heterochromatin transcription through LOXL2, thus creating the favorable transcriptional state necessary for completing EMT.

  18. Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation

    PubMed Central

    Tanaka, Nobuyuki; Miyazaki, Yasumasa; Mikami, Shuji; Niwa, Naoya; Otsuka, Yutaro; Mizuno, Ryuichi; Kikuchi, Eiji; Miyajima, Akira; Sabe, Hisataka; Okada, Yasunori; Suematsu, Makoto; Oya, Mototsugu

    2016-01-01

    To identify the molecules involved in epithelial to mesenchymal transition (EMT) in urothelial carcinoma (UC) after acquisition of platinum resistance, here we examined the changes in global gene expression before and after platinum treatment. Four invasive UC cell lines, T24, 5637, and their corresponding sublines T24PR and 5637PR with acquired platinum resistance, were assessed by microarray, and the ubiquitin E3 ligase FBXO32 was newly identified as a negative regulator of EMT in UC tumors after acquisition of platinum resistance. In vitro and in vivo studies showed an intimate relationship between FBXO32 expression and EMT, demonstrating that FBXO32 dysregulation in T24PR cells results in elevated expression of the mesenchymal molecules SNAIL and vimentin and decreased expression of the epithelial molecule E-cadherin. The association between FBXO32 expression and EMT was further validated using clinical samples. Knockdown of MyoD expression, a specific target of FBXO32 polyubiquitination, revealed upregulation of E-cadherin expression and downregulation of SNAIL and vimentin expression in T24PR cells. Comparative genomic hybridization array analysis demonstrated loss of heterozygosity at 8q24.13 in T24PR cells, which harbors FBXO32. Our findings suggest the importance of the association between EMT and ubiquitin-proteasome regulation when tumors develop acquired platinum resistance. PMID:27812537

  19. Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation.

    PubMed

    Tanaka, Nobuyuki; Kosaka, Takeo; Miyazaki, Yasumasa; Mikami, Shuji; Niwa, Naoya; Otsuka, Yutaro; Minamishima, Yoji Andrew; Mizuno, Ryuichi; Kikuchi, Eiji; Miyajima, Akira; Sabe, Hisataka; Okada, Yasunori; Uhlén, Per; Suematsu, Makoto; Oya, Mototsugu

    2016-11-03

    To identify the molecules involved in epithelial to mesenchymal transition (EMT) in urothelial carcinoma (UC) after acquisition of platinum resistance, here we examined the changes in global gene expression before and after platinum treatment. Four invasive UC cell lines, T24, 5637, and their corresponding sublines T24PR and 5637PR with acquired platinum resistance, were assessed by microarray, and the ubiquitin E3 ligase FBXO32 was newly identified as a negative regulator of EMT in UC tumors after acquisition of platinum resistance. In vitro and in vivo studies showed an intimate relationship between FBXO32 expression and EMT, demonstrating that FBXO32 dysregulation in T24PR cells results in elevated expression of the mesenchymal molecules SNAIL and vimentin and decreased expression of the epithelial molecule E-cadherin. The association between FBXO32 expression and EMT was further validated using clinical samples. Knockdown of MyoD expression, a specific target of FBXO32 polyubiquitination, revealed upregulation of E-cadherin expression and downregulation of SNAIL and vimentin expression in T24PR cells. Comparative genomic hybridization array analysis demonstrated loss of heterozygosity at 8q24.13 in T24PR cells, which harbors FBXO32. Our findings suggest the importance of the association between EMT and ubiquitin-proteasome regulation when tumors develop acquired platinum resistance.

  20. Melanoma Proteoglycan Modifies Gene Expression to Stimulate Tumor Cell Motility, Growth and Epithelial to Mesenchymal Transition

    PubMed Central

    Yang, Jianbo; Price, Matthew A.; Li, GuiYuan; Bar-Eli, Menashe; Salgia, Ravi; Jagedeeswaran, Ramasamy; Carlson, Jennifer H.; Ferrone, Soldano; Turley, Eva A.; McCarthy, James B.

    2009-01-01

    Melanoma chondroitin sulfate proteoglycan (MCSP) is a plasma membrane-associated proteoglycan that facilitates the growth, motility and invasion of tumor cells. MCSP expression in melanoma cells enhances integrin function and constitutive activation of Erk 1,2. The current studies were performed to determine the mechanism by which MCSP expression promotes tumor growth and motility. The results demonstrate that MCSP expression in radial growth phase (RGP), vertical growth phase (VGP) or metastatic cell lines causes sustained activation of Erk 1,2, enhanced growth and motility which all require the cytoplasmic domain of the MCSP core protein. MCSP expression in an RGP cell line also promotes an epithelial to mesenchymal transition (EMT) based on changes in cell morphology and the expression of several EMT markers. Finally MCSP enhances the expression of c-Met and HGF, and inhibiting c-Met expression or activation limits the increased growth and motility of multiple melanoma cell lines. The studies collectively demonstrate an importance for MCSP in promoting progression by an epigenetic mechanism and they indicate that MCSP could be targeted to delay or inhibit tumor progression in patients. PMID:19738072

  1. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas.

    PubMed

    McCart Reed, Amy E; Kutasovic, Jamie R; Vargas, Ana C; Jayanthan, Janani; Al-Murrani, Amel; Reid, Lynne E; Chambers, Rachael; Da Silva, Leonard; Melville, Lewis; Evans, Elizabeth; Porter, Alan; Papadimos, David; Thompson, Erik W; Lakhani, Sunil R; Simpson, Peter T

    2016-03-01

    Epithelial to mesenchymal transition (EMT) is a cellular phenotype switching phenomenon which occurs during normal development and is proposed to promote tumour cell invasive capabilities during tumour progression. Invasive lobular carcinoma (ILC) is a histological special type of breast cancer with a peculiar aetiology - the tumour cells display an invasive growth pattern, with detached, single cells or single files of cells, and a canonical feature is the loss of E-cadherin expression. These characteristics are indicative of an EMT or at the very least that they represent some plasticity between phenotypes. While some gene expression profiling data support this view, the tumour cells remain epithelial and limited immunohistochemistry data suggest that EMT markers may not feature prominently in ILC. We assessed the expression of a panel of EMT markers (fibronectin, vimentin, N-cadherin, smooth muscle actin, osteonectin, Snail, Twist) in 148 ILCs and performed a meta-analysis of publically available molecular data from 154 ILCs. Three out of 148 (2%) ILCs demonstrated an early and coordinated alteration of multiple EMT markers (down-regulation of E-cadherin, nuclear TWIST, and up-regulation of vimentin, osteonectin, and smooth muscle actin). However, the data overall do not support a role for EMT in defining the phenotypic peculiarities of the majority of ILCs. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Epithelial-to-Mesenchymal Transition in Diabetic Nephropathy: Fact or Fiction?

    PubMed

    Loeffler, Ivonne; Wolf, Gunter

    2015-10-09

    The pathophysiology of diabetic nephropathy (DN), one of the most serious complications in diabetic patients and the leading cause of end-stage renal disease worldwide, is complex and not fully elucidated. A typical hallmark of DN is the excessive deposition of extracellular matrix (ECM) proteins in the glomerulus and in the renal tubulointerstitium, eventually leading to glomerulosclerosis and interstitial fibrosis. Although it is obvious that myofibroblasts play a major role in the synthesis and secretion of ECM, the origin of myofibroblasts in DN remains the subject of controversial debates. A number of studies have focused on epithelial-to-mesenchymal transition (EMT) as one source of matrix-generating fibroblasts in the diseased kidney. EMT is characterized by the acquisition of mesenchymal properties by epithelial cells, preferentially proximal tubular cells and podocytes. In this review we comprehensively review the literature and discuss arguments both for and against a function of EMT in renal fibrosis in DN. While the precise extent of the contribution to nephrotic fibrosis is certainly arduous to quantify, the picture that emerges from this extensive body of literature suggests EMT as a major source of myofibroblasts in DN.

  3. Morphological and immunohistochemical identification of epithelial-to-mesenchymal transition in clinical prostate cancer

    PubMed Central

    Kolijn, Kimberley; Verhoef, Esther I.; van Leenders, Geert J.L.H.

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) is a process known to be associated with aggressive tumor behavior, metastasis and treatment resistance. It is characterized by coincidental upregulation of mesenchymal markers such as vimentin, fibronectin and N-cadherin concurrent with E-cadherin downregulation. Studies on EMT are generally performed in cell lines and mouse models, while the histopathological and phenotypical properties in clinical prostate cancer (PCa) are still unclear. The objective of this study was to identify EMT in PCa patients. We demonstrated that N-cadherin, vimentin and fibronectin were generally not co-expressed in corresponding tumor regions. Immunofluorescent double stainings confirmed that co-expression of mesenchymal markers was uncommon, as we found no prostate cancer cells that co-expressed N-cadherin with fibronectin and only rare (<1%) cells that co-expressed N-cadherin with vimentin. Downregulation of E-cadherin was demonstrated in all N-cadherin positive tumor cells, but not in vimentin or fibronectin positive tumor cells. We further analyzed N-cadherin expression in morphologically distinct PCa growth patterns in a radical prostatectomy cohort (n = 77) and found that N-cadherin is preferentially expressed in ill-defined Gleason grade 4 PCa. In conclusion, we demonstrate that N-cadherin is the most reliable marker for EMT in clinical PCa and is preferentially expressed in ill-defined Gleason grade 4 growth pattern. PMID:26041890

  4. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis

    PubMed Central

    Shriver, M; Stroka, KM; Vitolo, MI; Martin, S; Huso, DL; Konstantopoulos, K; Kontrogianni-Konstantopoulos, A

    2015-01-01

    Obscurins, encoded by the single OBSCN gene, are giant cytoskeletal proteins with structural and regulatory roles. The OBSCN gene is highly mutated in different types of cancers. Loss of giant obscurins from breast epithelial cells confers them with a survival and growth advantage, following exposure to DNA-damaging agents. Here we demonstrate that the expression levels and subcellular distribution of giant obscurins are altered in human breast cancer biopsies compared with matched normal samples. Stable clones of non-tumorigenic MCF10A cells lacking giant obscurins fail to form adhesion junctions, undergo epithelial-to-mesenchymal transition and generate >100-μm mammospheres bearing markers of cancer-initiating cells. Obscurin-knockdown MCF10A cells display markedly increased motility as a sheet in 2-dimensional (2D) substrata and individually in confined spaces and invasion in 3D matrices. In line with these observations, actin filaments redistribute to extending filopodia where they exhibit increased dynamics. MCF10A cells that stably express the K-Ras oncogene and obscurin short hairpin RNA (shRNA), but not scramble control shRNA, exhibit increased primary tumor formation and lung colonization after subcutaneous and tail vein injections, respectively. Collectively, our findings reveal that loss of giant obscurins from breast epithelium results in disruption of the cell–cell contacts and acquisition of a mesenchymal phenotype that leads to enhanced tumorigenesis, migration and invasiveness in vitro and in vivo. PMID:25381817

  5. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition

    PubMed Central

    Sciacovelli, Marco; Gonçalves, Emanuel; Isaac Johnson, Timothy; Roberto Zecchini, Vincent; da Costa, Ana Sofia Henriques; Gaude, Edoardo; Vercauteren Drubbel, Alizee; Julian Theobald, Sebastian; Abbo, Sandra; Tran, Maxine; Rajeeve, Vinothini; Cardaci, Simone; Foster, Sarah; Yun, Haiyang; Cutillas, Pedro; Warren, Anne; Gnanapragasam, Vincent; Gottlieb, Eyal; Franze, Kristian; Huntly, Brian; Richard Maher, Eamonn; Henry Maxwell, Patrick; Saez-Rodriguez, Julio; Frezza, Christian

    2016-01-01

    Mutations of the tricarboxylic acid cycle (TCA cycle) enzyme fumarate hydratase (FH) cause Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC)1. FH-deficient renal cancers are highly aggressive and metastasise even when small, leading to an abysmal clinical outcome2. Fumarate, a small molecule metabolite that accumulates in FH-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite3. Fumarate was shown to inhibit α-ketoglutarate (aKG)-dependent dioxygenases involved in DNA and histone demethylation4,5. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of FH and the subsequent accumulation of fumarate elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis6. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster6 miR-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of FH-proficient cells with cell-permeable fumarate. Loss of FH is associated with suppression of miR-200 and EMT signature in renal cancer patients, and is associated with poor clinical outcome. These results imply that loss of FH and fumarate accumulation contribute to the aggressive features of FH-deficient tumours. PMID:27580029

  6. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors.

    PubMed

    Morandi, Andrea; Taddei, Maria Letizia; Chiarugi, Paola; Giannoni, Elisa

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention.

  7. Epithelial-to-Mesenchymal Transition in Diabetic Nephropathy: Fact or Fiction?

    PubMed Central

    Loeffler, Ivonne; Wolf, Gunter

    2015-01-01

    The pathophysiology of diabetic nephropathy (DN), one of the most serious complications in diabetic patients and the leading cause of end-stage renal disease worldwide, is complex and not fully elucidated. A typical hallmark of DN is the excessive deposition of extracellular matrix (ECM) proteins in the glomerulus and in the renal tubulointerstitium, eventually leading to glomerulosclerosis and interstitial fibrosis. Although it is obvious that myofibroblasts play a major role in the synthesis and secretion of ECM, the origin of myofibroblasts in DN remains the subject of controversial debates. A number of studies have focused on epithelial-to-mesenchymal transition (EMT) as one source of matrix-generating fibroblasts in the diseased kidney. EMT is characterized by the acquisition of mesenchymal properties by epithelial cells, preferentially proximal tubular cells and podocytes. In this review we comprehensively review the literature and discuss arguments both for and against a function of EMT in renal fibrosis in DN. While the precise extent of the contribution to nephrotic fibrosis is certainly arduous to quantify, the picture that emerges from this extensive body of literature suggests EMT as a major source of myofibroblasts in DN. PMID:26473930

  8. Combinatorial Interventions Inhibit the Epithelial-to-Mesenchymal Transition and Support Hybrid Cellular Phenotypes

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Steinway, S. N.; Michel, P. J.; Feith, D. J.; Loughran, T. P., Jr.; Albert, Reka

    Epithelial-to-mesenchymal transition (EMT) is a developmental process hijacked by cancer cells to leave the primary tumor site and spread to other parts of the body. The molecular network regulating EMT involves the cooperation and cross-talk between multiple signaling pathways and key transcription factors, which we incorporated into systems-level logical network model for EMT. Using the EMT network model, we investigate potential EMT-suppressing interventions by identifying which individual and combinatorial perturbations suppress the induction of EMT by TGF β, an important signal driving EMT in liver cancer. We find that all non-trivial interventions are combinatorial and involve the inhibition of the SMAD complex together with other targets, several of which we experimentally tested and validated using liver cancer cell lines. We compare the combinatorial interventions with the results from a network control method we recently developed, which allowed us to determine the specific feedback regulatory motifs through which the interventions suppress EMT. Our results also reveal that blocking certain network components gives rise to steady states that are intermediate to the epithelial and mesenchymal states, supporting the existence of hybrid epithelial-mesenchymal states. Supported by NSF Grants PHY 1205840 and IIS 1161001, and NIH Grant F30DK093234.

  9. On the Origin of Prostate Cancer Stem Cells through Transmissible ER Stress-Mediated Epithelial to Mesenchymal Transition

    DTIC Science & Technology

    2013-04-01

    catenin, we have begun to pursue if Wnt signaling occurs during TERS driven EMT . Given that this signaling process has tumor implicated roles in...hypothesis that transmissible ER stress (TERS) promotes Epithelial to Mesenchymal Transition ( EMT ) in differentiated prostate cancer cells, programming...tumorigenesis. Through the work performed during the last year, we have been able to demonstrate a link between prostate tumor ER stress and EMT . The

  10. HMG20A is required for SNAI1-mediated epithelial to mesenchymal transition.

    PubMed

    Rivero, S; Ceballos-Chávez, M; Bhattacharya, S S; Reyes, J C

    2015-10-08

    HMG20A is a high mobility group (HMG) domain containing protein homologous to HMG20B, a core subunit of the Lys-specific demethylase 1/REST co-repressor 1 (LSD1-CoREST) histone demethylase complex. Here, we show that HMG20A can replace HMG20B and, therefore, they are mutually exclusive subunits of the complex. Both proteins interact through a coiled-coil domain with BHC80, another subunit of the LSD1-CoREST complex. To investigate the functional differences between the two proteins, we performed transcriptomic analysis of HMG20A- and HMG20B-depleted cells. Analysis of the misregulated genes in HMG20A-knockdown cells evidenced a high proportion of genes related to the epithelial-to-mesenchymal transition (EMT) process. EMT occurs during embryonic development or during the course of malignant cancer progression and consists in the dynamic and reversible transitions between epithelial and mesenchymal phenotypes. We show that HMG20A together with LSD1 are required for SNAI1-dependent repression of epithelial genes and for (transforming growth factor β) TGF-β-triggered EMT. Importantly, HMG20A-depleted cells displayed reduced binding of LSD1 to epithelial gene promoters and increased methylation of lysine 4 of histone H3, suggesting a role of HMG20A in recruiting or in stabilizing the complex at the chromatin. SNAI1 and the TGF-β-related transcription factor SMAD4 were found to be associated with the LSD1-CoREST complex containing HMG20A. Furthermore, we show that HMG20A-depleted cells displayed reduced motility and invasion activity. Finally, we show that expression of HMG20A correlates positively with mesenchymal markers and negatively with epithelial markers in human tumor samples. Taken together, our data demonstrate that HMG20A is essential for the mesenchymal phenotype.

  11. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives

    PubMed Central

    Díaz-López, Antonio; Moreno-Bueno, Gema; Cano, Amparo

    2014-01-01

    The microRNAs (miRNAs) are a class of small, 20–22 nucleotides in length, endogenously expressed noncoding RNAs that regulate multiple targets posttranscriptionally. Interestingly, miRNAs have emerged as regulators of most physiological and pathological processes, including metastatic tumor progression, in part by controlling a reversible process called epithelial-to-mesenchymal transition (EMT). The activation of EMT increases the migratory and invasive properties fundamental for tumor cell spread while activation of the reverse mesenchymal-to-epithelial transition is required for metastasis outgrowth. The EMT triggering leads to the activation of a core of transcription factors (EMT-TFs) – SNAIL1/SNAIL2, bHLH (E47, E2-2, and TWIST1/TWIST2), and ZEB1/ZEB2 – that act as E-cadherin repressors and, ultimately, coordinate EMT. Recent evidence indicates that several miRNAs regulate the expression of EMT-TFs or EMT-activating signaling pathways. Interestingly, some miRNAs and EMT-TFs form tightly interconnected negative feedback loops that control epithelial cell plasticity, providing self-reinforcing signals and robustness to maintain the epithelial or mesenchymal cell status. Among the most significant feedback loops, we focus on the ZEB/miR-200 and the SNAIL1/miR-34 networks that hold a clear impact in the regulation of the epithelial-mesenchymal state. Recent insights into the p53 modulation of the EMT-TF/miRNA loops and epigenetic regulatory mechanisms in the context of metastasis dissemination will also be discussed. Understanding the regulation of EMT by miRNAs opens new avenues for the diagnosis and prognosis of tumors and identifies potential therapeutic targets that might help to negatively impact on metastasis dissemination and increasing patient survival. PMID:24812525

  12. Inhibition of histamine receptor 3 suppresses glioblastoma tumor growth, invasion, and epithelial-to-mesenchymal transition

    PubMed Central

    Cai, Wen-Ke; Yang, Yong-Xiang; Sun, Chao; Zhang, Zhuo; Xu, Yu-Qiao; Chang, Ting; Li, Zhu-Yi

    2015-01-01

    Histamine receptor 3 (H3R) is expressed in various tumors and correlated with malignancy and tumor proliferation. However, the role of H3R in tumor invasion and epithelial to mesenchymal transition (EMT) remains unknown. Here, we explored the H3R in the highly invasive glioblastoma (GBM) and U87MG cells. We found that H3R mRNA and protein levels were up-regulated in the GBM and glioma cell lines compared to normal brain tissue and astrocytes. In U87MG cell line, inhibition of H3R by siRNA or the antagonist ciproxifan (CPX) suppressed proliferation, invasiveness, and the expression of EMT activators (Snail, Slug and Twist). In addition, expression of epithelial markers (E-cadherin and ZO-1) was up-regulated and expression of mesenchymal markers (vimentin and N-cadherin) was down-regulated in vitro and in vivo in a xenograft model. In addition, we also showed that inhibition of H3R by siRNA or CPX inactivated the PI3K/Akt and MEK/ERK signaling pathways, while inhibition of Akt or ERK activity with antagonists or siRNAs suppressed H3R agonist (R)-(α)-(−)- methylhistamine dihydrobromide (RAMH) mediated invasion and reorganization of cadherin-household. In conclusion, overexpression of H3R is associated with glioma progression. Inhibition of H3R leads to suppressed invasion and EMT of GBM by inactivating the PI3K/Akt and MEK/ERK pathways in gliomas. PMID:25940798

  13. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro.

    PubMed

    Piskareva, Olga; Harvey, Harry; Nolan, John; Conlon, Ross; Alcock, Leah; Buckley, Patrick; Dowling, Paul; Henry, Michael; O'Sullivan, Finbarr; Bray, Isabella; Stallings, Raymond L

    2015-08-10

    Neuroblastoma is a challenging childhood malignancy, with a very high percentage of patients relapsing following acquisition of drug resistance, thereby necessitating the identification of mechanisms of drug resistance as well as new biological targets contributing to the aggressive pathogenicity of the disease. In order to investigate the molecular pathways that are involved with drug resistance in neuroblastoma, we have developed and characterised cisplatin resistant sublines SK-N-ASCis24, KellyCis83 and CHP-212Cis100, integrating data of cell behaviour, cytotoxicity, genomic alterations and modulation of protein expression. All three cisplatin resistant cell lines demonstrated cross resistance to temozolomide, etoposide and irinotecan, all of which are drugs in re-initiation therapy. Array CGH analysis indicated that resistant lines have acquired additional genomic imbalances. Differentially expressed proteins were identified by mass spectrometry and classified by bioinformatics tools according to their molecular and cellular functions and their involvement into biological pathways. Significant changes in the expression of proteins involved with pathways such as actin cytoskeletal signalling (p = 9.28E-10), integrin linked kinase (ILK) signalling (p = 4.01E-8), epithelial adherens junctions signalling (p = 5.49E-8) and remodelling of epithelial adherens junctions (p = 5.87E-8) pointed towards a mesenchymal phenotype developed by cisplatin resistant SK-N-ASCis24. Western blotting and confocal microscopy of MYH9, ACTN4 and ROCK1 coupled with invasion assays provide evidence that elevated levels of MYH9 and ACTN4 and reduced levels of ROCK1 contribute to the increased ROCK1-independent migratory potential of SK-N-ASCis24. Therefore, our results suggest that epithelial-to-mesenchymal transition is a feature during the development of drug resistance in neuroblastoma.

  14. Interaction Between Ezrin and Cortactin in Promoting Epithelial to Mesenchymal Transition in Breast Cancer Cells.

    PubMed

    He, Jing; Ma, Ge; Qian, Jiayi; Zhu, Yichao; Liang, Mengdi; Yao, Na; Ding, Qiang; Chen, Lin; Liu, Xiaoan; Xia, Tiansong; Wang, Shui

    2017-04-01

    BACKGROUND Epithelial to mesenchymal transition (EMT) contributes to metastases in various types of tumors, and is also the key step in the breast cancer metastatic cascade. In our previous study, a mouse model containing human-derived normal breast tissue was established and allowed EMT/MET process of human breast cancer cells to be mimicked in a humanized mammary microenvironment. MATERIAL AND METHODS Two-dimensional electrophoresis (2-DE) and mass spectrometry were used to detect different proteins between parental MDA-MB-231 and its variant sub-line obtained from tumors grown in transplanted normal human breast tissue (MDA-MB-231br). We knocked down the ezrin in 2 cell lines (MDA-MB-231 and SUM1315). The migration and invasion ability was assessed. EMT markers were examined by real-time reverse transcription PCR analysis and Western blot analysis. The relationship of ezrin with cortactin was tested by tissue microarray and co-immunoprecipitation. RESULTS Proteomic analysis revealed 81 differentially expressed proteins between parental MDA-MB-231 and MDA-MB-231br. Among these proteins, the expression of ezrin and cortactin and the phosphorylation of ezrin were significantly correlated, accompanied with a group of classic EMT makers. Knockdown of ezrin reversed the expression of EMT markers and downregulated cortactin and EMT transcription factors. Ezrin silencing inhibited tumor cell migration and invasion. Breast cancer tissue microarray and immunohistochemistry showed a significant positive association between ezrin and cortactin. CONCLUSIONS These findings indicate that ezrin is correlated with cortactin in facilitating EMT in breast cancer. The interaction between ezrin and cortactin is a novel mechanism contributing to the EMT process in cancer metastases.

  15. Scrib is required for epithelial cell identity and prevents epithelial to mesenchymal transition in the mouse.

    PubMed

    Yamben, Idella F; Rachel, Rivka A; Shatadal, Shalini; Copeland, Neal G; Jenkins, Nancy A; Warming, Soren; Griep, Anne E

    2013-12-01

    The integrity and function of epithelial tissues depend on the establishment and maintenance of defining characteristics of epithelial cells, cell-cell adhesion and cell polarity. Disruption of these characteristics can lead to the loss of epithelial identity through a process called epithelial to mesenchymal transition (EMT), which can contribute to pathological conditions such as tissue fibrosis and invasive cancer. In invertebrates, the epithelial polarity gene scrib plays a critical role in establishing and maintaining cell adhesion and polarity. In this study we asked if the mouse homolog, Scrib, is required for establishment and/or maintenance of epithelial identity in vivo. To do so, we conditionally deleted Scrib in the head ectoderm tissue that gives rise to both the ocular lens and the corneal epithelium. Deletion of Scrib in the lens resulted in a change in epithelial cell shape from cuboidal to flattened and elongated. Early in the process, the cell adhesion protein, E-cadherin, and apical polarity protein, ZO-1, were downregulated and the myofibroblast protein, αSMA, was upregulated, suggesting EMT was occurring in the Scrib deficient lenses. Correlating temporally with the upregulation of αSMA, Smad3 and Smad4, TGFβ signaling intermediates, accumulated in the nucleus and Snail, a TGFβ target and transcriptional repressor of the gene encoding E-cadherin, was upregulated. Pax6, a lens epithelial transcription factor required to maintain lens epithelial cell identity also was downregulated. Loss of Scrib in the corneal epithelium also led to molecular changes consistent with EMT, suggesting that the effect of Scrib deficiency was not unique to the lens. Together, these data indicate that mammalian Scrib is required to maintain epithelial identity and that loss of Scrib can culminate in EMT, mediated, at least in part, through TGFβ signaling.

  16. Interaction Between Ezrin and Cortactin in Promoting Epithelial to Mesenchymal Transition in Breast Cancer Cells

    PubMed Central

    He, Jing; Ma, Ge; Qian, Jiayi; Zhu, Yichao; Liang, Mengdi; Yao, Na; Ding, Qiang; Chen, Lin; Liu, Xiaoan; Xia, Tiansong; Wang, Shui

    2017-01-01

    Background Epithelial to mesenchymal transition (EMT) contributes to metastases in various types of tumors, and is also the key step in the breast cancer metastatic cascade. In our previous study, a mouse model containing human-derived normal breast tissue was established and allowed EMT/MET process of human breast cancer cells to be mimicked in a humanized mammary microenvironment. Material/Methods Two-dimensional electrophoresis (2-DE) and mass spectrometry were used to detect different proteins between parental MDA-MB-231 and its variant sub-line obtained from tumors grown in transplanted normal human breast tissue (MDA-MB-231br). We knocked down the ezrin in 2 cell lines (MDA-MB-231 and SUM1315). The migration and invasion ability was assessed. EMT markers were examined by real-time reverse transcription PCR analysis and Western blot analysis. The relationship of ezrin with cortactin was tested by tissue microarray and co-immunoprecipitation. Results Proteomic analysis revealed 81 differentially expressed proteins between parental MDA-MB-231 and MDA-MB-231br. Among these proteins, the expression of ezrin and cortactin and the phosphorylation of ezrin were significantly correlated, accompanied with a group of classic EMT makers. Knockdown of ezrin reversed the expression of EMT markers and downregulated cortactin and EMT transcription factors. Ezrin silencing inhibited tumor cell migration and invasion. Breast cancer tissue microarray and immunohistochemistry showed a significant positive association between ezrin and cortactin. Conclusions These findings indicate that ezrin is correlated with cortactin in facilitating EMT in breast cancer. The interaction between ezrin and cortactin is a novel mechanism contributing to the EMT process in cancer metastases. PMID:28364518

  17. Surprisal analysis characterizes the free energy time course of cancer cells undergoing epithelial-to-mesenchymal transition

    PubMed Central

    Zadran, Sohila; Arumugam, Rameshkumar; Herschman, Harvey; Phelps, Michael E.; Levine, R. D.

    2014-01-01

    The epithelial-to-mesenchymal transition (EMT) initiates the invasive and metastatic behavior of many epithelial cancers. Mechanisms underlying EMT are not fully known. Surprisal analysis of mRNA time course data from lung and pancreatic cancer cells stimulated to undergo TGF-β1–induced EMT identifies two phenotypes. Examination of the time course for these phenotypes reveals that EMT reprogramming is a multistep process characterized by initiation, maturation, and stabilization stages that correlate with changes in cell metabolism. Surprisal analysis characterizes the free energy time course of the expression levels throughout the transition in terms of two state variables. The landscape of the free energy changes during the EMT for the lung cancer cells shows a stable intermediate state. Existing data suggest this is the previously proposed maturation stage. Using a single-cell ATP assay, we demonstrate that the TGF-β1–induced EMT for lung cancer cells, particularly during the maturation stage, coincides with a metabolic shift resulting in increased cytosolic ATP levels. Surprisal analysis also characterizes the absolute expression levels of the mRNAs and thereby examines the homeostasis of the transcription system during EMT. PMID:25157127

  18. Surprisal analysis characterizes the free energy time course of cancer cells undergoing epithelial-to-mesenchymal transition.

    PubMed

    Zadran, Sohila; Arumugam, Rameshkumar; Herschman, Harvey; Phelps, Michael E; Levine, R D

    2014-09-09

    The epithelial-to-mesenchymal transition (EMT) initiates the invasive and metastatic behavior of many epithelial cancers. Mechanisms underlying EMT are not fully known. Surprisal analysis of mRNA time course data from lung and pancreatic cancer cells stimulated to undergo TGF-β1-induced EMT identifies two phenotypes. Examination of the time course for these phenotypes reveals that EMT reprogramming is a multistep process characterized by initiation, maturation, and stabilization stages that correlate with changes in cell metabolism. Surprisal analysis characterizes the free energy time course of the expression levels throughout the transition in terms of two state variables. The landscape of the free energy changes during the EMT for the lung cancer cells shows a stable intermediate state. Existing data suggest this is the previously proposed maturation stage. Using a single-cell ATP assay, we demonstrate that the TGF-β1-induced EMT for lung cancer cells, particularly during the maturation stage, coincides with a metabolic shift resulting in increased cytosolic ATP levels. Surprisal analysis also characterizes the absolute expression levels of the mRNAs and thereby examines the homeostasis of the transcription system during EMT.

  19. AKT1 inhibits epithelial-to-mesenchymal transition in breast cancer through phosphorylation-dependent Twist1 degradation

    PubMed Central

    Li, Chia-Wei; Xia, Weiya; Lim, Seung-Oe; Hsu, Jennifer L.; Huo, Longfei; Wu, Yun; Li, Long-Yuan; Lai, Chien-Chen; Chang, Shih-Shin; Hsu, Yi-Hsin; Sun, Hui-Lung; Kim, Jongchan; Yamaguchi, Hirohito; Lee, Dung-Fang; Wang, Hongmei; Wang, Yan; Chou, Chao-Kai; Hsu, Jung-Mao; Lai, Yun-Ju; LaBaff, Adam M.; Ding, Qingqing; Ko, How-Wen; Tsai, Fuu-Jen; Tsai, Chang-Hai; Hortobagyi, Gabriel N.; Hung, Mien-Chie

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is an essential physiological process that promotes cancer cell migration, invasion, and metastasis. Several lines of evidence from both cellular and genetic studies suggest that AKT1/PKBα, but not AKT2 or AKT3, serves as a negative regulator of EMT and breast cancer metastasis. However, the underlying mechanism by which AKT1 suppresses EMT remains poorly defined. Here, we demonstrate that phosphorylation of Twist1 by AKT1 is required for β-TrCP-mediated Twist1 ubiquitination and degradation. The clinically used AKT inhibitor MK-2206, which possesses higher specificity toward AKT1, stabilized Twist1 and enhanced EMT in breast cancer cells. However, we discovered that resveratrol, a naturally occurring compound, induced β-TrCP-mediated Twist1 degradation to attenuate MK-2206-induced EMT in breast cancer cells. Taken together, our findings demonstrate that resveratrol counteracts the unexpected metastatic potential induced by anti-AKT therapy, and therefore suggest that the addition of resveratrol to an anti-AKT therapeutic regimen may provide extra support for limiting EMT. PMID:26759241

  20. Autophagy regulates hepatocyte identity and epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions promoting Snail degradation.

    PubMed

    Grassi, G; Di Caprio, G; Santangelo, L; Fimia, G M; Cozzolino, A M; Komatsu, M; Ippolito, G; Tripodi, M; Alonzi, T

    2015-09-10

    Epithelial-to-mesenchymal transition (EMT) and the reverse process mesenchymal-to-epithelial transition (MET) are events involved in development, wound healing and stem cell behaviour and contribute pathologically to cancer progression. The identification of the molecular mechanisms underlying these phenotypic conversions in hepatocytes are fundamental to design specific therapeutic strategies aimed at optimising liver repair. The role of autophagy in EMT/MET processes of hepatocytes was investigated in liver-specific autophagy-deficient mice (Alb-Cre;ATG7(fl/fl)) and using the nontumorigenic immortalised hepatocytes cell line MMH. Autophagy deficiency in vivo reduces epithelial markers' expression and increases the levels of mesenchymal markers. These alterations are associated with an increased protein level of the EMT master regulator Snail, without transcriptional induction. Interestingly, we found that autophagy degrades Snail in a p62/SQSTM1 (Sequestosome-1)-dependent manner. Moreover, accordingly to a pro-epithelial function, we observed that autophagy stimulation strongly affects EMT progression, whereas it is necessary for MET. Finally, we found that the EMT induced by TGFβ affects the autophagy flux, indicating that these processes regulate each other. Overall, we found that autophagy regulates the phenotype plasticity of hepatocytes promoting their epithelial identity through the inhibition of the mesenchymal programme.

  1. MAP3K4 Controls the Chromatin Modifier HDAC6 during Trophoblast Stem Cell Epithelial-to-Mesenchymal Transition.

    PubMed

    Mobley, Robert J; Raghu, Deepthi; Duke, Lauren D; Abell-Hart, Kayley; Zawistowski, Jon S; Lutz, Kyla; Gomez, Shawn M; Roy, Sujoy; Homayouni, Ramin; Johnson, Gary L; Abell, Amy N

    2017-03-07

    The first epithelial-to-mesenchymal transition (EMT) occurs in trophoblast stem (TS) cells during implantation. Inactivation of the serine/threonine kinase MAP3K4 in TS cells (TS(KI4) cells) induces an intermediate state of EMT, where cells retain stemness, lose epithelial markers, and gain mesenchymal characteristics. Investigation of relationships among MAP3K4 activity, stemness, and EMT in TS cells may reveal key regulators of EMT. Here, we show that MAP3K4 activity controls EMT through the ubiquitination and degradation of HDAC6. Loss of MAP3K4 activity in TS(KI4) cells results in elevated HDAC6 expression and the deacetylation of cytoplasmic and nuclear targets. In the nucleus, HDAC6 deacetylates the promoters of tight junction genes, promoting the dissolution of tight junctions. Importantly, HDAC6 knockdown in TS(KI4) cells restores epithelial features, including cell-cell adhesion and barrier formation. These data define a role for HDAC6 in regulating gene expression during transitions between epithelial and mesenchymal phenotypes.

  2. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells.

    PubMed

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Gastric cancer is the second leading cause of cancer-related death worldwide, with a poor response to current chemotherapy. Danusertib is a pan-inhibitor of the Aurora kinases and a third-generation Bcr-Abl tyrosine kinase inhibitor with potent anticancer effects, but its antitumor effect and underlying mechanisms in the treatment of human gastric cancer are unknown. This study aimed to investigate the effects of danusertib on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition and the molecular mechanisms involved in human gastric cancer AGS and NCI-N78 cells. The results showed that danusertib had potent growth-inhibitory, apoptosis-inducing, and autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways as well as activation of 5' AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression of

  3. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells

    PubMed Central

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Gastric cancer is the second leading cause of cancer-related death worldwide, with a poor response to current chemotherapy. Danusertib is a pan-inhibitor of the Aurora kinases and a third-generation Bcr-Abl tyrosine kinase inhibitor with potent anticancer effects, but its antitumor effect and underlying mechanisms in the treatment of human gastric cancer are unknown. This study aimed to investigate the effects of danusertib on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition and the molecular mechanisms involved in human gastric cancer AGS and NCI-N78 cells. The results showed that danusertib had potent growth-inhibitory, apoptosis-inducing, and autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways as well as activation of 5′ AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression

  4. Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility.

    PubMed

    Edmond, V; Dufour, F; Poiroux, G; Shoji, K; Malleter, M; Fouqué, A; Tauzin, S; Rimokh, R; Sergent, O; Penna, A; Dupuy, A; Levade, T; Theret, N; Micheau, O; Ségui, B; Legembre, P

    2015-02-19

    Epithelial-to-mesenchymal transition (EMT) promotes cell motility, which is important for the metastasis of malignant cells, and blocks CD95-mediated apoptotic signaling triggered by immune cells and chemotherapeutic regimens. CD95L, the cognate ligand of CD95, can be cleaved by metalloproteases and released as a soluble molecule (cl-CD95L). Unlike transmembrane CD95L, cl-CD95L does not induce apoptosis but triggers cell motility. Electron paramagnetic resonance was used to show that EMT and cl-CD95L treatment both led to augmentation of plasma membrane fluidity that was instrumental in inducing cell migration. Compaction of the plasma membrane is modulated, among other factors, by the ratio of certain lipids such as sphingolipids in the membrane. An integrative analysis of gene expression in NCI tumor cell lines revealed that expression of ceramide synthase-6 (CerS6) decreased during EMT. Furthermore, pharmacological and genetic approaches established that modulation of CerS6 expression/activity in cancer cells altered the level of C16-ceramide, which in turn influenced plasma membrane fluidity and cell motility. Therefore, this study identifies CerS6 as a novel EMT-regulated gene that has a pivotal role in the regulation of cell migration.

  5. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis

    PubMed Central

    Chu, Andrew S.; Diaz, Rosalyn; Hui, Jia-Ji; Yanger, Kilangsungla; Zong, Yiwei; Alpini, Gianfranco; Stanger, Ben Z.; Wells, Rebecca G.

    2011-01-01

    Whether or not cholangiocytes or their hepatic progenitors undergo an epithelial-to-mesenchymal transition (EMT) to become matrix-producing myofibroblasts during biliary fibrosis is a significant ongoing controversy. To assess whether EMT is active during biliary fibrosis, we used Alfp-Cre x Rosa26-YFP mice, in which the epithelial cells of the liver (hepatocytes, cholangiocytes, and their bipotential progenitors) are heritably labeled at high efficiency with yellow fluorescent protein (YFP). Primary cholangiocytes isolated from our reporter strain were able to undergo EMT in vitro when treated with transforming growth factor-β1 alone or in combination with tumor necrosis factor-α, as indicated by adoption of fibroblastoid morphology, intracellular relocalization of E-cadherin, and expression of α-smooth muscle actin (α-SMA). To determine whether EMT occurs in vivo, we induced liver fibrosis in Alfp-Cre x Rosa26-YFP mice using the bile duct ligation (BDL; 2, 4, and 8 weeks), carbon tetrachloride (CCl4, 3 weeks), and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC; 2 and 3 weeks) models. In no case did we find evidence of co-localization of YFP with the mesenchymal markers S100A4, vimentin, α-SMA, or pro-collagen 1α2, although these proteins were abundant in the peribiliary regions. Conclusion Hepatocytes and cholangiocytes do not undergo EMT in murine models of hepatic fibrosis. PMID:21520179

  6. The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation.

    PubMed

    Iser, Isabele C; Pereira, Mariana B; Lenz, Guido; Wink, Márcia R

    2017-03-01

    Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer due to its highly invasive nature that impedes the surgical removal of all tumor cells, making relapse inevitable. However, the mechanisms used by glioma cells to invade the surrounding tissue are still unclear. In this context, epithelial-to-mesenchymal transition (EMT) has emerged as a key regulator of this invasive state and although the real relevance of this program in malignant glioma is still controversial, it has been strongly associated with GBM malignancy. EMT is a very complex process regulated by several families of transcriptional factors through many signaling pathways that form a network that allows cancer cells to acquire invasive properties and penetrate the neighboring stroma, resulting in the formation of an advantageous microenvironment for cancer progression and metastasis. In this systematic review, we focus on the molecular mechanisms of EMT including EMT-factors, drug resistance, miRNA, and new therapeutic strategies. In addition, we address controversial questions about mesenchymal shift in GBMs with a bioinformatics analysis to show that in terms of epithelial and mesenchymal phenotype, the majority of GBMs samples analyzed have a profile more mesenchymal than epithelial. If induced, this phenotype can be shifted toward an even more mesenchymal phenotype in an EMT-like process in glioma cells. A better understanding of the molecular regulation of the EMT during tumor spreading will help to provide potential therapeutic interventions to target this program when treating GBM.

  7. Ferritin heavy chain is a negative regulator of ovarian cancer stem cell expansion and epithelial to mesenchymal transition

    PubMed Central

    Pisanu, Maria Elena; Faniello, Maria Concetta; Jakopin, Žiga; Chiarella, Emanuela; Giovannone, Emilia Dora; Mancini, Rita; Ciliberto, Gennaro

    2016-01-01

    Objectives Ferritin is the major intracellular iron storage protein essential for maintaining the cellular redox status. In recent years ferritin heavy chain (FHC) has been shown to be involved also in the control of cancer cell growth. Analysis of public microarray databases in ovarian cancer revealed a correlation between low FHC expression levels and shorter survival. To better understand the role of FHC in cancer, we have silenced the FHC gene in SKOV3 cells. Results FHC-KO significantly enhanced cell viability and induced a more aggressive behaviour. FHC-silenced cells showed increased ability to form 3D spheroids and enhanced expression of NANOG, OCT4, ALDH and Vimentin. These features were accompanied by augmented expression of SCD1, a major lipid metabolism enzyme. FHC apparently orchestrates part of these changes by regulating a network of miRNAs. Methods FHC-silenced and control shScr SKOV3 cells were monitored for changes in proliferation, migration, ability to propagate as 3D spheroids and for the expression of stem cell and epithelial-to-mesenchymal-transition (EMT) markers. The expression of three miRNAs relevant to spheroid formation or EMT was assessed by q-PCR. Conclusions In this paper we uncover a new function of FHC in the control of cancer stem cells. PMID:27566559

  8. Novel cancer stem cell targets during epithelial to mesenchymal transition in PTEN-deficient trastuzumab-resistant breast cancer

    PubMed Central

    Gasparyan, Mari; Xu, Fangying; Jiang, Hui; Lin, Chang-Ching; Myers, Ila; Korkaya, Hasan; Liu, Yajing; Connarn, Jamie; He, Huining; Zhang, Ning; Wicha, Max S.; Sun, Duxin

    2016-01-01

    Continued use of trastuzumab in PTEN-deficient HER2+ breast cancer induces the epithelial-to-mesenchymal transition (EMT), transforms HER2+ to triple negative breast cancer, and expands breast cancer stem cells (BCSCs). Using cancer cell lines with two distinct states, epithelial and mesenchymal, we identified novel targets during EMT in PTEN-deficient trastuzumab-resistant breast cancer. Differential gene expression and distinct responses to a small molecule in BT474 (HER2+ trastuzumab-sensitive) and the PTEN-deficient trastuzumab-resistant derivative (BT474-PTEN-LTT) provided the selection tools to identify targets during EMT. siRNA knockdown and small molecule inhibition confirmed MEOX1 as one of the critical molecular targets to regulate both BCSCs and mesenchymal-like cell proliferation. MEOX1 was associated with poor survival, lymph node metastasis, and stage of breast cancer patients. These findings suggest that MEOX1 is a clinically relevant novel target in BCSCs and mesenchymal-like cancer cells in PTEN-deficient trastuzumab resistant breast cancer and may serve as target for future drug development. PMID:27285982

  9. microRNA-520f reverses epithelial-to-mesenchymal transition by targeting ADAM9 and TGFBR2.

    PubMed

    van Kampen, Jasmijn Gm; van Hooij, Onno; Jansen, Cornelius Fj; Smit, Frank P; van Noort, Paula I; Schultz, Iman J; Schaapveld, Roel Qj; Schalken, Jack A; Verhaegh, Gerald W

    2017-02-16

    Reversing epithelial-to-mesenchymal transition (EMT) in cancer cells has been widely considered as an approach to combat cancer progression and therapeutic resistance, but a limited number of broadly comprehensive investigations of microRNAs involved in this process have been conducted. In this study, we screened a library of 1120 microRNA for their ability to transcriptionally activate the E-cadherin gene CDH1 in a promoter reporter assay as a measure of EMT reversal. By this approach, we defined miR-520f as a novel EMT-reversing microRNA. miR-520f expression was sufficient to restore endogenous levels of E-cadherin in cancer cell lines exhibiting strong or intermediate mesenchymal phenotypes. In parallel, miR-520f inhibited invasive behavior in multiple cancer cell systems and reduced metastasis in an experimental mouse model of lung metastasis. Mechanistically, miR-520f inhibited tumor cell invasion by directly targeting ADAM9, the TGF-ß receptor TGFBR2 and the EMT inducers ZEB1, ZEB2 and the snail transcriptional repressor SNAI2, each crucial factors in mediating EMT. Collectively, our results show that miR-520f exerts anti-invasive and anti-metastatic effects in vitro and in vivo, warranting further study in clinical settings.

  10. Phenotypic plasticity and epithelial-to-mesenchymal transition in the behaviour and therapeutic response of oral squamous cell carcinoma.

    PubMed

    Vig, Navin; Mackenzie, Ian C; Biddle, Adrian

    2015-10-01

    It is increasingly recognised that phenotypic plasticity, apparently driven by epigenetic mechanisms, plays a key role in tumour behaviour and markedly influences the important processes of therapeutic survival and metastasis. An important source of plasticity in malignancy is epithelial-to-mesenchymal transition (EMT), a common epigenetically controlled event that results in transition of malignant cells between different phenotypic states that confer motility and enhance survival. In this review, we discuss the importance of phenotypic plasticity and its contribution to cellular heterogeneity in oral squamous cell carcinoma with emphasis on aspects of drug resistance and EMT.

  11. Wnt/β-catenin pathway is required for epithelial to mesenchymal transition in CXCL12 over expressed breast cancer cells.

    PubMed

    Shan, Shumei; Lv, Qiang; Zhao, Yiling; Liu, Chunfeng; Sun, Yingyan; Xi, Kemin; Xiao, Jiayi; Li, Caijuan

    2015-01-01

    CXCL12 is positively associated with the metastasis and prognosis of various human malignancies. Cancer-associated fibroblasts (CAFs), the main cells secreting CXCL12, are capable of inducing epithelial to mesenchymal transition (EMT) of breast cancer cells. However, it has not been completely understood whether CXCL12 is involved in EMT of breast cancer cells and the underlying mechanisms. The present study aimed to investigate the effects of CXCL12 on the EMT and cancer stem cell (CSC)-like phenotypes formation by transfecting pEGFP-N1-CXCL12 plasmid into MCF-7 cells. Real time-PCR and Western blot analysis demonstrated the successful over expression of CXCL12 in MCF-7 cells. Cell counting kit-8 assay, wound healing assay and Transwell invasion analysis confirmed that over expression of CXCL12 significantly promoted the proliferation, migration and invasion in MCF-7 cells (P<0.05). In addition, ALDH activity was dramatically enhanced compared with parental (P<0.001), accompanied by the notably elevated mRNA and protein levels of OCT-4, Nanog, and SOX2 in CXCL12 overexpressed-MCF-7 cells (P<0.001). Furthermore, we observed the down regulation of E-cadherin and up regulation of vimentin, N-cadherin, and α-SMA in CXCL12 overexpressed-MCF-7 cells (P<0.01). Meanwhile, western blot and immunofluorescence assay showed that over expression of CXCL12 activated Wnt/β-catenin pathway to induce EMT of MCF-7 cells, as evidenced by the increased expression of E-cadherin after silencing β-catenin by siRNA interference (P<0.001). Collectively, our findings suggested that over expression of CXCL12 could trigger EMT by activating Wnt/β-catenin pathway and induce CSC-like phenotypes formation to promote the proliferation and metastasis in MCF-7. Hence, CXCL12 may become a promising candidate for breast cancer therapy.

  12. CXCL13-CXCR5 co-expression regulates epithelial to mesenchymal transition of breast cancer cells during lymph node metastasis.

    PubMed

    Biswas, Subir; Sengupta, Suman; Roy Chowdhury, Sougata; Jana, Samir; Mandal, Gunjan; Mandal, Palash Kumar; Saha, Nipun; Malhotra, Vivek; Gupta, Arnab; Kuprash, Dmitry V; Bhattacharyya, Arindam

    2014-01-01

    We investigated the expression of -CXC chemokine ligand 13 (CXCL13) and its receptor -CXC chemokine receptor 5 (CXCR5) in 98 breast cancer (BC) patients with infiltrating duct carcinoma, out of which 56 were found lymph node metastasis (LNM) positive. Interestingly, co-expression of CXCL13 and CXCR5 showed a significant correlation with LNM. Since, epithelial to mesenchymal transition (EMT) is highly associated with metastasis we investigated EMT-inducing potential of CXCL13 in BC cell lines. In CXCL13-stimulated BC cells, expression of various mesenchymal markers (Vimentin, N-cadherin), EMT regulators (Snail, Slug), and matrix metalloproteinase-9 (MMP9) was increased, whereas the expression of epithelial marker E-cadherin was found to be decreased. In addition, expression of receptor activator of nuclear factor kappa-B ligand (RANKL), which is known to regulate MMP9 expression via Src activation, was also significantly increased after CXCL13 stimulation. Using specific protein kinase inhibitors, we confirmed that CXCL13 stimulated EMT and MMP9 expression via RANKL-Src axis in BC cell lines. To further validate this observation, we examined gene expression patterns in primary breast tumors and detected significantly higher expression of various mesenchymal markers and regulators in CXCL13-CXCR5 co-expressing patients. Therefore, this study showed the EMT-inducing potential of CXCL13 as well as demonstrated the prognostic value of CXCL13-CXCR5 co-expression in primary BC. Moreover, CXCL13-CXCR5-RANKL-Src axis may present a therapeutic target in LNM positive BC patients.

  13. CYR61 and TAZ Upregulation and Focal Epithelial to Mesenchymal Transition May Be Early Predictors of Barrett's Esophagus Malignant Progression.

    PubMed

    Cardoso, Joana; Mesquita, Marta; Dias Pereira, António; Bettencourt-Dias, Mónica; Chaves, Paula; Pereira-Leal, José B

    2016-01-01

    Barrett's esophagus is the major risk factor for esophageal adenocarcinoma. It has a low but non-neglectable risk, high surveillance costs and no reliable risk stratification markers. We sought to identify early biomarkers, predictive of Barrett's malignant progression, using a meta-analysis approach on gene expression data. This in silico strategy was followed by experimental validation in a cohort of patients with extended follow up from the Instituto Português de Oncologia de Lisboa de Francisco Gentil EPE (Portugal). Bioinformatics and systems biology approaches singled out two candidate predictive markers for Barrett's progression, CYR61 and TAZ. Although previously implicated in other malignancies and in epithelial-to-mesenchymal transition phenotypes, our experimental validation shows for the first time that CYR61 and TAZ have the potential to be predictive biomarkers for cancer progression. Experimental validation by reverse transcriptase quantitative PCR and immunohistochemistry confirmed the up-regulation of both genes in Barrett's samples associated with high-grade dysplasia/adenocarcinoma. In our cohort CYR61 and TAZ up-regulation ranged from one to ten years prior to progression to adenocarcinoma in Barrett's esophagus index samples. Finally, we found that CYR61 and TAZ over-expression is correlated with early focal signs of epithelial to mesenchymal transition. Our results highlight both CYR61 and TAZ genes as potential predictive biomarkers for stratification of the risk for development of adenocarcinoma and suggest a potential mechanistic route for Barrett's esophagus neoplastic progression.

  14. Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors

    PubMed Central

    Trujillo, Kristina A.; Heaphy, Christopher M.; Mai, Minh; Vargas, Keith M.; Jones, Anna C.; Vo, Phung; Butler, Kimberly S.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K

    2011-01-01

    Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT-PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient-matched, tumor-adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN-1 and TAHN-5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra-lobular fibroblasts expressing MMP2, SPARC, TGF-β3, which are inducers of EMT, were both prevalent in TAHN-1 tissues, sparse in TAHN-5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α-smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN-1 tissues. These results identify cellular processes that are differentially activated between TAHN-1 and TAHN-5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors. PMID:21105047

  15. Curcumin suppresses epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells by inhibiting cancer-associated fibroblasts

    PubMed Central

    Wang, Qing; Qu, Chao; Xie, Fang; Chen, Lianyu; Liu, Luming; Liang, Xiaohua; Wu, Xueyong; Wang, Peng; Meng, Zhiqiang

    2017-01-01

    Pancreatic cancer is one of the most lethal malignancies and the fourth leading cause of cancer-related deaths worldwide, because of its aggressive and highly metastatic ability even in its early stages. Cancer-associated fibroblasts (CAFs) have been reported to be vital to pancreatic cancer progression via regulating tumorigenesis and metastasis. Studies have shown that CAFs also mediate epithelial-to-mesenchymal transition (EMT) in tumor cells. Curcumin has recently been reported to have anticancer effects by modulating pathways involved in cancer progression. Therefore, we hypothesized that curcumin might inhibit EMT by targeting CAFs in pancreatic cancer. In this study, we show that the CAF-mediated enhancement of pancreatic cancer cell migration and metastasis was blocked by curcumin. In conclusion, our data provide the first evidence that curcumin inhibits the migration and metastasis of pancreatic cancer cells by reducing the mesenchymal characteristics of CAFs, which reverses the EMT phenotypes of pancreatic cancer cells. PMID:28123853

  16. Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.

    PubMed

    Latil, Mathilde; Nassar, Dany; Beck, Benjamin; Boumahdi, Soufiane; Wang, Li; Brisebarre, Audrey; Dubois, Christine; Nkusi, Erwin; Lenglez, Sandrine; Checinska, Agnieszka; Vercauteren Drubbel, Alizée; Devos, Michael; Declercq, Wim; Yi, Rui; Blanpain, Cédric

    2017-02-02

    Epithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness, and resistance to therapy. Some tumors undergo EMT while others do not, which may reflect intrinsic properties of their cell of origin. However, this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show that cell-type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from interfollicular epidermis (IFE) are generally well differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed that IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.

  17. Cancer stem-like cells from head and neck cancers are chemosensitized by the Wnt antagonist, sFRP4, by inducing apoptosis, decreasing stemness, drug resistance and epithelial to mesenchymal transition.

    PubMed

    Warrier, S; Bhuvanalakshmi, G; Arfuso, F; Rajan, G; Millward, M; Dharmarajan, A

    2014-09-01

    Cancer stem cells (CSCs) of head and neck squamous cell carcinoma (HNSCC) are defined by high self-renewal and drug refractory potential. Involvement of Wnt/β-catenin signaling has been implicated in rapidly cycling cells such as CSCs, and inhibition of the Wnt/β-catenin pathway is a novel approach to target CSCs from HNSCC. In this study, we found that an antagonist of FrzB/Wnt, the secreted frizzled-related protein 4 (sFRP4), inhibited the growth of CSCs from two HNSCC cell lines, Hep2 and KB. We enriched the CD44(+) CSC population, and grew them in spheroid cultures. sFRP4 decreased the proliferation and increased the sensitivity of spheroids to a commonly used drug in HNSCC, namely cisplatin. Self-renewal in sphere formation assays decreased upon sFRP4 treatment, and the effect was reverted by the addition of Wnt3a. sFRP4 treatment of spheroids also decreased β-catenin, confirming its action through the Wnt/β-catenin signaling pathway. Quantitative PCR demonstrated a clear decrease of the stemness markers CD44 and ALDH, and an increase in CD24 and drug-resistance markers ABCG2 and ABCC4. Furthermore, we found that after sFRP4 treatment, there was a reversal in the expression of epithelial to mesenchymal (EMT) markers with the restoration of the epithelial marker E-cadherin, and depletion of EMT-specific markers twist, snail and N-cadherin. This is the first report demonstrating that the naturally occurring Wnt inhibitor, sFRP4, can be a potential drug to destroy CSC-enriched spheroids from HNSCCs. The repression of EMT and the decrease in stemness profile further strengthen the use of sFRP4 as a potent therapeutic against CSCs.

  18. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer.

    PubMed

    Islam, S S; Mokhtari, R B; Noman, A S; Uddin, M; Rahman, M Z; Azadi, M A; Zlotta, A; van der Kwast, T; Yeger, H; Farhat, W A

    2016-05-01

    Activation of the sonic hedgehog (Shh) signaling pathway controls tumorigenesis in a variety of cancers. Here, we show a role for Shh signaling in the promotion of epithelial-to-mesenchymal transition (EMT), tumorigenicity, and stemness in the bladder cancer. EMT induction was assessed by the decreased expression of E-cadherin and ZO-1 and increased expression of N-cadherin. The induced EMT was associated with increased cell motility, invasiveness, and clonogenicity. These progression relevant behaviors were attenuated by treatment with Hh inhibitors cyclopamine and GDC-0449, and after knockdown by Shh-siRNA, and led to reversal of the EMT phenotype. The results with HTB-9 were confirmed using a second bladder cancer cell line, BFTC905 (DM). In a xenograft mouse model TGF-β1 treated HTB-9 cells exhibited enhanced tumor growth. Although normal bladder epithelial cells could also undergo EMT and upregulate Shh with TGF-β1 they did not exhibit tumorigenicity. The TGF-β1 treated HTB-9 xenografts showed strong evidence for a switch to a more stem cell like phenotype, with functional activation of CD133, Sox2, Nanog, and Oct4. The bladder cancer specific stem cell markers CK5 and CK14 were upregulated in the TGF-β1 treated xenograft tumor samples, while CD44 remained unchanged in both treated and untreated tumors. Immunohistochemical analysis of 22 primary human bladder tumors indicated that Shh expression was positively correlated with tumor grade and stage. Elevated expression of Ki-67, Shh, Gli2, and N-cadherin were observed in the high grade and stage human bladder tumor samples, and conversely, the downregulation of these genes were observed in the low grade and stage tumor samples. Collectively, this study indicates that TGF-β1-induced Shh may regulate EMT and tumorigenicity in bladder cancer. Our studies reveal that the TGF-β1 induction of EMT and Shh is cell type context dependent. Thus, targeting the Shh pathway could be clinically beneficial in the

  19. SSX2 regulates focal adhesion but does not drive the epithelial to mesenchymal transition in prostate cancer

    PubMed Central

    Bloom, Jordan E.; McNeel, Douglas G.

    2016-01-01

    Prostate cancer is the most commonly diagnosed malignancy for men in the United States. Metastatic prostate cancer, the lethal form of the disease, has a life expectancy of approximately five years. Identification of factors associated with this transition to metastatic disease is crucial for future therapies. One such factor is the SSX gene family, a family of cancer/testis antigens (CTA) transcription factors which have been shown to be aberrantly expressed in other cancers and associated with the epithelial to mesenchymal transition (EMT). We have previously shown that SSX expression in prostate cancers was restricted to metastatic tissue and not primary tumors. In this study, we have identified SSX2 as the predominant SSX family member expressed in prostate cancer, and found its expression in the peripheral blood of 19 of 54 (35%) prostate cancer patients, with expression restricted to circulating tumor cells, and in 7 of 15 (47%) metastatic cDNA samples. Further, we examined SSX2 function in prostate cancer through knockdown and overexpression in prostate cancer cell lines. While overexpression had little effect on morphology or gene transcript changes, knockdown of SSX2 resulted in an epithelial morphology, increased cell proliferation, increased expression of genes involved in focal adhesion, decreased anchorage independent growth, increased invasion, and increased tumorigenicity in vivo. We conclude from these findings that SSX2 expression in prostate cancer is not a driver of EMT, but is involved in processes associated with EMT including loss of focal adhesion that may be related to tumor cell dissemination. PMID:27276714

  20. Notch signaling modulates proliferative vitreoretinopathy via regulating retinal pigment epithelial-to-mesenchymal transition.

    PubMed

    Zhang, Jingjing; Yuan, Gongqiang; Dong, Muchen; Zhang, Ting; Hua, Gao; Zhou, Qingjun; Shi, Weiyun

    2016-09-07

    Elevated Notch signaling has been verified in a large range of fibrotic diseases developed in the kidney, liver, and lung, inducing the development of the epithelial-mesenchymal transition (EMT). The aim of this study was to observe the involvement of Notch signaling in the EMT of retinal pigment epithelial (RPE) cells and the pathogenesis of proliferative vitreoretinopathy (PVR). In vitro cultivated human RPE cells (ARPE-19) were treated with 10 ng/mL transforming growth factor (TGF)-β1 for 24, 48, and 72 h. The expression levels of ZO-1, α-SMA, vimentin, Notch1 intracellular domain (NICD1), and Hes-1 were evaluated with quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence staining or Western blot. TGF-β1 induced EMT and the activation of Notch signaling in ARPE-19 cells. To examine the effect of Notch inhibition on TGF-β1-induced EMT and PVR formation, ARPE-19 cells were preincubated with γ-secretase inhibitor LY411575 before TGF-β1 treatment. Mouse PVR model was used for in vivo study. ARPE-19 cells were injected intravitreously with or without the LY411575 to examine the effect of Notch inhibition on PVR formation. LY411575 significantly attenuated EMT by inhibiting the Notch signaling activation in vitro. PVR was induced by intravitreal injections of ARPE-19 cells, while LY411575 inhibited mouse PVR formation in vivo. Notch signaling plays a critical role in TGF-β1-induced EMT in vitro and mice PVR model, which provides a novel insight into the pathogenesis of PVR. The specific inhibition of Notch signaling by γ-secretase inhibitor may provide a new approach for the prevention of PVR.

  1. Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11

    PubMed Central

    Tan, Xiaochao; Banerjee, Priyam; Guo, Hou-Fu; Ireland, Stephen; Pankova, Daniela; Ahn, Young-ho; Nikolaidis, Irodotos Michail; Liu, Xin; Zhao, Yanbin; Burns, Alan R.; Gibbons, Don L.; Zal, Tomasz; Creighton, Chad J.; Wang, Yanzhuang; Kurie, Jonathan M.

    2016-01-01

    Tumor cells gain metastatic capacity through a Golgi phosphoprotein 3–dependent (GOLPH3-dependent) Golgi membrane dispersal process that drives the budding and transport of secretory vesicles. Whether Golgi dispersal underlies the pro-metastatic vesicular trafficking that is associated with epithelial-to-mesenchymal transition (EMT) remains unclear. Here, we have shown that, rather than causing Golgi dispersal, EMT led to the formation of compact Golgi organelles with improved ribbon linking and cisternal stacking. Ectopic expression of the EMT-activating transcription factor ZEB1 stimulated Golgi compaction and relieved microRNA-mediated repression of the Golgi scaffolding protein PAQR11. Depletion of PAQR11 dispersed Golgi organelles and impaired anterograde vesicle transport to the plasma membrane as well as retrograde vesicle tethering to the Golgi. The N-terminal scaffolding domain of PAQR11 was associated with key regulators of Golgi compaction and vesicle transport in pull-down assays and was required to reconstitute Golgi compaction in PAQR11-deficient tumor cells. Finally, high PAQR11 levels were correlated with EMT and shorter survival in human cancers, and PAQR11 was found to be essential for tumor cell migration and metastasis in EMT-driven lung adenocarcinoma models. We conclude that EMT initiates a PAQR11-mediated Golgi compaction process that drives metastasis. PMID:27869652

  2. PDGF enhances IRES-mediated translation of Laminin B1 by cytoplasmic accumulation of La during epithelial to mesenchymal transition.

    PubMed

    Petz, Michaela; Them, Nicole C C; Huber, Heidemarie; Mikulits, Wolfgang

    2012-10-01

    The extracellular matrix protein Laminin B1 (LamB1) regulates tumor cell migration and invasion. Carcinoma cells acquire invasive properties by epithelial to mesenchymal transition (EMT), which is a fundamental step in dissemination of metastatic cells from the primary tumor. Recently, we showed that enhanced translation of LamB1 upon EMT of malignant hepatocytes is mediated by an internal ribosome entry site (IRES). We demonstrated that the IRES transacting factor La binds the minimal IRES motif and positively modulates IRES activity of LamB1. Here, we show that platelet-derived growth factor (PDGF) enhances IRES activity of LamB1 by the increasing cytoplasmic localization of La during EMT. Accordingly, cells expressing dominant negative PDGF receptor display reduced cytoplasmic accumulation of La and show no elevation of IRES activity or endogenous LamB1 levels after stimulation with PDGF. Furthermore, La-mediated regulation of LamB1 IRES activity predominantly depends on MAPK/ERK signaling downstream of PDGF. Notably, LamB1 expression is not significantly downregulated by the impairment of the translation initiation factor eIF4E. In vivo, knockdown of La associated with decreased LamB1 expression and reduced tumor growth. Together, these data suggest that PDGF is required for the cytoplasmic accumulation of La that triggers IRES-dependent translation of LamB1 during EMT.

  3. DMXL2 drives epithelial to mesenchymal transition in hormonal therapy resistant breast cancer through Notch hyper-activation.

    PubMed

    Faronato, Monica; Nguyen, Van T M; Patten, Darren K; Lombardo, Ylenia; Steel, Jennifer H; Patel, Naina; Woodley, Laura; Shousha, Sami; Pruneri, Giancarlo; Coombes, R Charles; Magnani, Luca

    2015-09-08

    The acquisition of endocrine therapy resistance in estrogen receptor α (ERα) breast cancer patients represents a major clinical problem. Notch signalling has been extensively linked to breast cancer especially in patients who fail to respond to endocrine therapy. Following activation, Notch intracellular domain is released and enters the nucleus where activates transcription of target genes. The numerous steps that cascade after activation of the receptor complicate using Notch as biomarker. Hence, this warrants the development of reliable indicators of Notch activity. DMXL2 is a novel regulator of Notch signalling not yet investigated in breast cancer. Here, we demonstrate that DMXL2 is overexpressed in a subset of endocrine therapy resistant breast cancer cell lines where it promotes epithelial to mesenchymal transition through hyper-activation of Notch signalling via V-ATPase dependent acidification. Following DMXL2 depletion or treatment with Bafilomycin A1, both EMT targets and Notch signalling pathway significantly decrease. We show for the first time that DMXL2 protein levels are significantly increased in ERα positive breast cancer patients that progress after endocrine therapy. Finally, we demonstrate that DMXL2 is a transmembrane protein with a potential extra-cellular domain. These findings identify DMXL2 as a novel, functional biomarker for ERα positive breast cancer.

  4. Regulation of the epithelial to mesenchymal transition and metastasis by Raf kinase inhibitory protein-dependent Notch1 activity

    PubMed Central

    Ha, Ji Hye; Kang, Min Young; Zada, Sahib; Rha, Sun Young; Kang, Sang Soo; Kim, Hyun Joon; Park, Jae-Yong; Byun, June-Ho; Hahm, Jong Ryeal; Shin, Jeong Kyu; Jeong, Sang-Ho; Lee, Young-Joon; Kim, Deok Ryong

    2016-01-01

    Raf kinase inhibitory protein (RKIP), an endogenous inhibitor of the extracellular signal-regulated kinase (ERK) pathway, has been implicated as a suppressor of metastasis and a prognostic marker in cancers. However, how RKIP acts as a suppressor during metastasis is not fully understood. Here, we show that RKIP activity in cervical and stomach cancer is inversely correlated with endogenous levels of the Notch1 intracellular domain (NICD), which stimulates the epithelial to mesenchymal transition (EMT) and metastasis. The levels of RKIP were significantly decreased in tumor tissues compared to normal tissues, whereas NICD levels were increased. Overexpression of RKIP in several cell lines resulted in a dramatic decrease of NICD and subsequent inhibition of several mesenchymal markers, such as vimentin, N-cadherin, and Snail. In contrast, knockdown of RKIP exhibited opposite results both in vitro and in vivo using mouse models. Nevertheless, knockdown of Notch1 in cancer cells had no effect on the expression of RKIP, suggesting that RKIP is likely an upstream regulator of the Notch1 pathway. We also found that RKIP directly interacts with Notch1 but has no influence on the intracellular level of the γ-secretase complex that is necessary for Notch1 activation. These data suggest that RKIP plays a distinct role in activation of Notch1 during EMT and metastasis, providing a new target for cancer treatment. PMID:26716415

  5. Irisin suppresses the migration, proliferation, and invasion of lung cancer cells via inhibition of epithelial-to-mesenchymal transition.

    PubMed

    Shao, Lei; Li, Huanjie; Chen, Jian; Song, Haibo; Zhang, Yuzhu; Wu, Fei; Wang, Wenjuan; Zhang, Wen; Wang, Fang; Li, Hui; Tang, Dongqi

    2017-04-08

    Irisin is involved in promoting metabolism, immune regulation, and affects chronic inflammation in many systemic diseases, including gastric cancer. However, the role of irisin in lung cancer is not well characterized. To determine whether irisin has a protective effect against lung cancer, we cultured A549 and NCI-H446 lung cancer cells and treated them with irisin. We detected the proliferation by MTT assay, and assessed the migration and invasion of the cells by scratch wound healing assay and Tran-swell assay. The expression levels of epithelial-to-mesenchymal transition (EMT) markers and the related signaling pathways were detected by western blot analysis. Meanwhile, an inhibitor of PI3K was used to investigate the effect of irsin. Finally, the expression of Snail was detected. We demonstrated that irisin inhibits the proliferation, migration, and invasion of lung cancer cells, and has a novel role in mediating the PI3K/AKT pathway in the cells. Irisin can reverse the activity of EMT and inhibit the expression of Snail via mediating the PI3K/AKT pathway, which is a key regulator of Snail. These results revealed that irisin inhibited EMT and reduced the invasion of lung cancer cells via the PI3K/AKT/Snail pathway.

  6. STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer

    PubMed Central

    Xu, Yingxi; Zhang, Shu; Niu, Haiying; Ye, Yujie; Hu, Fen; Chen, Si; Li, Xuefei; Luo, Xiaohe; Jiang, Shan; Liu, Yanhua; Chen, Yanan; Li, Junying; Xiang, Rong; Li, Na

    2015-01-01

    The importance of store-operated Ca2+ entry (SOCE) and the role of its key molecular regulators, STIM1 and ORAI1, in the development of cancer are emerging. Here, we report an unexpected dual function of SOCE in prostate cancer progression by revealing a decrease in the expression of STIM1 in human hyperplasia and tumor tissues of high histological grade and by demonstrating that STIM1 and ORAI1 inhibit cell growth by arresting the G0/G1 phase and enhancing cell senescence in human prostate cancer cells. In addition, STIM1 and ORAI1 inhibited NF-κB signaling and remodeled the tumor microenvironment by reducing the formation of M2 phenotype macrophages, possibly creating an unfavorable tumor microenvironment and inhibiting cancer development. However, STIM1 also promoted cell migration and the epithelial-to-mesenchymal transition by activating TGF-β, Snail and Wnt/β-Catenin pathways. Thus, our study revealed novel regulatory effects and the mechanisms by which STIM1 affects cell senescence, tumor migration and the tumor microenvironment, revealing that STIM1 has multiple functions in prostate cancer cells. PMID:26257076

  7. TGFβ-Dependent Epithelial-to-Mesenchymal Transition Is Required to Generate Cardiospheres from Human Adult Heart Biopsies

    PubMed Central

    Forte, Elvira; Miraldi, Fabio; Chimenti, Isotta; Angelini, Francesco; Zeuner, Ann; Giacomello, Alessandro; Mercola, Mark

    2012-01-01

    Autologous cardiac progenitor cells (CPCs) isolated as cardiospheres (CSps) represent a promising candidate for cardiac regenerative therapy. A better understanding of the origin and mechanisms underlying human CSps formation and maturation is undoubtedly required to enhance their cardiomyogenic potential. Epithelial-to-mesenchymal transition (EMT) is a key morphogenetic process that is implicated in the acquisition of stem cell-like properties in different adult tissues, and it is activated in the epicardium after ischemic injury to the heart. We investigated whether EMT is involved in the formation and differentiation of human CSps, revealing that an up-regulation of the expression of EMT-related genes accompanies CSps formation that is relative to primary explant-derived cells and CSp-derived cells grown in a monolayer. EMT and CSps formation is enhanced in the presence of transforming growth factor β1 (TGFβ1) and drastically blocked by the type I TGFβ-receptor inhibitor SB431452, indicating that TGFβ-dependent EMT is essential for the formation of these niche-like 3D-multicellular clusters. Since TGFβ is activated in the myocardium in response to injury, our data suggest that CSps formation mimics an adaptive mechanism that could potentially be enhanced to increase in vivo or ex vivo regenerative potential of adult CPCs. PMID:22765842

  8. Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure.

    PubMed

    Ray, Heather J; Niswander, Lee A

    2016-04-01

    The transcription factor grainyhead-like 2 (GRHL2) is expressed in non-neural ectoderm (NNE) and Grhl2 loss results in fully penetrant cranial neural tube defects (NTDs) in mice. GRHL2 activates expression of several epithelial genes; however, additional molecular targets and functional processes regulated by GRHL2 in the NNE remain to be determined, as well as the underlying cause of the NTDs in Grhl2 mutants. Here, we find that Grhl2 loss results in abnormal mesenchymal phenotypes in the NNE, including aberrant vimentin expression and increased cellular dynamics that affects the NNE and neural crest cells. The resulting loss of NNE integrity contributes to an inability of the cranial neural folds to move toward the midline and results in NTD. Further, we identified Esrp1, Sostdc1, Fermt1, Tmprss2 and Lamc2 as novel NNE-expressed genes that are downregulated in Grhl2 mutants. Our in vitro assays show that they act as suppressors of the epithelial-to-mesenchymal transition (EMT). Thus, GRHL2 promotes the epithelial nature of the NNE during the dynamic events of neural tube formation by both activating key epithelial genes and actively suppressing EMT through novel downstream EMT suppressors.

  9. DMXL2 drives epithelial to mesenchymal transition in hormonal therapy resistant breast cancer through notch hyper-activation

    PubMed Central

    Faronato, Monica; Nguyen, Van T.M.; Patten, Darren K.; Lombardo, Ylenia; Steel, Jennifer H.; Patel, Naina; Woodley, Laura; Shousha, Sami; Pruneri, Giancarlo; Coombes, R. Charles; Magnani, Luca

    2015-01-01

    The acquisition of endocrine therapy resistance in estrogen receptor α (ERα) breast cancer patients represents a major clinical problem. Notch signalling has been extensively linked to breast cancer especially in patients who fail to respond to endocrine therapy. Following activation, Notch intracellular domain is released and enters the nucleus where activates transcription of target genes. The numerous steps that cascade after activation of the receptor complicate using Notch as biomarker. Hence, this warrants the development of reliable indicators of Notch activity. DMXL2 is a novel regulator of Notch signalling not yet investigated in breast cancer. Here, we demonstrate that DMXL2 is overexpressed in a subset of endocrine therapy resistant breast cancer cell lines where it promotes epithelial to mesenchymal transition through hyper-activation of Notch signalling via V-ATPase dependent acidification. Following DMXL2 depletion or treatment with Bafilomycin A1, both EMT targets and Notch signalling pathway significantly decrease. We show for the first time that DMXL2 protein levels are significantly increased in ERα positive breast cancer patients that progress after endocrine therapy. Finally, we demonstrate that DMXL2 is a transmembrane protein with a potential extra-cellular domain. These findings identify DMXL2 as a novel, functional biomarker for ERα positive breast cancer. PMID:26093085

  10. Cellular Migration and Invasion Uncoupled: Increased Migration Is Not an Inexorable Consequence of Epithelial-to-Mesenchymal Transition

    PubMed Central

    Schaeffer, Daneen; Somarelli, Jason A.; Hanna, Gabi; Palmer, Gregory M.

    2014-01-01

    Metastatic dissemination requires carcinoma cells to detach from the primary tumor and invade through the basement membrane. To acquire these characteristics, epithelial tumor cells undergo epithelial-to-mesenchymal transitions (EMT), whereby cells lose polarity and E-cadherin-mediated cell-cell adhesion. Post-EMT cells have also been shown, or assumed, to be more migratory; however, there have been contradictory reports on an immortalized human mammary epithelial cell line (HMLE) that underwent EMT. In the context of carcinoma-associated EMT, it is not yet clear whether the change in migration and invasion must be positively correlated during EMT or whether enhanced migration is a necessary consequence of having undergone EMT. Here, we report that pre-EMT rat prostate cancer (PC) and HMLE cells are more migratory than their post-EMT counterparts. To determine a mechanism for increased epithelial cell migration, gene expression analysis was performed and revealed an increase in epidermal growth factor receptor (EGFR) expression in pre-EMT cells. Indeed, inhibition of EGFR in PC epithelial cells slowed migration. Importantly, while post-EMT PC and HMLE cell lines are less migratory, both remain invasive in vitro and, for PC cells, in vivo. Our study demonstrates that enhanced migration is not a phenotypic requirement of EMT, and migration and invasion can be uncoupled during carcinoma-associated EMT. PMID:25002532

  11. Emerging Transcriptional Mechanisms in the Regulation of Epithelial to Mesenchymal Transition and Cellular Plasticity in the Kidney

    PubMed Central

    De Chiara, Letizia; Crean, John

    2016-01-01

    Notwithstanding controversies over the role of epithelial to mesenchymal transition in the pathogenesis of renal disease, the last decade has witnessed a revolution in our understanding of the regulation of renal cell plasticity. Significant parallels undoubtedly exist between ontogenic processes and the initiation and propagation of damage in the diseased kidney as evidenced by the reactivation of developmental programmes of gene expression, in particular with respect to TGFβ superfamily signaling. Indeed, multiple signaling pathways converge on a complex transcriptional regulatory nexus that additionally involves epigenetic activator and repressor mechanisms and microRNA regulatory networks that control renal cell plasticity. It is becoming increasingly apparent that differentiated cells can acquire an undifferentiated state akin to “stemness” which is leading us towards new models of complex cell behaviors and interactions. Here we discuss the latest findings that delineate new and novel interactions between this transcriptional regulatory network and highlight a hitherto poorly recognized role for the Polycomb Repressive Complex (PRC2) in the regulation of renal cell plasticity. A comprehensive understanding of how external stimuli interact with the epigenetic control of gene expression, in normal and diseased contexts, establishes a new therapeutic paradigm to promote the resolution of renal injury and regression of fibrosis. PMID:26771648

  12. Vitiligo patient-derived keratinocytes exhibit characteristics of normal wound healing via epithelial to mesenchymal transition.

    PubMed

    Banerjee, Poulomi; Venkatachalam, Sandhyaa; Mamidi, Murali Krishna; Bhonde, Ramesh; Shankar, Krupa; Pal, Rajarshi

    2015-05-01

    Vitiligo is an autoimmune disorder that leads to depigmentation of skin via melanocyte dysfunction. Keratinocyte-induced toxicity is one among the several etiological factors implicated for vitiligo, and hence, autologous keratinocyte grafting is projected as one of the primary mode of treatment for vitiligo. However, reports indicate that perilesional keratinocytes not only display signatures of apoptosis but also could secrete cytokines and mediators which have antagonistic effect on proliferation or survival. Therefore, we investigated how vitiligo patients' derived keratinocytes respond to surplus amounts of inflammatory cytokines and whether they recapitulate events that take place during conventional wound healing. The primary objective of our study was to determine whether keratinocytes isolated from a vitiligo patient would undergo epithelial-mesenchymal transition similar to their normal counterparts upon induction with inflammatory cytokines such as TGF-b1 and EGF. We found that these keratinocytes undergo EMT during wound repair accompanied with increase in the levels of mesenchymal markers and ECM proteins; decrease in the levels of epithelial markers and enhanced migratory ability. Besides, we also demonstrated that EMT induction leads to activation of SMAD and MAPK pathways via Ras, Raf, PAI 1, Snail, Slug and ZO1. To our knowledge, this is the first report on the characterization of primary keratinocytes isolated from vitiligo patients with respect to their wound healing capacity.

  13. Sohlh2 suppresses epithelial to mesenchymal transition in breast cancer via downregulation of IL-8

    PubMed Central

    Zhang, Xiaoli; Hao, Chunyan; Hao, Aijun; Gao, Qing; Zhang, Hongying; Sun, Jinhao; Hao, Jing

    2016-01-01

    Breast cancer is one of the deadliest cancers worldwide due to its strong metastasis to other organs. Metastasis of breast cancer involves a complex set of events, including epithelial-mesenchymal transition (EMT) that increases invasiveness of the tumor cells. We previously identified sohlh2 is a tumor suppressor in the pathogenesis of ovarian cancer. However, the functions of sohlh2 in breast cancer cell migration and invasion remain unknown. Here we report a novel sohlh2/IL-8 signaling pathway in the invasive breast cancer. We observed sohlh2 expression was downregulated in the metastatic breast cancer. Ectopic sohlh2 expression in breast cancer cells reduced EMT and inhibited cell migration and invasion in vitro, and metastasis in vivo. Moreover, the depletion of sohlh2 induced the opposite effects to ectopic sohlh2 expression. RNA-Seq data from a sohlh2 knockdown breast cancer cell line showed that after sohlh2 depletion, the mRNA level of interleukin 8 (IL-8) was significantly increased in these cancer cells, which consequently increased secretion of IL-8 protein. Using chromatin immunoprecipitation and reporter assays, we demonstrated that sohlh2 bound to IL-8 promoter and repressed its activities. The enhanced migration and invasion in sohlh2 -ablated MCF-7 cells were blocked by knockdown of IL-8 expression, while exogenous IL-8 neutralized the anti-migratory and invasive activities of sohlh2 in MDA-MB-231cells. Overall, these results demonstrate that sohlh2 functions as a tumor metastasis suppressor via suppressing IL-8 expression in breast cancer. PMID:27384482

  14. LRIG1 opposes epithelial to mesenchymal transition and inhibits invasion of basal-like breast cancer cells

    PubMed Central

    Yokdang, Nucharee; Hatakeyama, Jason; Wald, Jessica H.; Simion, Catalina; Tellez, Joseph D.; Chang, Dennis Z.; Swamynathan, Manojit Mosur; Chen, Mingyi; Murphy, William J.; Carraway, Kermit L.; Sweeney, Colleen

    2015-01-01

    LRIG1, a member of the LRIG family of transmembrane leucine rich repeat-containing proteins, is a negative regulator of receptor tyrosine kinase signaling and a tumor suppressor. LRIG1 expression is broadly decreased in human cancer and in breast cancer, low expression of LRIG1 has been linked to decreased relapse-free survival. Recently, low expression of LRIG1 was revealed to be an independent risk factor for breast cancer metastasis and death. These findings suggest that LRIG1 may oppose breast cancer cell motility and invasion, cellular processes which are fundamental to metastasis. However, very little is known of LRIG1 function in this regard. In this study, we demonstrate that LRIG1 is down-regulated during epithelial to mesenchymal transition (EMT) of human mammary epithelial cells, suggesting that LRIG1 expression may represent a barrier to EMT. Indeed, depletion of endogenous LRIG1 in human mammary epithelial cells expands the stem cell population, augments mammosphere formation and accelerates EMT. Conversely, expression of LRIG1 in highly invasive Basal B breast cancer cells provokes a mesenchymal to epithelial transition accompanied by a dramatic suppression of tumorsphere formation and a striking loss of invasive growth in three-dimensional culture. LRIG1 expression perturbs multiple signaling pathways and represses markers and effectors of the mesenchymal state. Furthermore, LRIG1 expression in MDA-MB-231 breast cancer cells significantly slows their growth as tumors, providing the first in vivo evidence that LRIG1 functions as a growth suppressor in breast cancer. PMID:26387542

  15. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells.

    PubMed

    Yokdang, N; Hatakeyama, J; Wald, J H; Simion, C; Tellez, J D; Chang, D Z; Swamynathan, M M; Chen, M; Murphy, W J; Carraway Iii, K L; Sweeney, C

    2016-06-02

    LRIG1 (leucine-rich repeat and immunoglobulin-like domain containing), a member of the LRIG family of transmembrane leucine-rich repeat-containing proteins, is a negative regulator of receptor tyrosine kinase signaling and a tumor suppressor. LRIG1 expression is broadly decreased in human cancer and in breast cancer and low expression of LRIG1 has been linked to decreased relapse-free survival. Recently, low expression of LRIG1 was revealed to be an independent risk factor for breast cancer metastasis and death. These findings suggest that LRIG1 may oppose breast cancer cell motility and invasion, cellular processes that are fundamental to metastasis. However, very little is known of LRIG1 function in this regard. In this study, we demonstrate that LRIG1 is downregulated during epithelial-to-mesenchymal transition (EMT) of human mammary epithelial cells, suggesting that LRIG1 expression may represent a barrier to EMT. Indeed, depletion of endogenous LRIG1 in human mammary epithelial cells expands the stem cell population, augments mammosphere formation and accelerates EMT. Conversely, expression of LRIG1 in highly invasive Basal B breast cancer cells provokes a mesenchymal-to-epithelial transition accompanied by a dramatic suppression of tumorsphere formation and a striking loss of invasive growth in three-dimensional culture. LRIG1 expression perturbs multiple signaling pathways and represses markers and effectors of the mesenchymal state. Furthermore, LRIG1 expression in MDA-MB-231 breast cancer cells significantly slows their growth as tumors, providing the first in vivo evidence that LRIG1 functions as a growth suppressor in breast cancer.

  16. Loss of Trop2 promotes carcinogenesis and features of epithelial to mesenchymal transition in squamous cell carcinoma.

    PubMed

    Wang, Jianbo; Zhang, Kaihua; Grabowska, Dorota; Li, Aimin; Dong, Yiyu; Day, Ryan; Humphrey, Peter; Lewis, James; Kladney, Raleigh D; Arbeit, Jeffrey M; Weber, Jason D; Chung, Christine H; Michel, Loren S

    2011-12-01

    Trop2, an oncogenic cell surface protein under investigation as a therapeutic target, is commonly overexpressed in several epithelial tumor types yet its function in tumor biology remains relatively unexplored. To investigate the role of Trop2 in epithelial carcinogenesis, we generated Trop2(-/-) mice, which are viable and possess a normal lifespan. Contrary to expectations, Trop2 loss fails to suppress keratinocyte transformation. Instead, ras-transformed Trop2(-/-) keratinocytes preferentially pass through an epithelial to mesenchymal transition (EMT) and form tumors with spindle cell histology. Furthermore, Trop2 loss renders Arf-null mice susceptible to the formation of biphasic sarcomatoid carcinomas containing both squamous and spindle cell components upon carcinogen exposure in an otherwise skin cancer-resistant strain (C57BL/6). Immortalized keratinocytes derived from Trop2(-/-)Arf(-/-) mice exhibit enhanced proliferative and migratory capacity as well as increased activation of mitogen-activated protein kinase and Src prior to transformation. The clinical relevance of these findings was supported by studying the molecular epidemiology of Trop2 in primary head and neck squamous cell carcinomas. This analysis revealed that Trop2 mRNA levels are decreased in a subset of tumors with features of EMT, and total loss of Trop2 protein expression is observed in the spindle cell component of sarcomatoid carcinomas. Therefore, while previous studies have emphasized the potential importance of Trop2 gain of function, these results uncover a role for Trop2 loss in tumorigenesis and the mesenchymal transdifferentiation observed in a subset of squamous cell carcinomas.

  17. Doxycycline as an inhibitor of the epithelial-to-mesenchymal transition and vasculogenic mimicry in hepatocellular carcinoma.

    PubMed

    Meng, Jie; Sun, Baocun; Zhao, Xiulan; Zhang, Danfang; Zhao, Xueming; Gu, Qiang; Dong, Xueyi; Zhao, Nan; Liu, Peimei; Liu, Yanrong

    2014-12-01

    This study was conducted to examine the effects of doxycycline on the survival time and proliferation of hepatocellular carcinoma (HCC) in vivo and on the biologic functions of HCC in vitro. This study was also designed to evaluate the effects of doxycycline on epithelial-to-mesenchymal transition (EMT)- and vasculogenic mimicry (VM)-related protein expression and on matrix metalloproteinase (MMP) and DNA methyltransferase (DNMT) activity in vitro. Human MHCC97H cells were injected into BALB/c mice, which were divided into treatment and control groups. Doxycycline treatment prolonged the mouse survival time and partly suppressed the growth of engrafted HCC tumor cells, with an inhibition rate of 43.39%. Higher amounts of VM and endothelium-dependent vessels were found in the control group than the treatment group. IHC indicated that epithelial (E)-cadherin expression was increased in the doxycycline-treated mice compared with the control group. In in vitro experiments, doxycycline promoted HCC cell adhesion but inhibited HCC cell viability, proliferation, migration, and invasion. Western blot analysis, semiquantitative RT-PCR, qRT-PCR, and immunofluorescence demonstrated that doxycycline inhibited the degradation of the epithelial marker E-cadherin and downregulated the expression levels of EMT promoters, the mesenchymal marker vimentin, and the VM-associated marker vascular endothelial (VE)-cadherin. Furthermore, the activities of MMPs and DNMTs were examined in different groups via gelatin zymography and a DNMT activity assay kit. A methylation-specific PCR was performed to assess the promoter methylation of CDH1 (the gene encoding E-cadherin). Doxycycline prolonged the mouse survival time by inhibiting EMT progression and VM formation.

  18. Exploring the role of sphingolipid machinery during the epithelial to mesenchymal transition program using an integrative approach

    PubMed Central

    Meshcheryakova, Anastasia; Köfeler, Harald C.; Triebl, Alexander; Mungenast, Felicitas; Heinze, Georg; Gerner, Christopher; Zimmermann, Philip; Jaritz, Markus; Mechtcheriakova, Diana

    2016-01-01

    The epithelial to mesenchymal transition (EMT) program is activated in epithelial cancer cells and facilitates their ability to metastasize based on enhanced migratory, proliferative, anti-apoptotic, and pluripotent capacities. Given the fundamental impact of sphingolipid machinery to each individual process, the sphingolipid-related mechanisms might be considered among the most prominent drivers/players of EMT; yet, there is still limited knowledge. Given the complexity of the interconnected sphingolipid system, which includes distinct sphingolipid mediators, their synthesizing enzymes, receptors and transporters, we herein apply an integrative approach for assessment of the sphingolipid-associated mechanisms underlying EMT program. We created the sphingolipid-/EMT-relevant 41-gene/23-gene signatures which were applied to denote transcriptional events in a lung cancer cell-based EMT model. Based on defined 35-gene sphingolipid/EMT-attributed signature of regulated genes, we show close associations between EMT markers, genes comprising the sphingolipid network at multiple levels and encoding sphingosine 1-phosphate (S1P)-/ceramide-metabolizing enzymes, S1P and lysophosphatidic acid (LPA) receptors and S1P transporters, pluripotency genes and inflammation-related molecules, and demonstrate the underlying biological pathways and regulators. Mass spectrometry-based sphingolipid analysis revealed an EMT-attributed shift towards increased S1P and LPA accompanied by reduced ceramide levels. Notably, using transcriptomics data across various cell-based perturbations and neoplastic tissues (24193 arrays), we identified the sphingolipid/EMT signature primarily in lung adenocarcinoma tissues; besides, bladder, colorectal and prostate cancers were among the top-ranked. The findings also highlight novel regulatory associations between influenza virus and the sphingolipid/EMT-associated mechanisms. In sum, data propose the multidimensional contribution of sphingolipid machinery

  19. Targeting the Nuclear Export Protein XPO1/CRM1 Reverses Epithelial to Mesenchymal Transition

    PubMed Central

    Azmi, Asfar S.; Muqbil, Irfana; Wu, Jack; Aboukameel, Amro; Senapedis, William; Baloglu, Erkan; Bollig-Fischer, Aliccia; Dyson, Gregory; Kauffman, Michael; Landesman, Yosef; Shacham, Sharon; Philip, Philip A.; Mohammad, Ramzi M.

    2015-01-01

    Here we demonstrate for the first time that targeted inhibition of nuclear exporter protein exportin 1 (XPO1) also known as chromosome maintenance region 1 (CRM1) by Selective Inhibitor of Nuclear Export (SINE) compounds results in reversal of EMT in snail-transduced primary human mammary epithelial cells (HMECs). SINE compounds selinexor (KPT-330) and KPT-185, leptomycin B (LMB as +ve control) but not KPT-301 (–ve control) reverse EMT, suppress mesenchymal markers and consequently induce growth inhibition, apoptosis and prevent spheroid formation. SINE treatment resulted in nuclear retention of snail regulator FBXL5 that was concurrent with suppression of snail and down-regulation of mesenchymal markers. FBXL5 siRNA or transfection with cys528 mut-Xpo1 (lacking SINE binding site) markedly abrogated SINE activity highlighting an XPO1 and FBXL5 mediated mechanism of action. Silencing XPO1 or snail caused re-expression of FBXL5 as well as EMT reversal. Pathway analysis on SINE treated HMECs further verified the involvement of additional F-Box family proteins and confirmed the suppression of snail network. Oral administration of selinexor (15 mg/kg p.o. QoDx3/week for 3weeks) resulted in complete cures (no tumor rebound at 120 days) of HMLER-Snail xenografts. These findings raise the unique possibility of blocking EMT at the nuclear pore. PMID:26536918

  20. Small cell lung cancer, an epithelial to mesenchymal transition (EMT)-like cancer: significance of inactive Notch signaling and expression of achaete-scute complex homologue 1.

    PubMed

    Ito, Takaaki; Kudoh, Shinji; Ichimura, Takaya; Fujino, Kosuke; Hassan, Wael Ahmed Maher Abdo; Udaka, Naoko

    2017-01-01

    Small cell lung cancer (SCLC) is one of the most malignant neoplasms in common human cancers. The tumor is composed of small immature-looking cells with a round or fusiform shape, which possesses weak adhesion features among them, suggesting that SCLC shows the morphological characteristics of epithelial to mesenchymal transition (EMT). SCLC is characterized by high metastatic and recurrent rates, sensitivity to the initial chemotherapy, and easy acquirement of chemoresistance afterwards. These characters may be related to the EMT phenotype of SCLC. Notch signaling is an important signaling pathway, and could have roles in regulating neuroendocrine differentiation, proliferation, cell adhesion, EMT, and chemoresistance. Notch1 is usually absent in SCLC in vivo, but could appear after chemotherapy. Notch1 can enhance cell adhesion by induction of E-cadherin in SCLC, which indicates mesenchymal to epithelial transition. On the other hand, achaete-scute complex homologue 1 (ASCL1), negatively regulated by Notch signaling, is a lineage-specific gene of SCLC, and functions to promote neuroendocrine differentiation as well as EMT. ASCL1-transfected adenocarcinoma cell lines induced neuroendocrine phenotypes and lost epithelial cell features. SCLC is characterized by neuroendocrine differentiation and EMT-like features, which could be produced by inactive Notch signaling and ASCL1 expression. In addition, chemical and radiation treatments can activate Notch signaling, which suppress neuroendocrine differentiation and induces chemoradioresistance, accompanied by secession from EMT. Thus, the status of Notch signaling and ASCL1 expression may determine the cell behaviors of SCLC partly through modifying EMT phenotypes.

  1. Antrodin C inhibits epithelial-to-mesenchymal transition and metastasis of breast cancer cells via suppression of Smad2/3 and β-catenin signaling pathways.

    PubMed

    Kumar, K J Senthil; Vani, M Gokila; Chueh, Pin-Ju; Mau, Jeng-Leun; Wang, Sheng-Yang

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) is a crucial event involved metastasis of certain tumors. Thus, identifying chemical agents that can block EMT is highly warranted for the development of anti-cancer chemoprevention/chemotherapies. In this study, we found that Antrodin C (ADC), a maleimide derivative isolated from Antrodia cinnamomea health food product inhibits TGF-β1-induced EMT and breast cancer cell metastasis in vitro. Pretreatment of MCF-7 cells with ADC significantly blocked TGF-β1-induced phenotypic changes and actin cytoskeleton remodeling. In addition, ADC was able to up-regulate epithelial markers such as E-cadherin and occludin, whereas mesenchymal markers including N-cadherin and vimentin were significantly inhibited, possibly through the modulation of transcriptional regulators Smad/Smad3. ADC blocked TGF-β1-induced migration and invasion of MCF-7 cells through the down-regulation of matrix-metalloproteinases (MMP-2, -9) and urokinase plasminogen activator (uPA). The inhibition of MMPs and uPA activity by ADC was reasoned by suppression of its corresponding transcription factor β-catenin. Taken together, our data suggested that ADC attenuates the TGF-β1-induced EMT, migration and invasion of human breast carcinoma through the suppression of Smad2/3 and β-catenin signaling pathways.

  2. Antrodin C Inhibits Epithelial-to-Mesenchymal Transition and Metastasis of Breast Cancer Cells via Suppression of Smad2/3 and β-Catenin Signaling Pathways

    PubMed Central

    Kumar, K. J. Senthil; Vani, M. Gokila; Chueh, Pin-Ju; Mau, Jeng-Leun; Wang, Sheng-Yang

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) is a crucial event involved metastasis of certain tumors. Thus, identifying chemical agents that can block EMT is highly warranted for the development of anti-cancer chemoprevention/chemotherapies. In this study, we found that Antrodin C (ADC), a maleimide derivative isolated from Antrodia cinnamomea health food product inhibits TGF-β1-induced EMT and breast cancer cell metastasis in vitro. Pretreatment of MCF-7 cells with ADC significantly blocked TGF-β1-induced phenotypic changes and actin cytoskeleton remodeling. In addition, ADC was able to up-regulate epithelial markers such as E-cadherin and occludin, whereas mesenchymal markers including N-cadherin and vimentin were significantly inhibited, possibly through the modulation of transcriptional regulators Smad/Smad3. ADC blocked TGF-β1-induced migration and invasion of MCF-7 cells through the down-regulation of matrix-metalloproteinases (MMP-2, -9) and urokinase plasminogen activator (uPA). The inhibition of MMPs and uPA activity by ADC was reasoned by suppression of its corresponding transcription factor β-catenin. Taken together, our data suggested that ADC attenuates the TGF-β1-induced EMT, migration and invasion of human breast carcinoma through the suppression of Smad2/3 and β-catenin signaling pathways. PMID:25658913

  3. PAC exhibits potent anti-colon cancer properties through targeting cyclin D1 and suppressing epithelial-to-mesenchymal transition.

    PubMed

    Al-Qasem, Abeer; Al-Howail, Huda A; Al-Swailem, Mashael; Al-Mazrou, Amer; Al-Otaibi, Basem; Al-Jammaz, Ibrahim; Al-Khalaf, Huda H; Aboussekhra, Abdelilah

    2016-03-01

    Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality worldwide. Although response rates and overall survival have been improved in recent years, resistance to multiple drug combinations is inevitable. Therefore, the development of more efficient drugs, with fewer side effects is urgently needed. To this end, we have investigated in the present report the effect of PAC, a novel cucumin analogue, on CRC cells both in vitro and in vivo. We have shown that PAC induces apoptosis, mainly via the internal mitochondrial route, and inhibits cell proliferation through delaying the cell cycle at G2/M phase. Interestingly, the pro-apoptotic effect was mediated through STAT3-dependent down-regulation of cyclin D1 and its downstream target survivin. Indeed, change in the expression level of cyclin D1 modulated the expression of survivin and the response of CRC cells to PAC. Furthermore, using the ChIP assay, we have shown PAC-dependent reduction in the binding of STAT3 to the cyclin D1 promoter in vivo. Additionally, PAC suppressed the epithelial-to-mesenchymal process through down-regulating the mesenchymal markers (N-cadherin, vimentin and Twist1) and inhibiting the invasion/migration abilities of the CRC cells via repressing the pro-migration/invasion protein kinases AKT and ERK1/2. In addition, PAC inhibited tumor growth and repressed the JAK2/STAT3, AKT/mTOR and MEK/ERK pathways as well as their common downstream effectors cyclin D1 and survivin in humanized CRC xenografts. Collectively, these results indicate that PAC has potent anti-CRC effects, and therefore could constitute an effective alternative chemotherapeutic agent, which may consolidate the adjuvant treatment of colon cancer.

  4. Expression of neuroendocrine factor VGF in lung cancer cells confers resistance to EGFR kinase inhibitors and triggers epithelial-to-mesenchymal transition.

    PubMed

    Wen, Hwang; Chiu, Yu-Fan; Kuo, Ming-Han; Lee, Kuan-Lin; Lee, An-Chun; Yu, Chia-Cherng; Chang, Junn-Liang; Huang, Wen-Chien; Hsiao, Shih-Hsin; Lin, Sey-En; Chou, Yu-Ting

    2017-04-05

    Mutations in EGFR drive tumor growth but render tumor cells sensitive to treatment with EGFR tyrosine kinase inhibitors (TKIs). Phenotypic alteration in epithelial-to-mesenchymal transition (EMT) has been linked to the TKI resistance in lung adenocarcinoma. However, the mechanism underlying this resistance remains unclear. Here we report that high expression of a neuroendocrine factor termed VGF induces the transcription factor TWIST1 to facilitate TKI resistance, EMT, and cancer dissemination in a subset of lung adenocarcinoma cells. VGF silencing resensitized EGFR-mutated lung adenocarcinoma cells to TKI. Conversely, overexpression of VGF in sensitive cells conferred resistance to TKIs and induced EMT, increasing migratory and invasive behaviors. Correlation analysis revealed a significant association of VGF expression with advanced tumor grade and poor survival in patients with lung adenocarcinoma. In a mouse xenograft model of lung adenocarcinoma, suppressing VGF expression was sufficient to attenuate tumor growth. Overall, our findings show how VGF can confer TKI resistance and trigger EMT, suggesting its potential utility as a biomarker and therapeutic target in lung adenocarcinoma.

  5. Helicobacter pylori CagA and IL-1β Promote the Epithelial-to-Mesenchymal Transition in a Nontransformed Epithelial Cell Model

    PubMed Central

    Arévalo-Romero, Haruki; Meza, Isaura; Vallejo-Flores, Gabriela

    2016-01-01

    Gastric cancer is the third cause of cancer death worldwide and infection by Helicobacter pylori (H. pylori) is considered the most important risk factor, mainly by the activity of its virulence factor CagA. H. pylori/CagA-induced chronic inflammation triggers a series of gastric lesions of increased severity, starting with gastritis and ending with cancer. IL-1β has been associated with tumor development and invasiveness in different types of cancer, including gastric cancer. Currently, it is not clear if there is an association between CagA and IL-1β at a cellular level. In this study, we analyzed the effects of IL-1β and CagA on MCF-10A nontransformed cells. We found evidence that both CagA and IL-1β trigger the initiation of the epithelial-to-mesenchymal transition characterized by β-catenin nuclear translocation, increased expression of Snail1 and ZEB1, downregulation of CDH1, and morphological changes during MCF-10A acini formation. However, only CagA induced MMP9 activity and cell invasion. Our data support that IL-1β and CagA target the β-catenin pathway, with CagA leading to acquisition of a stage related to aggressive tumors. PMID:27525003

  6. Crk-like adapter protein regulates CCL19/CCR7-mediated epithelial-to-mesenchymal transition via ERK signaling pathway in epithelial ovarian carcinomas.

    PubMed

    Cheng, Shaomei; Guo, Jingyan; Yang, Qing; Yang, Xiangshan

    2015-03-01

    Recent studies have suggested that Crk-like adapter protein (CrkL) and epithelial-to-mesenchymal transition (EMT) induced by CCL19/CCR7 play an important role in ovarian epithelial carcinogenesis. However, the regulatory mechanisms of CrkL on the CCL19/CCR7 signaling pathways in epithelial ovarian carcinomas (EOC) are not well characterized. Here, CCR7 and CrkL proteins were tested in 30 EOC tissues and cell lines. In vitro, the roles of CrkL in CCL19-stimulated SKOV-3 cell invasion and migration were investigated. In this work, CCR7 and CrkL over-expressed in EOC tissues and cell lines and correlated with FIGO stage and lymph node metastasis. Moreover, CCR7 and CrkL serve as an independent prognostic factor. In SKOV-3 cells, CrkL knockdown markedly suppressed the CCL19-stimulated expression of p-ERK and EMT biomarkers (N-cadherin, Snail and MMP9), compared with control. In contrast, p-AKT expression level did not change. On the other hand, functional analysis revealed CrkL knockdown could significantly decrease SKOV-3 cell invasion number of transwell invasion assay, and wound closure area of wound healing assay, compared to control. In conclusion, CrkL regulates CCL19/CCR7-induced EMT via ERK signaling pathway in EOC patients, which further suggested CrkL could be suggested as an efficient target in ovarian cancer treatment.

  7. miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-β signalling pathway

    PubMed Central

    Zhu, Z; Xu, Y; Zhao, J; Liu, Q; Feng, W; Fan, J; Wang, P

    2015-01-01

    Background: Aberrant Smad7 expression contributes to the invasion and metastasis of pancreatic cancer cells. However, the potential mechanism underlying aberrant Smad7 expression in human pancreatic ductal adenocarcinoma (PDAC) remains largely unknown. Methods: Bioinformatic prediction programmes and luciferase reporter assay were used to identify microRNAs regulating Smad7. The association between miR-367 expression and the overall survival of PDAC patients was evaluated by Kaplan–Meier analysis. The effects of miR-367 and Smad7 on the invasion and metastasis of pancreatic cancer cells were investigated both in vitro and in vivo. Results: We found that miR-367 downregulated Smad7 expression by directly targeting its 3′-UTR in human pancreatic cancer cells. High level of miR-367 expression correlated with poor prognosis of PDAC patients. Functional studies showed that miR-367 promoted pancreatic cancer invasion in vitro and metastasis in vivo through downregulating Smad7. In addition, we showed that miR-367 promoted epithelial-to-mesenchymal transition by increasing transforming growth factor-β (TGF-β)-induced transcriptional activity. Conclusions: The present study identified and characterised a signalling pathway, the miR-367/Smad7-TGF-β pathway, which is involved in the invasion and metastasis of pancreatic cancer cells. Our results suggest that miR-367 may be a promising therapeutic target for the treatment of human pancreatic cancer. PMID:25867271

  8. Network modeling of TGFβ signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint sonic hedgehog and Wnt pathway activation.

    PubMed

    Steinway, Steven Nathaniel; Zañudo, Jorge G T; Ding, Wei; Rountree, Carl Bart; Feith, David J; Loughran, Thomas P; Albert, Reka

    2014-11-01

    Epithelial-to-mesenchymal transition (EMT) is a developmental process hijacked by cancer cells to leave the primary tumor site, invade surrounding tissue, and establish distant metastases. A hallmark of EMT is the loss of E-cadherin expression, and one major signal for the induction of EMT is TGFβ, which is dysregulated in up to 40% of hepatocellular carcinoma (HCC). We have constructed an EMT network of 70 nodes and 135 edges by integrating the signaling pathways involved in developmental EMT and known dysregulations in invasive HCC. We then used discrete dynamic modeling to understand the dynamics of the EMT network driven by TGFβ. Our network model recapitulates known dysregulations during the induction of EMT and predicts the activation of the Wnt and Sonic hedgehog (SHH) signaling pathways during this process. We show, across multiple murine (P2E and P2M) and human HCC cell lines (Huh7, PLC/PRF/5, HLE, and HLF), that the TGFβ signaling axis is a conserved driver of mesenchymal phenotype HCC and confirm that Wnt and SHH signaling are induced in these cell lines. Furthermore, we identify by network analysis eight regulatory feedback motifs that stabilize the EMT process and show that these motifs involve cross-talk among multiple major pathways. Our model will be useful in identifying potential therapeutic targets for the suppression of EMT, invasion, and metastasis in HCC.

  9. An hTERT/ZEB1 complex directly regulates E-cadherin to promote epithelial-to-mesenchymal transition (EMT) in colorectal cancer.

    PubMed

    Qin, Yong; Tang, Bo; Hu, Chang-Jiang; Xiao, Yu-Feng; Xie, Rui; Yong, Xin; Wu, Yu Yun; Dong, Hui; Yang, Shi-Ming

    2016-01-05

    In human cancer, high telomerase expression is correlated with tumor aggressiveness and metastatic potential. Telomerase activation occurs through telomerase reverse transcriptase (hTERT) induction, which contributes to malignant transformation by stabilizing telomeres. Previous studies have shown that hTERT can promote tumor invasion and metastasis of gastric cancer, liver cancer and esophageal cancer. Epithelial-to-mesenchymal transition (EMT), a requirement for tumor invasion and metastasis, plays a key role in cancer progression. Although hTERT promotes EMT through Wnt signaling in several cancers, it is unknown if other signaling pathways are involved. In the present study, we found that hTERT and ZEB1 form a complex, which directly binds to the E-cadherin promoter, and then inhibits E-cadherin expression and promots EMT in colorectal cancer cells. hTERT overexpression in HCT116 and SW480 cells could induce E-cadherin down-regulation. However, E-cadherin expression was recovered when ZEB1 function was impaired even during hTERT overexpression. Taken together, our findings suggest that hTERT can promote cancer metastasis by stimulating EMT through the ZEB1 pathway and therefore inhibiting them may prevent cancer progression.

  10. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model

    PubMed Central

    Gagliano, Nicoletta; Celesti, Giuseppe; Tacchini, Lorenza; Pluchino, Stefano; Sforza, Chiarella; Rasile, Marco; Valerio, Vincenza; Laghi, Luigi; Conte, Vincenzo; Procacci, Patrizia

    2016-01-01

    AIM: To analyze the effect of three-dimensional (3D)-arrangement on the expression of epithelial-to-mesenchymal transition markers in pancreatic adenocarcinoma (PDAC) cells. METHODS: HPAF-II, HPAC, and PL45 PDAC cells were cultured in either 2D-monolayers or 3D-spheroids. Ultrastructure was analyzed by transmission electron microscopy. The expression of E-cadherin, β-catenin, N-cadherin, collagen type I (COL-I), vimentin, α-smooth muscle actin (αSMA), and podoplanin was assayed by confocal microscopy in cells cultured on 12-mm diameter round coverslips and in 3D-spheroids. Gene expression for E-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 was quantified by real-time PCR. E-cadherin protein level and its electrophoretic pattern were studied by Western blot in cell lysates obtained from cells grown in 2D-monolayers and 3D-spheroids. RESULTS: The E-cadherin/β-catenin complex was expressed in a similar way in plasma membrane cell boundaries in both 2D-monolayers and 3D-spheroids. E-cadherin increased in lysates obtained from 3D-spheroids, while cleavage fragments were more evident in 2D-monolayers. N-cadherin expression was observed in very few PDAC cells grown in 2D-monolayers, but was more evident in 3D-spheroids. Some cells expressing COL-I were observed in 3D-spheroids. Podoplanin, expressed in collectively migrating cells, and αSMA were similarly expressed in both experimental conditions. The concomitant maintenance of the E-cadherin/β-catenin complex at cell boundaries supports the hypothesis of a collective migration for these cells, which is consistent with podoplanin expression. CONCLUSION: We show that a 3D-cell culture model could provide deeper insight into understanding the biology of PDAC and allow for the detection of marked differences in the phenotype of PDAC cells grown in 3D-spheroids. PMID:27182158

  11. Lack of Radiation Dose or Quality Dependence of Epithelial-to-Mesenchymal Transition (EMT) Mediated by Transforming Growth Factor {beta}

    SciTech Connect

    Andarawewa, Kumari L.; Costes, Sylvain V.; Fernandez-Garcia, Ignacio; Chou, William S.; Ravani, Shraddha A.; Park, Howard; Barcellos-Hoff, Mary Helen

    2011-04-01

    Purpose: Epithelial-to-mesenchymal transition (EMT) is a phenotype that alters cell morphology, disrupts morphogenesis, and increases motility. Our prior studies have shown that the progeny of human mammary epithelial cells (HMECs) irradiated with 2 Gy undergoes transforming growth factor {beta} (TGF-{beta})-mediated EMT. In this study we determined whether radiation dose or quality affected TGF-{beta}-mediated EMT. Methods and Materials: HMECs were cultured on tissue culture plastic or in Matrigel (BD Biosciences, San Jose, CA) and exposed to low or high linear energy transfer (LET) and TGF-{beta} (400 pg/mL). Image analysis was used to measure membrane-associated E-cadherin, a marker of functional epithelia, or fibronectin, a product of mesenchymal cells, as a function of radiation dose and quality. Results: E-cadherin was reduced in TGF-{beta}-treated cells irradiated with low-LET radiation doses between 0.03 and 2 Gy compared with untreated, unirradiated cells or TGF-{beta} treatment alone. The radiation quality dependence of TGF-{beta}-mediated EMT was determined by use of 1 GeV/amu (gigaelectron volt / atomic mass unit) {sup 56}Fe ion particles at the National Aeronautics and Space Administration's Space Radiation Laboratory. On the basis of the relative biological effectiveness of 2 for {sup 56}Fe ion particles' clonogenic survival, TGF-{beta}-treated HMECs were irradiated with equitoxic 1-Gy {sup 56}Fe ion or 2-Gy {sup 137}Cs radiation in monolayer. Furthermore, TGF-{beta}-treated HMECs irradiated with either high- or low-LET radiation exhibited similar loss of E-cadherin and gain of fibronectin and resulted in similar large, poorly organized colonies when embedded in Matrigel. Moreover, the progeny of HMECs exposed to different fluences of {sup 56}Fe ion underwent TGF-{beta}-mediated EMT even when only one-third of the cells were directly traversed by the particle. Conclusions: Thus TGF-{beta}-mediated EMT, like other non-targeted radiation effects, is

  12. Epithelial-to-mesenchymal transition in breast cancer: a role for insulin-like growth factor I and insulin-like growth factor–binding protein 3?

    PubMed Central

    Zielinska, Hanna A; Bahl, Amit; Holly, Jeff MP; Perks, Claire M

    2015-01-01

    Evidence indicates that for most human cancers the problem is not that gene mutations occur but is more dependent upon how the body deals with damaged cells. It has been estimated that only about 1% of human cancers can be accounted for by unmistakable hereditary cancer syndromes, only up to 5% can be accounted for due to high-penetrance, single-gene mutations, and in total only 5%–15% of all cancers may have a major genetic component. The predominant contribution to the causation of most sporadic cancers is considered to be environmental factors contributing between 58% and 82% toward different cancers. A nutritionally poor lifestyle is associated with increased risk of many cancers, including those of the breast. As nutrition, energy balance, macronutrient composition of the diet, and physical activity levels are major determinants of insulin-like growth factor (IGF-I) bioactivity, it has been proposed that, at least in part, these increases in cancer risk and progression may be mediated by alterations in the IGF axis, related to nutritional lifestyle. Localized breast cancer is a manageable disease, and death from breast cancer predominantly occurs due to the development of metastatic disease as treatment becomes more complicated with poorer outcomes. In recent years, epithelial-to-mesenchymal transition has emerged as an important contributor to breast cancer progression and malignant transformation resulting in tumor cells with increased potential for migration and invasion. Furthermore, accumulating evidence suggests a strong link between components of the IGF pathway, epithelial-to-mesenchymal transition, and breast cancer mortality. Here, we highlight some recent studies highlighting the relationship between IGFs, IGF-binding protein 3, and epithelial-to-mesenchymal transition. PMID:25632238

  13. PARP3 controls TGFβ and ROS driven epithelial-to-mesenchymal transition and stemness by stimulating a TG2-Snail-E-cadherin axis

    PubMed Central

    Karicheva, Olga; Rodriguez-Vargas, José Manuel; Wadier, Nadège; Martin-Hernandez, Kathline; Vauchelles, Romain; Magroun, Najat; Tissier, Agnès; Schreiber, Valérie; Dantzer, Françoise

    2016-01-01

    Several members of the Poly(ADP-ribose) polymerase (PARP) family are essential regulators of genome integrity, actively prospected as drug targets for cancer therapy. Among them, PARP3 is well characterized for its functions in double-strand break repair and mitotis. Here we report that PARP3 also plays an integral role in TGFβ and reactive oxygen species (ROS) dependent epithelial-to-mesenchymal transition (EMT) and stem-like cell properties in human mammary epithelial and breast cancer cells. PARP3 expression is higher in breast cancer cells of the mesenchymal phenotype and correlates with the expression of the mesenchymal marker Vimentin while being in inverse correlation with the epithelial marker E-cadherin. Furthermore, PARP3 expression is significantly upregulated during TGFβ-induced EMT in various human epithelial cells. In line with this observation, PARP3 depletion alters TGFβ-dependent EMT of mammary epithelial cells by preventing the induction of the Snail-E-cadherin axis, the dissolution of cell junctions, the acquisition of cell motility and chemoresistance. PARP3 responds to TGFβ-induced ROS to promote a TG2-Snail-E-cadherin axis during EMT. Considering the link between EMT and cancer stem cells, we show that PARP3 promotes stem-like cell properties in mammary epithelial and breast cancer cells by inducing the expression of the stem cell markers SOX2 and OCT4, by increasing the proportion of tumor initiating CD44high/CD24low population and the formation of tumor spheroid bodies, and by promoting stem cell self-renewal. These findings point to a novel role of PARP3 in the control of TGFβ-induced EMT and acquisition of stem-like cell features and further motivate efforts to identify PARP3 specific inhibitors. PMID:27579892

  14. A regulatory loop involving miR-29c and Sp1 elevates the TGF-β1 mediated epithelial-to-mesenchymal transition in lung cancer

    PubMed Central

    Zhang, Hai-wei; Wang, En-wen; Li, Li-xian; Yi, Shou-hui; Li, Lu-chun; Xu, Fa-liang; Wang, Dong-lin; Wu, Yong-zhong; Nian, Wei-qi

    2016-01-01

    Specificity protein1 (Sp1) is required for TGF-β-induced epithelial-to-mesenchymal transition (EMT) which has been demonstrated to aggravate the progression of cancer including lung cancer. microRNA-29c (miR-29c) is identified to inhibit EMT, but the correlation between miR-29c and Sp1 in human lung cancer remain incompletely clarified. Here, we confirmed decreased expression of miR-29c and enhanced expression of Sp1 in lung cancer tissues (n = 20) and found that Sp1 could be targeted and inhibited by miR-29c. Besides, the expression of miR-29c was down-regulated in high-metastatic lung cancer cell lines and TGF-β1-treated cells. The inhibition of miR-29c or overexpression of Sp1 in 95C and A549 cells dramatically enhanced the cell migration and invasion, and also induced the decrease in the expression of epithelial markers, e.g. thyroid transcription factor 1 (TTF-1) and E-cadherin, together with an increase in mesenchymal markers including vimentin, α-smooth muscle actin (α-SMA), which could be restored by overexpression of miR-29c mimics during the TGF-β-induced EMT. Moreover, dual-luciferase reporter assay was performed and the results indicated that miR-29c/Sp1 could form an auto-regulatory loop with TGF-β1, which impaired TGFB1 transcription. Furthermore, miR-29c overexpression could abrogate the tumor progression and inhibit the Sp1/TGF-β expressions in vivo, indicating that miR-29c could be a tumor suppressor and repress the Sp1/TGF-β axis-induced EMT in lung cancer. PMID:27829234

  15. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice

    PubMed Central

    Yang, Guannan; Zhao, Zongjiang; Zhang, Xinxue; Wu, Amin; Huang, Yawei; Miao, Yonghui; Yang, Meijuan

    2017-01-01

    Renal tubular epithelial-to-mesenchymal transition (EMT) and renal tubular interstitial fibrosis are the main pathological changes of diabetic nephropathy (DN), which is a common cause of end-stage renal disease. Previous studies have suggested that berberine (BBR) has antifibrotic effects in the kidney and can reduce apoptosis and inhibit the EMT of podocytes in DN. However, the effect of BBR on the renal tubular EMT in DN and its mechanisms of action are unknown. This study was performed to explore the effects of BBR on the renal tubular EMT and the molecular mechanisms of BBR in DN model KKAy mice and on the high glucose (HG)-induced EMT in mouse renal tubular epithelial cells. Our results showed that, relative to the model mice, the mice in the treatment group had an improved general state and reduced blood glucose and 24-h urinary protein levels. Degradation of renal function was ameliorated by BBR. We also observed the protective effects of BBR on renal structural changes, including normalization of an index of renal interstitial fibrosis and kidney weight/body weight. Moreover, BBR suppressed the activation of the Notch/snail pathway and upregulated the α-SMA and E-cadherin levels in DN model KKAy mice. BBR was further found to prevent HG-induced EMT events and to inhibit the HG-induced expression of Notch pathway members and snail1 in mouse renal tubular epithelial cells. Our findings indicate that BBR has a therapeutic effect on DN, including its inhibition of the renal tubular EMT and renal interstitial fibrosis. Furthermore, the BBR-mediated EMT inhibition occurs through Notch/snail pathway regulation.

  16. Proteomic Analysis of Epithelial to Mesenchymal Transition (EMT) Reveals Cross-talk between SNAIL and HDAC1 Proteins in Breast Cancer Cells*

    PubMed Central

    Palma, Camila de Souza; Grassi, Mariana Lopes; Thomé, Carolina Hassibe; Ferreira, Germano Aguiar; Albuquerque, Daniele; Pinto, Mariana Tomazini; Ferreira Melo, Fernanda Ursoli; Kashima, Simone; Covas, Dimas Tadeu; Pitteri, Sharon J.; Faça, Vitor M.

    2016-01-01

    Epithelial to mesenchymal transition (EMT)1 occurs naturally during embryogenesis, tissue repair, cancer progression, and metastasis. EMT induces cellular and microenvironmental changes resulting in loss of epithelial and acquisition of mesenchymal phenotypes, which promotes cellular invasive and migratory capabilities. EMT can be triggered by extracellular factors, including TGF-β, HGF, and EGF. Overexpression of transcription factors, such as SNAIL, SLUG, ZEB1/2, and TWIST1, also induces EMT and is correlated to cancer aggressiveness. Here, the breast adenocarcinoma cell line MCF7 was transduced with SNAIL to identify specific mechanisms controlled by this transcription factor during EMT. Overexpression of SNAIL led to EMT, which was thoroughly validated by molecular, morphological, and functional experiments. Subcellular proteome enrichment followed by GEL-LC-MS/MS was performed to provide extensive protein fractionation and in-depth proteomic analysis. Quantitative analysis relied on a SILAC strategy, using the invasive breast cancer cell line MDA-MB-231 as a reference for quantitation. Subsets of proteins enriched in each subcellular compartment led to a complementary list of 4289 proteins identified with high confidence. A subset of differentially expressed proteins was validated by Western blot, including regulation in specific cellular compartments, potentially caused by protein translocation. Protein network analysis highlighted complexes involved in cell cycle control and epigenetic regulation. Flow cytometry analysis indicated that SNAIL overexpression led to cell cycle arrest in G0/G1 phases. Furthermore, down-regulation of HDAC1 was observed, supporting the involvement of epigenetic processes in SNAIL-induced EMT. When HDAC1 activity was inhibited, MCF7 not only apparently initiated EMT but also up-regulated SNAIL, indicating the cross-talk between these two proteins. Both HDAC1 inhibition and SNAIL overexpression activated the AKT pathway. These

  17. Proteomic Analysis of Epithelial to Mesenchymal Transition (EMT) Reveals Cross-talk between SNAIL and HDAC1 Proteins in Breast Cancer Cells.

    PubMed

    Palma, Camila de Souza; Grassi, Mariana Lopes; Thomé, Carolina Hassibe; Ferreira, Germano Aguiar; Albuquerque, Daniele; Pinto, Mariana Tomazini; Ferreira Melo, Fernanda Ursoli; Kashima, Simone; Covas, Dimas Tadeu; Pitteri, Sharon J; Faça, Vitor M

    2016-03-01

    Epithelial to mesenchymal transition (EMT)(1) occurs naturally during embryogenesis, tissue repair, cancer progression, and metastasis. EMT induces cellular and microenvironmental changes resulting in loss of epithelial and acquisition of mesenchymal phenotypes, which promotes cellular invasive and migratory capabilities. EMT can be triggered by extracellular factors, including TGF-β, HGF, and EGF. Overexpression of transcription factors, such as SNAIL, SLUG, ZEB1/2, and TWIST1, also induces EMT and is correlated to cancer aggressiveness. Here, the breast adenocarcinoma cell line MCF7 was transduced with SNAIL to identify specific mechanisms controlled by this transcription factor during EMT. Overexpression of SNAIL led to EMT, which was thoroughly validated by molecular, morphological, and functional experiments. Subcellular proteome enrichment followed by GEL-LC-MS/MS was performed to provide extensive protein fractionation and in-depth proteomic analysis. Quantitative analysis relied on a SILAC strategy, using the invasive breast cancer cell line MDA-MB-231 as a reference for quantitation. Subsets of proteins enriched in each subcellular compartment led to a complementary list of 4289 proteins identified with high confidence. A subset of differentially expressed proteins was validated by Western blot, including regulation in specific cellular compartments, potentially caused by protein translocation. Protein network analysis highlighted complexes involved in cell cycle control and epigenetic regulation. Flow cytometry analysis indicated that SNAIL overexpression led to cell cycle arrest in G0/G1 phases. Furthermore, down-regulation of HDAC1 was observed, supporting the involvement of epigenetic processes in SNAIL-induced EMT. When HDAC1 activity was inhibited, MCF7 not only apparently initiated EMT but also up-regulated SNAIL, indicating the cross-talk between these two proteins. Both HDAC1 inhibition and SNAIL overexpression activated the AKT pathway. These

  18. Conditioned mesenchymal stem cells attenuate progression of chronic kidney disease through inhibition of epithelial-to-mesenchymal transition and immune modulation.

    PubMed

    Chang, Jei-Wen; Tsai, Hsin-Lin; Chen, Chang-Wei; Yang, Hui-Wen; Yang, An-Hang; Yang, Ling-Yu; Wang, Paulus S; Ng, Yee-Yung; Lin, Teng-Lung; Lee, Oscar K

    2012-12-01

    Mesenchymal stem cells (MSCs) have been shown to improve the outcome of acute renal injury models; but whether MSCs can delay renal failure in chronic kidney disease (CKD) remains unclear. In the present study, the were cultured in media containing various concentrations of basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2-phosphate to investigate whether hepatocyte growth factor (HGF) secretion could be increased by the stimulation of these growth factors. Then, TGF-β1-treated renal interstitial fibroblast (NRK-49F), renal proximal tubular cells (NRK-52E) and podocytes were co-cultured with conditioned MSCs in the absence or presence of ascorbic acid 2-phosphate to quantify the protective effects of conditioned MSCs on renal cells. Moreover, male Sprague-Dawley rats were treated with 1 × 10(6) conditioned MSCs immediately after 5/6 nephrectomy and every other week through the tail vein for 14 weeks. It was found that basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2-phosphate promoted HGF secretion in MSCs. Besides, conditioned MSCs were found to be protective against TGF-β1 induced epithelial-to-mesenchymal transition of NRK-52E and activation of NRK-49F cells. Furthermore, conditioned MSCs protected podocytes from TGF-β1-induced loss of synaptopodin, fibronectin induction, cell death and apoptosis. Rats transplanted with conditioned human MSCs had a significantly increase in creatinine clearance rate, decrease in glomerulosclerosis, interstitial fibrosis and increase in CD4(+)CD25(+)Foxp3(+) regulatory T cells counts in splenocytes. Together, our studies indicated that conditioned MSCs preserve renal function by their anti-fibrotic and anti-inflammatory effects. Transplantation of conditioned MSCs may be useful in treating CKD.

  19. The Tetraindole SK228 Reverses the Epithelial-to-Mesenchymal Transition of Breast Cancer Cells by Up-Regulating Members of the miR-200 Family

    PubMed Central

    Wang, Chie-Hong; Chen, Chia-Ling; More, Shivaji V.; Hsiao, Pei-Wen; Hung, Wen-Chun; Li, Wen-Shan

    2014-01-01

    The results of recent studies have shown that metastasis, the most common malignancy and primary cause of mortality promoted by breast cancer in women, is associated with the epithelial-to-mesenchymal transition (EMT). The results of the current study show that SK228, a novel indole containing substance, exhibits anti-cancer activity. In addition, the effects of SK228 on the regulation of EMT in breast cancer cells as well as the underlying mechanism have been explored. SK228 was observed to induce a fibroblastoid to epithelial-like change in the appearance of various breast cancer cell lines and to suppress the migration and invasion of these cancer cells in vitro. Moreover, expression of E-cadherin was found to increase following SK228 treatment whereas ZEB1 expression was repressed. Expression of other major EMT inducers, including ZEB2, Slug and Twist1, is also repressed by SK228 as a consequence of up-regulation of members of the miR-200 family, especially miR-200c. The results of animal studies demonstrate that SK228 treatment leads to effective suppression of breast cancer growth and metastasis in vivo. The observations made in this investigation show that SK228 reverses the EMT process in breast cancer cells via an effect on the miR-200c/ZEB1/E-cadherin signalling pathway. In addition, the results of a detailed analysis of the in vivo anti-cancer activities of SK228, carried out using a breast cancer xenograft animal model, show that this substance is a potential chemotherapeutic agent for the treatment of breast cancer. PMID:24967704

  20. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells.

    PubMed

    Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M; Yue, Junming

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells.

  1. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells

    PubMed Central

    Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M.; Yue, Junming

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells. PMID:28123598

  2. MIR517C inhibits autophagy and the epithelial-to-mesenchymal (-like) transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation

    PubMed Central

    Lu, Yuntao; Xiao, Limin; Liu, Yawei; Wang, Hai; Li, Hong; Zhou, Qiang; Pan, Jun; Lei, Bingxi; Huang, Annie; Qi, Songtao

    2015-01-01

    The epithelial-to-mesenchymal (-like) transition (EMT), a crucial embryonic development program, has been linked to the regulation of glioblastoma (GBM) progression and invasion. Here, we investigated the role of MIR517C/miR-517c, which belongs to the C19MC microRNA cluster identified in our preliminary studies, in the pathogenesis of GBM. We found that MIR517C was associated with improved prognosis in patients with GBM. Furthermore, following treatment with the autophagy inducer temozolomide (TMZ) and low glucose (LG), MIR517C degraded KPNA2 (karyopherin alpha 2 [RAG cohort 1, importin alpha 1]) and subsequently disturbed the nuclear translocation of TP53 in the GBM cell line U87 in vitro. Interestingly, this microRNA could inhibit autophagy and reduce cell migration and infiltration in U87 cells harboring wild-type (WT) TP53, but not in U251 cells harboring mutant (MU) TP53. Moreover, the expression of epithelial markers (i.e., CDH13/T-cadherin and CLDN1 [claudin 1]) increased, while the expression of mesenchymal markers (i.e., CDH2/N-cadherin, SNAI1/Snail, and VIM [vimentin]) decreased, indicating that the EMT status was blocked by MIR517C in U87 cells. Compared with MIR517C overexpression, MIR517C knockdown promoted infiltration of U87 cells to the surrounding structures in nude mice in vivo. The above phenotypic changes were also observed in TP53+/+ and TP53-/- HCT116 colon cancer cells. In summary, our study provided support for a link between autophagy and EMT status in WT TP53 GBM cells and provided evidence for the signaling pathway (MIR517C-KPNA2-cytoplasmic TP53) involved in attenuating autophagy and eliminating the increased migration and invasion during the EMT. PMID:26553592

  3. MIR517C inhibits autophagy and the epithelial-to-mesenchymal (-like) transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation.

    PubMed

    Lu, Yuntao; Xiao, Limin; Liu, Yawei; Wang, Hai; Li, Hong; Zhou, Qiang; Pan, Jun; Lei, Bingxi; Huang, Annie; Qi, Songtao

    2015-01-01

    The epithelial-to-mesenchymal (-like) transition (EMT), a crucial embryonic development program, has been linked to the regulation of glioblastoma (GBM) progression and invasion. Here, we investigated the role of MIR517C/miR-517c, which belongs to the C19MC microRNA cluster identified in our preliminary studies, in the pathogenesis of GBM. We found that MIR517C was associated with improved prognosis in patients with GBM. Furthermore, following treatment with the autophagy inducer temozolomide (TMZ) and low glucose (LG), MIR517C degraded KPNA2 (karyopherin alpha 2 [RAG cohort 1, importin alpha 1]) and subsequently disturbed the nuclear translocation of TP53 in the GBM cell line U87 in vitro. Interestingly, this microRNA could inhibit autophagy and reduce cell migration and infiltration in U87 cells harboring wild-type (WT) TP53, but not in U251 cells harboring mutant (MU) TP53. Moreover, the expression of epithelial markers (i.e., CDH13/T-cadherin and CLDN1 [claudin 1]) increased, while the expression of mesenchymal markers (i.e., CDH2/N-cadherin, SNAI1/Snail, and VIM [vimentin]) decreased, indicating that the EMT status was blocked by MIR517C in U87 cells. Compared with MIR517C overexpression, MIR517C knockdown promoted infiltration of U87 cells to the surrounding structures in nude mice in vivo. The above phenotypic changes were also observed in TP53(+/+) and TP53(-/-) HCT116 colon cancer cells. In summary, our study provided support for a link between autophagy and EMT status in WT TP53 GBM cells and provided evidence for the signaling pathway (MIR517C-KPNA2-cytoplasmic TP53) involved in attenuating autophagy and eliminating the increased migration and invasion during the EMT.

  4. Inhibition of ZNF746 suppresses invasion and epithelial to mesenchymal transition in H460 non-small cell lung cancer cells.

    PubMed

    Kim, Bonglee; Sohn, Eun Jung; Jung, Ji Hoon; Shin, Eun Ah; You, Ok Heui; Im, Jinwon; Kim, Sung-Hoon

    2014-01-01

    Although ZNF746, also known as Parkin-interacting substrate (PARIS), has been reported to suppress peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and its target gene NRF-1 leading to the neurodegeneration in Parkinson's disease, its function in tumorigenesis has yet to be investigated. Thus, in the present study, the role of ZNF746 in the invasion and epithelial to mesenchymal transition (EMT) in H460 non-small cell lung cancer (NSCLC) cells was investigated. Invasion assay showed that inhibition of ZNF746 using siRNA transfection inhibited the invasion of H460 NSCLC cells using Boyden chamber. Quantitative PCR (qPCR) analysis revealed that the silencing of ZNF746 attenuated the expression of matrix metalloproteinase (MMP)1, MMP2 and MMP9, but not MMP7, in H460 NSCLC cells. Immunoblotting assay revealed that the expression of E-cadherin and β-catenin of epithelial phenotype was upregulated, while Slug was downregulated in ZNF746 siRNA-transfected H460 NSCLC cells. Accordingly, the mRNA expression of E-cadherin was upregulated while vimentin or Slug, Twist, ZEB as EMT key transcriptional factors were suppressed in ZNF746 siRNA-transfected H460 NSCLC cells. Also, mRNA expression of transcriptional marker Nanog and Octamer-binding transcription factor 4 (OCT4), known to enhance malignancy and metastasis in lung adenocarcinoma, was suppressed in ZNF746 siRNA-transfected H460 NSCLC cells. Notably, the endogenous expression of ZNF746 was induced in parallel with Twist at the protein level during hypoxia. Overall, our findings suggest that inhibition of ZNF746 suppresses the invasion and EMT molecules in H460 NSCLC cells and ZNF746 may be an important target molecule in lung tumorigenesis.

  5. miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer.

    PubMed

    Hwang, Michael S; Yu, Nancy; Stinson, Susanna Y; Yue, Peng; Newman, Robert J; Allan, Bernard B; Dornan, David

    2013-01-01

    The epithelial-to-mesenchymal transition (EMT) is a highly conserved physiological program involved in development and tissue repair; however, its aberrant activation has been implicated in accelerating the progression of a variety of cancers. In breast cancer, the microRNAs (miRNAs) miR-221 and miR-222 (miR-221/222) are differentially expressed in the clinically more aggressive basal-like subtype compared to luminal subtype of breast cancer and upregulation of miR-221/222 induces the EMT by targeting the 3' untranslated region (3'UTR) of the GATA family transcriptional repressor TRPS1 (tricho-rhino-phalangeal syndrome type 1). The complete mechanism through which miR-221/222 promotes the EMT, however, is not fully understood. We identified adiponectin receptor 1 (ADIPOR1), a receptor for the adipocytokine adiponectin, as a direct target of miR-221/222. ADIPOR1 is expressed at higher levels in the luminal compared to the basal-like subtype of breast cancer cell lines, which can be reduced by miR-221/222 targeting of its 3'UTR. In addition, miR-221/222 were negatively correlated with ADIPOR1 expression across breast cancer cell lines and tumors. ADIPOR1 depletion by siRNA in MCF10A cells induced the EMT and increased cell invasion. Depletion of ADIPOR1 by siRNA induced activation of the canonical nuclear factor-kappaB (NF-κB) and subsequent phosphorylation of signal transducer and activator of transcription 3 (STAT3) in an interleukin 6 (IL6)-dependent manner. Finally, overexpression of ADIPOR1 in the basal-like cell line, MDA-MB-231, attenuated cell invasion and promoted the mesenchymal-to-epithelial transition (MET). We conclude that ADIPOR1 negatively regulates EMT in breast cancer and provides an additional node by which miR-221/222 induces the EMT. These results suggest that ADIPOR1 may play an important role in breast cancer progression and metastasis, and could potentially offer an alternative therapeutic strategy for basal-like breast cancer patients.

  6. Phenolic Secoiridoids in Extra Virgin Olive Oil Impede Fibrogenic and Oncogenic Epithelial-to-Mesenchymal Transition: Extra Virgin Olive Oil As a Source of Novel Antiaging Phytochemicals

    PubMed Central

    Vazquez-Martin, Alejandro; Fernández-Arroyo, Salvador; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Lozano-Sánchez, Jesús; Vellón, Luciano; Micol, Vicente; Joven, Jorge

    2012-01-01

    Abstract The epithelial-to-mesenchymal transition (EMT) genetic program is a molecular convergence point in the life-threatening progression of organ fibrosis and cancer toward organ failure and metastasis, respectively. Here, we employed the EMT process as a functional screen for testing crude natural extracts for accelerated drug development in fibrosis and cancer. Because extra virgin olive oil (EVOO) (i.e., the juice derived from the first cold pressing of the olives without any further refining process) naturally contains high levels of phenolic compounds associated with the health benefits derived from consuming an EVOO-rich Mediterranean diet, we have tested the ability of an EVOO-derived crude phenolic extract to regulate fibrogenic and oncogenic EMT in vitro. High-performance liquid chromatography (HPLC) coupled to time-of-flight (TOF) mass spectrometry assays revealed that the EVOO phenolic extract was mainly composed (∼70%) of two members of the secoiridoid family of complex polyphenols, namely oleuropein aglycone—the bitter principle of olives—and its derivative decarboxymethyl oleuropein aglycone. EVOO secoiridoids efficiently prevented loss of proteins associated with polarized epithelial phenotype (i.e., E-cadherin) as well as de novo synthesis of proteins associated with mesenchymal migratory morphology of transitioning cells (i.e., vimentin). The ability of EVOO to impede transforming growth factor-β (TGF-β)–induced disintegration of E-cadherin-mediated cell–cell contacts apparently occurred as a consequence of the ability of EVOO phenolics to prevent the upregulation of SMAD4—a critical mediator of TGF-β signaling—and of the SMAD transcriptional cofactor SNAIL2 (Slug)—a well-recognized epithelial repressor. Indeed, EVOO phenolics efficiently prevented crucial TGF-β–induced EMT transcriptional events, including upregulation of SNAI2, TCF4, VIM (Vimentin), FN (fibronectin), and SERPINE1 genes. While awaiting a better

  7. Knockdown of Collagen Triple Helix Repeat Containing-1 Inhibits the Proliferation and Epithelial-to-Mesenchymal Transition in Renal Cell Carcinoma Cells.

    PubMed

    Jin, Xue-Fei; Li, Hai; Zong, Shi; Li, Hong-Yan

    2016-10-27

    Collagen triple helix repeat containing-1 (CTHRC1), a secreted glycoprotein, is frequently upregulated in human cancers. However, the functional role of CTHRC1 in renal cell carcinoma (RCC) remains unclear. Thus, the aim of this study was to explore the role of CTHRC1 in RCC. Our results demonstrated that CTHRC1 was upregulated in RCC tissues and cell lines. Knockdown of CTHRC1 significantly inhibits the proliferation in RCCs. Furthermore, knockdown of CTHRC1 significantly inhibited the epithelial-to-mesenchymal transition (EMT) process in RCCs, as well as suppressed RCC cell migration and invasion. Mechanistically, knockdown of CTHRC1 inhibited the expression of β-catenin, c-Myc, and cyclin D1 in RCC cells. In conclusion, the results of the present study indicated that CTHRC1 downregulation inhibited proliferation, migration, EMT, and β-catenin expression in RCC cells. Therefore, CTHRC1 may be a potential therapeutic target for the treatment of RCC.

  8. CYR61 and TAZ Upregulation and Focal Epithelial to Mesenchymal Transition May Be Early Predictors of Barrett’s Esophagus Malignant Progression

    PubMed Central

    Mesquita, Marta; Dias Pereira, António; Bettencourt-Dias, Mónica; Chaves, Paula; Pereira-Leal, José B.

    2016-01-01

    Barrett’s esophagus is the major risk factor for esophageal adenocarcinoma. It has a low but non-neglectable risk, high surveillance costs and no reliable risk stratification markers. We sought to identify early biomarkers, predictive of Barrett’s malignant progression, using a meta-analysis approach on gene expression data. This in silico strategy was followed by experimental validation in a cohort of patients with extended follow up from the Instituto Português de Oncologia de Lisboa de Francisco Gentil EPE (Portugal). Bioinformatics and systems biology approaches singled out two candidate predictive markers for Barrett’s progression, CYR61 and TAZ. Although previously implicated in other malignancies and in epithelial-to-mesenchymal transition phenotypes, our experimental validation shows for the first time that CYR61 and TAZ have the potential to be predictive biomarkers for cancer progression. Experimental validation by reverse transcriptase quantitative PCR and immunohistochemistry confirmed the up-regulation of both genes in Barrett’s samples associated with high-grade dysplasia/adenocarcinoma. In our cohort CYR61 and TAZ up-regulation ranged from one to ten years prior to progression to adenocarcinoma in Barrett’s esophagus index samples. Finally, we found that CYR61 and TAZ over-expression is correlated with early focal signs of epithelial to mesenchymal transition. Our results highlight both CYR61 and TAZ genes as potential predictive biomarkers for stratification of the risk for development of adenocarcinoma and suggest a potential mechanistic route for Barrett’s esophagus neoplastic progression. PMID:27583562

  9. αB-crystallin is essential for the TGF-β2-mediated epithelial to mesenchymal transition of lens epithelial cells

    PubMed Central

    Nahomi, Rooban B.; Pantcheva, Mina B.; Nagaraj, Ram H.

    2016-01-01

    Transforming growth factor (TGF)-β2-mediated pathways play a major role in the epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) during secondary cataract formation, which is also known as posterior capsule opacification (PCO). Although αB-crystallin is a major protein in LEC, its role in the EMT remains unknown. In a human LEC line (FHL124), TGF-β2 treatment resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was associated with nuclear localization of αB-crystallin, phosphorylated Smad2 (pSmad2) (S245/250/255), pSmad3 (S423/425), Smad4 and Snail and the binding of αB-crystallin to these transcription factors, all of which were reduced by the down-regulation of αB-crystallin. Expression of the functionally defective R120G mutant of αB-crystallin reduced TGF-β2-induced EMT in LECs of αB-crystallin knockout (KO) mice. Treatment of bovine lens epithelial explants and mouse LEC with TGF-β2 resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was accompanied by increase in phosphorylation of p44/42 mitogen-activated protein kinases (MAPK) (T202/Y204), p38 MAPK (T180/Y182), protein kinase B (Akt) (S473) and Smad2 when compared with untreated cells. These changes were significantly reduced in αB-crystallin depleted or knocked out LEC. The removal of the fibre cell mass from the lens of wild-type (WT) mice resulted in the up-regulation of EMT-associated genes in the capsule-adherent epithelial cells, which was reduced in the αB-crystallin KO mice. Together, our data show that αB-crystallin plays a central role in the TGF-β2-induced EMT of LEC. αB-Crystallin could be targeted to prevent PCO and pathological fibrosis in other tissues. PMID:26987815

  10. Influence of Bicarbonate/Low-GDP Peritoneal Dialysis Fluid (Bicavera) on In Vitro and Ex Vivo Epithelial-to-Mesenchymal Transition of Mesothelial Cells

    PubMed Central

    Fernández–Perpén, Antonio; Pérez–Lozano, María Luisa; Bajo, María–Auxiliadora; Albar–Vizcaino, Patricia; Correa, Pilar Sandoval; del Peso, Gloria; Castro, María–José; Aguilera, Abelardo; Ossorio, Marta; Peter, Mirjam E.; Passlick–Deetjen, Jutta; Aroeira, Luiz S.; Selgas, Rafael; López–Cabrera, Manuel; Sánchez–Tomero, J. Antonio

    2012-01-01

    ♦ Background: Peritoneal membrane damage induced by peritoneal dialysis (PD) is largely associated with epithelial-to-mesenchymal transition (EMT) of mesothelial cells (MCs), which is believed to be a result mainly of the glucose degradation products (GDPs) present in PD solutions. ♦ Objectives: This study investigated the impact of bicarbonate-buffered, low-GDP PD solution (BicaVera: Fresenius Medical Care, Bad Homburg, Germany) on EMT of MCs in vitro and ex vivo. ♦ Methods: In vitro studies: Omentum-derived MCs were incubated with lactate-buffered standard PD fluid or BicaVera fluid diluted 1:1 with culture medium. Ex vivo studies: From 31 patients randomly distributed to either standard or BicaVera solution and followed for 24 months, effluents were collected every 6 months for determination of EMT markers in effluent MCs. ♦ Results: Culturing of MCs with standard fluid in vitro resulted in morphology change to a non-epithelioid shape, with downregulation of E-cadherin (indicative of EMT) and strong induction of vascular endothelial growth factor (VEGF) expression. By contrast, in vitro exposure of MCs to bicarbonate/low-GDP solution had less impact on both EMT parameters. Ex vivo studies partially confirmed the foregoing results. The BicaVera group, with a higher prevalence of the non-epithelioid MC phenotype at baseline (for unknown reasons), showed a clear and significant trend to gain and maintain an epithelioid phenotype at medium- and longer-term and to show fewer fibrogenic characteristics. By contrast, the standard solution group demonstrated a progressive and significantly higher presence of the non-epithelioid phenotype. Compared with effluent MCs having an epithelioid phenotype, MCs with non-epithelioid morphology showed significantly lower levels of E-cadherin and greater levels of fibronectin and VEGF. In comparing the BicaVera and standard solution groups, MCs from the standard solution group showed significantly higher secretion of

  11. miR-409-3p/-5p promotes tumorigenesis, epithelial to mesenchymal transition and bone metastasis of human prostate cancer

    PubMed Central

    Josson, Sajni; Gururajan, Murali; Hu, Peizhen; Shao, Chen; Chu, Gina Chia-Yi; Zhau, Haiyen E.; Liu, Chunyan; Lao, Kaiqin; Lu, Chia-Lun; Lu, Yi-Tsung; Lichterman, Jake; Nandana, Srinivas; Li, Quanlin; Rogatko, Andre; Berel, Dror; Posadas, Edwin M.; Fazli, Ladan; Sareen, Dhruv; Chung, Leland W. K.

    2014-01-01

    Purpose miR-409-3p/-5p is a microRNA expressed by embryonic stem cells and its role in cancer biology and metastasis is unknown. Our pilot studies demonstrated elevated miR-409-3p/-5p expression in human prostate cancer bone metastatic cell lines, therefore we defined the biological impact of manipulation of miR-409-3p/-5p in prostate cancer progression and correlated the levels of its expression with clinical human prostate cancer bone metastatic specimens. Experimental Design miRNA profiling of prostate cancer bone metastatic EMT cell line model was performed. Gleason score human tissue array was probed for validation of specific miRNAs. Additionally, genetic manipulation of miR-409-3p/-5p was performed to determine its role in tumor growth, epithelial to mesenchymal transition (EMT) and bone metastasis in mouse models. Results Elevated expression of miR-409-3p/-5p was observed in bone metastatic prostate cancer cell lines and human prostate cancer tissues with higher Gleason scores. Elevated miR-409-3p expression levels correlated with prostate cancer patient progression free survival. Orthotopic delivery of miR-409-3p/-5p in the murine prostate gland induced tumors where the tumors expressed, EMT and stemness markers. Intracardiac inoculation (to mimic systemic dissemination) of miR-409-5p inhibitor treated bone metastatic ARCaPM prostate cancer cells in mice, led to decreased bone metastasis and increased survival compared to control vehicle-treated cells. Conclusion miR-409-3p/-5p plays an important role in prostate cancer biology by facilitating tumor growth, EMT and bone metastasis. This finding bear’s particular translational importance since miR-409-3p/-5p appears to be an attractive biomarker and/or possibly a therapeutic target to treat bones metastatic prostate cancer. PMID:24963047

  12. Loss of zfp36 expression in colorectal cancer correlates to wnt/ β-catenin activity and enhances epithelial-to-mesenchymal transition through upregulation of zeb1, sox9 and macc1

    PubMed Central

    Montorsi, Lucia; Guizzetti, Filippo; Alecci, Claudia; Caporali, Andrea; Martello, Andrea; Atene, Claudio Giacinto; Parenti, Sandra; Pizzini, Silvia; Zanovello, Paola; Bortoluzzi, Stefania; Ferrari, Sergio

    2016-01-01

    The mRNA-destabilizing protein ZFP36 has been previously described as a tumor suppressor whose expression is lost during colorectal cancer development. In order to evaluate its role in this disease, we restored ZFP36 expression in different cell contexts, showing that the presence of this protein impairs the epithelial-to-mesenchymal transition (EMT) and induces a higher susceptibility to anoikis. Consistently, we found that ZFP36 inhibits the expression of three key transcription factors involved in EMT: ZEB1, MACC1 and SOX9. Finally, we observed for the first time that its expression negatively correlates with the activity of Wnt/β-catenin pathway, which is constitutively activated in colorectal cancer. This evidence provides a clue on the mechanism leading to the loss of ZFP36 in CRC. PMID:27463018

  13. Epstein–Barr virus latent antigens EBNA3C and EBNA1 modulate epithelial to mesenchymal transition of cancer cells associated with tumor metastasis

    PubMed Central

    Gaur, Nivedita; Gandhi, Jaya; Robertson, Erle S.; Verma, Subhash C.

    2016-01-01

    Epithelial–mesenchymal transition is an important mechanism in cancer invasiveness and metastasis. We had previously reported that cancer cells expressing Epstein–Barr virus (EBV) latent viral antigens EBV nuclear antigen EBNA3C and/ or EBNA1 showed higher motility and migration potential and had a propensity for increased metastases when tested in nude mice model. We now show that both EBNA3C and EBNA1 can modulate cellular pathways critical for epithelial to mesenchymal transition of cancer cells. Our data confirms that presence of EBNA3C or EBNA1 result in upregulation of transcriptional repressor Slug and Snail, up-regulation of intermediate filament of mesenchymal origin vimentin, upregulation of transcription factor TCF8/ZEB1, downregulation as well as disruption of tight junction zona occludens protein ZO-1, downregulation of cell adhesion molecule E-cadherin, and nuclear translocation of β-catenin. We further show that the primary tumors as well as metastasized lesions derived from EBV antigen-expressing cancer cells in nude mice model display EMT markers expression pattern suggesting their greater propensity to mesenchymal transition. PMID:25501510

  14. Salvianolic acid B prevents epithelial-to-mesenchymal transition through the TGF-β1 signal transduction pathway in vivo and in vitro

    PubMed Central

    2010-01-01

    Background Salvianolic Acid B (Sal B) is a water-soluble component from Danshen (a traditional Chinese herb widely used for chronic renal diseases) with anti-oxidative and cell protective properties. Sal B also has potential protective effects on renal diseases. Tubular epithelial cells can undergo epithelial-to-mesenchymal transition (EMT), which plays an important role in the pathogenesis of renal interstitial fibrosis (RIF) and is mainly regulated by TGF-β1/Smads pathway. The aims of the study are to investigate the effect of Sal B on tubular EMT in vivo and in vitro, and to elucidate its underlying mechanism against EMT related to TGF-β1/Smads pathway. Results For in vivo experiments, RIF was induced in rats by oral administration of HgCl2 and prophylaxised with Sal B and vitamin E. The protein expression of E-cadherin was down-regulated, while the expression of α-SMA, TGF-β1, TβR-I, p-Smad2/3 and the activity of matrix metalloproteinase-2 (MMP-2) were up-regulated in kidneys of model rats when compared with those of normal rats. In contrast, Sal B and vitamin E significantly attenuated the expression of α-SMA, TGF-β1, TβR-I, p-Smad2/3, and MMP-2 activity, but increased E-cadherin expression. For in vitro experiments, HK-2 cells were incubated with TGF-β1 to induce EMT, and the cells were co-cultured with 1 and 10 μM Sal B or SB-431542 (a specific inhibitor of TβR-I kinase). TGF-β1 induced a typical EMT in HK-2 cells, while it was blocked by Sal B and SB-431542, as evidenced by blocking morphologic transformation, restoring E-cadherin and CK-18 expression, inhibiting α-SMA expression and F-actin reorganization, and down-regulating MMP-2/9 activities in TGF-β1 mediated HK-2 cells. Furthermore, Sal B and SB-431542 profoundly down-regulated the expressions of TβR-I and p-Smad2/3 but prevented the decreased expression of Smad7 in TGF-β1 stimulated HK-2 cells. Conclusions Sal B can prevent tubular EMT in the fibrotic kidney induced by HgCl2 as well

  15. Tension monitoring during epithelial-to-mesenchymal transition links the switch of phenotype to expression of moesin and cadherins in NMuMG cells.

    PubMed

    Schneider, David; Baronsky, Thilo; Pietuch, Anna; Rother, Jan; Oelkers, Marieelen; Fichtner, Dagmar; Wedlich, Doris; Janshoff, Andreas

    2013-01-01

    Structural alterations during epithelial-to-mesenchymal transition (EMT) pose a substantial challenge to the mechanical response of cells and are supposed to be key parameters for an increased malignancy during metastasis. Herein, we report that during EMT, apical tension of the epithelial cell line NMuMG is controlled by cell-cell contacts and the architecture of the underlying actin structures reflecting the mechanistic interplay between cellular structure and mechanics. Using force spectroscopy we find that tension in NMuMG cells slightly increases 24 h after EMT induction, whereas upon reaching the final mesenchymal-like state characterized by a complete loss of intercellular junctions and a concerted down-regulation of the adherens junction protein E-cadherin, the overall tension becomes similar to that of solitary adherent cells and fibroblasts. Interestingly, the contribution of the actin cytoskeleton on apical tension increases significantly upon EMT induction, most likely due to the formation of stable and highly contractile stress fibers which dominate the elastic properties of the cells after the transition. The structural alterations lead to the formation of single, highly motile cells rendering apical tension a good indicator for the cellular state during phenotype switching. In summary, our study paves the way towards a more profound understanding of cellular mechanics governing fundamental morphological programs such as the EMT.

  16. Determination of a Comprehensive Alternative Splicing Regulatory Network and Combinatorial Regulation by Key Factors during the Epithelial-to-Mesenchymal Transition

    PubMed Central

    Yang, Yueqin; Park, Juw Won; Bebee, Thomas W.; Warzecha, Claude C.; Guo, Yang; Shang, Xuequn

    2016-01-01

    The epithelial-to-mesenchymal transition (EMT) is an essential biological process during embryonic development that is also implicated in cancer metastasis. While the transcriptional regulation of EMT has been well studied, the role of alternative splicing (AS) regulation in EMT remains relatively uncharacterized. We previously showed that the epithelial cell-type-specific proteins epithelial splicing regulatory proteins 1 (ESRP1) and ESRP2 are important for the regulation of many AS events that are altered during EMT. However, the contributions of the ESRPs and other splicing regulators to the AS regulatory network in EMT require further investigation. Here, we used a robust in vitro EMT model to comprehensively characterize splicing switches during EMT in a temporal manner. These investigations revealed that the ESRPs are the major regulators of some but not all AS events during EMT. We determined that the splicing factor RBM47 is downregulated during EMT and also regulates numerous transcripts that switch splicing during EMT. We also determined that Quaking (QKI) broadly promotes mesenchymal splicing patterns. Our study highlights the broad role of posttranscriptional regulation during the EMT and the important role of combinatorial regulation by different splicing factors to fine tune gene expression programs during these physiological and developmental transitions. PMID:27044866

  17. Tension Monitoring during Epithelial-to-Mesenchymal Transition Links the Switch of Phenotype to Expression of Moesin and Cadherins in NMuMG Cells

    PubMed Central

    Schneider, David; Baronsky, Thilo; Pietuch, Anna; Rother, Jan; Oelkers, Marieelen; Fichtner, Dagmar; Wedlich, Doris; Janshoff, Andreas

    2013-01-01

    Structural alterations during epithelial-to-mesenchymal transition (EMT) pose a substantial challenge to the mechanical response of cells and are supposed to be key parameters for an increased malignancy during metastasis. Herein, we report that during EMT, apical tension of the epithelial cell line NMuMG is controlled by cell-cell contacts and the architecture of the underlying actin structures reflecting the mechanistic interplay between cellular structure and mechanics. Using force spectroscopy we find that tension in NMuMG cells slightly increases 24 h after EMT induction, whereas upon reaching the final mesenchymal-like state characterized by a complete loss of intercellular junctions and a concerted down-regulation of the adherens junction protein E-cadherin, the overall tension becomes similar to that of solitary adherent cells and fibroblasts. Interestingly, the contribution of the actin cytoskeleton on apical tension increases significantly upon EMT induction, most likely due to the formation of stable and highly contractile stress fibers which dominate the elastic properties of the cells after the transition. The structural alterations lead to the formation of single, highly motile cells rendering apical tension a good indicator for the cellular state during phenotype switching. In summary, our study paves the way towards a more profound understanding of cellular mechanics governing fundamental morphological programs such as the EMT. PMID:24339870

  18. Regulation of Na,K-ATPase β1-subunit in TGF-β2-mediated epithelial-to-mesenchymal transition in human retinal pigmented epithelial cells.

    PubMed

    Mony, Sridevi; Lee, Seung Joon; Harper, Jeffrey F; Barwe, Sonali P; Langhans, Sigrid A

    2013-10-01

    Proliferative vitreo retinopathy (PVR) is associated with extracellular matrix membrane (ECM) formation on the neural retina and disruption of the multilayered retinal architecture leading to distorted vision and blindness. During disease progression in PVR, retinal pigmented epithelial cells (RPE) lose cell-cell adhesion, undergo epithelial-to-mesenchymal transition (EMT), and deposit ECM leading to tissue fibrosis. The EMT process is mediated via exposure to vitreous cytokines and growth factors such as TGF-β2. Previous studies have shown that Na,K-ATPase is required for maintaining a normal polarized epithelial phenotype and that decreased Na,K-ATPase function and subunit levels are associated with TGF-β1-mediated EMT in kidney cells. In contrast to the basolateral localization of Na,K-ATPase in most epithelia, including kidney, Na,K-ATPase is found on the apical membrane in RPE cells. We now show that EMT is also associated with altered Na,K-ATPase expression in RPE cells. TGF-β2 treatment of ARPE-19 cells resulted in a time-dependent decrease in Na,K-ATPase β1 mRNA and protein levels while Na,K-ATPase α1 levels, Na,K-ATPase activity, and intracellular sodium levels remained largely unchanged. In TGF-β2-treated cells reduced Na,K-ATPase β1 mRNA inversely correlated with HIF-1α levels and analysis of the Na,K-ATPase β1 promoter revealed a putative hypoxia response element (HRE). HIF-1α bound to the Na,K-ATPase β1 promoter and inhibiting the activity of HIF-1α blocked the TGF-β2 mediated Na,K-ATPase β1 decrease suggesting that HIF-1α plays a potential role in Na,K-ATPase β1 regulation during EMT in RPE cells. Furthermore, knockdown of Na,K-ATPase β1 in ARPE-19 cells was associated with a change in cell morphology from epithelial to mesenchymal and induction of EMT markers such as α-smooth muscle actin and fibronectin, suggesting that loss of Na,K-ATPase β1 is a potential contributor to TGF-β2-mediated EMT in RPE cells.

  19. Uric acid activates NRLP3 inflammasome in an in-vivo model of epithelial to mesenchymal transition in the kidney.

    PubMed

    Romero, César Andrés; Remor, Aline; Latini, Alexandra; De Paul, Ana Lucía; Torres, Alicia Inés; Mukdsi, Jorge Humberto

    2017-04-03

    Uric acid (UA) has been associated with renal fibrosis and progression of chronic kidney disease. However, the underlying mechanisms of this process have still not been identified. Here, we studied the role of the innate imunity receptor NLRP3/ASC in UA induced epithelial-mesenchymal transition (EMT) in kidney. Wistar rats were fed with oxonic acid 2% and UA 2% (OXA + U), OXA + U plus allopurinol (ALL) or regular chow (C) for 7 weeks. We analyzed the presence of EMT markers, the expression of NLRP3, ASC, Caspase-1 and Smad 2/3 molecules and the mitochondrial morphological and functional characteristics. High UA induced renal fibrosis, mild chronic inflammation, as well as morphological and biochemical evidence of EMT. High UA also increased the expression of NLRP3/ASC with activation of both inflammasome related caspase-1 and inflammasome unrelated Smad 2/3 pathways. Ultrastructural co-localization of NLRP3 and Smad 2/3 indicated physical interaction between the two molecules. No morphological or functional changes were found between mitochondria exposed to high UA. In conclusion, kidney epithelial NLRP3/ASC expression was increased in high UA state in rats and both inflammasome related caspase-1 and non-inflammasome related P-Smad 2/3 pathways were associated with the observed EMT, inflammation and fibrosis induced by UA in the kidney.

  20. SET-mediated NDRG1 inhibition is involved in acquisition of epithelial-to-mesenchymal transition phenotype and cisplatin resistance in human lung cancer cell.

    PubMed

    Liu, Hao; Gu, Yixue; Yin, Jiang; Zheng, Guopei; Wang, Chenkun; Zhang, Zhijie; Deng, Min; Liu, Jifang; Jia, Xiaoting; He, Zhimin

    2014-12-01

    Development of resistance to therapy continues to be a serious clinical problem in lung cancer management. Cancer cells undergoing epithelial-to-mesenchymal transition (EMT) have been shown to play roles in resistance to chemotherapy. Here, we utilized a proteomics-based method and identified a significant downregulation of the metastasis suppressor NDRG1 in drug resistant lung cancer cells. We showed that downregulation of DNRG1 constitutes a mechanism for acquisition of EMT phenotype and endows lung cancer cells with an increased resistance to cisplatin. We also identified a signal cascade, namely, SET--| PP2A--| c-myc--| NDRG1, in which upregulation of SET is critical for inhibition of NDRG1. We also found that blockade of SET (or reactivation of PP2A) by FTY720 reverted EMT, restored drug sensitivity, and inhibited invasiveness and growth of lung tumor xenografts. Together, our results indicated a functional link between SET-mediated NDRG1 regulation and acquisition of EMT phenotype and drug resistance, and provided an evidence that blockade of SET-driven EMT can overcome drug resistance and inhibit tumor progression.

  1. Expression Distribution of Cancer Stem Cells, Epithelial to Mesenchymal Transition, and Telomerase Activity in Breast Cancer and Their Association with Clinicopathologic Characteristics

    PubMed Central

    Makki, Jaafar; Myint, Ohnmar; Wynn, Aye Aye; Samsudin, Ahmad Toha; John, Daisy Vanitha

    2015-01-01

    A total of 167 surgically resected primary invasive breast carcinomas and 63 metastatic lymph node lesions were analyzed for immunohistochemical (IHC) localization of the CD44+CD24−low breast cancer stem cell (CSC) markers, epithelial to mesenchymal transition (EMT) markers, and telomerase activity by double-staining IHC technique, in formalin-fixed, paraffin-embedded tissue, the results were validated by double-staining immunofluorescent and flow cytometry techniques. The results showed that CSCs with CD44+CD24−low phenotype were significantly increased in node-positive tumors, high-grade tumors, and ductal carcinoma in situ (DCIS). There was a high incidence of telomerase expression in metastatic lymph node lesion. There were considerably high number of tumor cells with EMT expression in metastatic lymph node lesion, and triple-negative tumor. The occurrence of EMT phenomena was usually accompanied by the co-existence of CSCs of CD44+CD24−low phenotype. There was no association between the existence of CSCs and detection of telomerase activity in tumor cells. Increased numbers of both CSCs of CD44+CD24−low phenotype and cells underwent EMT in DCIS lesion might be an initial step in the stromal invasion and propagation of breast cancer, and occurrence of EMT in the breast tumor associated with high prevalence of CSCs, promoting tumor invasiveness and metastasis. PMID:25624778

  2. The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition

    PubMed Central

    Battistelli, C; Cicchini, C; Santangelo, L; Tramontano, A; Grassi, L; Gonzalez, F J; de Nonno, V; Grassi, G; Amicone, L; Tripodi, M

    2017-01-01

    The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT. PMID:27452518

  3. Hibiscus sabdariffa polyphenols alleviate insulin resistance and renal epithelial to mesenchymal transition: a novel action mechanism mediated by type 4 dipeptidyl peptidase.

    PubMed

    Peng, Chiung-Huei; Yang, Yi-Sun; Chan, Kuei-Chuan; Wang, Chau-Jong; Chen, Mu-Lin; Huang, Chien-Ning

    2014-10-08

    The epithelial to mesenchymal transition (EMT) is important in renal fibrosis. Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 (S307)) is a hallmark of insulin resistance. We report that polyphenol extracts of Hibiscus sabdariffa (HPE) ameliorate diabetic nephropathy and EMT. Recently it has been observed that type 4 dipeptidyl peptidase (DPP-4) inhibitor linagliptin is effective for treating type 2 diabetes and albuminuria. We investigated if DPP-4 and insulin resistance are involved in renal EMT and explored the role of HPE. In high glucose-stimulated tubular cells, HPE, like linagliptin, inhibited DPP-4 activation, thereby regulating vimentin (EMT marker) and IRS-1 (S307). IRS-1 knockdown revealed its essential role in mediating downstream EMT. In type 2 diabetic rats, pIRS-1 (S307) abundantly surrounds the tubular region, with increased vimentin in kidney. Both the expressions were reduced by HPE. In conclusion, HPE exerts effects similar to those of linagliptin, which improves insulin resistance and EMT, and could be an adjuvant to prevent diabetic nephropathy.

  4. A ZIP6-ZIP10 heteromer controls NCAM1 phosphorylation and integration into focal adhesion complexes during epithelial-to-mesenchymal transition

    PubMed Central

    Brethour, Dylan; Mehrabian, Mohadeseh; Williams, Declan; Wang, Xinzhu; Ghodrati, Farinaz; Ehsani, Sepehr; Rubie, Elizabeth A.; Woodgett, James R.; Sevalle, Jean; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2017-01-01

    The prion protein (PrP) evolved from the subbranch of ZIP metal ion transporters comprising ZIPs 5, 6 and 10, raising the prospect that the study of these ZIPs may reveal insights relevant for understanding the function of PrP. Building on data which suggested PrP and ZIP6 are critical during epithelial-to-mesenchymal transition (EMT), we investigated ZIP6 in an EMT paradigm using ZIP6 knockout cells, mass spectrometry and bioinformatic methods. Reminiscent of PrP, ZIP6 levels are five-fold upregulated during EMT and the protein forms a complex with NCAM1. ZIP6 also interacts with ZIP10 and the two ZIP transporters exhibit interdependency during their expression. ZIP6 contributes to the integration of NCAM1 in focal adhesion complexes but, unlike cells lacking PrP, ZIP6 deficiency does not abolish polysialylation of NCAM1. Instead, ZIP6 mediates phosphorylation of NCAM1 on a cluster of cytosolic acceptor sites. Substrate consensus motif features and in vitro phosphorylation data point toward GSK3 as the kinase responsible, and interface mapping experiments identified histidine-rich cytoplasmic loops within the ZIP6/ZIP10 heteromer as a novel scaffold for GSK3 binding. Our data suggests that PrP and ZIP6 inherited the ability to interact with NCAM1 from their common ZIP ancestors but have since diverged to control distinct posttranslational modifications of NCAM1. PMID:28098160

  5. Silencing Snail suppresses tumor cell proliferation and invasion by reversing epithelial-to-mesenchymal transition and arresting G2/M phase in non-small cell lung cancer.

    PubMed

    Yang, Xueying; Han, Mengmeng; Han, Haibo; Wang, Bingjing; Li, Sheng; Zhang, Zhiqian; Zhao, Wei

    2017-04-01

    Epithelial-to-mesenchymal transition (EMT) is essential for tumor invasion and metastasis. Snail has been proven to be a key regulator of EMT. Several studies have shown compelling evidence that Snail is also an important regulator of tumor growth and aggression; however, the role of Snail in the cell cycle has not been clarified. We decreased Snail expression by siRNA transfection and lentiviral‑mediated RNAi, to explore the effect of silencing Snail on the tumorigenicity and migration of lung carcinoma (lung cancer) cells. The results showed that silencing Snail conferred significant anti-proliferative activity and inhibited cell migration, tumor growth and metastasis both in vitro and in vivo. To understand the mechanism of these effects, we further investigated correlations among Snail expression, EMT and cell cycle. Significantly, Snail knockdown reversed EMT processes in lung cancer cells. Furthermore, the cyclin-dependent kinase inhibitor P21 was upregulated after silencing Snail. P21 upregulation manifested its tumor suppressor effects and arrested cells in the G2/M phase, not the G1/S phase following Snail depletion in lung cancer cells. These data suggest that silencing Snail decreases the malignant behaviors of lung cancer cells by reversing EMT processes and causing cell cycle defects.

  6. Effects of matrix stiffness on epithelial to mesenchymal transition-like processes of endometrial epithelial cells: Implications for the pathogenesis of endometriosis

    PubMed Central

    Matsuzaki, Sachiko; Darcha, Claude; Pouly, Jean-Luc; Canis, Michel

    2017-01-01

    Endometriosis is defined as the presence of endometrial glands and stroma within extrauterine sites. Our previous study revealed an epithelial to mesenchymal transition (EMT)-like process in red peritoneal endometriosis, whereas membrane localization of E-cadherin was well maintained in epithelial cells of deep infiltrating endometriosis (DIE). Here we show that endometrial epithelial cells (EEE) grown on polyacrylamide gel substrates (PGS) of 2 kilopascal (kPa), a soft matrix, initiate a partial EMT-like process with transforming growth factor-β1 (TGF-β1) stimulation. Increasing matrix stiffness with TGF-β1 stimulation reduced the number of cell-cell contacts. Cells that retained cell-cell contacts showed decreased expression of E-cadherin and zonula occludens 1 (ZO-1) to cell-cell junctions. Few deep endometriotic epithelial cells (DEE) grown on 30-kPa PGS, which may mimic in vivo tissue compliance of DIE, retained localization of E-cadherin to cell-cell junctions with TGF-β1 treatment. Immunohistochemical analysis showed no phosphorylated Smad 2/3 nuclear localization in E-cadherin+ epithelial cells of DIE. We hypothesize that EEE may undergo an EMT-like process after attachment of endometrium to peritoneum in a TGF-β1–rich microenvironment. However, TGF-β1 signaling may be absent in DIE, resulting in a more epithelial cell-like phenotype in a rigid microenvironment. PMID:28303918

  7. Reprogramming of cell junction modules during stepwise epithelial to mesenchymal transition and accumulation of malignant features in vitro in a prostate cell model

    SciTech Connect

    Ke, Xi-song; Li, Wen-cheng; Hovland, Randi; Qu, Yi; Liu, Run-hui; McCormack, Emmet; Thorsen, Frits; Olsen, Jan Roger; Molven, Anders; Kogan-Sakin, Ira; Rotter, Varda; Akslen, Lars A.; Oyan, Anne Margrete; Kalland, Karl-Henning

    2011-01-15

    Epithelial to mesenchymal transition (EMT) is pivotal in tumor metastasis. Our previous work reported an EMT model based on primary prostate epithelial cells (EP156T) which gave rise to cells with mesenchymal phenotype (EPT1) without malignant transformation. To promote prostate cell transformation, cells were maintained in saturation density cultures to select for cells overriding quiescence. Foci formed repeatedly following around 8 weeks in confluent EPT1 monolayers. Only later passage EPT1, but not EP156T cells of any passage, could form foci. Cells isolated from the foci were named EPT2 and formed robust colonies in soft agar, a malignant feature present neither in EP156T nor in EPT1 cells. EPT2 cells showed additional malignant traits in vitro, including higher ability to proliferate following confluence, higher resistance to apoptosis and lower dependence on exogenous growth factors than EP156T and EPT1 cells. Microarray profiling identified gene sets, many of which belong to cell junction modules, that changed expression from EP156T to EPT1 cells and continued to change from EPT1 to EPT2 cells. Our findings provide a novel stepwise cell culture model in which EMT emerges independently of transformation and is associated with subsequent accumulation of malignant features in prostate cells. Reprogramming of cell junction modules is involved in both steps.

  8. Small molecule/ML327 mediated transcriptional de-repression of E-cadherin and inhibition of epithelial-to-mesenchymal transition

    PubMed Central

    An, Hanbing; Stoops, Sydney L.; Deane, Natasha G.; Zhu, Jing; Zi, Jinghuan; Weaver, Connie; Waterson, Alex G.; Zijlstra, Andries; Lindsley, Craig W.; Beauchamp, Robert Daniel

    2015-01-01

    Transcriptional repression of E-cadherin is a hallmark of Epithelial-to-Mesenchymal Transition (EMT) and is associated with cancer cell invasion and metastasis. Understanding the mechanisms underlying E-cadherin repression during EMT may provide insights into the development of novel targeted therapeutics for cancer. Here, we report on the chemical probe, ML327, which de-represses E-cadherin transcription, partially reverses EMT, and inhibits cancer cell invasiveness and tumor cell migration in vitro and in vivo. Induction of E-cadherin mRNA expression by ML327 treatment does not require de novo protein synthesis. RNA sequencing analysis revealed that ML327 treatment significantly alters expression of over 2,500 genes within three hours in the presence of the translational inhibitor, cycloheximide. Network analysis reveals Hepatocyte Nuclear Factor 4-alpha (HNF4α) as the most significant upstream transcriptional regulator of multiple genes whose expressions were altered by ML327 treatment. Further, small interfering RNA-mediated depletion of HNF4α markedly attenuates the E-cadherin expression response to ML327. In summary, ML327 represents a valuable tool to understand mechanisms of EMT and may provide the basis for a novel targeted therapeutic strategy for carcinomas. PMID:26082441

  9. Revisiting Epithelial-to-Mesenchymal Transition in Liver Fibrosis: Clues for a Better Understanding of the “Reactive” Biliary Epithelial Phenotype

    PubMed Central

    Fabris, Luca; Brivio, Simone; Cadamuro, Massimiliano; Strazzabosco, Mario

    2016-01-01

    Whether liver epithelial cells contribute to the development of hepatic scarring by undergoing epithelial-to-mesenchymal transition (EMT) is a controversial issue. Herein, we revisit the concept of EMT in cholangiopathies, a group of severe hepatic disorders primarily targeting the bile duct epithelial cell (cholangiocyte), leading to progressive portal fibrosis, the main determinant of liver disease progression. Unfortunately, therapies able to halt this process are currently lacking. In cholangiopathies, fibrogenesis is part of ductular reaction, a reparative complex involving epithelial, mesenchymal, and inflammatory cells. Ductular reactive cells (DRC) are cholangiocytes derived from the activation of the hepatic progenitor cell compartment. These cells are arranged into irregular strings and express a “reactive” phenotype, which enables them to extensively crosstalk with the other components of ductular reaction. We will first discuss EMT in liver morphogenesis and then highlight how some of these developmental programs are partly reactivated in DRC. Evidence for “bona fide” EMT changes in cholangiocytes is lacking, but expression of some mesenchymal markers represents a fundamental repair mechanism in response to chronic biliary damage with potential harmful fibrogenetic effects. Understanding microenvironmental cues and signaling perturbations promoting these changes in DRC may help to identify potential targets for new antifibrotic therapies in cholangiopathies. PMID:26880950

  10. Epithelial-to-mesenchymal transition in a fistula-associated anal adenocarcinoma in a patient with long-standing Crohn's disease.

    PubMed

    Scharl, Michael; Frei, Pascal; Frei, Sandra M; Biedermann, Luc; Weber, Achim; Rogler, Gerhard

    2014-01-01

    Anal adenocarcinomas arising from perianal fistulae represent a rare complication in Crohn's disease (CD) patients. We have previously demonstrated the involvement of an epithelial-to-mesenchymal transition (EMT) in the pathogenesis of CD-associated fistulae. Although EMT has also been implicated in the development of colorectal and anal carcinoma, the molecular link from fistula to carcinoma is unclear. We present a case of a 48-year-old White woman who developed a mucinous anal adenocarcinoma originating from a perianal, CD-associated fistula 24 years after being diagnosed with CD. To characterize the expression of EMT-associated molecules in fistula and carcinoma tissue, immunohistochemical analysis for Snail1, Slug, β-catenin and E-cadherin was performed. A mucinous anal adenocarcinoma developed on a perianal fistula in a patient with long-standing CD. After neoadjuvant radiochemotherapy, the fistula-associated tumour was resected and the patient is presently in remission. Using immunohistochemical analysis, we detected a remarkable staining of the Slug transcription factor in transitional cells lining the fistula tract. This observation is unique to this 'carcinoma'-fistula: we had previously shown Slug expression in cells surrounding the fistula tract but not in transitional cells. Expression of Snail1, β-catenin and E-cadherin in this case was comparable with our previous findings. We describe a rare case of a CD fistula-associated adenocarcinoma within an area of squamous epithelium of the perianal area and an unusual expression pattern of EMT markers in this fistula. This case seems to underline the relevance of our previous findings demonstrating that EMT plays an important role for fistula pathogenesis and likely carcinogenesis in CD patients.

  11. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells.

    PubMed

    Qin, Yuan; Zhang, Qiang; Lee, Shan; Zhong, Wei-Long; Liu, Yan-Rong; Liu, Hui-Juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-Shuang; Wang, Jing; Sun, Bo; Dai, Ting-Ting; Yang, Cheng; Sun, Tao; Zhou, Hong-Gang

    2015-12-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients.

  12. Relevance of MicroRNA200 Family and MicroRNA205 for Epithelial to Mesenchymal Transition and Clinical Outcome in Biliary Tract Cancer Patients

    PubMed Central

    Urbas, Romana; Mayr, Christian; Klieser, Eckhard; Fuereder, Julia; Bach, Doris; Stättner, Stefan; Primavesi, Florian; Jaeger, Tarkan; Stanzer, Stefanie; Ress, Anna Lena; Löffelberger, Magdalena; Wagner, Andrej; Berr, Frieder; Ritter, Markus; Pichler, Martin; Neureiter, Daniel; Kiesslich, Tobias

    2016-01-01

    Extensive stromal interaction is one reason for the dismal outcome of biliary tract cancer (BTC) patients. Epithelial to mesenchymal transition (EMT) is involved in tumor invasion and metastasis and is partly regulated by microRNAs (miRs). This study explores the expression of anti-EMT miR200 family (miR141, −200a/b/c, −429) and miR205 as well as the EMT-related proteins E-cadherin and vimentin in a panel of BTC cell lines and clinical specimens by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry, respectively. MicroRNA expression was correlated to (i) the expression patterns of E-cadherin and vimentin; (ii) clinicopathological characteristics; and (iii) survival data. MicroRNA-200 family and miR205 were expressed in all BTC cells and clinical specimens. E-cadherin and vimentin showed a mutually exclusive expression pattern in both, in vitro and in vivo. Expression of miR200 family members positively correlated with E-cadherin and negatively with vimentin expression in BTC cells and specimens. High expression of miR200 family members (but not miR205) and E-cadherin was associated with longer survival, while low miR200 family and high vimentin expression was a predictor of unfavorable survival. Overall, the current study demonstrates the relevance of the miR200 family in EMT of BTC tumors and suggests these miRs as predictors for positive outcome. PMID:27941621

  13. Epithelial to mesenchymal transition in cutaneous squamous cell carcinoma is correlated with COX-2 expression but not with the presence of stromal macrophages or CD10-expressing cells.

    PubMed

    Jang, Tae Jung

    2012-05-01

    Epithelial to mesenchymal transition (EMT) is an intricate process by which epithelial cells loose epithelial characteristics and acquire a mesenchymal-like phenotype. EMT and cyclooxygenase 2 (COX-2) expression are related to tumor invasion and metastasis. The tumor microenvironment plays a major role in tumor progression and the induction of EMT. Here, we investigated the relationship between EMT and COX-2 expression as well as tumor-associated macrophages (TAM) and CD10-positive stromal cells during the development of cutaneous squamous neoplastic lesion. We performed immunohistochemical staining for vimentin, E-cadherin, β-catenin, COX-2, CD68, and CD10 in 41 cases of squamous cell cancers (SCC), 20 of Bowen's disease, 30 of actinic keratosis, and 30 samples of normal skin. SCC cells showed significantly increased vimentin expression and reduced expression of membranous E-cadherin and β-catenin compared with cells in precursor lesions and in normal skin. COX-2 expression was also markedly increased in SCC cells. E-cadherin expression was positively correlated with β-catenin expression and inversely correlated with COX-2 expression in SCC cells. The number of TAM and CD10-positive stromal cells increased from the normal skin to precursor lesions and SCC cells. The number of TAM and of CD10-positive stromal cells did not correlate with the expression of E-cadherin, β-catenin, COX-2, and vimentin in SCC cells. We suggest that cutaneous SCC cells show EMT, which appears to be correlated with COX-2 expression but not with stromal CD10 expression and TAM.

  14. Epithelial-to-mesenchymal transition leads to disease-stage differences in circulating tumor cell detection and metastasis in pre-clinical models of prostate cancer

    PubMed Central

    Lowes, Lori E.; Goodale, David; Xia, Ying; Postenka, Carl; Piaseczny, Matthew M.; Paczkowski, Freeman; Allan, Alison L.

    2016-01-01

    Metastasis is the cause of most prostate cancer (PCa) deaths and has been associated with circulating tumor cells (CTCs). The presence of ≥5 CTCs/7.5mL of blood is a poor prognosis indicator in metastatic PCa when assessed by the CellSearch® system, the “gold standard” clinical platform. However, ~35% of metastatic PCa patients assessed by CellSearch® have undetectable CTCs. We hypothesize that this is due to epithelial-to-mesenchymal transition (EMT) and subsequent loss of necessary CTC detection markers, with important implications for PCa metastasis. Two pre-clinical assays were developed to assess human CTCs in xenograft models; one comparable to CellSearch® (EpCAM-based) and one detecting CTCs semi-independent of EMT status via combined staining with EpCAM/HLA (human leukocyte antigen). In vivo differences in CTC generation, kinetics, metastasis and EMT status were determined using 4 PCa models with progressive epithelial (LNCaP, LNCaP-C42B) to mesenchymal (PC-3, PC-3M) phenotypes. Assay validation demonstrated that the CellSearch®-based assay failed to detect a significant number (~40-50%) of mesenchymal CTCs. In vivo, PCa with an increasingly mesenchymal phenotype shed greater numbers of CTCs more quickly and with greater metastatic capacity than PCa with an epithelial phenotype. Notably, the CellSearch®-based assay captured the majority of CTCs shed during early-stage disease in vivo, and only after establishment of metastases were a significant number of undetectable CTCs present. This study provides important insight into the influence of EMT on CTC generation and subsequent metastasis, and highlights that novel technologies aimed at capturing mesenchymal CTCs may only be useful in the setting of advanced metastatic disease. PMID:27764810

  15. The role of epithelial to mesenchymal transition in resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer

    PubMed Central

    Jakobsen, Kristine Raaby; Demuth, Christina; Sorensen, Boe Sandahl

    2016-01-01

    Inhibition of the epidermal growth factor receptor (EGFR) is an important strategy when treating non-small cell lung cancer (NSCLC) patients. However, intrinsic resistance or development of resistance during the course of treatment constitutes a major challenge. The knowledge on EGFR-directed tyrosine kinase inhibitors (TKIs) and their biological effect keeps increasing. Within the group of patients with EGFR mutations some benefit to a much higher degree than others, and for patients lacking EGFR mutations a subset experience an effect. Up to 70% of patients with EGFR mutations and 10–20% of patients without EGFR mutations initially respond to the EGFR-TKI erlotinib, but there is a severe absence of good prognostic markers. Despite initial effect, all patients acquire resistance to EGFR-TKIs. Multiple mechanisms have implications in resistance development, but much is still to be explored. Epithelial to mesenchymal transition (EMT) is a transcriptionally regulated phenotypic shift rendering cells more invasive and migratory. Within the EMT process lays a need for external or internal stimuli to give rise to changes in central signaling pathways. Expression of mesenchymal markers correlates to a bad prognosis and an inferior response to EGFR-TKIs in NSCLC due to the contribution to a resistant phenotype. A deeper understanding of the role of EMT in NSCLC and especially in EGFR-TKI resistance-development constitute one opportunity to improve the benefit of TKI treatment for the individual patient. Many scientific studies have linked the EMT process to EGFR-TKI resistance in NSCLC and our aim is to review the role of EMT in both intrinsic and acquired resistance to EGFR-TKIs. PMID:27186512

  16. The upregulated α-catulin expression was involved in head-neck squamous cell carcinogenesis by promoting proliferation, migration, invasion, and epithelial to mesenchymal transition.

    PubMed

    Zhang, Zhuo; Yang, Xue-Feng; Huang, Ke-Qiang; Ren, Li; Zhao, Shuang; Gou, Wen-Feng; Shen, Dao-Fu; Sun, Hong-Zhi; Takano, Yasuo; Zheng, Hua-Chuan

    2016-02-01

    Rho signaling component, α-catulin, is a cytoskeletal linker protein and plays an important role in apoptotic and senescence resistance, cytoskeletal reorganization, mobility, invasion, and epithelial to mesenchymal transition (EMT) of cancer cells. Here, we transfected α-catulin-expressing plasmid into head and neck squamous cell carcinoma (HNSCC) cell and examined the phenotypes and relevant molecules. α-catulin expression was detected on tissue microarray containing squamous epithelium, dysplasia, and cancer of head and neck by immunohistochemistry. It was found that α-catulin overexpression resulted in faster growth, migration and invasion, lower apoptosis, G2/M progression, and EMT than the mock and control (P < 0.05). α-catulin overexpression increased the expression of Cyclin E1, cdc2, survivin, Bcl-2, MMP-2, MMP-9, and N-cadherin but decreased the expression of Caspase-3 and E-cadherin by real-time PCR (P < 0.05). α-catulin expression was stronger in primary cancers than those in normal squamous epithelium and dysplasia (P < 0.05), but not correlated with aggressive behaviors or adverse prognosis of HNSCC patients (P > 0.05). Multivariate survival analysis showed that distant metastasis and TNM staging were independent prognostic factors for overall survival of the HNSCC patients (P < 0.05). These data indicated that upregulated expression of α-catulin protein might have impact on the tumorigenesis of HNSCC possibly by reducing apoptosis, enhancing proliferation, cell cycle progression, migration, invasion, and EMT. It might be regarded as a potential marker for head and neck carcinogenesis or a target of gene therapy for HNSCCs.

  17. Loss of PTPN12 Stimulates Progression of ErbB2-Dependent Breast Cancer by Enhancing Cell Survival, Migration, and Epithelial-to-Mesenchymal Transition.

    PubMed

    Li, Juan; Davidson, Dominique; Martins Souza, Cleiton; Zhong, Ming-Chao; Wu, Ning; Park, Morag; Muller, William J; Veillette, André

    2015-12-01

    PTPN12 is a cytoplasmic protein tyrosine phosphatase (PTP) reported to be a tumor suppressor in breast cancer, through its capacity to dephosphorylate oncogenic receptor protein tyrosine kinases (PTKs), such as ErbB2. However, the precise molecular and cellular impact of PTPN12 deficiency in breast cancer progression remains to be fully clarified. Here, we addressed this issue by examining the effect of PTPN12 deficiency on breast cancer progression in vivo, in a mouse model of ErbB2-dependent breast cancer using a conditional PTPN12-deficient mouse. Our studies showed that lack of PTPN12 in breast epithelial cells accelerated breast cancer development and lung metastases in vivo. PTPN12-deficient breast cancer cells displayed enhanced tyrosine phosphorylation of the adaptor Cas, the adaptor paxillin, and the kinase Pyk2. They exhibited no detectable increase in ErbB2 tyrosine phosphorylation. PTPN12-deficient cells were more resistant to anoikis and had augmented migratory and invasive properties. Enhanced migration was corrected by inhibiting Pyk2. PTPN12-deficient breast cancer cells also acquired partial features of epithelial-to-mesenchymal transition (EMT), a feature of more aggressive forms of breast cancer. Hence, loss of PTPN12 promoted tumor progression in a mouse model of breast cancer, supporting the notion that PTPN12 is a tumor suppressor in human breast cancer. This function was related to the ability of PTPN12 to suppress cell survival, migration, invasiveness, and EMT and to inhibit tyrosine phosphorylation of Cas, Pyk2, and paxillin. These findings enhance our understanding of the role and mechanism of action of PTPN12 in the control of breast cancer progression.

  18. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients

    PubMed Central

    Nuciforo, Paolo G.; Di Tommaso, Luca; Giovannetti, Elisa; Peg, Vicente; Losurdo, Agnese; Pérez-Garcia, José; Masci, Giovanna; Corsi, Fabio; Cortés, Javier; Seoane, Joan; Calin, George A.; Santarpia, Libero

    2015-01-01

    Patients with primary HER2-positive breast cancer benefit from HER2-targeted therapies. Nevertheless, a significant proportion of these patients die of disease progression due to mechanisms of drug resistance. MicroRNAs (miRNAs) are emerging as critical core regulators of drug resistance that act by modulating the epithelial- to-mesenchymal transition (EMT) and cancer-related immune responses. In this study, we investigated the association between the expression of a specific subset of 14 miRNAs involved in EMT processes and immune functions and the response to neoadjuvant trastuzumab and chemotherapy in 52 patients with HER2-overexpressing breast tumors. The expression of only a single miRNA, miR-21, was significantly associated with residual disease (p = 0.030) and increased after trastuzumab-chemotherapy (p = 0.012). A target prediction analysis coupled with in vitro and in vivo validations revealed that miR-21 levels inversely correlated with the expression of PTEN (rs = −0.502; p = 0.005) and PDCD4 (rs = −0.426; p = 0.019), which differentially influenced the drug sensitivity of HER2-positive breast cancer cells. However, PTEN expression was only marginally associated with residual disease. We further demonstrated that miR-21 was able to affect the response to both trastuzumab and chemotherapy, triggering an IL-6/STAT3/NF-κB-mediated signaling loop and activating the PI3K pathway. Our findings support the ability of miR-21 signaling to sustain EMT and shape the tumor immune microenvironment in HER2-positive breast cancer. Collectively, these data provide a rationale for using miR-21 expression as a biomarker to select trastuzumab-chemotherapy-resistant HER2-positive breast cancer patients who may benefit from treatments containing PI3K inhibitors or immunomodulatory drugs. PMID:26452030

  19. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial to mesenchymal transition

    PubMed Central

    Mak, Milena P.; Tong, Pan; Diao, Lixia; Cardnell, Robert J.; Gibbons, Don L.; William, William N.; Skoulidis, Ferdinandos; Parra, Edwin R.; Rodriguez-Canales, Jaime; Wistuba, Ignacio I.; Heymach, John V.; Weinstein, John N.; Coombes, Kevin R.; Wang, Jing; Byers, Lauren Averett

    2015-01-01

    Purpose We previously demonstrated the association between epithelial-to-mesenchymal transition (EMT) and drug response in lung cancer using an EMT signature derived in cancer cell lines. Given the contribution of tumor microenvironments to EMT, we extended our investigation of EMT to patient tumors from 11 cancer types to develop a pan-cancer EMT signature. Experimental Design Using the pan-cancer EMT signature, we conducted an integrated, global analysis of genomic and proteomic profiles associated with EMT across 1,934 tumors including breast, lung, colon, ovarian, and bladder cancers. Differences in outcome and in vitro drug response corresponding to expression of the pan-cancer EMT signature were also investigated. Results Compared to the lung cancer EMT signature, the patient-derived, pan-cancer EMT signature encompasses a set of core EMT genes that correlate even more strongly with known EMT markers across diverse tumor types and identifies differences in drug sensitivity and global molecular alterations at the DNA, RNA, and protein levels. Among those changes associated with EMT, pathway analysis revealed a strong correlation between EMT and immune activation. Further supervised analysis demonstrated high expression of immune checkpoints and other druggable immune targets such as PD1, PD-L1, CTLA4, OX40L, and PDL2, in tumors with the most mesenchymal EMT scores. Elevated PD-L1 protein expression in mesenchymal tumors was confirmed by immunohistochemistry in an independent lung cancer cohort. Conclusions This new signature provides a novel, patient-based, histology-independent tool for the investigation of EMT and offers insights into potential novel therapeutic targets for mesenchymal tumors, independent of cancer type, including immune checkpoints. PMID:26420858

  20. Small interfering RNA targeting ILK inhibits metastasis in human tongue cancer cells through repression of epithelial-to-mesenchymal transition

    SciTech Connect

    Xing, Yu; Qi, Jin; Deng, Shixiong; Wang, Cheng; Zhang, Luyu; Chen, Junxia

    2013-08-01

    Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase. Accumulating evidences suggest that ILK are involved in cell–matrix interactions, cell proliferation, invasion, migration, angiogenesis and Epithelial–mesenchymal transition (EMT). However, the underlying mechanisms remain largely unknown. EMT has been postulated as a prerequisite for metastasis. The reports have demonstrated that EMT was implicated in metastasis of oral squamous cell carcinomas. Therefore, here we further postulate that ILK might participate in EMT of tongue cancer. We showed that ILK siRNA inhibited EMT with low N-cadherin, Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and in vitro. We found that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β as well as reduced expression of MMP2 and MMP9. Furthermore, we found that the tongue tumor with high metastasis capability showed higher ILK, Vimentin, Snail, Slug and Twist as well as lower E-cadherin expression in clinical specimens. Finally, ILK siRNA led to the suppression for tumorigenesis and metastasis in vivo. Our findings suggest that ILK could be a novel diagnostic and therapeutic target for tongue cancer. Highlights: • ILK siRNA influences cell morphology, cell cycle, migration and invasion. • ILK siRNA affects the expression of proteins associated with EMT. • ILK expression is related to EMT in clinical human tongue tumors. • ILK siRNA inhibits metastasis of the tongue cancer cells through suppressing EMT.

  1. Two-dimensional culture of human pancreatic adenocarcinoma cells results in an irreversible transition from epithelial to mesenchymal phenotype.

    PubMed

    Kang, Ya'an; Zhang, Ran; Suzuki, Rei; Li, Shao-qiang; Roife, David; Truty, Mark J; Chatterjee, Deyali; Thomas, Ryan M; Cardwell, James; Wang, Yu; Wang, Huamin; Katz, Matthew H; Fleming, Jason B

    2015-02-01

    Many commercially available cell lines have been in culture for ages, acquiring phenotypes that differ from the original cancers from which these cell lines were derived. Therefore, research on new cell lines could improve the success rates of translational research in cancer. We have developed methods for the isolation and culture of human pancreatic ductal adenocarcinoma (PDAC) cells from murine xenografts of human PDAC. We hypothesize that phenotypes of PDAC cells are modified by in vitro culture conditions over time and by in vivo implantation. Patient-derived xenografts were created in immunodeficient mice using surgically resected tumor specimens. These murine xenografts were then used to establish human PDAC cell lines in culture. Earlier (<5) passage and later (>20) passage cell lines were evaluated separately regarding proliferation, cell cycle, genetic mutations, invasiveness, chemosensitivity, tumorigenesis, epithelial-mesenchymal transition (EMT) status, and proteomics. Later passage cells accelerated their doubling time and colony formation, and were more concentrated in the G0/G1 phase and less in the G2/M checkpoint phase. Later passage cells were more sensitive to gemcitabine and 5-fluorouracil than earlier passage cells, but all four new cell lines were more chemo-resistant compared with commercial ATCC cell lines. EMT induction was observed when establishing and passaging cell lines in vitro and furthermore by growing them as subcutaneous tumors in vivo. This study demonstrates a novel approach to the establishment of PDAC cell lines and observes a process by which newly established cell lines undergo phenotypic changes during in vitro culture and in vivo tumorigenesis. This may help explain differences of treatment effects often observed between experiments conducted in vitro, in vivo, and in human clinical trials.

  2. Radiation promotes epithelial-to-mesenchymal transition and invasion of pancreatic cancer cell by activating carcinoma-associated fibroblasts

    PubMed Central

    Li, Doudou; Qu, Chao; Ning, Zhouyu; Wang, Haiyong; Zang, Kun; Zhuang, Liping; Chen, Lianyu; Wang, Peng; Meng, Zhiqiang

    2016-01-01

    The tumor microenvironment is of crucial importance affecting treatment and prognosis. High degree of carcinoma-associated fibroblast (CAF) infiltration occurs in pancreatic cancer, though its effect on radiotherapy remains unclear. In this study, we demonstrated that radiation enhanced the migration- and invasion-promoting capacity of CAFs both in vitro and in vivo in a lung metastasis model. Radiation exposure increased the expression of CXCL12 by CAFs. CAF-derived CXCL12 promoted tumor cell EMT and invasion directly, acting through CXCR4 on pancreatic cancer cells. In addition, we showed that CXCL12-CXCR4 signaling promoted pancreatic cancer cell EMT and invasion by activating the P38 pathway. Therefore, our study concluded that radiation promoted pancreatic cancer cell invasion and EMT by activating CAFs, while inhibiting the CXCL12/CXCR4 interaction between pancreatic cancer cells and CAFs could potentially attenuate tumor cell invasion induced by radiation, which provides an opportunity for the development of novel therapeutic targets to improve the prognosis for human pancreatic cancer treated with radiation therapy. PMID:27822411

  3. Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition

    PubMed Central

    Subramani, Ramadevi; Gonzalez, Elizabeth; Arumugam, Arunkumar; Nandy, Sushmita; Gonzalez, Viviana; Medel, Joshua; Camacho, Fernando; Ortega, Andrew; Bonkoungou, Sandrine; Narayan, Mahesh; Dwivedi, Alok kumar; Lakshmanaswamy, Rajkumar

    2016-01-01

    The mortality and morbidity rates of pancreatic cancer are high because of its extremely invasive and metastatic nature. Its lack of symptoms, late diagnosis and chemo–resistance and the ineffective treatment modalities warrant the development of new chemo–therapeutic agents for pancreatic cancer. Agents from medicinal plants have demonstrated therapeutic benefits in various human cancers. Nimbolide, an active molecule isolated from Azadirachta indica, has been reported to exhibit several medicinal properties. This study assessed the anticancer properties of nimbolide against pancreatic cancer. Our data reveal that nimbolide induces excessive generation of reactive oxygen species (ROS), thereby regulating both apoptosis and autophagy in pancreatic cancer cells. Experiments with the autophagy inhibitors 3-methyladenine and chloroquine diphosphate salt and the apoptosis inhibitor z-VAD-fmk demonstrated that nimbolide-mediated ROS generation inhibited proliferation (through reduced PI3K/AKT/mTOR and ERK signaling) and metastasis (through decreased EMT, invasion, migration and colony forming abilities) via mitochondrial-mediated apoptotic cell death but not via autophagy. In vivo experiments also demonstrated that nimbolide was effective in inhibiting pancreatic cancer growth and metastasis. Overall, our data suggest that nimbolide can serve as a potential chemo–therapeutic agent for pancreatic cancer. PMID:26804739

  4. miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis.

    PubMed

    El Bezawy, Rihan; Cominetti, Denis; Fenderico, Nicola; Zuco, Valentina; Beretta, Giovanni Luca; Dugo, Matteo; Arrighetti, Noemi; Stucchi, Claudio; Rancati, Tiziana; Valdagni, Riccardo; Zaffaroni, Nadia; Gandellini, Paolo

    2017-06-01

    Radiotherapy is one of the main treatment choices for non-metastatic prostate cancer (PCa), although development of radioresistance limits its effectiveness. Mounting evidence supports the ability of microRNAs to interfere with different radioresistance-associated pathways, suggesting their potential as radiosensitizers. Here, we demonstrate that reconstitution of miR-875-5p, whose expression is down-regulated in PCa clinical samples and directly correlates with that of E-cadherin, was able to enhance radiation response in PCa cell lines and xenografts through EGFR direct targeting. Consistent with the established role of EGFR in sustaining epithelial-to-mesenchymal transition (EMT) and promoting DNA repair following radiation-induced nuclear translocation, we found that miR-875-5p reconstitution in PCa cells counteracted EMT and impaired DNA lesion clearance. Down-regulation of the EMT-inducing transcription factor ZEB1, which also plays a role in homologous recombination-mediated repair of DNA lesions by regulating CHK1 expression, was found to be a major determinant of miR-875-5p-induced radiosensitization, as confirmed by phenocopy experiments showing that siRNA-mediated ZEB1 knock-down was able to reproduce the microRNA radiosensitizing effect. Overall, our data support the clinical interest in developing a novel therapeutic approach based on miR-875-5p reconstitution to increase PCa response to radiotherapy.

  5. Rubus idaeus L. reverses epithelial-to-mesenchymal transition and suppresses cell invasion and protease activities by targeting ERK1/2 and FAK pathways in human lung cancer cells.

    PubMed

    Hsieh, Yih-Shou; Chu, Shu-Chen; Hsu, Li-Sung; Chen, Kuo-Shuen; Lai, Ming-Tsung; Yeh, Chia-Heng; Chen, Pei-Ni

    2013-12-01

    Epithelial to mesenchymal transition (EMT) has been considered essential for cancer metastasis, a multistep complicated process including local invasion, intravasation, extravasation, and proliferation at distant sites. Herein we provided molecular evidence associated with the antimetastatic effect of Rubus idaeus L. extracts (RIE) by showing a nearly complete inhibition on the invasion (p<0.001) of highly metastatic A549 cells via reduced activities of matrix metalloproteinase-2 (MMP-2) and urokinasetype plasminogen activator (u-PA). We performed Western blot to find that RIE could induce up-regulation of epithelial marker such as E-cadherin and α-catenin and inhibit the mesenchymal markers such as N-cadherin, fibronectin, snail-1, and vimentin. Selective snail-1 inhibition by snail-1-specific-siRNA also showed increased E-cadherin expression in A549 cells suggesting a possible involvement of snail-1 inhibition in RIE-caused increase in E-cadherin level. RIE also inhibited p-FAK, p-paxillin and AP-1 by Western blot analysis, indicating the anti-EMT effect of RIE in human lung carcinoma. Importantly, an in vivo BALB/c nude mice xenograft model showed that RIE treatment reduced tumor growth by oral gavage, and RIE represent promising candidates for future phytochemical-based mechanistic pathway-targeted cancer prevention strategies.

  6. Epithelial to mesenchymal transition in arsenic-transformed cells promotes angiogenesis through activating β-catenin–vascular endothelial growth factor pathway

    SciTech Connect

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2013-08-15

    Arsenic exposure represents a major health concern increasing cancer risks, yet the mechanism of arsenic carcinogenesis has not been elucidated. We and others recently reported that cell malignant transformation by arsenic is accompanied by epithelial to mesenchymal transition (EMT). However, the role of EMT in arsenic carcinogenesis is not well understood. Although previous studies showed that short term exposure of endothelial cells to arsenic stimulated angiogenesis, it remains to be determined whether cells that were malignantly transformed by long term arsenic exposure have a pro-angiogenic effect. The objective of this study was to investigate the effect of arsenic-transformed human bronchial epithelial cells that underwent EMT on angiogenesis and the underlying mechanism. It was found that the conditioned medium from arsenic-transformed cells strongly stimulated tube formation by human umbilical vein endothelial cells (HUVECs). Moreover, enhanced angiogenesis was detected in mouse xenograft tumor tissues resulting from inoculation of arsenic-transformed cells. Mechanistic studies revealed that β-catenin was activated in arsenic-transformed cells up-regulating its target gene expression including angiogenic-stimulating vascular endothelial growth factor (VEGF). Stably expressing microRNA-200b in arsenic-transformed cells that reversed EMT inhibited β-catenin activation, decreased VEGF expression and reduced tube formation by HUVECs. SiRNA knockdown β-catenin decreased VEGF expression. Adding a VEGF neutralizing antibody into the conditioned medium from arsenic-transformed cells impaired tube formation by HUVECs. Reverse transcriptase-PCR analysis revealed that the mRNA levels of canonical Wnt ligands were not increased in arsenic-transformed cells. These findings suggest that EMT in arsenic-transformed cells promotes angiogenesis through activating β-catenin–VEGF pathway. - Highlights: • Arsenic-transformed cells that underwent EMT displayed a pro

  7. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells.

    PubMed

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhao, Ruan Jin; Zhang, Xueji; Yang, Lun; Zhou, Shu-Feng; Mao, Zong-Fu

    2015-01-01

    Plumbagin (PLB) has exhibited a potent anticancer effect in preclinical studies, but the molecular interactome remains elusive. This study aimed to compare the quantitative proteomic responses to PLB treatment in human prostate cancer PC-3 and DU145 cells using the approach of stable-isotope labeling by amino acids in cell culture (SILAC). The data were finally validated using Western blot assay. First, the bioinformatic analysis predicted that PLB could interact with 78 proteins that were involved in cell proliferation and apoptosis, immunity, and signal transduction. Our quantitative proteomic study using SILAC revealed that there were at least 1,225 and 267 proteins interacting with PLB and there were 341 and 107 signaling pathways and cellular functions potentially regulated by PLB in PC-3 and DU145 cells, respectively. These proteins and pathways played a critical role in the regulation of cell cycle, apoptosis, autophagy, epithelial to mesenchymal transition (EMT), and reactive oxygen species generation. The proteomic study showed substantial differences in response to PLB treatment between PC-3 and DU145 cells. PLB treatment significantly modulated the expression of critical proteins that regulate cell cycle, apoptosis, and EMT signaling pathways in PC-3 cells but not in DU145 cells. Consistently, our Western blotting analysis validated the bioinformatic and proteomic data and confirmed the modulating effects of PLB on important proteins that regulated cell cycle, apoptosis, autophagy, and EMT in PC-3 and DU145 cells. The data from the Western blot assay could not display significant differences between PC-3 and DU145 cells. These findings indicate that PLB elicits different proteomic responses in PC-3 and DU145 cells involving proteins and pathways that regulate cell cycle, apoptosis, autophagy, reactive oxygen species production, and antioxidation/oxidation homeostasis. This is the first systematic study with integrated computational, proteomic, and

  8. Epithelial-to-Mesenchymal Transition of RPE Cells In Vitro Confers Increased β1,6-N-Glycosylation and Increased Susceptibility to Galectin-3 Binding

    PubMed Central

    Priglinger, Claudia S.; Obermann, Jara; Szober, Christoph M.; Merl-Pham, Juliane; Ohmayer, Uli; Behler, Jennifer; Gruhn, Fabian; Kreutzer, Thomas C.; Wertheimer, Christian; Geerlof, Arie; Priglinger, Siegfried G.; Hauck, Stefanie M.

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) of retinal pigment epithelial cells is a crucial event in the onset of proliferative vitreoretinopathy (PVR), the most common reason for treatment failure in retinal detachment surgery. We studied alterations in the cell surface glycan expression profile upon EMT of RPE cells and focused on its relevance for the interaction with galectin-3 (Gal-3), a carbohydrate binding protein, which can inhibit attachment and spreading of human RPE cells in a dose- and carbohydrate-dependent manner, and thus bares the potential to counteract PVR-associated cellular events. Lectin blot analysis revealed that EMT of RPE cells in vitro confers a glycomic shift towards an abundance of Thomsen-Friedenreich antigen, poly-N-acetyllactosamine chains, and complex-type branched N-glycans. Using inhibitors of glycosylation we found that both, binding of Gal-3 to the RPE cell surface and Gal-3-mediated inhibition of RPE attachment and spreading, strongly depend on the interaction of Gal-3 with tri- or tetra-antennary complex type N-glycans and sialylation of glycans but not on complex-type O-glycans. Importantly, we found that β1,6 N-acetylglucosaminyltransferase V (Mgat5), the key enzyme catalyzing the synthesis of tetra- or tri-antennary complex type N-glycans, is increased upon EMT of RPE cells. Silencing of Mgat5 by siRNA and CRISPR-Cas9 genome editing resulted in reduced Gal-3 binding. We conclude from these data that binding of recombinant Gal-3 to the RPE cell surface and inhibitory effects on RPE attachment and spreading largely dependent on interaction with Mgat5 modified N-glycans, which are more abundant on dedifferentiated than on the healthy, native RPE cells. Based on these findings we hypothesize that EMT of RPE cells in vitro confers glycomic changes, which account for high affinity binding of recombinant Gal-3, particularly to the cell surface of myofibroblastic RPE. From a future perspective recombinant Gal-3 may disclose a

  9. NTS/NTR1 co-expression enhances epithelial-to-mesenchymal transition and promotes tumor metastasis by activating the Wnt/β-catenin signaling pathway in hepatocellular carcinoma.

    PubMed

    Ye, Yingnan; Long, Xinxin; Zhang, Lijie; Chen, Jieying; Liu, Pengpeng; Li, Hui; Wei, Feng; Yu, Wenwen; Ren, Xiubao; Yu, Jinpu

    2016-10-25

    Neurotensin (NTS) is a neuropeptide distributed in central nervous and digestive systems. In this study, the significant association between ectopic NTS expression and tumor invasion was confirmed in hepatocellular carcinoma (HCC). In primary HCC tissues, the NTS and neurotensin receptor 1 (NTR1) co-expression (NTS+NTR1+) is a poor prognostic factor correlated with aggressive biological behaviors and poor clinical prognosis. Enhanced epithelial-to-mesenchymal transition (EMT) features, including decreased E-cadherin, increased β-catenin translocation and N-cadherin expression, were identified in NTS+NTR1+ HCC tissues. Varied NTS-responsible HCC cell lines were established using NTR1 genetically modified Hep3B and HepG2 cells which were used to elucidate the molecular mechanisms regulating NTS-induced EMT and tumor invasion in vitro. Results revealed that inducing exogenous NTS stimulation and enhancing NTR1 expression promoted tumor invasion rather than proliferation by accelerating EMT in HCC cells. The NTS-induced EMT was correlated with the remarkable increase in Wnt1, Wnt3, Wnt5, Axin, and p-GSK3β expression and was significantly reversed by blocking the NTS signaling via the NTR1 antagonist SR48692 or by inhibiting the activation of the Wnt/β-catenin pathway via specific inhibitors, such as TSW119 and DKK-1. SR48692 also inhibited the metastases of NTR1-overexpressing HCC xenografts in the lungs in vivo. This finding implied that NTS may be an important stimulus to promote HCC invasion and metastasis both in vitro and in vivo, and NTS signaling enhanced the tumor EMT and invasion potentials by activating the canonical Wnt/β-catenin signaling pathway. Therefore, NTS may be a valuable therapeutic target to prevent tumor progression in HCC.

  10. The research on lapatinib in autophagy, cell cycle arrest and epithelial to mesenchymal transition via Wnt/ErK/PI3K-AKT signaling pathway in human cutaneous squamous cell carcinoma

    PubMed Central

    Yao, Ming; Shang, Yuan-Yuan; Zhou, Zhi-Wei; Yang, Yin-Xue; Wu, Yin-Sheng; Guan, Li-Feng; Wang, Xin-Yu; Zhou, Shu-Feng; Wei, Xi

    2017-01-01

    Cutaneous squamous cell carcinoma (cSCC) contributes to one of most common types of skin cancer. Epidermal growth factor receptor (EGFR) activation has been investigated to be associated with the development of cSCC. Lapatinib is an inhibitor targeting HER2/neu and EGFR pathway. We found that lapatinib can inhibit proliferation by enhancing apoptosis of human cSCC cell lines. The cSCC cell cycle distribution could be arrested in G2/M phase after lapatinib treatment. In the in vitro experiment, we found that lapatinib interrupted PI3K/AKT/mTOR signaling pathway in human cSCC cells. Furthermore, lapatinib could suppress epithelial to mesenchymal transition (EMT) via Wnt/ErK/PI3K-AKT signaling pathway to represent a promising anticancer drug for cSCC treatment. PMID:28243326

  11. Let-7c governs the acquisition of chemo- or radioresistance and epithelial-to-mesenchymal transition phenotypes in docetaxel-resistant lung adenocarcinoma.

    PubMed

    Cui, Shi-Yun; Huang, Jia-Yuan; Chen, Yi-Tian; Song, Hai-Zhu; Feng, Bing; Huang, Gui-Chun; Wang, Rui; Chen, Long-Bang; De, Wei

    2013-07-01

    MicroRNA (miRNA) expression and functions have been reported to contribute to phenotypic features of tumor cells. Although targets and functional roles for many miRNAs have been described in lung adenocarcinoma (LAD), their pathophysiologic roles in phenotypes of chemoresistant LAD cells are still largely unclear. Previously, docetaxel (DTX)-resistant LAD cell lines (SPC-A1/DTX and H1299/DTX) were established by our laboratory and displayed chemo- or radioresistance and mesenchymal features with enhanced invasiveness and motility. Unbiased miRNA profiling indicated that let-7c (MIRLET7C) was significantly downregulated in SPC-A1/DTX cells. Ectopic let-7c expression increased the in vitro and in vivo chemo- or radiosensitivity of DTX-resistant LAD cells through enhanced apoptosis, reversal of epithelial-to-mesenchymal phenotypes, and inhibition of in vivo metastatic potential via inactivation of Akt phosphorylation, whereas a let-7c inhibitor decreased the chemo- or radiosensitivity of parental cells. Further investigation suggested that let-7c significantly reduced the luciferase activity of a Bcl-xL 3'-UTR-based reporter, concordant with reduced Bcl-xL protein levels. Additionally, siRNA-mediated Bcl-xL knockdown mimicked the same effects of let-7c precursor, and enforced Bcl-xL expression partially rescued the effects of let-7c precursor in DTX-resistant LAD cells. Furthermore, we found that Bcl-xL was significantly upregulated in DTX-nonresponding LAD tissues, and its expression was inversely correlated with let-7c expression. This study suggests an important role for let-7c in the molecular etiology of chemoresistant lung adenocarcinoma.

  12. Overexpression of farnesoid X receptor in small airways contributes to epithelial to mesenchymal transition and COX-2 expression in chronic obstructive pulmonary disease

    PubMed Central

    Chen, Bi; You, Wen-Jie; Xue, Shan; Qin, Hui; Zhao, Xu-Ji; Zhang, Miao; Liu, Xue-Qing; Zhu, Shu-Yang

    2016-01-01

    Background Epithelial-mesenchymal transition (EMT) and cyclooxygenase-2 (COX-2) contribute to airway remodelling and inflammation in chronic obstructive pulmonary disease (COPD). Recent data suggest that the farnesoid X receptor (FXR), a nuclear receptor traditionally considered as bile acid-activated receptor, is also expressed in non-classical bile acids target tissues with novel functions beyond regulating bile acid homeostasis. This study aimed to investigate the potential role of FXR in the development of COPD, as well as factors that affect FXR expression. Methods Expression of FXR, EMT biomarkers and COX-2 was examined by immunohistochemistry in lung tissues from non-smokers, smokers, and smokers with COPD. The role of FXR in TGF-β1-induced EMT and COX-2 expression in human bronchial epithelial (HBE) cells was evaluated in vitro. Factors regulating FXR expression were assessed in cultured HBE cells and a cigarette smoke-induced rat model of COPD. Results Expression of FXR, EMT markers and COX-2 was significantly elevated in small airway epithelium of COPD patients compared with controls. The staining scores of FXR in small airway epithelium were negatively related with FEV1% of predicted of smokers without and with COPD. FXR agonist GW4064 remarkably enhanced and FXR antagonist Z-Guggulsterone significantly inhibited EMT changes in TGF-β1-treated HBE cells. Both chenodeoxycholic acid (CDCA) and GW4064 increased COX-2 expression in HBE cells, whereas Z-Guggulsterone dramatically restrained CDCA-induced COX-2 expression. Finally, FXR expression is induced by IL-4 and IL-13 in HBE cells, as well as by cigarette smoke exposure in a rat model of COPD. Conclusions Overexpression of FXR in small airway may contribute to airway remodelling and inflammation in COPD by regulating EMT and COX-2 expression. PMID:28066584

  13. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway

    SciTech Connect

    Li, Hongzhong; Huang, Jing; Yang, Bing; Xiang, Tingxiu; Yin, Xuedong; Peng, Weiyan; Cheng, Wei; Wan, Jingyuan; Luo, Fuling; Li, Hongyuan; Ren, Guosheng

    2013-10-01

    Although mangiferin which is a naturally occurring glucosylxanthone has exhibited promising anticancer activities, the detailed molecular mechanism of mangiferin on cancers still remains enigmatic. In this study, the anticancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. We showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells. Further mechanistic investigation revealed that mangiferin induced decreased matrix metalloproteinase (MMP)-7 and -9, and reversal of epithelial–mesenchymal transition (EMT). Moreover, it was demonstrated that mangiferin significantly inhibited the activation of β-catenin pathway. Subsequent experiments showed that inhibiting β-catenin pathway might play a central role in mangiferin-induced anticancer activity through modulation of MMP-7 and -9, and EMT. Consistent with these findings in vitro, the antitumor potential was also verified in mangiferin-treated MDA-MB-231 xenograft mice where significantly decreased tumor volume, weight and proliferation, and increased apoptosis were obtained, with lower expression of MMP-7 and -9, vimentin and active β-catenin, and higher expression of E-cadherin. Taken together, our study suggests that mangiferin might be used as an effective chemopreventive agent against breast cancer. - Highlights: • Mangiferin inhibits growth and metastatic potential in breast cancer cells. • Mangiferin down-regulates MMP-7 and -9 in breast cancer cells. • Mangiferin induces the reversal of EMT in metastatic breast cancer cells. • Mangiferin inhibits the activation of β-catenin pathway in breast cancer cells. • Inhibiting β-catenin is responsible for the antitumor activity of mangiferin.

  14. Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFβ1-targeting peptides P17 and P144.

    PubMed

    Zubeldia, Idoia G; Bleau, Anne-Marie; Redrado, Miriam; Serrano, Diego; Agliano, Alice; Gil-Puig, Carmen; Vidal-Vanaclocha, Fernando; Lecanda, Jon; Calvo, Alfonso

    2013-02-01

    Colorectal cancer (CRC) frequently metastasizes to the liver, a phenomenon that involves the participation of transforming-growth-factor-β(1) (TGFβ(1)). Blockade of the protumorigenic effects elicited by TGFβ(1) in advanced CRC could attenuate liver metastasis. We aimed in the present study to assess the antimetastatic effect of TGFβ(1)-blocking peptides P17 and P144, and to study mechanisms responsible for this activity in a mouse model. Colon adenocarcinoma cells expressing luciferase were pretreated with TGFβ(1) (Mc38-luc(TGFβ1) cells), injected into the spleen of mice and monitored for tumor development. TGFβ(1) increased primary tumor growth and liver metastasis, whereas systemic treatment of mice with either P17 or P144 significantly reduced tumor burden (p<0.01). In metastatic nodules, mitotic/apoptotic ratio, mesenchymal traits and angiogenesis (evaluated by CD-31, as well as circulating endothelial and progenitor cells) induced by TGFβ(1) were consistently reduced following injection of peptides. In vitro experiments revealed a direct effect of TGFβ(1) in Mc38 cells, which resulted in activation of Smad2, Smad3 and Smad1/5/8, and increased invasion and transendothelial migration, whereas blockade of TGFβ(1)-signaling reverted these features. Because TGFβ(1)-mediated epithelial-mesenchymal transition (EMT) has been suggested to induce a cancer stem cell (CSC) phenotype, we analyzed the ability of this cytokine to induce tumorsphere formation and the expression of CSC markers. In TGFβ(1)-treated cells, tumorspheres were enriched in CD44 and SOX2, which were diminished in the presence of P17. Our data provide a preclinical rationale to evaluate P17 and P144 as potential therapeutic options for the treatment of metastatic CRC.

  15. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients.

    PubMed

    Lango-Chavarría, M; Chimal-Ramírez, G K; Ruiz-Tachiquín, M E; Espinoza-Sánchez, N A; Suárez-Arriaga, M C; Fuentes-Pananá, E M

    2017-02-01

    Breast cancer ranks first in incidence and mortality in working age women. Cancer initiation and progression relies on accumulation of genetic and epigenetic aberrations that alter cellular processes, among them, epithelial to mesenchymal transition (EMT) denotes particularly aggressive neoplasias given its capacity to invade and metastasize. Several microRNAs (miRNA) have been found able to regulate gene expression at the core of EMT. In this study, the Affymetrix CytoScan HD array was used to analyze three different primary tumor cell isolates from Mexican breast cancer patients. We found an amplification in band 22q11.2 shared by the three samples, in the region that encodes miRNA-650. Overexpression of this miRNA has been associated with downregulation of tumor suppressors ING4 and NDRG2, which have been implicated in cancer progression. Using the Pathway Linker platform the ING4 and NDRG2 interaction networks showed a significant association with signaling pathways commonly deregulated in cancer. Also, several studies support their participation in the EMT. Supporting the latter, we found that the three primary isolates were E-cadherin negative, vimentin positive, presented a cancer stem cell-like phenotype CD44+CD24-/low and were invasive in Transwell invasion assays. This evidence suggests that the gain of region 22q11.2 contributes to trigger EMT. This is the first evidence linking miR-650 and breast cancer.

  16. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients

    PubMed Central

    Lango-Chavarría, M.; Chimal-Ramírez, G.K.; Ruiz-Tachiquín, M.E.; Espinoza-Sánchez, N.A.; Suárez-Arriaga, M.C.; Fuentes-Pananá, E.M.

    2017-01-01

    Breast cancer ranks first in incidence and mortality in working age women. Cancer initiation and progression relies on accumulation of genetic and epigenetic aberrations that alter cellular processes, among them, epithelial to mesenchymal transition (EMT) denotes particularly aggressive neoplasias given its capacity to invade and metastasize. Several microRNAs (miRNA) have been found able to regulate gene expression at the core of EMT. In this study, the Affymetrix CytoScan HD array was used to analyze three different primary tumor cell isolates from Mexican breast cancer patients. We found an amplification in band 22q11.2 shared by the three samples, in the region that encodes miRNA-650. Overexpression of this miRNA has been associated with downregulation of tumor suppressors ING4 and NDRG2, which have been implicated in cancer progression. Using the Pathway Linker platform the ING4 and NDRG2 interaction networks showed a significant association with signaling pathways commonly deregulated in cancer. Also, several studies support their participation in the EMT. Supporting the latter, we found that the three primary isolates were E-cadherin negative, vimentin positive, presented a cancer stem cell-like phenotype CD44+CD24−/low and were invasive in Transwell invasion assays. This evidence suggests that the gain of region 22q11.2 contributes to trigger EMT. This is the first evidence linking miR-650 and breast cancer. PMID:28101578

  17. Inhibitory effect of quercetin on epithelial to mesenchymal transition in SK-MEL-28 human melanoma cells defined by in vitro analysis on 3D collagen gels

    PubMed Central

    Patel, Dhairya H; Sharma, Neeti

    2016-01-01

    Considering the emerging concept of complementary and alternative medicine under the paucity of effective treatment for melanoma, we aimed to understand the effect of quercetin (Qu) on collagen I-induced epithelial–mesenchymal transition (EMT) in melanoma cells. To investigate the effect of Qu in melanoma cells, we used multiple methods, including real-time reverse transcription polymerase chain reaction, migration assay, and wound healing assay. We found that EMT was altered by Qu in melanoma cells. Qu-treated cells exhibited decreased migration and invasion activities. Mechanistically, a high expression of epithelial markers and a decrease in the expression of mesenchymal markers were found to be associated with reversal of EMT in melanoma cells. Time-dependent apoptosis was observed in Qu-treated melanoma cells, which was further confirmed by the upregulation in the protein levels of Caspase 3, a proapoptotic marker. Thus, our findings suggest Qu as a promising dietary compound under the new complementary and alternative medicine category of therapeutic drugs in the chemoprevention of melanoma. PMID:27799792

  18. Silencing Trim59 inhibits invasion/migration and epithelial-to-mesenchymal transition via TGF-β/Smad2/3 signaling pathway in bladder cancer cells

    PubMed Central

    Chen, Wei; Zhao, Kai; Miao, Chenkui; Xu, Aiming; Zhang, Jianzhong; Zhu, Jundong; Su, Shifeng; Wang, Zengjun

    2017-01-01

    The evolutionarily conserved genes that encode the tripartite motif (TRIM) protein family are involved in various biological processes, including cellular immunity, inflammatory reaction, antiviral activity, and tumor progression. One member of this protein family, Trim59, has been reported as a novel biomarker for the occurrence and progression of multiple human carcinomas, such as lung cancer, gastric cancer, cervical cancer, and osteosarcoma. However, little is known about the relationship between Trim59 and bladder carcinogenesis. In this study, we examined the expression of Trim59 in bladder cancer (Bca) specimens and cell lines, and investigated its biological roles in Bca cell lines. We found that Trim59 was upregulated in Bca tissues and cell lines. In addition, using transwell chamber assays and the cell scratch test, we determined that knockdown of Trim59 significantly inhibited the epithelial-mesenchymal transition (EMT) and the processes of cell invasion and migration in Bca cell lines. Furthermore, we found that downregulated Trim59 expression could also inhibit cell proliferation and promote apoptosis. As a result, we demonstrated that the effects of Trim59-induced EMT and invasion/migration in Bca cells were achieved by the activation of the transforming growth factor beta/Smad2/3 signaling pathway. Our findings also revealed that Trim59 can present oncogenic activity, and may serve as a novel candidate target for bladder carcinoma treatment. PMID:28331343

  19. Elevated TGF-β1 and -β2 expression accelerates the epithelial to mesenchymal transition in triple-negative breast cancer cells.

    PubMed

    Kim, Sangmin; Lee, Jeongmin; Jeon, Myeongjin; Nam, Seok Jin; Lee, Jeong Eon

    2015-09-01

    The epithelial-mesenchymal transition (EMT) is a key process in tumor invasion and migration. Transforming growth factor-βs (TGF-βs) are multifunctional growth factors and powerful modulators of the EMT. Here, we investigated the relationship between TGF-β expression and invasion by treated triple-negative breast cancer (TNBC) cells. Our results show that invasion capacity of TNBC cells was markedly higher than that of non-TNBC cells. In addition, EMT-related gene signatures, including vimentin (vim), fibronectin (FN), snail, and slug were highly expressed in TNBC cells. Interestingly, our results show that TGF-β1 and β2 mRNA expression levels were higher in TNBC cells than those in non-TNBC cells. Thus, we examined the effect of the TGF-β receptor I/II inhibitor LY2109761 on EMT-related gene expression and cell motility. Our data show that vim, FN, and slug mRNA expression levels dose-dependently decreased in response to LY2109761. TNBC cell motility also decreased in response to LY2109761. Finally, we investigated the effect of LY2109761 on TGF-β1 or TGF-β2-induced E-cadherin (E-cad), vim, and FN mRNA and protein expression. The reduction in E-cad and induction of vim and FN expression by TGF-β1 or TGF-β2 were completely reversed by LY2109761 treatment in HCC1806 TNBC cells. Taken together, we demonstrated that elevated TGF-β expression triggers invasion and migration by TNBCs through the EMT process. Inhibiting the TGF-β signaling pathway is considered a promising therapeutic strategy for treating TNBC.

  20. VAV1 represses E-cadherin expression through the transactivation of Snail and Slug: a potential mechanism for aberrant epithelial to mesenchymal transition in human epithelial ovarian cancer.

    PubMed

    Wakahashi, Senn; Sudo, Tamotsu; Oka, Noriko; Ueno, Sayaka; Yamaguchi, Satoshi; Fujiwara, Kiyoshi; Ohbayashi, Chiho; Nishimura, Ryuichiro

    2013-09-01

    Ovarian cancer is the most lethal gynecological malignancy in the western world. Although patients with early-stage ovarian cancer generally have a good prognosis, approximately 20%-30% of patients will die of the disease, and 5-year recurrence rates are 25%-45%, highlighting the need for improved detection and treatment. We investigated the role of VAV1, a protein with guanine nucleotide exchange factor activity, which is associated with survival in patients with early-stage ovarian cancer (International of Obstetrics and Gynecology [FIGO] stages I and II). We analyzed 88 samples from patients with primary epithelial ovarian cancer, which were divided into FIGO stages I and II (n = 46), and III and IV (n = 42). Prognostic analysis revealed that upregulated VAV1 expression correlated significantly with poor prognosis in patients with early-stage epithelial ovarian cancer (P ≤ 0.05), but not with other clinicopathologic features. Stable overexpression of VAV1 in human high-grade serous ovarian cancer SKOV3 cells induced morphologic changes indicative of loss of intercellular adhesions and organized actin stress fibers. Western blotting and real-time reverse transcriptase-polymerase chain reaction demonstrated that these cells had downregulated E-cadherin protein and messenger RNA levels, respectively. This downregulation is associated with epithelial-mesenchymal transition (EMT) and invasive cancer. Furthermore, VAV1 overexpression in both SKOV3 and human ovarian surface epithelial cells demonstrated that its upregulation of an E-cadherin transcriptional repressor, Snail and Slug, was not confined to ovarian cancer cells. Conversely, knockdown of VAV1 by RNA interference reduced Snail and Slug. Our findings suggest that VAV1 may play a role in the EMT of ovarian cancer, and may serve as a potential therapeutic target.

  1. Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines

    SciTech Connect

    Chen, Chien-Liang; Chou, Kang-Ju; Lee, Po-Tsang; Chen, Ying-Shou; Chang, Tsu-Yuan; Hsu, Chih-Yang; Huang, Wei-Chieh; Chung, Hsiao-Min; Fang, Hua-Chang

    2010-04-15

    Purpose: Tumor growth factor-{beta}1 (TGF-{beta}1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-{beta}1-mediated EMT and fibrosis in kidney injury. Methods: We examined apoptosis and EMT in TGF-{beta}1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-{beta}1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-{beta}1 signal pathway proteins and EMT markers. Results: We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-{beta}1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-{beta}1-mediated apoptosis and also partially inhibited TGF-{beta}1-mediated EMT. We showed that EPO treatment suppressed TGF-{beta}1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-{beta}1-treated cells. Conclusions: EPO inhibited apoptosis and EMT in TGF-{beta}1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction.

  2. Cancer stem cell, cytokeratins and epithelial to mesenchymal transition markers expression in oral squamous cell carcinoma derived from ortothopic xenoimplantation of CD44(high) cells.

    PubMed

    de Andrade, Nathália Paiva; Rodrigues, Maria Fernanda Setúbal Destro; Rodini, Camila Oliveira; Nunes, Fabio Daumas

    2017-03-01

    Oral squamous cell carcinoma (OSCC) is the most prevalent neoplasia of oral cavity worldwide and prognosis remains unchanged in decades. Recently, different authors reported that head and neck squamous cell carcinomas have a subpopulation of tumor initiating cells that apparently correspond to cancer stem cells (CSC) and are also responsible for tumor growth and metastasis. The purpose of the present study was to investigate the microscopic and phenotypic characteristics of OSCC tumors induced after orthotopic xenoimplantation of SCC9(WT) cell line and CSC-enriched subpopulation isolated from SCC9 cell line based on high expression of the putative CSC marker CD44. Different numbers of FACS-sorted SCC9 CD44(high) and CD44(low) cells as well as SCC9(WT) (wild type) were transplanted into the tongue of BALB/C nude (NOD/SCID) mice to evaluate their tumorigenic potential. Sixty days post-induction, tumors were morphologically characterized and immunostained for CSC markers (CD44, Nanog and Bmi-1), epithelial-mesenchymal transition (Snail, Slug) and epithelial differentiating cell markers (cytokeratins 4, 13, 15, 17 and 19), as well as E-cadherin and β-catenin. The data presented here shows that SCC9 CD44(high) cells have higher ability to form tumors than SCC9 CD44(low) cells, even when significantly lower numbers of SCC9 CD44(high) cells were transplanted. Immunoassessment of tumors derived from SCC9 CD44(high) cells revealed high expression of cytokeratin CK19, β-catenin, E-cadherin and CD44, and negative or low expression of CK17, CK4, CK15, CK13, Nanog, Bmi-1, Snail and Slug. While tumors derived from SCC9(WT) showed high expression of CK17, CK19, CD44, Nanog, Bmi-1, Snail and Slug, and negative or low expression of CK4, CK15, CK13, β-catenin and E-cadherin. Thus, SCC9 CD44(high) cells were highly tumorigenic, capable of originating heterogeneous tumors and these tumors have a immunohistochemical profile different from those formed by the wild type cell line.

  3. A Core Invasiveness Gene Signature Reflects Epithelial-to-Mesenchymal Transition but Not Metastatic Potential in Breast Cancer Cell Lines and Tissue Samples

    PubMed Central

    Marsan, Melike; Van den Eynden, Gert; Limame, Ridha; Neven, Patrick; Hauspy, Jan; Van Dam, Peter A.; Vergote, Ignace; Dirix, Luc Y.; Vermeulen, Peter B.; Van Laere, Steven J.

    2014-01-01

    Introduction Metastases remain the primary cause of cancer-related death. The acquisition of invasive tumour cell behaviour is thought to be a cornerstone of the metastatic cascade. Therefore, gene signatures related to invasiveness could aid in stratifying patients according to their prognostic profile. In the present study we aimed at identifying an invasiveness gene signature and investigated its biological relevance in breast cancer. Methods & Results We collected a set of published gene signatures related to cell motility and invasion. Using this collection, we identified 16 genes that were represented at a higher frequency than observed by coincidence, hereafter named the core invasiveness gene signature. Principal component analysis showed that these overrepresented genes were able to segregate invasive and non-invasive breast cancer cell lines, outperforming sets of 16 randomly selected genes (all P<0.001). When applied onto additional data sets, the expression of the core invasiveness gene signature was significantly elevated in cell lines forced to undergo epithelial-mesenchymal transition. The link between core invasiveness gene expression and epithelial-mesenchymal transition was also confirmed in a dataset consisting of 2420 human breast cancer samples. Univariate and multivariate Cox regression analysis demonstrated that CIG expression is not associated with a shorter distant metastasis free survival interval (HR = 0.956, 95%C.I. = 0.896–1.019, P = 0.186). Discussion These data demonstrate that we have identified a set of core invasiveness genes, the expression of which is associated with epithelial-mesenchymal transition in breast cancer cell lines and in human tissue samples. Despite the connection between epithelial-mesenchymal transition and invasive tumour cell behaviour, we were unable to demonstrate a link between the core invasiveness gene signature and enhanced metastatic potential. PMID:24586640

  4. JianPi JieDu Recipe Inhibits Epithelial-to-Mesenchymal Transition in Colorectal Cancer through TGF-β/Smad Mediated Snail/E-Cadherin Expression

    PubMed Central

    Liu, Xuan; Deng, Wanli; Chai, Ni; Feng, Yuanyuan; Zhou, Lihong; Sui, Hua; Li, Chunpu; Sun, Xiaoting

    2017-01-01

    JPJD was an ideal alternative traditional Chinese medicine compound in the prevention and treatment of CRC, but its underlying mechanisms has not been fully elucidated. In this study, we demonstrated in vitro that TGF-β-induced EMT promoted the invasion and metastasis of CRC cells, reduced the expression of E-cadherin, and elevated the expression of Vimentin. However, JPJD could inhibit the invasive and migratory ability of TGF-β-stimulated CRC cells in a concentration-dependent manner through increasing the expression of E-cadherin and repressing the expression of Vimentin, as well as the inhibition of TGF-β/Smad signaling pathway. Meanwhile, JPJD reduced the transcriptional activities of EMT-associated factors Snail and E-cadherin during the initiation of TGF-β-induced EMT. In vivo, the results demonstrated that JPJD can significantly inhibit the liver and lung metastasis of orthotopic CRC tumor in nude mice, as well as significantly prolonging the survival time of tumor-bearing in a dose-dependent manner. Additionally, JPJD can upregulate the expression of E-cadherin and Smad2/3 in the cytoplasm and downregulate the expression of Vimentin, p-Smad2/3, and Snail in the orthotopic CRC tumor tissues. In conclusions, our new findings provided evidence that JPJD could inhibit TGF-β-induced EMT in CRC through TGF-β/Smad mediated Snail/E-cadherin expression. PMID:28299321

  5. Baicalein Inhibits Epithelial to Mesenchymal Transition via Downregulation of Cyr61 and LOXL-2 in MDA-MB231 Breast Cancer Cells

    PubMed Central

    Nguyen, Linh Thi Thao; Song, Yeon Woo; Cho, Somi Kim

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of the migratory and invasive capabilities associated with metastatic competence. Cysteine-rich protein 61 (CCN1/Cyr61) has been implicated as an important mediator in the proliferation and metastasis of breast cancer. Hence, Cyr61 and associated pathways are attractive targets for therapeutic interventions directed against the EMT. In the present study, we report that baicalein significantly inhibits the expression of Cyr61 and migration and invasion of MDA-MB231 human breast cancer cells. Exposure to baicalein led to increased E-cadherin expression, possibly due to the ubiquitination of Snail and Slug, which was mediated by the Cyr61/Akt/glycogen synthase kinase 3β (GSK3β) pathway. Further analysis revealed that baicalein inhibited the expression of lysyl oxidase like-2 (LOXL-2), which is a functional collaborator of Snail and Slug, and subsequently attenuated the direct interaction between LOXL-2 and Snail or Slug, thereby enhancing GSK3β-dependent Snail and Slug degradation. Our findings provide new insights into the antimetastatic mechanism of baicalein and may contribute to its beneficial use in breast cancer therapies. PMID:28008161

  6. Emodin Inhibits the Epithelial to Mesenchymal Transition of Epithelial Ovarian Cancer Cells via ILK/GSK-3β/Slug Signaling Pathway

    PubMed Central

    Lu, Jingjing; Xu, Ying; Wei, Xuan; Zhao, Zhe; Xue, Jing

    2016-01-01

    Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. Despite the anticancer capabilities of emodin observed in many cancers, including EOC, the underlying molecular mechanism remains to be elucidated. A crucial link has been discovered between the acquisition of metastatic traits and the epithelial-mesenchymal transition (EMT). The present study aimed to determine whether emodin could inhibit the EMT of EOC cells and explore the underlying mechanism. The CCK-8 assay and transwell assay showed that emodin effectively repressed the abilities of proliferation, invasion, and migration in A2780 and SK-OV-3 cells. The Western blot showed that emodin upregulated epithelial markers (E-cadherin and Claudin) while it downregulated mesenchymal markers (N-cadherin and Vimentin) and transcription factor (Slug) in a dose-dependent fashion. After transfection of siRNA-Slug, both Slug and N-cadherin were downregulated in EOC cells while E-cadherin was upregulated, which was intensified by emodin. Besides, emodin decreased the expression of ILK, p-GSK-3β, β-catenin, and Slug. Transfection of siRNA-ILK also achieved the same effects, which was further strengthened by following emodin treatment. Nevertheless, SB216763, an inhibitor of GSK-3β, could reverse the effects of emodin except for ILK expression. These findings suggest that emodin inhibited the EMT of EOC cells via ILK/GSK-3β/Slug signaling pathway. PMID:28097141

  7. miR-154* and miR-379 in the DLK1-DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer

    PubMed Central

    Gururajan, Murali; Josson, Sajni; Chu, Gina Chia-Yi; Lu, Chia-Lun; Lu, Yi-Tsung; Haga, Christopher L.; Zhau, Haiyen E.; Liu, Chunyan; Lichterman, Jake; Duan, Peng; Posadas, Edwin M.; Chung, Leland W. K.

    2015-01-01

    Purpose MicroRNAs in the delta-like 1 homolog - deiodinase, iodothyronine 3 (DLK1-DIO3) cluster have been shown to be critical for embryonic development and epithelial to mesenchymal transition (EMT). DLK1-DIO3 cluster miRNAs are elevated in the serum of metastatic cancer patients. However, the biological functions of these miRNAs in the EMT and metastasis of cancer cells are poorly understood. We previously demonstrated the oncogenic and metastatic role of miR-409-3p/5p, a member of this cluster, in prostate cancer (PCa). In this study, we defined the role of miR-154* and miR-379, two key members of this cluster, in PCa progression and bone metastasis in both cell line models and clinical specimens. Experimental design Genetic manipulation of miR-154* and miR-379 was performed to determine their role in tumor growth, EMT and bone metastasis in mouse models. We determined the expression of miR-154* in prostate cancer clinical samples and bone metastasis samples using in situ hybridization and quantum dot labeling. Results Elevated expression of miR-154* and miR-379 was observed in bone metastatic PCa cell lines and tissues, and miR-379 expression correlated with PCa patient progression-free survival. Intracardiac inoculation (to mimic systemic dissemination) of miR-154* inhibitor-treated bone metastatic ARCaPM PCa cells in mice led to decreased bone metastasis and increased survival. Conclusion miR-154* and miR-379 play important roles in PCa biology by facilitating tumor growth, EMT and bone metastasis. This finding has particular translational importance since miRNAs in the DLK1-DIO3 cluster can be attractive biomarkers and possible therapeutic targets to treat bone metastatic PCa. PMID:25324143

  8. Computational identification of microRNAs associated to both epithelial to mesenchymal transition and NGAL/MMP-9 pathways in bladder cancer

    PubMed Central

    Falzone, Luca; Candido, Saverio; Salemi, Rossella; Basile, Maria S.; Scalisi, Aurora; McCubrey, James A.; Torino, Francesco; Signorelli, Salvatore S.; Montella, Maurizio; Libra, Massimo

    2016-01-01

    Bladder cancer is one of the leading cancer of the urinary tract. It is often diagnosed at advanced stage of the disease. To date, no specific and effective early detection biomarkers are available. Cancer development and progression are associated with the involvement of both epithelial-mesenchymal transition (EMT) and tumor microenvironment of which NGAL/MMP-9 complex represents the main player in bladder cancer. It is known that change in microRNAs (miRNAs) expression may result in gene modulation. Therefore, the identification of specific miRNAs associated with EMT pathway and NGAL/MMP-9 complex may be useful to detect the development of bladder cancer at early stages. On this ground, the expression levels of miRNAs in public available datasets of bladder cancer containing data of non-coding RNA profiling was evaluated. This analysis revealed a group of 16 miRNAs differentially expressed between bladder cancer patients and related healthy controls. By miRNA prediction tool (mirDIP), the relationship between the identified miRNAs and the EMT genes was established. Using the DIANA-mirPath (v.2) software, miRNAs, able to modulate the expression of NGAL and MMP-9 genes, were recognized. The results of this study provide evidence that the downregulated hsa-miR-145-5p and hsa-miR-214-3p may modulate the expression of both EMT and NGAL/MMP-9 pathways. Therefore, further validation analyses may confirm the usefulness of these selected miRNAs for predicting the development of bladder cancer at the early stage of the disease. PMID:27602581

  9. Conditioned Medium from Adipose-Derived Stem Cells (ADSCs) Promotes Epithelial-to-Mesenchymal-Like Transition (EMT-Like) in Glioma Cells In vitro.

    PubMed

    Iser, Isabele C; Ceschini, Stefanie M; Onzi, Giovana R; Bertoni, Ana Paula S; Lenz, Guido; Wink, Márcia R

    2016-12-01

    Mesenchymal stem cells (MSCs) have recently been described to home to brain tumors and to integrate into the tumor-associated stroma. Understanding the communication between cancer cells and MSCs has become fundamental to determine whether MSC-tumor interactions should be exploited as a vehicle for therapeutic agents or considered a target for intervention. Therefore, we investigated whether conditioned medium from adipose-derived stem cells (ADSCs-CM) modulate glioma tumor cells by analyzing several cell biology processes in vitro. C6 rat glioma cells were treated with ADSCs-CM, and cell proliferation, cell cycle, cell viability, cell morphology, adhesion, migration, and expression of epithelial-mesenchymal transition (EMT)-related surface markers were analyzed. ADSCs-CM did not alter cell viability, cell cycle, and growth rate of C6 glioma cells but increased their migratory capacity. Moreover, C6 cells treated with ADSC-CM showed reduced adhesion and underwent changes in cell morphology. Up-regulation of EMT-associated markers (vimentin, MMP2, and NRAS) was also observed following treatment with ADSC-CM. Our findings demonstrate that the paracrine factors released by ADSCs are able to modulate glioma cell biology. Therefore, ADSC-tumor cell interactions in a tumor microenvironment must be considered in the design of clinical application of stem cell therapy. Graphical Abstract Factors released by adipose-derived stem cells (ADSCs) may modulate the biology of C6 glioma cells. When C6 cells are exposed to a conditioned medium from adipose-derived stem cells (ADSCs-CM), some of these cells can undergo an EMT-like process and trans-differentiate into cells with a more mesenchymal phenotype, characterized by enhanced expression of EMT-related surface markers, reduced cell adhesion capacity, increased migratory capacity, as well as changes in cell and nuclei morphology.

  10. MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients

    PubMed Central

    Pichler, M; Ress, A L; Winter, E; Stiegelbauer, V; Karbiener, M; Schwarzenbacher, D; Scheideler, M; Ivan, C; Jahn, S W; Kiesslich, T; Gerger, A; Bauernhofer, T; Calin, G A; Hoefler, G

    2014-01-01

    Background: MicroRNAs (miRNAs) regulate the biological properties of colorectal cancer (CRC) cells and might serve as potential prognostic factors and therapeutic targets. In this study, we therefore globally profiled miRNAs associated with E-cadherin expression in CRC cells in an attempt to identify miRNAs that are associated with aggressive clinical course in CRC patients. Methods: Two CRC cell lines (Caco-2 and HRT-18) with different E-cadherin expression pattern were profiled for differences in abundance for more than 1000 human miRNAs using microarray technology. One of the most differentially expressed miRNAs, miR-200a was evaluated for its prognostic role in a cohort of 111 patients and independently validated in 217 patients of the Cancer Genome Atlas data set. To further characterise the biological role of miR-200a expression in CRC, in vitro miR-200a inhibition and overexpression were performed and the effects on cellular growth, apoptosis and epithelial–mesenchymal transition (EMT)-related gene expression were explored. Results: In situ hybridisation specifically localised miR-200a in CRC cells. In both cohorts, a low miR-200a expression was associated with poor survival (P<0.05). Multivariate Cox regression analysis identified low levels of miR-200a expression as an independent prognostic factor with respect to cancer-specific survival (HR=2.04, CI=1.28–3.25, P<0.002). Gain and loss of function assays for miR-200a in vitro led to a significantly differential and converse expression of EMT-related genes (P<0.001.) A low expression of miR-200a was also observed in cancer stem cell-enriched spheroid growth conditions (P<0.05). Conclusions: In conclusion, our data suggest that low miR-200a expression is associated with poor prognosis in CRC patients. MiR-200a has a regulatory effect on EMT and is associated with cancer stem cell properties in CRC. PMID:24504363

  11. DACT2 silencing by promoter CpG methylation disrupts its regulation of epithelial-to-mesenchymal transition and cytoskeleton reorganization in breast cancer cells

    PubMed Central

    Xiang, Tingxiu; Fan, Yichao; Li, Chunhong; Li, Lili; Ying, Ying; Mu, Junhao; Peng, Weiyan; Feng, Yixiao; Oberst, Michael; Kelly, Kathleen; Ren, Guosheng; Tao, Qian

    2016-01-01

    Wnt signaling plays an important role in breast carcinogenesis. DAPPER2 (DACT2) functions as an inhibitor of canonical Wnt signaling and plays distinct roles in different cell contexts, with its role in breast tumorigenesis unclear. We investigated DACT2 expression in breast cancer cell lines and primary tumors, as well as its functions and molecular mechanisms. Results showed that DACT2 expression was silenced in 9/9 of cell lines. Promoter CpG methylation of DACT2 was detected in 89% (8/9) of cell lines, as well as in 73% (107/147) of primary tumors, but only in 20% (1/5) of surgical margin tissues and in none of normal breast tissues. Demethylation of BT549 and T47D cell lines with 5-aza-2'-deoxycytidine restored DACT2 expression along with promoter demethylation, suggesting that its downregulation in breast cancer is dependent on promoter methylation. Furthermore, ectopic expression of DACT2 induced breast cell apoptosis in vitro, and further inhibited breast tumor cell proliferation, migration and EMT, through antagonizing Wnt/β-catenin and Akt/GSK-3 signaling. Thus, these results demonstrate that DACT2 functions as a tumor suppressor for breast cancer but was frequently disrupted epigenetically in this cancer. PMID:27708215

  12. Lumican effectively regulates the estrogen receptors-associated functional properties of breast cancer cells, expression of matrix effectors and epithelial-to-mesenchymal transition

    PubMed Central

    Karamanou, Konstantina; Franchi, Marco; Piperigkou, Zoi; Perreau, Corinne; Maquart, Francois-Xavier; Vynios, Demitrios H.; Brézillon, Stéphane

    2017-01-01

    Lumican is a small leucine-rich proteoglycan that has been shown to contribute in several physiological processes, but also to exert anticancer activity. On the other hand, it has been recently shown that knockdown of the estrogen receptor α (ERα) in low invasive MCF-7 (ERα+) breast cancer cells and the suppression of ERβ in highly aggressive MDA-MB-231 (ERβ+) cells significantly alter the functional properties of breast cancer cells and the gene expression profile of matrix macromolecules related to cancer progression and cell morphology. In this report, we evaluated the effects of lumican in respect to the ERs-associated breast cancer cell behaviour, before and after suppression of ERs, using scanning electron and confocal microscopies, qPCR and functional assays. Our data pinpointed that lumican significantly attenuated cell functional properties, including proliferation, migration and invasion. Furthermore, it modified cell morphology, inducing cell-cell junctions, evoked EMT/MET reprogramming and suppressed the expression of major matrix effectors (matrix metalloproteinases and EGFR) implicated in breast cancer progression. The effects of lumican were found to be related to the type of breast cancer cells and the ERα/β type. These data support the anticancer activity of lumican and open a new area for the pharmacological targeting of the invasive breast cancer. PMID:28332606

  13. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma.

    PubMed

    Okamoto, Koichi; Tajima, Hidehiro; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Nakamura, Keishi; Oyama, Katsunobu; Nakagawara, Hisatoshi; Fujita, Hideto; Takamura, Hiroyuki; Ninomiya, Itasu; Kitagawa, Hirohisa; Fushida, Sachio; Fujimura, Takashi; Harada, Shinichi; Wakayama, Tomohiko; Iseki, Shoichi; Ohta, Tetsuo

    2012-08-01

    We previously reported that hepatic stellate cells (HSCs) activated by angiotensin II (AngII) facilitate stromal fibrosis and tumor progression in intrahepatic cholangiocarcinoma (ICC). AngII has been known as a growth factor which can promote epithelial-to-mesenchymal transition (EMT) in renal epithelial cells, alveolar epithelial cells and peritoneal mesothelial cells. However, in the past, the relationship between AngII and stromal cell-derived factor-1 (SDF-1) in the microenvironment around cancer and the role of AngII on EMT of cancer cells has not been reported in detail. SDF-1 and its specific receptor, CXCR4, are now receiving attention as a mechanism of cell progression and metastasis. In this study, we examined whether activated HSCs promote tumor fibrogenesis, tumor progression and distant metastasis by mediating EMT via the AngII/AngII type 1 receptor (AT-1) and the SDF-1/CXCR4 axis. Two human ICC cell lines and a human HSC line, LI-90, express CXCR4. Significantly higher concentration of SDF-1α was released into the supernatant of LI-90 cells to which AngII had been added. SDF-1α increased the proliferative activity of HSCs and enhanced the activation of HSCs as a growth factor. Furthermore, addition of SDF-1α and AngII enhanced the increase of the migratory capability and vimentin expression, reduced E-cadherin expression, and translocated the expression of β-catenin into the nucleus and cytoplasm in ICC cells. Co-culture with HSCs also enhanced the migratory capability of ICC cells. These findings suggest that SDF-1α, released from activated HSCs and AngII, play important roles in cancer progression, tumor fibrogenesis, and migration in autocrine and paracrine fashion by mediating EMT. Our mechanistic findings may provide pivotal insights into the molecular mechanism of the AngII and SDF-1α-initiated signaling pathway that regulates fibrogenesis in cancerous stroma, tumor progression and meta-stasis of tumor cells expressing AT-1 and CXCR4.

  14. Glyoxalase I drives epithelial-to-mesenchymal transition via argpyrimidine-modified Hsp70, miR-21 and SMAD signalling in human bronchial cells BEAS-2B chronically exposed to crystalline silica Min-U-Sil 5: Transformation into a neoplastic-like phenotype.

    PubMed

    Antognelli, Cinzia; Gambelunghe, Angela; Muzi, Giacomo; Talesa, Vincenzo Nicola

    2016-03-01

    Glyoxalase I (Glo1) is the main scavenging enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). AGEs are known to control multiple biological processes, including epithelial to mesenchymal transition (EMT), a multistep phenomenon associated with cell transformation, playing a major role in a variety of diseases, including cancer. Crystalline silica is a well-known occupational health hazard, responsible for a great number of human pulmonary diseases, such as silicosis. There is still much debate concerning the carcinogenic role of crystalline silica, mainly due to the lack of a causal demonstration between silica exposure and carcinogenesis. It has been suggested that EMT might play a role in crystalline silica-induced lung neoplastic transformation. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 is involved in Min-U-Sil 5 (MS5) crystalline silica-induced EMT in BEAS-2B human bronchial epithelial cells chronically exposed, and whether this is associated with the beginning of a neoplastic-like transformation process. By using gene silencing/overexpression and scavenging/inhibitory agents, we demonstrated that MS5 induced hydrogen peroxide-mediated c-Jun-dependent Glo1 up-regulation which resulted in a decrease in the Argpyrimidine-modified Hsp70 protein level which triggered EMT in a novel mechanism involving miR-21 and SMAD signalling. The observed EMT was associated with a neoplastic-like phenotype. The results obtained provide a causal in vitro demonstration of the MS5 pro-carcinogenic transforming role and more importantly they provide new insights into the mechanisms involved in this process, thus opening new paths in research concerning the in vivo study of the carcinogenic potential of crystalline silica.

  15. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    PubMed

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to

  16. Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries.

    PubMed

    Corallino, Salvatore; Malabarba, Maria Grazia; Zobel, Martina; Di Fiore, Pier Paolo; Scita, Giorgio

    2015-01-01

    The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in normal embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and post-translational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among these modifications, loss of cell polarity represents the nearly invariable, distinguishing feature of EMT that frequently precedes the other traits or might even occur in their absence. EMT transforms cell morphology and physiology, and hence cell identity, from one typical of cells that form a tight barrier, like epithelial and endothelial cells, to one characterized by a highly motile mesenchymal phenotype. Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and - unexpectedly - membrane trafficking (1). These results have highlighted a picture of great complexity. First, the EMT transition is not an all-or-none response but rather a gradual process that develops over time. Second, EMT events are highly dynamic and frequently reversible, involving both cell-autonomous and non-autonomous mechanisms. The net results is that EMT generates populations of mixed cells, with partial or full phenotypes, possibly accounting (at least in part) for the physiological as well as pathological cellular heterogeneity of some tissues. Endocytic circuitries have emerged as complex connectivity infrastructures for numerous cellular networks required for the

  17. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    SciTech Connect

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René; Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  18. Rubus idaeus L Inhibits Invasion Potential of Human A549 Lung Cancer Cells by Suppression Epithelial-to-Mesenchymal Transition and Akt Pathway In Vitro and Reduces Tumor Growth In Vivo.

    PubMed

    Chu, Shu-Chen; Hsieh, Yih-Shou; Hsu, Li-Sung; Chen, Kuo-Shuen; Chiang, Chien-Cheng; Chen, Pei-Ni

    2014-05-01

    The metastasis of lung cancer is the most prevalent cause of patient death. Various treatment strategies have targeted the prevention of the occurrence of metastasis. The epithelial-mesenchymal transition (EMT) in lung cancer cells is considered a prerequisite to acquire the invasive/migratory phenotype and to subsequently achieve metastasis. However, the effects ofRubus idaeuson cancer invasion and the EMT of the human lung carcinoma remain unclear. In this article, we test the hypothesis thatR idaeusethyl acetate (RIAE) possesses an antimetastatic effect and reverses the EMT potential of human lung A549 cells. We extract the raspberryR idaeuswith methanol (RIME), chloroform (RICE), ethyl acetate (RIAE),n-butanol (RIBE), and water (RIWE). The RIAE treatment obviously inhibits the invasive (P< .001), motility (P< .001), spreading, and migratory potential (P< .001) of highly metastatic human lung cancer A549 cells. The zymography and promoter luciferase analysis reveals that RIAE decreases the proteinase and transcription activities of MMP-2 and u-PA. Molecular analyses show that RIAE increases the E-cadherin level that is mainly localized at the cellular membrane. This result was also verified through confocal analyses. RIAE also induces the upregulation of an epithelial marker, such as α-catenin, and decreases mesenchymal markers, such as snail-1 and N-cadherin, that promote cell invasion and metastasis. RIAE inhibits MMP-2 and u-PA by attenuating the NF-κB and p-Akt expression. The inhibition of RIAE on the growth of A549 cells in vivo was also verified using a cancer cell xenograft nude mice model. Our results show the anti-invasive/antitumor effects of RIAE and associated mechanisms, which suggest that RIAE should be further tested in clinically relevant models to exploit its potential benefits against metastatic lung cancer cells.

  19. Reactivation of epigenetically silenced miR-124 reverses the epithelial-to-mesenchymal transition and inhibits invasion in endometrial cancer cells via the direct repression of IQGAP1 expression

    PubMed Central

    Watari, Hidemichi; Hanley, Sharon J.B.; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki

    2016-01-01

    Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial–mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2′-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene. PMID:26934121

  20. Glyceollin I reverses epithelial to mesenchymal transition in letrozole resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although aromatase inhibitors, such as letrozole; are standard endocrine therapy for postmenopausal women with early stage metastatic estrogen-dependent breast cancer, the major limitation in managing this disease is the development of drug resistance; therefore, a better understanding of this proce...

  1. Promotion of Epithelial to Mesenchymal Transition by Hyaluronan

    DTIC Science & Technology

    2006-07-01

    was adapted by Ponta H et al., 2003 (4). One of the isoforms of CD44, the CD44v6 epitope, has been widely reported to be expressed in human...mammary carcinomas (5,6). Hebbard et al. examined the expression of CD44v6 epitope in murine mammary glands (7). They showed that CD44c6 expression...isoforms, we learned about a specific isoform, CD44v6 , which seemed to be estrogen-mediated as its expression after puberty followed the estrous cycle (7

  2. TGF-β induced epithelial-mesenchymal transition modeling

    NASA Astrophysics Data System (ADS)

    Xenitidis, P.; Seimenis, I.; Kakolyris, S.; Adamopoulos, A.

    2015-09-01

    Epithelial cells may undergo a process called epithelial to mesenchymal transition (EMT). During EMT, cells lose their epithelial characteristics and acquire a migratory ability. Transforming growth factor-beta (TGF-β) signaling is considered to play an important role in EMT by regulating a set of genes through a gene regulatory network (GRN). This work aims at TGF-β induced EMT GRN modeling using publicly available experimental data (gene expression microarray data). The time-series network identification (TSNI) algorithm was used for inferring the EMT GRN. Receiver operating characteristic (ROC) and precision-recall (P-R) curves were constructed and the areas under them were used for evaluating the algorithm performance regarding network inference.

  3. Actin cytoskeletal control during epithelial to mesenchymal transition: focus on the pancreas and intestinal tract

    PubMed Central

    Morris, H T; Machesky, L M

    2015-01-01

    The formation of epithelial tissues allows organisms to specialise and form tissues with diverse functions and compartmentalised environments. The tight controls on cell growth and migration required to maintain epithelia can present problems such as the development and spread of cancer when normal pathways are disrupted. By attaining a deeper understanding of how cell migration is suppressed to maintain the epithelial organisation and how it is reactivated when epithelial tissues become mesenchymal, new insights into both cancer and development can be gained. Here we discuss recent developments in our understanding of epithelial and mesenchymal regulation of the actin cytoskeleton in normal and cancerous tissue, with a focus on the pancreas and intestinal tract. PMID:25611303

  4. Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer

    PubMed Central

    Suh, Yongjoon; Yoo, Ki-Chun; Cui, Yan-Hong; Kim, Min-Jung; Lee, Hae-June; Kim, In-Gyu; Lee, Su-Jae

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is developmental process associated with cancer metastasis. Here, we found that breast carcinoma cells adopt epithelial-to-mesenchymal transition (EMT) in response to fractionated-radiation. Importantly, we show that Notch signaling is highly activated in fractionally-irradiated tumors as compared to non-irradiated tumors that are accompanied by an EMT. Moreover, we uncovered the mechanism of Notch-driven EMT, in which Notch enhanced EMT through IL-6/JAK/STAT3 signaling axis in mammary tumor cells. Collectively, we present converging evidence from our studies that Notch2 is a critical mediator of radiation-induced EMT and responsible for induced malignant tumor growth. PMID:27462787

  5. ED-B fibronectin expression is a marker of epithelial-mesenchymal transition in translational oncology.

    PubMed

    Petrini, Iacopo; Barachini, Serena; Carnicelli, Vittoria; Galimberti, Sara; Modeo, Letizia; Boni, Roberto; Sollini, Martina; Erba, Paola Anna

    2017-01-17

    Fibronectin is a component of the extracellular matrix that links collagen fibers to integrins on the cell's surface. The splicing isoforms, containing the ED-B domain, are not expressed in adult tissues but only in tumor stroma or during embryonic development. Fibroblasts and endothelial cells express ED-B fibronectin during angiogenesis. Also cancer cells can synthetize ED-B fibronectin, but its function in tumor growth needs to be further elucidated.We evaluated the expression of ED-B fibronectin in prostate cancer cell lines: PC3 and DU145. Using TGF-β, we induced epithelial to mesenchymal transition in culture and observed an increase of ED-B fibronectin expression. Thereafter, we evaluated the expression of ED-B fibronectin in multipotent mesangiogenic progenitor cells, and in mesenchymal stromal cells. The expression of ED-B fibronectin was much higher in mesenchymal than prostate cancer cells even after the epithelial to mesenchymal transition.Epithelial to mesenchymal transition is a key step for tumor progression contributing to the metastatic spread. Therefore, circulating cancer cells could seed into the metastatic niche taking advantage from the ED-B fibronectin that secrete their own.

  6. Cadherin-11 Regulation of Fibrosis through Modulation of Epithelial-to-Mesenchymal Transition: Implications for Pulmonary Fibrosis in Scleroderma

    DTIC Science & Technology

    2015-10-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Systemic sclerosis is a potentially devastating multisystem disorder characterized inflammation and autoimmunity...expression is increased in fibrotic tissues from lungs of patients with idiopathic pulmonary fibrosis and skin of patients with systemic sclerosis...mouse (red) Cad-11 Figure 3. Serum cadherin-11 levels are increased in certain autoantibody subsets of systemic sclerosis using a commercial

  7. Cadherin-11 Regulation of Fibrosis through Modulation of Epithelial-to-Mesenchymal Transition: Implications for Pulmonary Fibrosis in Scleroderma

    DTIC Science & Technology

    2013-10-01

    bleomycin displayed a reduction in lung inflammation and pulmonary fibrosis . Scale bars: 200 mm (H&E), 100 mm (MT); n= 8 mice per group Progress...the process of EMT. This proposal builds on these recent observations and utilizes the IP bleomycin pulmonary fibrosis model. We hypothesize that...Cad11 regulates the EMT in AEC during the development of pulmonary fibrosis and that cadherin-11 is therapeutic target in the intraperitoneal bleomycin

  8. Asparaginyl endopeptidase promotes the invasion and metastasis of gastric cancer through modulating epithelial-to-mesenchymal transition

    PubMed Central

    Li, Hong; Li, Qian; Yu, Yiyi; Xu, Xiaojing; Xu, Bei; Liu, Tianshu

    2016-01-01

    Asparaginyl endopeptidase (AEP) is a lysosomal protease often overexpressed in gastric cancer. AEP was expressed higher in peritoneal metastatic loci than in primary gastric cancer. Then we overexpressed AEP or knocked it down with a lentiviral vector in gastric cancer cell lines and detected the cell cycle arrest and the changes of the invasive and metastatic ability in vitro and in vivo. When AEP was knocked-down, the proliferative, invasive and metastatic capacity of gastric cancer cells were inhibited, and the population of sub-G1 cells increased. AEP knockdown led to significant decrease of expression of transcription factor Twist and the mesenchymal markers N-cadherin, ß-catenin and Vimentin and to increased expression of epithelial marker E-cadherin. These results showed that AEP could promote invasion and metastasis by modulating EMT. We used phosphorylation-specific antibody microarrays to investigate the mechanism how AEP promotes gastric cancer invasion and metastasis, and found that the phosphorylation level of AKT and MAPK signaling pathways was decreased significantly if AEP was knocked-down. Therefore, AKT and MAPK signaling pathways took part in the modulation. PMID:27102302

  9. Cadherin-11 Regulation of Fibrosis through Modulation of Epithelial-to-Mesenchymal Transition: Implications for Pulmonary Fibrosis in Scleroderma

    DTIC Science & Technology

    2014-10-01

    AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Lung fibrosis is the leading cause of death in...Cad11) is increased in fibrotic skin and lung tissues and that Cad11 is a mediator of fibrosis in mouse models. Mechanistically how this occurs is not...have less lung fibrosis. Initial studies studies also suggest that antiCad11 antibodies are effective in treating lung fibrosis in this model. In

  10. miRNA Involved in Six1-Induced Breast Cancer

    DTIC Science & Technology

    2013-05-01

    Summay 3. DATES COVERED 15 April 2010 – 14 April 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER miRNA Involved in Six1-Induced Breast Cancer ...the cell cycle inhibitor, p21, and pro-apoptotic factor , Bim. These data suggest that Six1-induced upregulation of these miRNA may mediate the switch...promoting the pro-metastatic functions. 15. SUBJECT TERMS Six1, miRNAs , miR106b-25, TGFβ , epithelial to mesenchymal transition (EMT), cancer stem cells

  11. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells.

    PubMed

    Guha, M; Srinivasan, S; Ruthel, G; Kashina, A K; Carstens, R P; Mendoza, A; Khanna, C; Van Winkle, T; Avadhani, N G

    2014-11-06

    Metastatic breast tumors undergo epithelial-to-mesenchymal transition (EMT), which renders them resistant to therapies targeted to the primary cancers. The mechanistic link between mtDNA (mitochondrial DNA) reduction, often seen in breast cancer patients, and EMT is unknown. We demonstrate that reducing mtDNA content in human mammary epithelial cells (hMECs) activates Calcineurin (Cn)-dependent mitochondrial retrograde signaling pathway, which induces EMT-like reprogramming to fibroblastic morphology, loss of cell polarity, contact inhibition and acquired migratory and invasive phenotype. Notably, mtDNA reduction generates breast cancer stem cells. In addition to retrograde signaling markers, there is an induction of mesenchymal genes but loss of epithelial markers in these cells. The changes are reversed by either restoring the mtDNA content or knockdown of CnAα mRNA, indicating the causal role of retrograde signaling in EMT. Our results point to a new therapeutic strategy for metastatic breast cancers targeted to the mitochondrial retrograde signaling pathway for abrogating EMT and attenuating cancer stem cells, which evade conventional therapies. We report a novel regulatory mechanism by which low mtDNA content generates EMT and cancer stem cells in hMECs.

  12. Small molecule and RNAi induced phenotype transition of expanded and primary colonic epithelial cells

    PubMed Central

    Sharbati, Jutta; Hanisch, Carlos; Pieper, Robert; Einspanier, Ralf; Sharbati, Soroush

    2015-01-01

    Recent progress in mammalian intestinal epithelial cell culture led to novel concepts of tissue modeling. Especially the development of phenotypically stable cell lines from individual animals enables an investigation of distinct intestinal loci and disease states. We here report primary and prolonged culture of normal porcine epithelial cells from colon for cell line development. In addition, a novel primary three-dimensional intestinal culture system is presented, which generated organoids composed of a highly polarized epithelial layer lining a core of subepithelial tissue. Cellular characterization of monolayer cell lines revealed epithelial identity and pointed to a proliferative crypt cell phenotype. We evaluated both RNAi and chemical approaches to induce epithelial differentiation in generated cell lines by targeting promoters of epithelial to mesenchymal transition (EMT). By in silico prediction and ectopic expression, miR-147b was proven to be a potent trigger of intestinal epithelial cell differentiation. Our results outline an approach to generate phenotypically stable cell lines expanded from primary colonic epithelial cultures and demonstrate the relevance of miR-147b and chemical inhibitors for promoting epithelial differentiation features. PMID:26223582

  13. Alpha-lipoic acid ameliorates the epithelial mesenchymal transition induced by unilateral ureteral obstruction in mice

    PubMed Central

    Cho, Hyun Seop; Kim, Jin Hyun; Jang, Ha Nee; Lee, Tae Won; Jung, Myeong Hee; Kim, Tae Ho; Chang, Se-Ho; Park, Dong Jun

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) is one of mechanisms that induce renal interstitial fibrosis. Understanding EMT in renal fibrosis has important therapeutic implications for patients with kidney disease. Alpha-lipoic acid (ALA) is a natural compound with antioxidant properties. Studies for ALA are performed in acute kidney injury with renal tubular apoptosis, renal inflammation, and oxidative stress. We investigated the effects of ALA on EMT-mediated renal interstitial fibrosis in mice with unilateral ureteral obstruction (UUO). UUO mice developed severe tubular atrophy and tubulointerstitial fibrosis, with a robust EMT response and ECM deposition after 7 postoperative days. In contrast, ALA-treated UUO mice showed only moderate injury and minimal fibrosis and also larger reductions in the expression of ECM proteins, inflammatory factors, and EMT markers. ALA was shown to be involved in the suppression of infiltrating macrophages associated with EMT and the progression of interstitial fibrosis. It also lessened the destruction of the tubular basement membrane, by reducing the expression of matrix metalloproteinases. This is the first study to show that ALA modulates EMT in a UUO mouse model. Our results suggest that ALA merits further exploration as a therapeutic agent in the prevention and treatment of chronic kidney disease. PMID:28378840

  14. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    SciTech Connect

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup; Jang, Ho Hee

    2015-03-06

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation.

  15. Low doses ionizing radiation enhances the invasiveness of breast cancer cells by inducing epithelial-mesenchymal transition

    SciTech Connect

    Zhang, Xin; Li, Xiaoyan; Zhang, Ning; Yang, Qifeng; Moran, Meena S.

    2011-08-19

    Highlights: {yields} Low doses ionizing irradiation would enhance the invasiveness of breast cancer cells by inducing EMT. {yields} Low doses ionizing radiation induced morphologic changes in breast cancer cells. {yields} Low doses ionizing radiation led to upregulation of mesenchymal markers and down-regulation of epithelial markers. {yields} Low doses ionizing radiation increased migration and invasion of breast cancer cells. -- Abstract: Epithelial-mesenchymal transition (EMT) is a process cellular morphologic and molecular alterations facilitate cell invasion. We hypothesized that low dose ionizing irradiation (LDIR) enhances the invasiveness of breast cancer cells by inducing EMT. The effects of LDIR on cellular morphology and the EMT markers of MCF-7 breast cancer cells were analyzed by western blot/RT-PCR and migration/invasion was examined using the transwell assay. We found that LDIR led to the phenotypic changes of EMT in MCF-7 cells and down-regulation of epithelial differentiation markers and transcriptional induction of mesenchymal markers. Furthermore, the radiated cells demonstrated enhanced migration/invasion MCF-7 cells compared with non-radiated cells. In summary, LDIR promotes the invasiveness of breast cancer cells through epithelial to mesenchymal transition. These findings may ultimately provide a new targeted approach for improving the therapeutic effectiveness of radiation in breast cancer.

  16. Gravitationally induced quantum transitions

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  17. Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition

    PubMed Central

    Choe, Chungyoul; Shin, Yong-Sung; Kim, Changhoon; Choi, So-Jung; Lee, Jinseon; Kim, So Young; Cho, Yong Beom; Kim, Jhingook

    2015-01-01

    Although lung cancers with activating mutations in the epidermal growth factor receptor (EGFR) are highly sensitive to selective EGFR tyrosine kinase inhibitors (TKIs), these tumors invariably develop acquired drug resistance. Host stromal cells have been found to have a considerable effect on the sensitivity of cancer cells to EGFR TKIs. Little is known, however, about the signaling mechanisms through which stromal cells contribute to the response to EGFR TKI in non-small cell lung cancer. This work examined the role of hedgehog signaling in cancer-associated fibroblast (CAF)-mediated resistance of lung cancer cells to the EGFR TKI erlotinib. PC9 cells, non-small cell lung cancer cells with EGFR-activating mutations, became resistant to the EGFR TKI erlotinib when cocultured in vitro with CAFs. Polymerase chain reaction and immunocytochemical assays showed that CAFs induced epithelial to mesenchymal transition phenotype in PC9 cells, with an associated change in the expression of epithelial to mesenchymal transition marker proteins including vimentin. Importantly, CAFs induce upregulation of the 7-transmembrane protein smoothened, the central signal transducer of hedgehog, suggesting that the hedgehog signaling pathway is active in CAF-mediated drug resistance. Indeed, downregulation of smoothened activity with the smoothened antagonist cyclopamine induces remodeling of the actin cytoskeleton independently of Gli-mediated transcriptional activity in PC9 cells. These findings indicate that crosstalk with CAFs plays a critical role in resistance of lung cancer to EGFR TKIs through induction of the epithelial to mesenchymal transition and may be an ideal therapeutic target in lung cancer. PMID:26676152

  18. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition

    PubMed Central

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson’s trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson’s and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling. PMID:27607429

  19. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition.

    PubMed

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson's trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson's and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling.

  20. Prevention of Phenytoin-Induced Gingival Overgrowth by Lovastatin in Mice

    PubMed Central

    Assaggaf, Mohammad A.; Kantarci, Alpdogan; Sume, Siddika S.; Trackman, Philip C.

    2016-01-01

    Drug-induced gingival overgrowth is caused by the antiseizure medication phenytoin, calcium channel blockers, and ciclosporin. Characteristics of these drug-induced gingival overgrowth lesions differ. We evaluate the ability of a mouse model to mimic human phenytoin-induced gingival overgrowth and assess the ability of a drug to prevent its development. Lovastatin was chosen based on previous analyses of tissue-specific regulation of CCN2 production in human gingival fibroblasts and the known roles of CCN2 in promoting fibrosis and epithelial to mesenchymal transition. Data indicate that anterior gingival tissue overgrowth occurred in phenytoin-treated mice based on gross tissue observations and histomorphometry of tissue sections. Molecular markers of epithelial plasticity and fibrosis were regulated by phenytoin in gingival epithelial tissues and in connective tissues similar to that seen in humans. Lovastatin attenuated epithelial gingival tissue growth in phenytoin-treated mice and altered the expressions of markers for epithelial to mesenchymal transition. Data indicate that phenytoin-induced gingival overgrowth in mice mimics molecular aspects of human gingival overgrowth and that lovastatin normalizes the tissue morphology and the expression of the molecular markers studied. Data are consistent with characterization of phenytoin-induced human gingival overgrowth in vivo and in vitro characteristics of cultured human gingival epithelial and connective tissue cells. Findings suggest that statins may serve to prevent or attenuate phenytoin-induced human gingival overgrowth, although specific human studies are required. PMID:25843680

  1. FOXO1 inhibits the invasion and metastasis of hepatocellular carcinoma by reversing ZEB2-induced epithelial-mesenchymal transition

    PubMed Central

    Dong, Tianxiu; Zhang, Yu; Chen, Yaodong; Liu, Pengfei; An, Tingting; Zhang, Jiuwei; Yang, Haichao; Zhu, Wenjing; Yang, Xiuhua

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) program is critical for epithelial cell cancer progression and fibrotic diseases. FOXO1 influences a broad range of physiological and pathological processes. However, the mechanism by which FOXO1 inhibits EMT is not fully understood. In this study, we demonstrated that FOXO1 overexpression inhibited cell motility and invasiveness in vitro and inhibited lung metastasis in vivo. In addition, we found that FOXO1 couldreverse the EMT program. FOXO1 silencing by siRNA in hepatocellular carcinoma (HCC) cell lines enhanced the expression of mesenchymal markers and decreased the expression of the epithelial markers. Consistent with these findings, FOXO1 overexpression exerted opposite effects. Furthermore, we found that FOXO1 levels were inversely correlated with the levels of EMT inducers, including Snail, Slug, ZEB1, ZEB2 and Twist1 in HCC cells. Co-immunoprecipitation and immunohistochemistry assays revealed that an interaction between FOXO1 and ZEB2. A dual-luciferase reporter assay and a ChIP assay further demonstrated that FOXO1 binds to the ZEB2 promoter. Together, these findings suggest that FOXO1 overexpression or ZEB2 inhibition might be potential therapeutic strategies for treating HCC. PMID:27924058

  2. Loss of α-Tubulin Acetylation Is Associated with TGF-β-induced Epithelial-Mesenchymal Transition*

    PubMed Central

    Gu, Shuchen; Liu, Yanjing; Zhu, Bowen; Ding, Ke; Yao, Tso-Pang; Chen, Fenfang; Zhan, Lixing; Xu, Pinglong; Ehrlich, Marcelo; Liang, Tingbo; Lin, Xia; Feng, Xin-Hua

    2016-01-01

    The epithelial-to-mesenchymal transition (EMT) is a process by which differentiated epithelial cells reprogram gene expression, lose their junctions and polarity, reorganize their cytoskeleton, increase cell motility and assume a mesenchymal morphology. Despite the critical functions of the microtubule (MT) in cytoskeletal organization, how it participates in EMT induction and maintenance remains poorly understood. Here we report that acetylated α-tubulin, which plays an important role in microtubule (MT) stabilization and cell morphology, can serve as a novel regulator and marker of EMT. A high level of acetylated α-tubulin was correlated with epithelial morphology and it profoundly decreased during TGF-β-induced EMT. We found that TGF-β increased the activity of HDAC6, a major deacetylase of α-tubulin, without affecting its expression levels. Treatment with HDAC6 inhibitor tubacin or TGF-β type I receptor inhibitor SB431542 restored the level of acetylated α-tubulin and consequently blocked EMT. Our results demonstrate that acetylated α-tubulin can serve as a marker of EMT and that HDAC6 represents an important regulator during EMT process. PMID:26763233

  3. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion.

    PubMed

    Mariotti, Sara; Barravecchia, Ivana; Vindigni, Carla; Pucci, Angela; Balsamo, Michele; Libro, Rosaliana; Senchenko, Vera; Dmitriev, Alexey; Jacchetti, Emanuela; Cecchini, Marco; Roviello, Franco; Lai, Michele; Broccoli, Vania; Andreazzoli, Massimiliano; Mazzanti, Chiara M; Angeloni, Debora

    2016-01-12

    The MICAL (Molecules Interacting with CasL) proteins catalyze actin oxidation-reduction reactions destabilizing F-actin in cytoskeletal dynamics. Here we show for the first time that MICAL2 mRNA is significantly over-expressed in aggressive, poorly differentiated/undifferentiated, primary human epithelial cancers (gastric and renal). Immunohistochemistry showed MICAL2-positive cells on the cancer invasive front and in metastasizing cancer cells inside emboli, but not at sites of metastasis, suggesting MICAL2 expression was 'on' in a subpopulation of primary cancer cells seemingly detaching from the tissue of origin, enter emboli and travel to distant sites, and was turned 'off' upon homing at metastatic sites. In vitro, MICAL2 knock-down resulted in mesenchymal to epithelial transition, reduction of viability, and loss of motility and invasion properties of human cancer cells. Moreover, expression of MICAL2 cDNA in MICAL2-depleted cells induced epithelial to mesenchymal transition. Altogether our data indicate that MICAL2 over-expression is associated with cancer progression and metastatic disease. MICAL2 might be an important regulator of epithelial to mesenchymal transition and therefore a promising target for anti-metastatic therapy.

  4. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion

    PubMed Central

    Vindigni, Carla; Pucci, Angela; Balsamo, Michele; Libro, Rosaliana; Senchenko, Vera; Dmitriev, Alexey; Jacchetti, Emanuela; Cecchini, Marco; Roviello, Franco; Lai, Michele; Broccoli, Vania; Andreazzoli, Massimiliano; Mazzanti, Chiara M.; Angeloni, Debora

    2016-01-01

    The MICAL (Molecules Interacting with CasL) proteins catalyze actin oxidation-reduction reactions destabilizing F-actin in cytoskeletal dynamics. Here we show for the first time that MICAL2 mRNA is significantly over-expressed in aggressive, poorly differentiated/undifferentiated, primary human epithelial cancers (gastric and renal). Immunohistochemistry showed MICAL2-positive cells on the cancer invasive front and in metastasizing cancer cells inside emboli, but not at sites of metastasis, suggesting MICAL2 expression was 'on' in a subpopulation of primary cancer cells seemingly detaching from the tissue of origin, enter emboli and travel to distant sites, and was turned 'off' upon homing at metastatic sites. In vitro, MICAL2 knock-down resulted in mesenchymal to epithelial transition, reduction of viability, and loss of motility and invasion properties of human cancer cells. Moreover, expression of MICAL2 cDNA in MICAL2-depleted cells induced epithelial to mesenchymal transition. Altogether our data indicate that MICAL2 over-expression is associated with cancer progression and metastatic disease. MICAL2 might be an important regulator of epithelial to mesenchymal transition and therefore a promising target for anti-metastatic therapy. PMID:26689989

  5. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/syndecan-1/TGF-β autocrine loop

    PubMed Central

    Zeng, Ye; Yao, Xinghong; Chen, Li; Yan, Zhiping; Liu, Jingxia; Zhang, Yingying; Feng, Tang; Wu, Jiang; Liu, Xiaoheng

    2016-01-01

    Sphingosine-1-phosphate (S1P) induces epithelial–mesenchymal transition (EMT) in hepatocellular carcinoma (HCC). However, its underlying mechanism remains largely unknown. In the present study, we investigated the correlation between S1P and syndecan-1 in HCC, the molecular mechanism involved, as well as their roles in EMT of HCC. Results revealed a high serum S1P level presents in patients with HCC, which positively correlated with the serum syndecan-1 level. A significant inverse correlation existed between S1P1 and syndecan-1 in HCC tissues. S1P elicits activation of the PI3K/AKT signaling pathways via S1P1, which triggers HPSE, leading to increases in expression and activity of MMP-7 and leading to shedding and suppression of syndecan-1. The loss of syndecan-1 causes an increase in TGF-β1 production. The limited chronic increase in TGF-β1 can convert HCC cells into a mesenchymal phenotype via establishing an MMP-7/Syndecan-1/TGF-β autocrine loop. Finally, TGF-β1 and syndecan-1 are essential for S1P-induced epithelial to mesenchymal transition. Taken together, our study demonstrates that S1P induces advanced tumor phenotypes of HCC via establishing an MMP-7/syndecan-1/TGF-β1 autocrine loop, and implicates targetable S1P1-PI3K/AKT-HPSE-MMP-7 signaling axe in HCC metastasis. PMID:27556509

  6. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin

    PubMed Central

    Shamir, Eliah R.; Pappalardo, Elisa; Jorgens, Danielle M.; Coutinho, Kester; Tsai, Wen-Ting; Aziz, Khaled; Auer, Manfred; Tran, Phuoc T.; Bader, Joel S.

    2014-01-01

    Dissemination of epithelial cells is a critical step in metastatic spread. Molecular models of dissemination focus on loss of E-cadherin or repression of cell adhesion through an epithelial to mesenchymal transition (EMT). We sought to define the minimum molecular events necessary to induce dissemination of cells out of primary murine mammary epithelium. Deletion of E-cadherin disrupted epithelial architecture and morphogenesis but only rarely resulted in dissemination. In contrast, expression of the EMT transcription factor Twist1 induced rapid dissemination of cytokeratin-positive epithelial cells. Twist1 induced dramatic transcriptional changes in extracellular compartment and cell–matrix adhesion genes but not in cell–cell adhesion genes. Surprisingly, we observed disseminating cells with membrane-localized E-cadherin and β-catenin, and E-cadherin knockdown strongly inhibited Twist1-induced single cell dissemination. Dissemination can therefore occur with retention of epithelial cell identity. The spread of cancer cells during metastasis could similarly involve activation of an epithelial motility program without requiring a transition from epithelial to mesenchymal character. PMID:24590176

  7. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control.

    PubMed

    Grassi, Mariana Lopes; Palma, Camila de Souza; Thomé, Carolina Hassibe; Lanfredi, Guilherme Pauperio; Poersch, Aline; Faça, Vitor Marcel

    2017-01-16

    Epithelial to mesenchymal transition (EMT) is a well-orchestrated process that culminates with loss of epithelial phenotype and gain of a mesenchymal and migratory phenotype. EMT enhances cancer cell invasiveness and drug resistance, favoring metastasis. Dysregulation of transcription factors, signaling pathways, miRNAs and growth factors including EGF, TGF-beta and HGF can trigger EMT. In ovarian cancer, overexpression of the EGFR family is associated with more aggressive clinical behavior. Here, the ovarian adenocarcinoma cell line Caov-3 was induced to EMT with EGF in order to identify specific mechanisms controlled by this process. Caov-3 cells induced to EMT were thoroughly validated and a combination of subcellular proteome enrichment, GEL-LC-MS/MS and SILAC strategy allowed consistent proteome identification and quantitation. Protein network analysis of differentially expressed proteins highlighted regulation of metabolism and cell cycle. Activation of relevant signaling pathways, such as PI3K/Akt/mTOR and Ras/Erk MAPK, in response to EGF-induced EMT was validated. Also, EMT did not affected the proliferation rate of Caov-3 cells, but led to cell cycle arrest in G1 phase regulated by increased levels of p21Waf1/Cip1, independently of p53. Furthermore, a decrease in G1 and G2 checkpoint proteins was observed, supporting the involvement of EGF-induced EMT in cell cycle control.

  8. Hypoxia Induces a HIF-1-Dependent Transition from Collective-to-Amoeboid Dissemination in Epithelial Cancer Cells.

    PubMed

    Lehmann, Steffi; Te Boekhorst, Veronika; Odenthal, Julia; Bianchi, Roberta; van Helvert, Sjoerd; Ikenberg, Kristian; Ilina, Olga; Stoma, Szymon; Xandry, Jael; Jiang, Liying; Grenman, Reidar; Rudin, Markus; Friedl, Peter

    2017-02-06

    Cancer metastases arise from a multi-step process that requires metastasizing tumor cells to adapt to signaling input from varying tissue environments [1]. As an early metastatic event, cancer cell dissemination occurs through different migration programs, including multicellular, collective, and single-cell mesenchymal or amoeboid migration [2-4]. Migration modes can interconvert based on changes in cell adhesion, cytoskeletal mechanotransduction [5], and/or proteolysis [6], most likely under the control of transcriptional programs such as the epithelial-to-mesenchymal transition (EMT) [7, 8]. However, how plasticity of tumor cell migration and EMT is spatiotemporally controlled and connected upon challenge by the tumor microenvironment remains unclear. Using 3D cultures of collectively invading breast and head and neck cancer spheroids, here we identify hypoxia, a hallmark of solid tumors [9], as an inducer of the collective-to-amoeboid transition (CAT), promoting the dissemination of amoeboid-moving single cells from collective invasion strands. Hypoxia-induced amoeboid detachment was driven by hypoxia-inducible factor 1 (HIF-1), followed the downregulation of E-cadherin, and produced heterogeneous cell subsets whose phenotype and migration were dependent (∼30%) or independent (∼70%) of Twist-mediated EMT. EMT-like and EMT-independent amoeboid cell subsets showed stable amoeboid movement over hours as well as leukocyte-like traits, including rounded morphology, matrix metalloproteinase (MMP)-independent migration, and nuclear deformation. Cancer cells undergoing pharmacological stabilization of HIFs retained their constitutive ability for early metastatic seeding in an experimental model of lung metastasis, indicating that hypoxia-induced CAT enhances cell release rather than early organ colonization. Induced by metabolic challenge, amoeboid movement may thus constitute a common endpoint of both EMT-dependent and EMT-independent cancer dissemination programs.

  9. HER2 mediated de novo production of TGFβ leads to SNAIL driven epithelial-to-mesenchymal transition and metastasis of breast cancer.

    PubMed

    Gupta, Parul; Srivastava, Sanjay K

    2014-12-01

    HER2 is an important determinant of poor prognosis in breast cancer patients. Studies indicate that HER2 positive tumors are mostly resistant to therapy and have high metastatic potential however, the underlying mechanisms remain unknown. In this study, MDA-MB-231 and MCF-7 breast cancer cells with their HER2 overexpressing syngeneic variants were used to delineate the role of HER2 in EMT and metastasis. Our results demonstrated that HER2 overexpression increased the invasive potential of cells. Our results also showed that HER2 overexpression lead to the production of TGFβ resulting in the activation of TGFβ/SMAD signaling. Furthermore, activation of SNAIL, SLUG and ZEB-1, the transcriptional repressors of E-cadherin and increased mesenchymal characteristics were observed in high HER2 cells. Interestingly, EMT by HER2 was mediated through TGFβ. Intravenous injection of high HER2 MDA-MB-231 (HH) cells in athymic nude mice showed early and substantial metastasis as compared to the parent cells establishing the direct role of HER2 in metastasis. Our results showed that inhibition of HER2 mediated EMT by cucurbitacin B a triterpenoid, resulted in the suppression of brain metastasis of breast cancer cells. Taken together, our results identify a novel mechanism of HER2 in promoting breast cancer metastasis through de novo synthesis of TGFβ leading to EMT, an initial and essential step of metastasis.

  10. MET amplification and epithelial-to-mesenchymal transition exist as parallel resistance mechanisms in erlotinib-resistant, EGFR-mutated, NSCLC HCC827 cells.

    PubMed

    Jakobsen, K R; Demuth, C; Madsen, A T; Hussmann, D; Vad-Nielsen, J; Nielsen, A L; Sorensen, B S

    2017-04-03

    Although many epidermal growth factor receptor (EGFR)-mutated lung cancer patients initially benefit from the EGFR-inhibitor erlotinib, all acquire resistance. So far, several mechanisms implicated in resistance have been identified, but the existence of multiple resistance mechanisms in parallel have only been sparsely investigated. In this study, we investigated parallel resistance mechanisms acquired by HCC827, an EGFR-mutated adenocarcinoma cell line dependent on EGFR activity and sensitive to erlotinib. The cell line was treated with erlotinib by stepwise escalation of the drug-concentration and erlotinib-resistant (HCC827ER) cells created. HCC827ER cells depicted a mixed epithelial and mesenchymal phenotype. To clarify potential parallel resistance mechanisms, 14 resistant subclones were established by limited dilution. Interestingly, all HCC827ER subclones harbored either a MET-amplification (6/14) or underwent EMT (8/14), mechanisms both found in previous studies, but not in co-occurrence. Both subclone-types were resistant to erlotinib, but only MET-subclones responded to the MET-inhibitors crizotinib and capmatinib. EMT-subclones on the other hand had markedly increased FGFR1 expression and responded to the FGFR-inhibitor AZD4547, whereas MET-subclones did not. Monitoring gene expression through the development of HCC827ER revealed upregulation of FGFR1 expression as an early response to erlotinib. In addition, FGFR1 expression increased upon short-term erlotinib treatment (48 h) identifying a physiological role immediately after erlotinib exposure. The high FGFR1 expression seen in EMT-subclones was stable even after five passages without erlotinib. Here we show, that parallel resistance mechanisms appear during erlotinib-resistance development in EGFR-mutated NSCLC cells and highlight a role for FGFR1 expression changes as an early response to erlotinib as well as a bypass-signaling mechanism.

  11. Synergistic association of Notch and NFκB signaling and role of Notch signaling in modulating epithelial to mesenchymal transition in colorectal adenocarcinoma.

    PubMed

    Gopalakrishnan, Natarajan; Sivasithamparam, Niranjali Devaraj; Devaraj, Halagowder

    2014-12-01

    Notch1 signaling plays a key role in normal developmental processes and in cancer. The association between Notch activation and development of cancer has been well documented. Notch activation and outcome of the disease depend upon the crosstalk with other regulatory pathways including Nuclear Factor kappa B (NFκB) pathway. In this study, we have investigated the interaction of Notch intracellular domain (NICD) with NFκBp65 in colorectal cancer which resulted in the upregulation of Bcl-xL resulting in the inhibition of apoptosis. Mesenchymal marker Slug expression and down regulation of E-cadherin, an epithelial phenotypic marker were demonstrated in colon cancer tissues. The study was also illustrated by using the gamma secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) in HT29 cells. Immunohistochemistry (NICD, NFκBp65, and Slug) and double immunofluorescence analysis (NICD, NFκBp65) revealed that NICD and NFκBp65 were highly expressed in HT29 cells and in tumor tissue compared to normal tissue. Slug and Bcl-xL protein expressions were significantly reduced in DAPT treated HT 29 cells. Immunoprecipitation and dual staining emphasized the strong interaction of NICD with NFκBp65 in adenocarcinoma than in normal tissue. It appeared that Notch1 and NFκB could independently contribute to tumor progression. However, their interaction and synergism might be the determinants that would affect the outcome of the disease and therapeutic interventions.

  12. Parameters of Stromal Activation and Epithelial to Mesenchymal Transition as Predictive Biomarkers for Induction Chemotherapy in Patients With Locally Advanced Oral Cavity and Oropharyngeal Squamous Cell Cancer

    PubMed Central

    Geweiler, Jana; Inhestern, Johanna; Berndt, Alexander; Guntinas-Lichius, Orlando

    2016-01-01

    Objectives Induction chemotherapy (IC) is likely to be effective for biologically distinct subgroups of oral cancer and biomarker development may lead to identification of those patients. Methods We evaluated immune cell infiltration, stroma formation and structure of the invasive front as well as the immunohistochemical expression of alpha smooth muscle actin (ASMA), CD163, E-cadherin, N-cadherin, and the laminin gamma 2 chain in pretreatment biopsy specimens and surgical resections after IC in 20 patients with locally advanced oral cancer who were treated in a prospective, ongoing, phase II trial on IC using docetaxel, cisplatin, and 5-fluorouracil (TPF). Results Significant negative prognostic factors for incomplete pathological tumor response to IC were alcohol abuse (P=0.032), cN+ (P=0.042), and <30% tumor reduction after first cycle of IC (P=0.034). Of the investigated histological parameters and biomarkers only a low membrane-bound expression of E-cadherin showed a trend to be associated with incomplete response to IC (P=0.061). Low expression of ASMA in stromal vessels and a strong tumor invasion front were significantly associated to tumor recurrence (P=0.024 and P=0.004, respectively). The median follow-up of all patients was 35 months. Alcohol abuse (P<0.001), <30% tumor reduction after first cycle of IC (P=0.005), and a strong tumor invasion front (P=0.019) were negative prognostic factors for overall survival. Conclusion A strong predictive biomarker among the investigated parameters for benefitting from TPF IC could not be found. The extent of the tumor invasion front was a negative prognostic marker for recurrence and survival in oral cancer treated by TPF IC followed by surgery and postoperative radiochemotherapy. PMID:27416733

  13. Downregulation of Lnc-Spry1 mediates TGF-β-induced epithelial-mesenchymal transition by transcriptional and posttranscriptional regulatory mechanisms.

    PubMed

    Rodríguez-Mateo, Cristina; Torres, Belén; Gutiérrez, Gabriel; Pintor-Toro, José A

    2017-02-10

    Long non-coding RNAs (lncRNAs) are a class of regulatory genes that participate in a wide range of biological processes, including proliferation, differentiation and development, as well as in a broad spectrum of diseases. Although the role of lncRNAs in TGF-β-induced epithelial-to-mesenchymal transition (EMT) has been well established, little is known about the role of lncRNAs as immediate-early regulators of EMT. Here lnc-Spry1 is identified as an immediate-early regulator of EMT that is downregulated by TGF-β. It is also found that knockdown of lnc-Spry1 promotes a mesenchymal-like phenotype and results in increased cell migration and invasion. In addition, it is shown that lnc-Spry1 depletion preferentially affects the expression of TGF-β-regulated gene targets. Moreover, lnc-Spry1 associates with U2AF65 splicing factor, suggesting a role in alternative splicing. Depletion of lnc-Spry1 induces, as TGF-β, isoform switching of fibroblast growth factor receptors, resulting in FGF-2-sensitive cells. Taken together, these results show that lnc-Spry1 could act as an early mediator of TGF-β signaling and reveal different roles for a lncRNA in modulating transcriptional and posttranscriptional gene expressionCell Death and Differentiation advance online publication, 10 February 2017; doi:10.1038/cdd.2017.9.

  14. EGF-reduced Wnt5a transcription induces epithelial-mesenchymal transition via Arf6-ERK signaling in gastric cancer cells

    PubMed Central

    Zhang, Yujie; Du, Jun; Zheng, Jianchao; Liu, Jiaojing; Xu, Rui; Shen, Tian; Zhu, Yichao; Chang, Jun; Wang, Hong; Zhang, Zhihong; Meng, Fanqing; Wang, Yan; Chen, Yongchang; Xu, Yong; Gu, Luo

    2015-01-01

    Wnt5a, a ligand for activating the non-canonical Wnt signaling pathway, is commonly associated with Epithelial-to-mesenchymal transition (EMT) in cancer cell metastasis. Here, we show that downregulation of Wnt5a mRNA and protein by EGF is necessary for EGF-induced EMT in gastric cancer SGC-7901 cells. To further explore the mechanisms, we investigated the effect of EGF signaling on Wnt5a expression. EGF increased Arf6 and ERK activity, while blockade of Arf6 activation repressed ERK activity, up-regulated Wnt5a expression and repressed EMT in response to EGF. We also demonstrate that EGF inactivated Wnt5a transcription by direct recruitment of ERK to the Wnt5a promoter. On the other hand, inhibition of ERK phosphorylation resulted in decreased movement of ERK from the cytoplasm to the nucleus, following rescued Wnt5a mRNA and protein expression and favored an epithelial phenotype of SGC-7901 cells. In addition, we notice that kinase-dead, nuclear-localised ERK has inhibitory effect on Wnt5a transcription. Analysis of gastric cancer specimens revealed an inverse correlation between P-ERK and Wnt5a protein levels and an association between Wnt5a expression and better prognosis. These findings indicate that Wnt5a is a potential suppressor of EMT and identify a novel Arf6/ERK signaling pathway for EGF-regulated Wnt5a expression at transcriptional level of gastric cancer cells. PMID:25779663

  15. The Heat Shock Transcription Factor HSF1 Induces Ovarian Cancer Epithelial-Mesenchymal Transition in a 3D Spheroid Growth Model

    PubMed Central

    Aoisa, Candice; Menzie, Christopher J.; Ubaldini, Ashley

    2016-01-01

    Ovarian cancer is the most lethal gynecological cancer, with over 200,000 women diagnosed each year and over half of those cases leading to death. The proteotoxic stress-responsive transcription factor HSF1 is frequently overexpressed in a variety of cancers and is vital to cellular proliferation and invasion in some cancers. Upon analysis of various patient data sets, we find that HSF1 is frequently overexpressed in ovarian tumor samples. In order to determine the role of HSF1 in ovarian cancer, inducible HSF1 knockdown cell lines were created. Knockdown of HSF1 in SKOV3 and HEY ovarian cancer cell lines attenuates the epithelial-to-mesenchymal transition (EMT) in cells treated with TGFβ, as determined by western blot and quantitative RT-PCR analysis of multiple EMT markers. To further explore the role of HSF1 in ovarian cancer EMT, we cultured multicellular spheroids in a non-adherent environment to simulate early avascular tumors. In the spheroid model, cells more readily undergo EMT; however, EMT inhibition by HSF1 becomes more pronounced in the spheroid model. These findings suggest that HSF1 is important in the ovarian cancer TGFβ response and in EMT. PMID:27997575

  16. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E

    PubMed Central

    Smith, K. A.; Zhou, B.; Avdulov, S.; Benyumov, A.; Peterson, M.; Liu, Y.; Okon, A.; Hergert, P.; Braziunas, J.; Wagner, C. R.; Borok, Z.; Bitterman, P. B.

    2015-01-01

    The epithelial to mesenchymal transition (EMT) imparts disease-defining properties to epithelial cells in cancer and organ fibrosis. Prior studies identify EMT control points at the level of transcription and translation, and indicate that activation of translation initiation factor 4E (eIF4E) is involved in the mechanisms coordinating these two levels of control. Here we show that 4Ei-1, a specific chemical antagonist of the eIF4E-mRNA cap interaction, potently inhibits transforming growth factor beta 1 (TGF-β1) mediated EMT in lung epithelial cells. Upon treatment with TGF-β1, we observed a rapid recruitment of Snail1 mRNA into the actively translated polysome pool accompanied by accumulation of the EMT transcription factor Snail1 in the nucleus. 4Ei-1 blocks ribosome recruitment to the Snail1 transcript thereby preventing accumulation of the Snail1 protein in the nucleus. Our findings establish an obligatory role for upstream translational control of downstream Snail1-mediated transcriptional events in TGF-β1 induced EMT, and provide proof of concept for efforts to pharmacologically modulate the eIF4E-cap interaction as a means to inhibit pathological EMT in the setting of cancer and organ fibrosis. PMID:26678431

  17. Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer

    PubMed Central

    2014-01-01

    An important clinical challenge in prostate cancer therapy is the inevitable transition from androgen-sensitive to castration-resistant and metastatic prostate cancer. Albeit the androgen receptor (AR) signaling axis has been targeted, the biological mechanism underlying the lethal event of androgen independence remains unclear. New emerging evidences indicate that epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) play crucial roles during the development of castration-resistance and metastasis of prostate cancer. Notably, EMT may be a dynamic process. Castration can induce EMT that may enhance the stemness of CSCs, which in turn results in castration-resistance and metastasis. Reverse of EMT may attenuate the stemness of CSCs and inhibit castration-resistance and metastasis. These prospective approaches suggest that therapies target EMT and CSCs may cast a new light on the treatment of castration-resistant prostate cancer (CRPC) in the future. Here we review recent progress of EMT and CSCs in CRPC. PMID:24618337

  18. IL4 and IL-17A provide a Th2/Th17-polarized inflammatory milieu in favor of TGF-β1 to induce bronchial epithelial-mesenchymal transition (EMT)

    PubMed Central

    Ji, Xiaoying; Li, Jinxiu; Xu, Li; Wang, Wenjing; Luo, Ming; Luo, Shuangling; Ma, Libing; Li, Keng; Gong, Subo; He, Long; Zhang, Zhijun; Yang, Ping; Zhou, Zhiguang; Xiang, Xudong; Wang, Cong-Yi

    2013-01-01

    Severe asthma is a chronic airway disease characterized by the Th2/Th17-polarized inflammation along with permanent airway remodeling. Despite past extensive studies, the exact role for Th2 and Th17 cytokines in asthmatic pathoetiology, particularly in the pathogenesis of bronchial epithelial-mesenchymal transition (EMT), is yet to be fully addressed. We herein conducted studies in 16-HBE cells and demonstrated that Th2-derived IL-4 and Th17-derived IL-17A provide a chronic inflammatory milieu that favors TGF-β1 to induce bronchial EMT. A synergic action was noted between TGF-β1, IL-4 and IL-17A in terms of induction of EMT. IL-4 and IL-17A synergized with TGF-β1 to induce epithelial cells re-entering cell cycle, and to promote epithelial to mesenchymal morphological transistion, and by which they enhanced the capacity of TGF-β1 to suppress E-cadherin expression, and to induce a-SMA expression in epithelial cells. Mechanistic studies revealed that this synergic action is coordinated by the regulation of ERK1/2 activity. Our results not only provide a novel insight into the understanding of the mechanisms underlying airway remodeling in asthmatic condition, but also have the potential for developing more effective therapeutic strategies against severe asthmatics in clinical settings. PMID:23923066

  19. Heparanase: A Potential New Factor Involved in the Renal Epithelial Mesenchymal Transition (EMT) Induced by Ischemia/Reperfusion (I/R) Injury

    PubMed Central

    Gambaro, Giovanni; Onisto, Maurizio; Bellin, Gloria; Vischini, Gisella; Khamaysi, Iyad; Hassan, Ahmad; Hamoud, Shadi; Nativ, Omri; N. Heyman, Samuel; Lupo, Antonio; Vlodavsky, Israel; Abassi, Zaid

    2016-01-01

    Background Ischemia/reperfusion (I/R) is an important cause of acute renal failure and delayed graft function, and it may induce chronic renal damage by activating epithelial to mesenchymal transition (EMT) of renal tubular cells. Heparanase (HPSE), an endoglycosidase that regulates FGF-2 and TGFβ-induced EMT, may have an important role. Therefore, aim of this study was to evaluate its role in the I/R-induced renal pro-fibrotic machinery by employing in vitro and in vivo models. Methods Wild type (WT) and HPSE-silenced renal tubular cells were subjected to hypoxia and reoxygenation in the presence or absence of SST0001, an inhibitor of HPSE. In vivo, I/R injury was induced by bilateral clamping of renal arteries for 30 min in transgenic mice over-expressing HPSE (HPA-tg) and in their WT littermates. Mice were sacrificed 48 and 72 h after I/R. Gene and protein EMT markers (α-SMA, VIM and FN) were evaluated by bio-molecular and histological methodologies. Results In vitro: hypoxia/reoxygenation (H/R) significantly increased the expression of EMT-markers in WT, but not in HPSE-silenced tubular cells. Notably, EMT was prevented in WT cells by SST0001 treatment. In vivo: I/R induced a remarkable up-regulation of EMT markers in HPA-tg mice after 48–72 h. Noteworthy, these effects were absent in WT animals. Conclusions In conclusion, our results add new insights towards understanding the renal biological mechanisms activated by I/R and they demonstrate, for the first time, that HPSE is a pivotal factor involved in the onset and development of I/R-induced EMT. It is plausible that in future the inhibition of this endoglycosidase may represent a new therapeutic approach to minimize/prevent fibrosis and slow down chronic renal disease progression in native and transplanted kidneys. PMID:27467172

  20. MiR-338* targeting smoothened to inhibit pulmonary fibrosis by epithelial-mesenchymal transition

    PubMed Central

    Zhuang, Yi; Dai, Jinghong; Wang, Yongsheng; Zhang, Huan; Li, Xinxiu; Wang, Chunli; Cao, Mengshu; Liu, Yin; Ding, Jingjing; Cai, Hourong; Zhang, Deping; Wang, Yaping

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease involving pulmonary injury associated with tissue repair, dysfunction and fibrosis. Recent studies indicate that some microRNAs (miRNAs) may play critical roles in the pathogenesis of pulmonary fibrosis. In this study, we aim to investigate whether miR-338* (miR-338-5p), which has been found to be associated with tumor progression, is associated with pathological process of pulmonary fibrosis. Balb/c mice were treated with bleomycin (BLM) to establish IPF models. Targtscan was used to predict the downstream target of miR-338*. Morphological changes were observed with light microscope and epithelial to mesenchymal transition (EMT) markers were detected by western blot. The expression of miR-338* or downstream target SMO was analyzed by real-time quantitative RT-PCR, northern blot or western blot. MiR-338* was down-regulated in the lung tissue from mice with bleomycin-induced pulmonary fibrosis. The smoothened (SMO) is a direct target of miR-338*, and knocking-down the expression of SMO could partially rescue the fibrotic phenotype of TGF-β-induced NuLi-1 cells. Over-expression of SMO led to the fibrotic phenotype of NuLi-1 cells even without TGF-β treatment. These findings showed that the over-expression of SMO contributed to the fibrotic phenotype of NuLi-1 cells by affecting the epithelial-to-mesenchymal transition (EMT) procedure. Furthermore, in vivo, lentivirus-mediated over-expression of miR-338* can alleviate lung fibrosis induced by bleomycin in mice. In conclusion, our results suggest that miR-338* can target SMO to reduce the EMT procedure and thus postpone the development of pulmonary fibrosis. PMID:27508042

  1. MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells.

    PubMed

    Qu, Yi; Li, Wen-Cheng; Hellem, Margrete Reime; Rostad, Kari; Popa, Mihaela; McCormack, Emmet; Oyan, Anne Margrete; Kalland, Karl-Henning; Ke, Xi-Song

    2013-08-01

    MicroRNAs play critical roles in tumorigenesis and metastasis. Here, we report the dual functions of miR-182 and miR-203 in our previously described prostate cell model. MiR-182 and miR-203 were completely repressed during epithelial to mesenchymal transition (EMT) from prostate epithelial EP156T cells to the progeny mesenchymal nontransformed EPT1 cells. Re-expression of miR-182 or miR-203 in EPT1 cells and prostate cancer PC3 cells induced mesenchymal to epithelial transition (MET) features. Simultaneously, miR-182 and miR-203 provided EPT1 cells with the ability to self-sufficiency of growth signals, a well-recognized oncogenic feature. Gene expression profiling showed high overlap of the genes affected by miR-182 and miR-203. SNAI2 was identified as a common target of miR-182 and miR-203. Knock-down of SNAI2 in EPT1 cells phenocopied re-expression of either miR-182 or miR-203 regarding both MET and self-sufficiency of growth signals. Strikingly, considerable overlaps of changed genes were found between the re-expression of miR-182/203 and knock-down of SNAI2. Finally, P-cadherin was identified as a direct target of SNAI2. We conclude that miR-182 and miR-203 induce MET features and growth factor independent growth via repressing SNAI2 in prostate cells. Our findings shed new light on the roles of miR-182/203 in cancer related processes.

  2. Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma.

    PubMed

    Chen, Xiaoxiang; Zhang, Jing; Zhang, Zhihong; Li, Hongxia; Cheng, Wenjun; Liu, Jinsong

    2013-11-01

    Although epithelial ovarian cancer cells are eliminated by debulking surgery and chemotherapy during initial treatment, it is believed that only a subset of cancer cells, that is, cancer stem cells, may be an important source of tumor recurrence and drug resistance. This review highlights our current understanding of high-grade serous carcinoma, ovarian cancer stem cells, common methods for enrichment of ovarian cancer stem cells, mechanisms involved in drug resistance, and potential strategies for overcoming drug resistance, with associated potential controversies and pitfalls. We also review the potential relationship between epithelial-to-mesenchymal transition and cancer stem cells and how we can induce cancer cells to differentiate into benign stromal fibroblasts in response to certain chemotherapy drugs.

  3. The role of WNT/β-catenin signaling pathway in melanoma epithelial-to-mesenchymal-like switching: evidences from patients-derived cell lines

    PubMed Central

    Kovacs, Daniela; Migliano, Emilia; Muscardin, Luca; Silipo, Vitaliano; Catricalà, Caterina; Picardo, Mauro; Bellei, Barbara

    2016-01-01

    Deregulations or mutations of WNT/β-catenin signaling have been associated to both tumour formation and progression. However, contradictory results concerning the role of β-catenin in human melanoma address an open question on its oncogenic nature and prognostic value in this tumour. Changes in WNT signaling pathways have been linked to phenotype switching of melanoma cells between a highly proliferative/non-invasive and a slow proliferative/metastatic condition. We used a novel panel of cell lines isolated from melanoma specimens, at initial passages, to investigate phenotype differences related to the levels and activity of WNT/β-catenin signaling pathway. This in vitro cell system revealed a marked heterogeneity that comprises, in some cases, two distinct tumour-derived subpopulations of cells presenting a different activation level and cellular distribution of β-catenin. In cells derived from the same tumor, we demonstrated that the prevalence of LEF1 (high β-catenin expressing cells) or TCF4 (low β-catenin expressing cells) as β-catenin partner for DNA binding, is associated to the expression of two distinct profiles of WNT-responsive genes. Interestingly, melanoma cells expressing relative low level of β-catenin and an invasive markers signature were associated to the TNF-α-induced pro-inflammatory pathway and to the chemotherapy resistance, suggesting that the co-existence of melanoma subpopulations with distinct biological properties could influence the impact of chemo- and immunotherapy. PMID:27175588

  4. Matrix Metalloproteinase Stromelysin-1 Triggers a Cascade of Molecular Alterations that leads to stable epithelial-to-Mesenchymal Conversion and a Premalignant Phenotype in Mammary Epithelial Cells

    SciTech Connect

    Lochter, A.; Galosy, S.; Muschler, J.; Freedman, N.; Werb, Z.; Bissell, M.J.

    1997-08-11

    Matrix metalloproteinases (MMPs) regulate ductal morphogenesis, apoptosis, and neoplastic progression in mammary epithelial cells. To elucidate the direct effects of MMPs on mammary epithelium, we generated functionally normal cells expressing an inducible autoactivating stromelysin-1 (SL-1) transgene. Induction of SL-1 expression resulted in cleavage of E-cadherin, and triggered progressive phenotypic conversion characterized by disappearance of E-cadherin and catenins from cell-cell contacts, downregulation of cytokeratins, upregulation of vimentin, induction of keratinocyte growth factor expression and activation, and upregulation of endogenous MMPs. Cells expressing SL-1 were unable to undergo lactogenic differentiation and became invasive. Once initiated, this phenotypic conversion was essentially stable, and progressed even in the absence of continued SL-1 expression. These observations demonstrate that inappropriate expression of SL-1 initiates a cascade of events that may represent a coordinated program leading to loss of the differentiated epithelial phenotype and gain of some characteristics of tumor cells. Our data provide novel insights into how MMPs function in development and neoplastic conversion.

  5. MicroRNA-130b improves renal tubulointerstitial fibrosis via repression of Snail-induced epithelial-mesenchymal transition in diabetic nephropathy

    PubMed Central

    Bai, Xiaoyan; Geng, Jian; Zhou, Zhanmei; Tian, Jianwei; Li, Xiao

    2016-01-01

    MicroRNA-130b (miR-130b) downregulation has been identified in diabetes, but the role and mechanisms for miR-130b in mediating renal tubulointerstitial fibrosis in diabetic nephropathy (DN) remain unknown. We demonstrated that plasma miR-130b downregulation exhibited clinical and biological relevance as it was linked to increased serum creatinine, β2-microglobulin and proteinuria, increased Snail expression and tubulointerstitial fibrosis in renal biopsies of DN patients. MiR-130b inhibitor caused Snail upregulation and enhanced molecular features of epithelial-to-mesenchymal transition (EMT) in high glucose (30 mM) cultured NRK-52E cells. In contrast, miR-130b mimic downregulated Snail expression and increased epithelial hallmarks. Notably, Snail was identified as an miR-130b direct target and inversely correlated with E-CADHERIN expression. Furthermore, the miR-130b-dependent effects were due to Snail suppression that in turn deregulated E-CADHERIN, VIMENTIN, COLLAGEN IV and α-smooth muscle actin (α-SMA), key mediators of EMT. These effects were reproduced in streptozotocin-induced diabetic rats. Thus, we propose a novel role of the miR-130b-SNAIL axis in fostering EMT and progression toward increased tubulointerstitial fibrosis in DN. Detection of plasma miR-130b and its association with SNAIL can be extrapolated to quantifying the severity of renal tubulointerstitial fibrosis. Targeting miR-130b could be evaluated as a potential therapeutic approach for DN. PMID:26837280

  6. Small Molecule Mesengenic Induction of Human Induced Pluripotent Stem Cells to Generate Mesenchymal Stem/Stromal Cells

    PubMed Central

    Chen, Yen Shun; Ellis, Rebecca L.; Horne, Rachel; Wolvetang, Ernst J.; Fisk, Nicholas M.

    2012-01-01

    The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs. PMID:23197756

  7. Microenvironment Induced Spheroid to Sheeting Transition of Immortalized Human Keratinocytes (HaCaT) Cultured in Microbubbles Formed in Polydimethylsiloxane

    PubMed Central

    Chandrasekaran, Siddarth; Giang, Ut-Binh; King, Michael R.; DeLouise, Lisa A

    2011-01-01

    this morphology transition in microbubbles is supported by the observation that spheroids do not form when cells - seeded into microbubbles or onto PDMS cured in 96 well plates - are cultured in media conditioned by HaCaT cells grown in standard tissue culture plate. We observed that the addition of TGF-β1 to the growth media induced cells to proliferate in a sheeting morphology from the onset both on PDMS cured in 96-well plates and in microbubbles. TGF-β1 is a morphogen known to regulate epithelial-to-mesenchymal transition (EMT). Studies of the role of Ca2+ concentration and changes in Ecadherin expression additionally support an EMT-like HaCaT morphology transition. These findings taken together validate the microbubble compartment as a unique cell culture platform that can potentially transform investigative studies in cell biology and in particular the tumor microenvironment. Targeting the tumor microenvironment is an emerging area of anti-cancer therapy. PMID:21724250

  8. Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis

    PubMed Central

    Huang, Bin; Jolly, Mohit Kumar; Lu, Mingyang; Tsarfaty, Ilan; Ben-Jacob, Eshel; Onuchic, Jose’ N

    2015-01-01

    Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) – have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT). PMID:26627083

  9. Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Jolly, Mohit Kumar; Lu, Mingyang; Tsarfaty, Ilan; Ben-Jacob, Eshel; Onuchic, Jose' N.

    2015-12-01

    Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) - have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT).

  10. Local bias-induced phase transitions

    DOE PAGES

    Seal, Katyayani; Baddorf, Arthur P.; Jesse, Stephen; ...

    2008-11-27

    Electrical bias-induced phase transitions underpin a wide range of applications from data storage to energy generation and conversion. The mechanisms behind these transitions are often quite complex and in many cases are extremely sensitive to local defects that act as centers for local transformations or pinning. Furthermore, using ferroelectrics as an example, we review methods for probing bias-induced phase transitions and discuss the current limitations and challenges for extending the methods to field-induced phase transitions and electrochemical reactions in energy storage, biological and molecular systems.

  11. Prognostic significance of nestin expression in patients with resected non-small cell lung cancer treated with platinum-based adjuvant chemotherapy; relationship between nestin expression and epithelial to mesenchymal transition related markers

    PubMed Central

    Ryuge, Shinichiro; Sato, Yuichi; Nagashio, Ryo; Hiyoshi, Yasuhiro; Katono, Ken; Igawa, Satoshi; Nakashima, Hiroyasu; Shiomi, Kazu; Ichinoe, Masaaki; Murakumo, Yoshiki; Saegusa, Makoto; Satoh, Yukitoshi; Masuda, Noriyuki

    2017-01-01

    Introduction Although adjuvant platinum-based chemotherapy (AC) has been shown to improve survival of patients with completely resected stage II and stage IIIA non-small cell lung cancer (NSCLC), its effect is limited. Nestin is a class VI intermediate filament protein expressed in neural stem cells and several cancer cells including NSCLC. In the present study, we aimed to determine its prognostic significance concerning survival in NSCLC patients receiving AC. Methods Nestin expression in cancer cells was immunohistochemically studied in 90 patients with completely resected stage II and stage IIIA NSCLC treated with AC and its association with clinicopathologic parameters, including ABCG2, E-cadherin, and vimentin expression, was evaluated. Kaplan-Meier survival analysis and Cox proportional hazards models were used to estimate the effect of nestin expression on survival. Results Nestin expression was observed in 28 of the 90 (31.1%) NSCLCs. Clinicopathologically, nestin expression was associated with loss of E-cadherin expression (P = 0.006) and vimentin positive expression (P < 0.001). In survival analysis, nestin expression was significantly associated with a poorer prognosis (P = 0.028). Multivariable analysis confirmed that nestin expression is an independent prognostic indicator in NSCLC patients receiving AC (HR = 2.56; 95% CI, 1.23–5.30, P = 0.01). Conclusion The present study reveals that nestin expression is a prognostic indicator of a poorer survival probability in NSCLC patients receiving AC, although its prognostic significance still requires confirmation with larger patient populations. PMID:28358810

  12. Employing an orthotopic model to study the role of epithelial-mesenchymal transition in bladder cancer metastasis.

    PubMed

    Roth, Beat; Jayaratna, Isuru; Sundi, Debasish; Cheng, Tiewei; Melquist, Jonathan; Choi, Woonyoung; Porten, Sima; Nitti, Giovanni; Navai, Neema; Wszolek, Matthew; Guo, Charles; Czerniak, Bogdan; McConkey, David; Dinney, Colin

    2016-08-02

    Epithelial-to-mesenchymal transition (EMT) has been implicated in the progression of bladder cancer. To study its contribution to bladder cancer metastasis, we established new xenograft models derived from human bladder cancer cell lines utilizing an orthotopic "recycling" technique that allowed us to isolate and examine the primary tumor and its corresponding circulating tumor cells (CTC's) and metastatic lesions. Using whole genome mRNA expression profiling, we found that a reversible epithelial-to-mesenchymal transition (EMT) characterized by TGFβ pathway activation and SNAIL expression was associated with the accumulation of CTCs. Finally, we observed that conditional silencing of SNAIL completely blocked CTC production and regional/distant metastasis. Using this unique bladder cancer xenograft model, we conclude that metastasis is dependent on a reversible EMT mediated by SNAIL.

  13. Resveratrol inhibits epithelial-mesenchymal transition of retinal pigment epithelium and development of proliferative vitreoretinopathy

    PubMed Central

    Ishikawa, Keijiro; He, Shikun; Terasaki, Hiroto; Nazari, Hossein; Zhang, Huiming; Spee, Christine; Kannan, Ram; Hinton, David R

    2015-01-01

    Proliferative vitreoretinopathy (PVR) is a serious complication of retinal detachment and ocular trauma, and its recurrence may lead to irreversible vision loss. Epithelial to mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is a critical step in the pathogenesis of PVR, which is characterized by fibrotic membrane formation and traction retinal detachment. In this study, we investigated the potential impact of resveratrol (RESV) on EMT and the fibrotic process in cultured RPE cells and further examined the preventive effect of RESV on PVR development using a rabbit model of PVR. We found that RESV induces mesenchymal to epithelial transition (MET) and inhibits transforming growth factor-β2(TGF-β2)-induced EMT of RPE cells by deacetylating SMAD4. The effect of RESV on MET was dependent on sirtuin1 activation. RESV suppressed proliferation, migration and fibronectin synthesis induced by platelet-derived growth factor-BB or TGF-β2. In vivo, RESV inhibited the progression of experimental PVR in rabbit eyes. Histological findings showed that RESV reduced fibrotic membrane formation and decreased α-SMA expression in the epiretinal membranes. These results suggest the potential use of RESV as a therapeutic agent to prevent the development of PVR by targeting EMT of RPE. PMID:26552368

  14. Lung cancer exosomes as drivers of epithelial mesenchymal transition

    PubMed Central

    Rahman, Mohammad A.; Barger, Jennifer F.; Lovat, Francesca; Gao, Min; Otterson, Gregory A.; Nana-Sinkam, Patrick

    2016-01-01

    Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells. PMID:27363026

  15. NK Cells, Tumor Cell Transition, and Tumor Progression in Solid Malignancies: New Hints for NK-Based Immunotherapy?

    PubMed

    Cantoni, Claudia; Huergo-Zapico, Leticia; Parodi, Monica; Pedrazzi, Marco; Mingari, Maria Cristina; Moretta, Alessandro; Sparatore, Bianca; Gonzalez, Segundo; Olive, Daniel; Bottino, Cristina; Castriconi, Roberta; Vitale, Massimo

    2016-01-01

    Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue.

  16. NK Cells, Tumor Cell Transition, and Tumor Progression in Solid Malignancies: New Hints for NK-Based Immunotherapy?

    PubMed Central

    Huergo-Zapico, Leticia; Parodi, Monica; Pedrazzi, Marco; Mingari, Maria Cristina; Sparatore, Bianca; Gonzalez, Segundo; Olive, Daniel; Bottino, Cristina

    2016-01-01

    Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue. PMID:27294158

  17. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells.

    PubMed

    Patel, Pranali; West-Mays, Judy; Kolb, Martin; Rodrigues, Juan-Carlos; Hoff, Catherine M; Margetts, Peter J

    2010-03-01

    Platelet derived growth factor (PDGF) is involved in wound healing in various organ systems. Its potential role in the context of peritoneal injury following long-term peritoneal dialysis is unclear. We used an adenovirus expressing the B chain of PDGF (AdPDGF-B) to assess its effect on pro-fibrotic pathways in the peritoneal membrane. To assess the transforming growth factor (TGF) beta independent effects of PDGF, we over-expressed PDGF-B in the peritoneum of either wild-type mice (Smad3+/+) or those with a deletion of the TGFbeta signaling protein Smad3 (Smad3(-/-)). PDGF-B induced sustained angiogenesis in both Smad3+/+ and Smad3(-/-) mice. Despite increased collagen gene expression, collagen accumulation was transient and fibrogenesis was associated with induction of collagenase activity. We observed epithelial to mesenchymal transition (EMT) involving the peritoneal mesothelial cells, as shown by increased SNAIL and decreased E-Cadherin expression with evidence of mesothelial cells expressing both epithelial and mesenchymal markers. Unlike TGFbeta-induced EMT, PDGF-B exposure did not lead to mobilization of the mesothelial cells; they remained as a single monolayer throughout the observation period. This "non-invasive" EMT phenomenon is a novel finding and may have implications concerning the role of EMT in peritoneal fibrosis and injury to other organ systems. The observed effects were similar in Smad3(-/-) and Smad3+/+ animals, suggesting that the PDGF-B effects were independent of TGFbeta or Smad signaling.

  18. Curcumin Suppresses Intestinal Fibrosis by Inhibition of PPARγ-Mediated Epithelial-Mesenchymal Transition

    PubMed Central

    Jiang, Bin; Wang, Hui; Shen, Cunsi; Chen, Hao

    2017-01-01

    Intestinal fibrotic stricture is a major complication of Crohn's disease (CD) and epithelial-to-mesenchymal transition (EMT) is considered as an important contributor to the formation of intestinal fibrosis by increasing extracellular matrix (ECM) proteins. Curcumin, a compound derived from rhizomes of Curcuma, has been demonstrated with a potent antifibrotic effect. However, its effect on intestinal fibrosis and the potential mechanism is not completely understood. Here we found that curcumin pretreatment significantly represses TGF-β1-induced Smad pathway and decreases its downstream α-smooth muscle actin (α-SMA) gene expression in intestinal epithelial cells (IEC-6); in contrast, curcumin increases expression of E-cadherin and peroxisome proliferator-activated receptor γ (PPARγ) in IEC-6. Moreover, curcumin promotes nuclear translocation of PPARγ and the inhibitory effect of curcumin on EMT could be reversed by PPARγ antagonist GW9662. Consistently, in the rat model of intestinal fibrosis induced by 2,4,5-trinitrobenzene sulphonic acid (TNBS), oral curcumin attenuates intestinal fibrosis by increasing the expression of PPARγ and E-cadherin and decreasing the expression of α-SMA, FN, and CTGF in colon tissue. Collectively, these results indicated that curcumin is able to prevent EMT progress in intestinal fibrosis by PPARγ-mediated repression of TGF-β1/Smad pathway. PMID:28203261

  19. LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway

    PubMed Central

    Cuevas, Eva P.; Eraso, Pilar; Mazón, María J.; Santos, Vanesa; Moreno-Bueno, Gema; Cano, Amparo; Portillo, Francisco

    2017-01-01

    Epithelial-to-Mesenchymal Transition (EMT) is a key process contributing to the aggressiveness of cancer cells. EMT is triggered by activation of different transcription factors collectively known as EMT-TFs. Different cellular cues and cell signalling networks activate EMT at transcriptional and posttranscriptional level in different biological and pathological situations. Among them, overexpression of LOXL2 (lysyl oxidase-like 2) induces EMT independent of its catalytic activity. Remarkably, perinuclear/cytoplasmic accumulation of LOXL2 is a poor prognosis marker of squamous cell carcinomas and is associated to basal breast cancer metastasis by mechanisms no yet fully understood. Here, we report that overexpression of LOXL2 promotes its accumulation in the Endoplasmic Reticulum where it interacts with HSPA5 leading to activation of the IRE1-XBP1 signalling pathway of the ER-stress response. LOXL2-dependent IRE1-XBP1 activation induces the expression of several EMT-TFs: SNAI1, SNAI2, ZEB2 and TCF3 that are direct transcriptional targets of XBP1. Remarkably, inhibition of IRE1 blocks LOXL2-dependent upregulation of EMT-TFs thus hindering EMT induction. PMID:28332555

  20. Oxaliplatin induces different cellular and molecular chemoresistance patterns in colorectal cancer cell lines of identical origins

    PubMed Central

    2013-01-01

    Background Cancer cells frequently adopt cellular and molecular alterations and acquire resistance to cytostatic drugs. Chemotherapy with oxaliplatin is among the leading treatments for colorectal cancer with a response rate of 50%, inducing intrastrand cross-links on the DNA. Despite of this drug’s efficiency, resistance develops in nearly all metastatic patients. Chemoresistance being of crucial importance for the drug’s clinical efficiency this study aimed to contribute to the identification and description of some cellular and molecular alterations induced by prolonged oxaliplatin therapy. Resistance to oxaliplatin was induced in Colo320 (Colo320R) and HT-29 (HT-29R) colorectal adenocarcinoma cell lines by exposing the cells to increasing concentrations of the drug. Alterations in morphology, cytotoxicity, DNA cross-links formation and gene expression profiles were assessed in the parental and resistant variants with microscopy, MTT, alkaline comet and pangenomic microarray assays, respectively. Results Morphology analysis revealed epithelial-to-mesenchymal transition in the resistant vs parental cells suggesting alterations of the cells’ adhesion complexes, through which they acquire increased invasiveness and adherence. Cytotoxicity measurements demonstrated resistance to oxaliplatin in both cell lines; Colo320 being more sensitive than HT-29 to this drug (P < 0.001). The treatment with oxaliplatin caused major DNA cross-links in both parental cell lines; in Colo320R small amounts of DNA cross-links were still detectable, while in HT-29R not. We identified 441 differentially expressed genes in Colo320R and 613 in HT-29R as compared to their parental counterparts (at least 1.5 -fold up- or down- regulation, p < 0.05). More disrupted functions and pathways were detected in HT-29R cell line than in Colo320R, involving genes responsible for apoptosis inhibition, cellular proliferation and epithelial-to-mesenchymal transition. Several upstream

  1. Contemporary research of dynamically induced phase transitions

    NASA Astrophysics Data System (ADS)

    Hull, L. M.

    2017-01-01

    Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions.

  2. Contemporary Research of Dynamically Induced Phase Transitions

    NASA Astrophysics Data System (ADS)

    Hull, Lawrence

    2015-06-01

    Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions. Supported by the DoD/DOE Joint Munitions Technology Development Program.

  3. Protective Effects of Berberine on Renal Injury in Streptozotocin (STZ)-Induced Diabetic Mice

    PubMed Central

    Zhang, Xiuli; He, Hui; Liang, Dan; Jiang, Yan; Liang, Wei; Chi, Zhi-Hong; Ma, Jianfei

    2016-01-01

    Diabetic nephropathy (DN) is a serious diabetic complication with renal hypertrophy and expansion of extracellular matrices in renal fibrosis. Epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells may be involved in the main mechanism. Berberine (BBR) has been shown to have antifibrotic effects in liver, kidney and lung. However, the mechanism of cytoprotective effects of BBR in DN is still unclear. In this study, we investigated the curative effects of BBR on tubulointerstitial fibrosis in streptozotocin (STZ)-induced diabetic mice and the high glucose (HG)-induced EMT in NRK 52E cells. We found that BBR treatment attenuated renal fibrosis by activating the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in the diabetic kidneys. Further revealed that BBR abrogated HG-induced EMT and oxidative stress in relation not only with the activation of Nrf2 and two Nrf2-targeted antioxidative genes (NQO-1 and HO-1), but also with the suppressing the activation of TGF-β/Smad signaling pathway. Importantly, knockdown Nrf2 with siRNA not only abolished the BBR-induced expression of HO-1 and NQO-1 but also removed the inhibitory effect of BBR on HG-induced activation of TGF-β/Smad signaling as well as the anti-fibrosis effects. The data from present study suggest that BBR can ameliorate tubulointerstitial fibrosis in DN by activating Nrf2 pathway and inhibiting TGF-β/Smad/EMT signaling activity. PMID:27529235

  4. RCP induces Slug expression and cancer cell invasion by stabilizing β1 integrin.

    PubMed

    Hwang, M H; Cho, K H; Jeong, K J; Park, Y-Y; Kim, J M; Yu, S-L; Park, C G; Mills, G B; Lee, H Y

    2017-02-23

    Rab coupling protein (RCP)-induced tumor cell migration has been implicated in tumor pathophysiology and patient outcomes. In the present study, we demonstrate that RCP stabilizes β1 integrin leading to increased β1 integrin levels and activation of a signaling cascade culminating in Slug induction, epithelial-to-mesenchymal transition and increased invasion. Ectopic expression of RCP induced Slug expression. Silencing β1 integrin efficiently inhibited RCP-induced Slug expression and subsequent cancer cell invasion. Conversely, ectopic expression of β1 integrin was sufficient to induce Slug expression. Pharmacological inhibition of integrin linked kinase (ILK), EGFR and NF-κB, as well as transfection of a dominant-negative mutant of Ras (RasN17), significantly inhibited RCP-induced Slug expression and cancer cell invasion. Strikingly, ectopic expression of RCP was sufficient to enhance metastasis of ovarian cancer cells to the lung. Collectively, we demonstrate a mechanism by which RCP promotes cancer cell aggressiveness through sequential β1 integrin stabilization, activation of an ILK/EGFR/Ras/NF-κB signaling cascade and subsequent Slug expression.

  5. PROP1 triggers epithelial-mesenchymal transition-like process in pituitary stem cells

    PubMed Central

    Pérez Millán, María Inés; Brinkmeier, Michelle L; Mortensen, Amanda H; Camper, Sally A

    2016-01-01

    Mutations in PROP1 are the most common cause of hypopituitarism in humans; therefore, unraveling its mechanism of action is highly relevant from a therapeutic perspective. Our current understanding of the role of PROP1 in the pituitary gland is limited to the repression and activation of the pituitary transcription factor genes Hesx1 and Pou1f1, respectively. To elucidate the comprehensive PROP1-dependent gene regulatory network, we conducted genome-wide analysis of PROP1 DNA binding and effects on gene expression in mutant mice, mouse isolated stem cells and engineered mouse cell lines. We determined that PROP1 is essential for stimulating stem cells to undergo an epithelial to mesenchymal transition-like process necessary for cell migration and differentiation. Genomic profiling reveals that PROP1 binds to genes expressed in epithelial cells like Claudin 23, and to EMT inducer genes like Zeb2, Notch2 and Gli2. Zeb2 activation appears to be a key step in the EMT process. Our findings identify PROP1 as a central transcriptional component of pituitary stem cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.14470.001 PMID:27351100

  6. TIPE2 Inhibits Hypoxia-Induced Wnt/β-Catenin Pathway Activation and EMT in Glioma Cells.

    PubMed

    Liu, Zhi-Jun; Liu, Hong-Lin; Zhou, Hai-Cun; Wang, Gui-Cong

    2016-01-01

    Hypoxia-induced epithelial-to-mesenchymal transition (EMT) could facilitate tumor progression. TIPE2, the tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (also known as TNFAIP8L2), is a member of the TNF-α-induced protein 8 (TNFAIP8, TIPE) family and has been involved in the development and progression of several tumors. However, the effects of TIPE2 on the EMT process in glioma cells and the underlying mechanisms of these effects have not been previously reported. In our study, we assessed the roles of TIPE2 in the EMT process in glioma cells in response to hypoxia. Our results indicated that TIPE2 expression was significantly decreased in human glioma cell lines. TIPE2 overexpression significantly inhibited hypoxia-induced migration and invasion, as well as suppressed the EMT process in glioma cells. Furthermore, TIPE2 overexpression prevented hypoxia-induced expression of β-catenin, cyclin D1, and c-myc in human glioma cells. In summary, these data suggest that TIPE2 overexpression inhibited hypoxia-induced Wnt/β-catenin pathway activation and EMT in glioma cells.

  7. Integrin β4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma

    PubMed Central

    Li, Xiao-Long; Liu, Lin; Li, Dan-Dan; He, Ya-Ping; Guo, Le-Hang; Sun, Li-Ping; Liu, Lin-Na; Xu, Hui-Xiong; Zhang, Xiao-Ping

    2017-01-01

    Integrin β4 (ITGB4) is a transmembrane receptor involved in tumorigenesis and the invasiveness of many cancers. However, its role in hepatocellular carcinoma (HCC), one of the most prevalent human cancers worldwide, remains unclear. Here, we examined the involvement of ITGB4 in HCC and explored the underlying mechanisms. Real-time PCR and immunohistochemical analyses of tissues from 82 patients with HCC and four HCC cell lines showed higher ITGB4 levels in tumor than in adjacent non-tumor tissues and in HCC than in normal hepatic cells. Silencing of ITGB4 repressed cell proliferation, colony forming ability and cell invasiveness, whereas ectopic expression of ITGB4 promoted the proliferation and invasion of HCC cells and induced epithelial to mesenchymal transition (EMT) in parallel with the upregulation of Slug, as shown by transwell assays, WB and immunocytochemistry. Knockdown of Slug reduced cell viability inhibited invasion and reversed the effects of ITBG4 overexpression on promoting EMT, and AKT/Sox2-Nanog may also be involved. In a xenograft tumor model induced by injection of ITGB4-overexpressing cells into nude mice, ITGB4 promoted tumor growth and metastasis to the lungs. Taken together, our results indicate that ITGB4 plays a tumorigenic and pro-metastatic role mediated by Slug and suggest IGTB4 could be a prognostic indicator or a therapeutic target in patients with HCC. PMID:28084395

  8. Noise induced transitions in rugged energy landscapes

    NASA Astrophysics Data System (ADS)

    Pradas, Marc; Duncan, Andrew; Kalliadasis, Serafim; Pavliotis, Greg

    2016-11-01

    External or internal random fluctuations are ubiquitous in many physical and technological systems and can play a key role in their dynamics often inducing a wide variety of complex spatiotemporal phenomena, including noise-induced spatial patterns and noise-induced phase transitions. Many of these phenomena can be modelled by noisy multiscale systems characterized by the presence of a wide range of different time- and lengthscales interacting nontrivially with each other. Here we analyse the effects of additive noise on systems that are described in terms of a rugged energy landscape, modelled as a slowly-varying multiscale potential perturbed by periodic multiscale fluctuations. Some examples of this problem include the dynamics of sessile droplets on heterogeneous substrates, crystallization and the evolution of protein folding. We demonstrate that the interplay between noise and the small scale fluctuations in the potential can give rise to a dramatically different bifurcation structure and dynamical behaviour compared to that of the original, unperturbed model. For instance, we observe several nontrivial and largely unexpected dynamic-state transitions controlled by the noise intensity. We characterize these transitions in terms of critical exponents.

  9. Biliverdin Reductase Mediates Hypoxia-Induced EMT via PI3-Kinase and Akt

    PubMed Central

    Zeng, Rui; Yao, Ying; Han, Min; Zhao, Xiaoqin; Liu, Xiao-Cheng; Wei, Juncheng; Luo, Yun; Zhang, Juan; Zhou, Jianfeng; Wang, Shixuan; Ma, Ding; Xu, Gang

    2008-01-01

    Chronic hypoxia in the renal parenchyma is thought to induce epithelial-to-mesenchymal transition (EMT), leading to fibrogenesis and ultimately end-stage renal failure. Biliverdin reductase, recently identified as a serine/threonine/tyrosine kinase that may activate phosphatidylinositol 3-kinase (PI3K) and Akt, is upregulated in response to reactive oxygen species that may accompany hypoxia. We investigated this potential role of biliverdin reductase in hypoxia-induced renal tubular EMT. Expression of biliverdin reductase was upregulated in a human proximal tubule cell line (HK-2) cultured in hypoxic conditions (1% O2), and this was accompanied by reduced expression of E-cadherin and increased expression of the mesenchymal marker vimentin. Inhibiting PI3K reversed these changes, consistent with EMT. In normoxic conditions, overexpression of biliverdin reductase promoted similar characteristics of EMT, which were also reversed by inhibiting PI3K. Furthermore, using small interfering RNA (siRNA) to knockdown biliverdin reductase, we demonstrated that the enzyme associates with phosphorylated Akt and mediates the hypoxia-induced EMT phenotype. In vivo, expression of biliverdin reductase increased in the tubular epithelia of 5/6-nephrectomized rats, and immunohistochemistry of serial sections demonstrated similar localization of phosphorylated Akt and biliverdin reductase. In conclusion, biliverdin reductase mediates hypoxia-induced EMT through a PI3K/Akt-dependent pathway. PMID:18184861

  10. The Genetics and Biophysics of the Epithelial-Mesenchymal Transition (EMT): Can Theoretical Physics Help Cancer Biology

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    In order to spread from the primary tumor to distant sites, cancer cells must undergo a coordinated change in their phenotypic properties referred to as the ''epithelial-to-mesenchymal'' transition. We have studied the nonlinear genetic circuits that are responsible for this cellular decision-making progress and propose that the transition actually goes through a series of intermediate states. At the same time, we have formulated motility models which allow for the correlation of the state of this network and the cell's biophysical capabilities. Hopefully, these thereby efforts will help us better understand the transition to metastatic disease and possible treatments thereof.

  11. Shear induced phase transitions induced in edible fats

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.

  12. Campylobacter concisus pathotypes induce distinct global responses in intestinal epithelial cells

    PubMed Central

    Deshpande, Nandan P.; Wilkins, Marc R.; Castaño-Rodríguez, Natalia; Bainbridge, Emily; Sodhi, Nidhi; Riordan, Stephen M.; Mitchell, Hazel M.; Kaakoush, Nadeem O.

    2016-01-01

    The epithelial response to the opportunistic pathogen Campylobacter concisus is poorly characterised. Here, we assessed the intestinal epithelial responses to two C. concisus strains with different virulence characteristics in Caco-2 cells using RNAseq, and validated a subset of the response using qPCR arrays. C. concisus strains induced distinct response patterns from intestinal epithelial cells, with the toxigenic strain inducing a significantly more amplified response. A range of cellular functions were significantly regulated in a strain-specific manner, including epithelial-to-mesenchymal transition (NOTCH and Hedgehog), cytoskeletal remodeling, tight junctions, inflammatory responses and autophagy. Pattern recognition receptors were regulated, including TLR3 and IFI16, suggesting that nucleic acid sensing was important for epithelial recognition of C. concisus. C. concisus zonula occludens toxin (ZOT) was expressed and purified, and the epithelial response to the toxin was analysed using RNAseq. ZOT upregulated PAR2 expression, as well as processes related to tight junctions and cytoskeletal remodeling. C. concisus ZOT also induced upregulation of TLR3, pro-inflammatory cytokines IL6, IL8 and chemokine CXCL16, as well as the executioner caspase CASP7. Here, we characterise distinct global epithelial responses to C. concisus strains, and the virulence factor ZOT, and provide novel information on mechanisms by which this bacterium may affect the host. PMID:27677841

  13. Experimental control of excitable embryonic tissues: three stimuli induce rapid epithelial contraction

    PubMed Central

    Joshi, Sagar D.; von Dassow, Michelangelo; Davidson, Lance. A.

    2009-01-01

    Cell generated contractility is a major driver of morphogenesis during processes such as epithelial bending and epithelial-to-mesenchymal transitions. Previous studies of contraction in embryos have relied on developmentally programmed cell shape changes such as those that accompany ventral furrow formation in Drosophila, bottle cell formation in Xenopus, ingression in amniote embryos, and neurulation in vertebrate embryos. We have identified three methods to reproducibly and acutely induce contraction in embryonic epithelial sheets: laser activation, electrical stimulation, and nano-perfusion with chemicals released by wounding. Contractions induced by all three methods occur over a similar time scale (1 to 2 min) and lead to reorganization of the F-actin cytoskeleton. By combining induced contractions with micro-aspiration we can simultaneously measure the stiffness of the tissue and the force and work done by contractions. Laser-activation allows real-time visualization of F-actin remodeling during contraction. Perfusion with cell-lysate suggests these three stimuli activate physiologically relevant pathways that maintain epithelial tension or trigger epithelial morphogenesis. Our methods provide the means to control and study cellular contractility and will allow dissection of molecular mechanisms and biomechanics of cellular contractility. PMID:19686733

  14. A Transcriptional Program for Detecting TGFbeta-induced EMT in Cancer.

    PubMed

    Foroutan, Momeneh; Cursons, Joseph; Hediyeh-Zadeh, Soroor; Thompson, Erik W; Davis, Melissa J

    2017-01-23

    Most cancer deaths are due to metastasis, and epithelial-to-mesenchymal transition (EMT) plays a central role in driving cancer cell metastasis. EMT is induced by different stimuli, leading to different signaling patterns and therapeutic responses. Transforming growth factor beta (TGFbeta) is one of the best-studied drivers of EMT, and many drugs are available to target this signalling pathway. A comprehensive bioinformatics approach was employed to derive a signature for TGFbeta-induced EMT which can be used to score TGFbeta-driven EMT in cells and clinical specimens. Considering this signature in pan-cancer cell and tumour datasets, a number of cell lines (including Basal B breast cancer and cancers of the central nervous system) show evidence for TGFbeta-driven EMT and carry a low mutational burden across the TGFbeta signalling pathway. Further, significant variation is observed in the response of high scoring cell lines to some common cancer drugs. Finally, this signature was applied to pan-cancer data from The Cancer Genome Atlas to identify tumour types with evidence of TGFbeta-induced EMT. Tumour types with high scores showed significantly lower survival rates compared to those with low scores, and also carry a lower mutational burden in the TGFbeta pathway. The current transcriptomic signature demonstrates reproducible results across independent cell line and cancer datasets and identifies samples with strong mesenchymal phenotypes likely to be driven by TGFbeta.

  15. Canine Mammary Cancer Stem Cells are Radio- and Chemo- Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype.

    PubMed

    Pang, Lisa Y; Cervantes-Arias, Alejandro; Else, Rod W; Argyle, David J

    2011-03-30

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology.

  16. Opposing roles of TGF-β and EGF in the regulation of TRAIL-induced apoptosis in human breast epithelial cells.

    PubMed

    Cano-González, Ana; López-Rivas, Abelardo

    2016-08-01

    Transforming growth factor-beta (TGF-β) induces the epithelial to mesenchymal transition (EMT) in breast epithelial cells and plays an important role in mammary morphogenesis and breast cancer. In non-transformed breast epithelial cells TGF-β antagonizes epidermal growth factor (EGF) action and induces growth inhibition. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to participate in lumen formation during morphogenesis of human breast epithelial cells. Our previous work indicated that sensitivity of human breast epithelial cells to TRAIL can be modulated through the activation of the epidermal growth factor receptor-1 (EGFR). Here, we show that TGF-β opposes EGF-mediated sensitization to TRAIL-induced caspase-8 activation and apoptosis in non-transformed breast epithelial cells. Death-inducing signalling complex (DISC) formation by TRAIL was significantly reduced in cells treated with TGF-β. TGF-β treatment activates cytoprotective autophagy and down-regulates TRAIL-R2 expression at the cell surface by promoting the intracellular accumulation of this receptor. Lastly, we demonstrate that EMT is not involved in the inhibitory effect of TGF-β on apoptosis by TRAIL. Together, the data reveal a fine regulation by EGF and TGF-β of sensitivity of human breast epithelial cells to TRAIL which may be relevant during morphogenesis.

  17. Promotion of Epithelial to Mesenchymal Transformation by Hyaluronan

    DTIC Science & Technology

    2007-07-01

    phenomena occur in vivo and further support the notion that cancer is a tissue-based disease (1-3). The mammary microenvironment, also termed...RMF. Ultrastructural analysis using TEM revealed the existence of several junctional complexes such as tight junctions and desmosomes in...Discussion Here we report the characterization of a novel human breast surrogate model for the study of normal and diseased breast development in vitro

  18. Does sex induce a phase transition?

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.; Moss de Oliveira, S.; Stauffer, D.; Cebrat, S.; Pękalski, A.

    2008-05-01

    We discovered a dynamic phase transition induced by sexual reproduction. The dynamics is a pure Darwinian rule applied to diploid bit-strings with both fundamental ingredients to drive Darwin's evolution: (1) random mutations and crossings which act in the sense of increasing the entropy (or diversity); and (2) selection which acts in the opposite sense by limiting the entropy explosion. Selection wins this competition if mutations performed at birth are few enough, and thus the wild genotype dominates the steady-state population. By slowly increasing the average number m of mutations, however, the population suddenly undergoes a mutational degradation precisely at a transition point mc. Above this point, the “bad” alleles (represented by 1-bits) spread over the genetic pool of the population, overcoming the selection pressure. Individuals become selectively alike, and evolution stops. Only below this point, m < mc, evolutionary life is possible. The finite-size-scaling behaviour of this transition is exhibited for large enough “chromosome” lengths L, through lengthy computer simulations. One important and surprising observation is the L-independence of the transition curves, for large L. They are also independent on the population size. Another is that mc is near unity, i.e. life cannot be stable with much more than one mutation per diploid genome, independent of the chromosome length, in agreement with reality. One possible consequence is that an eventual evolutionary jump towards larger L enabling the storage of more genetic information would demand an improved DNA copying machinery in order to keep the same total number of mutations per offspring.

  19. Downregulation of tumor suppressing STF cDNA 3 promotes epithelial-mesenchymal transition and tumor metastasis of osteosarcoma by the Wnt/GSK-3β/β-catenin/Snail signaling pathway.

    PubMed

    Lv, Yang-fan; Dai, Huanzi; Yan, Guang-ning; Meng, Gang; Zhang, Xi; Guo, Qiao-nan

    2016-04-10

    Epithelial to mesenchymal transition (EMT) has received considerable attention as a conceptual paradigm for explaining the invasive and metastatic behavior of cells during cancer progression. Our previous study showed that loss of expression of TSSC3 is positively associated with osteosarcoma malignancy and progression. However, whether TSSC3 mediates EMT in osteosarcoma is poorly understood. In the present study, we determined that TSSC3 downregulation induced cell migration and invasion ability and promoted mesenchymal transition of osteosarcoma cells by upregulating mesenchymal markers and inhibiting the epithelial markers. Furthermore, TSSC3 downregulation elicited a signaling cascade that included increased levels of Wnt3a and LRP5, inactivation of GSK-3β, accumulation of nuclear β-catenin and Snail, the augmented binding of β-catenin to TCF-4, and accordingly increased the expression of Wnt target genes (CD44, MMP7). The gene knockdown of these signaling proteins could inhibit TSSC3 downregulation-promoted EMT, migration, and invasion in osteosarcoma. Finally, TSSC3 overexpression obviously inhibited cell migration, invasion, and repressed mesenchymal phenotypes, reducing lung metastasis through GSK-3β activation. Collectively, TSSC3 downregulation promotes the EMT of osteosarcoma cells by regulating EMT markers via a signal transduction pathway that involves Snail, Wnt-β-catenin/TCF, and GSK-3β.

  20. Alisertib Induces Cell Cycle Arrest, Apoptosis, Autophagy and Suppresses EMT in HT29 and Caco-2 Cells

    PubMed Central

    Ren, Bao-Jun; Zhou, Zhi-Wei; Zhu, Da-Jian; Ju, Yong-Le; Wu, Jin-Hao; Ouyang, Man-Zhao; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Colorectal cancer (CRC) is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS) is a selective Aurora kinase A (AURKA) inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and anticancer effect of ALS and explore the underlying mechanisms in HT29 and Caco-2 cells. ALS markedly arrested cells in G2/M phase in both cell lines, accompanied by remarkable alterations in the expression level of key cell cycle regulators. ALS induced apoptosis in HT29 and Caco-2 cells through mitochondrial and death receptor pathways. ALS also induced autophagy in HT29 and Caco-2 cells, with the suppression of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), but activation of 5′ AMP-activated protein kinase (AMPK) signaling pathways. There was a differential modulating effect of ALS on p38 MAPK signaling pathway in both cell lines. Moreover, induction or inhibition of autophagy modulated basal and ALS-induced apoptosis in both cell lines. ALS potently suppressed epithelial to mesenchymal transition (EMT) in HT29 and Caco-2 cells. Collectively, it suggests that induction of cell cycle arrest, promotion of apoptosis and autophagy, and suppression of EMT involving mitochondrial, death receptor, PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways contribute to the cancer cell killing effect of ALS on CRC cells. PMID:26729093

  1. Suppression of radiation-induced migration of non-small cell lung cancer through inhibition of Nrf2-Notch Axis.

    PubMed

    Zhao, Qiuyue; Mao, Aihong; Guo, Ruoshui; Zhang, Liping; Yan, Jiawei; Sun, Chao; Tang, Jinzhou; Ye, Yancheng; Zhang, Yanshan; Zhang, Hong

    2017-03-28

    Nuclear factor E2 related factor 2 (Nrf2) is a transcription factor that is associated with tumor growth and resistance to radiation. The canonical Notch signaling pathway is also crucial for maintaining non-small cell lung cancer (NSCLC). Aberrant Nrf2 and Notch signaling has repeatedly been showed to facilitate metastasis of NSCLC. Here, we show that radiation induce Nrf2 and Notch1 expression in NSCLC. Knockdown of Nrf2 enhanced radiosensitivity of NSCLC and reduced epithelial-to-mesenchymal transition. Importantly, we found that knockdown of Nrf2 dramatically decreased radiation-induced NSCLC invasion and significantly increased E-cadherin, but reduced N-cadherin and matrix metalloproteinase (MMP)-2/9 expression. We found that Notch1 knockdown also upregulated E-cadherin and suppressed N-cadherin expression. Nrf2 contributes to NSCLC cell metastatic properties and this inhibition correlated with reduced Notch1 expression. These results establish that Nrf2 and Notch1 downregulation synergistically inhibit radiation-induced migratory and invasive properties of NSCLC cells.

  2. Continuous exposure to non-lethal doses of sodium iodate induces retinal pigment epithelial cell dysfunction

    PubMed Central

    Zhang, Xiao-Yu; Ng, Tsz Kin; Brelén, Mårten Erik; Wu, Di; Wang, Jian Xiong; Chan, Kwok Ping; Yung, Jasmine Sum Yee; Cao, Di; Wang, Yumeng; Zhang, Shaodan; Chan, Sun On; Pang, Chi Pui

    2016-01-01

    Age-related macular degeneration (AMD), characterized by progressive degeneration of retinal pigment epithelium (RPE), is the major cause of irreversible blindness and visual impairment in elderly population. We previously established a RPE degeneration model using an acute high dose sodium iodate to induce oxidative stress. Here we report findings on a prolonged treatment of low doses of sodium iodate on human RPE cells (ARPE-19). RPE cells were treated continuously with low doses (2–10 mM) of sodium iodate for 5 days. Low doses (2–5 mM) of sodium iodate did not reduce RPE cell viability, which is contrasting to cell apoptosis in 10 mM treatment. These low doses are sufficient to retard RPE cell migration and reduced expression of cell junction protein ZO-1. Phagocytotic activity of RPE cells was attenuated by sodium iodate dose-dependently. Sodium iodate also increased expression of FGF-2, but suppressed expression of IL-8, PDGF, TIMP-2 and VEGF. Furthermore, HTRA1 and epithelial-to-mesenchymal transition marker proteins were downregulated, whereas PERK and LC3B-II proteins were upregulated after sodium iodate treatment. These results suggested that prolonged exposure to non-lethal doses of oxidative stress induces RPE cell dysfunctions that resemble conditions in AMD. This model can be used for future drug/treatment investigation on AMD. PMID:27849035

  3. Cyclooxygenase-2 Mediates Dialysate-Induced Alterations of the Peritoneal Membrane

    PubMed Central

    Aroeira, Luiz S.; Lara-Pezzi, Enrique; Loureiro, Jesús; Aguilera, Abelardo; Ramírez-Huesca, Marta; González-Mateo, Guadalupe; Pérez-Lozano, M. Luisa; Albar-Vizcaíno, Patricia; Bajo, M-Auxiliadora; del Peso, Gloria; Sánchez-Tomero, José Antonio; Jiménez-Heffernan, José Antonio; Selgas, Rafael; López-Cabrera, Manuel

    2009-01-01

    During peritoneal dialysis (PD), exposure of the peritoneal membrane to nonphysiologic solutions causes inflammation, ultimately leading to altered structure and function. Myofibroblasts, one of the cell types that contribute to dysfunction of the peritoneal membrane, can originate from mesothelial cells (MCs) by epithelial-to-mesenchymal transition (EMT), a process that has been associated with an increased rate of peritoneal transport. Because cyclooxygenase-2 (COX-2) is induced by inflammation, we studied the role of COX-2 in the deterioration of the peritoneal membrane. We observed that nonepithelioid MCs found in peritoneal effluent expressed higher levels of COX-2 than epithelioid MCs. The mass transfer coefficient for creatinine correlated with MC phenotype and with COX-2 levels. Although COX-2 was upregulated during EMT of MCs in vitro, COX-2 inhibition did not prevent EMT. In a mouse model of PD, however, COX-2 inhibition with Celecoxib resulted in reduced fibrosis and in partial recovery of ultrafiltration, outcomes that were associated with a reduction of inflammatory cells. Furthermore, PD fluid with a low content of glucose degradation products did not induce EMT or COX-2; the peritoneal membranes of mice treated with this fluid showed less worsening than mice exposed to standard fluid. In conclusion, upregulation of COX-2 during EMT may mediate peritoneal inflammation, suggesting COX-2 inhibition as a potential strategy to ameliorate peritoneal deterioration in PD patients. PMID:19158357

  4. The role of alveolar epithelium in radiation-induced lung injury.

    PubMed

    Almeida, Celine; Nagarajan, Devipriya; Tian, Jian; Leal, Sofia Walder; Wheeler, Kenneth; Munley, Michael; Blackstock, William; Zhao, Weiling

    2013-01-01

    Pneumonitis and fibrosis are major lung complications of irradiating thoracic malignancies. In the current study, we determined the effect of thoracic irradiation on the lungs of FVB/N mice. Survival data showed a dose-dependent increase in morbidity following thoracic irradiation with single (11-13 Gy) and fractionated doses (24-36 Gy) of (137)Cs γ-rays. Histological examination showed a thickening of vessel walls, accumulation of inflammatory cells, collagen deposition, and regional fibrosis in the lungs 14 weeks after a single 12 Gy dose and a fractionated 30 Gy dose; this damage was also seen 5 months after a fractionated 24 Gy dose. After both single and fractionated doses, i] aquaporin-5 was markedly decreased, ii] E-cadherin was reduced and iii] prosurfactant Protein C (pro-SP-c), the number of pro-SP-c(+) cells and vimentin expression were increased in the lungs. Immunofluorescence analysis revealed co-localization of pro-SP-c and α-smooth muscle actin in the alveoli after a single dose of 12 Gy. These data suggest that, i] the FVB/N mouse strain is sensitive to thoracic radiation ii] aquaporin-5, E-cadherin, and pro-SP-c may serve as sensitive indicators of radiation-induced lung injury; and iii] the epithelial-to-mesenchymal transition may play an important role in the development of radiation-induced lung fibrosis.

  5. Involvement of cysteine-rich protein 61 in the epidermal growth factor-induced migration of human anaplastic thyroid cancer cells.

    PubMed

    Chin, Li-Han; Hsu, Sung-Po; Zhong, Wen-Bin; Liang, Yu-Chih

    2016-05-01

    Anaplastic thyroid cancer (ATC) is among the most aggressive types of malignant cancer. Epidermal growth factor (EGF) plays a crucial role in the pathogenesis of ATC, and patients with thyroid carcinoma typically exhibit increased cysteine-rich protein 61 (Cyr61). In this study, we found that EGF treatment induced cell migration, stress fiber formation, Cyr61 mRNA and protein expressions, and Cyr61 protein secretion in ATC cells. The recombinant Cyr61 protein significantly induced cell migration; however, inhibition of Cyr61 activity by a Cyr61-specific antibody abrogated EGF-induced cell migration. EGF treatment also affected epithelial-to-mesenchymal transition (EMT)-related marker protein expression, as evidenced by an increase in vimentin and a decrease in E-cadherin expression. Inhibition of Cyr61 expression by Cyr61 siRNA decreased cell migration and reversed the EMT-related marker protein expression. EGF treatment increased the phosphorylation of the extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB), and finally activated Cyr61 promoter plasmid activity. Our results suggest that Cyr61 is induced by EGF through the ERK/CREB signal pathway and that it plays a crucial role in the migration and invasion of ATC cells; moreover, Cyr61 might be a therapeutic target for metastatic ATC.

  6. In vitro and ex vivo vanadium antitumor activity in (TGF-β)-induced EMT. Synergistic activity with carboplatin and correlation with tumor metastasis in cancer patients.

    PubMed

    Petanidis, Savvas; Kioseoglou, Efrosini; Domvri, Kalliopi; Zarogoulidis, Paul; Carthy, Jon M; Anestakis, Doxakis; Moustakas, Aristidis; Salifoglou, Athanasios

    2016-05-01

    Epithelial to mesenchymal transition (EMT) plays a key role in tumor progression and metastasis as a crucial event for cancer cells to trigger the metastatic niche. Transforming growth factor-β (TGF-β) has been shown to play an important role as an EMT inducer in various stages of carcinogenesis. Previous reports had shown that antitumor vanadium inhibits the metastatic potential of tumor cells by reducing MMP-2 expression and inducing ROS-dependent apoptosis. However, the role of vanadium in (TGF-β)-induced EMT remains unclear. In the present study, we report for the first time on the inhibitory effects of vanadium on (TGF-β)-mediated EMT followed by down-regulation of ex vivo cancer stem cell markers. The results demonstrate blockage of (TGF-β)-mediated EMT by vanadium and reduction in the mitochondrial potential of tumor cells linked to EMT and cancer metabolism. Furthermore, combination of vanadium and carboplatin (a) resulted in synergistic antitumor activity in ex vivo cell cultures, and (b) prompted G0/G1 cell cycle arrest and sensitization of tumor cells to carboplatin-induced apoptosis. Overall, the findings highlight the multifaceted antitumor action of vanadium and its synergistic antitumor efficacy with current chemotherapy drugs, knowledge that could be valuable for targeting cancer cell metabolism and cancer stem cell-mediated metastasis in aggressive chemoresistant tumors.

  7. Proton pump inhibitor pantoprazole abrogates adriamycin-resistant gastric cancer cell invasiveness via suppression of Akt/GSK-β/β-catenin signaling and epithelial-mesenchymal transition.

    PubMed

    Zhang, Bin; Yang, Yan; Shi, Xiaoting; Liao, Wanyu; Chen, Min; Cheng, Alfred Sze-Lok; Yan, Hongli; Fang, Cheng; Zhang, Shu; Xu, Guifang; Shen, Shanshan; Huang, Shuling; Chen, Guangxia; Lv, Ying; Ling, Tingsheng; Zhang, Xiaoqi; Wang, Lei; Zhuge, Yuzheng; Zou, Xiaoping

    2015-01-28

    The effect of proton pump inhibitor (PPI) on cancer risk has received much attention recently. In this study, we investigated the mechanism underlying multidrug resistance and the effect of a PPI pantoprazole using an adriamycin-resistant gastric cancer cell model (SGC7901/ADR). Compared with the parental cell line, SGC7901/ADR cells showed reduced proliferation rate, but higher resistance to adriamycin under both anchorage-dependent and -independent conditions. Notably, SGC7901/ADR cells underwent epithelial to mesenchymal transition (EMT) and showed increased migrating and invading capabilities. At molecular level, SGC7901/ADR cells showed strong activation of Wnt/β-catenin signaling pathway compared with parental sensitive cells. Interestingly, we found that a PPI pantoprazole can effectively reverse the aggressiveness and EMT marker expression of SGC7901/ADR cells. Furthermore, pantoprazole treatment resulted in a profound reduction of both total and phosphorylated forms of Akt and GSK-3β, which in turn suppressed the adriamycin-induced Wnt/β-catenin signaling in SGC7901/ADR cells. Taken together, we demonstrate that the aggressive phenotype of adriamycin-resistant SGC7901/ADR cells is mediated by induction of EMT and activation of the canonical Wnt/β-catenin signaling pathway. And for the first time, we show that it is possible to suppress the invasiveness of SGC7901/ADR cells by pantoprazole which targets the EMT and Akt/GSK-3β/β-catenin signaling.

  8. High FMNL3 expression promotes nasopharyngeal carcinoma cell metastasis: role in TGF-β1-induced epithelia-to-mesenchymal transition

    PubMed Central

    Wu, Yanxia; Shen, Zhihua; Wang, Keke; Ha, Yanping; Lei, Hong; Jia, Yanan; Ding, Ranran; Wu, Dongmei; Gan, Siyuan; Li, Rujia; Luo, Botao; Jiang, Hanguo; Jie, Wei

    2017-01-01

    Formin-like 3 (FMNL3) plays a crucial role in cytoskeletal mediation and is potentially a biomarker for cell migration; however, its role in cancer metastasis remains unknown. In this study, we found elevated FMNL3 protein expression in clinical nasopharyngeal carcinoma (NPC) tissues. FMNL3 expression positively correlated to the clinical stage, T (tumour), N (lymph node metastasis) and M (distant metastasis) classification of NPC patients. Moreover, FMNL3 positively correlated to Vimentin expression and negatively correlated to E-cadherin expression in clinical NPC samples. In vitro experiments showed that FMNL3 expression was inversely related to NPC cell differentiation status. Overexpression of FMNL3 led to epithelial-to-mesenchymal transition (EMT) in well differentiated CNE1 cells. TGF-β1-treated poorly differentiated CNE2 cells showed changes in EMT accompanied by enhanced FMNL3 expression and cell migration. On the contrary, knockdown of FMNL3 partially attenuated the TGF-β1-promoted CNE2 cell migration, together with associated changes in EMT markers. Finally, knockdown of FMNL3 also weakened EMT in tumours in xenographs. Our study indicates for the first time that TGF-β1/FMNL3 signalling may be a novel mechanism mediating EMT in NPC, which is closely associated with NPC metastasis. PMID:28198387

  9. High expression of the long non-coding RNA HEIRCC promotes Renal Cell Carcinoma metastasis by inducing epithelial-mesenchymal transition

    PubMed Central

    Xiong, Jing; Liu, Ying; Luo, Shengjun; Jiang, Li; Zeng, Yang; Chen, Zhixiong; Shi, Xiaobo; Lv, Bufan; Tang, Wei

    2017-01-01

    Increasing evidence indicates that long non-coding RNAs (lncRNAs) have been associated with cancer development. However, the contributions of lncRNAs to renal cell carcinoma (RCC) remain poorly characterized. Here, we identified a novel lncRNA, termed HEIRCC, which was up-regulated in RCC tissues through lncRNA microarray analysis and subsequent validation in 60 RCC clinical specimens and cell lines. The high expression of HEIRCC is associated closely with the clinical pathology features such as larger tumor size, poor differentiation, lymphatic metastasis. In vitro assays revealed that HEIRCC knockdown could inhibit cell proliferation, trigger late apoptosis, suppress cell migration and invasion. We further demonstrated that depletion of HEIRCC reduce the epithelial to mesenchymal transition (EMT) program by regulating expression levels of EMT-associated markers in RCC cells. Thus, HEIRCC might be act as an important regulator of EMT in RCC progression and might be a novel therapeutic target for the advanced RCC therapy. PMID:28030807

  10. BIX02189 inhibits TGF-β1-induced lung cancer cell metastasis by directly targeting TGF-β type I receptor.

    PubMed

    Park, Seong Ji; Choi, Yu Sun; Lee, Seungkoo; Lee, Young Jae; Hong, Suntaek; Han, Sanghwa; Kim, Byung-Chul

    2016-10-28

    Transforming growth factor-β1 (TGF-β1) promotes tumor metastasis by inducing an epithelial-to-mesenchymal transition (EMT) in cancer cells. In this study, we investigated the effects of BIX02189 and XMD8-92, pharmacologic inhibitors of the MEK5 [mitogen-activated protein kinase/extracellular-signal-regulated kinase (ERK)5] signaling pathway, on the EMT and migration of cancer cells induced by TGF-β1. In human A549 lung cancer cells, TGF-β1-induced EMT, cell motility, and expression of matrix metalloproteinase-2 were completely inhibited by BIX02189, but not by XMD8-92 or small interference RNAs specific to MEK5 and ERK5. Interestingly, BIX02189 strongly blocked the activation of TGF-β1 signaling components, and this inhibitory effect was not reproduced by MEK5 inhibition. Molecular docking simulation and kinase assays revealed that BIX02189 binds directly to the ATP-binding site of the TGF-β receptor type I (TβRI) and suppresses its kinase activity. Finally, the anti-metastatic effect of BIX02189 was validated in a TβRI-derived A549 xenograft mouse model. Collectively, these findings newly characterize BIX02189 as a potent inhibitor of TβRI that can block the tumor metastatic activity of TGF-β1.

  11. The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival

    PubMed Central

    Hardonnière, Kévin; Saunier, Elise; Lemarié, Anthony; Fernier, Morgane; Gallais, Isabelle; Héliès-Toussaint, Cécile; Mograbi, Baharia; Antonio, Samantha; Bénit, Paule; Rustin, Pierre; Janin, Maxime; Habarou, Florence; Ottolenghi, Chris; Lavault, Marie-Thérèse; Benelli, Chantal; Sergent, Odile; Huc, Laurence; Bortoli, Sylvie; Lagadic-Gossmann, Dominique

    2016-01-01

    Cancer cells display alterations in many cellular processes. One core hallmark of cancer is the Warburg effect which is a glycolytic reprogramming that allows cells to survive and proliferate. Although the contributions of environmental contaminants to cancer development are widely accepted, the underlying mechanisms have to be clarified. Benzo[a]pyrene (B[a]P), the prototype of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, and it is a human carcinogen according to the International Agency for Research on Cancer. In addition to triggering apoptotic signals, B[a]P may induce survival signals, both of which are likely to be involved in cancer promotion. We previously suggested that B[a]P-induced mitochondrial dysfunctions, especially membrane hyperpolarization, might trigger cell survival signaling in rat hepatic epithelial F258 cells. Here, we further characterized these dysfunctions by focusing on energy metabolism. We found that B[a]P promoted a metabolic reprogramming. Cell respiration decreased and lactate production increased. These changes were associated with alterations in the tricarboxylic acid cycle which likely involve a dysfunction of the mitochondrial complex II. The glycolytic shift relied on activation of the Na+/H+ exchanger 1 (NHE1) and appeared to be a key feature in B[a]P-induced cell survival related to changes in cell phenotype (epithelial-to-mesenchymal transition and cell migration). PMID:27488617

  12. The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival.

    PubMed

    Hardonnière, Kévin; Saunier, Elise; Lemarié, Anthony; Fernier, Morgane; Gallais, Isabelle; Héliès-Toussaint, Cécile; Mograbi, Baharia; Antonio, Samantha; Bénit, Paule; Rustin, Pierre; Janin, Maxime; Habarou, Florence; Ottolenghi, Chris; Lavault, Marie-Thérèse; Benelli, Chantal; Sergent, Odile; Huc, Laurence; Bortoli, Sylvie; Lagadic-Gossmann, Dominique

    2016-08-04

    Cancer cells display alterations in many cellular processes. One core hallmark of cancer is the Warburg effect which is a glycolytic reprogramming that allows cells to survive and proliferate. Although the contributions of environmental contaminants to cancer development are widely accepted, the underlying mechanisms have to be clarified. Benzo[a]pyrene (B[a]P), the prototype of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, and it is a human carcinogen according to the International Agency for Research on Cancer. In addition to triggering apoptotic signals, B[a]P may induce survival signals, both of which are likely to be involved in cancer promotion. We previously suggested that B[a]P-induced mitochondrial dysfunctions, especially membrane hyperpolarization, might trigger cell survival signaling in rat hepatic epithelial F258 cells. Here, we further characterized these dysfunctions by focusing on energy metabolism. We found that B[a]P promoted a metabolic reprogramming. Cell respiration decreased and lactate production increased. These changes were associated with alterations in the tricarboxylic acid cycle which likely involve a dysfunction of the mitochondrial complex II. The glycolytic shift relied on activation of the Na(+)/H(+) exchanger 1 (NHE1) and appeared to be a key feature in B[a]P-induced cell survival related to changes in cell phenotype (epithelial-to-mesenchymal transition and cell migration).

  13. Epigallocatechin-3-gallate attenuates unilateral ureteral obstruction-induced renal interstitial fibrosis in mice.

    PubMed

    Wang, Yanqiu; Wang, Bowen; Du, Feng; Su, Xuesong; Sun, Guangping; Zhou, Guangyu; Bian, Xiaohui; Liu, Na

    2015-04-01

    The severity of tubulointerstitial fibrosis is regarded as an important determinant of renal prognosis. Therapeutic strategies targeting tubulointerstitial fibrosis have been considered to have potential in the treatment of chronic kidney disease. This study aims to evaluate the protective effects of (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, against renal interstitial fibrosis in mice. EGCG was administrated intraperitoneally for 14 days in a mouse model of unilateral ureteral obstruction (UUO). The results of our histological examination showed that EGCG alleviated glomerular and tubular injury and attenuated renal interstitial fibrosis in UUO mice. Furthermore, the inflammatory responses induced by UUO were inhibited, as represented by decreased macrophage infiltration and inflammatory cytokine production. Additionally, the expression of type I and III collagen in the kidney were reduced by EGCG, which indicated an inhibition of extracellular matrix accumulation. EGCG also caused an up-regulation in α-smooth muscle actin expression and a down-regulation in E-cadherin expression, indicating the inhibition of epithelial-to-mesenchymal transition. These changes were found to be in parallel with the decreased level of TGF-β1 and phosphorylated Smad. In conclusion, the present study demonstrates that EGCG could attenuate renal interstitial fibrosis in UUO mice, and this renoprotective effect might be associated with its effects of inflammatory responses alleviation and TGF-β/Smad signaling pathway inhibition.

  14. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program.

    PubMed

    Pataskar, Abhijeet; Jung, Johannes; Smialowski, Pawel; Noack, Florian; Calegari, Federico; Straub, Tobias; Tiwari, Vijay K

    2016-01-04

    Cell fate specification relies on the action of critical transcription factors that become available at distinct stages of embryonic development. One such factor is NeuroD1, which is essential for eliciting the neuronal development program and possesses the ability to reprogram other cell types into neurons. Given this capacity, it is important to understand its targets and the mechanism underlying neuronal specification. Here, we show that NeuroD1 directly binds regulatory elements of neuronal genes that are developmentally silenced by epigenetic mechanisms. This targeting is sufficient to initiate events that confer transcriptional competence, including reprogramming of transcription factor landscape, conversion of heterochromatin to euchromatin, and increased chromatin accessibility, indicating potential pioneer factor ability of NeuroD1. The transcriptional induction of neuronal fate genes is maintained via epigenetic memory despite a transient NeuroD1 induction during neurogenesis. NeuroD1 also induces genes involved in the epithelial-to-mesenchymal transition, thereby promoting neuronal migration. Our study not only reveals the NeuroD1-dependent gene regulatory program driving neurogenesis but also increases our understanding of how cell fate specification during development involves a concerted action of transcription factors and epigenetic mechanisms.

  15. TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin

    PubMed Central

    Yang, Nuo; Morrison, Carl D.; Liu, Peijun; Miecznikowski, Jeff; Bshara, Wiam; Han, Suxia; Zhu, Qing; Omilian, Angela R.; Li, Xu; Zhang, Jianmin

    2012-01-01

    The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. We previously showed that the pivotal effector of this pathway, YAP, is amplified in tumors and promotes epithelial-to-mesenchymal transition (EMT) and malignant transformation. Here, we report that overexpression of TAZ, a paralog of YAP, in human mammary epithelial cells promotes EMT and, in particular, some invasive structures in 3D cultures. TAZ also leads to cell migration and anchorage-independent growth in soft agar. Furthermore, we identified amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand, as a target of TAZ. We show that AREG functions in a non-cell-autonomous manner to mediate EGF-independent growth and malignant behavior of mammary epithelial cells. In addition, ablation of TEAD binding completely abolishes the TAZ-induced phenotype. Last, analysis of breast cancer patient samples reveals a positive correlation between TAZ and AREG in vivo. In summary, TAZ-dependent secretion of AREG indicates that activation of the EGFR signaling is an important non-cell-autonomous effector of the Hippo pathway, and TAZ as well as its targets may play significant roles in breast tumorigenesis and metastasis. PMID:22825057

  16. IL-1β induces up-regulation of BIRC3, a gene involved in chemoresistance to doxorubicin in breast cancer cells.

    PubMed

    Mendoza-Rodríguez, Mónica; Arévalo Romero, Haruki; Fuentes-Pananá, Ezequiel M; Ayala-Sumuano, Jorge-Tonatiuh; Meza, Isaura

    2017-04-01

    Epithelial to mesenchymal transition (EMT) of tumor cells facilitates their progress to metastasis. In the tumor microenvironment the inflammatory cytokine 1β (IL-1β) has been associated with tumor development and invasiveness. IL-1β-induced EMT triggers the expression of markers associated with malignancy. We have recently reported that an IL-1β-highly responsive clone (6D cells) from non-invasive MCF-7 breast cancer cells activates PI3K/Rac and IL-1RI/β-catenin pathways that up-regulate the transcription of genes involved in an EMT-like process. However, a correlation between the EMT program induced by a pro-inflammatory environment, and the acquisition of chemoresistance has not been yet determined in these cells. In this work, we report the expression of cell survival genes after IL-1β stimulation of 6D cells. The expression of CDKN1A, TP63, SFN and, particularly, BIRC3 was found to be up-regulated in a RNA-seq analysis and validated by qPCR. Cells stimulated with IL-1β when challenged with doxorubicin showed resistance to the drug, whereas silencing of BIRC3 decreased viability of the cells treated with the drug. Our present results show that IL-1β confers doxorubicin resistance to breast cancer cells, underlining the importance of an inflammatory environment in cancer malignancy.

  17. Src is activated by the nuclear receptor peroxisome proliferator-activated receptor β/δ in ultraviolet radiation-induced skin cancer.

    PubMed

    Montagner, Alexandra; Delgado, Maria B; Tallichet-Blanc, Corinne; Chan, Jeremy S K; Sng, Ming K; Mottaz, Hélén; Degueurce, Gwendoline; Lippi, Yannick; Moret, Catherine; Baruchet, Michael; Antsiferova, Maria; Werner, Sabine; Hohl, Daniel; Saati, Talal Al; Farmer, Pierre J; Tan, Nguan S; Michalik, Liliane; Wahli, Walter

    2014-01-01

    Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.

  18. HOXB13 and ALX4 induce SLUG expression for the promotion of EMT and cell invasion in ovarian cancer cells.

    PubMed

    Yuan, Hong; Kajiyama, Hiroaki; Ito, Satoko; Chen, Dan; Shibata, Kiyosumi; Hamaguchi, Michinari; Kikkawa, Fumitaka; Senga, Takeshi

    2015-05-30

    Homeoproteins, a family of transcription factors that have conserved homeobox domains, play critical roles in embryonic development in a wide range of species. Accumulating studies have revealed that homeoproteins are aberrantly expressed in multiple tumors and function as either tumor promoters or suppressors. In this study, we show that two homeoproteins, HOXB13 and ALX4, are associated with epithelial to mesenchymal transition (EMT) and invasion of ovarian cancer cells. HOXB13 and ALX4 formed a complex in cells, and exogenous expression of either protein promoted EMT and invasion. Conversely, depletion of either protein suppressed invasion and induced reversion of EMT. SLUG is a C2H2-type zinc-finger transcription factor that promotes EMT in various cell lines. Knockdown of HOXB13 or ALX4 suppressed SLUG expression, and exogenous expression of either protein promoted SLUG expression. Finally, we showed that SLUG expression was essential for the HOXB13- or ALX4-mediated EMT and invasion. Our results show that HOXB13/SLUG and ALX4/SLUG axes are novel pathways that promote EMT and invasion of ovarian cancer cells.

  19. Irigenin, a novel lead from Western Himalayan chemiome inhibits Fibronectin-Extra Domain A induced metastasis in Lung cancer cells

    PubMed Central

    Amin, Asif; Chikan, Naveed Anjum; Mokhdomi, Taseem A.; Bukhari, Shoiab; Koul, Aabid M.; Shah, Basit Amin; Gharemirshamlu, Fatemeh Rahimi; Wafai, Asrar H.; Qadri, Ayub; Qadri, Raies A.

    2016-01-01

    Several lines of evidence indicate that Fibronectin Extra Domain A (EDA) promotes metastatic capacity of tumor cells by engaging cell surface α9β1 integrins. This interaction mediated by the C-C loop of EDA activates pro-oncogenic signaling pathways leading to epithelial to mesenchymal transition (EMT) of tumor cells, thus signifying its importance in control of metastatic progression. In this context the present study was designed to explore the active compounds from selected ethno-medicinal plants of western Himalayan region for targeting EDA of Fibronectin in lung carcinoma cells. Structure based informatics for drug designing and screening was employed to generate a lead compound(s) feed that were conformationally and energetically viable. Out of 120 compounds selected, Irigenin showed best binding-affinity with C-C loop of EDA. Irigenin specifically targeted α9β1 and α4β1 integrin binding sites on EDA comprising LEU46, PHE47, PRO48, GLU58, LEU59 and GLN60 in its C-C loop as evaluated by energy decomposition per residue of Irigenin–EDA complex. In-vitro cell motility assays complemented with EDA knock-in and knockdown assays distinctively demonstrated that Irigenin prevents metastatic capacity of lung cancer cells by selectively blocking EDA. The results presented thus project Irigenin as a lead compound to overcome Fibronectin EDA induced metastatic progression in lung carcinoma cells. PMID:27849000

  20. Tumor-Induced Myeloid-Derived Suppressor Cells.

    PubMed

    De Sanctis, Francesco; Bronte, Vincenzo; Ugel, Stefano

    2016-06-01

    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous, immune-suppressive leukocyte population that develops systemically and infiltrates tumors. MDSCs can restrain the immune response through different mechanisms including essential metabolite consumption, reactive oxygen and nitrogen species production, as well as display of inhibitory surface molecules that alter T-cell trafficking and viability. Moreover, MDSCs play a role in tumor progression, acting directly on tumor cells and promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. Many biological and pharmaceutical drugs affect MDSC expansion and functions in preclinical tumor models and patients, often reversing host immune dysfunctions and allowing a more effective tumor immunotherapy.

  1. Upregulation of TrkB Promotes Epithelial-Mesenchymal Transition and Anoikis Resistance in Endometrial Carcinoma

    PubMed Central

    Bao, Wei; Qiu, Haifeng; Yang, Tingting; Luo, Xin; Zhang, Huijuan; Wan, Xiaoping

    2013-01-01

    Mechanisms governing the metastasis of endometrial carcinoma (EC) are poorly defined. Recent data support a role for the cell surface receptor tyrosine kinase TrkB in the progression of several human tumors. Here we present evidence for a direct role of TrkB in human EC. Immunohistochemical analysis revealed that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF), are more highly expressed in EC than in normal endometrium. High TrkB levels correlated with lymph node metastasis (p<0.05) and lymphovascular space involvement (p<0.05) in EC. Depletion of TrkB by stable shRNA-mediated knockdown decreased the migratory and invasive capacity of cancer cell lines in vitro and resulted in anoikis in suspended cells. Conversely, exogenous expression of TrkB increased cell migration and invasion and promoted anoikis resistance in suspension culture. Furthermore, over-expression of TrkB or stimulation by BDNF resulted in altered the expression of molecular mediators of the epithelial-to-mesenchymal transition (EMT). RNA interference (RNAi)-mediated depletion of the downstream regulator, Twist, blocked TrkB-induced EMT-like transformation. The use of in vivo models revealed decreased peritoneal dissemination in TrkB-depleted EC cells. Additionally, TrkB-depleted EC cells underwent mesenchymal-to-epithelial transition and anoikis in vivo. Our data support a novel function for TrkB in promoting EMT and resistance to anoikis. Thus, TrkB may constitute a potential therapeutic target in human EC. PMID:23936232

  2. H- - H Collision Induced Radiative Transitions

    NASA Astrophysics Data System (ADS)

    Dadonova, A. V.; Devdariani, A. Z.

    2012-12-01

    Exchange interaction leads to the formation of gerade and ungerade states of temporary molecules (quasimolecules) formed during the H- +H slow collisions. The work deals with the radiation produced by optical transitions between those states. The main characteristics involved in the description of optical transitions in quasimolecules, i.e., energy terms, an optical dipole transition moments, have been calculated in the frame of zero-range potentials model. The main feature of calculations is that the results can be expressed analytically in closed forms via the Lambert W function.

  3. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    SciTech Connect

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  4. Induced Stokes or anti-Stokes nuclear transitions

    SciTech Connect

    Eliezer, S. |; Martinez-Val, J.M.; Velarde, G.

    1995-11-01

    It is suggested that laser-generated soft x rays can be used to induce Stokes or anti-Stokes nuclear transitions. Isomeric transitions in {sup 99}Tc and {sup 179}Hf are considered as Stokes and anti-Stokes transitions, respectively. It is shown that success of the proposed scheme may open the way for a gamma-ray laser. 18 refs., 2 figs.

  5. Statin-induced mevalonate pathway inhibition attenuates the growth of mesenchymal-like cancer cells that lack functional E-cadherin mediated cell cohesion.

    PubMed

    Warita, Katsuhiko; Warita, Tomoko; Beckwitt, Colin H; Schurdak, Mark E; Vazquez, Alexei; Wells, Alan; Oltvai, Zoltán N

    2014-12-23

    The cholesterol reducing drugs, statins, exhibit anti-tumor effects against cancer stem cells and various cancer cell lines, exert potent additivity or synergy with existing chemotherapeutics in animal models of cancer and may reduce cancer incidence and cancer related mortality in humans. However, not all tumor cell lines are sensitive to statins, and clinical trials have demonstrated mixed outcomes regarding statins as anticancer agents. Here, we show that statin-induced reduction in intracellular cholesterol levels correlate with the growth inhibition of cancer cell lines upon statin treatment. Moreover, statin sensitivity segregates with abundant cytosolic vimentin expression and absent cell surface E-cadherin expression, a pattern characteristic of mesenchymal-like cells. Exogenous expression of cell surface E-cadherin converts statin- sensitive cells to a partially resistant state implying that statin resistance is in part dependent on the tumor cells attaining an epithelial phenotype. As metastasizing tumor cells undergo epithelial to mesenchymal transition during the initiation of the metastatic cascade, statin therapy may represent an effective approach to targeting the cells most likely to disseminate.

  6. Polycystin-1 Induces Cell Migration by Regulating Phosphatidylinositol 3-kinase-dependent Cytoskeletal Rearrangements and GSK3β-dependent Cell–Cell Mechanical Adhesion

    PubMed Central

    Boca, Manila; D'Amato, Lisa; Distefano, Gianfranco; Polishchuk, Roman S.; Germino, Gregory G.

    2007-01-01

    Polycystin-1 (PC-1) is a large plasma-membrane receptor encoded by the PKD1 gene mutated in autosomal dominant polycystic kidney disease (ADPKD). Although the disease is thought to be recessive on a molecular level, the precise mechanism of cystogenesis is unclear, although cytoarchitecture defects seem to be the most likely initiating events. Here we show that PC-1 regulates the actin cytoskeleton in renal epithelial cells (MDCK) and induces cell scattering and cell migration. All of these effects require phosphatidylinositol 3-kinase (PI3-K) activity. Consistent with these observations Pkd1−/− mouse embryonic fibroblasts (MEFs) have reduced capabilities to migrate compared with controls. PC-1 overexpressing MDCK cells are able to polarize normally with proper adherens and tight junctions formation, but show quick reabsorption of ZO-1, E-cadherin, and β-catenin upon wounding of a monolayer and a transient epithelial-to-mesenchymal transition (EMT) that favors a rapid closure of the wound and repolarization. Finally, we show that PC-1 is able to control the turnover of cytoskeletal-associated β-catenin through activation of GSK3β. Expression of a nondegradable form of β-catenin in PC-1 MDCK cells restores strong cell–cell mechanical adhesion. We propose that PC-1 might be a central regulator of epithelial plasticity and its loss results in impaired normal epithelial homeostasis. PMID:17671167

  7. Mass-induced transition in fermion number

    SciTech Connect

    Aragao de Carvalho, C.; Pureza, J. M.

    1989-05-15

    We show that if we increase the mass of fermions in interaction with a topological (kink) scalar background in 1+1 dimensions, the fractional fermion number of the system will eventually vanish. The transition is sharp and corresponds to the disappearance of localized states from the spectrum of a Dirac operator which is exactly solvable. Possible applications to different physical systems are discussed.

  8. Snail Promotes Epithelial Mesenchymal Transition in Breast Cancer Cells in Part via Activation of Nuclear ERK2

    PubMed Central

    Smith, Bethany N.; Burton, Liza J.; Henderson, Veronica; Randle, Diandra D.; Morton, Derrick J.; Smith, Basil A.; Taliaferro-Smith, Latonia; Nagappan, Peri; Yates, Clayton; Zayzafoon, Majd; Chung, Leland W. K.; Odero-Marah, Valerie A.

    2014-01-01

    Snail transcription factor is up-regulated in several cancers and associated with increased tumor migration and invasion via induction of epithelial-to-mesenchymal transition (EMT). MAPK (ERK1/2) signaling regulates cellular processes including cell motility, adhesion, and invasion. We investigated the regulation of ERK1/2 by Snail in breast cancer cells. ERK1/2 activity (p-ERK) was higher in breast cancer patient tissue as compared to normal tissue. Snail and p-ERK were increased in several breast cancer cell lines as compared to normal mammary epithelial cells. Snail knockdown in MDA-MB-231 and T47-D breast cancer cells decreased or re-localized p-ERK from the nuclear compartment to the cytoplasm. Snail overexpression in MCF-7 breast cancer cells induced EMT, increased cell migration, decreased cell adhesion and also increased tumorigenicity. Snail induced nuclear translocation of p-ERK, and the activation of its subcellular downstream effector, Elk-1. Inhibiting MAPK activity with UO126 or knockdown of ERK2 isoform with siRNA in MCF-7 Snail cells reverted EMT induced by Snail as shown by decreased Snail and vimentin expression, decreased cell migration and increased cell adhesion. Overall, our data suggest that ERK2 isoform activation by Snail in aggressive breast cancer cells leads to EMT associated with increased cell migration and decreased cell adhesion. This regulation is enhanced by positive feedback regulation of Snail by ERK2. Therefore, therapeutic targeting of ERK2 isoform may be beneficial for breast cancer. PMID:25122124

  9. Thermal insulator transition induced by interface scattering

    NASA Astrophysics Data System (ADS)

    Slovick, Brian A.; Krishnamurthy, Srini

    2016-10-01

    We develop an effective medium model of thermal conductivity that accounts for both percolation and interface scattering. This model accurately explains the measured increase and decrease of thermal conductivity with loading in composites dominated by percolation and interface scattering, respectively. Our model further predicts that strong interface scattering leads to a sharp decrease in thermal conductivity, or an insulator transition, at high loadings when conduction through the matrix is restricted and heat is forced to diffuse through particles with large interface resistance. The accuracy of our model and its ability to predict transitions between insulating and conducting states suggest it can be a useful tool for designing materials with low or high thermal conductivity for a variety of applications.

  10. HR+HER2- breast cancers with growth factor receptor-mediated EMT have a poor prognosis and lapatinib downregulates EMT in MCF-7 cells.

    PubMed

    Desai, Krisha; Aiyappa, Radhika; Prabhu, Jyothi S; Nair, Madhumathy G; Lawrence, Patrick Varun; Korlimarla, Aruna; Ce, Anupama; Alexander, Annie; Kaluve, Rohini S; Manjunath, Suraj; Correa, Marjorrie; Srinath, B S; Patil, Shekhar; Kalamdani, Anjali; Prasad, Msn; Sridhar, T S

    2017-03-01

    Despite an overall good prognosis, a significant proportion of patients with hormone receptor positive human epidermal growth factor receptor 2 negative breast cancers develop distant metastases. The metastatic potential of epithelial cells is known to be regulated by tumor-stromal interaction and mediated by epithelial-to-mesenchymal transition. Hormone receptor positive human epidermal growth factor receptor 2 negative tumors were used to estimate markers of epithelial-to-mesenchymal transition, and the luminal breast cancer cell line MCF-7 was used to examine the interactions between integrins and growth factor receptors in causation of epithelial-to-mesenchymal transition. A total of 140 primary tumors were sub-divided into groups enriched for the markers of epithelial-to-mesenchymal transition (snail family transcriptional repressor 2 and integrin β6) versus those with low levels. Within the epithelial-to-mesenchymal transition+ tumors, there was a positive correlation between the transcripts of integrin β6 and growth factor receptors-human epidermal growth factor receptor 2 and epidermal growth factor receptor. In tumors enriched for epithelial-to-mesenchymal transition markers, patients with tumors with the highest quartile of growth factor receptor transcripts had a shorter disease-free survival compared to patients with low growth factor receptor expression by Kaplan-Meier analysis (log rank, p = 0.03). Epithelial-to-mesenchymal transition was induced in MCF-7 cells by treatment with transforming growth factor beta 1 and confirmed by upregulation of SNAI1 and SNAI2 transcripts, increase of vimentin and integrin β6 protein, and repression of E-cadherin. Treatment of these cells with the dual-specificity tyrosine-kinase inhibitor lapatinib led to downregulation of epithelial-to-mesenchymal transition as indicated by lower levels of SNAI1 and SNAI2 transcripts, integrin αvβ6, and matrix metalloproteinase 9 protein. The results suggest that

  11. Systematic review of the old and new concepts in the epithelial-mesenchymal transition of colorectal cancer

    PubMed Central

    Gurzu, Simona; Silveanu, Camelia; Fetyko, Annamaria; Butiurca, Vlad; Kovacs, Zsolt; Jung, Ioan

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is defined as the transformation of an epithelial cell into a spindle cell with the loss of membrane E-cadherin expression and the gain of mesenchymal markers positivity. In the field of colorectal cancer (CRC), first data about EMT was published in 1995 and more than 400 papers had been written up to March 2016. Most of them are focused on the molecular pathways and experimentally-proved chemoresistance. In the present article, an update in the field of EMT in CRC based on the review of the literature and personal experience of the authors is presented. The information about the molecular and immunohistochemical (IHC) particularities of these processes and their possible role in the prognosis of CRC were also up-dated. This article focuses on the IHC quantification of the EMT, the immunoprofile of tumor buds and on the relation between EMT, angiogenesis, and stem cells activation. The EMT-induced chemoresistance vs chemotherapy- or radiotherapy-induced EMT and cellular senescence was also synthesized for both conventional and targeted therapy. As a future perspective, the EMT-angiogenesis-stemness link could be used as a possible valuable parameter for clinical follow-up and targeted therapeutic oncologic management of patients with CRC. Association of dexamethasone and angiotensin converting enzyme inhibitors combined with conventional chemotherapies could have clinical benefits in patients with CRC. The main conclusion is that, although many studies have been published, the EMT features are still incompletely elucidated and newly discovered EMT markers provide confusing data in understanding this complicated process, which might have significant clinical impact. PMID:27570416

  12. Curcumin Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells through the Inhibition of Akt/mTOR Pathway.

    PubMed

    Zhu, Fang-Qiang; Chen, Min-Jia; Zhu, Ming; Zhao, Rong-Seng; Qiu, Wei; Xu, Xiang; Liu, Hong; Zhao, Hong-Wen; Yu, Rong-Jie; Wu, Xiong-Fei; Zhang, Keqin; Huang, Hong

    2017-01-01

    Curcumin has exhibited a protective effect against development of renal fibrosis in animal models, however, its underlying molecular mechanisms are largely unclear. Therefore, we investigated the anti-fibrosis effects of curcumin in transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT), and the mechanism by which it mediates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Human kidney tubular epithelial cells (HKCs) were treated with TGF-β1 or curcumin alone, or TGF-β1 in combination with curcumin. The effect of curcumin on cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of E-cadherin, cytokeratin, vimentin, alpha smooth muscle actin (α-SMA), fibroblast-specific protein 1 (FSP1) and key proteins of Akt/mammalian target of rapamycin (mTOR) pathway were analyzed by immunocytochemistry, real-time PCR and Western blot. Low dose curcumin (3.125 and 25 µmol/L) effectively promoted HKC proliferation. When HKCs were co-incubated with TGF-β1 and curcumin for 72 h, curcumin maintained the epithelial morphology in a dose-dependent manner, decreased expression of vimentin, α-SMA and FSP1 normally induced by TGF-β1, and increased expression of E-cadherin, cytokeratin. Importantly, we found that curcumin reduced Akt, mTOR and P70S6K phosphorylation, effectively suppressing the activity of the Akt/mTOR pathway in HKCs. Curcumin also promoted HKC proliferation, and antagonized TGF-β1-driven EMT through the inhibition of Akt/mTOR pathway activity, which may suggest an alternative therapy for renal fibrosis.

  13. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway.

    PubMed

    Guo, Lin; Peng, Wen; Tao, Jie; Lan, Zhen; Hei, Hongya; Tian, Lulu; Pan, Wanma; Wang, Li; Zhang, Xuemei

    2016-01-01

    Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways.

  14. Field-induced stacking transition of biofunctionalized trilayer graphene

    NASA Astrophysics Data System (ADS)

    Masato Nakano, C.; Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Wei, Tao

    2016-02-01

    Trilayer graphene (TLG) is attracting a lot of attention as their stacking structures (i.e., rhombohedral vs. Bernal) drastically affect electronic and optical properties. Based on full-atom molecular dynamics simulations, we here predict electric field-induced rhombohedral-to-Bernal transition of TLG tethered with proteins. Furthermore, our simulations show that protein's electrophoretic mobility and diffusivity are enhanced on TLG surface. This phenomenon of controllable TLG stacking transition will contribute to various applications including biosensing.

  15. Mechanical induction of transitions into mesenchymal and amoeboid states

    NASA Astrophysics Data System (ADS)

    Liphardt, Jan

    One of the fundamental mysteries of biology lies in the ability of cells to convert from one phenotype to another in response to external control inputs. We have been studying the Epithelial-to-Mesenchymal Transition (EMT), which allows organized assemblies of epithelial cells to scatter into lone mesenchymal cells. EMT is critical for normal development and wound healing, and may be important for cancer metastasis. I'll present recent data on disorganizing mammary epithelial structures. We have used CRISPR to insert fluorescent tags directly into eight EMT-related genes (such as E-cadherin and Vimentin), which allows us to monitor the dynamics of the transition in real time, subject only to delays imposed by fluorophore folding/maturation times. With this information, we can begin to order events in time (temporal resolution 30 minutes), starting with external signal inputs and proceeding through a secession of intracellular changes of gene expression on the path to the mesenchymal state.

  16. Stress induced reversible crystal transition in poly(butylene succinate)

    NASA Astrophysics Data System (ADS)

    Liu, Guoming; Zheng, Liuchun; Zhang, Xiuqin; Li, Chuncheng; Wang, Dujin

    2015-03-01

    The plastic deformation mechanism of semi-crystalline polymers is a long-studied topic, which is crucial for establishing structure/property relationships. For polymers with stress induced crystal transition, some open questions still need to be answered, such as on which stage of plastic deformation does the crystal transition take place, and more importantly, what happens on the lamellar structure during crystal transition. In this talk, stress-induced reversible crystal transition in poly(butylene succinate) was systematically investigated by in-situ WAXS and SAXS. A ``lamellar thickening'' phenomenon was observed during stretching, which was shown to mainly originated from the reversible crystal transition. This mechanism was shown to be valid in poly(ethylene succinate). The critical stress for the transition was measured in a series of PBS-based crystalline-amorphous multi-block copolymers. Interestingly, these PBS copolymers exhibited identical critical stress independent of amorphous blocks. The universal critical stress for crystal transition was interpreted through a single-microfibril-stretching mechanism. The work is financially supported by the National Natural Science Foundation of China (Grant No. 51203170).

  17. Mechanically induced helix-coil transition in biopolymer networks.

    PubMed

    Courty, Sebastien; Gornall, Joanne L; Terentjev, Eugene M

    2006-02-01

    The quasi-equilibrium evolution of the helical fraction occurring in a biopolymer network (gelatin gel) under an applied stress has been investigated by observing modulation in its optical activity. Its variation with the imposed chain extension is distinctly nonmonotonic and corresponds to the transition of initially coiled strands to induced left-handed helices. The experimental results are in qualitative agreement with theoretical predictions of helices induced on chain extension. This new effect of mechanically stimulated helix-coil transition has been studied further as a function of the elastic properties of the polymer network: crosslink density and network aging.

  18. Ramp-induced transitions in traffic dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Wei

    2006-01-01

    We present the analytical results of ramp effects in asymmetric simple exclusion processes. Both on-ramp and off-ramp are included in between the two open boundaries. The ramps can be taken as the nontrivial boundaries to trigger the phase transitions. Exact phase diagrams are obtained analytically in the full parameter space. We find that the order of the two ramps is crucial. When the on-ramp is placed after the off-ramp along the traffic direction, there are only four distinct phases: free-free-free, free-free-jam, free-jam-jam, and jam-jam-jam. The other four phases from naive expectation cannot be realized, i.e., jam-free-free, jam-jam-free, jam-free-jam, and free-jam-free are all absent. The free flow will not follow the congestion. When the on-ramp is placed before the off-ramp, we observe an interesting phase: jam-max.-free. The bottleneck emerges as the flow in between the two ramps saturates to its maximum. We further show that the roadway configuration is equivalent to a nonstandard intersection. Applications to a traffic rotary are discussed.

  19. Shape transitions during clathrin-induced endocytosis

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Sain, Anirban

    2016-12-01

    Endocytosis is among the most common transport mechanisms which cells employ to receive macromolecules, the so-called cargo, from its extra cellular environment. Clathrin-mediated endocytosis (CME), in particular, involves the cytoplasmic protein clathrin which induces formation and internalization of clathrin-coated membrane buds that contain extra-cellular cargo. Decades of experimental work have established that the morphology of the clathrin coat evolves with time and induces its curvature on the membrane bud; but energetics of the process remain unclear. Recent experiments by Avinoam et al. [Science 348, 1369 (2015), 10.1126/science.aaa9555] reported that the area of the clathrin coat remains fixed while its curvature increases with time and also the clathrin molecules in the coat turn over rapidly. We show that these observations challenge existing models of coated membrane bud formation. We analyze their data to bring out certain features consistent with the underlying lattice structure of the coat. We hypothesize that membrane curvature inhibits clathrin deposition and propose a kinetic model that explains the area distribution of clathrin coats. We also show that their data on shape evolution of the coated membrane bud can be approximately understood from simple geometric considerations. However, the energetics of the coat formation which controls the kinetics of the process remains a puzzle.

  20. Targeting Fyn in Ras-transformed cells induces F-actin to promote adherens junction-mediated cell-cell adhesion.

    PubMed

    Fenton, Sarah E; Hutchens, Kelli A; Denning, Mitchell F

    2015-10-01

    Fyn, a member of the Src family kinases (SFK), is an oncogene in murine epidermis and is associated with cell-cell adhesion turnover and induction of cell migration. Additionally, Fyn upregulation has been reported in multiple tumor types, including cutaneous squamous cell carcinoma (cSCC). Introduction of active H-Ras(G12V) into the HaCaT human keratinocyte cell line resulted in upregulation of Fyn mRNA (200-fold) and protein, while expression of other SFKs remained unaltered. Transduction of active Ras or Fyn was sufficient to induce an epithelial-to-mesenchymal transition in HaCaT cells. Inhibition of Fyn activity, using siRNA or the clinical SFK inhibitor Dasatinib, increased cell-cell adhesion and rapidly (5-60 min) increased levels of cortical F-actin. Fyn inhibition with siRNA or Dasatinib also induced F-actin in MDA-MB-231 breast cancer cells, which have elevated Fyn. F-actin co-localized with adherens junction proteins, and Dasatinib-induced cell-cell adhesion could be blocked by Cytochalasin D, indicating that F-actin polymerization was a key initiator of cell-cell adhesion through the adherens junction. Conversely, inhibiting cell-cell adhesion with low Ca(2+) media did not block Dasatinib-induced F-actin polymerization. Inhibition of the Rho effector kinase ROCK blocked Dasatinib-induced F-actin and cell-cell adhesion, implicating relief of Rho GTPase inhibition as a mechanism of Dasatinib-induced cell-cell adhesion. Finally, topical Dasatinib treatment significantly reduced total tumor burden in the SKH1 mouse model of UV-induced skin carcinogenesis. Together these results identify the promotion of actin-based cell-cell adhesion as a newly described mechanism of action for Dasatinib and suggest that Fyn inhibition may be an effective therapeutic approach in treating cSCC.

  1. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    SciTech Connect

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J.

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  2. Gap Filler Induced Transition on the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Barnhardt, Michael D.; Tang, Chun Y.; Sozer, Emre; Candler, Graham

    2012-01-01

    Detached Eddy Simulations have been performed to investigate the effects of high-fidelity turbulence modeling on roughness-induced transition to turbulence during Mars entry. Chemically reacting flow solutions will be obtained for a gap filler of Mars Science Laboratory at the peak heating condition.

  3. Disorder-induced topological transitions in multichannel Majorana wires

    NASA Astrophysics Data System (ADS)

    Pekerten, B.; Teker, A.; Bozat, Ö.; Wimmer, M.; Adagideli, I.

    2017-02-01

    In this work, we investigate the effect of disorder on the topological properties of multichannel superconductor nanowires. While the standard expectation is that the spectral gap is closed and opened at transitions that change the topological index of the wire, we show that the closing and opening of a transport gap can also cause topological transitions, even in the presence of nonzero density of states across the transition. Such transport gaps induced by disorder can change the topological index, driving