Science.gov

Sample records for induces gap junction-dependant

  1. Heterocellular interaction enhances recruitment of {alpha} and {beta}-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells

    SciTech Connect

    Talhouk, Rabih S. Mroue, Rana; Mokalled, Mayssa; Abi-Mosleh, Lina; Nehme, Ralda; Ismail, Ayman; Khalil, Antoine; Zaatari, Mira; El-Sabban, Marwan E.

    2008-11-01

    Gap junctions (GJ) are required for mammary epithelial differentiation. Using epithelial (SCp2) and myoepithelial-like (SCg6) mouse-derived mammary cells, the role of heterocellular interaction in assembly of GJ complexes and functional differentiation ({beta}-casein expression) was evaluated. Heterocellular interaction is critical for {beta}-casein expression, independent of exogenous basement membrane or cell anchoring substrata. Functional differentiation of SCp2, co-cultured with SCg6, is more sensitive to GJ inhibition relative to homocellular SCp2 cultures differentiated by exogenous basement membrane. Connexin (Cx)32 and Cx43 levels were not regulated across culture conditions; however, GJ functionality was enhanced under differentiation-permissive conditions. Immunoprecipitation studies demonstrated association of junctional complex components ({alpha}-catenin, {beta}-catenin and ZO-2) with Cx32 and Cx43, in differentiation conditions, and additionally with Cx30 in heterocellular cultures. Although {beta}-catenin did not shuttle between cadherin and GJ complexes, increased association between connexins and {beta}-catenin in heterocellular cultures was observed. This was concomitant with reduced nuclear {beta}-catenin, suggesting that differentiation in heterocellular cultures involves sequestration of {beta}-catenin in GJ complexes.

  2. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice

    PubMed Central

    Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Wang, Dong-Hui; Kong, Xiang-Wei; Lu, Angeleem; Li, Yan-Jiao; Zhou, Hong-Xia; Zhao, Yue-Fang

    2016-01-01

    Cumulus cells are a group of closely associated granulosa cells that surround and nourish oocytes. Previous studies have shown that cumulus cells contribute to oocyte maturation and fertilization through gap junction communication. However, it is not known how this gap junction signaling affects in vivo versus in vitro maturation of oocytes, and their subsequent fertilization and embryonic development following insemination. Therefore, in our study, we performed mouse oocyte maturation and insemination using in vivo- or in vitro-matured oocyte-cumulus complexes (OCCs, which retain gap junctions between the cumulus cells and the oocytes), in vitro-matured, denuded oocytes co-cultured with cumulus cells (DCs, which lack gap junctions between the cumulus cells and the oocytes), and in vitro-matured, denuded oocytes without cumulus cells (DOs). Using these models, we were able to analyze the effects of gap junction signaling on oocyte maturation, fertilization, and early embryo development. We found that gap junctions were necessary for both in vivo and in vitro oocyte maturation. In addition, for oocytes matured in vivo, the presence of cumulus cells during insemination improved fertilization and blastocyst formation, and this improvement was strengthened by gap junctions. Moreover, for oocytes matured in vitro, the presence of cumulus cells during insemination improved fertilization, but not blastocyst formation, and this improvement was independent of gap junctions. Our results demonstrate, for the first time, that the beneficial effect of gap junction signaling from cumulus cells depends on oocyte maturation and fertilization methods. PMID:26966678

  3. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice.

    PubMed

    Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Wang, Dong-Hui; Kong, Xiang-Wei; Lu, Angeleem; Li, Yan-Jiao; Zhou, Hong-Xia; Zhao, Yue-Fang; Liang, Cheng-Guang

    2016-01-01

    Cumulus cells are a group of closely associated granulosa cells that surround and nourish oocytes. Previous studies have shown that cumulus cells contribute to oocyte maturation and fertilization through gap junction communication. However, it is not known how this gap junction signaling affects in vivo versus in vitro maturation of oocytes, and their subsequent fertilization and embryonic development following insemination. Therefore, in our study, we performed mouse oocyte maturation and insemination using in vivo- or in vitro-matured oocyte-cumulus complexes (OCCs, which retain gap junctions between the cumulus cells and the oocytes), in vitro-matured, denuded oocytes co-cultured with cumulus cells (DCs, which lack gap junctions between the cumulus cells and the oocytes), and in vitro-matured, denuded oocytes without cumulus cells (DOs). Using these models, we were able to analyze the effects of gap junction signaling on oocyte maturation, fertilization, and early embryo development. We found that gap junctions were necessary for both in vivo and in vitro oocyte maturation. In addition, for oocytes matured in vivo, the presence of cumulus cells during insemination improved fertilization and blastocyst formation, and this improvement was strengthened by gap junctions. Moreover, for oocytes matured in vitro, the presence of cumulus cells during insemination improved fertilization, but not blastocyst formation, and this improvement was independent of gap junctions. Our results demonstrate, for the first time, that the beneficial effect of gap junction signaling from cumulus cells depends on oocyte maturation and fertilization methods.

  4. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  5. Self-induced gap solitons in nonlinear magnetic metamaterials.

    PubMed

    Cui, Weina; Zhu, Yongyuan; Li, Hongxia; Liu, Sumei

    2009-09-01

    The self-induced gap solitons in nonlinear magnetic metamaterials is investigated. It is shown that the self-induced gap solitons may exist due to the interaction of the discreteness and nonlinearity. The evolution of these localized structures is studied in the phase plane and analytical and numerical expressions are obtained.

  6. Super-Hard induced gap in InSb nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Yu, Peng; Hocevar, Moïra; Plissard, Sébastien; Car, Diana; Bakkers, Erik; Frolov, Sergey

    In recent years, Majorana bound states were observed experimentally in InSb nanowire-superconductor hybrid devices, which manifested themselves as a zero-bias conductance peak (ZBP). However, there was still significant conductance inside the superconducting gap, which would smear sub-gap features. Moreover, fermionic states inside the gap would also break topological protection. Therefore, a hard gap is required in search of more deterministic signatures of Majorana bound states, and building up Majorana qubits. We report the observation of a hard induced gap in an InSb Josephson junction with an optimized superconducting contact recipe. The gap is resolved in magnetic field up to 2 Tesla, and demonstrates a peculiar kinked field dependence. In addition, we observed rich sub-gap features: Andreev levels appeared close to pinch off regime, while multiple Andreev reflection appeared in open regime.

  7. Substrate-induced Band Gap Renormalization in Semiconducting Carbon Nanotubes

    PubMed Central

    Lanzillo, Nicholas A.; Kharche, Neerav; Nayak, Saroj K.

    2014-01-01

    The quasiparticle band gaps of semiconducting carbon nanotubes (CNTs) supported on a weakly-interacting hexagonal boron nitride (h-BN) substrate are computed using density functional theory and the GW Approximation. We find that the direct band gaps of the (7,0), (8,0) and (10,0) carbon nanotubes are renormalized to smaller values in the presence of the dielectric h-BN substrate. The decrease in the band gap is the result of a polarization-induced screening effect, which alters the correlation energy of the frontier CNT orbitals and stabilizes valence band maximum and conduction band minimum. The value of the band gap renormalization is on the order of 0.25 to 0.5 eV in each case. Accounting for polarization-induced band gap changes is crucial in comparing computed values with experiment, since nanotubes are almost always grown on substrates. PMID:24402238

  8. Induced spectral gap and pairing correlations from superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Cole, William S.; Das Sarma, S.

    2016-09-01

    We theoretically consider superconducting proximity effect, using the Bogoliubov-de Gennes (BdG) theory, in heterostructure sandwich-type geometries involving a normal s -wave superconductor and a nonsuperconducting material with the proximity effect being driven by Cooper pairs tunneling from the superconducting slab to the nonsuperconducting slab. Applications of the superconducting proximity effect may rely on an induced spectral gap or induced pairing correlations without any spectral gap. We clarify that in a nonsuperconducting material the induced spectral gap and pairing correlations are independent physical quantities arising from the proximity effect. This is a crucial issue in proposals to create topological superconductivity through the proximity effect. Heterostructures of three-dimensional topological insulator (TI) slabs on conventional s -wave superconductor (SC) substrates provide a platform, with proximity-induced topological superconductivity expected to be observed on the "naked" top surface of a thin TI slab. We theoretically study the induced superconducting gap on this naked surface. In addition, we compare against the induced spectral gap in heterostructures of SC with a normal metal or a semiconductor with strong spin-orbit coupling and a Zeeman splitting potential (another promising platform for topological superconductivity). We find that for any model for the non-SC metal (including metallic TI) the induced spectral gap on the naked surface decays as L-3 as the thickness (L ) of the non-SC slab is increased in contrast to the slower 1 /L decay of the pairing correlations. Our distinction between proximity-induced spectral gap (with its faster spatial decay) and pairing correlation (with its slower spatial decay) has important implications for the currently active search for topological superconductivity and Majorana fermions in various superconducting heterostructures.

  9. Induced gap in topological materials from the superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Cole, William

    Topological superconductivity has been of considerable interest lately, with several proposed experimental realizations in solid state systems. A heterostructure of s-wave superconductor and 3D topological insulator is one of the more promising platforms, with topological superconductivity realized on the ''naked'' surface of the topological insulator through the superconducting proximity effect. We theoretically study the induced superconducting gap on the naked surface. Adjusting the Fermi level above the bulk gap (which is the case in experiments), our results for the induced superconducting gap are in agreement with that probed in thin topological insulators (<10nm) in the experiments (Nat. Phys. 10, 943-950 (2014) and Phys. Rev. Lett. 112, 217001 (2014)). We further predict the gap in thick topological insulators (>10nm). This work is supported by LPS-MPO-CMTC, Microsoft Q, and JQI-NSF-PFC.

  10. Pressure induced band gap opening of AlH3

    NASA Astrophysics Data System (ADS)

    Geshi, Masaaki; Fukazawa, Taro

    2013-02-01

    Pressure-induced band gap opening (PIBGO) of AlH3 with a Pm3barn structure is verified by using first-principles calculations. With increasing pressure, the semimetallic band structures change to the indirect band gap semiconducting band structure at about 300 GPa. The key points of this phenomenon are (1) the moderately large difference of electronegativity between aluminium and hydrogen and (2) the orthogonality between the 3s states and 2s states of Al. We have been confirmed that the structure is stable up to and including 500 GPa resulting from the structural relaxation and phonon calculations. The band gap is more accurately confirmed by GW calculations than done by DFT-GGA ones. The band gap may open at about 200 GPa. This phenomenon may be verified by means of a leading-edge experimental technique.

  11. Gap Filler Induced Transition on the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Barnhardt, Michael D.; Tang, Chun Y.; Sozer, Emre; Candler, Graham

    2012-01-01

    Detached Eddy Simulations have been performed to investigate the effects of high-fidelity turbulence modeling on roughness-induced transition to turbulence during Mars entry. Chemically reacting flow solutions will be obtained for a gap filler of Mars Science Laboratory at the peak heating condition.

  12. In-gap localized states induced by adsorbates on silicene

    NASA Astrophysics Data System (ADS)

    Fu, Bo; Shi, Qinwei; Li, Qunxiang; Yang, Jinlong

    2016-02-01

    Due to the strong spin-orbit coupling, silicene is a topological insulator and can open a relatively large energy gap at the Dirac point. Moreover, the applied bias can drive silicene from a topological insulator into an ordinary insulator. Here, we examine the adsorbate effect on the electronic properties of silicene. The calculated local density of states around the adsorbates clearly reveal that the induced localized states contain the band topology information, which can be used to distinguish whether the system is a topological insulator or not. We also explore the impact of randomly distributed adsorbates with a low concentration on the electron structures and the transport properties of silicene, and find that the edge mode backscattering is significantly enhanced when the energies of the incoming modes from leads match that of the in-gap localized states.

  13. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  14. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  15. Gap Junction Intercellular Communication Mediates Ammonia-Induced Neurotoxicity.

    PubMed

    Bobermin, Larissa Daniele; Arús, Bernardo Assein; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Quincozes-Santos, André

    2016-02-01

    Astrocytes are important brain targets of ammonia, a neurotoxin implicated in the development of hepatic encephalopathy. During hyperammonemia, the pivotal role of astrocytes in brain function and homeostasis is impaired. These cells are abundantly interconnected by gap junctions (GJ), which are intercellular channels that allow the exchange of signaling molecules and metabolites. This communication may also increase cellular vulnerability during injuries, while GJ uncoupling could limit the extension of a lesion. Therefore, the current study was performed to investigate whether astrocyte coupling through GJ contributes to ammonia-induced cytotoxicity. We found that carbenoxolone (CBX), an effective GJ blocker, prevented the following effects induced by ammonia in astrocyte primary cultures: (1) decrease in cell viability and membrane integrity; (2) increase in reactive oxygen species production; (3) decrease in GSH intracellular levels; (4) GS activity; (5) pro-inflammatory cytokine release. On the other hand, CBX had no effect on C6 astroglial cells, which are poorly coupled via GJ. To our knowledge, this study provides the first evidence that GJ play a role in ammonia-induced cytotoxicity. Although more studies in vivo are required to confirm our hypothesis, our data suggest that GJ communication between astrocytes may transmit damage signals and excitotoxic components from unhealthy to normal cells, thereby contributing to the propagation of the neurotoxicity of ammonia.

  16. Gap state analysis in electric-field-induced band gap for bilayer graphene

    PubMed Central

    Kanayama, Kaoru; Nagashio, Kosuke

    2015-01-01

    The origin of the low current on/off ratio at room temperature in dual-gated bilayer graphene field-effect transistors is considered to be the variable range hopping in gap states. However, the quantitative estimation of gap states has not been conducted. Here, we report the systematic estimation of the energy gap by both quantum capacitance and transport measurements and the density of states for gap states by the conductance method. An energy gap of ~250 meV is obtained at the maximum displacement field of ~3.1 V/nm, where the current on/off ratio of ~3 × 103 is demonstrated at 20 K. The density of states for the gap states are in the range from the latter half of 1012 to 1013 eV−1cm−2. Although the large amount of gap states at the interface of high-k oxide/bilayer graphene limits the current on/off ratio at present, our results suggest that the reduction of gap states below ~1011 eV−1cm−2 by continual improvement of the gate stack makes bilayer graphene a promising candidate for future nanoelectronic device applications. PMID:26511395

  17. Substrate-induced band gap opening in epitaxial graphene

    SciTech Connect

    Zhou, S.Y.; Gweon, G.-H.; Fedorov, A.V.; First, P.N.; de Heer,W.A.; Lee, D.-H.; Guinea, F.; Castro Neto, A.H.; Lanzara, A.

    2007-09-08

    Graphene has shown great application potential as the hostmaterial for next-generation electronic devices. However, despite itsintriguing properties, one of the biggest hurdles for graphene to beuseful as an electronic material is the lack of an energy gap in itselectronic spectra. This, for example, prevents the use of graphene inmaking transistors. Although several proposals have been made to open agap in graphene's electronic spectra, they all require complexengineering of the graphene layer. Here, we show that when graphene isepitaxially grown on SiC substrate, a gap of ~;0.26 eV is produced. Thisgap decreases as the sample thickness increases and eventually approacheszero when the number of layers exceeds four. We propose that the originof this gap is the breaking of sublattice symmetry owing to thegraphene-substrate interaction. We believe that our results highlight apromising direction for band gap engineering of graphene.

  18. Gap Junction Dysfunction in the Prefrontal Cortex Induces Depressive-Like Behaviors in Rats

    PubMed Central

    Sun, Jian-Dong; Liu, Yan; Yuan, Yu-He; Li, Jing; Chen, Nai-Hong

    2012-01-01

    Growing evidence has implicated glial anomalies in the pathophysiology of major depression disorder (MDD). Gap junctional communication is a main determinant of astrocytic function. However, it is unclear whether gap junction dysfunction is involved in MDD development. This study investigates changes in the function of astrocyte gap junction occurring in the rat prefrontal cortex (PFC) after chronic unpredictable stress (CUS), a rodent model of depression. Animals exposed to CUS and showing behavioral deficits in sucrose preference test (SPT) and novelty suppressed feeding test (NSFT) exhibited significant decreases in diffusion of gap junction channel-permeable dye and expression of connexin 43 (Cx43), a major component of astrocyte gap junction, and abnormal gap junctional ultrastructure in the PFC. Furthermore, we analyzed the effects of typical antidepressants fluoxetine and duloxetine and glucocorticoid receptor (GR) antagonist mifepristone on CUS-induced gap junctional dysfunction and depressive-like behaviors. The cellular and behavioral alterations induced by CUS were reversed and/or blocked by treatment with typical antidepressants or mifepristone, indicating that the mechanism of their antidepressant action may involve the amelioration of gap junction dysfunction and the cellular changes may be related to GR activation. We then investigated the effects of pharmacological gap junction blockade in the PFC on depressive-like behaviors. The results demonstrate that carbenoxolone (CBX) infusions induced anhedonia in SPT, and anxiety in NSFT, and Cx43 mimetic peptides Gap27 and Gap26 also induced anhedonia, a core symptom of depression. Together, this study supports the hypothesis that gap junction dysfunction contributes to the pathophysiology of depression. PMID:22189291

  19. Dirac gap-induced graphene quantum dot in an electrostatic potential

    NASA Astrophysics Data System (ADS)

    Giavaras, G.; Nori, Franco

    2011-04-01

    A spatially modulated Dirac gap in a graphene sheet leads to charge confinement, thus enabling a graphene quantum dot to be formed without the application of external electric and magnetic fields [G. Giavaras and F. Nori, Appl. Phys. Lett. 97, 243106 (2010)]. This can be achieved provided the Dirac gap has a local minimum in which the states become localized. In this work, the physics of such a gap-induced dot is investigated in the continuum limit by solving the Dirac equation. It is shown that gap-induced confined states couple to the states introduced by an electrostatic quantum well potential. Hence the region in which the resulting hybridized states are localized can be tuned with the potential strength, an effect which involves Klein tunneling. The proposed quantum dot may be used to probe quasirelativistic effects in graphene, while the induced confined states may be useful for graphene-based nanostructures.

  20. Flow noise induced by small gaps in low-Mach-number turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Hao, Jin; Wang, Meng; Ji, Minsuk; Wang, Kan

    2013-11-01

    The flow-noise induced by small gaps underneath low-Mach-number turbulent boundary layers at Reθ = 4755 is studied using large-eddy simulation and Lighthill's theory. The gap leading-edge height is 13% of the boundary-layer thickness, and the gap width and trailing-edge height are varied to investigate their effects on surface-pressure fluctuations and sound generation. The maximum surface pressure fluctuations, which increase with gap width and trailing-edge height, occur at the trailing edge or near the reattachment point if there is separation from the trailing edge. The downstream recovery towards an equilibrium boundary layer is significantly faster for gap flows compared to step flows, and the recovery distance scales with the reattachment length for gaps with trailing-edge separation. The acoustic field is dominated by the forward-facing step in the gap and resembles forward-step sound for wide gaps and/or asymmetric gaps with trailing edge higher than leading edge. In these cases, the dominant acoustic source mechanisms are the impingement of the separated shear layer from the leading edge onto the trailing edge and the unsteady separation from the trailing edge, coupled with edge diffraction. For narrow and symmetric gaps, the destructive interference of sound from the leading and trailing edges causes a significant decline in low-frequency sound and thereby creates a broad spectral peak in the mid-frequency range. The effects of gap acoustic non-compactness and free-stream convection are investigated by comparing solutions based on a compact gap Green's function with those from a boundary-element calculation. They are found to be negligible at the typical hydroacoustc Mach number of 0.01, but become significant at Mach numbers as low as 0.1 and moderately high frequencies.

  1. Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors.

    PubMed

    Liang, Yufeng; Yang, Li

    2015-02-13

    In reduced-dimensional semiconductors, doping-induced carrier plasmons can strongly couple with quasiparticle excitations, leading to a significant band gap renormalization. However, the physical origin of this generic effect remains obscure. We develop a new plasmon-pole theory that efficiently and accurately captures this coupling. Using monolayer MoS(2) and MoSe(2) as prototype two-dimensional (2D) semiconductors, we reveal a striking band gap renormalization above 400 meV and an unusual nonlinear evolution of their band gaps with doping. This prediction significantly differs from the linear behavior that is observed in one-dimensional structures. Notably, our predicted band gap renormalization for MoSe(2) is in excellent agreement with recent experimental results. Our developed approach allows for a quantitative understanding of many-body interactions in general doped 2D semiconductors and paves the way for novel band gap engineering techniques.

  2. The role of gap junctions in stretch-induced atrial fibrillation.

    PubMed

    Ueda, Norihiro; Yamamoto, Mitsuru; Honjo, Haruo; Kodama, Itsuo; Kamiya, Kaichiro

    2014-11-01

    The aim of this study was to investigate the role of gap junctions in atrial fibrillation (AF) by analysing the effects of a gap junction enhancer and blocker on AF vulnerability and electrophysiological properties of isolated hearts. The acute atrial stretch model of AF in the isolated rabbit heart was used. Sustained AF (SAF) was induced by a burst of high-frequency stimulation of the Bachmann's bundle. The effective refractory period (ERP) was measured, and the total conduction time (TCT) and the pattern of conduction of the anterior surface of the left atrium were monitored by using an optical mapping system. The effect of enhancing gap junction function by 100-1000 nM rotigaptide (ZP123) and block by 30 μM carbenoxolone on these parameters was measured. SAF inducibility was increased with an elevation of intra-atrial pressure. Enhanced gap junction conductance induced by treatment with 100-1000 nM rotigaptide reduced SAF inducibility, and the gap junction blocker carbenoxolone increased SAF inducibility. In the absence of gap junction enhancer or blocker, normal conduction was observed at 0 cmH2O. When intra-atrial pressure was raised to 12 cmH2O, the conduction pattern was changed to a heterogeneous zig-zag pattern and TCT was prolonged. Conduction pattern was not affected by either agent. Rotigaptide shortened TCT, whereas carbenoxolone prolonged TCT. ERP was significantly shortened with an increase in intra-atrial pressure, but ERP was unaffected by either agent. Gap junction modulators changed AF inducibility through their effects on atrial conduction, not by altering ERP. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Cardiology.

  3. Ultrastructural demonstration of Cx43 gap junctions in induced pluripotent stem cells from human cord blood.

    PubMed

    Beckmann, Anja; Schubert, Madline; Hainz, Nadine; Haase, Alexandra; Martin, Ulrich; Tschernig, Thomas; Meier, Carola

    2016-11-01

    Gap junction proteins are essential for direct intercellular communication but also influence cellular differentiation and migration. The expression of various connexin gap junction proteins has been demonstrated in embryonic stem cells, with Cx43 being the most intensely studied. As Cx43 is the most prominent gap junction protein in the heart, cardiomyocyte-differentiated stem cells have been studied intensely. To date, however, little is known about the expression and the subcellular distribution of Cx43 in undifferentiated stem cells or about the structural arrangement of channels. We, therefore, here investigate expression of Cx43 in undifferentiated human cord-blood-derived induced pluripotent stem cells (hCBiPS2). For this purpose, we carried out quantitative real-time PCR and immunohistochemistry. For analysis of Cx43 ultrastructure and protein assembly, we performed freeze-fracture replica immunogold labeling (FRIL). Cx43 expression was detected at mRNA and protein level in hCBIPS2 cells. For the first time, ultrastructural data are presented on gap junction morphology in induced pluripotent stem (iPS) cells from cord blood: Our FRIL and electron microscopical analysis revealed the occurrence of gap junction plaques in undifferentiated iPS cells. In addition, these gap junctions were shown to contain the gap junction protein Cx43.

  4. Strain-induced band gap shrinkage in Ge grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yasuhiko; Wada, Kazumi; Cannon, Douglas D.; Liu, Jifeng; Luan, Hsin-Chiao; Kimerling, Lionel C.

    2003-03-01

    Band gap shrinkage induced by tensile strain is shown for Ge directly grown on Si substrate. In Ge-on-Si pin diodes, photons having energy lower than the direct band gap of bulk Ge were efficiently detected. According to photoreflectance measurement, this property is due to band gap shrinkage. The origin of the shrinkage is not the Franz-Keldysh effect but rather tensile strain. It is discussed that the generation of such a tensile strain can be ascribed to the difference of thermal expansion between Ge and Si. Advantages of this tensile Ge for application to photodiode are also discussed.

  5. Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures

    PubMed Central

    Hu, Xiaohui; Kou, Liangzhi; Sun, Litao

    2016-01-01

    The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A’B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA’, AB and AB’ stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs. PMID:27528196

  6. Possible electric field induced indirect to direct band gap transition in MoSe2.

    PubMed

    Kim, B S; Kyung, W S; Seo, J J; Kwon, J Y; Denlinger, J D; Kim, C; Park, S R

    2017-07-12

    Direct band-gap semiconductors play the central role in optoelectronics. In this regard, monolayer (ML) MX2 (M = Mo, W; X = S, Se) has drawn increasing attention due to its novel optoelectronic properties stemming from the direct band-gap and valley degeneracy. Unfortunately, the more practically usable bulk and multilayer MX2 have indirect-gaps. It is thus highly desired to turn bulk and multilayer MX2 into direct band-gap semiconductors by controlling external parameters. Here, we report angle-resolved photoemission spectroscopy (ARPES) results from Rb dosed MoSe2 that suggest possibility for electric field induced indirect to direct band-gap transition in bulk MoSe2. The Rb concentration dependent data show detailed evolution of the band-gap, approaching a direct band-gap state. As ionized Rb layer on the surface provides a strong electric field perpendicular to the surface within a few surface layers of MoSe2, our data suggest that direct band-gap in MoSe2 can be achieved if a strong electric field is applied, which is a step towards optoelectronic application of bulk materials.

  7. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    SciTech Connect

    Inaoka, Takeshi Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  8. GAP-43 expression is upregulated in retinal ganglion cells after ischemia/reperfusion-induced damage.

    PubMed

    Dijk, Frederike; Bergen, Arthur A B; Kamphuis, Willem

    2007-05-01

    In response to injury, the adult mammalian retina shows signs of structural remodeling, possibly in an attempt to preserve or regain some of its functional neural connections. In order to study the mechanisms involved in injury-induced plasticity, we have studied changes in growth associated protein 43 (GAP-43) after retinal ischemia/reperfusion in the rat. GAP-43 is a marker for neuronal remodeling and is involved in synapse formation. Ischemic injury of the rat retina was induced by 60 min of ischemia followed by reperfusion times varying from 2h up to 4 weeks. GAP-43 mRNA levels were significantly increased between 12h and 72 h reperfusion with a peak around 24h. GAP-43 specific antibodies showed that the total amount of GAP-43 labeling in the inner plexiform layer was diminished after 12h of reperfusion by approximately 35% and remained at this level up to 1 week postischemia despite the reduction in thickness of this layer during this period resulting from the ischemia-induced cell loss. At 2 and 4 weeks reperfusion, the amount of labeling was reduced by 70%, simultaneously with a decrease of GAP-43 transcript level. Between 72 h up to 2 weeks postischemia, the induction of intense GAP-43 labeling was observed in NeuN- and beta-tubulin-positive ganglion cell somata and in horizontally and vertically oriented processes in the inner plexiform layer. Ischemia also induced GAP-43 expression in some GFAP-positive Müller cells. Double-labeling showed that in controls and after ischemia GAP-43 was expressed by some amacrine cells of the glycinergic (glycine transporter 1), calretinin-positive, and dopaminergic (tyrosine hydroxylase) subpopulations. No increase of GAP-43 expression levels was found in these amacrine cells. The results demonstrate that ganglion cells show an elevated expression of GAP-43 after ischemia-inflicted damage. These findings suggest a temporal window during which ganglion cells may remodel their neuronal network in the damaged retina.

  9. Constitutive phosphorylation of a Rac GAP MgcRacGAP is implicated in v-Src-induced transformation of NIH3T3 cells.

    PubMed

    Doki, Noriko; Kawashima, Toshiyuki; Nomura, Yasushi; Tsuchiya, Akiho; Oneyama, Chitose; Akagi, Tsuyoshi; Nojima, Yoshihisa; Kitamura, Toshio

    2009-09-01

    MgcRacGAP plays critical roles in cell division through regulating Rho family small GTPases. As we previously reported, phosphorylation of MgcRacGAP on serine 387 (S387) is induced by Aurora B kinase at the midbody during cytokinesis, which is a critical step of cytokinesis. Phosphorylation of S387-MgcRacGAP converts it from RacGAP to RhoGAP, leading to completion of cytokinesis. Here we show that MgcRacGAP is prominently phosphorylated on S387 even in the interphase of v-Src-transformed NIH3T3 cells in the cytoplasm, but not in the interphase of parental NIH3T3 or H-RasV12-transformed NIH3T3 cells. Interestingly, levels of phosphorylation on S387 (pS387) correlated with soft agar colony-forming abilities of v-Src-transformed NIH3T3 cells. Expression of a phosphorylation-mimic mutant MgcRacGAP-S387D enhanced colony formation of v-Src-transformed NIH3T3 cells. Surprisingly, a Rac1 inhibitor but not kinase inhibitors including Aurora B kinase inhibitor specifically inhibited phosphorylation of S387-MgcRacGAP in v-Src-transformed NIH3T3 cells, suggesting the v-Src-induced pathological positive feedback mechanisms towards Rac1 activation using pS387-MgcRacGAP. These results indicated the difference in the mechanisms between v-Src- and H-RasV12-induced transformation, and should shed some light on pathological roles of disordered phosphorylation of MgcRacGAP at S387 in v-Src-induced cell transformation.

  10. Strain-induced band-gap engineering of graphene monoxide and its effect on graphene

    NASA Astrophysics Data System (ADS)

    Pu, H. H.; Rhim, S. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J. H.

    2013-02-01

    Using first-principles calculations we demonstrate the feasibility of band-gap engineering in two-dimensional crystalline graphene monoxide (GMO), a recently reported graphene-based material with a 1:1 carbon/oxygen ratio. The band gap of GMO, which can be switched between direct and indirect, is tunable over a large range (0-1.35 eV) for accessible strains. Electron and hole transport occurs predominantly along the zigzag and armchair directions (armchair for both) when GMO is a direct- (indirect-) gap semiconductor. A band gap of ˜0.5 eV is also induced in graphene at the K' points for GMO/graphene hybrid systems.

  11. Inhibition of RNA transportation induces glioma cell apoptosis via downregulation of RanGAP1 expression.

    PubMed

    Lin, Tsung-Yao; Lee, Chin-Cheng; Chen, Ku-Chung; Lin, Chien-Ju; Shih, Chwen-Ming

    2015-05-05

    The prognosis of glioblastoma remains poor, even treatment with surgery, radiation, or chemotherapy. Therefore, it is still important to develop a new strategy for treatment of glioblastoma. Previous reports demonstrated that rRNA is produced at abnormally high levels in tumor cells. Nuclear export of all non-coding RNAs are known to depend on RanGTPase system. Hydrolyzation of RanGTP-RNA complex by RanGTPase activating protein 1 (RanGAP1) releases RNA from nucleus to cytoplasm. Therefore, inhibition of RNA transportation would be a useful strategy to affect cancer cell fate. In this study, 5-30 μM of oridonin, a natural diterpenoid compound isolated from the traditional Chinese medicine, Rabdosia rubescens, induced U87MG glioma cell apoptosis and RNA accumulation in nucleus at 12h-time point. Before U87MG cell apoptosis, the RanGAP1 protein amount decreased and RanGTP accumulated in nucleus as respectively determined by immunoprecipitation and immunofluorescence, suggesting that decrease of RanGAP1 may result in nuclear entrapment of RanGTP and RNA, and then induce U87MG cell death. In contrast, over-expression of the RanGAP1 protein reversed oridonin-induced U87MG cell apoptosis. Hence, we demonstrated that downregulation of the RanGAP1 protein level by oridonin may result in RNA accumulation in nucleus via nuclear entrapment of RanGTP which eventually led to the apoptosis of glioma cells.

  12. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  13. Light-induced gaps in semiconductor band-to-band transitions.

    PubMed

    Vu, Q T; Haug, H; Mücke, O D; Tritschler, T; Wegener, M; Khitrova, G; Gibbs, H M

    2004-05-28

    We observe a triplet around the third harmonic of the semiconductor band gap when exciting 50-100 nm thin GaAs films with 5 fs pulses at 3 x 10(12) W/cm(2). The comparison with solutions of the semiconductor Bloch equations allows us to interpret the observed peak structure as being due to a two-band Mollow triplet. This triplet in the optical spectrum is a result of light-induced gaps in the band structure, which arise from coherent band mixing. The theory is formulated for full tight-binding bands and uses no rotating-wave approximation.

  14. Antofine-induced connexin43 gap junction disassembly in rat astrocytes involves protein kinase Cβ.

    PubMed

    Huang, Yu-Fang; Liao, Chih-Kai; Lin, Jau-Chen; Jow, Guey-Mei; Wang, Hwai-Shi; Wu, Jiahn-Chun

    2013-03-01

    Antofine, a phenanthroindolizidine alkaloid derived from Cryptocaryachinensis and Ficusseptica in the Asclepiadaceae milkweed family, is cytotoxic for various cancer cell lines. In this study, we demonstrated that treatment of rat primary astrocytes with antofine induced dose-dependent inhibition of gap junction intercellular communication (GJIC), as assessed by scrape-loading 6-carboxyfluorescein dye transfer. Levels of Cx43 protein were also decreased in a dose- and time-dependent manner following antofine treatment. Double-labeling immunofluorescence microscopy showed that antofine (10ng/ml) induced endocytosis of surface gap junctions into the cytoplasm, where Cx43 was co-localized with the early endosome marker EEA1. Inhibition of lysosomes or proteasomes by co-treatment with antofine and their respective specific inhibitors, NH4Cl or MG132, partially inhibited the antofine-induced decrease in Cx43 protein levels, but did not inhibit the antofine-induced inhibition of GJIC. After 30min of treatment, antofine induced a rapid increase in the intracellular Ca(2+) concentration and activation of protein kinase C (PKC)α/βII, which was maintained for at least 6h. Co-treatment of astrocytes with antofine and the intracellular Ca(2+) chelator BAPTA-AM prevented downregulation of Cx43 and inhibition of GJIC. Moreover, co-treatment with antofine and a specific PKCβ inhibitor prevented endocytosis of gap junctions, downregulation of Cx43, and inhibition of GJIC. Taken together, these findings indicate that antofine induces Cx43 gap junction disassembly by the PKCβ signaling pathway. Inhibition of GJIC by antofine may undermine the neuroprotective effect of astrocytes in CNS.

  15. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures.

    PubMed

    Simon, John; Protasenko, Vladimir; Lian, Chuanxin; Xing, Huili; Jena, Debdeep

    2010-01-01

    Impurity-based p-type doping in wide-band-gap semiconductors is inefficient at room temperature for applications such as lasers because the positive-charge carriers (holes) have a large thermal activation energy. We demonstrate high-efficiency p-type doping by ionizing acceptor dopants using the built-in electronic polarization in bulk uniaxial semiconductor crystals. Because the mobile hole gases are field-ionized, they are robust to thermal freezeout effects and lead to major improvements in p-type electrical conductivity. The new doping technique results in improved optical emission efficiency in prototype ultraviolet light-emitting-diode structures. Polarization-induced doping provides an attractive solution to both p- and n-type doping problems in wide-band-gap semiconductors and offers an unconventional path for the development of solid-state deep-ultraviolet optoelectronic devices and wide-band-gap bipolar electronic devices of the future.

  16. DUST FILTRATION BY PLANET-INDUCED GAP EDGES: IMPLICATIONS FOR TRANSITIONAL DISKS

    SciTech Connect

    Zhu Zhaohuan; Dong Ruobing; Nelson, Richard P.; Espaillat, Catherine; Hartmann, Lee E-mail: rdong@astro.princeton.edu E-mail: r.p.nelson@qmul.ac.uk

    2012-08-10

    By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk-the so-called dust filtration mechanism. We have found that a gap opened by a giant planet at 20 AU in an {alpha} = 0.01, M-dot =10{sup -8} M{sub Sun} yr{sup -1} disk can effectively stop dust particles larger than 0.1 mm drifting inward, leaving a submillimeter (submm) dust cavity/hole. However, smaller particles are difficult to filter by a gap induced by a several M{sub J} planet due to (1) dust diffusion and (2) a high gas accretion velocity at the gap edge. Based on these simulations, an analytic model is derived to understand what size particles can be filtered by the planet-induced gap edge. We show that a dimensionless parameter T{sub s} /{alpha}, which is the ratio between the dimensionless dust stopping time and the disk viscosity parameter, is important for the dust filtration process. Finally, with our updated understanding of dust filtration, we have computed Monte Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions of disks with gaps. By comparing with transitional disk observations (e.g., GM Aur), we have found that dust filtration alone has difficulties depleting small particles sufficiently to explain the near-IR deficit of moderate M-dot transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is to invoke both dust filtration and dust growth in the inner disk. In this scenario, a planet-induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration

  17. Microscopic theory of substrate-induced gap effect on real AFM susceptibility in graphene

    NASA Astrophysics Data System (ADS)

    Sahu, Sivabrata; Panda, S. K.; Rout, G. C.

    2017-07-01

    We address here a tight-binding model study of frequency-dependent real part of antiferromagnetic susceptibility for the graphene systems. The Hamiltonian consists of electron hopping upto third nearest-neighbours, substrate and impurity effects in the presence of electron-electron interactions at A and B sublattices. To calculate susceptibility, we evaluate the two-particle electron Green's function by using Zubarev's Green's function technique. The frequency-dependent real part of antiferromagnetic susceptibility of the system is computed numerically by taking 1000 × 1000 grid points of the electron momentum. The susceptibility displays a sharp peak at the neutron momentum transfer energy at low energies and another higher energy peak appearing at substrate-induced gap. The evolution of these two peaks is investigated by varying neutron wave vector, Coulomb correlation energy, substrate-induced gap, electron hopping integrals and A- and B-site electron doping concentrations.

  18. Impurity-induced bound states inside the superconducting gap of FeSe

    NASA Astrophysics Data System (ADS)

    Jiao, Lin; Rößler, Sahana; Koz, Cevriye; Schwarz, Ulrich; Kasinathan, Deepa; Rößler, Ulrich K.; Wirth, Steffen

    2017-09-01

    We investigate the local density of states in the vicinity of a native dumbbell defect arising from an Fe vacancy in FeSe single crystals. The tunneling spectra close to the impurity display two bound states inside the superconducting gap, equally spaced with respect to zero energy but asymmetric in amplitude. Using spin-polarized density functional theory calculations on realistic slab models with an Fe vacancy, we show that such a defect does not induce a local magnetic moment. Therefore, the dumbbell defect is considered as nonmagnetic. Thus, the in-gap bound states emerging from a nonmagnetic defect-induced pair breaking suggest a sign-changing pairing state in this material.

  19. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus

    PubMed Central

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R.

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the

  20. Pharmacological blockade of gap junctions induces repetitive surging of extracellular potassium within the locust CNS.

    PubMed

    Spong, Kristin E; Robertson, R Meldrum

    2013-10-01

    The maintenance of cellular ion homeostasis is crucial for optimal neural function and thus it is of great importance to understand its regulation. Glial cells are extensively coupled by gap junctions forming a network that is suggested to serve as a spatial buffer for potassium (K(+)) ions. We have investigated the role of glial spatial buffering in the regulation of extracellular K(+) concentration ([K(+)]o) within the locust metathoracic ganglion by pharmacologically inhibiting gap junctions. Using K(+)-sensitive microelectrodes, we measured [K(+)]o near the ventilatory neuropile while simultaneously recording the ventilatory rhythm as a model of neural circuit function. We found that blockade of gap junctions with either carbenoxolone (CBX), 18β-glycyrrhetinic acid (18β-GA) or meclofenamic acid (MFA) reliably induced repetitive [K(+)]o surges and caused a progressive impairment in the ability to maintain baseline [K(+)]o levels throughout the treatment period. We also show that a low dose of CBX that did not induce surging activity increased the vulnerability of locust neural tissue to spreading depression (SD) induced by Na(+)/K(+)-ATPase inhibition with ouabain. CBX pre-treatment increased the number of SD events induced by ouabain and hindered the recovery of [K(+)]o back to baseline levels between events. Our results suggest that glial spatial buffering through gap junctions plays an essential role in the regulation of [K(+)]o under normal conditions and also contributes to a component of [K(+)]o clearance following physiologically elevated levels of [K(+)]o. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Spin-Orbit Coupling Induced Gap in Graphene on Pt(111) with Intercalated Pb Monolayer.

    PubMed

    Klimovskikh, Ilya I; Otrokov, Mikhail M; Voroshnin, Vladimir Yu; Sostina, Daria; Petaccia, Luca; Di Santo, Giovanni; Thakur, Sangeeta; Chulkov, Evgueni V; Shikin, Alexander M

    2017-01-24

    Graphene is one of the most promising materials for nanoelectronics owing to its unique Dirac cone-like dispersion of the electronic state and high mobility of the charge carriers. However, to facilitate the implementation of the graphene-based devices, an essential change of its electronic structure, a creation of the band gap should controllably be done. Brought about by two fundamentally different mechanisms, a sublattice symmetry breaking or an induced strong spin-orbit interaction, the band gap appearance can drive graphene into a narrow-gap semiconductor or a 2D topological insulator phase, respectively, with both cases being technologically relevant. The later case, characterized by a spin-orbit gap between the valence and conduction bands, can give rise to the spin-polarized topologically protected edge states. Here, we study the effect of the spin-orbit interaction enhancement in graphene placed in contact with a lead monolayer. By means of angle-resolved photoemission spectroscopy, we show that intercalation of the Pb interlayer between the graphene sheet and the Pt(111) surface leads to formation of a gap of ∼200 meV at the Dirac point of graphene. Spin-resolved measurements confirm the splitting to be of a spin-orbit nature, and the measured near-gap spin structure resembles that of the quantum spin Hall state in graphene, proposed by Kane and Mele [ Phys. Rev. Lett. 2005 , 95 , 226801 ]. With a bandstructure tuned in this way, graphene acquires a functionality going beyond its intrinsic properties and becomes more attractive for possible spintronic applications.

  2. Ginsenoside Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes.

    PubMed

    Xia, Cong-Yuan; Chu, Shi-Feng; Zhang, Shuai; Gao, Yan; Ren, Qian; Lou, Yu-Xia; Luo, Piao; Tian, Man-Tong; Wang, Zhi-Qi; Du, Guo-Hua; Tomioka, Yoshihisa; Yamakuni, Tohru; Zhang, Yi; Wang, Zhen-Zhen; Chen, Nai-Hong

    2017-08-17

    Ginsenoside Rg1 (Rg1), one of the major bioactive ingredients of Panax ginseng C. A. Mey, has neuroprotective effects in animal models of depression, but the mechanism underlying these effects is still largely unknown AIM OF THE STUDY: Gap junction intercellular communication (GJIC) dysfunction is a potentially novel pathogenic mechanism for depression. Thus, we investigated that whether antidepressant-like effects of Rg1 were related to GJIC. Primary rat prefrontal cortical and hippocampal astrocytes cultures were treated with 50μM CORT for 24h to induce gap junction damage. Rg1 (0.1, 1, or 10μM) or fluoxetine (1μM) was added 1h prior to CORT treatment. A scrape loading and dye transfer assay was performed to identify the functional capacity of gap junctions. Western blot was used to detect the expression and phosphorylation of connexin43 (Cx43), the major component of gap junctions. Treatment of primary astrocytes with CORT for 24h inhibited GJIC, decreased total Cx43 expression, and increased the phosphorylation of Cx43 at serine368 in a dose-dependent manner. Pre-treatment with 1μM and 10μM Rg1 significantly improved GJIC in CORT-treated astrocytes from the prefrontal cortex and hippocampus, respectively, and this was accompanied by upregulation of Cx43 expression and downregulation of Cx43 phosphorylation. These findings provide the first evidence indicating that Rg1 can alleviate CORT-induced gap junction dysfunction, which may have clinical significance in the treatment of depression. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    DOE PAGES

    Li, M.; Breizman, B. N.; Zheng, L. J.; ...

    2015-12-04

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuummore » absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.« less

  4. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    SciTech Connect

    Li, M.; Breizman, B. N.; Zheng, L. J.; Chen, Eugene Y.

    2015-12-04

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuum absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.

  5. Vacancy-induced in-gap states in sodium tungsten bronzes: Density functional investigations

    NASA Astrophysics Data System (ADS)

    Paul, S.; Kumari, S.; Raj, S.

    2016-05-01

    We have performed extensive ab-initio self-consistent electronic-structure calculations on WO3 and NaWO3 with single- and double-oxygen-vacancy defects within the framework of density functional theory. Our calculated density of states reveals that the in-gap states in WO3 and NaWO3 are the consequence of oxygen vacancies in the system. The evolution of the induced states occurs from the unpaired electrons donated by the oxygen vacancy. We found that the energy positions of the in-gap states are sensitive to the oxygen vacancy concentrations. The in-gap states in NaWO3 are formed close to the valence band, which are pushed towards the conduction band with the increase in oxygen vacancies, whereas the states are formed mostly in the mid-gap region in the WO3 system. Our finding can now well explain the discrepancy in experimental band dispersion measurements from ARPES with that of WO3 and NaWO3 band calculations.

  6. Dipole-induced band-gap reduction in an inorganic cage.

    PubMed

    Lv, Yaokang; Cheng, Jun; Steiner, Alexander; Gan, Lihua; Wright, Dominic S

    2014-02-10

    Metal-doped polyoxotitanium cages are a developing class of inorganic compounds which can be regarded as nano- and sub-nano sized molecular relatives of metal-doped titania nanoparticles. These species can serve as models for the ways in which dopant metal ions can be incorporated into metal-doped titania (TiO2 ), a technologically important class of photocatalytic materials with broad applications in devices and pollution control. In this study a series of cobalt(II)-containing cages in the size range ca. 0.7-1.3 nm have been synthesized and structurally characterized, allowing a coherent study of the factors affecting the band gaps in well-defined metal-doped model systems. Band structure calculations are consistent with experimental UV/Vis measurements of the Tix Oy absorption edges in these species and reveal that molecular dipole moment can have a profound effect on the band gap. The observation of a dipole-induced band-gap decrease mechanism provides a potentially general design strategy for the formation of low band-gap inorganic cages.

  7. Long-range Neural and Gap Junction Protein-mediated Cues Control Polarity During Planarian Regeneration

    PubMed Central

    Oviedo, Néstor J.; Morokuma, Junji; Walentek, Peter; Kema, Ido P.; Gu, Man Bock; Ahn, Joo-Myung; Hwang, Jung Shan; Gojobori, Takashi; Levin, Michael

    2010-01-01

    SUMMARY Having the ability to coordinate the behavior of stem cells to induce regeneration of specific large-scale structures would have far reaching consequences in the treatment of degenerative diseases, acute injury, and aging. Thus, identifying and learning to manipulate the sequential steps that determine the fate of new tissue within the overall morphogenetic program of the organism is fundamental. We identified novel early signals, mediated by the central nervous system and 3 innexin proteins, which determine the fate and axial polarity of regenerated tissue in planarians. Modulation of gap junction-dependent and neural signals specifically induces ectopic anterior regeneration blastemas in posterior and lateral wounds. These ectopic anterior blastemas differentiate new brains that establish permanent primary axes re-established during subsequent rounds of unperturbed regeneration. These data reveal powerful novel controls of pattern formation and suggest a constructive model linking nervous inputs and polarity determination in early stages of regeneration. PMID:20026026

  8. Local energy gap opening induced by hemin dimerization in aqueous solution.

    PubMed

    Golnak, Ronny; Xiao, Jie; Atak, Kaan; Khan, Munirah; Suljoti, Edlira; Aziz, Emad F

    2015-02-19

    The local electronic structure of the hemin Fe center has been investigated by X-ray absorption and emission spectroscopy (XAS/XES) for hemin in aqueous solution where hemin dimerization occurs. The XAS and XES spectra of the hemin dimer were then compared with those of the hemin monomer we previously studied in dimethyl sulfoxide solution. A local energy gap opening at the Fe sites was observed for the hemin dimer, with the occupied valence states shifted to lower binding energies, while the unoccupied valence states share the same energies as the hemin monomer. Such a gap opening is argued to originate from the Fe 3d orbital localization induced by hemin dimerization in aqueous solution.

  9. Strain-induced gap transition and anisotropic Dirac-like cones in monolayer and bilayer phosphorene

    SciTech Connect

    Wang, Can; Xia, Qinglin Nie, Yaozhuang; Guo, Guanghua

    2015-03-28

    The electronic properties of two-dimensional monolayer and bilayer phosphorene subjected to uniaxial and biaxial strains have been investigated using first-principles calculations based on density functional theory. Strain engineering has obvious influence on the electronic properties of monolayer and bilayer phosphorene. By comparison, we find that biaxial strain is more effective in tuning the band gap than uniaxial strain. Interestingly, we observe the emergence of Dirac-like cones by the application of zigzag tensile strain in the monolayer and bilayer systems. For bilayer phosphorene, we induce the anisotropic Dirac-like dispersion by the application of appropriate armchair or biaxial compressive strain. Our results present very interesting possibilities for engineering the electronic properties of phosphorene and pave a way for tuning the band gap of future electronic and optoelectronic devices.

  10. An impurity-induced gap system as a quantum data bus for quantum state transfer

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.

    2014-09-01

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.

  11. An impurity-induced gap system as a quantum data bus for quantum state transfer

    SciTech Connect

    Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.

    2014-09-15

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.

  12. Spontaneous calcium signals induced by gap junctions in a network model of astrocytes

    NASA Astrophysics Data System (ADS)

    Kazantsev, V. B.

    2009-01-01

    The dynamics of a network model of astrocytes coupled by gap junctions is investigated. Calcium dynamics of the single cell is described by the biophysical model comprising the set of three nonlinear differential equations. Intercellular dynamics is provided by the diffusion of inositol 1,4,5-trisphosphate (IP3) through gap junctions between neighboring astrocytes. It is found that the diffusion induces the appearance of spontaneous activity patterns in the network. Stability of the network steady state is analyzed. It is proved that the increase of the diffusion coefficient above a certain critical value yields the generation of low-amplitude subthreshold oscillatory signals in a certain frequency range. It is shown that such spontaneous oscillations can facilitate calcium pulse generation and provide a certain time scale in astrocyte signaling.

  13. Shear Stress induced Stretching of Red Blood Cells by Oscillating Bubbles within a Narrow Gap

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Mohammadzadeh, Milad; Ohl, Claus-Dieter; Claus-Dieter Ohl Team

    2013-11-01

    The flow pattern, especially the boundary layer caused by the expanding/contracting bubble in a narrow gap (15 μm) and the resultant stretching of red blood cells is investigated in this work. High speed recordings show that a red blood cell (biconcave shape, thickness of 1-2 μm) can be elongated to five times its original length by a laser-induced cavitation bubble within the narrow gap. However, flexible cancer cells in suspension (RKO, spherical shape, diameter of 10-15 μm) are hardly elongated under the same experimental condition. We hypothesize that the shear stress at the boundary layer is crucial for this elongation to occur. Therefore, in order to resolve the related fluid dynamics, we conducted numerical simulations using the finite element method (Fluent). The rapidly expanding/contracting vapor bubble is successfully modeled by employing viscosity and surface tension. The transient pressure inside the bubble and the velocity profile of the flow is obtained. We observe strong shear near the upper and lower boundary during the bubble oscillation. The flow fields are compared with analytical solutions to transient and pulsating flows in 2D. In the experiment the red blood cells sit within the lower boundary layer, thus are probably elongated by this strong shear flow. In contrast, the spherical cancer cells are of comparable size to the gap height so that they are lesser affected by this boundary layer flow.

  14. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating.

    PubMed

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-09

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  15. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  16. Virtual gap states induced modifications in charge neutrality level in cadmium oxide thin films

    NASA Astrophysics Data System (ADS)

    Das, Arkaprava; Gautam, Subodh K.; Umapathy, G. R.; Ojha, S.; Singh, Fouran

    2017-04-01

    Present manuscript reports on the creation of virtual gap states (ViGS) in sol-gel spin coated cadmium oxide thin films by tin doping and irradiation at different density of electronic excitations (EEs) induced by energetic ions. Effects of ViGS on charge neutrality level (CNL), which affects the modifications in band gap (BG) of such oxide semiconductors are investigated. Studies reveal that there were insignificant changes in the structural and morphological properties of the films. Interestingly, the transmittance spectrum shows insignificant changes in the films irradiated by low density EEs but an overall decrease in transmittance for high density EEs. However, Raman spectroscopy reveals a significant change in longitudinal optical (LO) modes with tin doping which get intensified and they exhibit an insignificant influence upon irradiation. The BG with respect to bulk is observed to be increased by 0.57 eV and 0.83 eV upon tin doping and irradiation, respectively. These variations are attributed to the combined effect of Burstein-Moss shift (BMS) and ViGS, which were created by tin doping and EEs. It is observed that density of ViGS strongly depends on the density of EEs. A schematic band diagram is also developed for demonstrating the observed influence of ViGS on band gap modifications. Thus the reported investigations are very interesting for the in-depth understanding of fundamental interactions and besides their possible potential applications in the development of optoelectronic devices.

  17. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  18. Gap junction blockage promotes cadmium-induced apoptosis in BRL 3A derived from Buffalo rat liver cells

    PubMed Central

    Hu, Di; Zou, Hui; Han, Tao; Xie, Junze; Dai, Nannan; Zhuo, Liling; Gu, Jianhong; Bian, Jianchun; Yuan, Yan; Liu, Xuezhong

    2016-01-01

    Gap junctions mediate direct communication between cells; however, toxicological cascade triggered by nonessential metals can abrogate cellular signaling mediated by gap junctions. Although cadmium (Cd) is known to induce apoptosis in organs and tissues, the mechanisms that underlie gap junction activity in Cd-induced apoptosis in BRL 3A rat liver cells has yet to be established. In this study, we showed that Cd treatment decreased the cell index (a measure of cellular electrical impedance) in BRL 3A cells. Mechanistically, we found that Cd exposure decreased expression of connexin 43 (Cx43), increased expression of p-Cx43 and elevated intracellular free Ca2+ concentration, corresponding to a decrease in gap junctional intercellular communication. Gap junction blockage pretreatment with 18β-glycyrrhizic acid (GA) promoted Cd-induced apoptosis, involving changes in expression of Bax, Bcl-2, caspase-3 and the mitochondrial transmembrane electrical potential (Δψm). Additionally, GA was found to enhance ERK and p38 activation during Cd-induced activation of mitogen-activated protein kinases, but had no significant effect on JNK activation. Our results indicated the apoptosis-related proteins and the ERK and p38 signaling pathways may participate in gap junction blockage promoting Cd-induced apoptosis in BRL 3A cells. PMID:27051341

  19. Serotonin passes through myoendothelial gap junctions to promote pulmonary arterial smooth muscle cell differentiation.

    PubMed

    Gairhe, Salina; Bauer, Natalie N; Gebb, Sarah A; McMurtry, Ivan F

    2012-11-01

    Myoendothelial gap junctional signaling mediates pulmonary arterial endothelial cell (PAEC)-induced activation of latent TGF-β and differentiation of cocultured pulmonary arterial smooth muscle cells (PASMCs), but the nature of the signal passing from PAECs to PASMCs through the gap junctions is unknown. Because PAECs but not PASMCs synthesize serotonin, and serotonin can pass through gap junctions, we hypothesized that the monoamine is the intercellular signal. We aimed to determine whether PAEC-derived serotonin mediates PAEC-induced myoendothelial gap junction-dependent activation of TGF-β signaling and differentiation of PASMCs. Rat PAECs and PASMCs were monocultured or cocultured with (touch) or without (no-touch) direct cell-cell contact. In all cases, tryptophan hydroxylase 1 (Tph1) transcripts were expressed predominantly in PAECs. Serotonin was detected by immunostaining in both PAECs and PASMCs in PAEC/PASMC touch coculture but was not found in PASMCs in either PAEC/PASMC no-touch coculture or in PASMC/PASMC touch coculture. Furthermore, inhibition of gap junctions but not of the serotonin transporter in PAEC/PASMC touch coculture prevented serotonin transfer from PAECs to PASMCs. Inhibition of serotonin synthesis pharmacologically or by small interfering RNAs to Tph1 in PAECs inhibited the PAEC-induced activation of TGF-β signaling and differentiation of PASMCs. We concluded that serotonin synthesized by PAECs is transferred through myoendothelial gap junctions into PASMCs, where it activates TGF-β signaling and induces a more differentiated phenotype. This finding suggests a novel role of gap junction-mediated intercellular serotonin signaling in regulation of PASMC phenotype.

  20. Radiation induced bystander effect by GAP junction channels in human fibroblast cell

    NASA Astrophysics Data System (ADS)

    Furusawa, Y.; Shao, C.; Aoki, M.; Kobayashi, Y.; Funayama, T.; Ando, K.

    The chemical factor involved in bystander effect and its transfer pathway were investigated in a confluent human fibroblast cell (AG1522) population. Micronuclei (MN) and G1-phase arrest were detected in cells irradiated by carbon (~100 keV/μm) ions at HIMAC. A very low dose irradiation showed a high effectiveness in producing MN, suggesting a bystander effect. This effectiveness was enhanced by 8-Br-cAMP treatment that increases gap junctional intercellular communication (GJIC). On the other hand, the effect was reduced by 5% DMSO treatment, which reduce the reactive oxygen species (ROS), and suppressed by 100 μM lindane treatment, an inhibitor of GJIC. In addition, the radiation-induced G1-phase arrest was also enhanced by cAMP, and reduced or suppressed by DMSO or lindane. A microbeam device (JAERI) was also used for these studies. It was found that exposing one single cell in a confluent cell population to exactly one argon (~1260 keV/μm) or neon (~430 keV/ μm) ion, additional MN could be detected in many other unirradiated cells. The yield of MN increased with the number of irradiated cells. However, there was no significant difference in the MN induction when the cells were irradiated by increasing number of particles. MN induction by bystander effect was partly reduced by DMSO, and effectively suppressed by lindane. Our results obtained from both random irradiation and precise numbered irradiation indicate that both GJIC and ROS contributed to the radiation-induced bystander effect, but the cell gap junction channels likely play an essential role in the release and transfer of radiation-induced chemical factors.

  1. The resonance-induced in-gap modes in photonic crystals composed of metal-coated dielectric spheres

    NASA Astrophysics Data System (ADS)

    Zhang, Weiyi; Wang, Zhenlin; Hu, An; Ming, Naiben

    2000-11-01

    Using the vector wave multiple-scattering method we show that a sizable photonic band gap and resonance-induced in-gap modes can be realized simultaneously in crystals composed of metal-coated dielectric spheres. The position and width of the in-gap modes can be controlled by making appropriate choices of the dielectric constant of the inner dielectric sphere and thickness of the metal-coating layer, respectively. Such properties can be very useful in making optical band filters as well as microcavity lasers if they are sustained in the presence of dissipation. The calculated transmission spectra suggest that the resonance-induced in-gap modes decrease in intensity with dissipation and exist only for good metals.

  2. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    SciTech Connect

    Zhang, Jingdi; Averitt, Richard D. E-mail: raveritt@ucsd.edu; Zhao, Xiaoguang; Fan, Kebin; Wang, Xiaoning; Zhang, Xin E-mail: raveritt@ucsd.edu; Zhang, Gu-Feng; Geng, Kun

    2015-12-07

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.

  3. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Zhao, Xiaoguang; Fan, Kebin; Wang, Xiaoning; Zhang, Gu-Feng; Geng, Kun; Zhang, Xin; Averitt, Richard D.

    2015-12-01

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ˜170. Above an in-gap E-field threshold amplitude of ˜10 MV/cm-1, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.

  4. Novel Rab GAP-like Protein, CIP85, Interacts with Connexin43 and Induces Its Degradation†

    PubMed Central

    Lan, Zheng; Kurata, Wendy E.; Martyn, Kendra D.; Jin, Chengshi; Lau, Alan F.

    2009-01-01

    Gap junctions play critical roles in tissue function and homeostasis. Connexin43 (Cx43) is a major gap junction protein expressed in the mammalian heart and other tissues and may be regulated by its interaction with other cellular proteins. Using the yeast two-hybrid screen, we identified a novel Cx43-interacting protein of 85-kDa, CIP85, which contains a single TBC, SH3, and RUN domain, in addition to a short coiled coil region. Homologues containing this unique combination of domains were found in human, D. melanogaster, and C. elegans. CIP85 mRNA is expressed ubiquitously in mouse and human tissues. In vitro interaction assays and in vivo co-immunoprecipitation experiments confirmed the interaction of endogenous CIP85 with Cx43. In vitro interaction experiments using CIP85 mutants with in-frame deletions of the TBC, SH3, and RUN domains indicated that the SH3 domain of CIP85 is involved in its interaction with Cx43. Conversely, analysis of Cx43 mutants with proline to alanine substitutions in the two proline-rich regions of Cx43 revealed that the P253LSP256 motif is an important determinant of the ability of Cx43 to interact with CIP85. Laser-scanning confocal microscopy showed that CIP85 colocalized with Cx43 at the cell periphery, particularly in areas reminiscent of gap junction plaques. The functional importance of the interaction between CIP85 and Cx43 was suggested by the observation that CIP85 appears to induce the turnover of Cx43 through the lysosomal pathway. PMID:15709751

  5. Variation in Yield Gap Induced by Nitrogen, Phosphorus and Potassium Fertilizer in North China Plain

    PubMed Central

    Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin

    2013-01-01

    A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha−1 yr−1 for wheat and 560.6 kg ha−1 yr−1 for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha−1 yr−1. The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP. PMID:24349204

  6. Variation in yield gap induced by nitrogen, phosphorus and potassium fertilizer in North China Plain.

    PubMed

    Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin

    2013-01-01

    A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha(-1) yr(-1) for wheat and 560.6 kg ha(-1) yr(-1) for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha(-1) yr(-1). The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP.

  7. Gap states in pentacene thin film induced by inert gas exposure.

    PubMed

    Bussolotti, Fabio; Kera, Satoshi; Kudo, Kazuhiro; Kahn, Antoine; Ueno, Nobuo

    2013-06-28

    We studied gas-exposure effects on pentacene (Pn) films on SiO2 and Au(111) substrates by ultrahigh sensitivity photoelectron spectroscopy, which can detect the density of states of ∼10(16) states eV-1 cm-3 comparable to electrical measurements. The results show the striking effects for Pn/SiO2: exposure to inert gas (N2 and Ar) produces a sharp rise in gap states from ∼10(16) to ∼10(18) states eV-1 cm-3 and pushes the Fermi level closer to the valence band (0.15-0.17 eV), as does exposure to O2 (0.20 eV), while no such gas-exposure effect is observed for Pn/Au(111). The results demonstrate that these gap states originate from small imperfections in the Pn packing structure, which are induced by gas penetration into the film through the crystal grain boundaries.

  8. Filling of Cloud-Induced Gaps for Land Use and Land Cover Classifications Around Refugee Camps

    NASA Astrophysics Data System (ADS)

    Braun, Andreas; Hagensieker, Ron; Hochschild, Volker

    2016-08-01

    Clouds cover is one of the main constraints in the field of optical remote sensing. Especially the use of multispectral imagery is affected by either fully obscured data or parts of the image which remain unusable. This study compares four algorithms for the filling of cloud induced gaps in classified land cover products based on Markov Random Fields (MRF), Random Forest (RF), Closest Spectral Fit (CSF) operators. They are tested on a classified image of Sentinel-2 where artificial clouds are filled by information derived from a scene of Sentinel-1. The approaches rely on different mathematical principles and therefore produced results varying in both pattern and quality. Overall accuracies for the filled areas range from 57 to 64 %. Best results are achieved by CSF, however some classes (e.g. sands and grassland) remain critical through all approaches.

  9. Field-induced gap and quantized charge pumping in a nanoscale helical wire

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-Liang; Zhang, Shou-Cheng

    2009-06-01

    We propose several physical phenomena based on nanoscale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the applied voltage. A similar idea can be applied to “geometrically” construct one-dimensional systems with arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a standard for the high-precession measurement of the electric current. The inverse effect implies that passing an electric current through a helical wire in the presence of a transverse static electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nanoscale electromechanical motors. Finally, our methodology also enables ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

  10. Numerical investigation of the effects of the clearance gap between the inducer and impeller of an axial blood pump.

    PubMed

    Chan, Weng-Kong; Wong, Yew-Wah; Ong, Wendy; Koh, Sy-Yuan; Chong, Victor

    2005-03-01

    A series of numerical models are generated to investigate the flow characteristics and performance of an axial blood pump. The pump model includes a straightener, an inducer-impeller, and diffuser. Numerical studies of the effects of angular alignment of the inducer and impeller blades and the axial clearance gap between the inducer and impeller are presented in this article. The pump characteristics derived from numerical simulation are validated with experimental data. Numerically simulated results showed a sinusoidal variation in the pressure generated across the pump with changes in angular alignment between the inducer and impeller. This is attributed to additional losses when flow is forced or diverted from the trailing edge of the inducer to either the pressure or suction side of the impeller blade when the alignment between the two sets of blades is not optimal. The pressure generated is a maximum when the impeller blades are at 0 or 30 degrees with respect to the inducer. The effect of rotating the impeller with respect to the inducer causes the sinusoidal pressure variation. In addition, it was observed that when the clearance gap between the inducer and impeller is reduced to 1 mm, the pressure generated is a minimum when compared to the other models. This is attributed to the interference between the inducer and impeller when the gap separating them is too small. The location of the maximum pressure on the pressure side of the impeller blade shifts upstream while its magnitude decreases for small clearance gap between the inducer and the impeller. There was no flow separation in the inducer while small regions of backflow are observed at the impeller trailing edge. Recommendations for future modifications and improvements to the pump design and model simulation are also given.

  11. Dopaminergic D1 receptor agonist SKF 38393 induces GAP-43 expression and long-term potentiation in hippocampus in vivo.

    PubMed

    Williams, Shimere; Mmbaga, Natu; Chirwa, Sanika

    2006-07-10

    We evaluated whether activating dopamine D1 receptors (D1R) with an agonist will mimic the effects of long-term potentiation (LTP)-inducing electrical stimulation and trigger the expression of the presynaptic growth-associated protein 43 (GAP-43), a putative synaptic plasticity factor. Thus, we conducted GAP-43 protein analyses together with assessments of LTP across CA3/CA1 synapses in guinea pigs administered with SKF38393 (the D1R agonist) and/or SCH23390 (the D1R antagonist). Our results showed that guinea pigs treated with SKF38393 coupled with low-frequency stimulation gradually exhibited an LTP-like potentiation in correlation with increased GAP-43 protein expression. However, when SKF38393 treatment was preceded by administration of SCH23390, this antagonized the occurrence of both synaptic potentiation and GAP-43 up-regulation. By comparison, persistent LTP was readily expressed after brief high frequency tetanic stimulation in control guinea pigs, whereas animals injected with SCH23390 and tetanized only developed early-LTP but not late-LTP. Western blot analyses showed GAP-43 up-regulation in the tetanized control guinea pigs but not those injected with SCH23390. We conclude that direct D1R activations with an agonist can mimic LTP-inducing electrical stimulation to produce GAP-43 up-regulation and synaptic plasticity.

  12. Chemopreventive agents attenuate rapid inhibition of gap junctional intercellular communication induced by environmental toxicants

    PubMed Central

    Babica, Pavel; Čtveráčková, Lucie; Lenčešová, Zuzana; Trosko, James E.; Upham, Brad L.

    2016-01-01

    Altered gap junctional intercellular communication (GJIC) has been associated with chemical carcinogenesis, where both chemical tumor promoters and chemopreventive agents (CPAs) are known to conversely modulate GJIC. The aim of this study was to investigate whether attenuation of chemically inhibited GJIC represents a common outcome induced by different CPAs, which could be effectively evaluated using in vitro methods. Rat liver epithelial cells WB-F344 were pretreated with a CPA for either 30 min or 24 h, and then exposed to GJIC-inhibiting concentration of a selected tumor promoter or environmental toxicant (12-O-tetradecanoylphorbol-13-acetate, lindane, fluoranthene, DDT, perfluorooctanoic acid or pentachlorophenol). Out of nine CPAs tested, quercetin and silibinin elicited the most pronounced effects, preventing the dysregulation of GJIC by all the GJIC-inhibitors, but DDT. Metformin and curcumin attenuated the effects of three GJIC-inhibitors, whereas the other CPAs prevented the effects of two (diallyl sulfide, emodin) or one (indole-3 carbinol, thymoquinone) GJIC-inhibitor. Significant attenuation of chemically induced inhibition of GJIC was observed in 27 (50%) out of 54 possible combinations of nine CPAs and six GJIC inhibitors. Our data demonstrate that in vitro evaluation of GJIC can be used as an effective screening tool for identification of chemicals with potential chemopreventive activity. PMID:27266532

  13. Chemopreventive Agents Attenuate Rapid Inhibition of Gap Junctional Intercellular Communication Induced by Environmental Toxicants.

    PubMed

    Babica, Pavel; Čtveráčková, Lucie; Lenčešová, Zuzana; Trosko, James E; Upham, Brad L

    2016-07-01

    Altered gap junctional intercellular communication (GJIC) has been associated with chemical carcinogenesis, where both chemical tumor promoters and chemopreventive agents (CPAs) are known to conversely modulate GJIC. The aim of this study was to investigate whether attenuation of chemically inhibited GJIC represents a common outcome induced by different CPAs, which could be effectively evaluated using in vitro methods. Rat liver epithelial cells WB-F344 were pretreated with a CPA for either 30 min or 24 h, and then exposed to GJIC-inhibiting concentration of a selected tumor promoter or environmental toxicant [12-O-tetradecanoylphorbol-13-acetate (TPA), lindane, fluoranthene, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), perfluorooctanoic acid (PFOA), or pentachlorophenol]. Out of nine CPAs tested, quercetin and silibinin elicited the most pronounced effects, preventing the dysregulation of GJIC by all the GJIC inhibitors, but DDT. Metformin and curcumin attenuated the effects of three GJIC inhibitors, whereas the other CPAs prevented the effects of two (diallyl sulfide, emodin) or one (indole-3-carbinol, thymoquinone) GJIC inhibitor. Significant attenuation of chemically induced inhibition of GJIC was observed in 27 (50%) out of 54 possible combinations of nine CPAs and six GJIC inhibitors. Our data demonstrate that in vitro evaluation of GJIC can be used as an effective screening tool for identification of chemicals with potential chemopreventive activity.

  14. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication.

    PubMed

    Kitazawa, Masato; Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun'ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-Ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy.

  15. Noise magnetic fields abolish the gap junction intercellular communication suppression induced by 50 hz magnetic fields.

    PubMed

    Zeng, Qunli; Ke, Xueqin; Gao, Xiangwei; Fu, Yiti; Lu, Deqiang; Chiang, Huai; Xu, Zhengping

    2006-05-01

    Previously, we have reported that exposure to 50 Hz coherent sinusoidal magnetic fields (MF) for 24 h inhibits gap junction intercellular communication (GJIC) in mammalian cells at an intensity of 0.4 mT and enhances the inhibition effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) at 0.2 mT. In the present study, we further explored the effects of incoherent noise MF on MF-induced GJIC inhibition. GJIC was determined by fluorescence recovery after photobleaching (FRAP) with a laser-scanning confocal microscope. The rate of fluorescence recovery (R) at 10 min after photobleaching was adopted as the functional index of GJIC. The R-value of NIH3T3 cells exposed to 50 Hz sinusoidal MF at 0.4 mT for 24 h was 30.85 +/- 14.70%, while the cells in sham exposure group had an R-value of 46.36 +/- 20.68%, demonstrating that the GJIC of NIH3T3 cells was significantly inhibited by MF exposure (P < .05). However, there were no significant differences in the R-values of the sham exposure, MF-plus-noise MF exposure (R: 49.58 +/- 19.38%), and noise MF exposure groups (R: 46.74 +/- 21.14%) (P > .05), indicating that the superposition of a noise MF alleviated the suppression of GJIC induced by the 50 Hz MF. In addition, although MF at an intensity of 0.2 mT synergistically enhanced TPA-induced GJIC inhibition (R: 24.90 +/- 13.50% vs. 35.82 +/- 17.18%, P < .05), further imposition of a noise MF abolished the synergistic effect of coherent MF (R: 32.51 +/- 18.37%). Overall, the present data clearly showed that although noise MF itself had no effect on GJIC of NIH3T3 cells, its superposition onto a coherent sinusoidal MF at the same intensity abolished MF-induced GJIC suppression. This is the first report showing that noise MF neutralizes 50 Hz MF-induced biological effect by using a signaling component as the test endpoint.

  16. The number and size of subhalo-induced gaps in stellar streams

    NASA Astrophysics Data System (ADS)

    Erkal, Denis; Belokurov, Vasily; Bovy, Jo; Sanders, Jason L.

    2016-11-01

    Ample observational capabilities exist today to detect the small density perturbations that low-mass dark matter subhaloes impart on stellar streams from disrupting Galactic satellites. In anticipation of these observations, we investigate the expected number and size of gaps by combining an analytic prescription for gap evolution on circular orbits with the flux of subhaloes near the stream. We explore the distribution of gap sizes and depths for a typical cold stream around the Milky Way and find that for a given stream age and gap depth, each subhalo mass produces a characteristic gap size. For a stream with an age of a few Gyr, orbiting at a distance of 10-20 kpc from the Galactic centre, even modest subhaloes with a mass of 106-107 M⊙ produce gaps with sizes that are of the order of several degrees. We consider the number and distribution of gap sizes created by subhaloes with masses 105-109 M⊙, accounting for the expected depletion of subhaloes by the Milky Way disc, and present predictions for six cold streams around the Milky Way. For Pal 5, we forecast 0.7 gaps with a density depletion of at least 25 per cent and a typical gap size of 8°. Thus, there appears to be no tension between the recent non-detection of density depletions in the Pal 5 tidal tails and ΛCDM expectations. These predictions can be used to guide the scale of future gap searches.

  17. Ginsenoside Rg1-induced antidepressant effects involve the protection of astrocyte gap junctions within the prefrontal cortex.

    PubMed

    Jin, Can; Wang, Zhen-Zhen; Zhou, Heng; Lou, Yu-Xia; Chen, Jiao; Zuo, Wei; Tian, Man-Tong; Wang, Zhi-Qi; Du, Guo-Hua; Kawahata, Ichiro; Yamakuni, Tohru; Zhang, Yi; Chen, Nai-Hong; Zhang, Dan-Shen

    2017-04-03

    Ginsenoside Rg1 (Rg1) exhibits antidepressant-like activity by increasing neurogenesis and dendritic spine density without discernible side effects. However, the molecular mechanisms underlying Rg1 antidepressant activity remain poorly understood. As the dysfunction of gap junctions between astrocytes in the prefrontal cortex (PFC) is implicated in major depression disorder, the aim of this study was to investigate the effects of Rg1 on astrocyte gap junctions in the PFC. Rats exposed to chronic unpredictable stress (CUS) were administered Rg1 (5, 10, and 20mg/kg) for 28days and analyzed for depressive symptoms using the sucrose preference and forced swimming tests. Functional and morphological changes of gap junction channels in the PFC were evaluated using dye transfer and electron microscopy, respectively. The expression of connexin 43 (Cx43) was analyzed by western blotting. Rg1 markedly alleviated depression-like behavior in rats. Long-term Rg1 treatment of CUS-exposed rats also significantly prevented the decrease in dye diffusion and improved the ultrastructure of astrocyte gap junctions in the PFC, indicating beneficial effects on the functional activity of gap junction channels in the brain. In addition, Rg1 upregulated Cx43 expression in the PFC reduced by CUS exposure, which significantly correlated with its antidepressant-like effects. The results demonstrate that Rg1-induced antidepressant effects are might be mediated, in part, by protecting astrocyte gap junctions within the prefrontal cortex.

  18. Endothelial gaps and adherent leukocytes in allergen-induced early- and late-phase plasma leakage in rat airways.

    PubMed Central

    Baluk, P.; Bolton, P.; Hirata, A.; Thurston, G.; McDonald, D. M.

    1998-01-01

    Exposure of sensitized individuals to antigen can induce allergic responses in the respiratory tract, manifested by early and late phases of vasodilatation, plasma leakage, leukocyte influx, and bronchoconstriction. Similar responses can occur in the skin, eye, and gastrointestinal tract. The early-phase response involves mast cell mediators and the late-phase response is leukocyte dependent, but the mechanism of leakage is not understood. We sought to identify the leaky blood vessels, to determine whether these vessels contained endothelial gaps, and to analyze the relationship of the gaps to adherent leukocytes, using biotinylated lectins or silver nitrate to stain the cells in situ and Monastral blue as a tracer to quantify plasma leakage. Most of the leakage occurred in postcapillary venules (< 40-microns diameter), whereas most of the leukocyte migration (predominantly neutrophils) occurred in collecting venules. Capillaries and arterioles did not leak. Endothelial gaps were found in the leaky venules, both by silver nitrate staining and by scanning electron microscopy, and 94% of the gaps were distinct from sites of leukocyte adhesion or migration. We conclude that endothelial gaps contribute to both early and late phases of plasma leakage induced by antigen, but most leakage occurs upstream to sites of leukocyte adhesion. Images Figure 3 Figure 5 Figure 6 Figure 7 PMID:9626051

  19. Interface Induced Gap State Models and ZnO Schottky Contacts

    NASA Astrophysics Data System (ADS)

    Durbin, Steven; Allen, Martin

    2010-03-01

    Practical aspects of fabricating Schottky contacts, such as lateral inhomogeneity, contaminants, and defects, can complicate the comparison of experimentally obtained barrier heights to theoretical predictions. The diode ideality factor η (which should approach unity for laterally homogeneous interfaces, after accounting for image force effects) is also strongly affected by the same issues, and correlations can be observed between barrier height and η when measuring large numbers of devices. ZnO could prove to be an interesting test case for evaluating various theoretical models, as it is significantly more ionic than most semiconductors, resulting in weaker Fermi pinning due to interface states. ZnO also does not require the removal of a native oxide layer for device processing, thereby avoiding often aggressive cleaning procedures. We have fabricated arrays of rectifying metal-ZnO contacts using bulk wafers and a wide variety of metals, using a technique which results in large barrier heights (typically > 0.8 eV) and low η (approaching the image force limit). Using the electrical characteristics of these diodes, we evaluate both Tung's chemical bonding and M"onch's metal induced gap states + electronegativity models. The lack of agreement with either of these popular models raises several questions, including whether predictions for the branch point energy in ZnO --- a parameter relevant to discussions of heterointerfaces as well as doping ability --- are accurate.

  20. Saffman-Taylor-like instability in a narrow gap induced by dielectric barrier discharge.

    PubMed

    Hou, Shang-Yan; Chu, Hong-Yu

    2015-07-01

    This work is inspired by the expansion of the plasma bubble in a narrow gap reported by Chu and Lee [Phys. Rev. Lett. 107, 225001 (2011)]. We report the unstable phenomena of the plasma-liquid interface with different curvature in a Hele-Shaw cell. Dielectric barrier discharge is produced in the cell at atmospheric pressure which is partially filled with silicone oil. We show that the Saffman-Taylor-like instability is observed on the bubble-type, channel-type, and drop-type interfaces. The Schlieren observation of the plasma-drop interaction reveals that there is a vapor layer around the drop and the particle image velocimetry shows the liquid flow inside the drop. We propose that the thermal Marangoni effect induced by the plasma heating is responsible for the unstable phenomena of the plasma-liquid interaction. The fluctuation of the interface is shown consistently with the Saffman-Taylor instability modified by the temperature-dependent velocity and surface tension.

  1. Polarization-induced electrical conductivity in ultra-wide band gap AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Armstrong, Andrew M.; Allerman, Andrew A.

    2016-11-01

    Unintentionally doped (UID) AlGaN epilayers graded over Al compositions of 80%-90% and 80%-100% were grown by metal organic vapor phase epitaxy and were electrically characterized using contactless sheet resistance (Rsh) and capacitance-voltage (C-V) measurements. Strong electrical conductivity in the UID graded AlGaN epilayers resulted from polarization-induced doping and was verified by the low resistivity of 0.04 Ω cm for the AlGaN epilayer graded over 80%-100% Al mole fraction. A free electron concentration (n) of 4.8 × 1017 cm-3 was measured by C-V for Al compositions of 80%-100%. Average electron mobility ( μ ¯ ) was calculated from Rsh and n data for three ranges of Al composition grading, and it was found that UID AlGaN graded from 88%-96% had μ ¯ = 509 cm2/V s. The combination of very large band gap energy, high μ ¯ , and high n for UID graded AlGaN epilayers make them attractive as a building block for high voltage power electronic devices such as Schottky diodes and field effect transistors.

  2. Field-induced Gap and Quantized Charge Pumping in Nano-helix

    SciTech Connect

    Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-02-15

    We propose several novel physical phenomena based on nano-scale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the applied voltage. Similar idea can be applied to 'geometrically' constructing one-dimensional systems with arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a new standard for the high precession measurement of the electric current. The inverse effect implies that passing an electric current through a helical wire in the presence of a transverse static electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nano-scale electro-mechanical motors. Finally, our methodology also enables new ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

  3. Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS.

    PubMed

    Esteban, Miguel A; Peng, Meixiu; Deli, Zhang; Cai, Jie; Yang, Jiayin; Xu, Jianyong; Lai, Liangxue; Pei, Duanqing

    2010-04-01

    Recently, three independent laboratories reported the generation of induced pluripotent stem cells (iPSCs) from pig (Sus scrofa). This finding sums to the growing list of species (mouse, human, monkey, and rat, in this order) for which successful reprogramming using exogenous factors has been achieved, and multiple others are possibly forthcoming. But apart from demonstrating the universality of the network identified by Shinya Yamanaka, what makes the porcine model so special? On one side, pigs are an agricultural commodity and have an easy and affordable maintenance compared with nonhuman primates that normally need to be imported. On the other side, resemblance (for example, size of organs) of porcine and human physiology is striking and because pigs are a regular source of food the ethical concerns that still remain in monkeys are not applicable. Besides, the prolonged lifespan of pigs compared with other domestic species can allow exhaustive follow up of side effects after transplantation. Porcine iPSCs may thus fill the gap between the mouse model, which due to its ease is preferred for mechanistic studies, and the first clinical trials using iPSCs in humans. However, although these studies are relevant and have created significant interest they face analogous problems that we discuss herein together with potential new directions.

  4. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    SciTech Connect

    Zou, Hui; Zhuo, Liling; Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong; Liu, Zongping

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  5. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication

    PubMed Central

    Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun’ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy. PMID:28056049

  6. Functional role of gap junctions in cytokine-induced leukocyte adhesion to endothelium in vivo

    PubMed Central

    Véliz, Loreto P.; González, Francisco G.; Duling, Brian R.; Sáez, Juan C.; Boric, Mauricio P.

    2008-01-01

    To assess the hypothesis that gap junctions (GJs) participate on leukocyte-endothelium interactions in the inflammatory response, we compared leukocyte adhesion and transmigration elicited by cytokine stimulation in the presence or absence of GJ blockers in the hamster cheek pouch and also in the cremaster muscle of wild-type (WT) and endothelium-specific connexin 43 (Cx43) null mice (Cx43e−/−). In the cheek pouch, topical tumor necrosis factor-α (TNF-α; 150 ng/ml, 15 min) caused a sustained increment in the number of leukocytes adhered to venular endothelium (LAV) and located at perivenular regions (LPV). Superfusion with the GJ blockers 18-α-glycyrrhetinic acid (AGA; 75 μM) or 18-β-glycyrrhetinic acid (50 μM) abolished the TNF-α-induced increase in LAV and LPV; carbenoxolone (75 μM) or oleamide (100 μM) reduced LAV by 50 and 75%, respectively, and LPV to a lesser extent. None of these GJ blockers modified venular diameter, blood flow, or leukocyte rolling. In contrast, glycyrrhizin (75 μM), a non-GJ blocker analog of AGA, was devoid of effect. Interestingly, when AGA was removed 90 min after TNF-α stimulation, LAV started to rise at a similar rate as in control. Conversely, application of AGA 90 min after TNF-α reduced the number of previously adhered cells. In WT mice, intrascrotal injection of TNF-α (0.5 μg/0.3 ml) increased LAV (fourfold) and LPV (threefold) compared with saline-injected controls. In contrast to the observations in WT animals, TNF-α stimulation did not increase LAV or LPV in Cx43e−/− mice. These results demonstrate an important role for GJ communication in leukocyte adhesion and transmigration during acute inflammation in vivo and further suggest that endothelial Cx43 is key in these processes. PMID:18599597

  7. Identifying the translational gap in the evaluation of drug-induced QTc interval prolongation

    PubMed Central

    Chain, Anne SY; Dubois, Vincent FS; Danhof, Meindert; Sturkenboom, Miriam CJM; Della Pasqua, Oscar

    2013-01-01

    Aims Given the similarities in QTc response between dogs and humans, dogs are used in pre-clinical cardiovascular safety studies. The objective of our investigation was to characterize the PKPD relationships and identify translational gaps across species following the administration of three compounds known to cause QTc interval prolongation, namely cisapride, d, l-sotalol and moxifloxacin. Methods Pharmacokinetic and pharmacodynamic data from experiments in conscious dogs and clinical trials were included in this analysis. First, pharmacokinetic modelling and deconvolution methods were applied to derive drug concentrations at the time of each QT measurement. A Bayesian PKPD model was then used to describe QT prolongation, allowing discrimination of drug-specific effects from other physiological factors known to alter QT interval duration. A threshold of ≥10 ms was used to explore the probability of prolongation after drug administration. Results A linear relationship was found to best describe the pro-arrhythmic effects of cisapride, d,l-sotalol and moxifloxacin both in dogs and in humans. The drug-specific parameter (slope) in dogs was statistically significantly different from humans. Despite such differences, our results show that the probability of QTc prolongation ≥10 ms in dogs nears 100% for all three compounds at the therapeutic exposure range in humans. Conclusions Our findings indicate that the slope of PKPD relationship in conscious dogs may be used as the basis for the prediction of drug-induced QTc prolongation in humans. Furthermore, the risk of QTc prolongation can be expressed in terms of the probability associated with an increase ≥10 ms, allowing direct inferences about the clinical relevance of the pro-arrhythmic potential of a molecule. PMID:23351036

  8. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Zhao, Xiaoguang; Fan, Kebin; Wang, Xiaoning; Zhang, Gu-Feng; Geng, Kun; Zhang, Xin; Averitt, Richard D.

    We use intense terahertz pulses to excite the resonant mode (0.6THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ~170. Above an in-gap E-field threshold amplitude of ~10 MVcm-1, THz-induced field electron emission is observed (TIFEE) as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light. (arXiv: 1508.04737) We acknowledge support from DOE-BES No. DE-FG02-09ER46643 and NSF No. ECCS-1309835.

  9. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S.; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J.; Schuck, P. James

    2017-08-01

    Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena—critical to both many-body physics exploration and device applications—presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  10. FEL gain as a function of phace displacements induced by undulator intersection gaps

    SciTech Connect

    Varfolomeev, A.A.

    1995-12-31

    Gain characteristics are analytically considered for FEL based on a multisection undulator with short intersection gaps. It is shown that small phase displacements between laser beam and electron beam respectively caused by the above intersection gaps can seriously change the gain resonance frequency as well as gain curve shape. This effect is different from that of OK and can be used for fast undulator tuning or for its tapering. Gain characteristics are analitically considered for FEL based on a multisection undulator with short intersection gaps. It is shown that small phase displacements between laser beam and electron beam respectively caused by the above intersection gaps can seriously change the gain resonance frequency as well as gain curve shape. This effect is different from that of OK and can be used for fast undulator tuning or for its tapering.

  11. Self-amplified photo-induced gap quenching in a correlated electron material

    PubMed Central

    Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.

    2016-01-01

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. PMID:27698341

  12. Self-amplified photo-induced gap quenching in a correlated electron material.

    PubMed

    Mathias, S; Eich, S; Urbancic, J; Michael, S; Carr, A V; Emmerich, S; Stange, A; Popmintchev, T; Rohwer, T; Wiesenmayer, M; Ruffing, A; Jakobs, S; Hellmann, S; Matyba, P; Chen, C; Kipp, L; Bauer, M; Kapteyn, H C; Schneider, H C; Rossnagel, K; Murnane, M M; Aeschlimann, M

    2016-10-04

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains-on a microscopic level-the extremely fast response of this material to ultrafast optical excitation.

  13. Terahertz band gaps induced by metal grooves inside parallel-plate waveguides.

    PubMed

    Lee, Eui Su; So, Jin-Kyu; Park, Gun-Sik; Kim, Daisik; Kee, Chul-Sik; Jeon, Tae-In

    2012-03-12

    We report experimental and finite-difference time-domain simulation studies on terahertz (THz) characteristics of band gaps by using metal grooves which are located inside the flare parallel-plate waveguide. The vertically localized standing-wave cavity mode (SWCM) between the upper waveguide surface and groove bottom, and the horizontally localized SWCM between two groove side walls (groove cavity) are observed. The E field intensity of the horizontally localized SWCM in grooves is very strongly enchanced which is three order higher than that of the input THz. The 4 band gaps except the Bragg band gap are caused by the π radian delay (out of phase) between the reflected THz field by grooves and the propagated THz field through the air gap. The measurement and simulation results agree well.

  14. Self-amplified photo-induced gap quenching in a correlated electron material

    NASA Astrophysics Data System (ADS)

    Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.

    2016-10-01

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains--on a microscopic level--the extremely fast response of this material to ultrafast optical excitation.

  15. Inducing energy gaps in monolayer and bilayer graphene: Local density approximation calculations

    NASA Astrophysics Data System (ADS)

    Ribeiro, R. M.; Peres, N. M. R.; Coutinho, J.; Briddon, P. R.

    2008-08-01

    In this paper we study the formation of energy gaps in the spectrum of graphene and its bilayer when both these materials are covered with water and ammonia molecules. The energy gaps obtained are within the range 20-30 meV, values compatible to those found in experimental studies of graphene bilayer. We further show that the binding energies are large enough for the adsorption of the molecules to be maintained even at room temperature.

  16. Leptin Induces Hippocampal Synaptogenesis via CREB-Regulated MicroRNA-132 Suppression of p250GAP

    PubMed Central

    Dhar, Matasha; Zhu, Mingyan; Impey, Soren; Lambert, Talley J.; Bland, Tyler; Karatsoreos, Ilia N.; Nakazawa, Takanobu

    2014-01-01

    Leptin acts in the hippocampus to enhance cognition and reduce depression and anxiety. Cognitive and emotional disorders are associated with abnormal hippocampal dendritic spine formation and synaptogenesis. Although leptin has been shown to induce synaptogenesis in the hypothalamus, its effects on hippocampal synaptogenesis and the mechanism(s) involved are not well understood. Here we show that leptin receptors (LepRs) are critical for hippocampal dendritic spine formation in vivo because db/db mice lacking the long form of the leptin receptor (LepRb) have reduced spine density on CA1 and CA3 neurons. Leptin promotes the formation of mature spines and functional glutamate synapses on hippocampal pyramidal neurons in both dissociated and slice cultures. These effects are blocked by short hairpin RNAs specifically targeting the LepRb and are absent in cultures from db/db mice. Activation of the LepR leads to cAMP response element–binding protein (CREB) phosphorylation and initiation of CREB-dependent transcription via the MAPK kinase/Erk pathway. Furthermore, both Mek/Erk and CREB activation are required for leptin-induced synaptogenesis. Leptin also increases expression of microRNA-132 (miR132), a well-known CREB target, which is also required for leptin-induced synaptogenesis. Last, leptin suppresses the expression of p250GAP, a miR132 target, and this suppression is obligatory for leptin's effects as is the downstream target of p250GAP, Rac1. LepRs appear to be critical in vivo as db/db mice have lowered hippocampal miR132 levels and elevated p250GAP expression. In conclusion, we identify a novel signaling pathway by which leptin increases synaptogenesis through inducing CREB transcription and increasing microRNA-mediated suppression of p250GAP activity, thus removing a known inhibitor of Rac1-stimulated synaptogenesis. PMID:24877561

  17. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene.

    PubMed

    Sa, Baisheng; Li, Yan-Ling; Sun, Zhimei; Qi, Jingshan; Wen, Cuilian; Wu, Bo

    2015-05-29

    Artificial monolayer black phosphorus, so-called phosphorene, has attracted global interest with its distinguished anisotropic, optoelectronic, and electronic properties. Here, we unraveled the shear-induced direct-to-indirect gap transition and anisotropy diminution in phosphorene based on first-principles calculations. Lattice dynamic analysis demonstrates that phosphorene can sustain up to 10% applied shear strain. The bandgap of phosphorene experiences a direct-to- indirect transition when 5% shear strain is applied. The electronic origin of the direct-to-indirect gap transition from 1.54 eV at ambient conditions to 1.22 eV at 10% shear strain for phosphorene is explored. In addition, the anisotropy diminution in phosphorene is discussed by calculating the maximum sound velocities, effective mass, and decomposed charge density, which signals the undesired shear-induced direct-to-indirect gap transition in applications of phosphorene for electronics and optoelectronics. On the other hand, the shear-induced electronic anisotropy properties suggest that phosphorene can be applied as the switcher in nanoelectronic applications.

  18. Extreme sensitivity of the electric-field-induced band gap to the electronic topological transition in sliding bilayer graphene

    NASA Astrophysics Data System (ADS)

    Lee, Kyu Won; Lee, Cheol Eui

    2015-12-01

    We have investigated the effect of electronic topological transition on the electric field-induced band gap in sliding bilayer graphene by using the density functional theory calculations. The electric field-induced band gap was found to be extremely sensitive to the electronic topological transition. At the electronic topological transition induced by layer sliding, four Dirac cones in the Bernal-stacked bilayer graphene reduces to two Dirac cones with equal or unequal Dirac energies depending on the sliding direction. While the critical electric field required for the band gap opening increases with increasing lateral shift for the two Dirac cones with unequal Dirac energies, the critical field is essentially zero with or without a lateral shift for the two Dirac cones with equal Dirac energies. The critical field is determined by the Dirac energy difference and the electronic screening effect. The electronic screening effect was also found to be enhanced with increasing lateral shift, apparently indicating that the massless helical and massive chiral fermions are responsible for the perfect and imperfect electronic screening, respectively.

  19. Dust coagulation and magnetic field strength in a planet-induced gap subject to MRI turbulence

    NASA Astrophysics Data System (ADS)

    Carballido, Augusto; Matthews, Lorin; Hyde, Truell

    2017-01-01

    We investigate the coagulation of dust particles in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magneto rotational instability. From the MHD simulation, we obtain values of the gas velocities, densities and turbulent stresses close to the gap edge, in one of the two gas streams that accrete onto the planet, and inside the low-density gap. The MHD values are then supplied to a Monte Carlo dust coagulation algorithm, which models grain sticking, compaction and bouncing. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 micron, and another one whose initial size distribution follows the Mathis-Rumpl-Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 microns. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (MW) average porosity of the initially mono disperse population reaches extremely high final values of 98%. The final MW porosities in all other cases without bouncing range from 30% to 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap.We also analyze the strength of the magnetic field threading the gaps opened by planets of different sub-Jovian masses. Preliminary results show that, in a gap opened by a large-mass planet (~ 1 MJ), the time-averaged radial profile of the vertical component of the field (Bz) increases sharply inside the gap, and less sharply in the case of less massive planets. In gaps opened by intermediate-mass planets (~ 0.5 — 0.75 MJ), the radial profile of Bz exhibits local maxima in the vicinity of the planet, but not at the gap center.

  20. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm

    NASA Astrophysics Data System (ADS)

    Ansari, Sajid Ali; Khan, Mohammad Mansoob; Kalathil, Shafeer; Nisar, Ambreen; Lee, Jintae; Cho, Moo Hwan

    2013-09-01

    Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports a simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of nanomaterials. The novel protocol improved the visible photocatalytic activity of modified ZnO (m-ZnO) nanostructures through the promotion of oxygen vacancies, which resulted in band gap narrowing of the ZnO nanostructure (Eg = 3.05 eV) without dopants. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Raman spectroscopy, photoluminescence spectroscopy and high resolution transmission electron microscopy confirmed the oxygen vacancy and band gap narrowing of m-ZnO. m-ZnO enhanced the visible light catalytic activity for the degradation of different classes of dyes and 4-nitrophenol compared to p-ZnO, which confirmed the band gap narrowing because of oxygen defects. This study shed light on the modification of metal oxide nanostructures by EAB with a controlled band structure.Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports a simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of nanomaterials. The novel protocol improved the visible photocatalytic activity of modified ZnO (m-ZnO) nanostructures through the promotion of oxygen vacancies, which resulted in band gap narrowing of the ZnO nanostructure (Eg = 3.05 eV) without dopants. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X

  1. The mental retardation associated protein, srGAP3 negatively regulates VPA-induced neuronal differentiation of Neuro2A cells.

    PubMed

    Chen, Keng; Mi, Ya-Jing; Ma, Yue; Fu, Hua-Lin; Jin, Wei-Lin

    2011-07-01

    The Slit-Robo GTPase-activating proteins (srGAPs) are important multifunctional adaptor proteins involved in various aspects of neuronal development, including axon guidance, neuronal migration, neurite outgrowth, dendritic morphology and synaptic plasticity. Among them, srGAP3, also named MEGAP (Mental disorder-associated GTPase-activating protein), plays a putative role in severe mental retardation. SrGAP3 expression in ventricular zones of neurogenesis indicates its involvement in early stage of neuronal development and differentiation. Here, we show that overexpression of srGAP3 inhibits VPA (valproic acid)-induced neurite initiation and neuronal differentiation in Neuro2A neuroblastoma cells, whereas knockdown of srGAP3 facilitates the neuronal differentiation in this cell line. In contrast to the wild type, overexpression of srGAP3 harboring an artificially mutation R542A within the functionally important RhoGAP domain does not exert a visible inhibitory effect on neuronal differentiation. The endogenous srGAP3 selectively binds to activated form of Rac1 in a RhoGAP pull-down assay. We also show that constitutively active (CA) Rac1 can rescue the effect of srGAP3 on attenuating neuronal differentiation. Furthermore, change in expression and localization of endogenous srGAP3 is observed in neuronal differentiated Neuro2A cells. Together, our data suggest that srGAP3 could regulate neuronal differentiation in a Rac1-dependent manner.

  2. Disorder-induced topological change of the superconducting gap structure in iron pnictides.

    SciTech Connect

    Mizukami, Y.; Konczykowski, M.; Kawamoto, Y.; Kurata, S.; Kasahara, S.; Hashimoto, K.; Mishra, V.; Kreisel, A.; Wang, Y.; Hirschfeld, P. J.; Matsuda, Y.; Shibauchi, T.

    2014-11-01

    In superconductors with unconventional pairing mechanisms, the energy gap in the excitation spectrum often has nodes, which allow quasiparticle excitations at low energies. In many cases, e.g. d-wave cuprate superconductors, the position and topology of nodes are imposed by the symmetry, and thus the presence of gapless excitations is protected against disorder. Here we report on the observation of distinct changes in the gap structure of iron-pnictide superconductors with increasing impurity scattering. By the successive introduction of nonmagnetic point defects into BaFe2(As1-xPx)2 crystals via electron irradiation, we find from the low-temperature penetration depth measurements that the nodal state changes to a nodeless state with fully gapped excitations. Moreover, under further irradiation the gapped state evolves into another gapless state, providing bulk evidence of unconventional sign-changing s-wave superconductivity. This demonstrates that the topology of the superconducting gap can be controlled by disorder, which is a strikingly unique feature of iron pnictides.

  3. Strain-induced optical band gap variation of SnO2 films

    DOE PAGES

    Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas

    2016-06-29

    In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the main origin ofmore » the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less

  4. Acetaminophen-induced anion gap metabolic acidosis secondary to 5-oxoproline: a case report.

    PubMed

    Abkur, Tarig Mohammed; Mohammed, Waleed; Ali, Mohamed; Casserly, Liam

    2014-12-06

    5-oxoproline (pyroglutamic acid), an organic acid intermediate of the gamma-glutamyl cycle, is a rare cause of high anion gap metabolic acidosis. Acetaminophen and several other drugs have been implicated in the development of transient 5-oxoprolinemia in adults. We believe that reporting all cases of 5-oxoprolinemia will contribute to a better understanding of this disease. Here, we report the case of a patient who developed transient 5-oxoprolinemia following therapeutic acetaminophen use. A 75-year-old Caucasian woman was initially admitted for treatment of an infected hip prosthesis and subsequently developed transient high anion gap metabolic acidosis. Our patient received 40 g of acetaminophen over a 10-day period. After the more common causes of high anion gap metabolic acidosis were excluded, a urinary organic acid screen revealed a markedly increased level of 5-oxoproline. The acidosis resolved completely after discontinuation of the acetaminophen. 5-oxoproline acidosis is an uncommon cause of high anion gap metabolic acidosis; however, it is likely that it is under-diagnosed as awareness of the condition remains low and testing can only be performed at specialized laboratories. The diagnosis should be suspected in cases of anion gap metabolic acidosis, particularly in patients with recent acetaminophen use in combination with sepsis, malnutrition, liver disease, pregnancy or renal failure. This case has particular interest in medicine, especially for the specialties of nephrology and orthopedics. We hope that it will add more information to the literature about this rare condition.

  5. Strain-induced optical band gap variation of SnO2 films

    SciTech Connect

    Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas

    2016-06-29

    In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the main origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.

  6. Strain-induced optical band gap variation of SnO2 films

    SciTech Connect

    Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas

    2016-06-29

    In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the main origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.

  7. Interaction dynamics of gap flow with vortex-induced vibration in side-by-side cylinder arrangement

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Jaiman, Rajeev K.

    2016-12-01

    A numerical investigation of the vortex-induced vibration (VIV) in a side-by-side circular cylinder arrangement has been performed in a two-dimensional laminar flow environment. One of the cylinders is elastically mounted and only vibrates in the transverse direction, while its counterpart remains stationary in a uniform flow stream. When the gap ratio is sufficiently small, the flip-flopping phenomenon of the gap flow can be an additional time-dependent interference to the flow field. This phenomenon was reported in the experimental work of Bearman and Wadcock ["The interaction between a pair of circular cylinders normal to a stream," J. Fluid Mech. 61(3), 499-511 (1973)] in a side-by-side circular cylinder arrangement, in which the gap flow deflects toward one of the cylinders and switched its sides intermittently. Albeit one of the two cylinders is free to vibrate, the flip-flop of a gap flow during VIV dynamics can still be observed outside the lock-in region. The exact moments of the flip-flop phenomenon due to spontaneous symmetry breaking are observed in this numerical study. The significant characteristic vortex modes in the near-wake region are extracted via dynamic modal analysis and the interference between the gap flow and VIV is found to be mutual. In a vibrating side-by-side arrangement, the lock-in region with respect to reduced velocity becomes narrower due to the interference from its stationary counterpart. The frequency lock-in occurs and ends earlier than that of an isolated vibrating circular cylinder subjected to an identical flow environment. Similar to a tandem cylinder arrangement, in the post-lock-in region, the maximum vibration amplitudes are escalated compared with those of an isolated circular cylinder configuration. On the other hand, subjected to the influence from VIV, the biased gap flow deflects toward the vibrating cylinder quasi-stably during the frequency lock-in process. This behavior is different from the reported bi

  8. Disorder induced evolution of two energy gaps in MgB2

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Jihn

    2007-03-01

    We study disorder effect on MgB2 superconductivity using the two band model by Suhl, Matthias, and Walker. We stress the importance of the Cooper pair size effect in the response of the BCS superconductor to the perturbation: the bounded Cooper pairs see the impurities within the range of the coherence length. This effect will undermine the initial decrease of the Tc and the big energy gap due to disorder, until the resistance ratio reaches about ˜3. For the resistance ratio less than 3, weak localization starts to decouple electrons and phonons, leading to the significant decrease of both the Tc and the big gap. In particular, we trace the evolution of two energy gaps of MgB2 as a function of disorder. Estimating the inter-band scattering rate from the experimental data, we compare our calculations with experiments. We also calculate the transition temperature, Tc as a function of the resistance ratio.

  9. Strain-Induced Energy Band Gap Opening in Two-Dimensional Bilayered Silicon Film

    NASA Astrophysics Data System (ADS)

    Ji, Z.; Zhou, R.; Lew Yan Voon, L. C.; Zhuang, Y.

    2016-10-01

    This work presents a theoretical study of the structural and electronic properties of bilayered silicon film (BiSF) under in-plane biaxial strain/stress using density functional theory (DFT). Atomic structures of the two-dimensional (2-D) silicon films are optimized by using both the local-density approximation (LDA) and generalized gradient approximation (GGA). In the absence of strain/stress, five buckled hexagonal honeycomb structures of the BiSF with triangular lattice have been obtained as local energy minima, and their structural stability has been verified. These structures present a Dirac-cone shaped energy band diagram with zero energy band gaps. Applying a tensile biaxial strain leads to a reduction of the buckling height. Atomically flat structures with zero buckling height have been observed when the AA-stacking structures are under a critical biaxial strain. Increase of the strain between 10.7% and 15.4% results in a band-gap opening with a maximum energy band gap opening of ˜0.17 eV, obtained when a 14.3% strain is applied. Energy band diagrams, electron transmission efficiency, and the charge transport property are calculated. Additionally, an asymmetric energetically favorable atomic structure of BiSF shows a non-zero band gap in the absence of strain/stress and a maximum band gap of 0.15 eV as a -1.71% compressive strain is applied. Both tensile and compressive strain/stress can lead to a band gap opening in the asymmetric structure.

  10. Bismuth-induced Raman modes in GaP1–xBix

    DOE PAGES

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; ...

    2016-09-02

    Here, dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP1- xBix epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm-1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismide alloy regime.

  11. Orbital migration of giant planets induced by gravitationally unstable gaps: the effect of planet mass

    NASA Astrophysics Data System (ADS)

    Cloutier, Ryan; Lin, Min-Kai

    2013-09-01

    It has been established that self-gravitating disc-satellite interaction can lead to the formation of a gravitationally unstable gap. Such an instability may significantly affect the orbital migration of gap-opening perturbers in self-gravitating discs. In this paper, we extend the two-dimensional hydrodynamic simulations of Lin & Papaloizou to investigate the role of the perturber or planet mass on the gravitational stability of gaps and its impact on orbital migration. We consider giant planets with planet-to-star mass ratio q ≡ Mp/M* ∈ [0.3, 3.0] × 10-3 (so that q = 10-3 corresponds to a Jupiter mass planet if M* = M⊙), in a self-gravitating disc with disc-to-star mass ratio Md/M* = 0.08, aspect ratio h = 0.05 and Keplerian Toomre parameter Qk0 = 1.5 at 2.5 times the planet's initial orbital radius. These planet masses correspond to tilde{q}in [0.9, 1.7], where tilde{q} is the ratio of the planet Hill radius to the local disc scale-height. Fixed-orbit simulations show that all planet masses we consider open gravitationally unstable gaps, but the instability is stronger and develops sooner with increasing planet mass. The disc-on-planet torques typically become more positive with increasing planet mass. In freely migrating simulations, we observe faster outward migration with increasing planet mass, but only for planet masses capable of opening unstable gaps early on. For q = 0.0003 (tilde{q}=0.9), the planet undergoes rapid inward type III migration before it can open a gap. For q = 0.0013 (tilde{q}=1.5) we find it is possible to balance the tendency for inward migration by the positive torques due to an unstable gap, but only for a few 10 s of orbital periods. We find the unstable outer gap edge can trigger outward type III migration, sending the planet to twice its initial orbital radius on dynamical time-scales. We briefly discuss the importance of our results in the context of giant planet formation on wide orbits through disc fragmentation.

  12. The effect of induced strains on the optical band gaps in lanthanum-doped zinc ferrite nanocrystalline powders

    NASA Astrophysics Data System (ADS)

    Hamed, Fathalla; Ramachandran, Tholkappiyan; Kurapati, Vishista

    2016-07-01

    ZnFe1.96La0.04O4 nanocrystalline powders were synthesized by auto-combustion with the aid of glycine as fuel. The synthesized powders were subjected to heat treatment in air at constant temperatures (600-970∘C) for a period of 2 h. The annealed powders were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and UV-Vis-NIR spectroscopy. The as-synthesized and annealed powders formed spongy porous network structure with voids and pores. All the powders were found to be single phase nanomaterial with cubic spinel crystal structure and the desired composition; however, they contained strains, dislocations and lattice distortions. Some of these strains and dislocations are relaxed as a function of annealing temperature. The powders displayed direct and indirect optical band gaps. The energies of these band gaps were found to vary as a function of the induced strains and dislocations. It is suggested that the energy of the optical band gap in lanthanum-doped zinc ferrite nanocrystalline powders can be varied as a function of induced strains if the initial preparation conditions and the following heat treatments are controlled.

  13. The GaN/noble metal interface: metal induced gap states and Schottky barrier heights

    NASA Astrophysics Data System (ADS)

    Picozzi, Silvia; Continenza, Alessandra; Satta, Guido; Massidda, Sandro; Freeman, Arthur J.

    2000-03-01

    We present ab-initio FLAPW (E. Wimmer, H. Krakauer, M. Weinert and A.J. Freeman, Phys. Rev. B 24), 864 (1981) calculations on N-terminated [001] ordered GaN/Ag and GaN/Au interfaces. Our results show that the density of gap states is appreciable in the interface semiconductor layer; however, the gap states are efficiently screened and become negligible already in the sub-interface layer. The gap states' decay length in the semiconductor side is about 2.0 ± 0.1 Å\\: and seems to be independent of the deposited metal, therefore being, to a good approximation, a bulk GaN property. Our estimated Schottky barrier heights for the GaN/noble-metal interfaces are both smaller than that of the GaN/Al barrier, showing a large dispersion in the values - which seems to exclude the possibility of a Fermi level pinning within the gap. Finally, we investigate the role of atomic positions and of different chemical species at the interface region in determining the final value of the potential line-up.

  14. A superior semicircular canal dehiscence induced air-bone gap in chinchilla

    PubMed Central

    Songer, Jocelyn E.; Rosowski, John J.

    2010-01-01

    An SCD is a pathologic hole (or dehiscence) in the bone separating the superior semicircular canal from the cranial cavity that has been associated with a conductive hearing loss in patients with SCD syndrome. The conductive loss is defined by an audiometrically determined air-bone gap that results from the combination of a decrease in sensitivity to air-conducted sound and an increase in sensitivity to bone-conducted sound. Our goal is to demonstrate, through physiological measurements in an animal model, that mechanically altering the superior semicircular canal (SC) by introducing a hole (dehiscence) is sufficient to cause such an air-bone gap. We surgically introduced holes into the SC of chinchilla ears and evaluated auditory sensitivity (cochlear potential) in response to both air- and bone-conducted stimuli. The introduction of the SC hole led to a low-frequency (< 2000 Hz) decrease in sensitivity to air-conducted stimuli and a low-frequency (< 1000 Hz) increase in sensitivity to bone-conducted stimuli resulting in an air-bone gap. This result was consistent and reversible. The air-bone gaps in the animal results are qualitatively consistent with findings in patients with SCD syndrome. PMID:20638462

  15. Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices

    NASA Astrophysics Data System (ADS)

    Pedersen, Jesper Goor; Pedersen, Thomas Garm

    2013-06-01

    We study graphene antidot lattices (GALs) in magnetic fields. Using a tight-binding model and a recursive Green's function technique that we extend to deal with periodic structures, we calculate Hofstadter butterflies of GALs. We compare the results to those obtained in a simpler gapped graphene model. A crucial difference emerges in the behavior of the lowest Landau level, which in a gapped graphene model is independent of magnetic field. In stark contrast to this picture, we find that in GALs the band gap can be completely closed by applying a magnetic field. While our numerical simulations can only be performed on structures much smaller than can be experimentally realized, we find that the critical magnetic field for which the gap closes can be directly related to the ratio between the cyclotron radius and the neck width of the GAL. In this way, we obtain a simple scaling law for extrapolation of our results to more realistically sized structures and find resulting quenching magnetic fields that should be well within reach of experiments.

  16. MoS2-WSe2 Hetero Bilayer: Possibility of Mechanical Strain Induced Band Gap Engineering

    NASA Astrophysics Data System (ADS)

    Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2014-03-01

    The tunability of band gap in two-dimensional (2D) hetero-bilayers of MoS2-WSe2 with applied mechanical strains (in-plane and out-of-plane) in two different types of stackings (AA and AB) have been investigated in the framework of density functional theory (DFT). The in-plane biaxial tensile strain is found to reduce electronic band gap monotonically and rendered considered bilayer into metal at 6% of applied strain. The transition pressure required for complete semiconductor-to-metal transition is found to be of 7.89 GPa while tensile strength of the reported hetero-bilayer has been calculated 10 GPa at 25% strain. In case of vertical compression strain, 16 GPa pressure has been calculated for complete semiconductor-to-metal transition. The band-gap deformation potentials and effective masses (electron and hole) have been found to posses strong dependence on the type of applied strain. Such band gap engineering in controlled manner (internal control by composition and external control by applied strain) makes the considered hetero-bilayer as a strong candidate for the application in variety of nano scale devices.

  17. High-pressure induced modifications in the hybridization gap of the intermediate-valence compound SmB6

    NASA Astrophysics Data System (ADS)

    Nishiyama, K.; Mito, T.; Pristáš, G.; Koyama, T.; Ueda, K.; Kohara, T.; Gabáni, S.; Flachbart, K.; Fukazawa, H.; Kohori, Y.; Takeshita, N.; Shitsevalova, N.; Ikeda, H.

    2016-03-01

    We have carried out the measurements of high-pressure 11B -nuclear magnetic resonance on the intermediate-valence compound SmB6 to investigate the effects of pressure on Sm 4 f states and the quasiparticle band. From the measurements of spin-lattice relaxation time, just below the critical pressure Pc of nonmagnetic-magnetic phase transition, we find that quasiparticle bandwidth clearly decreases with pressure, while the insulating gap is almost constant or slightly increases. The latter is consistent with the result of a band-structure calculation. These pressure induced modifications in the band structure indicate the enhancement of the density of states of the quasiparticles when approaching Pc. The pressure dependence of the Sm 4 f states and the origin of the insulating gap are well explained in terms of exchange interactions between conduction and 4 f electrons.

  18. Extracorporeal shockwaves induce the expression of ATF3 and GAP-43 in rat dorsal root ganglion neurons.

    PubMed

    Murata, Ryo; Ohtori, Seiji; Ochiai, Nobuyasu; Takahashi, Norimasa; Saisu, Takashi; Moriya, Hideshige; Takahashi, Kazuhisa; Wada, Yuichi

    2006-07-30

    Although extracorporeal shockwave has been applied in the treatment of various diseases, the biological basis for its analgesic effect remains unclear. Therefore, we investigated the dorsal root ganglion neurons of rats following shockwave exposure to the footpad to elucidate its effect on the peripheral nervous system. We used activating transcription factor 3 (ATF3) and growth-associated phosphoprotein (GAP-43) as markers for nerve injury and axonal regeneration, respectively. The average number of neurons immunoreactive for ATF3 increased significantly in the treated rats at all experimental time points, with 78.3% of those neurons also exhibiting immunoreactivity for GAP-43. Shockwave exposure induced injury of the sensory nerve fibers within the exposed area. This phenomenon may be linked to the desensitization of the exposure area, not the cause of pain, considering clinical research with a particular absence of painful adverse effect. Subsequent active axonal regeneration may account for the reinnervation of exposed area and the amelioration of the desensitization.

  19. Particle Concentration at Planet-induced Gap Edges and Vortices. I. Inviscid Three-dimensional Hydro Disks

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.; Bai, Xue-ning

    2014-04-01

    We perform a systematic study of the dynamics of dust particles in protoplanetary disks with embedded planets using global two-dimensional and three-dimensional inviscid hydrodynamic simulations. Lagrangian particles have been implemented into the magnetohydrodynamic code Athena with cylindrical coordinates. We find two distinct outcomes depending on the mass of the embedded planet. In the presence of a low-mass planet (8 M ⊕), two narrow gaps start to open in the gas on each side of the planet where the density waves are shocked. These shallow gaps can dramatically affect particle drift speed and cause significant, roughly axisymmetric dust depletion. On the other hand, a more massive planet (>0.1 MJ ) carves out a deeper gap with sharp edges, which are subject to Rossby wave instability leading to vortex formation. Particles with a wide range of sizes (0.02 < Ωts < 20) are trapped and settle to the midplane in the vortex, with the strongest concentration for particles with Ωts ~ 1. The dust concentration is highly elongated in the phi direction, and can be as wide as four disk scale heights in the radial direction. Dust surface density inside the vortex can be increased by more than a factor of 102 in a very non-axisymmetric fashion. For very big particles (Ωts Gt 1) we find strong eccentricity excitation, in particular around the planet and in the vicinity of the mean motion resonances, facilitating gap openings there. Our results imply that in weakly turbulent protoplanetary disk regions (e.g., the "dead zone") dust particles with a very wide range of sizes can be trapped at gap edges and inside vortices induced by planets with Mp < MJ , potentially accelerating planetesimal and planet formation there, and giving rise to distinctive features that can be probed by ALMA and the Extended Very Large Array.

  20. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti{sub 2}CrGe: A first principles study

    SciTech Connect

    Li, Jia; Zhang, Zhidong; Lu, Zunming; Xie, Hongxian; Fang, Wei; Li, Shaomin; Liang, Chunyong; Yin, Fuxing

    2015-11-15

    The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part of the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.

  1. Simvastatin-induced up-regulation of gap junctions composed of connexin 43 sensitize Leydig tumor cells to etoposide: an involvement of PKC pathway.

    PubMed

    Wang, Lingzhi; Fu, Yanni; Peng, Jianxin; Wu, Dengpan; Yu, Meiling; Xu, Chengfang; Wang, Qin; Tao, Liang

    2013-10-04

    Some of lipophilic statins have been reported to enhance toxicities induced by antineoplastic agents but the underling mechanism is unclear. The authors investigated the involvement of Cx43-mediated gap junction intercellular communication (GJIC) in the effect of simvastatin on the cellular toxicity induced by etoposide in this study. The results showed that a major component of the cytotoxicity of therapeutic levels of etoposide is mediated by gap junctions composed of connexin 43(Cx43) and simvastatin at the dosage which does not induce cytotoxicity enhances etoposide toxicity by increasing gap junction coupling. The augmentative effect of simvastatin on GJIC was related to the inhibition of PKC-mediated Cx43 phosphorylation at ser368 and subsequent enhancement of Cx43 membrane location induced by the agent. The present study suggests the possibility that upregulation of gap junctions may be utilized to increase the efficacy of anticancer chemotherapies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. S-diclofenac Protects against Doxorubicin-Induced Cardiomyopathy in Mice via Ameliorating Cardiac Gap Junction Remodeling

    PubMed Central

    Zhang, Huili; Zhang, Alian; Guo, Changfa; Shi, Chunzhi; Zhang, Yang; Liu, Qing; Sparatore, Anna; Wang, Changqian

    2011-01-01

    Hydrogen sulfide (H2S), as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-yl)phenyl ester), a novel H2S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p.), male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 µmol/kg, i.p.), diclofenac (25 and 50 µmol/kg, i.p.), NaHS (50 µmol/kg, i.p.), or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45) and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H2S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H2S in the pathogenesis of doxorubicin-induced cardiomyopathy. PMID:22039489

  3. Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an S-Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis

    PubMed Central

    Kraidlova, Lucie; Schrevens, Sanne; Tournu, Hélène; Van Zeebroeck, Griet; Sychrova, Hana

    2016-01-01

    ABSTRACT Amino acids are key sources of nitrogen for growth of Candida albicans. In order to detect and take up these amino acids from a broad range of different and changing nitrogen sources inside the host, this fungus must be able to adapt via its expression of genes for amino acid uptake and further metabolism. We analyzed six C. albicans putative general amino acid permeases based on their homology to the Saccharomyces cerevisiae Gap1 general amino acid permease. We generated single- and multiple-deletion strains and found that, based on growth assays and transcriptional or posttranscriptional regulation, Gap2 is the functional orthologue to ScGap1, with broad substrate specificity. Expression analysis showed that expression of all GAP genes is under control of the Csy1 amino acid sensor, which is different from the situation in S. cerevisiae, where the expression of ScGAP1 is not regulated by Ssy1. We show that Gap4 is the functional orthologue of ScSam3, the only S-adenosylmethionine (SAM) transporter in S. cerevisiae, and we report that Gap4 is required for SAM-induced morphogenesis. IMPORTANCE Candida albicans is a commensal organism that can thrive in many niches in its human host. The environmental conditions at these different niches differ quite a bit, and this fungus must be able to sense these changes and adapt its metabolism to them. Apart from glucose and other sugars, the uptake of amino acids is very important. This is underscored by the fact that the C. albicans genome encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid permease Gap1 and many other amino acid transporters. In this work, we characterize these six permeases and we show that C. albicans Gap2 is the functional orthologue of ScGap1 and that C. albicans Gap4 is an orthologue of ScSam3, an S-adenosylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for SAM-induced morphogenesis, an important virulence factor of C. albicans. PMID

  4. Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an S-Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis.

    PubMed

    Kraidlova, Lucie; Schrevens, Sanne; Tournu, Hélène; Van Zeebroeck, Griet; Sychrova, Hana; Van Dijck, Patrick

    2016-01-01

    Amino acids are key sources of nitrogen for growth of Candida albicans. In order to detect and take up these amino acids from a broad range of different and changing nitrogen sources inside the host, this fungus must be able to adapt via its expression of genes for amino acid uptake and further metabolism. We analyzed six C. albicans putative general amino acid permeases based on their homology to the Saccharomyces cerevisiae Gap1 general amino acid permease. We generated single- and multiple-deletion strains and found that, based on growth assays and transcriptional or posttranscriptional regulation, Gap2 is the functional orthologue to ScGap1, with broad substrate specificity. Expression analysis showed that expression of all GAP genes is under control of the Csy1 amino acid sensor, which is different from the situation in S. cerevisiae, where the expression of ScGAP1 is not regulated by Ssy1. We show that Gap4 is the functional orthologue of ScSam3, the only S-adenosylmethionine (SAM) transporter in S. cerevisiae, and we report that Gap4 is required for SAM-induced morphogenesis. IMPORTANCECandida albicans is a commensal organism that can thrive in many niches in its human host. The environmental conditions at these different niches differ quite a bit, and this fungus must be able to sense these changes and adapt its metabolism to them. Apart from glucose and other sugars, the uptake of amino acids is very important. This is underscored by the fact that the C. albicans genome encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid permease Gap1 and many other amino acid transporters. In this work, we characterize these six permeases and we show that C. albicans Gap2 is the functional orthologue of ScGap1 and that C. albicans Gap4 is an orthologue of ScSam3, an S-adenosylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for SAM-induced morphogenesis, an important virulence factor of C. albicans.

  5. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    SciTech Connect

    Gao, Enlai; Xie, Bo; Xu, Zhiping

    2016-01-07

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO{sub 4} tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  6. Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating.

    PubMed

    Ullah, Zakir; Wang, Zhiguo; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2014-12-01

    For the first time, we experimentally and theoretically research about the probe transmission signal (PTS), the reflected four wave mixing band gap signal(FWM BGS) and fluorescence signal (FLS) under the double dressing effect in an inverted Y-type four level system. FWM BGS results from photonic band gap structure. We demonstrate that the characteristics of PTS, FWM BGS and FLS can be controlled by power, phase and the frequency detuning of the dressing beams. It is observed in our experiment that FWM BGS switches from suppression to enhancement, corresponding to the switch from transmission enhancement to absorption enhancement in the PTS with changing the relative phase. We also observe the relation among the three signals, which satisfy the law of conservation of energy. Such scheme could have potential applications in optical diodes, amplifiers and quantum information processing.

  7. Microwave irradiation induced band gap tuning of MoS2-TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Shakya, Jyoti; Mohanty, T.

    2016-05-01

    The MoS2-TiO2 nanocomposites have been synthesized by sol-gel method and characterized by different microscopic and spectroscopic techniques. The crystallinity of these nanocomposites has been confirmed by X-ray diffraction (XRD) analysis. The Raman spectrum of MoS2-TiO2 nanocomposites consists of three distinct peaks (E1 g, E1 2g and A1g) which are associated with TiO2 and MoS2. The morphological study is carried out by scanning electron microscope. The effect of microwave irradiation on the band gap of MoS2-TiO2 nanocomposites has been investigated; it is observed that the microwave irradiation causes decrease in the band gap of MoS2-TiO2 nanocomposites. The microwave treated MoS2-TiO2 thin films offers a novel process route in treating thin films for commercial applications.

  8. A RasGAP SH3 Peptide Aptamer Inhibits RasGAP-Aurora Interaction and Induces Caspase-Independent Tumor Cell Death

    PubMed Central

    Bickle, Marc; Corneloup, Claudine; Barthelaix, Audrey; Lepelletier, Yves; Mercier, Perrine; Schapira, Matthieu; Samson, Jérôme; Mathieu, Anne-Laure; Hugo, Nicolas; Moncorgé, Olivier; Mikaelian, Ivan; Dufour, Sylvie; Garbay, Christiane; Colas, Pierre

    2008-01-01

    The Ras GTPase-activating protein RasGAP catalyzes the conversion of active GTP-bound Ras into inactive GDP-bound Ras. However, RasGAP also acts as a positive effector of Ras and exerts an anti-apoptotic activity that is independent of its GAP function and that involves its SH3 (Src homology) domain. We used a combinatorial peptide aptamer approach to select a collection of RasGAP SH3 specific ligands. We mapped the peptide aptamer binding sites by performing yeast two-hybrid mating assays against a panel of RasGAP SH3 mutants. We examined the biological activity of a peptide aptamer targeting a pocket delineated by residues D295/7, L313 and W317. This aptamer shows a caspase-independent cytotoxic activity on tumor cell lines. It disrupts the interaction between RasGAP and Aurora B kinase. This work identifies the above-mentioned pocket as an interesting therapeutic target to pursue and points its cognate peptide aptamer as a promising guide to discover RasGAP small-molecule drug candidates. PMID:18682833

  9. Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures

    SciTech Connect

    Kozlov, D. V. Rumyantsev, V. V.; Morozov, S. V.; Kadykov, A. M.; Varavin, V. S.; Mikhailov, N. N.; Dvorestky, S. A.; Gavrilenko, V. I.; Teppe, F.

    2015-12-15

    The photoconductivity (PC) spectra of CdHgTe (MCT) solid solutions with a Cd fraction of 17 and 19% are measured. A simple model for calculating the states of doubly charged acceptors in MCT solid solutions, which makes it possible to describe satisfactorily the observed photoconductivity spectra, is proposed. The found lines in the photoconductivity spectra of narrow-gap MCT structures are associated with transitions between the states of both charged and neutral acceptor centers.

  10. Color-center-induced band-gap shift in yttria-stabilized zirconia

    SciTech Connect

    PaiVerneker, V.R.; Petelin, A.N.; Crowne, F.J.; Nagle, D.C. )

    1989-10-15

    An increase of the room-temperature band gap from 4.23 to 4.96 eV is observed in crystals of the superionic material yttria-stabilized cubic zirconia (YSZ) when the crystals are reduced either electrolytically or in a hydrogen atmosphere. The original absorption edge of 4.23 eV in unreduced YSZ can be accounted for by the excitation of an {ital F}{sub {ital A}} complex consisting of an Y{sup 3+} ion and an {ital F}{sup +} oxygen vacancy. We assume the ground state of this complex lies in the valence band, whereas its first excited state {ital F}{sub {ital A}}{sup *} formed by adding an additional electron lies in the gap 0.73 eV below the conduction band; the observed absorption is then due to optical excitation of this state from the valence band. Reduction of YSZ leads to the formation of doubly occupied oxygen vacancies, i.e., {ital F} centers, giving rise to a band of states in the gap. Arguments are put forth to show that as the {ital F}-center concentration increases, the mean energy of this band is raised by {ital F}-{ital F} interactions or by changes in the lattice relaxation; eventually, part of the band will lie above the {ital F}{sub {ital A}}{sup *} state, at which point the corresponding {ital F} centers will decay by losing an electron to one of the {ital F}{sub {ital A}}{sup *} states. This results in a shift of the optical absorption edge to the true band-gap energy, i.e., 4.96 eV, which is a true band-to-band transition.

  11. Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites.

    PubMed

    Liu, Shi; Zheng, Fan; Koocher, Nathan Z; Takenaka, Hiroyuki; Wang, Fenggong; Rappe, Andrew M

    2015-02-19

    Organometal halide perovskites have been intensely studied in the past 5 years, inspired by their certified high photovoltaic power conversion efficiency. Some of these materials are room-temperature ferroelectrics. The presence of switchable ferroelectric domains in methylammonium lead triiodide, CH3NH3PbI3, has recently been observed via piezoresponse force microscopy. Here, we focus on the structural and electronic properties of ferroelectric domain walls in CH3NH3PbX3 (X = Cl, Br, I). We find that organometal halide perovskites can form both charged and uncharged domain walls due to the flexible orientational order of the organic molecules. The electronic band gaps for domain structures possessing 180 and 90° walls are estimated with density functional theory. It is found that the presence of charged domain walls will significantly reduce the band gap by 20-40%, while the presence of uncharged domain walls has no substantial impact on the band gap. We demonstrate that charged domain walls can serve as segregated channels for the motions of charge carriers. These results highlight the importance of ferroelectric domain walls in hybrid perovskites for photovoltaic applications and suggest a possible avenue for device optimization through domain patterning.

  12. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    SciTech Connect

    Seligson, D.

    1983-05-01

    8 to 10 GHz phonons were generated by piezoelectric transduction of a microwave and by means of a quartz delay line, were allowed to enter the aluminum only after the microwaves had long since disappeared. The maximum enhancements detected were (deltaT/T/sub c/) = -0.07, for i/sub c/ and (deltaT/T/sub c/) = -0.03 for ..delta... The power- and temperature-dependence (0.82 less than or equal to T/T/sub c/ less than or equal to 0.994) of the enhancements were compared with the prediction of a theory given by Eliashberg. The gap-enhancement was in good agreement with the theory only for low input lower. The critical current measurements are predicted to be in rough agreement with the ..delta.. measurements but this was not observed. The magnitude of the critical current enhancements was typically more than twice the observed gap enhancements. The measured critical current enhancement was relatively independent of temperature whereas the gap enhancement decreased rapidly as the temperature was lowered.

  13. In vivo single branch axotomy induces GAP-43-dependent sprouting and synaptic remodeling in cerebellar cortex.

    PubMed

    Allegra Mascaro, Anna Letizia; Cesare, Paolo; Sacconi, Leonardo; Grasselli, Giorgio; Mandolesi, Georgia; Maco, Bohumil; Knott, Graham W; Huang, Lieven; De Paola, Vincenzo; Strata, Piergiorgio; Pavone, Francesco S

    2013-06-25

    Plasticity in the central nervous system in response to injury is a complex process involving axonal remodeling regulated by specific molecular pathways. Here, we dissected the role of growth-associated protein 43 (GAP-43; also known as neuromodulin and B-50) in axonal structural plasticity by using, as a model, climbing fibers. Single axonal branches were dissected by laser axotomy, avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Despite the very small denervated area, the injured axons consistently reshape the connectivity with surrounding neurons. At the same time, adult climbing fibers react by sprouting new branches through the intact surroundings. Newly formed branches presented varicosities, suggesting that new axons were more than just exploratory sprouts. Correlative light and electron microscopy reveals that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites. By using an RNA interference approach, we found that downregulating GAP-43 causes a significant increase in the turnover of presynaptic boutons. In addition, silencing hampers the generation of reactive sprouts. Our findings show the requirement of GAP-43 in sustaining synaptic stability and promoting the initiation of axonal regrowth.

  14. Ordering-induced direct-to-indirect band gap transition in multication semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Yang, Ji-Hui; Kanevce, Ana; Choi, Sukgeun; Repins, Ingrid L.; Wei, Su-Huai

    2015-02-01

    Using first-principles calculations and symmetry analysis, we show that as cation atoms in a zinc blende-based semiconductor are replaced through atomic mutation (e.g., evolve from ZnSe to CuGaS e2 to C u2ZnGeS e4 ), the band gaps of the semiconductors will become more and more indirect because of the band splitting at the zone boundary, and in some cases will even form the segregating states. For example, although ZnSe is a direct band gap semiconductor, quaternary compounds C u2ZnGeS e4 and C u2ZnSnS e4 can be indirect band gap semiconductors if they form the primitive mixed CuAu ordered structures. We also find that the stability and the electronic structure of the quaternary polytypes with different atomic ordering are almost negative-linearly correlated. We suggest that these intrinsic properties of the multication semiconductors can have a large influence on the design and device performance of these materials.

  15. Free energy gap laws for the pulse-induced and stationary fluorescence quenching by reversible charge transfer in polar solutions.

    PubMed

    Khokhlova, Svetlana S; Burshtein, Anatoly I

    2011-01-21

    The Stern-Volmer constants for either pulse-induced or stationary fluorescence being quenched by a contact charge transfer are calculated and their free energy dependencies (the free energy gap laws) are specified. The reversibility of charge transfer is taken into account as well as spin conversion in radical ion pairs, followed by their recombination in either singlet or triplet neutral products. The natural decay of triplets as well as their impurity quenching by ionization are accounted for when estimating the fluorescence quantum yield and its free energy dependence.

  16. Overexpression of PCNA Attenuates Oxidative Stress-Caused Delay of Gap-Filling during Repair of UV-Induced DNA Damage

    PubMed Central

    Wang, Yi-Hsiang

    2017-01-01

    UVC irradiation-caused DNA lesions are repaired in mammalian cells solely by nucleotide excision repair (NER), which consists of sequential events including initial damage recognition, dual incision of damage site, gap-filling, and ligation. We have previously shown that gap-filling during the repair of UV-induced DNA lesions may be delayed by a subsequent treatment of oxidants or prooxidants such as hydrogen peroxide, flavonoids, and colcemid. We considered the delay as a result of competition for limiting protein/enzyme factor(s) during repair synthesis between NER and base excision repair (BER) induced by the oxidative chemicals. In this report, using colcemid as oxidative stress inducer, we showed that colcemid-caused delay of gap-filling during the repair of UV-induced DNA lesions was attenuated by overexpression of PCNA but not ligase-I. PCNA knockdown, as expected, delayed the gap-filling of NER but also impaired the repair of oxidative DNA damage. Fen-1 knockdown, however, did not affect the repair of oxidative DNA damage, suggesting repair of oxidative DNA damage is not of long patch BER. Furthermore, overexpression of XRCC1 delayed the gap-filling, and presumably increase of XRCC1 pulls PCNA away from gap-filling of NER for BER, consistent with our hypothesis that delay of gap-filling of NER attributes the competition between NER and BER. PMID:28116145

  17. Induced Kramer-Pesch effect in a two-gap superconductor: Application to MgB2

    NASA Astrophysics Data System (ADS)

    Gumann, A.; Graser, S.; Dahm, T.; Schopohl, N.

    2006-03-01

    The size of the vortex core in a clean superconductor is strongly temperature dependent and shrinks with decreasing temperature, decreasing to zero for T→0 . We study this so-called Kramer-Pesch effect both for a single-gap superconductor and for the case of a two-gap superconductor using parameters appropriate for magnesium diboride. Usually, the Kramer-Pesch effect is absent in the dirty limit. Here, we show that the Kramer-Pesch effect exists in both bands of a two-gap superconductor even if only one of the two bands is in the clean limit and the other band in the dirty limit, a case appropriate for MgB2 . In this case an induced Kramer-Pesch effect appears in the dirty band. Besides numerical results we also present an analytical model for the spatial variation of the pairing potential in the vicinity of the vortex center that allows a simple calculation of the vortex core radius even in the limit T→0 .

  18. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Wang, Eryin; Lu, Xiaobo; Ding, Shijie; Yao, Wei; Yan, Mingzhe; Wan, Guoliang; Deng, Ke; Wang, Shuopei; Chen, Guorui; Ma, Liguo; Jung, Jeil; Fedorov, Alexei V.; Zhang, Yuanbo; Zhang, Guangyu; Zhou, Shuyun

    2016-12-01

    Graphene/hexagonal boron nitride (h-BN) has emerged as a model van der Waals heterostructure as the superlattice potential, which is induced by lattice mismatch and crystal orientation, gives rise to various novel quantum phenomena, such as the self-similar Hofstadter butterfly states. Although the newly generated second-generation Dirac cones (SDCs) are believed to be crucial for understanding such intriguing phenomena, fundamental knowledge of SDCs, such as locations and dispersion, and the effect of inversion symmetry breaking on the gap opening, still remains highly debated due to the lack of direct experimental results. Here we report direct experimental results on the dispersion of SDCs in 0°-aligned graphene/h-BN heterostructures using angle-resolved photoemission spectroscopy. Our data unambiguously reveal SDCs at the corners of the superlattice Brillouin zone, and at only one of the two superlattice valleys. Moreover, gaps of approximately 100 meV and approximately 160 meV are observed at the SDCs and the original graphene Dirac cone, respectively. Our work highlights the important role of a strong inversion-symmetry-breaking perturbation potential in the physics of graphene/h-BN, and fills critical knowledge gaps in the band structure engineering of Dirac fermions by a superlattice potential.

  19. Nitrogen-induced perturbation of the valence band states in GaP1-xNx alloys

    NASA Astrophysics Data System (ADS)

    Dudiy, S. V.; Zunger, Alex; Felici, M.; Polimeni, A.; Capizzi, M.; Xin, H. P.; Tu, C. W.

    2006-10-01

    The effects of diluted nitrogen impurities on the valence- and conduction-band states of GaP1-xNx have been predicted and measured experimentally. The calculation uses state-of-the-art atomistic modeling: we use large supercells with screened pseudopotentials and consider several random realizations of the nitrogen configurations. These calculations agree with photoluminescence excitation (PLE) measurements performed for nitrogen concentrations x up to 0.035 and photon energies up to 1eV above the GaP optical-absorption edge, as well as with published ellipsometry data. In particular, a predicted nitrogen-induced buildup of the L character near the valence- and conduction-band edges accounts for the surprising broad-absorption plateau observed in PLE between the X1c and the Γ1c critical points of GaP. Moreover, theory accounts quantitatively for the downward bowing of the indirect conduction-band edge and for the upward bowing of the direct transition with increasing nitrogen concentration. We review some of the controversies in the literature regarding the shifts in the conduction band with composition, and conclude that measured results at ultralow N concentration cannot be used to judge behavior at a higher concentration. In particular, we find that at the high concentrations of nitrogen studied here (˜1%) the conduction-band edge (CBE) is a hybridized state made from the original GaP X1c band-edge state plus all cluster states. In this limit, the CBE plunges down in energy as the N concentration increases, in quantitative agreement with the measurements reported here. However, at ultralow nitrogen concentrations (<0.1%) , the CBE is the nearly unperturbed host X1c , which does not sense the nitrogen cluster levels. Thus, this state does not move energetically as nitrogen is added and stays pinned in energy, in agreement with experimental results.

  20. Strain-induced indirect-to-direct band-gap transition in bulk SnS2

    NASA Astrophysics Data System (ADS)

    Ram, Babu; Singh, Abhishek K.

    2017-02-01

    While SnS2 is an earth-abundant large-band-gap semiconductor material, the indirect nature of the band gap limits its applications in light harvesting or detection devices. Here, using density functional theory in combination with the many-body perturbation theory, we report indirect-to-direct band-gap transition in bulk SnS2 under moderate, 2.98 % uniform biaxial tensile (BT) strain. Further enhancement of the BT strain up to 9.75 % leads to a semiconductor-to-metal transition. The strain-induced weakening of the interaction of the in-plane orbitals modifies the dispersion as well as the character of the valence- and the conduction-band edges, leading to the transition. A quasiparticle direct band gap of 2.17 eV at the Γ point is obtained at 2.98 % BT strain. By solving the Bethe-Salpeter equation to include excitonic effects on top of the partially self-consistent GW0 calculation, we study the dielectric functions, optical oscillator strength, and exciton binding energy as a function of the applied strain. At 2.98 % BT strain, our calculations show the relatively high exciton binding energy of 170 meV, implying strongly coupled excitons in SnS2. The effect of strain on vibrational properties, including Raman spectra, is also investigated. The Raman shift of both in-plane (E2g 1) and out-of plane (A1 g) modes decreases with the applied BT strain, which can be probed experimentally. Furthermore, SnS2 remains dynamically stable up to 9.75 % BT strain, at which it becomes metallic. A strong coupling between the applied strain and the electronic and optical properties of SnS2 can significantly broaden the applications of this material in strain-detection and optoelectronic devices.

  1. Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow

    NASA Astrophysics Data System (ADS)

    Nishina, Ayako; Nakamura, Hirohiko; Park, Jae-Hun; Hasegawa, Daisuke; Tanaka, Yuki; Seo, Seongbong; Hibiya, Toshiyuki

    2016-08-01

    Near-bottom water flowing over the Kerama Gap's sills is thought to ventilate the deep water below ˜1100 m depth in the Okinawa Trough and then upwell with 5-10 years residence time. The present study follows up on this phenomenon, using comprehensive profile data of temperature, salinity, dissolved oxygen, currents and turbulence obtained by intensive shipboard observations performed in June 2013 and June 2014 in the region. Strong near-bottom subtidal flow with speeds exceeding 0.5 m s-1 was observed within a layer of about 100 m thickness over the western side of the peak of the main sill. Temperature and salinity sections along the Kerama Gap indicated some depressions and overturns of the deep water downstream of the strong overflow, suggesting the existence of breaking internal gravity waves and hydraulic jumps. Associated vertical diffusivities, estimated using the Thorpe scale and the buoyancy frequency, were three to four orders of magnitude larger than typical values observed in the thermocline of the open ocean (˜10-5 m2 s-1). The dissolved oxygen section also indicated strong vertical mixing and associated upwelling with the entrainment of the near-bottom overflow water into the lower thermocline beneath the Kuroshio in the Okinawa Trough. The present study not only supports the previous conceptual model but also provides new evidence that the Okinawa Trough is an upwelling location where nutrient rich Philippine Sea intermediate water is sucked up into the lower thermocline below the Kuroshio.

  2. Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling.

    PubMed

    Pellarin, Michel; Ramade, Julien; Rye, Jan Michael; Bonnet, Christophe; Broyer, Michel; Lebeault, Marie-Ange; Lermé, Jean; Marguet, Sylvie; Navarro, Julien R G; Cottancin, Emmanuel

    2016-12-27

    Homodimers of noble metal nanocubes form model plasmonic systems where the localized plasmon resonances sustained by each particle not only hybridize but also coexist with excitations of a different nature: surface plasmon polaritons confined within the Fabry-Perot cavity delimited by facing cube surfaces (i.e., gap plasmons). Destructive interference in the strong coupling between one of these highly localized modes and the highly radiating longitudinal dipolar plasmon of the dimer is responsible for the formation of a Fano resonance profile and the opening of a spectral window of anomalous transparency for the exciting light. We report on the clear experimental evidence of this effect in the case of 50 nm silver and 160 nm gold nanocube dimers studied by spatial modulation spectroscopy at the single particle level. A numerical study based on a plasmon mode analysis leads us to unambiguously identify the main cavity mode involved in this process and especially the major role played by its symmetry. The Fano depletion dip is red-shifted when the gap size is decreasing. It is also blue-shifted and all the more pronounced that the cube edge rounding is large. Combining nanopatch antenna and plasmon hybridization descriptions, we quantify the key role of the face-to-face distance and the cube edge morphology on the spectral profile of the transparency dip.

  3. Large configuration-induced band-gap fluctuations in GaNxAs1-x alloys

    NASA Astrophysics Data System (ADS)

    Tit, Nacir

    2006-06-01

    The electronic band structures of GaNxAs1-x alloys were investigated versus the nitrogen mole fraction x and the nitrogen atomic configuration. The computational method is based on the sp3s* tight-binding technique. Two main nitrogen atomic distributions were considered: (i) the nitrogen atoms grouped in one region to form like a GaN dot inside the GaAs so as to have a maximally N-clustered (MNC) configuration; and (ii) the nitrogen atoms homogeneously distributed over the alloy and, of course, the minimal N-clustered distribution as the maximally As-clustered (MAsC) configuration. The former is found to always have the lowest band gaps. More interestingly, the results show that in the latter distribution the nitrogen atoms introduce resonant states above the conduction-band edge by about 230 meV, which is consistent with the literature, whereas they introduce a deep gap state above the valence-band edge at about 150 meV in the former distribution. As a suitable model for experimental samples, the MAsC configuration, was used to model some available photoluminescence data in the dilute regime.

  4. Inflammatory conditions induce gap junctional communication between rat Kupffer cells both in vivo and in vitro

    PubMed Central

    Eugenín, Eliseo A.; González, Hernán E.; Sánchez, Helmuth A.; Brañes, María C.; Sáez, Juan C.

    2007-01-01

    Connexin43 (Cx43), a gap junction protein subunit, has been previously detected in Kupffer cells (KCs) during liver inflammation, however, KCs phagocytose cell debris that may include Cx43 protein, which could explain the detection of Cx43 in KCs. We determined that KCs express Cx43 and form gap junctions both in vivo and in vitro. In liver sections of animals treated with LPS, Cx43 was detected at ED2+ cells interfaces, indicating formation of GJ between KCs in vivo. In vitro, unstimulated KCs cultures did not form functional GJs, and expressed low levels of Cx43 that showed a diffuse intracellular distribution. In contrast, KCs treated with LPS plus IFN-γ, expressed a greater amount of Cx43 at both the, protein and mRNA levels, and showed Cx43 at cell-cell contacts associated with higher dye coupling. In conclusion, activation of KCs in vivo or in vitro resulted in enhanced Cx43 expression levels and formation of GJ that might play relevant roles during liver inflammation. PMID:17900549

  5. Local strain-induced band gap fluctuations and exciton localization in aged WS2 monolayers

    NASA Astrophysics Data System (ADS)

    Krustok, J.; Kaupmees, R.; Jaaniso, R.; Kiisk, V.; Sildos, I.; Li, B.; Gong, Y.

    2017-06-01

    Optical properties of aged WS2 monolayers grown by CVD method on Si/SiO2 substrates are studied using temperature dependent photoluminescence and reflectance contrast spectroscopy. Aged WS2 monolayers have a typical surface roughness about 0.5 nm and, in addition, a high density of nanoparticles (nanocaps) with the base diameter about 30 nm and average height of 7 nm. The A-exciton of aged monolayer has a peak position at 1.951 eV while in as-grown monolayer the peak is at about 24 meV higher energy at room temperature. This red-shift is explained using local tensile strain concept, where strain value of 2.1% was calculated for these nanocap regions. Strained nanocaps have lower band gap energy and excitons will funnel into these regions. At T=10K a double exciton and trion peaks were revealed. The separation between double peaks is about 20 meV and the origin of higher energy peaks is related to the optical band gap energy fluctuations caused by random distribution of local tensile strain due to increased surface roughness. In addition, a wide defect related exciton band XD was found at about 1.93 eV in all aged monolayers. It is shown that the theory of localized excitons describes well the temperature dependence of peak position and halfwidth of the A-exciton band. The possible origin of nanocaps is also discussed.

  6. Modelling for Transient Optically Induced Metal - Transitions in Narrow-Gap Semiconductors and Semimetals.

    NASA Astrophysics Data System (ADS)

    Vidal, Jordina

    1994-01-01

    The theoretical work presented in this thesis is based on models developed to interpret a series of optical experiments with short-pulse lasers, which allow a time -domain study of phenomena on a sub-picosecond timescale. By means of a pump-probe technique, we observe large amplitude oscillations in the time domain reflectivity response of a series of narrow-gap semiconductors and semimetals. The oscillations have the frequency of the fully-symmetric optical phonon mode of the system, and are maximally displaced from their midpoint value at zero time delay between pump and probe. These features indicate that a coherent phonon vibration is generated in these materials via an electronic excitation at different points of the Brillouin zone, which displaces instantaneously the equilibrium positions of the atoms. It is precisely this generation of coherent phonons that makes the time-domain technique distinct from conventional frequency domain techniques, such as Raman and neutron scattering. Using a range of theoretical techniques, from nearly free electron models to state-of-the art ab initio calculations, I have made quantitative microscopic evaluations of the coherent phonon phenomenon. The studies focus on two unique aspects of having such coherent atomic vibrations in a narrow gap material, with special emphasis on the group V semimetals Sb and Bi. First of all, I have performed dynamical band structure calculations, as a function of the coherent atomic motion, in order to inspect the possibility of a transient metal-insulator transition at a terahertz frequency. Secondly, I have calculated the evolution of the displaced atoms in quasi-equilibrium with the laser -excited carriers, as the electron-ion coupled system returns to its ground state equilibrium. These calculations are fundamental, insofar they provide a quantitative microscopic description of the coherent phonon phenomenon. Moreover, the predicted magnitude of the atomic displacements, and the resulting

  7. Particle concentration at planet-induced gap edges and vortices. I. Inviscid three-dimensional hydro disks

    SciTech Connect

    Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.; Bai, Xue-ning

    2014-04-20

    We perform a systematic study of the dynamics of dust particles in protoplanetary disks with embedded planets using global two-dimensional and three-dimensional inviscid hydrodynamic simulations. Lagrangian particles have been implemented into the magnetohydrodynamic code Athena with cylindrical coordinates. We find two distinct outcomes depending on the mass of the embedded planet. In the presence of a low-mass planet (8 M {sub ⊕}), two narrow gaps start to open in the gas on each side of the planet where the density waves are shocked. These shallow gaps can dramatically affect particle drift speed and cause significant, roughly axisymmetric dust depletion. On the other hand, a more massive planet (>0.1 M{sub J} ) carves out a deeper gap with sharp edges, which are subject to Rossby wave instability leading to vortex formation. Particles with a wide range of sizes (0.02 < Ωt{sub s} < 20) are trapped and settle to the midplane in the vortex, with the strongest concentration for particles with Ωt{sub s} ∼ 1. The dust concentration is highly elongated in the φ direction, and can be as wide as four disk scale heights in the radial direction. Dust surface density inside the vortex can be increased by more than a factor of 10{sup 2} in a very non-axisymmetric fashion. For very big particles (Ωt{sub s} >> 1) we find strong eccentricity excitation, in particular around the planet and in the vicinity of the mean motion resonances, facilitating gap openings there. Our results imply that in weakly turbulent protoplanetary disk regions (e.g., the {sup d}ead zone{sup )} dust particles with a very wide range of sizes can be trapped at gap edges and inside vortices induced by planets with M{sub p} < M{sub J} , potentially accelerating planetesimal and planet formation there, and giving rise to distinctive features that can be probed by ALMA and the Extended Very Large Array.

  8. Surface induced magnetization reversal of MnP nanoclusters embedded in GaP

    NASA Astrophysics Data System (ADS)

    Lacroix, Christian; Lambert-Milot, Samuel; Desjardins, Patrick; Masut, Remo A.; Ménard, David

    2016-03-01

    We investigate the quasi-static magnetic behavior of ensembles of ferromagnetic nanoparticles consisting of MnP nanoclusters embedded in GaP(001) epilayers grown at 600, 650, and 700 °C. We use a phenomenological model, in which surface effects are included, to reproduce the experimental hysteresis curves measured as a function of temperature (120-260 K) and direction of the applied field. The slope of the hysteresis curve during magnetization reversal is determined by the MnP nanoclusters size distribution, which is a function of the growth temperature. Our results show that the coercive field is very sensitive to the strength of the surface anisotropy, which reduces the energy barrier between the two states of opposite magnetization. Notably, this reduction in the energy barrier increases by a factor of 3 as the sample temperature is lowered from 260 to 120 K.

  9. Rotationally induced magnetic chirality in clusters of single-domain permalloy islands and gapped nanorings

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Li, Jie; Bartell, Jason; Lammert, Paul; Crespi, Vincent; Schiffer, Peter

    2011-03-01

    We have studied magnetic moment configurations of clusters of single-domain ferromagnetic islands in different geometries. The magnetic moments of these clusters are imaged by MFM after rotational demagnetization, following our previous protocols. We observed that two types of the clusters showed a significant imbalance of their two-fold degenerate ground states after demagnetization, and this inequality is correlated to the rotational direction of the demagnetization. A similar imbalance was also found in nano-scale rings with a small gap: the chirality of their magnetic state can be precisely controlled by the rotational direction during demagnetization. We acknowledge the financial support from DOE and Army Research Office. We are grateful to Prof. Chris Leighton and Mike Erickson for assistance with sample preparation.

  10. Changes in gap junction organization and decreased coupling during induced apoptosis in lens epithelial and NIH-3T3 cells.

    PubMed

    Theiss, Carsten; Mazur, Antonina; Meller, Karl; Mannherz, Hans Georg

    2007-01-01

    We demonstrate that global induction of apoptosis in primary bovine lens epithelial (LEC) or fibroblastic mouse NIH-3T3 cells by staurosporine, puromycin, cycloheximide, or etoposide is accompanied by a decrease in coupling by gap junctions. Cell coupling as tested by neurobiotin spreading was maintained when the LEC or NIH-3T3 cells were pre-incubated with the pan-caspase inhibitor zVAD or the caspase-3 inhibiting tetrapeptide DEVD. Immunohistochemistry using anti-connexin-43 antibodies showed a reduction of plasma membrane integrated connexin-43 in both cell lines when undergoing apoptosis. Western blotting indicated degradation of connexin-43 that was inhibited by zVAD or DEVD. Cell coupling at single cell level was tested by direct microinjecting into LEC apoptosis-inducing agents of low molecular mass like staurosporine, etoposide and puromycin or the high molecular mass proteins caspase-3 and -8 in activated state. Microinjection of puromycin or etoposide induced apoptotic morphological changes of only the injected cell within 90 or 180 min, but did not affect adjacent cells. In contrast, microinjection of staurosporine led to a rapid induction of apoptosis of the injected and a number of adjacent cells suggesting spreading of staurosporine most probably through gap junction pores held open by dephosphorylation of connexin-43 as verified by immunoblotting and staining using a phospho-serine368-specific anti-connexin-43 antibody. Microinjection of active caspase-8 led after 3 h to morphological apoptotic alterations of only the injected cell, but did not inhibit spreading of co-injected neurobiotin to neighboring cells during the first hour. In contrast, microinjection of active caspase-3-induced apoptosis only of the injected cell after 60 min and rapidly and completely suppressed coupling to neighboring cells.

  11. Pseudomonas aeruginosa ExoT Induces Mitochondrial Apoptosis in Target Host Cells in a Manner That Depends on Its GTPase-activating Protein (GAP) Domain Activity.

    PubMed

    Wood, Stephen J; Goldufsky, Josef W; Bello, Daniella; Masood, Sara; Shafikhani, Sasha H

    2015-11-27

    Pseudomonas aeruginosa is the most common cause of hospital-acquired pneumonia and a killer of immunocompromised patients. We and others have demonstrated that the type III secretion system (T3SS) effector protein ExoT plays a pivotal role in facilitating P. aeruginosa pathogenesis. ExoT possesses an N-terminal GTPase-activating protein (GAP) domain and a C-terminal ADP-ribosyltransferase (ADPRT) domain. Because it targets multiple non-overlapping cellular targets, ExoT performs several distinct virulence functions for P. aeruginosa, including induction of apoptosis in a variety of target host cells. Both the ADPRT and the GAP domain activities contribute to ExoT-induced apoptosis. The ADPRT domain of ExoT induces atypical anoikis by transforming an innocuous cellular protein, Crk, into a cytotoxin, which interferes with integrin survival signaling. However, the mechanism underlying the GAP-induced apoptosis remains unknown. In this study, we demonstrate that the GAP domain activity is both necessary and sufficient to induce mitochondrial (intrinsic) apoptosis. We show that intoxication with GAP domain results in: (i) JNK1/2 activation; (ii) substantial increases in the mitochondrial levels of activated pro-apoptotic proteins Bax and Bid, and to a lesser extent Bim; (iii) loss of mitochondrial membrane potential and cytochrome c release; and (iv) activation of initiator caspase-9 and executioner caspase-3. Further, GAP-induced apoptosis is partially mediated by JNK1/2, but it is completely dependent on caspase-9 activity. Together, the ADPRT and the GAP domains make ExoT into a highly versatile and potent cytotoxin, capable of inducing multiple forms of apoptosis in target host cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. [Induced abortion--clinical problems, regulatory gaps, chaos. How much longer?].

    PubMed

    Andreeva, A; Marinov, B; Tzankova, M

    2014-01-01

    Induced abortion is becoming more and more frequent in the contemporary clinical practice. Usually these are pregnant women with diagnosed foetal malformations. Most of them reach a final diagnose in the late second trimester and hence need a pregnancy termination at this gestational age. They are treated in accordance with The Artificial Pregnancy Termination Regulations and put on N 142 clinical-care pathway. The presentation describes the patients' journey form the diagnose through the induced abortion and to the discharge. Analyses the regulations, the multiple inaccuracies and striking omissions with regards to the procedure. Stimulates a discussion on the clinical problems and offers reasonable and realistic solutions.

  13. Short-Term Responses of Ground-Dwelling Beetles to Ice Storm-Induced Treefall Gaps in a Subtropical Broad-Leaved Forest in Southeastern China.

    PubMed

    Yu, Xiao-Dong; Liu, Chong-Ling; Lü, Liang; Luo, Tian-Hong; Zhou, Hong-Zhang

    2016-02-01

    Periodic natural disturbances shape the mosaic character of many landscapes and influence the distribution and abundance of organisms. In this study, we tested the effect of ice storm-induced treefall gaps on ground-dwelling beetle assemblages in different-aged successional stands of subtropical broad-leaved forest in southeastern China. We evaluated the relative importance of gap-phase microhabitat type (within gap, gap edge, and interior shaded) within different stand ages (regenerating stands and mature stands) as determinants of changes in beetle diversity and community structure. At 18 replicate sites sampled during 2009-2010, no significant differences were found in species richness and the abundances of the most common beetle species captured in pitfall traps among the three gap-phase microhabitat types, but the abundances of total beetles, as well as fungivorous and phytophagous species groups, were significantly lower in gap microhabitats than in interior shaded microhabitats in mature stands. Beetle assemblage composition showed no significant differences among the three microhabitat types, and only the fauna of gap plots slightly diverged from those of edge and shaded plots in mature stands. Cover of shrubs and stand age significantly affected beetle assemblage structure. Our results suggest that beetle responses to gap-phase dynamics in early successional forests are generally weak, and that effects are more discernible in the mature stands, perhaps due to the abundance responses of forest-specialist species.

  14. Retention of chimeric Tat2-Gap1 permease in the endoplasmic reticulum induces unfolded protein response in Saccharomyces cerevisiae.

    PubMed

    Mochizuki, Takahiro; Kimata, Yukio; Uemura, Satoshi; Abe, Fumiyoshi

    2015-08-01

    In Saccharomyces cerevisiae, high-affinity tryptophan import is performed by subtle mechanisms involving tryptophan permease Tat2. We have shown that Tat2 requires 15 amino acid residues in the transmembrane domains (TMDs) for its import activity, whereas leucine permease Bap2 requires only seven corresponding residues for its leucine import. For this reason, the structure of Tat2 is elaborately designed to transport the hydrophobic and bulky tryptophan. Newly synthesized cell surface proteins first undergo endoplasmic reticulum (ER)-associated quality check before entering the secretory pathway. In this study, we used domain replacement with general amino acid permease Gap1 to show that Tat2 chimeric proteins were dysfunctional when TMD10 or TMD11 was replaced. These chimeras formed large 270-800-kDa protein complexes and were stably retained in the ER membrane without efficient degradation. In contrast, Tat2 chimeras of TMD9 or TMD12 retained some of their tryptophan import activity and underwent vacuolar degradation as observed with wild-type Tat2. Thus, ours results suggest that TMD10 and TMD11 are essential for the correct folding of Tat2, probably because of their interdomain interactions. Notably, overexpression of Tat2-Gap1 chimera of TMD10 activated the unfolded protein response (UPR) element-lacZ reporter, suggesting that ER retention of the protein aggregates induces the UPR.

  15. Ultrafast Below-Band-Gap Laser Pulse Induced Relaxations in CdS Crystal

    NASA Astrophysics Data System (ADS)

    Shmelev, A. G.; Leontyev, A. V.; Nikiforov, V. G.; Ivanin, K. V.; Lobkov, V. S.; Khasanov, O. Kh; Samartsev, V. V.

    2015-05-01

    We report an experimental study of the intra- and interband transitions in bulk CdS crystal induced by a strong below-band-edge femtosecond laser pulse. An additional peak was observed in spectrally resolved four-wave mixing signal shifted to lower energy and positive time delay.

  16. Nanoparticle intercalation-induced interlayer-gap-opened graphene-polyaniline nanocomposite for enhanced supercapacitive performances

    NASA Astrophysics Data System (ADS)

    Im, Sungjin; Park, Young Ran; Park, Sanghyuk; Kim, Hyeong Jin; Doh, Ji Hoon; Kwon, Kyungjung; Hong, Won G.; Kim, Byungnam; Yang, Woo Seok; Kim, TaeYoung; Hong, Young Joon

    2017-08-01

    This study demonstrates a method for improving supercapacitive performance of two-dimensional nanosheet-based composite electrode. As a hybridized electrostatic double layer capacitor-electrochemical pseudocapacitor (EDLC-PC) electrode, we synthesized reduced graphene oxide-polyaniline nanofibers (rGO-PANi NFs) composite electrode. For the enhanced supercapacitive performances, insulator silver chloride nanoparticles (AgCl NPs) were intercalated into the interlayer gap of rGO. The AgCl NP intercalation (i) exfoliated rGO layers and (ii) prevented rGO-self-agglomeration that makes it difficult to utilize the high surface-to-volume ratio of ideal mono- (or few-) atomic-thick rGO layers. As a result, (iii) the specific capacitance was improved in accordance with the enlarged specific surface area of rGO. Furthermore, (iv) the well-developed rGO edges, which were opened by the AgCl intercalation, enabled formation of more bonds between PANi and rGO by selective grafting of PANi to the rGO edges. Hence, the bonds of PANi-rGO, as conducting paths, substantially reduced the total electrical resistance. Enhanced specific capacitance, ion diffusion efficiency, and reduced electrical resistance indicated the bi-functional roles of AgCl NP insertion for high performance hybridized EDLC-PC electrodes.

  17. Defect distribution and Schottky barrier at metal/Ge interfaces: Role of metal-induced gap states

    NASA Astrophysics Data System (ADS)

    Sasaki, Shogo; Nakayama, Takashi

    2016-11-01

    The defect distribution and Schottky barrier at metal/Ge interfaces were studied using first-principles calculation. It was shown that the defect density markedly increases around the interface owing to the stabilization caused by the hybridization of defect electronic states with metal-induced gap states (MIGS) and by the associated small elastic energy loss around the interface. By comparing the formation energies of various defects at a variety of metal/substrate interfaces, we showed that MIGS not only control the Schottky barrier but also promote a defect-density increase at most metal/semiconductor interfaces. Moreover, we showed that interface oxide layers block MIGS penetration into the Ge substrate and promote the observed breakdown of Fermi-level pinning.

  18. Absence of a Large Superconductivity-Induced Gap in Magnetic Fluctuations of Sr_{2}RuO_{4}.

    PubMed

    Kunkemöller, S; Steffens, P; Link, P; Sidis, Y; Mao, Z Q; Maeno, Y; Braden, M

    2017-04-07

    Inelastic neutron scattering experiments on Sr_{2}RuO_{4} determine the spectral weight of the nesting induced magnetic fluctuations across the superconducting transition. There is no observable change at the superconducting transition down to an energy of ∼0.35  meV, which is well below the 2Δ values reported in several tunneling experiments. At this and higher energies magnetic fluctuations clearly persist in the superconducting state. Only at energies below ∼0.3  meV can evidence for partial suppression of spectral weight in the superconducting state be observed. This strongly suggests that the one-dimensional bands with the associated nesting fluctuations do not form the active, highly gapped bands in the superconducting pairing in Sr_{2}RuO_{4}.

  19. Absence of a Large Superconductivity-Induced Gap in Magnetic Fluctuations of Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Kunkemöller, S.; Steffens, P.; Link, P.; Sidis, Y.; Mao, Z. Q.; Maeno, Y.; Braden, M.

    2017-04-01

    Inelastic neutron scattering experiments on Sr2RuO4 determine the spectral weight of the nesting induced magnetic fluctuations across the superconducting transition. There is no observable change at the superconducting transition down to an energy of ˜0.35 meV , which is well below the 2 Δ values reported in several tunneling experiments. At this and higher energies magnetic fluctuations clearly persist in the superconducting state. Only at energies below ˜0.3 meV can evidence for partial suppression of spectral weight in the superconducting state be observed. This strongly suggests that the one-dimensional bands with the associated nesting fluctuations do not form the active, highly gapped bands in the superconducting pairing in Sr2RuO4 .

  20. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    SciTech Connect

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-07-07

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  1. Propagation Distance of the α-Particle-Induced Bystander Effect: The Role of Nuclear Traversal and Gap Junction Communication

    PubMed Central

    Gaillard, Sylvain; Pusset, David; de Toledo, Sonia M.; Fromm, Michel; Azzam, Edouard I.

    2009-01-01

    When cell populations are exposed to low-dose α-particle radiation, a significant fraction of the cells will not be traversed by a radiation track. However, stressful effects occur in both irradiated and bystander cells in the population. Characterizing these effects, and investigating their underlying mechanism(s), is critical to understanding human health risks associated with exposure to α particles. To this end, confluent normal human fibroblast cultures were grown on polyethylene terephthalate foil grafted to an ultrathin solid-state nuclear track detector and exposed under non-perturbing conditions to low-fluence α particles from a broadbeam irradiator. Irradiated and affected bystander cells were localized with micrometer precision. The stress-responsive protein p21Waf1 (also known as CDKN1A) was induced in bystander cells within a 100-µm radius from an irradiated cell. The mean propagation distance ranged from 20 to 40 µm around the intranuclear α-particle impact point, which corresponds to a set of ∼30 cells. Nuclear traversal, induced DNA damage, and gap junction communication were critical contributors to propagation of this stressful effect The strategy described here may be ideal to investigate the size of radiation-affected target and the relative contribution of different cellular organelles to bystander effects induced by energetic particles, which is relevant to radioprotection and cancer radiotherapy. PMID:19580486

  2. Anisotropic field-induced gap in the quasi-one-dimensional antiferromagnet KCuMoO4(OH )

    NASA Astrophysics Data System (ADS)

    Nawa, Kazuhiro; Janson, Oleg; Hiroi, Zenji

    2017-09-01

    We investigated magnetic and thermodynamic properties of S =1/2 quasi-one-dimensional antiferromagnet KCuMoO4(OH ) through single-crystalline magnetization and heat capacity measurements. At zero field, it behaves as a uniform S =1/2 Heisenberg antiferromagnet with J =238 K , and exhibits a canted antiferromagnetism below TN=1.52 K . In addition, a magnetic field H induces the anisotropy in magnetization and opens a gap in the spin-excitation spectrum. These properties are understood in terms of an effective staggered field induced by staggered g tensors and Dzyaloshinsky-Moriya (DM) interactions. Temperature dependencies of the heat capacity and their field variations are consistent with those expected for quantum sine-Gordon model, indicating that spin excitations consist of soliton, antisoliton, and breather modes. From field dependencies of the soliton mass, the staggered field normalized by the uniform field cs is estimated as 0.041, 0.174, and 0.030, for H ∥a , b , and c , respectively. Such a large variation of cs is understood as the combination of staggered g tensors and DM interactions which induce the staggered field in the opposite direction for H ∥a and c but almost the same direction for H ∥b at each Cu site.

  3. Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap.

    PubMed

    Chen, Yen-Hong; Chu, Hong-Yu; I, Lin

    2006-01-27

    We investigate the interaction dynamics of an existing stable microbubble B1 and another laser induced nearby expanding microbubble B2 in a thin ink sheet between two glass slices. The fast expanding B2 causes anistropic compression of B1 with a forward penetrating jet. In the subsequent expansion stage of B1, the gas associated with jet protrusion to the opposite edge of B1 and the nonuniform surrounding flow field induce necking with transverse inward jetting from the side lobes, which further interact with the axial jet and lead to the final fragmentation into smaller bubbles. At small interbubble distance, the backward interaction from B1 first leads to the pointed pole of the expanding B2 and then a backward jetting during its collapsing. The strong interaction can merge the two bubbles with complicated asymmetric intermediated patterns.

  4. Identifying zambia's industrial fortification options: toward overcoming the food and nutrition information gap-induced impasse.

    PubMed

    Fiedler, John L; Lividini, Keith; Zulu, Rodah; Kabaghe, Gladys; Tehinse, John; Bermudez, Odilia I

    2013-12-01

    Zambia was a pioneer when it started fortifying sugar with vitamin A in 1998. Micronutrient deficiencies-especially among young children-have changed little over the past decade. In 2008 an initiative to introduce fortified flours was halted when last-hour questions about the program could not be answered. To provide information about the need, coverage, and impact of alternative fortification portfolio options to help Zambia overcome its fortification impasse. Using household data from the 2006 Living Conditions Monitoring Survey, apparent micronutrient intake levels and apparent consumption levels of sugar, vegetable oil, wheat flour and maize meal were estimated. The household level data were used to estimate individual intakes by assuming that food was distributed among household members in direct proportion to their share of the household's total adult consumption equivalent. Intake adequacy was measured relative to age- and gender-specific Estimated Average Requirements. Combining information on the industrial structure and estimated fortifiable quantities consumed of each food, and assuming the nutrient content is that specified in official regulations, simulations were conducted of the coverage and impact of 14 fortification portfolios. Maize, the most commonly consumed food, is consumed in a fortifiable form by only 23% of the population. Sugar fortification is estimated to have reduced inadequate intake of vitamin A from 87% to 79%. Introducing oil fortification could reduce the prevalence of inadequate vitamin A intake to 61%, and fortifying roller and breakfast maize meal would further reduce it to 57%, and reduce inadequate iron and zinc intakes by 2.2% and 5.5%, respectively. Implementing WHO flour guidelines would triple the potential iron and zinc impacts. Analysis of LCMS apparent consumption data have helped address important information gaps and provide better understanding of the coverage and impacts of alternative fortification portfolios.

  5. Resistance modulation in VO2 nanowires induced by an electric field via air-gap gates

    NASA Astrophysics Data System (ADS)

    Kanki, Teruo; Chikanari, Masashi; Wei, Tingting; Tanaka, Hidekazu; The Institute of Scientific; Industrial Research Team

    Vanadium dioxide (VO2) shows huge resistance change with metal-insulator transition (MIT) at around room temperature. Controlling of the MIT by applying an electric field is a topical ongoing research toward the realization of Mott transistor. In this study, we have successfully switched channel resistance of VO2 nano-wire channels by a pure electrostatic field effect using a side-gate-type field-effect transistor (SG-FET) viaair gap and found that single crystalline VO2 nanowires and the channels with narrower width enhance transport modulation rate. The rate of change in resistance ((R0-R)/R, where R0 and R is the resistance of VO2 channel with off state and on state gate voltage (VG) , respectively) was 0.42 % at VG = 30 V in in-plane poly-crystalline VO2 channels on Al2O3(0001) substrates, while the rate in single crystalline channels on TiO2 (001) substrates was 3.84 %, which was 9 times higher than that using the poly-crystalline channels. With reducing wire width from 3000 nm to 400 nm of VO2 on TiO2 (001) substrate, furthermore, resistance modulation ratio enhanced from 0.67 % to 3.84 %. This change can not be explained by a simple free-electron model. In this presentation, we will compare the electronic properties between in-plane polycrystalline VO2 on Al2O3 (0001) and single crystalline VO2 on TiO2 (001) substrates, and show experimental data in detail..

  6. Subcycle Extreme Nonlinearities in GaP Induced by an Ultrastrong Terahertz Field

    NASA Astrophysics Data System (ADS)

    Vicario, Carlo; Shalaby, Mostafa; Hauri, Christoph P.

    2017-02-01

    We report on the experimental observation of extreme laser spectral broadening and a change in optical transmission in gallium phosphite induced by 25 MV /cm terahertz (THz) single-cycle internal field. Such intense THz radiation leads to twofold transient modifications of the optical properties in the electro-optical crystal. First, the electric field provokes extensive cross-phase modulation via the χ(2 ) and χ(3 ) nonlinearities on a copropagating 50 fs near infrared laser pulse which turns into 500% spectral broadening. Second, we observe an instantaneous change of the optical transmission occurring at the THz field which is alleged to interband Zener tunneling and charge carrier density modification by impact ionization turning the semiconductor in a metal-like transient state. The presented scheme displays a pathway to coherently control the optical properties of semiconductors on an ultrafast time scale by a strong THz field.

  7. Anomalously large gap and induced out-of-plane spin polarization in magnetically doped 2D Rashba system: V-doped BiTeI

    NASA Astrophysics Data System (ADS)

    Shikin, A. M.; Rybkina, A. A.; Klimovskikh, I. I.; E Tereshchenko, O.; Bogomyakov, A. S.; Kokh, K. A.; Kimura, A.; Skirdkov, P. N.; Zvezdin, K. A.; Zvezdin, A. K.

    2017-06-01

    We have studied an energy gap opening at the Kramers point of quasi-2D Rashba semiconductor BiTeI with magnetic doping and influence of circularly polarized synchrotron radiation (SR) on the induced out-of-plane spin polarization of the gapped state. By means of angle- and spin-resolved photoemission spectroscopy we have shown that below a Curie temperature, at 15-20 K, a spontaneous anomalously large energy gap at the Kramers point appears up to 90 and 125 meV depending on the V concentration (0.5 and 2%, respectively). Nevertheless, spin-resolved measurements show only a weak out-of-plane spin polarization both for the V 3d-resonances and the Rashba states owing to the presence of magnetic domains with opposite magnetic moments spontaneously generated without external magnetic field. Above a Curie temperature the out-of-plane spin polarization for the V 3d-resonances and 2D Rashba electron gas can be also induced by circularly polarized SR reversed in dependence on the chirality of circular polarization. It is followed by opening the energy gap at the Kramers point that confirms the induced magnetization. We connect the SR-induced out-of-plane spin polarization with a SR-derived hole generation leading to corresponding uncompensated spin accumulation in 2D Rashba electron gas with transferring the induced torque to the diluted V 3d-ions. The theoretical estimations corroborate well the experimental results.

  8. Effects of phenolics in Empire apples on hydrogen peroxide-induced inhibition of gap-junctional intercellular communication.

    PubMed

    Lee, Ki Won; Lee, Sang Jun; Kang, Nam Joo; Lee, Chang Yong; Lee, Hyong Joo

    2004-01-01

    The present study investigated antioxidant and antitumor-promoting activities of major phenolic phytochemicals of apples. The contents of each antioxidant in Empire apples was quantified and their contributions to total antioxidant activity of apples were determined using assay for inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced superoxide radical generation in cell culture model and expressed in vitamin C equivalent antioxidant capacity (VCEAC). The estimated contribution of major phenolics and vitamin C to total anitoxidant capacity of 100 g fresh Empire apples is as follows: quercetin (60.05 VCEAC) > chlorogenic acid (12.32) > phloretin (7.41) > procyanidin B2 (7.22) > vitamin C (6.61) > epicatechin (5.10) in superoxide radical scavenging assay. Recent reports suggest that the mechanism of carcinogenic process of hydrogen peroxide (H2O2) may be associated with the inhibition of gap-junctional intercellular communication (GJIC), which is involved in tumor promotion process. Apple extracts showed the protective effects against the inhibition of GJIC by H2O2 in a dose-dependent manner. Quercetin exerted the strongest protective effects among major antioxidants in apples on H2O2-induced inhibition of GJIC, following epicatechin, procyanidin B2, and vitamin C, while chlorogenic acid and phloretin had no effects. Our results indicate that cancer chemopreventive activity of apples is associated with the combined antioxidant capacity and antitumor-promoting activities of diverse antioxidants.

  9. Proposed mode of action of benzene-induced leukemia: Interpreting available data and identifying critical data gaps for risk assessment.

    PubMed

    Meek, M E Bette; Klaunig, James E

    2010-03-19

    Mode of action is defined as a series of key biological events leading to an observed toxicological effect (for example, metabolism to a toxic entity, cell death, regenerative repair and tumors). It contrasts with mechanism of action, which generally involves a detailed understanding of the molecular basis for an effect. A framework to consider the weight of evidence for hypothesized modes of action in animals and their relevance to humans, has been widely adopted and used by government agencies and international organizations. The framework, developed and refined through its application in case studies for principally non-DNA-reactive carcinogens, has more recently been extended to DNA-reactive carcinogens, non-cancer endpoints and different life stages. In addition to increasing transparency, use of the framework promotes consistency in decision-making concerning adequacy of weight of evidence, facilitates peer input and review and identifies critical research needs. The framework provides an effective tool to facilitate discussion between the research and risk assessment communities on critical data gaps, which if filled, would permit more refined estimates of risk. As a basis for additionally coordinating and focusing research on critical data gaps in a risk assessment context, five key events in the mode of action for benzene-induced leukemia are proposed: (1) benzene metabolism via Cytochrome P450, (2) the interaction of benzene metabolites with target cells in the bone marrow, (3) formation of initiated, mutated target cells, (4) selective proliferation of the mutated cells and (5) production of leukemia. These key events are considered in a framework analysis of human relevance as a basis to consider appropriate next steps in developing research strategies.

  10. Calcium-induced calcium release and gap junctions mediate large-scale calcium waves in olfactory ensheathing cells in situ.

    PubMed

    Stavermann, Maren; Meuth, Patrick; Doengi, Michael; Thyssen, Anne; Deitmer, Joachim W; Lohr, Christian

    2015-08-01

    Olfactory ensheathing cells (OECs) are a specialised type of glial cells, supporting axon growth and guidance during development and regeneration of the olfactory nerve and the nerve layer of the olfactory bulb. We measured calcium signalling in OECs in olfactory bulb in-toto preparations using confocal and epifluorescence microscopy and the calcium indicator Fluo-4. We identified two subpopulations of olfactory bulb OECs: OECs in the outer sublamina of the nerve layer responded to purinergic neurotransmitters such as adenosine triphosphate with calcium transients, while OECs in the inner sublamina of the nerve layer did not respond to neurotransmitters. However, the latter generated spontaneous calcium waves that covered hundreds of cells. These calcium waves persisted in the presence of tetrodotoxin and in calcium-free saline, but were abolished after calcium store depletion with cyclopiazonic acid or inositol trisphosphate receptor blockage with 2-APB. Calcium waves could be triggered by laser photolysis of caged inositol trisphosphate. Blocking purinoceptors with PPADS had no effect on calcium wave propagation, whereas blocking gap junctions with carbenoxolone or meclofenamic acid entirely suppressed calcium waves. Increasing calcium buffer capacity in OECs with NP-EGTA ("caged" Ca(2+)) prevented calcium wave generation, and laser photolysis of NP-EGTA in a small group of OECs resulted in a calcium increase in the irradiated cells followed by a calcium wave. We conclude that calcium waves in OECs can be initiated by calcium-induced calcium release via InsP3 receptors and propagate through gap junctions, while purinergic signalling is not involved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting.

    PubMed

    Amat, Anna; Mosconi, Edoardo; Ronca, Enrico; Quarti, Claudio; Umari, Paolo; Nazeeruddin, Md K; Grätzel, Michael; De Angelis, Filippo

    2014-06-11

    Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3(+)) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH(+) = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs(+), MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb-I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin-orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.

  12. Bi-induced band gap reduction in epitaxial InSbBi alloys

    DOE PAGES

    Rajpalke, M. K.; Linhart, W. M.; Yu, K. M.; ...

    2014-11-24

    The properties of molecular beam epitaxy-grown InSb1-x Bix alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ~88 meV (14.1 μm) for InSb0.976Bi0.024,more » a reduction of ~35 meV/%Bi.« less

  13. Bi-induced band gap reduction in epitaxial InSbBi alloys

    SciTech Connect

    Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Alaria, J.; Veal, T. D.; Yu, K. M.; Bomphrey, J. J.; Jones, T. S.; Ashwin, M. J.; Sallis, S.; Piper, L. F. J.

    2014-11-24

    The properties of molecular beam epitaxy-grown InSb{sub 1−x}Bi{sub x} alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb{sub 0.976}Bi{sub 0.024}, a reduction of ∼35 meV/%Bi.

  14. Homology Requirements for Targeting Heterologous Sequences during P-Induced Gap Repair in Drosophila Melanogaster

    PubMed Central

    Dray, T.; Gloor, G. B.

    1997-01-01

    The effect of homology on gene targeting was studied in the context of P-element-induced double-strand breaks at the white locus of Drosophila melanogaster. Double-strand breaks were made by excision of P-w(hd), a P-element insertion in the white gene. A nested set of repair templates was generated that contained the 8 kilobase (kb) yellow gene embedded within varying amounts of white gene sequence. Repair with unlimited homology was also analyzed. Flies were scored phenotypically for conversion of the yellow gene to the white locus. Targeting of the yellow gene was abolished when all of the 3' homology was removed. Increases in template homology up to 51 base pairs (bp) did not significantly promote targeting. Maximum conversion was observed with a construct containing 493 bp of homology, without a significant increase in frequency when homology extended to the tips of the chromosome. These results demonstrate that the homology requirements for targeting a large heterologous insertion are quite different than those for a point mutation. Furthermore, heterologous insertions strongly affect the homology requirements for the conversion of distal point mutations. Several aberrant conversion tracts, which arose from templates that contained reduced homology, also were examined and characterized. PMID:9335605

  15. Effects of maturation-inducing hormone on heterologous gap junctional coupling in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Yoshizaki, G.; Patino, R.; Thomas, P.; Bolamba, D.; Chang, Xiaotian

    2001-01-01

    A previous ultrastructural study of heterologous (granulosa cell-oocyte) gap junction (GJ) contacts in ovarian follicles of Atlantic croaker suggested that these contacts disappear late during the process of resumption of oocyte meiosis. This observation suggested that, unlike scenarios proposed for a number of other species, uncoupling of GJ is not necessary for the onset of meiotic resumption in croaker follicles. However, the functionality of heterologous GJ contacts and the temporal association between maturation-inducing hormone (MIH)-induced changes in heterologous coupling and resumption of oocyte meiosis have not been examined in Atlantic croaker. These questions were addressed with a cell-cell coupling assay that is based on the transfer of a GJ marker, Lucifer Yellow, from oocytes to granulosa cells. Follicle-enclosed oocytes injected with Lucifer Yellow allowed transfer of the dye into the follicle cell layer, thus confirming that there is functional heterologous coupling between the oocyte and the granulosa cells. Dye transfer was observed in vitellogenic, full-grown/maturation-incompetent, and full-grown /maturation-competent follicles. Treatment of maturation-competent follicles with MIH caused a time-dependent decline in the number of follicles transferring dye. However, although GJ uncoupling in some of the follicles was observed before germinal vesicle breakdown (GVBD, index of meiotic resumption), about 50% of the follicles maintained the ability to transfer dye even after GVBD had occurred. Further, a known GJ inhibitor (phorbol 12-myristate 13-acetate) blocked heterologous GJ within a time frame similar to that seen with MIH but without inducing any of the morphological changes (including GVBD) associated with follicular maturation. In conclusion, uncoupling of heterologous GJ seems insufficient and unnecessary for the onset of meiotic resumption in ovarian follicles of Atlantic croaker. ?? 2001 Elsevier Science.

  16. Changes in soil bacterial community triggered by drought-induced gap succession preceded changes in soil C stocks and quality

    PubMed Central

    Yuste, Jorge Curiel; Barba, Josep; Fernandez-Gonzalez, Antonio José; Fernandez-Lopez, Manuel; Mattana, Stefania; Martinez-Vilalta, Jordi; Nolis, Pau; Lloret, Francisco

    2012-01-01

    The aim of this study was to understand how drought-induced tree mortality and subsequent secondary succession would affect soil bacterial taxonomic composition as well as soil organic matter (SOM) quantity and quality in a mixed Mediterranean forest where the Scots pine (Pinus sylvestris) population, affected by climatic drought-induced die-off, is being replaced by Holm-oaks (HO; Quercus ilex). We apply a high throughput DNA pyrosequencing technique and 13C solid-state Nuclear Magnetic Resonance (CP-MAS 13C NMR) to soils within areas of influence (defined as an surface with 2-m radius around the trunk) of different trees: healthy and affected (defoliated) pines, pines that died a decade ago and healthy HOs. Soil respiration was also measured in the same spots during a spring campaign using a static close-chamber method (soda lime). A decade after death, and before aerial colonization by the more competitive HOs have even taken place, we could not find changes in soil C pools (quantity and/or quality) associated with tree mortality and secondary succession. Unlike C pools, bacterial diversity and community structure were strongly determined by tree mortality. Convergence between the most abundant taxa of soil bacterial communities under dead pines and colonizer trees (HOs) further suggests that physical gap colonization was occurring below-ground before above-ground colonization was taken place. Significantly higher soil respiration rates under dead trees, together with higher bacterial diversity and anomalously high representation of bacteria commonly associated with copiotrophic environments (r-strategic bacteria) further gives indications of how drought-induced tree mortality and secondary succession were influencing the structure of microbial communities and the metabolic activity of soils. PMID:23301169

  17. Changes in soil bacterial community triggered by drought-induced gap succession preceded changes in soil C stocks and quality.

    PubMed

    Yuste, Jorge Curiel; Barba, Josep; Fernandez-Gonzalez, Antonio José; Fernandez-Lopez, Manuel; Mattana, Stefania; Martinez-Vilalta, Jordi; Nolis, Pau; Lloret, Francisco

    2012-12-01

    The aim of this study was to understand how drought-induced tree mortality and subsequent secondary succession would affect soil bacterial taxonomic composition as well as soil organic matter (SOM) quantity and quality in a mixed Mediterranean forest where the Scots pine (Pinus sylvestris) population, affected by climatic drought-induced die-off, is being replaced by Holm-oaks (HO; Quercus ilex). We apply a high throughput DNA pyrosequencing technique and (13)C solid-state Nuclear Magnetic Resonance (CP-MAS (13)C NMR) to soils within areas of influence (defined as an surface with 2-m radius around the trunk) of different trees: healthy and affected (defoliated) pines, pines that died a decade ago and healthy HOs. Soil respiration was also measured in the same spots during a spring campaign using a static close-chamber method (soda lime). A decade after death, and before aerial colonization by the more competitive HOs have even taken place, we could not find changes in soil C pools (quantity and/or quality) associated with tree mortality and secondary succession. Unlike C pools, bacterial diversity and community structure were strongly determined by tree mortality. Convergence between the most abundant taxa of soil bacterial communities under dead pines and colonizer trees (HOs) further suggests that physical gap colonization was occurring below-ground before above-ground colonization was taken place. Significantly higher soil respiration rates under dead trees, together with higher bacterial diversity and anomalously high representation of bacteria commonly associated with copiotrophic environments (r-strategic bacteria) further gives indications of how drought-induced tree mortality and secondary succession were influencing the structure of microbial communities and the metabolic activity of soils.

  18. Knowledge and knowledge gaps in climate-induced tropical forest mortality

    NASA Astrophysics Data System (ADS)

    McDowell, N. G.

    2016-12-01

    Increasing tropical forest mortality is a significant risk and could have enormous consequences on the global carbon cycle, however, our understanding of mortality patterns, drivers, and mechanisms is currently insufficient to allow rigorous hypothesis testing or predictive simulation. Here we review the state of knowledge regarding tropical forest mortality and identify critical next steps to enable improved fundamental understanding and reduced model uncertainty. Limited observations in the tropics suggest many patterns, drivers, and mechanisms of tropical forest mortality are consistent with those found in temperate forests, with significant exceptions associated the high species diversity and unique climate of tropical forests. Accelerating mortality rates have been observed in the neo-tropics, and threshold mortality responses to drought and heat have been observed. However, the large species diversity may buffer tropical forests against drought and heat events relative to analogous responses in temperate forests. The importance of various drivers of tropical forest mortality are undocumented, but wind-induced mortality may play a larger role, drought and heat an equivalent role, and insects and pathogens a more minor role in mortality than in temperate zones. The relative importance of stress- versus productivity- (and CO2fertilization) accelerated mortality is a major science question, as is the threat of die-off (regional scale mortality event) thresholds. We conclude there is significant evidence to justify concern regarding the long-term carbon sink potential of tropical forests, but the state of predictive uncertainty is large relative to other forests globally. We outline a theoretical, empirical, and simulation based framework to surmount the challenge of understanding and predicting pan-tropical forest mortality rates under climate change.

  19. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway

    PubMed Central

    Du, Zhong-jun; Cui, Guan-qun; Zhang, Juan; Liu, Xiao-mei; Zhang, Zhi-hu; Jia, Qiang; Ng, Jack C; Peng, Cheng; Bo, Cun-xiang; Shao, Hua

    2017-01-01

    Gap junction intercellular communication (GJIC) between cardiomyocytes is essential for synchronous heart contraction and relies on connexin-containing channels. Connexin 43 (Cx43) is a major component involved in GJIC in heart tissue, and its abnormal expression is closely associated with various cardiac diseases. Silica nanoparticles (SNPs) are known to induce cardiovascular toxicity. However, the mechanisms through which GJIC plays a role in cardiomyocytes apoptosis induced by SNPs remain unknown. The aim of the present study is to determine whether SNPs-decreased GJIC promotes apoptosis in rat cardiomyocytes cell line (H9c2 cells) via the mitochondrial pathway using CCK-8 Kit, scrape-loading dye transfer technique, Annexin V/PI double-staining assays, and Western blot analysis. The results showed that SNPs elicited cytotoxicity in H9c2 cells in a time- and concentration-dependent manner. SNPs also reduced GJIC in H9c2 cells in a concentration-dependent manner through downregulation of Cx43 and upregulation of P-Cx43. Inhibition of gap junctions by gap junction blocker carbenoxolone disodium resulted in decreased survival and increased apoptosis, whereas enhancement of the gap junctions by retinoic acid led to enhanced survival but decreased apoptosis. Furthermore, SNPs-induced apoptosis through the disrupted functional gap junction was correlated with abnormal expressions of the proteins involved in the mitochondrial pathway-related apoptosis such as Bcl-2/Bax, cytochrome C, Caspase-9, and Caspase-3. Taken together, our results provide the first evidence that SNPs-decreased GJIC promotes apoptosis in cardiomyocytes via the mitochondrial pathway. In addition, downregulation of GJIC by SNPs in cardiomyocytes is mediated through downregulation of Cx43 and upregulation of P-Cx43. These results suggest that in rat cardiomyocytes cell line, GJIC plays a protective role in SNPs-induced apoptosis and that GJIC may be one of the targets for SNPs-induced biological

  20. Valence-band offsets and Schottky barrier heights of layered semiconductors explained by interface-induced gap states

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    1998-04-01

    Many metal chalcogenides are layered semiconductors. They consist of chalcogen-metal-chalcogen layers that are themselves bound by van der Waals forces. Hence, heterostructures involving layered compounds are abrupt and strain-free. Experimental valence-band offsets of heterostructures between GaSe, InSe, SnS2, SnSe2, MoS2, MoTe2, WSe2, and CuInSe2 and between some of these compounds and ZnSe, CdS, and CdTe as well as barrier heights of Au contacts on GaSe, InSe, MoS2, MoTe2, WSe2, ZnSe, CdS, and CdTe are analyzed. The valence-band discontinuities of the heterostructures and the barrier heights of the Schottky contact compounds are consistently described by the continuum of interface-induced gap states as the primary mechanism that governs the band lineup at semiconductor interfaces.

  1. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms

    PubMed Central

    Emmons-Bell, Maya; Durant, Fallon; Hammelman, Jennifer; Bessonov, Nicholas; Volpert, Vitaly; Morokuma, Junji; Pinet, Kaylinnette; Adams, Dany S.; Pietak, Alexis; Lobo, Daniel; Levin, Michael

    2015-01-01

    The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together

  2. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms.

    PubMed

    Emmons-Bell, Maya; Durant, Fallon; Hammelman, Jennifer; Bessonov, Nicholas; Volpert, Vitaly; Morokuma, Junji; Pinet, Kaylinnette; Adams, Dany S; Pietak, Alexis; Lobo, Daniel; Levin, Michael

    2015-11-24

    The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together

  3. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    SciTech Connect

    Ganesan, Shanthi Nteeba, Jackson Keating, Aileen F.

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.

  4. Connexin43-containing gap junctions potentiate extracellular Ca²⁺-induced odontoblastic differentiation of human dental pulp stem cells via Erk1/2.

    PubMed

    Li, Shiting; He, Haitao; Zhang, Gang; Wang, Fei; Zhang, Ping; Tan, Yinghui

    2015-10-15

    Extracellular Ca(2+) can promote dentin sialophosphoprotein (DSPP) expression and odontoblastic differentiation of dental pulp stem cells (DPSCs). Gap junctions mediated by connexin43 (Cx43) allow diffusion of small molecules (such as Ca(2+)) among cells to regulate cell-to-cell communications. However, it is unclear whether Cx43 is required for the Ca(2+)-induced cell differentiation. Here, we found that the influx of extracellular Ca(2+) through L-type Ca(2+) channels increases intracellular free Ca(2+) levels to promote DSPP expression. Cx43 overexpression potentiated the extracellular Ca(2+)-induced DSPP expression via Erk1/2. Flow cytometry analyses showed that Cx43 increased the percentage of p-Erk1/2 positive cells in response to Ca(2+), indicating that Cx43 in DPSCs possibly acts as a traditional gap junction channel, which permits the sharing of signals among coupled cells to make more DPSCs respond to Ca(2+). Furthermore, inhibition of Cx43 function and gap junction communication decreased Ca(2+)-induced the expression of DSPP, suggesting that cell-to-cell contacts are required for Cx43 to promote the Ca(2+)-induced cell differentiation. Similarly, the study performed on DPSCs cultured at low-density and high-density revealed that intercellular contacts are required to potentiate Erk1/2 activity and DSPP expression. In total, this study indicates that Cx43 increases Ca(2+)-induced DSPP expression and odontoblastic differentiation of DPSCs via Erk1/2 through gap junction-mediated cell-to-cell contacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Stress-induced indirect to direct band gap transition in β-FeSi2 nanocrystals embedded in Si

    NASA Astrophysics Data System (ADS)

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Balagan, S. A.; Dotsenko, S. A.; Galkin, K. N.; Galkin, N. G.; Shamirzaev, T. S.; Gutakovskii, A. K.; Iinuma, M.; Terai, Y.

    2017-09-01

    Embedded in silicon β-FeSi2 nanocrystals (NCs) were grown on Si(111) by solid phase epitaxy of a thin iron film followed by Si molecular beam epitaxy. After solid phase epitaxy, a mixture of β-FeSi2 and ɛ-FeSi nanocrystals is formed on the surface, sometimes β and ɛ phases coexist inside one nanocrystal. During initial stage of Si molecular beam epitaxy all ɛ-FeSi transforms into β-FeSi2. β-FeSi2 nanocrystals tend to move following Si growth front. By adjusting growth condition, we manage to prevent the nanocrystals from moving and to fabricate 7-layer n-Si(111)/β-FeSi2_NCs/p+-Si silicon heterostructure with embedded β-FeSi2 NCs. An epitaxial relationship and a stress induced in the nanocrystals by silicon matrix were found to be suitable for indirect to direct band gap transition in β-FeSi2. Of the heterostructure, a n-i-p avalanche photodetector and a light-emitting diode were formed. They have shown relatively good performance: ultrabroadband photoresponse from the visible (400 nm) to short-wavelength infrared (1800 nm) ranges owing to quantum-confined Stark effect in the nanocrystals and optical emission power of up to 25 µW at 9 A/cm2 with an external quantum efficiency of 0.009% at room temperature owing to a direct fundamental transition in stressed β-FeSi2 nanocrystals.

  6. Oxaliplatin-induced neurotoxicity is mediated through gap junction channels and hemichannels and can be prevented by octanol.

    PubMed

    Kagiava, Alexia; Theophilidis, George; Sargiannidou, Irene; Kyriacou, Kyriacos; Kleopa, Kleopas A

    2015-10-01

    Oxaliplatin-induced neurotoxicity (OIN) is a common complication of chemotherapy without effective treatment. In order to clarify the mechanisms of both acute and chronic OIN, we used an ex-vivo mouse sciatic nerve model. Exposure to 25 μM oxaliplatin caused a marked prolongation in the duration of the nerve evoked compound action potential (CAP) by nearly 1200% within 300 min while amplitude remained constant for over 20 h. This oxaliplatin effect was almost completely reversed by the gap junction (GJ) inhibitor octanol in a concentration-dependent manner. Further GJ blockers showed similar effects although with a narrower therapeutic window. To clarify the target molecule we studied sciatic nerves from connexin32 (Cx32) and Cx29 knockout (KO) mice. The oxaliplatin effect and neuroprotection by octanol partially persisted in Cx29 better than in Cx32 KO nerves, suggesting that oxaliplatin affects both, but Cx32 GJ channels more than Cx29 hemichannels. Oxaliplatin also accelerated neurobiotin uptake in HeLa cells expressing the human ortholog of Cx29, Cx31.3, as well as dye transfer between cells expressing the human Cx32, and this effect was blocked by octanol. Oxaliplatin caused no morphological changes initially (up to 3 h of exposure), but prolonged nerve exposure caused juxtaparonodal axonal edema, which was prevented by octanol. Our study indicates that oxaliplatin causes forced opening of Cx32 channels and Cx29 hemichannels in peripheral myelinated fibers leading to disruption of axonal K(+) homeostasis. The GJ blocker octanol prevents OIN at very low concentrations and should be further studied as a neuroprotectant.

  7. Involvement of gap junctional intercellular communication in the bystander effect induced by broad-beam or microbeam heavy ions

    NASA Astrophysics Data System (ADS)

    Shao, Chunlin; Furusawa, Yoshiya; Kobayashi, Yasuhiko; Funayama, Tomoo

    2006-09-01

    Most of the reported bystander responses were studied by using low dose irradiation of γ-rays and light ions such as alpha-particles. In this study, primary human fibroblasts AG1522 in confluent cultures were irradiated with either broad-beam of 100 keV/μm 12C or microbeams of 380 keV/μm 20Ne and 1260 keV/μm 40Ar. When cells were irradiated with 12C ions, the induction of micronucleus (MN) had a low-dose sensitive effect, i.e. a lower dose of irradiation gave a higher yield of MN per cell-traversal. This phenomenon was further reinforced by using a microbeam to irradiate a fraction of cells within a population. Even when only a single cell was targeted with one particle of 40Ar or 20Ne, the MN yield was increased to 1.4-fold of the non-irradiated control. When the number of microbeam targeted cells increased, the MN yield per targeted-cell decreased drastically. In addition, the bystander MN induction did not vary significantly with the number and the linear energy transfer (LET) of microbeam particles. When the culture was treated with PMA, an inhibitor of gap junctional intercellular communication (GJIC), MN induction was decreased for both microbeam and broad-beam irradiations even at high-doses where all cells were hit. The present findings indicate that a GJIC-mediated signaling amplification mechanism was involved in the high-LET heavy ion irradiation induced bystander effect. Moreover, at high-doses of radiation, the bystander signals could perform a complex interaction with direct irradiation.

  8. Majorana modes in InSb nanowires (I): zero bias peaks in hybrid devices with low-disorder and hard induced superconducting gap

    NASA Astrophysics Data System (ADS)

    Gül, Ö.; Zhang, H.; de Moor, M. W. A.; de Vries, F.; van Veen, J.; van Woerkom, D. J.; Zuo, K.; Mourik, V.; Cassidy, M.; Geresdi, A.; Car, D.; Bakkers, E. P. A. M.; Goswami, S.; Watanabe, K.; Taniguchi, T.; Kouwenhoven, L. P.

    Majorana modes in hybrid superconductor-semiconductor nanowire devices can be probed via tunnelling spectroscopy which shows a zero bias peak (ZBP) in differential conductance (1). However, alternative mechanisms such as disorder or formation of quantum dots can also give rise to ZBPs, and obscure experimental studies of Majoranas. Further, a soft induced superconducting gap commonly observed in experiments presents an outstanding challenge for the demonstration of their topological protection. In this talk we show that with device improvements, we reach low-disorder transport regime with clear quantized conductance plateaus and Andreev enhancement approaching the theoretical limit. Tunnelling spectroscopy shows a hard induced superconducting gap and no formation of quantum dots. Together with extremely stable ZBPs observed in large gate voltage and magnetic field ranges, we exclude various alternative theories besides the formation of localized Majorana modes for our observations.

  9. Analytically determined topological phase diagram of the proximity-induced gap in diffusive n-terminal Josephson junctions

    PubMed Central

    Amundsen, Morten; Ouassou, Jabir Ali; Linder, Jacob

    2017-01-01

    Multiterminal Josephson junctions have recently been proposed as a route to artificially mimic topological matter with the distinct advantage that its properties can be controlled via the superconducting phase difference, giving rise to Weyl points in 4-terminal geometries. A key goal is to accurately determine when the system makes a transition from a gapped to non-gapped state as a function of the phase differences in the system, the latter effectively playing the role of quasiparticle momenta in conventional topological matter. We here determine the proximity gap phase diagram of diffusive n-terminal Josephson junctions (), both numerically and analytically, by identifying a class of solutions to the Usadel equation at zero energy in the full proximity effect regime. We present an analytical equation which provides the phase diagram for an arbitrary number of terminals n. After briefly demonstrating the validity of the analytical approach in the previously studied 2- and 3-terminal cases, we focus on the 4-terminal case and map out the regimes where the electronic excitations in the system are gapped and non-gapped, respectively, demonstrating also in this case full agreement between the analytical and numerical approach. PMID:28094289

  10. Analytically determined topological phase diagram of the proximity-induced gap in diffusive n-terminal Josephson junctions

    NASA Astrophysics Data System (ADS)

    Amundsen, Morten; Ouassou, Jabir Ali; Linder, Jacob

    2017-01-01

    Multiterminal Josephson junctions have recently been proposed as a route to artificially mimic topological matter with the distinct advantage that its properties can be controlled via the superconducting phase difference, giving rise to Weyl points in 4-terminal geometries. A key goal is to accurately determine when the system makes a transition from a gapped to non-gapped state as a function of the phase differences in the system, the latter effectively playing the role of quasiparticle momenta in conventional topological matter. We here determine the proximity gap phase diagram of diffusive n-terminal Josephson junctions (), both numerically and analytically, by identifying a class of solutions to the Usadel equation at zero energy in the full proximity effect regime. We present an analytical equation which provides the phase diagram for an arbitrary number of terminals n. After briefly demonstrating the validity of the analytical approach in the previously studied 2- and 3-terminal cases, we focus on the 4-terminal case and map out the regimes where the electronic excitations in the system are gapped and non-gapped, respectively, demonstrating also in this case full agreement between the analytical and numerical approach.

  11. Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm.

    PubMed

    George, Saji; Pokhrel, Suman; Ji, Zhaoxia; Henderson, Bryana L; Xia, Tian; Li, LinJiang; Zink, Jeffrey I; Nel, André E; Mädler, Lutz

    2011-07-27

    UV-light-induced electron-hole (e(-)/h(+)) pair generation with free radical production in TiO(2)-based nanoparticles is a major conceptual paradigm for biological injury. However, to date, this hypothesis has been difficult to experimentally verify due to the high energy of UV light that is intrinsically highly toxic to biological systems. Here, a versatile flame spray pyrolysis (FSP) synthetic process has been exploited to synthesize a library of iron-doped (0-10 wt%) TiO(2) nanoparticles. These particles have been tested for photoactivation-mediated cytotoxicity using near-visible light exposure. The reduction in TiO(2) band gap energy with incremental levels of Fe loading maintained the nanoparticle crystalline structure in spite of homogeneous Fe distribution (demonstrated by XRD, HRTEM, SAED, EFTEM, and EELS). Photochemical studies showed that band gap energy was reciprocally tuned proportional to the Fe content. The photo-oxidation capability of Fe-doped TiO(2) was found to increase during near-visible light exposure. Use of a macrophage cell line to evaluate cytotoxic and ROS production showed increased oxidant injury and cell death in parallel with a decrease in band gap energy. These findings demonstrate the importance of band gap energy in the phototoxic response of the cell to TiO(2) nanoparticles and reflect the potential of this material to generate adverse effects in humans and the environment during high-intensity light exposure.

  12. Role of Fe doping in tuning the band gap of TiO2 for photo-oxidation induced cytotoxicity paradigm

    PubMed Central

    George, Saji; Pokhrel, Suman; Ji, Zhaoxia; Henderson, Bryana L.; Xia, Tian; Li, LinJiang; Zink, Jeffrey I.; Nel, André E.; Mädler, Lutz

    2014-01-01

    UV-Light induced electron-hole (e−/h+) pair generation and free radical production in TiO2 based nanoparticles is a major conceptual paradigm for biological injury. However, to date, this hypothesis has been difficult to experimentally verify due to the high energy of UV light that is intrinsically highly toxic to biological systems. Here, a versatile flame spray pyrolysis (FSP) synthetic process has been exploited to synthesize a library of iron doped (0–10 at wt%) TiO2 nanoparticles. These particles have been tested for photoactivation-mediated cytotoxicity using near-visible light exposure. The reduction in TiO2 band gap energy with incremental levels of Fe loading maintained the nanoparticle crystalline structure in spite of homogeneous Fe distribution (demonstrated by XRD, HRTEM, SAED, EFTEM, and EELS). Photochemical studies showed that band gap energy was reciprocally tuned proportional to the Fe content. The photo-oxidation capability of Fe-doped TiO2 was found to increase during near-visible light exposure. Use of a macrophage cell line to evaluate cytotoxic and ROS production showed increased oxidant injury and cell death in parallel with a decrease in band gap energy. These findings demonstrate the importance of band gap energy in the phototoxic response of the cell to TiO2 nanoparticles and reflect the potential of this material to generate adverse effects in humans and the environment during high intensity light exposure. PMID:21678906

  13. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  14. Gap junctions.

    PubMed

    Goodenough, Daniel A; Paul, David L

    2009-07-01

    Gap junctions are aggregates of intercellular channels that permit direct cell-cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.

  15. Gap Junctions

    PubMed Central

    Goodenough, Daniel A.; Paul, David L.

    2009-01-01

    Gap junctions are aggregates of intercellular channels that permit direct cell–cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology. PMID:20066080

  16. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  17. Enhanced spin polarization in graphene with spin energy gap induced by spin-orbit coupling and strain

    SciTech Connect

    Liu, Zheng-Fang; Wu, Qing-Ping E-mail: aixichen@ecjtu.jx.cn; Chen, Ai-Xi E-mail: aixichen@ecjtu.jx.cn; Xiao, Xian-Bo; Liu, Nian-Hua

    2014-05-28

    We investigate the possibility of spin polarization in graphene. The result shows that a spin energy gap can be opened in the presence of both spin-orbit coupling and strain. We find that high spin polarization with large spin-polarized current is achieved in the spin energy gap. However, only one of the two modulations is present, no spin polarization can be generated. So the combination of the two modulations provides a way to design tunable spin polarization without need for a magnetic element or an external magnetic field.

  18. Protection of a ceramide synthase 2 null mouse from drug-induced liver injury: role of gap junction dysfunction and connexin 32 mislocalization.

    PubMed

    Park, Woo-Jae; Park, Joo-Won; Erez-Roman, Racheli; Kogot-Levin, Aviram; Bame, Jessica R; Tirosh, Boaz; Saada, Ann; Merrill, Alfred H; Pewzner-Jung, Yael; Futerman, Anthony H

    2013-10-25

    Very long chain (C22-C24) ceramides are synthesized by ceramide synthase 2 (CerS2). A CerS2 null mouse displays hepatopathy because of depletion of C22-C24 ceramides, elevation of C16-ceramide, and/or elevation of sphinganine. Unexpectedly, CerS2 null mice were resistant to acetaminophen-induced hepatotoxicity. Although there were a number of biochemical changes in the liver, such as increased levels of glutathione and multiple drug-resistant protein 4, these effects are unlikely to account for the lack of acetaminophen toxicity. A number of other hepatotoxic agents, such as d-galactosamine, CCl4, and thioacetamide, were also ineffective in inducing liver damage. All of these drugs and chemicals require connexin (Cx) 32, a key gap junction protein, to induce hepatotoxicity. Cx32 was mislocalized to an intracellular location in hepatocytes from CerS2 null mice, which resulted in accelerated rates of its lysosomal degradation. This mislocalization resulted from the altered membrane properties of the CerS2 null mice, which was exemplified by the disruption of detergent-resistant membranes. The lack of acetaminophen toxicity and Cx32 mislocalization were reversed upon infection with recombinant adeno-associated virus expressing CerS2. We establish that Gap junction function is compromised upon altering the sphingolipid acyl chain length composition, which is of relevance for understanding the regulation of drug-induced liver injury.

  19. Gap junctions.

    PubMed

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2012-07-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1853-1872, 2012.

  20. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  1. The effects of exercise on the GAP-43 expression in the spinal cord of arthritis-induced rats

    PubMed Central

    Park, Soo-Jin; Jung, Nam-Jin; Na, Sang-Su

    2016-01-01

    [Purpose] The purpose of the study was to investigate the effects of exercise on the recovery of spinal cord nerve cells damaged due to pain signals which are a major symptom of osteoarthritis. [Subjects and Methods] Adult male Sprague-Dawley rats (n=40) were used and induction of osteoarthritis by monosodium iodoacetate. Injected rats were randomly divided into 4 groups: Sham control group without MIA injection (SG), control group with injected MIA (CG), OA without exercise (NEG), OA with exercise (EG). Sham control group was injected normal cell line instead of MIA. The exercise group was submitted to 4-week training program on a treadmill for 5 days/week, 30 min/day, 16 m/min velocity, then spinal cord were removed and measured the GAP-43 expression by immunohistochemistry analysis. [Results] In this study, a results of measuring the expression of GAP-43. GAP-43 was observed in all groups, showed that the significant difference in each group. [Conclusion] It could be seen that exercise increased the GAP-43 expression in the spinal cord to promote the recovery of spinal cord nerve cells damaged due to chronic osteoarthritis. PMID:27821962

  2. Anisotropic rectifying characteristics induced by the superconducting gap of YBa2Cu3O7-δ/Nb-doped SrTiO3 heterojunctions

    NASA Astrophysics Data System (ADS)

    Zhang, M. J.; Hao, F. X.; Zhang, C.; Liu, X.; Li, X. G.

    2015-11-01

    In this paper, we investigated the anisotropic rectifying characteristics of a YBa2Cu3O7-δ (YBCO)/Nb-doped SrTiO3 heterojunction in magnetic fields of up to 9 T by rotating the junction from H//c to H//ab of the YBCO film. From the temperature and field dependencies of the diffusion potential Vd, we found that the angle-resolved reductions of Vd from its original value, δVd, were induced by the anisotropic superconducting gap Δ of the YBCO. The anisotropic parameter obtained from Δ was close to that obtained from the angular-dependent upper critical fields of the YBCO. This heterojunction is helpful both in investigating the superconducting gap and in designing sensitive superconducting devices.

  3. Carrier-Induced Band-Gap Variation and Point Defects in Zn3N2 from First Principles

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Harada, Kou; Akamatsu, Hirofumi; Matsuzaki, Kosuke; Oba, Fumiyasu

    2017-07-01

    The zinc nitride Zn3N2 is composed of inexpensive and earth-abundant Zn and N elements and shows high electron mobility exceeding 100 cm2 V-1 s-1 . Although various technological applications of Zn3N2 have been suggested so far, the synthesis of high-quality Zn3N2 samples, especially single crystals, is still challenging, and therefore its basic properties are not yet well understood. Indeed, the reported band gaps of as-grown Zn3N2 widely scatter from 0.85 to 3.2 eV. In this study, we investigate the large gap variation of Zn3N2 in terms of the Burstein-Moss (BM) effect and point-defect energetics using first-principles calculations. First, we discuss the relation between electron carrier concentration and optical gaps based on the electronic structure obtained using the Heyd-Scuseria-Ernzerhof hybrid functional. The calculated fundamental band gap is 0.84 eV in a direct-type band structure. Second, thermodynamic stability of Zn3N2 is assessed using the ideal-gas model in conjunction with the rigid-rotor model for gas phases and first-principles phonon calculations for solid phases. Third, carrier generation and compensation by native point defects and unintentionally introduced oxygen and hydrogen impurities are discussed. The results suggest that a significant BM shift occurs mainly due to oxygen substitutions on nitrogen sites and hydrogen interstitials. However, gaps larger than 2.0 eV would not be due to the BM shift because of the Fermi-level pinning caused by acceptorlike zinc vacancies and hydrogen-on-zinc impurities. Furthermore, we discuss details of peculiar defects such as a nitrogen-on-zinc antisite with azidelike atomic and electronic structures.

  4. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    PubMed

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  5. Gap junctions.

    PubMed

    Shimizu, Kazumichi; Stopfer, Mark

    2013-12-02

    In vertebrates and invertebrates, signaling among neurons is most commonly mediated by chemical synapses. At these synapses neurotransmitter released by presynaptic neurons is detected by receptors on the postsynaptic neurons, leading to an influx of ions through the receptors themselves or through channels activated by intracellular signaling downstream of the receptors. But neurons can communicate with each other in a more direct way, by passing signals composed of small molecules and ions through pores called gap junctions. Gap junctions that transmit electrical signals are called electrical synapses. Unlike most chemical synapses, electrical synapses interact through axon-to-axon or dendrite-to-dendrite contacts. Found throughout the nervous system, they are probably best known for linking the relatively few inhibitory, GABAergic, neurons into large, effective networks within vertebrate brains. They are particularly important early in development before the formation of most chemical synapses, but recent work shows gap junctions play important roles in the adult nervous system, too. Gap junctions are sometimes thought to be mere passageways between cells. But, as recent work shows, their properties can be complex and surprising. Gap junctions help generate, propagate, and regulate neural oscillations, can filter electrical signals, and can be modulated in a variety of ways. Here we discuss recent work highlighting the diversity and importance of gap junctions throughout the nervous system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Wang, Eryin; Ding, Hao; Fedorov, Alexei V.; Yao, Wei; Li, Zhi; Lv, Yan-Feng; Zhao, Kun; Zhang, Li-Guo; Xu, Zhijun; Schneeloch, John; Zhong, Ruidan; Ji, Shuai-Hua; Wang, Lili; He, Ke; Ma, Xucun; Gu, Genda; Yao, Hong; Xue, Qi-Kun; Chen, Xi; Zhou, Shuyun

    2013-10-01

    Topological insulators are a new class of material, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay of such symmetry-protected topological surface states and symmetry-broken states (for example, superconductivity) provides a platform for exploring new quantum phenomena and functionalities, such as one-dimensional chiral or helical gapless Majorana fermions, and Majorana zero modes that may find application in fault-tolerant quantum computation. Inducing superconductivity on the topological surface states is a prerequisite for their experimental realization. Here, by growing high-quality topological insulator Bi2Se3 films on a d-wave superconductor Bi2Sr2CaCu2O8+δ using molecular beam epitaxy, we are able to induce high-temperature superconductivity on the surface states of Bi2Se3 films with a large pairing gap up to 15meV. Interestingly, distinct from the d-wave pairing of Bi2Sr2CaCu2O8+δ, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step towards the realization of the long sought Majorana zero modes.

  7. Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome.

    PubMed

    Quinet, Annabel; Vessoni, Alexandre T; Rocha, Clarissa R R; Gottifredi, Vanesa; Biard, Denis; Sarasin, Alain; Menck, Carlos F M; Stary, Anne

    2014-02-01

    Ultraviolet (UV)-induced DNA damage are removed by nucleotide excision repair (NER) or can be tolerated by specialized translesion synthesis (TLS) polymerases, such as Polη. TLS may act at stalled replication forks or through an S-phase independent gap-filling mechanism. After UVC irradiation, Polη-deficient (XP-V) human cells were arrested in early S-phase and exhibited both single-strand DNA (ssDNA) and prolonged replication fork stalling, as detected by DNA fiber assay. In contrast, NER deficiency in XP-C cells caused no apparent defect in S-phase progression despite the accumulation of ssDNA and a G2-phase arrest. These data indicate that while Polη is essential for DNA synthesis at ongoing damaged replication forks, NER deficiency might unmask the involvement of tolerance pathway through a gap-filling mechanism. ATR knock down by siRNA or caffeine addition provoked increased cell death in both XP-V and XP-C cells exposed to low-dose of UVC, underscoring the involvement of ATR/Chk1 pathway in both DNA damage tolerance mechanisms. We generated a unique human cell line deficient in XPC and Polη proteins, which exhibited both S- and G2-phase arrest after UVC irradiation, consistent with both single deficiencies. In these XP-C/Polη(KD) cells, UVC-induced replicative intermediates may collapse into double-strand breaks, leading to cell death. In conclusion, both TLS at stalled replication forks and gap-filling are active mechanisms for the tolerance of UVC-induced DNA damage in human cells and the preference for one or another pathway depends on the cellular genotype. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Quantum-size-induced phase transitions in quantum dots: Indirect-band gap GaAs nanostructures

    NASA Astrophysics Data System (ADS)

    Zunger, Alex; Luo, Jun-Wei; Franceschetti, Alberto

    2008-03-01

    Quantum nanostructures are often advertised as having stronger absorption than the bulk material from which they are made, to the potential benefit of nanotechnology. However, nanostructures made of direct gap materials such as GaAs can convert to indirect-gap, weakly-aborbing systems when the quantum size becomes small. This is the case for spherical GaAs dots of radius 15 å or less (about 1000 atoms) embedded in a wide-gap matrix. The nature of the transition: γ-to-X or γ-to-L is however, controversial. The distinction can not be made on the basis of electronic structure techniques that misrepresent the magnitude of the various competing effective mass tensors (e.g, LDA or GGA) or wavefunction coupling (e.g, tight-binding). Using a carefully fit screened pseudopotential method we show that the transition occurs from γ to X, and, more importantly, that the transition involves a finite V (γ-X) interband coupling, manifested as an ``anti-crossing'' between the confined electron states of GaAs as the dot size crosses 15 å. The physics of this reciprocal-space γ-X transition, as well as the real-space (type II) transition in GaAs/AlGaAs will be briefly discussed.

  9. Nickel-induced increases in gap junctional communication in the uterine cell line SK-UT-1.

    PubMed

    Marty, M S; Loch-Caruso, R

    1993-03-01

    Previous studies have suggested that gap junctions may have a role in various uterine functions, including parturition. Because nickel has been demonstrated to increase uterine contractility in vitro, the effect of nickel (II) chloride on gap junctional communication was assessed in a tumorigenic uterine cell line, SK-UT-1 (ATCC HTB 114). Cells were exposed in vitro to 25 and 50 microM NiCl2 for 24 h or 100 microM NiCl2 for 3, 12, and 24 h, then functional gap junctional communication was measured as the transfer of Lucifer yellow dye from microinjected donor cells to their primary neighbor cells. Dye transfer was significantly increased only in cell cultures exposed to 100 microM NiCl2 for 24 h, compared to untreated controls, lower doses, and shorter exposure periods. This response was inhibited by the simultaneous co-treatment of SK-UT-1 cells with magnesium by adding 100 microM MgSO4 to the dosing medium. Possible mechanisms and implications for these findings are discussed.

  10. In vivo single branch axotomy induces GAP-43–dependent sprouting and synaptic remodeling in cerebellar cortex

    PubMed Central

    Allegra Mascaro, Anna Letizia; Cesare, Paolo; Sacconi, Leonardo; Grasselli, Giorgio; Mandolesi, Georgia; Maco, Bohumil; Knott, Graham W.; Huang, Lieven; De Paola, Vincenzo; Strata, Piergiorgio; Pavone, Francesco S.

    2013-01-01

    Plasticity in the central nervous system in response to injury is a complex process involving axonal remodeling regulated by specific molecular pathways. Here, we dissected the role of growth-associated protein 43 (GAP-43; also known as neuromodulin and B-50) in axonal structural plasticity by using, as a model, climbing fibers. Single axonal branches were dissected by laser axotomy, avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Despite the very small denervated area, the injured axons consistently reshape the connectivity with surrounding neurons. At the same time, adult climbing fibers react by sprouting new branches through the intact surroundings. Newly formed branches presented varicosities, suggesting that new axons were more than just exploratory sprouts. Correlative light and electron microscopy reveals that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites. By using an RNA interference approach, we found that downregulating GAP-43 causes a significant increase in the turnover of presynaptic boutons. In addition, silencing hampers the generation of reactive sprouts. Our findings show the requirement of GAP-43 in sustaining synaptic stability and promoting the initiation of axonal regrowth. PMID:23754371

  11. Annealing-induced optical and sub-band-gap absorption parameters of Sn-doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Tripathi, S. K.

    2016-01-01

    Thin films of Sn-doped CdSe were prepared by thermal evaporation onto glass substrates in an argon gas atmosphere and annealed at different temperatures. Structural evaluation of the films was carried out using X-ray diffraction and their stoichiometry studied by energy-dispersive X-ray analysis. The films exhibit a preferred orientation along the hexagonal direction of CdSe. The optical transmittance of the films shows a red shift of the absorption edge with annealing. The fundamental absorption edge corresponds to a direct energy gap with a temperature coefficient of 3.34 × 10-3 eV K-1. The refractive index, optical conductivity and real and imaginary parts of the dielectric constants were found to increase after annealing. The sub-band gap absorption coefficient was evaluated using the constant photocurrent method. It varies exponentially with photon energy. The Urbach energy, the density of defect states, and the steepness of the density of localized states were evaluated from the sub-band-gap absorption.

  12. Remaining gaps for "safe" CO2 storage: the INGV CO2GAPS vision of "learning by doing" monitoring geogas leakage, reservoirs contamination/mixing and induced/triggered seismicity

    NASA Astrophysics Data System (ADS)

    Quattrocchi, F.; Vinciguerra, S.; Chiarabba, C.; Boschi, E.; Anselmi, M.; Burrato, P.; Buttinelli, M.; Cantucci, B.; Cinti, D.; Galli, G.; Improta, L.; Nazzari, M.; Pischiutta, M.; Pizzino, L.; Procesi, M.; Rovelli, A.; Sciarra, A.; Voltattorni, N.

    2012-12-01

    The CO2GAPS project proposed by INGV is intended to build up an European Proposal for a new kind of research strategy in the field of the geogas storage. Aim of the project would be to fill such key GAPS concerning the main risks associated to CO2 storage and their implications on the entire Carbon Capture and Storage (CCS) process, which are: i) the geogas leakage both in soils and shallow aquifers, up to indoor seepage; ii) the reservoirs contamination/mixing by hydrocarbons and heavy metals; iii) induced or triggered seismicity and microseismicity, especially for seismogenic blind faults. In order to consider such risks and make the CCS public acceptance easier, a new kind of research approach should be performed by: i) a better multi-disciplinary and "site specific" risk assessment; ii) the development of more reliable multi-disciplinary monitoring protocols. In this view robust pre-injection base-lines (seismicity and degassing) as well as identification and discrimination criteria for potential anomalies are mandatory. CO2 injection dynamic modelling presently not consider reservoirs geomechanical properties during reactive mass-transport large scale simulations. Complex simulations of the contemporaneous physic-chemical processes involving CO2-rich plumes which move, react and help to crack the reservoir rocks are not totally performed. These activities should not be accomplished only by the oil-gas/electric companies, since the experienced know-how should be shared among the CCS industrial operators and research institutions, with the governments support and overview, also flanked by a transparent and "peer reviewed" scientific popularization process. In this context, a preliminary and reliable 3D modelling of the entire "storage complex" as defined by the European Directive 31/2009 is strictly necessary, taking into account the above mentioned geological, geochemical and geophysical risks. New scientific results could also highlighting such opportunities

  13. Localization of metal-induced gap states at the metal-insulator interface: origin of flux noise in SQUIDs and superconducting qubits.

    PubMed

    Choi, SangKook; Lee, Dung-Hai; Louie, Steven G; Clarke, John

    2009-11-06

    The origin of magnetic flux noise in superconducting quantum interference devices with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of 5x10(17) m(-2). We show that, in the presence of potential disorder at the metal-insulator interface, some of the metal-induced gap states become localized and produce local moments. A modest level of disorder yields the observed areal density.

  14. Localization of metal-induced gap states at the metal-insulator interface: Origin of flux noise in SQUIDs and superconducting qubits

    SciTech Connect

    Choi, SangKook; Lee, Dung-Hai; Louie, Steven G.; Clarke, John

    2009-10-10

    The origin of magnetic flux noise in Superconducting Quantum Interference Devices with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of 5 x 10(17)m(-2). We show that, in the presence of potential disorder at the metal-insulator interface, some of the metal-induced gap states become localized and produce local moments. A modest level of disorder yields the observed areal density.

  15. Anion Gap Toxicity in Alloxan Induced Type 2 Diabetic Rats Treated with Antidiabetic Noncytotoxic Bioactive Compounds of Ethanolic Extract of Moringa oleifera

    PubMed Central

    2014-01-01

    Moringa oleifera (MO) is used for a number of therapeutic purposes. This raises the question of safety and possible toxicity. The objective of the study was to ascertain the safety and possible metabolic toxicity in comparison with metformin, a known drug associated with acidosis. Animals confirmed with diabetes were grouped into 2 groups. The control group only received oral dose of PBS while the test group was treated with ethanolic extract of MO orally twice daily for 5-6 days. Data showed that the extract significantly lowered glucose level to normal values and did not cause any significant cytotoxicity compared to the control group (P = 0.0698); there was no gain in weight between the MO treated and the control groups (P > 0.8115). However, data showed that treatment with an ethanolic extract of MO caused a decrease in bicarbonate (P < 0.0001), and more than twofold increase in anion gap (P < 0.0001); metformin treatment also decreased bicarbonate (P < 0.0001) and resulted in a threefold increase in anion gap (P < 0.0001). Conclusively, these data show that while MO appears to have antidiabetic and noncytotoxic properties, it is associated with statistically significant anion gap acidosis in alloxan induced type 2 diabetic rats. PMID:25548560

  16. Anion Gap Toxicity in Alloxan Induced Type 2 Diabetic Rats Treated with Antidiabetic Noncytotoxic Bioactive Compounds of Ethanolic Extract of Moringa oleifera.

    PubMed

    Omabe, Maxwell; Nwudele, Chibueze; Omabe, Kenneth Nwobini; Okorocha, Albert Egwu

    2014-01-01

    Moringa oleifera (MO) is used for a number of therapeutic purposes. This raises the question of safety and possible toxicity. The objective of the study was to ascertain the safety and possible metabolic toxicity in comparison with metformin, a known drug associated with acidosis. Animals confirmed with diabetes were grouped into 2 groups. The control group only received oral dose of PBS while the test group was treated with ethanolic extract of MO orally twice daily for 5-6 days. Data showed that the extract significantly lowered glucose level to normal values and did not cause any significant cytotoxicity compared to the control group (P = 0.0698); there was no gain in weight between the MO treated and the control groups (P > 0.8115). However, data showed that treatment with an ethanolic extract of MO caused a decrease in bicarbonate (P < 0.0001), and more than twofold increase in anion gap (P < 0.0001); metformin treatment also decreased bicarbonate (P < 0.0001) and resulted in a threefold increase in anion gap (P < 0.0001). Conclusively, these data show that while MO appears to have antidiabetic and noncytotoxic properties, it is associated with statistically significant anion gap acidosis in alloxan induced type 2 diabetic rats.

  17. A high-fat diet induces lower expression of retinoid receptors and their target genes GAP-43/neuromodulin and RC3/neurogranin in the rat brain.

    PubMed

    Buaud, Benjamin; Esterle, Laure; Vaysse, Carole; Alfos, Serge; Combe, Nicole; Higueret, Paul; Pallet, Véronique

    2010-06-01

    Numerous studies have reported an association between cognitive impairment in old age and nutritional factors, including dietary fat. Retinoic acid (RA) plays a central role in the maintenance of cognitive processes via its nuclear receptors (NR), retinoic acid receptor (RAR) and retinoid X receptor (RXR), and the control of target genes, e.g. the synaptic plasticity markers GAP-43/neuromodulin and RC3/neurogranin. Given the relationship between RA and the fatty acid signalling pathways mediated by their respective NR (RAR/RXR and PPAR), we investigated the effect of a high-fat diet (HFD) on (1) PUFA status in the plasma and brain, and (2) the expression of RA and fatty acid NR (RARbeta, RXRbetagamma and PPARdelta), and synaptic plasticity genes (GAP-43 and RC3), in young male Wistar rats. In the striatum of rats given a HFD for 8 weeks, real-time PCR (RT-PCR) revealed a decrease in mRNA levels of RARbeta ( - 14 %) and PPARdelta ( - 13 %) along with an increase in RXRbetagamma (+52 %). Concomitantly, RT-PCR and Western blot analysis revealed (1) a clear reduction in striatal mRNA and protein levels of RC3 ( - 24 and - 26 %, respectively) and GAP-43 ( - 10 and - 42 %, respectively), which was confirmed by in situ hybridisation, and (2) decreased hippocampal RC3 and GAP-43 protein levels (approximately 25 %). Additionally, HFD rats exhibited a significant decrease in plasma ( - 59 %) and brain ( - 6 %) n-3 PUFA content, mainly due to the loss of DHA. These results suggest that dietary fat induces neurobiological alterations by modulating the brain RA signalling pathway and n-3 PUFA content, which have been previously correlated with cognitive impairment.

  18. Visualisation of plasma induced processes in interelectrode gap of micropinch installation using laser illuminator on molecular nitrogen

    NASA Astrophysics Data System (ADS)

    Filippov, E.; Sarantsev, S.; Raevsky, I.; Savjolov, A.

    2016-11-01

    The paper presents the results of researched processes in the interelectrode gap of High-current low-inductance vacuum spark (HLIV) on the "PION" system [1] by means of active laser diagnostics with visualisation of radiation field. The influence of the cathode geometry and position of the trigger system on the plasma dynamics of HLIV is considered. The regularities of the discharge for different initial conditions are established. The conditions under which the most stable plasma point is formed in space and time are determined.

  19. Induced changes in refractive index, optical band gap, and absorption edge of polycarbonate-SiO2 thin films by Vis-IR lasers

    NASA Astrophysics Data System (ADS)

    Ehsani, Hassan; Akhoondi, Somaieh

    2016-09-01

    In this experimental work, we have studied induced changes in refractive index, extinction coefficient, and optical band-gap of Bisphenol-A-polycarbonate (BPA-PC) coated with a uniform and thin, anti-scratch SiO2 film irradiated by visible to near-infrared lasers at 532 nm (green),650 nm(red), and 980 nm (IR)wavelength lasers with different energy densities. Our lasers sources are indium-gallium-aluminum-phosphide, second harmonic of neodymium-YAG-solid state lasers and gallium-aluminum-arsenide-semiconductor laser. The energy densities of our sources have been changed by changing the spot size of incident laser. samples transmission spectra were monitored by carry500 spectrophotometer and induced changes in optical properties are evaluated by using, extrapolation of the transmission spectrum through Swanepoel method and computer application

  20. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    PubMed Central

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. PMID:25447408

  1. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice.

    PubMed

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1mg/kg; ip) for 14days and ovaries collected 3days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P<0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P<0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P<0.05) by obesity while total CX37 protein was reduced (P<0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P<0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P<0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P<0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Microwave irradiation induced band gap tuning of MoS{sub 2}-TiO{sub 2} nanocomposites

    SciTech Connect

    Shakya, Jyoti; Mohanty, T.

    2016-05-23

    The MoS{sub 2}-TiO{sub 2} nanocomposites have been synthesized by sol-gel method and characterized by different microscopic and spectroscopic techniques. The crystallinity of these nanocomposites has been confirmed by X-ray diffraction (XRD) analysis. The Raman spectrum of MoS{sub 2}-TiO{sub 2} nanocomposites consists of three distinct peaks (E{sup 1} {sub g}, E{sup 1} {sub 2g} and A{sub 1g}) which are associated with TiO{sub 2} and MoS{sub 2}. The morphological study is carried out by scanning electron microscope. The effect of microwave irradiation on the band gap of MoS{sub 2}-TiO{sub 2} nanocomposites has been investigated; it is observed that the microwave irradiation causes decrease in the band gap of MoS{sub 2}-TiO{sub 2} nanocomposites. The microwave treated MoS{sub 2}-TiO{sub 2} thin films offers a novel process route in treating thin films for commercial applications.

  3. Unconventional Magnetism and Band Gap Formation in LiFePO4: Consequence of Polyanion Induced Non-planarity

    PubMed Central

    Jena, Ajit; Nanda, B. R. K.

    2016-01-01

    Oxygen plays a critical role in strongly correlated transition metal oxides as crystal field effect is one of the key factors that determine the degree of localization of the valence d/f states. Based on the localization, a set of conventional mechanisms such as Mott-Hubbard, Charge-transfer and Slater were formulated to explain the antiferromagnetic and insulating (AFI) phenomena in many of these correlated systems. From the case study on LiFePO4, through density-functional calculations, we demonstrate that none of these mechanisms are strictly applicable to explain the AFI behavior when the transition metal oxides have polyanions such as (PO4)3−. The symmetry-lowering of the metal-oxygen complex, to stabilize the polyanion, creates an asymmetric crystal field for d/f states. In LiFePO4 this field creates completely non-degenerate Fe-d states which, with negligible p-d and d-d covalent interactions, become atomically localized to ensure a gap at the Fermi level. Due to large exchange splitting, high spin state is favored and an antiferromagnetic configuration is stabilized. For the prototype LiFePO4, independent electron approximation is good enough to obtain the AFI ground state. Inclusion of additional correlation measures like Hubbard U simply amplifies the gap and therefore LiFePO4 can be preferably called as weakly coupled Mott insulator. PMID:26791249

  4. Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se₂ Surfaces--Reason for Performance Leap?

    PubMed

    Handick, Evelyn; Reinhard, Patrick; Alsmeier, Jan-Hendrik; Köhler, Leonard; Pianezzi, Fabian; Krause, Stefan; Gorgoi, Mihaela; Ikenaga, Eiji; Koch, Norbert; Wilks, Regan G; Buecheler, Stephan; Tiwari, Ayodhya N; Bär, Marcus

    2015-12-16

    Direct and inverse photoemission were used to study the impact of alkali fluoride postdeposition treatments on the chemical and electronic surface structure of Cu(In,Ga)Se2 (CIGSe) thin films used for high-efficiency flexible solar cells. We find a large surface band gap (E(g)(Surf), up to 2.52 eV) for a NaF/KF-postdeposition treated (PDT) absorber significantly increases compared to the CIGSe bulk band gap and to the Eg(Surf) of 1.61 eV found for an absorber treated with NaF only. Both the valence band maximum (VBM) and the conduction band minimum shift away from the Fermi level. Depth-dependent photoemission measurements reveal that the VBM decreases with increasing surface sensitivity for both samples; this effect is more pronounced for the NaF/KF-PDT CIGSe sample. The observed electronic structure changes can be linked to the recent breakthroughs in CIGSe device efficiencies.

  5. Unconventional Magnetism and Band Gap Formation in LiFePO4: Consequence of Polyanion Induced Non-planarity.

    PubMed

    Jena, Ajit; Nanda, B R K

    2016-01-21

    Oxygen plays a critical role in strongly correlated transition metal oxides as crystal field effect is one of the key factors that determine the degree of localization of the valence d/f states. Based on the localization, a set of conventional mechanisms such as Mott-Hubbard, Charge-transfer and Slater were formulated to explain the antiferromagnetic and insulating (AFI) phenomena in many of these correlated systems. From the case study on LiFePO4, through density-functional calculations, we demonstrate that none of these mechanisms are strictly applicable to explain the AFI behavior when the transition metal oxides have polyanions such as (PO4)(3-). The symmetry-lowering of the metal-oxygen complex, to stabilize the polyanion, creates an asymmetric crystal field for d/f states. In LiFePO4 this field creates completely non-degenerate Fe-d states which, with negligible p-d and d-d covalent interactions, become atomically localized to ensure a gap at the Fermi level. Due to large exchange splitting, high spin state is favored and an antiferromagnetic configuration is stabilized. For the prototype LiFePO4, independent electron approximation is good enough to obtain the AFI ground state. Inclusion of additional correlation measures like Hubbard U simply amplifies the gap and therefore LiFePO4 can be preferably called as weakly coupled Mott insulator.

  6. Annealing-induced structural rearrangement and optical band gap change in Mg–Ni–H thin films

    NASA Astrophysics Data System (ADS)

    Rašković-Lovre, Ž.; Mongstad, T. T.; Karazhanov, S.; You, C. C.; Lindberg, S.; Lelis, M.; Milcius, D.; Deledda, S.

    2017-01-01

    It is well known that optical properties of Mg–Ni–H films can be tuned by hydrogen uptake from Mg–Ni–H and upload into Mg–Ni systems. In this work we show that modulation of optical properties of Mg–Ni–H can take place as a result of thermal processing in air as well. When reactively sputter deposited semiconducting Mg–Ni–H films are annealed at temperatures of 200 °C–300 °C in air, gradual band gap change from 1.6 to 2.04 eV occurs followed by change in optical appearance, from brown, to orange and, subsequently, to yellow. We investigate this phenomenon using optical and structural characterization tools, and link the changes to an atomic rearrangement and a structure reordering of the [NiH4]4‑complex. The films are x-ray amorphous up to 280 °C, where above this temperature an increase in crystallite size and establishing of long-range order lead to a formation of the cubic crystalline phase of Mg2NiH4. Also, the results suggest that even though annealing was conducted in air, no oxidation or other changes in chemical composition of the bulk of the film occurred. Therefore, the band gap of this semiconductor can be tuned permanently by heat treatment, in the range from 1.6 to 2 eV.

  7. Epigallocatechin-3 gallate, a green tea catechin, attenuated the downregulation of the cardiac gap junction induced by high glucose in neonatal rat cardiomyocytes.

    PubMed

    Yu, Lu; Zhao, Yanbo; Fan, Youqi; Wang, Min; Xu, Shengjie; Fu, Guosheng

    2010-01-01

    The remodeling of cardiac gap junctions has been postulated to contribute to the arrhythmias in a diabetic heart. Epigallocatechin-3 gallate (EGCG), a green tea catechin, has recently been recognized for its protection in cardiovascular disease. This study investigated the effect of EGCG on the possible remodeling of gap junctions under high glucose in cultured neonatal rat cardiomyocytes. Cardiomyocytes pre-incubated with high glucose (30mM) were co-treated by EGCG. The expression of Connexin43 (Cx43), Cx40 and Cx45 were determined by Western blot and real-time RT-PCR. The function of cells coupling was evaluated by scrape loading dye transfer study. The Mitogen-activated protein kinases (MAPK) were quantified by Western blot. The protein expression of Cx43 was reduced by high glucose (30mM, 72h). Addition of EGCG to high glucose treated cardiomyocytes attenuated the Cx43 reduction in a dose- and time-dependent manner and also recovered the reduced function of cells coupling. The mRNA or protein level of Cx40 and Cx45 showed no significant change by high glucose (30mM, 72h) or EGCG co-treatment (40microM, 24h). Nor did the Cx43 mRNA level. EGCG (40muM) activated the time-dependent phosphorylated Erk, JNK and p38 MAPK. The p38 MAPK inhibitor SB203580 (10microM), however, attenuated the protective effect of EGCG. EGCG could attenuate the downregulation of gap junction induced by high glucose in cultured neonatal rat cardiomyocytes. The p38 MAPK pathway was partly involved in this effect of EGCG. Copyright 2010 S. Karger AG, Basel.

  8. Water2Invest: Global facility for calculating investments needed to bridge the climate-induced water gap

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Droogers, Peter; Brandsma, Jairus; Buytaert, Wouter; Karssenberg, Derek; Meijer, Karen; van Aalst, Maaike; van Beek, Rens; Wada, Yoshihide; Bierkens, Marc

    2013-04-01

    Decision makers responsible for climate change adaptation investments are confronted with large uncertainties regarding future water availability and water demand, as well as the investment cost required to reduce the water gap. Moreover, scientists have worked hard to increase fundamental knowledge on climate change and its impacts (climate services), while practical use of this knowledge is limited due to a lack of tools for decision support under uncertain long term future scenarios (decision services). The Water2Invest project aims are to (i) assess the joint impact of climate change and socioeconomic change on water scarcity, (ii) integrate impact and potential adaptation in one flow, (iii) prioritize adaptation options to counteract water scarcity on their financial, regional socio-economic and environmental implications, and (iv) deliver all this information in an integrated user-friendly web-based service. Global water availability is computed between 2006 and 2100 using the PCR-GLOBWB water resources model at a 6 minute spatial resolution. Climate change scenarios are based on the fifth Assessment Report (AR5) of the IPCC Coupled Model Intercomparison Project (CMIP5) that defines four CO2 emission scenarios as representative concentration pathways. Water demand is computed for agriculture, industry, domestic, and environmental requirements based on socio-economic scenarios of increase in population and gross domestic product. Using a linear programming algorithm, water is allocated on a monthly basis over the four sectors. Based on these assessments, the user can evaluate various technological and infrastructural adaptation measures to assess the investments needed to bridge the future water gap. Regional environmental and socioeconomic effects of these investments are evaluated, such as environmental flows or downstream effects. A scheme is developed to evaluate the strategies on robustness and flexibility under climate change and scenario uncertainty

  9. Growth concentration effect on oxygen vacancy induced band gap narrowing and optical CO gas sensing properties of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Tan, Chun Hui; Tan, Sin Tee; Lee, Hock Beng; Yap, Chi Chin; Yahaya, Muhammad

    2016-11-01

    Band gap energy and surface defect on the nanostructure play an important role especially in determining the performance and properties of the optical based gas sensor. In this report, ZnO nanorods (ZNRs) with various growth concentrations were successfully synthesized using a facile wet chemical approach. The gas sensing performance of the ZNRs samples with different concentrations were tested toward the highly hazardous carbon monoxide (CO) gas at a concentration of 10 ppm operated at room temperature. It was found that the 40 mM ZNRs sample exhibited the highest response coupled with the shortest response time (123.3 ± 1.3 s) and recovery time (7.7 ± 0.3 s). The high response and accelerated sensing reaction were attributed to the band gap narrowing of the 40 mM ZNRs induced by the increase in oxygen vacancy related defect states, and it is directly proportional to the CO gas sensing activity. These defects acted as the oxygen trap sites which will promote the oxygen adsorption on the surface of ZNRs and enhanced its gas sensing capability. The ZNRs reported herein which exhibits a high sensitivity, fast and reversible response with rapid recovery have great potential to be used in toxic gas sensing applications at room temperature.

  10. Pseudomonas aeruginosa-induced apoptosis in airway epithelial cells is mediated by gap junctional communication in a JNK-dependent manner.

    PubMed

    Losa, Davide; Köhler, Thilo; Bellec, Jessica; Dudez, Tecla; Crespin, Sophie; Bacchetta, Marc; Boulanger, Pierre; Hong, Saw See; Morel, Sandrine; Nguyen, Tuan H; van Delden, Christian; Chanson, Marc

    2014-05-15

    Chronic infection and inflammation of the airways is a hallmark of cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The response of the CF airway epithelium to the opportunistic pathogen Pseudomonas aeruginosa is characterized by altered inflammation and apoptosis. In this study, we examined innate immune recognition and epithelial responses at the level of the gap junction protein connexin43 (Cx43) in polarized human airway epithelial cells upon infection by PAO1. We report that PAO1 activates cell surface receptors to elicit an intracellular signaling cascade leading to enhancement of gap junctional communication. Expression of Cx43 involved an opposite regulation exerted by JNK and p38 MAPKs. PAO1-induced apoptosis was increased in the presence of a JNK inhibitor, but latter effect was prevented by lentiviral expression of a Cx43-specific short hairpin RNA. Moreover, we found that JNK activity was upregulated by pharmacological inhibition of CFTR in Calu-3 cells, whereas correction of a CF airway cell line (CF15 cells) by adenoviral expression of CFTR reduced the activation of this MAPK. Interestingly, CFTR inhibition in Calu-3 cells was associated with decreased Cx43 expression and reduced apoptosis. These results indicate that Cx43 expression is a component of the response of airway epithelial cells to innate immune activation by regulating the survival/apoptosis balance. Defective CFTR could alter this equilibrium with deleterious consequences on the CF epithelial response to P. aeruginosa.

  11. Central auditory plasticity after carboplatin-induced unilateral inner ear damage in the chinchilla: up-regulation of GAP-43 in the ventral cochlear nucleus.

    PubMed

    Kraus, K S; Ding, D; Zhou, Y; Salvi, R J

    2009-09-01

    Inner ear damage may lead to structural changes in the central auditory system. In rat and chinchilla, cochlear ablation and noise trauma result in fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between carboplatin-induced hair cell degeneration and VCN plasticity in the chinchilla. Unilateral application of carboplatin (5mg/ml) on the round window membrane resulted in massive hair cell loss. Outer hair cell degeneration showed a pronounced basal-to-apical gradient while inner hair cell loss was more equally distributed throughout the cochlea. Expression of the growth associated protein GAP-43, a well-established marker for synaptic plasticity, was up-regulated in the ipsilateral VCN at 15 and 31 days post-carboplatin, but not at 3 and 7 days. In contrast, the dorsal cochlear nucleus showed only little change. In VCN, the high-frequency area dorsally showed slightly yet significantly stronger GAP-43 up-regulation than the low-frequency area ventrally, possibly reflecting the high-to-low frequency gradient of hair cell degeneration. Synaptic modification or formation of new synapses may be a homeostatic process to re-adjust mismatched inputs from two ears. Alternatively, massive fiber growth may represent a deleterious process causing central hyperactivity that leads to loudness recruitment or tinnitus.

  12. Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of connexin43.

    PubMed

    Plotkin, L I; Bellido, T

    2001-01-01

    Preservation of the mechanosensory function of osteocytes by inhibiting their apoptosis might contribute to the beneficial effects of bisphosphonates in bone. We report herein a mechanism by which connexin43 hemichannel opening by bisphosphonates triggers the activation of the kinases Src and ERKs and promotes cell survival. Bisphosphonate-induced anti-apoptosis requires connexin channel integrity, but not gap junctions. Osteocytic cells express functional hemichannels that are opened by bisphosphonates, as demonstrated by dye uptake, regulation by established agonists and antagonists, and cell surface biotinylation. The anti-apoptotic effect of bisphosphonates depends on connexin43 expression in mouse embryonic fibroblasts and osteoblastic cells. Transfection of connexin43, but not other connexins, into connexin43 naïve cells confers de novo responsiveness to the drugs. The signal transducing property of connexin43 requires the pore-forming, as well as the C-terminal domains of the protein, the interaction of connexin43 with Src. and the activation of both Src and ERK kinases. These studies establish a role for connexin43 hemichannels in bisphosphonate action, and a novel function of connexin43--beyond gap junction communication--in the regulation of survival signaling pathways.

  13. Minding the Cyber-Physical Gap: Model-Based Analysis and Mitigation of Systemic Perception-Induced Failure.

    PubMed

    Mordecai, Yaniv; Dori, Dov

    2017-07-17

    The cyber-physical gap (CPG) is the difference between the 'real' state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer's ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015-Object Process Methodology as our conceptual modeling framework.

  14. Minding the Cyber-Physical Gap: Model-Based Analysis and Mitigation of Systemic Perception-Induced Failure

    PubMed Central

    2017-01-01

    The cyber-physical gap (CPG) is the difference between the ‘real’ state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer’s ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015—Object Process Methodology as our conceptual modeling framework. PMID:28714910

  15. Recovery effect of onion peel extract against H2 O2 -induced inhibition of gap-junctional intercellular communication is mediated through quercetin.

    PubMed

    Kim, Young-Jun; Seo, Sang Gwon; Choi, Keunhwa; Kim, Jong Eun; Kang, Heerim; Chung, Min-Yu; Lee, Ki Won; Lee, Hyong Joo

    2014-05-01

    Cellular oxidative damage mediated by reactive oxygen species has been reported to inhibit gap-junctional intercellular communication (GJIC). In turn, the inhibition of GJIC can be attenuated by functional food compounds with antioxidant properties. In this study, we compared the protective effects of onion peel extract (OPE) and onion flesh extract (OFE) on oxidative stress-mediated GJIC inhibition, and investigated the mechanisms of action responsible. OPE restored H2 O2 -induced GJIC inhibition to a higher degree than OFE in WB-F344 rat liver epithelial cells. OPE was found to inhibit H2 O2 -induced phosphorylation of ERK1/2 and Cx43. A radical scavenging assay demonstrated superiority of OPE over OFE, suggesting that the observed effects might be mediated via an antioxidant mechanism. Quercetin is the major compound that is likely to be responsible for the protective effect against H2 O2 -mediated GJIC inhibition. This study suggests that OPE, a material often discarded, may be of value for the future development of functional food products. This study demonstrates that onion peel extract (OPE) exhibits a protective effect against the inhibition of gap-junctional intercellular communication (GJIC) mediated by H2 O2 , which is likely to occur via its antioxidant activity. OPE contains significant concentrations of bioactive phenolic compounds. Reductions in oxidative stress can lead to recovery of GJIC, which has been reported to be implicated in the prevention and treatment of cancers. These findings suggest that onion peel, a common waste product, could be used as potential resources for functional food development. Onion peel could be processed into a quercetin-rich powder or a pill for the prevention of cancer and other oxidative stress-related diseases. © 2014 Institute of Food Technologists®

  16. Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3

    DOE PAGES

    Sachan, Ritesh; Pakarinen, Olli H.; Liu, Peng; ...

    2015-04-01

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterizationmore » of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions (84Kr22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x1010 ions/cm2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO3, resulting in increases in track diameter of a factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.« less

  17. Structure and band gap determination of irradiation-induced amorphous nano-channels in LiNbO{sub 3}

    SciTech Connect

    Sachan, R. Pakarinen, O. H.; Chisholm, M. F.; Liu, P.; Patel, M. K.; Zhang, Y.; Wang, X. L.; Weber, W. J.

    2015-04-07

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization: (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterization of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with electronic energy loss of ions. Energetic Kr ions ({sup 84}Kr{sup 22} with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2 × 10{sup 10} ions/cm{sup 2}, which results in the formation of individual ion tracks with a penetration depth of ∼180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO{sub 3}, resulting in increases in track diameter of a factor of ∼2 with depth. This diameter increase with electronic energy loss is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.

  18. Noise-Induced Tinnitus Using Individualized Gap Detection Analysis and Its Relationship with Hyperacusis, Anxiety, and Spatial Cognition

    PubMed Central

    Pace, Edward; Zhang, Jinsheng

    2013-01-01

    Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus(+) and tinnitus(−) groups and detected no evidence of tinnitus in tinnitus(−) and control rats. In addition, the tinnitus(+) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus(+) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments. PMID:24069375

  19. Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3

    SciTech Connect

    Sachan, Ritesh; Pakarinen, Olli H.; Liu, Peng; Patel, Maulik; Chisholm, Matthew F.; Zhang, Yanwen; Wang, Xuelin; Weber, William J.

    2015-04-01

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterization of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions (84Kr22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x1010 ions/cm2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO3, resulting in increases in track diameter of a factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.

  20. A large gap opening of graphene induced by the adsorption of CO on the Al-doped site.

    PubMed

    Peyghan, Ali Ahmadi; Noei, Maziar; Tabar, Mohammad Bigdeli

    2013-08-01

    We investigated CO adsorption on the pristine, Stone-Wales (SW) defected, Al- and Si- doped graphenes by using density functional calculations in terms of geometric, energetic and electronic properties. It was found that CO molecule is weakly adsorbed on the pristine and SW defected graphenes and their electronic properties were slightly changed. The Al- and Si- doped graphenes show high reactivity toward CO, so calculated adoption energies are about -11.40 and -13.75 kcal mol(-1) in the most favorable states. It was found that, among all the structures, the electronic properties of Al-doped graphene are strongly sensitive to the presence of CO molecule. We demonstrate the existence of a large Eg opening of 0.87 eV in graphene which is induced by Al-doping and CO adsorption.

  1. Red paprika (Capsicum annuum L.) and its main carotenoids, capsanthin and β-carotene, prevent hydrogen peroxide-induced inhibition of gap-junction intercellular communication.

    PubMed

    Kim, Ji-Sun; Lee, Woo-Moon; Rhee, Han Cheol; Kim, Suna

    2016-07-25

    This study was conducted to investigate the protective effect of red paprika extract (RPE) and its main carotenoids, namely, capsanthin (CST) and β-carotene (BCT), on the H2O2-induced inhibition of gap-junction intercellular communication (GJIC) in WB-F344 rat liver epithelial cells (WB cells). We found that pre-treatment with RPE, CST and BCT protected WB cells from H2O2-induced inhibition of GJIC. RPE, CST and BCT not only recovered connexin 43 (Cx43) mRNA expression but also prevented phosphorylation of Cx43 protein by H2O2 treatment. RPE attenuated the phosphorylation of ERK, p38 and JNK, whereas pre-treatment with CST and BCT only attenuated the phosphorylation of ERK and p38 and did not affect JNK in H2O2-treated WB cells. RPE, CST and BCT significantly suppressed the formation of reactive oxygen species (ROS) in H2O2-treated cells compared to untreated WB cells. These results suggest that dietary intake of red paprika might be helpful for lowering the risk of diseases caused by oxidative stress.

  2. The vascular endothelial growth factor-induced disruption of gap junctions is relayed by an autocrine communication via ATP release in coronary capillary endothelium.

    PubMed

    Thuringer, Dominique

    2004-12-01

    Little is known concerning how the coordination of Ca(2+) signaling aids in capillary endothelial cell (CEC) functions, such as microvascular permeability and angiogenesis. Previous reports support the major involvement of gap junction (GJ) channels. However, the cell-to-cell communication may not be straightforward, especially if we consider the participation of active molecules released by CEC. In this study, short-term effects of vascular endothelial growth factor (VEGF-165) were compared with those of bradykinin (BK) on gap junction coupling (GJC) and remodeling of connexin-43 (Cx43) and then analyzed for intercellular Ca(2+) signal in primary cultures of coronary CEC. Dye-coupling experiments revealed that BK or VEGF completely blocked GJC. These effects correlated with the rapid internalization of Cx43 and its tyrosine phosphorylation in part via the phosphatidylinositol 3-kinase/Akt pathway. GJC slowly recovered with BK but not with VEGF in the following hour. In control conditions, mechanical stimulation of a single cell within a confluent monolayer triggered an intercellular Ca(2+) wave that was partially inhibited by GJC blockers or purinergic inhibitors. No wave propagation was observed after blockage of both GJC and purinergic receptors. Cell treatment with VEGF also reduced propagation of the Ca(2+) wave, which was totally prevented by applying a purinergic receptor antagonist but not with a GJC blocker. That excludes purine efflux through Cx hemichannels. We conclude that VEGF-induced disruption of GJC via Cx43 remodeling is relayed by an autocrine communication via secretion of ATP to preserve intercellular Ca(2+) signaling in capillary endothelium.

  3. Inorganic arsenic trioxide induces gap junction loss in association with the downregulation of connexin43 and E-cadherin in rat hepatic "stem-like" cells.

    PubMed

    Hsiao, Pi-Jung; Jao, Jo-Chi; Tsai, Jin-Lian; Chang, Wen-Tsan; Jeng, Kuo-Shyang; Kuo, Kung-Kai

    2014-02-01

    Chronic exposure to inorganic arsenic trioxide causes tumors of the skin, urinary bladder, lung, and liver. Several cancer initiators and promoters have been shown to alter cell-cell signaling by interference with gap junction intercellular communication (GJIC) and/or modulation of cell adhesion molecules, such as connexin43 (Cx43), E-cadherin, and β-catenin. The aim of this study was to determine whether the disruption of cell-cell interactions occurs in liver epithelial cells after exposure to arsenic trioxide. WB-F344 cells were treated with arsenic trioxide (6.25-50 μM) for up to 8 hours, and gap junction function was analyzed using the scrape-load/dye transfer assay. In addition, the changes in mRNA and protein levels of Cx43, E-cadherin, and β-catenin were determined. A significant dose- and time-dependent decrease in GJIC was observed when WB-F344 cells were exposed to arsenic trioxide (p < 0.05). Consistent with the inhibition of GJIC, cells' exposure to arsenic trioxide resulted in dose- and time-dependent decreases in Cx43 and E-cadherin mRNA expression and protein levels. However, arsenic trioxide did not alter the mRNA or protein levels of β-catenin. In an immunofluorescence study, nuclei were heavily stained with anti-β-catenin antibody, indicating significant nuclear translocation. In this study, we also demonstrated that arsenic trioxide-induced GJIC loss was a reversible process. Taken together, these data support the hypothesis that disruption of cell-cell communication may contribute to the tumor-promoting effect of inorganic arsenic trioxide.

  4. Changes in homologous and heterologous gap junction contacts during maturation-inducing hormone-dependent meiotic resumption in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Bolamba, D.; Patino, R.; Yoshizaki, G.; Thomas, P.

    2003-01-01

    Homologous (granulosa cell-granulosa cell) gap junction (GJ) contacts increase in ovarian follicles of Atlantic croaker (Micropogonias undulatus) during the early (first) stage of maturation, but their profile during the second stage [i.e., during maturation-inducing hormone (MIH)-mediated meiotic resumption] is unknown. The profile of homologous GJ contacts during the second stage of maturation in croaker follicles was examined in this study and compared to that of heterologous (granulosa cell-oocyte) GJ, for which changes have been previously documented. Follicles were incubated with human chorionic gonadotropin to induce maturational competence (first stage), and then with MIH to induce meiotic resumption. The follicles were collected for examination immediately before and after different durations of MIH exposure until the oocyte had reached the stage of germinal vesicle breakdown (GVBD; index of meiotic resumption). Ultrathin sections were observed by transmission electron microscopy, and homologous and heterologous GJ contacts were quantified along a 100-??m segment of granulosa cell-zona radiata complex per follicle (three follicles/time/fish, n=3 fish). Relatively high numbers of both types of GJ were observed before and after the first few hours of MIH exposure (up to the stage of oil droplet coalescence). GJ numbers declined during partial yolk globule coalescence (at or near GVBD) and were just under 50% of starting values after the completion of GVBD (P<0.05). These results confirm earlier observations that GVBD temporally correlates with declining heterologous GJ contacts, and for the first time in teleosts show that there is a parallel decline in homologous GJ. The significance of the changes in homologous and heterologous GJ is uncertain and deserves further study. ?? 2003 Elsevier Science (USA). All rights reserved.

  5. Experimental and first-principles calculation study of the pressure-induced transitions to a metastable phase in GaP O4 and in the solid solution AlP O4-GaP O4

    NASA Astrophysics Data System (ADS)

    Angot, E.; Huang, B.; Levelut, C.; Le Parc, R.; Hermet, P.; Pereira, A. S.; Aquilanti, G.; Frapper, G.; Cambon, O.; Haines, J.

    2017-08-01

    α -Quartz-type gallium phosphate and representative compositions in the AlP O4-GaP O4 solid solution were studied by x-ray powder diffraction and absorption spectroscopy, Raman scattering, and by first-principles calculations up to pressures of close to 30 GPa. A phase transition to a metastable orthorhombic high-pressure phase along with some of the stable orthorhombic C m c m CrV O4 -type material is found to occur beginning at 9 GPa at 320 ∘C in GaP O4 . In the case of the AlP O4-GaP O4 solid solution at room temperature, only the metastable orthorhombic phase was obtained above 10 GPa. The possible crystal structures of the high-pressure forms of GaP O4 were predicted from first-principles calculations and the evolutionary algorithm USPEX. A predicted orthorhombic structure with a P m n 21 space group with the gallium in sixfold and phosphorus in fourfold coordination was found to be in the best agreement with the combined experimental data from x-ray diffraction and absorption and Raman spectroscopy. This method is found to very powerful to better understand competition between different phase transition pathways at high pressure.

  6. Observational Properties of Protoplanetary Disk Gaps

    NASA Astrophysics Data System (ADS)

    Varnière, Peggy; Bjorkman, J. E.; Frank, Adam; Quillen, Alice C.; Carciofi, A. C.; Whitney, Barbara A.; Wood, Kenneth

    2006-02-01

    We study the effects of an annular gap induced by an embedded protoplanet on disk scattered light images and the infrared spectral energy distribution (SED). We find that the outer edge of a gap is brighter in the scattered light images than a similar location in a gap-free disk. The stellar radiation that would have been scattered by material within the gap is instead scattered by the disk wall at the outer edge of the gap, producing a bright ring surrounding the dark gap in the images. Given sufficient resolution, such gaps can be detected by the presence of this bright ring in scattered light images. A gap in a disk also changes the shape of the SED. Radiation that would have been absorbed by material in the gap is instead reprocessed by the outer gap wall. This leads to a decrease in the SED at wavelengths corresponding to the temperature at the radius of the missing gap material, and to a corresponding flux increase at longer wavelengths corresponding to the temperature of the outer wall. We note, however, that the presence of an annular gap does not change the bolometric IR flux; it simply redistributes the radiation previously produced by material within the gap to longer wavelengths. Although it will be difficult on the basis of the SED alone to distinguish between the presence of a gap and other physical effects, the level of changes can be sufficiently large to be measurable with current instruments (e.g., Spitzer).

  7. Mesoscale-eddy-induced variability of flow through the Kerama Gap between the East China Sea and the western North Pacific

    NASA Astrophysics Data System (ADS)

    Na, H.

    2016-02-01

    The Kerama Gap (KG) is the deepest channel (sill depth 1050 m) along the Ryukyu Island chain connecting the East China Sea (ECS) to the western North Pacific. The observed mean flow through the KG from June 2009 to June 2011 is 2.0±0.7 Sv into the ECS. A 7-day-interval 20-year (October 1992 to September 2012) time series of the KG volume transport is obtained based on a good correlation between satellite altimeter-measured sea-level difference across the KG and 2-year-long in situ-measured volume transport. The 20-year mean volume transport is 1.5±0.2 Sv with standard deviation 2.5 Sv. Comparison of the KG volume transport time series with satellite-measured sea-level anomaly maps reveals that KG transport fluctuations at 40-200-day periods are strongly affected by mesoscale eddies near the KG. Consequently, KG transport's interannual to decadal amplitude changes are associated with interannual to decadal eddy field changes to the east of the Ryukyu Island chain in the western North Pacific. The mesoscale-eddy-induced variability results in time-varying correlations between the KG throughflow and the Ryukyu Current volume transport south of Okinawa. Additionally, relationship of the KG throughflow with the Kuroshio east of Taiwan and the Kuroshio in the ECS is discussed based on the changes in eddy field.

  8. Spin dynamics and magnetic field induced polarization of excitons in ultrathin GaAs/AlAs quantum wells with indirect band gap and type-II band alignment

    NASA Astrophysics Data System (ADS)

    Shamirzaev, T. S.; Rautert, J.; Yakovlev, D. R.; Debus, J.; Gornov, A. Yu.; Glazov, M. M.; Ivchenko, E. L.; Bayer, M.

    2017-07-01

    The exciton spin dynamics are investigated both experimentally and theoretically in two-monolayer-thick GaAs/AlAs quantum wells with an indirect band gap and a type-II band alignment. The magnetic field induced circular polarization of photoluminescence Pc is studied as function of the magnetic field strength and direction as well as sample temperature. The observed nonmonotonic behavior of these functions is provided by the interplay of bright and dark exciton states contributing to the emission. To interpret the experiment, we have developed a kinetic master equation model which accounts for the dynamics of the spin states in this exciton quartet, radiative and nonradiative recombination processes, and redistribution of excitons between these states as result of spin relaxation. The model offers quantitative agreement with experiment and allows us to evaluate, for the studied structure, the heavy-hole g factor, gh h=+3.5 , and the spin relaxation times of electron, τs e=33 μ s , and hole, τs h=3 μ s , bound in the exciton.

  9. Localization of Metal-Induced Gap States at the Metal-Insulator Interface: Origin of Flux Noise in SQUIDs and Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Choi, Sangkook; Lee, Dung-Hai; Louie, Steven G.; Clarke, John

    2010-03-01

    The origin of magnetic flux noise in dc Superconducting Quantum Interference Devices (SQUIDs) with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 25 years. This noise limits both the low frequency performance of SQUIDs and the decoherence time of flux-sensitive superconducting qubits, making scaling-up for quantum computing problematic. Recent calculations and experiments indicate that the noise is generated by electrons that randomly reverse their spin directions. Their areal density of ˜ 5 x 10^17 m-2 is relatively insensitive to the nature of the superconductor and substrate. Here, we propose that the local magnetic moments originate in metal-induced gap states (MIGSs) localized by potential disorder at the metal-insulator interface. MIGSs are particularly sensitive to such disorder, so that the localized states have a Coulomb repulsion sufficiently large to make them singly occupied. Our calculations demonstrate that a modest level of disorder generates the required areal density of localized moments. This result suggests that magnetic flux noise could be reduced by fabricating superconductor-insulator interfaces with less disorder. Support: NSF DMR07-05941, US DOE De-AC02-05CH11231, Samsung Foundation, Teragrid, NERSC.

  10. Gravity waves in mesopause region induced by thunderstorms over Northern China observed by a no-gap OH airglow imager network

    NASA Astrophysics Data System (ADS)

    Xu, Jiyao

    2016-07-01

    A no-gap OH airglow all-sky imager network was established in northern China in February 2012. The network is composed of 6 all-sky airglow imagers that make observations of OH airglow gravity waves and cover an area of about 2000 km east and west and about 1400 km south and north. A large number of gravity wave events in the mesopause region induced by thunderstorms were observed by the network during the past 4 years. A comparison of the observations in 2012, 2013, and 2014 are made, which shows that there were more strong thunderstorms take place in 2013 in the northern China and produce more Concentric Gravity Wave (CGW) events. Especially, a series of CGW events were observed by the network nearly every night during the first half of August 2013. These events were also observed by satellite sensors from FY-2, AIRS/Aqua, and VIIRS/Suomi NPP. Combination of the ground imager network with satellites provides multi-level observations of the CGWs from the stratosphere to the mesopause region. In this talk, two representative CGW events in August 2013 are studied in detail and movies of the two events are displayed. One is the CGW on the night of 13 August 2013, likely launched by a single thunderstorm. The temporal and spatial analyses indicate that the CGW horizontal wavelengths agree with the GW dispersion relation within 300 km from the storm center. A gravity wave with horizontal wavelength of about 20 km propagates horizontally to more than 800 km in the mesopause region, probably due to a ducting layer. Another CGW event was induced by two very strong thunderstorms on 09 August 2013. Multi-scale waves with horizontal wavelengths ranging from less than 10 km to 200 km were observed. Many ripples were found, probably due to the breaking of strong gravity waves with large relative OH intensity perturbations of 10%.

  11. Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model.

    PubMed

    Sovadinova, Iva; Babica, Pavel; Böke, Hatice; Kumar, Esha; Wilke, Andrew; Park, Joon-Suk; Trosko, James E; Upham, Brad L

    2015-01-01

    Dysregulation of gap junctional intercellular communication (GJIC) has been associated with different pathologies, including cancer; however, molecular mechanisms regulating GJIC are not fully understood. Mitogen Activated Protein Kinase (MAPK)-dependent mechanisms of GJIC-dysregulation have been well-established, however recent discoveries have implicated phosphatidylcholine-specific phospholipase C (PC-PLC) in the regulation of GJIC. What is not known is how prevalent these two signaling mechanisms are in toxicant/toxin-induced dysregulation of GJIC, and do toxicants/toxins work through either signaling mechanisms or both, or through alternative signaling mechanisms. Different chemical toxicants were used to assess whether they dysregulate GJIC via MEK or PC-PLC, or both Mek and PC-PLC, or through other signaling pathways, using a pluripotent rat liver epithelial oval-cell line, WB-F344. Epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, thrombin receptor activating peptide-6 and lindane regulated GJIC through a MEK1/2-dependent mechanism that was independent of PC-PLC; whereas PAHs, DDT, PCB 153, dicumylperoxide and perfluorodecanoic acid inhibited GJIC through PC-PLC independent of Mek. Dysregulation of GJIC by perfluorooctanoic acid and R59022 required both MEK1/2 and PC-PLC; while benzoylperoxide, arachidonic acid, 18β-glycyrrhetinic acid, perfluorooctane sulfonic acid, 1-monolaurin, pentachlorophenol and alachlor required neither MEK1/2 nor PC-PLC. Resveratrol prevented dysregulation of GJIC by toxicants that acted either through MEK1/2 or PC-PLC. Except for alachlor, resveratrol did not prevent dysregulation of GJIC by toxicants that worked through PC-PLC-independent and MEK1/2-independent pathways, which indicated at least two other, yet unidentified, pathways that are involved in the regulation of GJIC. the dysregulation of GJIC is a contributing factor to the cancer process; however the underlying mechanisms by which gap junction channels

  12. Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model

    PubMed Central

    Sovadinova, Iva; Babica, Pavel; Böke, Hatice; Kumar, Esha; Wilke, Andrew; Park, Joon-Suk; Trosko, James E.; Upham, Brad L.

    2015-01-01

    Dysregulation of gap junctional intercellular communication (GJIC) has been associated with different pathologies, including cancer; however, molecular mechanisms regulating GJIC are not fully understood. Mitogen Activated Protein Kinase (MAPK)-dependent mechanisms of GJIC-dysregulation have been well-established, however recent discoveries have implicated phosphatidylcholine-specific phospholipase C (PC-PLC) in the regulation of GJIC. What is not known is how prevalent these two signaling mechanisms are in toxicant/toxin-induced dysregulation of GJIC, and do toxicants/toxins work through either signaling mechanisms or both, or through alternative signaling mechanisms. Different chemical toxicants were used to assess whether they dysregulate GJIC via MEK or PC-PLC, or both Mek and PC-PLC, or through other signaling pathways, using a pluripotent rat liver epithelial oval-cell line, WB-F344. Epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, thrombin receptor activating peptide-6 and lindane regulated GJIC through a MEK1/2-dependent mechanism that was independent of PC-PLC; whereas PAHs, DDT, PCB 153, dicumylperoxide and perfluorodecanoic acid inhibited GJIC through PC-PLC independent of Mek. Dysregulation of GJIC by perfluorooctanoic acid and R59022 required both MEK1/2 and PC-PLC; while benzoylperoxide, arachidonic acid, 18β-glycyrrhetinic acid, perfluorooctane sulfonic acid, 1-monolaurin, pentachlorophenol and alachlor required neither MEK1/2 nor PC-PLC. Resveratrol prevented dysregulation of GJIC by toxicants that acted either through MEK1/2 or PC-PLC. Except for alachlor, resveratrol did not prevent dysregulation of GJIC by toxicants that worked through PC-PLC-independent and MEK1/2-independent pathways, which indicated at least two other, yet unidentified, pathways that are involved in the regulation of GJIC. In conclusion: the dysregulation of GJIC is a contributing factor to the cancer process; however the underlying mechanisms by which gap

  13. Estimation of Bi induced changes in the direct E0 band gap of III-V-Bi alloys and comparison with experimental data

    NASA Astrophysics Data System (ADS)

    Samajdar, D. P.; Dhar, S.

    2016-03-01

    Quantum dielectric Theory (QDT) is used to explain the band gap bowing effect observed in III-V-Bismides such as InSb1-xBix, InAs1-xBix, InP1-xBix, GaSb1-xBix, GaAs1-xBix and GaP1-xBix. The dependence of the direct E0 band gap for these alloys on Bi mole fraction is calculated using QDT which requires the evaluation of the bowing parameter c. The bowing parameter gives the deviation of the direct E0 band gap from the linear relationship of E0 with Bi mole fraction. The band gap reduction values obtained using QDT are compared with those calculated using Virtual Crystal approximation (VCA) and Valence Band Anticrossing (VBAC) model as well as with the reported experimental data and the results of the comparison shows excellent agreement.

  14. Sound-Induced Intracellular Ca2+ Dynamics in the Adult Hearing Cochlea

    PubMed Central

    Chan, Dylan K.; Rouse, Stephanie L.

    2016-01-01

    Ca2+ signaling has been implicated in the initial pathophysiologic mechanisms underlying the cochlea's response to acoustic overstimulation. Intracellular Ca2+ signaling (ICS) waves, which occur in glia and retinal cells in response to injury to activate cell regulatory pathways, have been proposed as an early event in cochlear injury. Disruption of ICS activity is thought to underlie Connexin 26-associated hearing loss, the most common genetic form of deafness, and downstream sequelae of ICS wave activity, such as MAP kinase pathway activation, have been implicated in noise-induced hearing loss. However, ICS waves have only been observed in neonatal cochlear cultures and are thought to be quiescent after the onset of hearing. In this study, we employ an acute explant model of an adult, hearing cochlea that retains many in vivo physiologic features to investigate Ca2+ changes in response to sound. We find that both slow monotonic changes in intracellular Ca2+ concentration as well as discrete ICS waves occur with acoustic overstimulation. The ICS waves share many intrinsic features with their better-described neonatal counterparts, including ATP and gap-junction dependence, and propagation velocity and distance. This identification of ICS wave activity in the adult, hearing cochlea thus confirms and characterizes an important early detection mechanism for cochlear trauma and provides a target for interventions for noise-induced and Connexin 26-associated hearing loss. PMID:27959894

  15. Sound-Induced Intracellular Ca2+ Dynamics in the Adult Hearing Cochlea.

    PubMed

    Chan, Dylan K; Rouse, Stephanie L

    2016-01-01

    Ca2+ signaling has been implicated in the initial pathophysiologic mechanisms underlying the cochlea's response to acoustic overstimulation. Intracellular Ca2+ signaling (ICS) waves, which occur in glia and retinal cells in response to injury to activate cell regulatory pathways, have been proposed as an early event in cochlear injury. Disruption of ICS activity is thought to underlie Connexin 26-associated hearing loss, the most common genetic form of deafness, and downstream sequelae of ICS wave activity, such as MAP kinase pathway activation, have been implicated in noise-induced hearing loss. However, ICS waves have only been observed in neonatal cochlear cultures and are thought to be quiescent after the onset of hearing. In this study, we employ an acute explant model of an adult, hearing cochlea that retains many in vivo physiologic features to investigate Ca2+ changes in response to sound. We find that both slow monotonic changes in intracellular Ca2+ concentration as well as discrete ICS waves occur with acoustic overstimulation. The ICS waves share many intrinsic features with their better-described neonatal counterparts, including ATP and gap-junction dependence, and propagation velocity and distance. This identification of ICS wave activity in the adult, hearing cochlea thus confirms and characterizes an important early detection mechanism for cochlear trauma and provides a target for interventions for noise-induced and Connexin 26-associated hearing loss.

  16. Gap Junction Communication and the Propagation of Bystander Effects Induced by Microbeam Irradiation in Human Fibroblast Cultures: The Impact of Radiation Quality

    PubMed Central

    Autsavapromporn, Narongchai; Suzuki, Masao; Funayama, Tomoo; Usami, Noriko; Plante, Ianik; Yokota, Yuichiro; Mutou, Yasuko; Ikeda, Hiroko; Kobayashi, Katsumi; Kobayashi, Yasuhiko; Uchihori, Yukio; Hei, Tom K.; Azzam, Edouard I.; Murakami, Takeshi

    2014-01-01

    Understanding the mechanisms underlying the bystander effects of low doses/low fluences of low- or high-linear energy transfer (LET) radiation is relevant to radiotherapy and radiation protection. Here, we investigated the role of gap-junction intercellular communication (GJIC) in the propagation of stressful effects in confluent normal human fibroblast cultures wherein only 0.036–0.144% of cells in the population were traversed by primary radiation tracks. Confluent cells were exposed to graded doses from monochromatic 5.35 keV X ray (LET ~6 keV/μm), 18.3 MeV/u carbon ion (LET ~103 keV/μm), 13 MeV/u neon ion (LET ~380 keV/μm) or 11.5 MeV/u argon ion (LET ~1,260 keV/μm) microbeams in the presence or absence of 18-α-glycyrrhetinic acid (AGA), an inhibitor of GJIC. After 4 h incubation at 37°C, the cells were subcultured and assayed for micronucleus (MN) formation. Micronuclei were induced in a greater fraction of cells than expected based on the fraction of cells targeted by primary radiation, and the effect occurred in a dose-dependent manner with any of the radiation sources. Interestingly, MN formation for the heavy-ion microbeam irradiation in the absence of AGA was higher than in its presence at high mean absorbed doses. In contrast, there were no significant differences in cell cultures exposed to X-ray microbeam irradiation in presence or absence of AGA. This showed that the inhibition of GJIC depressed the enhancement of MN formation in bystander cells from cultures exposed to high-LET radiation but not low-LET radiation. Bystander cells recipient of growth medium harvested from 5.35 keV X-irradiated cultures experienced stress manifested in the form of excess micronucleus formation. Together, the results support the involvement of both junctional communication and secreted factor(s) in the propagation of radiation-induced stress to bystander cells. They highlight the important role of radiation quality and dose in the observed effects. PMID:23987132

  17. Stress-induced anomalous shift of optical band gap in Ga-doped ZnO thin films: Experimental and first-principles study

    SciTech Connect

    Wang, Yaqin; Tang, Wu E-mail: lan.zhang@mail.xjtu.edu.cn; Liu, Jie; Zhang, Lan E-mail: lan.zhang@mail.xjtu.edu.cn

    2015-04-20

    In this work, highly c-axis oriented Ga-doped ZnO thin films have been deposited on glass substrates by RF magnetron sputtering under different sputtering times. The optical band gap is observed to shift linearly with the electron concentration and in-plane stress. The failure of fitting the shift of band gap as a function of electron concentration using the available theoretical models suggests the in-plane stress, instead of the electron concentration, be regarded as the dominant cause to this anomalous redshift of the optical band gap. And the mechanism of stress-dependent optical band gap is supported by the first-principles calculation based on density functional theory.

  18. The E3 ubiquitin ligase NEDD4 induces endocytosis and lysosomal sorting of connexin 43 to promote loss of gap junctions.

    PubMed

    Totland, Max Z; Bergsland, Christian H; Fykerud, Tone A; Knudsen, Lars M; Rasmussen, Nikoline L; Eide, Peter W; Yohannes, Zeremariam; Sørensen, Vigdis; Brech, Andreas; Lothe, Ragnhild A; Leithe, Edward

    2017-09-01

    Intercellular communication via gap junctions has an important role in controlling cell growth and in maintaining tissue homeostasis. Connexin 43 (Cx43; also known as GJA1) is the most abundantly expressed gap junction channel protein in humans and acts as a tumor suppressor in multiple tissue types. Cx43 is often dysregulated at the post-translational level during cancer development, resulting in loss of gap junctions. However, the molecular basis underlying the aberrant regulation of Cx43 in cancer cells has remained elusive. Here, we demonstrate that the oncogenic E3 ubiquitin ligase NEDD4 regulates the Cx43 protein level in HeLa cells, both under basal conditions and in response to protein kinase C activation. Furthermore, overexpression of NEDD4, but not a catalytically inactive form of NEDD4, was found to result in nearly complete loss of gap junctions and increased lysosomal degradation of Cx43 in both HeLa and C33A cervical carcinoma cells. Collectively, the data provide new insights into the molecular basis underlying the regulation of gap junction size and represent the first evidence that an oncogenic E3 ubiquitin ligase promotes loss of gap junctions and Cx43 degradation in human carcinoma cells. © 2017. Published by The Company of Biologists Ltd.

  19. Four-wave-mixing gap solitons

    SciTech Connect

    Zhang Yanpeng; Wang Zhiguo; Zheng Huaibin; Yuan Chenzhi; Li Changbiao; Lu Keqing; Xiao Min

    2010-11-15

    We report an experimental demonstration of generating gap soliton trains in a four-wave-mixing (FWM) signal. Such spatial FWM surfacelike gap soliton trains are induced in a periodically modulated self-defocusing atomic medium by the cross-phase modulation, which can be reshaped under different experimental conditions, such as different atomic densities, nonlinear dispersions, and dressing fields. Controlling spatial gap solitons can have important applications in image memory, processing, and communication.

  20. Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice.

    PubMed

    Oguro, K; Jover, T; Tanaka, H; Lin, Y; Kojima, T; Oguro, N; Grooms, S Y; Bennett, M V; Zukin, R S

    2001-10-01

    Gap junctions are conductive channels that connect the interiors of coupled cells. In the hippocampus, GABA-containing hippocampal interneurons are interconnected by gap junctions, which mediate electrical coupling and synchronous firing and thereby promote inhibitory transmission. The present study was undertaken to examine the hypothesis that the gap junctional proteins connexin 32 (Cx32; expressed by oligodendrocytes, interneurons, or both), Cx36 (expressed by interneurons), and Cx43 (expressed by astrocytes) play a role in defining cell-specific patterns of neuronal death in hippocampus after global ischemia in mice. Global ischemia did not significantly alter Cx32 and Cx36 mRNA expression and slightly increased Cx43 mRNA expression in the vulnerable CA1, as assessed by Northern blot analysis and in situ hybridization. Global ischemia induced a selective increase in Cx32 and Cx36 but not Cx43 protein abundance in CA1 before onset of neuronal death, as assessed by Western blot analysis. The increase in Cx32 and Cx36 expression was intense and specific to parvalbumin-positive inhibitory interneurons of CA1, as assessed by double immunofluorescence. Protein abundance was unchanged in CA3 and dentate gyrus. The finding of increase in connexin protein without increase in mRNA suggests regulation of Cx32 and Cx36 expression at the translational or post-translational level. Cx32(Y/-) null mice exhibited enhanced vulnerability to brief ischemic insults, consistent with a role for Cx32 gap junctions in neuronal survival. These findings suggest that Cx32 and Cx36 gap junctions may contribute to the survival and resistance of GABAergic interneurons, thereby defining cell-specific patterns of global ischemia-induced neuronal death.

  1. The Gap-Tpc

    NASA Astrophysics Data System (ADS)

    Rossi, B.; Anastasio, A.; Boiano, A.; Catalanotti, S.; Cocco, A. G.; Covone, G.; Di Meo, P.; Longo, G.; Vanzanella, A.; Walker, S.; Wang, H.; Wang, Y.; Fiorillo, G.

    2016-02-01

    Several experiments have been conducted worldwide, with the goal of observing low-energy nuclear recoils induced by WIMPs scattering off target nuclei in ultra-sensitive, low-background detectors. In the last few decades noble liquid detectors designed to search for dark matter in the form of WIMPs have been extremely successful in improving their sensitivities and setting the best limits. One of the crucial problems to be faced for the development of large size (multi ton-scale) liquid argon experiments is the lack of reliable and low background cryogenic PMTs: their intrinsic radioactivity, cost, and borderline performance at 87 K rule them out as a possible candidate for photosensors. We propose a brand new concept of liquid argon-based detector for direct dark matter search: the Geiger-mode Avalanche Photodiode Time Projection Chamber (GAP-TPC) optimized in terms of residual radioactivity of the photosensors, energy and spatial resolution, light and charge collection efficiency.

  2. Band-unfolding approach to moiré-induced band-gap opening and Fermi level velocity reduction in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Nishi, Hirofumi; Matsushita, Yu-ichiro; Oshiyama, Atsushi

    2017-02-01

    We report on the energy spectrum of electrons in twisted bilayer graphene (tBLG) obtained by the band-unfolding method in the tight-binding model. We find the band-gap opening at particular points in the reciprocal space, that elucidates the drastic reduction of the Fermi-level velocity with the tiny twisted angles in tBLGs. We find that moiré pattern caused by the twist of the two graphene layers generates interactions among Dirac cones, otherwise absent, and the resultant cone-cone interactions peculiar to each point in the reciprocal space causes the energy gap and thus reduces the Fermi-level velocity.

  3. Screening of anti-hypoxia/reoxygenation agents by an in vitro method. Part 2: Inhibition of tyrosine kinase activation prevented hypoxia/reoxygenation-induced injury in endothelial gap junctional intercellular communication.

    PubMed

    Zhang, Y W; Morita, I; Zhang, L; Shao, G; Yao, X S; Murota, S

    2000-03-01

    In this study, we demonstrated that hypoxia/reoxygenation (H/R) induced an injury in gap junctional intercellular communication (GJIC) after 2 h of reoxygenation in cultured HUVEC. Free radical scavenger (DMSO) and antioxidant (SOD) did not prevent this GJIC injury at all. Protein kinase C inhibitor (calphostin C) partly blocked this injury. However, the protein tyrosine kinase (PTK) inhibitor genistein completely inhibited this GJIC injury. Compounds 1 [laxogenin-3-O-alpha-L-arabinosyl-(1-->6)- beta-D-glucopyranoside], 2 (macrostemososide A), 3 [laxogenin-3-O-beta-D-xylopyranosyl-(1-->4)-alpha- L-arabinopyranosyl-(1-->6)-beta-D-glucopyranoside], 4 (chinenoside II), 5 (beta-sitosterol), 6 (daucosterine), 7 (ginsenoside-Rd), 29 (isocumarine), 52 (icariin), 53 (icariside), and 54 (icaritin), which showed obvious influence on H/R-induced PTK activation as stated in Part 1 (except 1), were explored for their effects on GJIC. The results showed that compounds 2-7 and 52-57 partly protected H/R-induced GJIC injury. Compounds 5 and 6 (especially 5), which showed the strongest inhibitory effects on PTK activation, completely blocked H/R-provoked GJIC injury. Compound 1, which did not influence PTK activation, failed to prevent this GJIC injury. In contrast, compound 29, which significantly promoted PTK activation, enhanced this H/R-induced GJIC injury further. Western blotting of connexin 43, an important gap junctional protein for modulating GJIC in HUVEC, revealed that interference with the gap junctional protein might be the most direct mechanism for compounds 2, 5, 29, and 53 to affect H/R-injured GJIC.

  4. Intrinsic islet heterogeneity and gap junction coupling determine spatiotemporal Ca²⁺ wave dynamics.

    PubMed

    Benninger, Richard K P; Hutchens, Troy; Head, W Steven; McCaughey, Michael J; Zhang, Min; Le Marchand, Sylvain J; Satin, Leslie S; Piston, David W

    2014-12-02

    Insulin is released from the islets of Langerhans in discrete pulses that are linked to synchronized oscillations of intracellular free calcium ([Ca(2+)]i). Associated with each synchronized oscillation is a propagating calcium wave mediated by Connexin36 (Cx36) gap junctions. A computational islet model predicted that waves emerge due to heterogeneity in β-cell function throughout the islet. To test this, we applied defined patterns of glucose stimulation across the islet using a microfluidic device and measured how these perturbations affect calcium wave propagation. We further investigated how gap junction coupling regulates spatiotemporal [Ca(2+)]i dynamics in the face of heterogeneous glucose stimulation. Calcium waves were found to originate in regions of the islet having elevated excitability, and this heterogeneity is an intrinsic property of islet β-cells. The extent of [Ca(2+)]i elevation across the islet in the presence of heterogeneity is gap-junction dependent, which reveals a glucose dependence of gap junction coupling. To better describe these observations, we had to modify the computational islet model to consider the electrochemical gradient between neighboring β-cells. These results reveal how the spatiotemporal [Ca(2+)]i dynamics of the islet depend on β-cell heterogeneity and cell-cell coupling, and are important for understanding the regulation of coordinated insulin release across the islet. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Intrinsic Islet Heterogeneity and Gap Junction Coupling Determine Spatiotemporal Ca2+ Wave Dynamics

    PubMed Central

    Benninger, Richard K.P.; Hutchens, Troy; Head, W. Steven; McCaughey, Michael J.; Zhang, Min; Le Marchand, Sylvain J.; Satin, Leslie S.; Piston, David W.

    2014-01-01

    Insulin is released from the islets of Langerhans in discrete pulses that are linked to synchronized oscillations of intracellular free calcium ([Ca2+]i). Associated with each synchronized oscillation is a propagating calcium wave mediated by Connexin36 (Cx36) gap junctions. A computational islet model predicted that waves emerge due to heterogeneity in β-cell function throughout the islet. To test this, we applied defined patterns of glucose stimulation across the islet using a microfluidic device and measured how these perturbations affect calcium wave propagation. We further investigated how gap junction coupling regulates spatiotemporal [Ca2+]i dynamics in the face of heterogeneous glucose stimulation. Calcium waves were found to originate in regions of the islet having elevated excitability, and this heterogeneity is an intrinsic property of islet β-cells. The extent of [Ca2+]i elevation across the islet in the presence of heterogeneity is gap-junction dependent, which reveals a glucose dependence of gap junction coupling. To better describe these observations, we had to modify the computational islet model to consider the electrochemical gradient between neighboring β-cells. These results reveal how the spatiotemporal [Ca2+]i dynamics of the islet depend on β-cell heterogeneity and cell-cell coupling, and are important for understanding the regulation of coordinated insulin release across the islet. PMID:25468351

  6. Anion Gap Blood Test

    MedlinePlus

    ... Why do I need an anion gap blood test? Your health care provider may have ordered an anion gap blood ... which is a blood test. During a blood test, a health care professional uses a small needle to take a ...

  7. Behind the Pay Gap

    ERIC Educational Resources Information Center

    Dey, Judy Goldberg; Hill, Catherine

    2007-01-01

    Women have made remarkable gains in education during the past three decades, yet these achievements have resulted in only modest improvements in pay equity. The gender pay gap has become a fixture of the U.S. workplace and is so ubiquitous that many simply view it as normal. "Behind the Pay Gap" examines the gender pay gap for college graduates.…

  8. Indium induced band gap tailoring in AgGa{sub 1-x}In{sub x}S{sub 2} chalcopyrite structure for visible light photocatalysis

    SciTech Connect

    Jang, Jum Suk; Borse, Pramod H.; Lee, Jae Sung; Choi, Sun Hee; Kim, Hyun Gyu

    2008-04-21

    Indium was substituted at gallium site in chalcopyrite AgGaS{sub 2} structure by using a simple solid solution method. The spectroscopic analysis using extended x-ray absorption fine structure and x-ray photoelectron spectroscopy confirmed the indium substitution in AgGaS{sub 2} lattice. The band gap energy of AgGa{sub 1-x}In{sub x}S{sub 2} (x=0-1) estimated from the onset of absorption edge was found to be reduced from 2.67 eV (x=0) to 1.9 eV (x=1) by indium substitution. The theoretical and experimental studies showed that the indium s orbitals in AgGa{sub 1-x}In{sub x}S{sub 2} tailored the band gap energy, thereby modified the photocatalytic activity of the AgGa{sub 1-x}In{sub x}S{sub 2}.

  9. Aggregation of BiTe monolayer on Bi2Te3 (111) induced by diffusion of intercalated atoms in the van der Waals gap

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Wen; Huang, Wen-Kai; Zhang, Kai-Wen; Shu, Da-Jun; Wang, Mu; Li, Shao-Chun

    2017-03-01

    We report a postgrowth aging mechanism of Bi2Te3 (111) films with scanning tunneling microscopy in combination with density functional theory calculation. It is found that a monolayered structure with a squared lattice symmetry gradually aggregates from the surface steps. Theoretical calculations indicate that the van der Waals (vdW) gap not only acts as a natural reservoir for self-intercalated Bi and Te atoms, but also provides them easy diffusion pathways. Once hopping out of the gap, these defective atoms prefer to develop into a two-dimensional BiTe superstructure on the Bi2Te3 (111) surface driven by positive energy gain. Considering the common nature of weak bonding between vdW layers, we expect such unusual diffusion and aggregation of the intercalated atoms may be of general importance for most kinds of vdW layered materials.

  10. Effects of solvent induced modulation of energy gaps on electronic relaxation of excited hydrogen bonded complexes of some aromatic carbonyl compounds

    NASA Astrophysics Data System (ADS)

    van der Burgt, M. J.; Jansen, L. M. G.; Huizer, A. H.; Varma, C. A. G. O.

    1995-12-01

    A detailed study of the influence of solvent polarity and temperature dependence ( T ≤ 300 K) on the radiationless transitions of hydrogen bonded complexes of 2-naphthaldehyde ( 1), 2-acetonaphthone ( 2), methyl 2-naphthoate ( 3) and 1,2-dihydro-3H-benz[ e]inden-3-one ( 4) is presented. The hydrogen bonded complexes are strongly fluorescent. The energy gaps between S 1 and S 0 and between S 1 and T 1 could be varied by using various 1,4-dioxane/water mixtures as the solvent. In the case of the complex of 1 intersystem crossing and internal conversion from S 1 have both been found to proceed through a direct process as well as by way of a proces involving thermal excitation to S 2. The conversion of S 1 to T 1 proceeds only through thermal excitation to S 2 in the case of 2 and 4, whereas in the case of 3 a contribution from a thermally activated process could not be detected. An inverse exponential energy gap law has been found for the temperature independent intersystem crossing from S 1 in the case of the complexes of 1 and 3. This is shown theoretically to be in accordance with a nuclear tunneling process. The tunneling appears to proceed along the C-O stretching mode. The internal conversion from the state S 1 of the complex of 3 satisfies the regular exponential energy gap law.

  11. Heat transfer enhancement for spent nuclear fuel assembly disposal packages using metallic void fillers: A prevention technique for solidification shrinkage-induced interfacial gaps

    NASA Astrophysics Data System (ADS)

    Park, Yongsoo; McKrell, Thomas J.; Driscoll, Michael J.

    2017-06-01

    This study considers replacing the externally accessible void spaces inside a disposal package containing a spent nuclear fuel assembly (SNFA) with high heat conducting metal to increase the effective thermal conductivity of the package and simplify the heat transfer mechanism inside the package by reducing it to a conduction dominant problem. The focus of the study is on preventing the gaps adjacent to the walls of the package components, produced by solidification shrinkage of poured liquid metal. We approached the problem by providing a temporary coating layer on the components to avoid direct build-up of thick metal oxides on their surface to promote metallic bonding at the interfaces under a non-inert environment. Laboratory scale experiments without SNFA were performed with Zn coated low carbon steel canisters and Zamak-3 void filler under two different filling temperature conditions - below and above the melting point of Zn (designated BMP and AMP respectively). Gap formation was successfully prevented in both cases while we confirmed an open gap in a control experiment, which used an uncoated canister. Minor growth of Al-Fe intermetallic phases was observed at the canister/filler interface of the sample produced under the BMP condition while their growth was significant and showed irregularly distributed morphology in the sample produced under the AMP condition, which has a potential to mitigate excessive residual stresses caused by shrinkage prevention. A procedure for the full-scale application was specified based on the results.

  12. Co-regulation of multiple signaling mechanisms in pp60v-src induced closure of Cx43 Gap junction channels

    PubMed Central

    Mitra, Siddhartha S.; Xu, Ji; Nicholson, Bruce J.

    2012-01-01

    Attenuation in gap junctional coupling has consistently been associated with induction of rapid or synchronous cell division in normal and pathological conditions. In the case of the v-src oncogene, gating of Cx43 gap junction channels has been linked to both direct phosphorylation of tyrosines (Y247 and 265) and phosphorylation of serine target of Erk1/2 (S255, 279, and 282) on the cytoplasmic C-terminal domain of Cx43. However, only the latter has been associated with acute rather than chronic gating of the channels immediately after v-src expression, a process that is mediated through a “ball and chain” type mechanism. In this study we show that while ERK1/2 is necessary for acute closure of gap junction channels, it is not sufficient. Rather, multiple pathways converge to regulate Cx43 coupling in response to expression of v-src, including parallel signaling through PKC and MEK1/2, with additional positive and negative regulatory effects mediated by PI3kinase, distinguished by the involvement of Akt. PMID:22965738

  13. Large superconducting double-gap, a pronounced pseudogap and evidence for proximity-induced topological superconductivity in the Bi2Te3/Fe1+yTe interfacial superconductor

    NASA Astrophysics Data System (ADS)

    Shen, J. Y.; He, M. Q.; He, Q. L.; Law, K. T.; Sou, I. K.; Lortz, R.; Petrovic, A. P.

    We investigate directional point-contact spectroscopy on a Bi2Te3/ Fe1+yTe heterostructure, fabricated via van der Waals epitaxy, which is interfacial superconducting with an onset TC at 12K and zero resistance below 8K. A large superconducting twin-gap structure is seen down to 0.27K, together with a zero bias conductance peak. The anisotropic smaller gap (Δ1) is around 5 meV at 0.27K and closes at 8K, while the other one (Δ2), as large as 12 meV, is isotropic and eventually evolves into a pseudogap closing at 40K. Both, the two-gap BTK and Dynes models can well reproduce our data, demonstrating Δ1 should be associated with the proximity-induced superconductivity in the topological Bi2Te3 layer, while Δ2 may be attributed to an intrinsically-doped FeTe thin film at the interface. This work was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (603010, SEGHKUST03).

  14. Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promoters

    NASA Technical Reports Server (NTRS)

    Stains, Joseph P.; Lecanda, Fernando; Screen, Joanne; Towler, Dwight A.; Civitelli, Roberto

    2003-01-01

    Loss-of-function mutations of gap junction proteins, connexins, represent a mechanism of disease in a variety of tissues. We have shown that recessive (gene deletion) or dominant (connexin45 overexpression) disruption of connexin43 function results in osteoblast dysfunction and abnormal expression of osteoblast genes, including down-regulation of osteocalcin transcription. To elucidate the molecular mechanisms of gap junction-sensitive transcriptional regulation, we systematically analyzed the rat osteocalcin promoter for sensitivity to gap junctional intercellular communication. We identified an Sp1/Sp3 containing complex that assembles on a minimal element in the -70 to -57 region of the osteocalcin promoter in a gap junction-dependent manner. This CT-rich connexin-response element is necessary and sufficient to confer gap junction sensitivity to the osteocalcin proximal promoter. Repression of osteocalcin transcription occurs as a result of displacement of the stimulatory Sp1 by the inhibitory Sp3 on the promoter when gap junctional communication is perturbed. Modulation of Sp1/Sp3 recruitment also occurs on the collagen Ialpha1 promoter and translates into gap junction-sensitive transcriptional control of collagen Ialpha1 gene expression. Thus, regulation of Sp1/Sp3 recruitment to the promoter may represent a potential general mechanism for transcriptional control of target genes by signals passing through gap junctions.

  15. Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promoters

    NASA Technical Reports Server (NTRS)

    Stains, Joseph P.; Lecanda, Fernando; Screen, Joanne; Towler, Dwight A.; Civitelli, Roberto

    2003-01-01

    Loss-of-function mutations of gap junction proteins, connexins, represent a mechanism of disease in a variety of tissues. We have shown that recessive (gene deletion) or dominant (connexin45 overexpression) disruption of connexin43 function results in osteoblast dysfunction and abnormal expression of osteoblast genes, including down-regulation of osteocalcin transcription. To elucidate the molecular mechanisms of gap junction-sensitive transcriptional regulation, we systematically analyzed the rat osteocalcin promoter for sensitivity to gap junctional intercellular communication. We identified an Sp1/Sp3 containing complex that assembles on a minimal element in the -70 to -57 region of the osteocalcin promoter in a gap junction-dependent manner. This CT-rich connexin-response element is necessary and sufficient to confer gap junction sensitivity to the osteocalcin proximal promoter. Repression of osteocalcin transcription occurs as a result of displacement of the stimulatory Sp1 by the inhibitory Sp3 on the promoter when gap junctional communication is perturbed. Modulation of Sp1/Sp3 recruitment also occurs on the collagen Ialpha1 promoter and translates into gap junction-sensitive transcriptional control of collagen Ialpha1 gene expression. Thus, regulation of Sp1/Sp3 recruitment to the promoter may represent a potential general mechanism for transcriptional control of target genes by signals passing through gap junctions.

  16. Efficient H{sub 2} production over Au/graphene/TiO{sub 2} induced by surface plasmon resonance of Au and band-gap excitation of TiO{sub 2}

    SciTech Connect

    Liu, Yang; Yu, Hongtao; Wang, Hua; Chen, Shuo; Quan, Xie

    2014-11-15

    Highlights: • Both surface plasmon resonance and band-gap excitation were used for H{sub 2} production. • Au/Gr/TiO{sub 2} composite photocatalyst was synthesized. • Au/Gr/TiO{sub 2} exhibited enhancement of light absorption and charge separation. • H{sub 2} production rate of Au/Gr/TiO{sub 2} was about 2 times as high as that of Au/TiO{sub 2}. - Abstract: H{sub 2} production over Au/Gr/TiO{sub 2} composite photocatalyst induced by surface plasmon resonance of Au and band-gap excitation of TiO{sub 2} using graphene (Gr) as an electron acceptor has been investigated. Electron paramagnetic resonance study indicated that, in this composite, Gr collected electrons not only from Au with surface plasmon resonance but also from TiO{sub 2} with band-gap excitation. Surface photovoltage and UV–vis absorption measurements revealed that compared with Au/TiO{sub 2}, Au/Gr/TiO{sub 2} displayed more effective photogenerated charge separation and higher optical absorption. Benefiting from these advantages, the H{sub 2} production rate of Au/Gr/TiO{sub 2} composite with Gr content of 1.0 wt% and Au content of 2.0 wt% was about 2 times as high as that of Au/TiO{sub 2}. This work represents an important step toward the efficient application of both surface plasmon resonance and band-gap excitation on the way to converting solar light into chemical energy.

  17. In situ synthesis of porous array films on a filament induced micro-gap electrode pair and their use as resistance-type gas sensors with enhanced performances

    NASA Astrophysics Data System (ADS)

    Xu, Zongke; Duan, Guotao; Zhang, Hongwen; Wang, Yingying; Xu, Lei; Cai, Weiping

    2015-08-01

    Resistance-type metal-oxide semiconductor gas sensors with high sensitivity and low detection limit have been explored for practical applications. They require both sensing films with high sensitivity to target gases and an appropriate structure of the electrode-equipped substrate to support the sensing films, which is still challenging. In this paper, a new gas sensor of metal-oxide porous array films on a micro-gap electrode pair is designed and implemented by taking ZnO as a model material. First, a micro-gap electrode pair was constructed by sputtering deposition on a filament template, which was used as the sensor's supporting substrate. Then, the sensing film, made up of ZnO porous periodic arrays, was in situ synthesized onto the supporting substrate by a solution-dipping colloidal lithography strategy. The results demonstrated the validity of the strategy, and the as-designed sensor shows a small device-resistance, an enhanced sensing performance with high resolution and an ultralow detection limit. This work provides an alternative method to promote the practical application of resistance-type gas sensors.Resistance-type metal-oxide semiconductor gas sensors with high sensitivity and low detection limit have been explored for practical applications. They require both sensing films with high sensitivity to target gases and an appropriate structure of the electrode-equipped substrate to support the sensing films, which is still challenging. In this paper, a new gas sensor of metal-oxide porous array films on a micro-gap electrode pair is designed and implemented by taking ZnO as a model material. First, a micro-gap electrode pair was constructed by sputtering deposition on a filament template, which was used as the sensor's supporting substrate. Then, the sensing film, made up of ZnO porous periodic arrays, was in situ synthesized onto the supporting substrate by a solution-dipping colloidal lithography strategy. The results demonstrated the validity of the

  18. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor.

    PubMed

    Guguchia, Z; Amato, A; Kang, J; Luetkens, H; Biswas, P K; Prando, G; von Rohr, F; Bukowski, Z; Shengelaya, A; Keller, H; Morenzoni, E; Fernandes, Rafael M; Khasanov, R

    2015-11-09

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.

  19. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    DOE PAGES

    Guguchia, Z.; Amato, A.; Kang, J.; ...

    2015-11-09

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. Contrasting with other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperaturemore » behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.« less

  20. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    PubMed Central

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.

    2015-01-01

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. PMID:26548650

  1. In situ synthesis of porous array films on a filament induced micro-gap electrode pair and their use as resistance-type gas sensors with enhanced performances.

    PubMed

    Xu, Zongke; Duan, Guotao; Zhang, Hongwen; Wang, Yingying; Xu, Lei; Cai, Weiping

    2015-09-14

    Resistance-type metal-oxide semiconductor gas sensors with high sensitivity and low detection limit have been explored for practical applications. They require both sensing films with high sensitivity to target gases and an appropriate structure of the electrode-equipped substrate to support the sensing films, which is still challenging. In this paper, a new gas sensor of metal-oxide porous array films on a micro-gap electrode pair is designed and implemented by taking ZnO as a model material. First, a micro-gap electrode pair was constructed by sputtering deposition on a filament template, which was used as the sensor's supporting substrate. Then, the sensing film, made up of ZnO porous periodic arrays, was in situ synthesized onto the supporting substrate by a solution-dipping colloidal lithography strategy. The results demonstrated the validity of the strategy, and the as-designed sensor shows a small device-resistance, an enhanced sensing performance with high resolution and an ultralow detection limit. This work provides an alternative method to promote the practical application of resistance-type gas sensors.

  2. Microtron Irradiation Induced Tuning of Band Gap and Photoresponse of Al-ZnO Thin Films Synthesized by mSILAR

    NASA Astrophysics Data System (ADS)

    Thomas, Deepu; Augustine, Simon; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Alhaddad, Ahmad Yaser; Cabibihan, John-John; Vijayalakshmi, K. A.

    2016-10-01

    Al-doped polycrystalline nano ZnO (Al-ZnO) thin films with different doping concentrations were successfully prepared by the microwave-assisted successive ionic layer adsorption and reaction (mSILAR) technique. The structural analysis along with the orientation of the prepared films was examined by powder x-ray diffraction (PXRD) patterns. The deposited film is polycrystalline and the (002) orientation enhanced upon doping. Additional investigations were carried out to study the effect of electron beam irradiation (e--irradiation) on the band gap and photoconductivity of both irradiated and unirradiated samples. Both the Al doping and e--irradiation led to the enhancement of the photoconductivity of prepared materials. This property enables us to tune the properties of materials for various applications by controlling dopant concentrations and e--irradiation. The dependence of photocurrent on e--irradiation of Al-ZnO thin films was not reported previously. Therefore, Al-doped polycrystalline nano-ZnO thin film is a promising material for band gap engineering and for the development of solar cells.

  3. Hosting of surface states in spin-orbit induced projected bulk band gaps of W(1 1 0) and Ir(1 1 1)

    NASA Astrophysics Data System (ADS)

    Elmers, H. J.; Kutnyakhov, D.; Chernov, S. V.; Medjanik, K.; Fedchenko, O.; Zaporozhchenko-Zymakova, A.; Ellguth, M.; Tusche, C.; Viefhaus, J.; Schönhense, G.

    2017-06-01

    Spin-momentum locking of surface states has attracted great interest in recent years due to envisioned technological applications in the field of spintronics. Normal metal surfaces like W(1 1 0) and Ir(1 1 1) show surface states with energy dispersions and spin-polarization textures, which are reminiscent of topologically non-trivial surface states. In order to understand this phenomenon the connection of bulk and surface states has to be explored. Using time-of-flight momentum microscopy with soft x-ray excitation, we present a comprehensive analysis of the bulk bands of W and Ir. Surface states are determined by the same method with photon excitation in the vacuum ultraviolet region. The superposition of both spectral densities reveals the hosting of surface states within the gap structure of bulk bands projected on the surface Brillouin zone. Quantitative differences in the extension of experimental and theoretical local band gaps indicate an underestimation of electron correlation effects in theory.

  4. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    NASA Astrophysics Data System (ADS)

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.

    2015-11-01

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.

  5. Closing the Pay Gap

    DTIC Science & Technology

    2000-10-01

    the pay gap has been narrowed, hut only to just under 10 percent. And current military compensation legislation does not close the gap until 2026. There...will continue to be a pay gap until 2026 unless the next administration and the next Congress provide more for pay above the 1999 legislated ramp- up...of .5 percent (one half of one percent) per year to attain pay equality . That means that soldiers, sailors, airmen, marines and Coast Guardsmen

  6. Optically tuneable blue phase photonic band gaps

    SciTech Connect

    Liu, H.-Y.; Wang, C.-T.; Hsu, C.-Y.; Lin, T.-H.; Liu, J.-H.

    2010-03-22

    This study investigates an optically switchable band gap of photonic crystal that is based on an azobenzene-doped liquid crystal blue phase. The trans-cis photoisomerization of azobenzene deforms the cubic unit cell of the blue phase and shifts the photonic band gap. The fast back-isomerization of azobenzene was induced by irradiation with different wavelengths light. The crystal structure is verified using Kossel diffraction diagram. An optically addressable blue phase display, based on Bragg reflection from the photonic band gap, is also demonstrated. The tunable ranges are around red, green, and blue wavelengths and exhibit a bright saturated color.

  7. Rapid auditory learning of temporal gap detection.

    PubMed

    Mishra, Srikanta K; Panda, Manasa R

    2016-07-01

    The rapid initial phase of training-induced improvement has been shown to reflect a genuine sensory change in perception. Several features of early and rapid learning, such as generalization and stability, remain to be characterized. The present study demonstrated that learning effects from brief training on a temporal gap detection task using spectrally similar narrowband noise markers defining the gap (within-channel task), transfer across ears, however, not across spectrally dissimilar markers (between-channel task). The learning effects associated with brief training on a gap detection task were found to be stable for at least a day. These initial findings have significant implications for characterizing early and rapid learning effects.

  8. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.

    PubMed

    Mughal, A; El Demellawi, J K; Chaieb, Sahraoui

    2014-12-14

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.

  9. Bridging the climate-induced water gap in the twenty-first century: adaptation support based on water supply, demand, adaptation and financing.

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Droogers, Peter; Brandsma, Jaïrus; Buytaert, Wouter; Karssenberg, Derek; Van Beek, Rens; Wada, Yoshihide; Sutanudjaja, Edwin; Vitolo, Claudia; Schmitz, Oliver; Meijer, Karen; Van Aalst, Maaike; Bierkens, Marc

    2014-05-01

    Water scarcity affects large parts of the world. Over the course of the twenty-first century, water demand is likely to increase due to population growth and associated food production, and increased economic activity, while water supply is projected to decrease in many regions due to climate change. Despite recent studies that analyze the effect of climate change on water scarcity, e.g. using climate projections under representative concentration pathways (RCP) of the fifth assessment report of the IPCC (AR5), decision support for closing the water gap between now and 2100 does not exist at a meaningful scale and with a global coverage. In this study, we aimed (i) to assess the joint impact of climatic and socio-economic change on water scarcity, (ii) to integrate impact and potential adaptation in one workflow, (iii) to prioritize adaptation options to counteract water scarcity based on their financial, regional socio-economic and environmental implications, and (iv) to deliver all this information in an integrated user-friendly web-based service. To enable the combination of global coverage with local relevance, we aggregated all results for 1604 water provinces (food producing units) delineated in this study, which is five times smaller than previous food producing units. Water supply was computed using the PCR-GLOBWB hydrological and water resources model, parameterized at 5 arcminutes for the whole globe, excluding Antarctica and Greenland. We ran PCR-GLOBWB with a daily forcing derived from five different GCM models from the CMIP5 (GFDL-ESM2M, Hadgem2-ES, IPSL-CMA5-LR, MIROC-ESM-CHEM, NorESM1-M) that were bias corrected using observation-based WATCH data between 1960-1999. For each of the models all four RCPs (RCP 2.6, 4.5, 6.0, and 8.5) were run, producing the ensemble of 20 future projections. The blue water supply was aggregated per month and per water province. Industrial, domestic and irrigation water demands were computed for a limited number of

  10. Bismuth-induced Raman modes in GaP 1₋ x Bi x

    SciTech Connect

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; Alberi, Kirstin; Mascarenhas, Angelo

    2016-09-02

    Dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP1- x Bi x epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm-1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismide alloy regime.

  11. Fano-shaped impurity spectral density, electric-field-induced in-gap state, and local magnetic moment of an adatom on trilayer graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Quan; Li, Shuai; Lü, Jing-Tao; Gao, Jin-Hua

    2017-08-01

    Recently, the existence of local magnetic moment in a hydrogen adatom on graphene was confirmed experimentally [González-Herrero et al., Science 352, 437 (2016), 10.1126/science.aad8038]. Inspired by this breakthrough, we theoretically investigate the top-site adatom on trilayer graphene (TLG) by solving the Anderson impurity model via self-consistent mean field method. The influence of the stacking order, the adsorption site, and external electric field are carefully considered. We find that, due to its unique electronic structure, the situation of TLG is drastically different from that of the monolayer graphene. First, the adatom on rhombohedral stacked TLG (r-TLG) can have a Fano-shaped impurity spectral density, instead of the normal Lorentzian-like one, when the impurity level is around the Fermi level. Second, the impurity level of the adatom on r-TLG can be tuned into an in-gap state by an external electric field, which strongly depends on the direction of the applied electric field and can significantly affect the local magnetic moment formation. Finally, we systematically calculate the impurity magnetic phase diagrams, considering various stacking orders, adsorption sites, doping, and electric field. We show that, because of the in-gap state, the impurity magnetic phase of r-TLG will obviously depend on the direction of the applied electric field as well. All our theoretical results can be readily tested in experiment, and may give a comprehensive understanding about the local magnetic moment of an adatom on TLG.

  12. Reversal of the TPA-induced inhibition of gap junctional intercellular communication by Chaga mushroom (Inonotus obliquus) extracts: effects on MAP kinases.

    PubMed

    Park, Jung-Ran; Park, Joon-Suk; Jo, Eun-Hye; Hwang, Jae-Woong; Kim, Sun-Jung; Ra, Jeong-Chan; Aruoma, Okezie I; Lee, Yong-Soon; Kang, Kyung-Sun

    2006-01-01

    Chaga mushroom (Inonotus obliquus) has continued to receive attention as a folk medicine with indications for the treatment of cancers and digestive diseases. The anticarcinogenic effect of Chaga mushroom extract was investigated using a model system of gap junctional intercellular communication (GJIC) in WB-F344 normal rat liver epithelial cells. The cells were pre-incubated with Chaga mushroom extracts (5, 10, 20 microg/ml) for 24 h and this was followed by co-treatment with Chaga mushroom extracts and TPA (12-O-tetradecanoylphorbol-13-acetate, 10 ng/ml) for 1 h. The inhibition of GJIC by TPA (12-O-tetradecanoylphorbol-13-acetate), promoter of cancer, was prevented with treatment of Chaga mushroom extracts. Similarly, the increased phosphorylated ERK1/2 and p38 protein kinases were markedly reduced in Chaga mushroom extracts-treated cells. There was no change in the JNK kinase protein level, suggesting that Chaga mushroom extracts could only block the activation of ERK1/2 and p38 MAP kinase. The Chaga mushroom extracts further prevented the inhibition of GJIC through the blocking of Cx43 phosphorylation. Indeed cell-to-cell communication through gap junctional channels is a critical factor in the life and death balance of cells because GJIC has an important function in maintaining tissue homeostasis through the regulation of cell growth, differentiation, apoptosis and adaptive functions of differentiated cells. Thus Chaga mushroom may act as a natural anticancer product by preventing the inhibition of GJIC through the inactivation of ERK1/2 and p38 MAP kinase.

  13. The Parenting Gap

    ERIC Educational Resources Information Center

    Reeves, Richard V.; Howard, Kimberly

    2013-01-01

    The parenting gap is a big factor in the opportunity gap. The chances of upward social mobility are lower for children with parents struggling to do a good job--in terms of creating a supportive and stimulating home environment. Children lucky enough to have strong parents are more likely to succeed at all the critical life stages, which means…

  14. States Address Achievement Gaps.

    ERIC Educational Resources Information Center

    Christie, Kathy

    2002-01-01

    Summarizes 2 state initiatives to address the achievement gap: North Carolina's report by the Advisory Commission on Raising Achievement and Closing Gaps, containing an 11-point strategy, and Kentucky's legislation putting in place 10 specific processes. The North Carolina report is available at www.dpi.state.nc.us.closingthegap; Kentucky's…

  15. Which Achievement Gap?

    ERIC Educational Resources Information Center

    Anderson, Sharon; Medrich, Elliott; Fowler, Donna

    2007-01-01

    From the halls of Congress to the local elementary school, conversations on education reform have tossed around the term "achievement gap" as though people all know precisely what that means. As it's commonly used, "achievement gap" refers to the differences in scores on state or national achievement tests between various…

  16. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  17. Which Achievement Gap?

    ERIC Educational Resources Information Center

    Anderson, Sharon; Medrich, Elliott; Fowler, Donna

    2007-01-01

    From the halls of Congress to the local elementary school, conversations on education reform have tossed around the term "achievement gap" as though people all know precisely what that means. As it's commonly used, "achievement gap" refers to the differences in scores on state or national achievement tests between various…

  18. The Parenting Gap

    ERIC Educational Resources Information Center

    Reeves, Richard V.; Howard, Kimberly

    2013-01-01

    The parenting gap is a big factor in the opportunity gap. The chances of upward social mobility are lower for children with parents struggling to do a good job--in terms of creating a supportive and stimulating home environment. Children lucky enough to have strong parents are more likely to succeed at all the critical life stages, which means…

  19. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  20. Bridging a Cultural Gap

    ERIC Educational Resources Information Center

    Leviatan, Talma

    2008-01-01

    There has been a broad wave of change in tertiary calculus courses in the past decade. However, the much-needed change in tertiary pre-calculus programmes--aimed at bridging the gap between high-school mathematics and tertiary mathematics--is happening at a far slower pace. Following a discussion on the nature of the gap and the objectives of a…

  1. The National "Expertise Gap"

    ERIC Educational Resources Information Center

    Hamilton, Kendra

    2005-01-01

    This article discusses the Woodrow Wilson National Fellowship Foundation's report, "Diversity and the Ph.D.," released in May, which documents in troubling detail the exact dimensions of what the foundation's president, Dr. Robert Weisbuch, is calling the national "expertise gap." Weisbuch states that the expertise gap extends beyond the…

  2. Senseless Extravagance, Shocking Gaps

    ERIC Educational Resources Information Center

    Weissbourd, Richard; Dodge, Trevor

    2012-01-01

    Although most people in the United States believe, at least theoretically, in educational equality, fewer and fewer appear to care about the resource gaps between affluent and poor schools, says Weissbourd. He illustrates these gaps with vivid descriptions of what he calls an "opulence arms race" among affluent independent schools, but…

  3. Senseless Extravagance, Shocking Gaps

    ERIC Educational Resources Information Center

    Weissbourd, Richard; Dodge, Trevor

    2012-01-01

    Although most people in the United States believe, at least theoretically, in educational equality, fewer and fewer appear to care about the resource gaps between affluent and poor schools, says Weissbourd. He illustrates these gaps with vivid descriptions of what he calls an "opulence arms race" among affluent independent schools, but…

  4. Information Gap Activities.

    ERIC Educational Resources Information Center

    Cicekdag, Mehmet Ali

    1995-01-01

    Focuses on a real world technique used to teach language proficiency in the classroom. This method involves creating deliberate information and opinion gaps by administering pop quizzes and other communicative games and filling those gaps through cooperative action. Use of this technique generated heated discussion among students. (nine…

  5. The National "Expertise Gap"

    ERIC Educational Resources Information Center

    Hamilton, Kendra

    2005-01-01

    This article discusses the Woodrow Wilson National Fellowship Foundation's report, "Diversity and the Ph.D.," released in May, which documents in troubling detail the exact dimensions of what the foundation's president, Dr. Robert Weisbuch, is calling the national "expertise gap." Weisbuch states that the expertise gap extends beyond the…

  6. Narrowing Participation Gaps

    ERIC Educational Resources Information Center

    Hand, Victoria; Kirtley, Karmen; Matassa, Michael

    2015-01-01

    Shrinking the achievement gap in mathematics is a tall order. One way to approach this challenge is to think about how the achievement gap manifests itself in the classroom and take concrete action. For example, opportunities to participate in activities that involve mathematical reasoning and argumentation in a safe and supportive manner are…

  7. Optimized measurement of gaps

    NASA Astrophysics Data System (ADS)

    Harding, Kevin; Ramamurthy, Rajesh

    2017-05-01

    Gaps are important in a wide range of measurements in manufacturing, from the fitting of critical assemblies too cosmetic features on cars. There are a variety of potential sensors that can measure a gap opening, each with aspects of gap measurements that they do well and other aspects where the technology may lack capability. This paper provides a review of a wide range of optical gages from structured light to passive systems and from line to area measurement. Each technology is considered relative to the ability to accurately measure a gap, including issues of edge effects, edge shape, surface finish, and transparency. Finally, an approach will be presented for creating an optimize measurement off gap openings for critical assembly applications.

  8. Design and recruitment for the GAP trial, investigating the preventive effect on asthma development of an SQ-standardized grass allergy immunotherapy tablet in children with grass pollen-induced allergic rhinoconjunctivitis.

    PubMed

    Valovirta, Erkka; Berstad, Aud Katrine Herland; de Blic, Jacques; Bufe, Albrecht; Eng, Peter; Halken, Susanne; Ojeda, Pedro; Roberts, Graham; Tommerup, Lene; Varga, Eva-Maria; Winnergard, Inger

    2011-10-01

    Allergic rhinoconjunctivitis is a risk factor for asthma development. Treating the underlying allergy may represent an attractive method of asthma prevention. No regulatory guidance exists in this area, and, to our knowledge, no clinical investigations meeting modern regulatory standards have been published. The objective of this publication is to describe the rationale behind the design of and report on the recruitment for the ongoing pediatric Grazax Asthma Prevention (GAP) trial. The trial was designed for assessment of the preventive effect of an SQ-standardized grass allergy immunotherapy tablet (AIT) on asthma development, both during treatment and after the end of treatment. (The standardized quality [SQ] procedure is a standardization procedure comprising 3 components: total potency, major allergen content, and assessment of extract complexity.) The trial design was discussed with several European Competent Authorities. The GAP trial is a multinational, parallel-group, double-blind, placebo-controlled randomized trial. Main eligibility criteria were age of 5 to 12 years, grass pollen-induced allergic rhinoconjunctivitis, no asthma, and no overlapping symptomatic allergies. The children have been randomized 1:1 to receive the grass AIT or placebo once daily for 3 years, followed by a blinded observational period of 2 years. Asthma is assessed by the investigators according to specific diagnostic criteria, used at screening visits before randomization to exclude children with existing asthma, and evaluated at least half-yearly during the trial. Seven months of screening resulted in 812 randomized children at 101 centers in 11 countries. To our knowledge, the GAP trial represents the first double-blind, placebo-controlled randomized trial to assess the preventive effect of allergen-specific immunotherapy on asthma development. A total of 812 children were successfully recruited into the trial. EudraCT number: 2009-011235-12. Copyright © 2011 Elsevier HS

  9. Substrate-induced renormalization of the quasiparticle and optical gaps in monolayer transition metal dichalcogenides from GW and GW-BSE calculations

    NASA Astrophysics Data System (ADS)

    da Jornada, Felipe H.; Ong, Chin Shen; Qiu, Diana Y.; Louie, Steven G.

    There has been a considerable effort to experimentally characterize the electronic and optical properties of novel atomically thin 2D semiconductors, such as mono- and few-layer transition metal dichalcogenides (TMDs). However, the role that different substrates play in these experiments still remains unclear. From a theoretical perspective, it is hard to include the substrate in an ab initio framework, while in experiments, it is often difficult to suspend these samples. Here, we present a new method to compute the substrate effect on the quasiparticle and optical properties of quasi-2D materials based on state-of-the-art ab initio GW and GW plus Bethe-Salpeter equation (GW-BSE) methods. We compute the effects of different metallic and semiconducting substrates, and show that the quasiparticle gap and exciton binding energy can be dramatically reduced even with semiconducting substrates. This work was supported by the National Science Foundation under Grant No. DMR15-1508412 and the DOE under Contract No. DE-AC02-05CH11231.

  10. Direct evidence for a pressure induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    NASA Astrophysics Data System (ADS)

    Guguchia, Zurab; Amato, Alex; Kang, Jian; Luetkens, Hubertus; Biswas, Pabitra K.; Prando, Giacomo; Rohr, Fabian V.; Bukowski, Zbigniew; Shengelaya, Alexander; Keller, Hugo; Morenzoni, Elvezio; Fernandes, Rafael M.; Khasanov, Rustem

    In contrast to other unconventional superconductors, in the Fe-based superconductors (Fe-HTSs) both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these different superconducting (SC) states and identifying experimental parameters that can tune them is of central interest. We report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth is observed, while the SC transition temperature remains nearly constant. More importantly, the low-temperature behavior of the inverse squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in- T behavior at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the SC gap.

  11. Bridging The Inferential Gap

    PubMed Central

    Stewart, Walter F.; Shah, Nirav R.; Selna, Mark J.; Paulus, Ronald A.; Walker, James M.

    2009-01-01

    Most clinical decisions involve bridging the inferential gap: Clinicians are required to “fill in” where they lack knowledge or where no knowledge yet exists. In this context we consider how the inferential gap is a product, in part, of how knowledge is created, the limits to gaining access to such knowledge, and the variable ways in which knowledge is translated into decisions. We consider how electronic health records (EHRs) will help narrow this gap by accelerating the creation of evidence relevant to everyday practice needs and facilitating real-time use of knowledge in practice. PMID:17259202

  12. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  13. Magnetic-Field-Induced Spin Excitations and Renormalized Spin Gap of the Underdoped La{sub 1.895}Sr{sub 0.105}CuO{sub 4} Superconductor

    SciTech Connect

    Chang, J.; Gilardi, R.; Pailhes, S.; Niedermayer, Ch.; Mesot, J.; Schnyder, A. P.; Mudry, C.; Roennow, H. M.; Christensen, N. B.; McMorrow, D. F.; Hiess, A.; Stunault, A.; Enderle, M.; Lake, B.; Sobolev, O.; Momono, N.; Oda, M.; Ido, M.

    2007-02-16

    High-resolution neutron inelastic scattering experiments in applied magnetic fields have been performed on La{sub 1.895}Sr{sub 0.105}CuO{sub 4} (LSCO). In zero field, the temperature dependence of the low-energy peak intensity at the incommensurate momentum transfer Q{sub IC}=(0.5,0.5{+-}{delta},0),(0.5{+-}{delta},0.5,0) exhibits an anomaly at the superconducting T{sub c} which broadens and shifts to lower temperature upon the application of a magnetic field along the c axis. A field-induced enhancement of the spectral weight is observed, but only at finite energy transfers and in an intermediate temperature range. These observations establish the opening of a strongly downward renormalized spin gap in the underdoped regime of LSCO. This behavior contrasts with the observed doping dependence of most electronic energy features.

  14. 100 MeV O{sup 7+} irradiation induced red shift in the band gaps of 3 wt% 'Li' doped Nb{sub 2}O{sub 5} thin film

    SciTech Connect

    Kovendhan, M. Mohan, R.; Joseph, D. Paul; Manimuthu, P.; Venkateswaran, C.; Vijayarangamuthu, K.; Asokan, K.

    2014-04-24

    Nb{sub 2}O{sub 5}:Li (3 wt%) thin film of thickness 353 nm spray deposited onto ITO coated glass substrate at 350 °C is irradiated with 100 MeV O{sup 7+} ion at a fluence of 5×10{sup 12} ions/cm{sup 2}. X-ray diffraction shows that the pristine and irradiated films are polycrystalline with a tetragonal phase. Raman peaks suppressed upon irradiation imply large surface degradation which is also seen as a decrement in transparency in visible region to one half of the pristine film. Large red shift is observed in direct and indirect band gaps upon irradiation. Hall effect reveals slight increase in carrier concentration due to irradiation induced defects.

  15. Fiber optic gap gauge

    DOEpatents

    Wood, Billy E.; Groves, Scott E.; Larsen, Greg J.; Sanchez, Roberto J.

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  16. Gap filler material

    NASA Image and Video Library

    2005-08-04

    S114-E-6674 (4 August 2005) --- On Discovery's middeck, one of the STS-114 crew members holds a piece of the gap filler material that had been protruding from between TPS tiles and retrieved the day before by Mission Specialist Stephen K. Robinson, during the third spacewalk of the flight. Robinson used his gloved fingers to pull out this gap filler and another one from Discovery's belly while carefully supported and maneuvered by the Canadian-built remote manipulator system, operated inside Discovery's cabin by astronauts Wendy B. Lawrence and James M. Kelly. Gap fillers like those Robinson removed are thin, coated Nextel fabric. The protruding gap fillers were identified in photos taken by Station crewmembers using telephoto lenses as Discovery did a slow back flip about 600 feet below before docking.

  17. Gaps in Oncology

    Cancer.gov

    The first plenary of the EPEC-O (Education in Palliative and End-of-Life Care for Oncology) Self-Study Original Version provides background for the curriculum and identifies gaps in current and desired comprehensive cancer care.

  18. Protein-energy malnutrition developing after global brain ischemia induces an atypical acute-phase response and hinders expression of GAP-43.

    PubMed

    Smith, Shari E; Figley, Sarah A; Schreyer, David J; Paterson, Phyllis G

    2014-01-01

    Protein-energy malnutrition (PEM) is a common post-stroke problem. PEM can independently induce a systemic acute-phase response, and pre-existing malnutrition can exacerbate neuroinflammation induced by brain ischemia. In contrast, the effects of PEM developing in the post-ischemic period have not been studied. Since excessive inflammation can impede brain remodeling, we investigated the effects of post-ischemic malnutrition on neuroinflammation, the acute-phase reaction, and neuroplasticity-related proteins. Male, Sprague-Dawley rats were exposed to global forebrain ischemia using the 2-vessel occlusion model or sham surgery. The sham rats were assigned to control diet (18% protein) on day 3 after surgery, whereas the rats exposed to global ischemia were assigned to either control diet or a low protein (PEM, 2% protein) diet. Post-ischemic PEM decreased growth associated protein-43, synaptophysin and synaptosomal-associated protein-25 immunofluorescence within the hippocampal CA3 mossy fiber terminals on day 21, whereas the glial response in the hippocampal CA1 and CA3 subregions was unaltered by PEM. No systemic acute-phase reaction attributable to global ischemia was detected in control diet-fed rats, as reflected by serum concentrations of alpha-2-macroglobulin, alpha-1-acid glycoprotein, haptoglobin, and albumin. Acute exposure to the PEM regimen after global brain ischemia caused an atypical acute-phase response. PEM decreased the serum concentrations of albumin and haptoglobin on day 5, with the decreases sustained to day 21. Serum alpha-2-macroglobulin concentrations were significantly higher in malnourished rats on day 21. This provides the first direct evidence that PEM developing after brain ischemia exerts wide-ranging effects on mechanisms important to stroke recovery.

  19. Protein-Energy Malnutrition Developing after Global Brain Ischemia Induces an Atypical Acute-Phase Response and Hinders Expression of GAP-43

    PubMed Central

    Smith, Shari E.; Figley, Sarah A.; Schreyer, David J.; Paterson, Phyllis G.

    2014-01-01

    Protein-energy malnutrition (PEM) is a common post-stroke problem. PEM can independently induce a systemic acute-phase response, and pre-existing malnutrition can exacerbate neuroinflammation induced by brain ischemia. In contrast, the effects of PEM developing in the post-ischemic period have not been studied. Since excessive inflammation can impede brain remodeling, we investigated the effects of post-ischemic malnutrition on neuroinflammation, the acute-phase reaction, and neuroplasticity-related proteins. Male, Sprague-Dawley rats were exposed to global forebrain ischemia using the 2-vessel occlusion model or sham surgery. The sham rats were assigned to control diet (18% protein) on day 3 after surgery, whereas the rats exposed to global ischemia were assigned to either control diet or a low protein (PEM, 2% protein) diet. Post-ischemic PEM decreased growth associated protein-43, synaptophysin and synaptosomal-associated protein-25 immunofluorescence within the hippocampal CA3 mossy fiber terminals on day 21, whereas the glial response in the hippocampal CA1 and CA3 subregions was unaltered by PEM. No systemic acute-phase reaction attributable to global ischemia was detected in control diet-fed rats, as reflected by serum concentrations of alpha-2-macroglobulin, alpha-1-acid glycoprotein, haptoglobin, and albumin. Acute exposure to the PEM regimen after global brain ischemia caused an atypical acute-phase response. PEM decreased the serum concentrations of albumin and haptoglobin on day 5, with the decreases sustained to day 21. Serum alpha-2-macroglobulin concentrations were significantly higher in malnourished rats on day 21. This provides the first direct evidence that PEM developing after brain ischemia exerts wide-ranging effects on mechanisms important to stroke recovery. PMID:25259609

  20. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.

    PubMed

    Sankaranarayanan, Krishnaswami; Taleei, Reza; Rahmanian, Shirin; Nikjoo, Hooshang

    2013-01-01

    While much is known about radiation-induced DNA double-strand breaks (DSBs) and their repair, the question of how deletions of different sizes arise as a result of the processing of DSBs by the cell's repair systems has not been fully answered. In order to bridge this gap between DSBs and deletions, we critically reviewed published data on mechanisms pertaining to: (a) repair of DNA DSBs (from basic studies in this area); (b) formation of naturally occurring structural variation (SV) - especially of deletions - in the human genome (from genomic studies) and (c) radiation-induced mutations and structural chromosomal aberrations in mammalian somatic cells (from radiation mutagenesis and radiation cytogenetic studies). The specific aim was to assess the relative importance of the postulated mechanisms in generating deletions in the human genome and examine whether empirical data on radiation-induced deletions in mouse germ cells are consistent with predictions of these mechanisms. The mechanisms include (a) NHEJ, a DSB repair process that does not require any homology and which functions in all stages of the cell cycle (and is of particular relevance in G0/G1); (b) MMEJ, also a DSB repair process but which requires microhomology and which presumably functions in all cell cycle stages; (c) NAHR, a recombination-based DSB repair mechanism which operates in prophase I of meiosis in germ cells; (d) MMBIR, a microhomology-mediated, replication-based mechanism which operates in the S phase of the cell cycle, and (e) strand slippage during replication (involved in the origin of small insertions and deletions (INDELs). Our analysis permits the inference that, between them, these five mechanisms can explain nearly all naturally occurring deletions of different sizes identified in the human genome, NAHR and MMBIR being potentially more versatile in this regard. With respect to radiation-induced deletions, the basic studies suggest that those arising as a result of the operation

  1. Gap formation following climatic events in spatially structured plant communities

    PubMed Central

    Liao, Jinbao; De Boeck, Hans J.; Li, Zhenqing; Nijs, Ivan

    2015-01-01

    Gaps play a crucial role in maintaining species diversity, yet how community structure and composition influence gap formation is still poorly understood. We apply a spatially structured community model to predict how species diversity and intraspecific aggregation shape gap patterns emerging after climatic events, based on species-specific mortality responses. In multispecies communities, average gap size and gap-size diversity increased rapidly with increasing mean mortality once a mortality threshold was exceeded, greatly promoting gap recolonization opportunity. This result was observed at all levels of species richness. Increasing interspecific difference likewise enhanced these metrics, which may promote not only diversity maintenance but also community invasibility, since more diverse niches for both local and exotic species are provided. The richness effects on gap size and gap-size diversity were positive, but only expressed when species were sufficiently different. Surprisingly, while intraspecific clumping strongly promoted gap-size diversity, it hardly influenced average gap size. Species evenness generally reduced gap metrics induced by climatic events, so the typical assumption of maximum evenness in many experiments and models may underestimate community diversity and invasibility. Overall, understanding the factors driving gap formation in spatially structured assemblages can help predict community secondary succession after climatic events. PMID:26114803

  2. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  3. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  4. Coloration and oxygen vacancies in wide band gap oxide semiconductors: Absorption at metallic nanoparticles induced by vacancy clustering—A case study on indium oxide

    SciTech Connect

    Albrecht, M. Schewski, R.; Irmscher, K.; Galazka, Z.; Markurt, T.; Naumann, M.; Schulz, T.; Uecker, R.; Fornari, R.; Meuret, S.; Kociak, M.

    2014-02-07

    In this paper, we show by optical and electron microscopy based investigations that vacancies in oxides may cluster and form metallic nanoparticles that induce coloration by extinction of visible light. Optical extinction in this case is caused by generation of localized surface plasmon resonances at metallic particles embedded in the dielectric matrix. Based on Mie's approach, we are able to fit the absorption due to indium nanoparticles in In{sub 2}O{sub 3} to our absorption measurements. The experimentally found particle distribution is in excellent agreement with the one obtained from fitting by Mie theory. Indium particles are formed by precipitation of oxygen vacancies. From basic thermodynamic consideration and assuming theoretically calculated activation energies for vacancy formation and migration, we find that the majority of oxygen vacancies form just below the melting point. Since they are ionized at this temperature they are Coulomb repulsive. Upon cooling, a high supersaturation of oxygen vacancies forms in the crystal that precipitates once the Fermi level crosses the transition energy level from the charged to the neutral charge state. From our considerations we find that the ionization energy of the oxygen vacancy must be higher than 200 meV.

  5. Impact of ion-implantation-induced band gap engineering on the temperature-dependent photoluminescence properties of InAs/InP quantum dashes

    SciTech Connect

    Hadj Alouane, M. H.; Ilahi, B.; Maaref, H.; Salem, B.; Aimez, V.; Morris, D.; Turala, A.; Regreny, P.; Gendry, M.

    2010-07-15

    We report on the effects of the As/P intermixing induced by phosphorus ion implantation in InAs/InP quantum dashes (QDas) on their photoluminescence (PL) properties. For nonintermixed QDas, usual temperature-dependent PL properties characterized by a monotonic redshift in the emission band and a continual broadening of the PL linewidth as the temperature increases, are observed. For intermediate ion implantation doses, the inhomogeneous intermixing enhances the QDas size dispersion and the enlarged distribution of carrier confining potential depths strongly affects the temperature-dependent PL properties below 180 K. An important redshift in the PL emission band occurs between 10 and 180 K which is explained by a redistribution of carriers among the different intermixed QDas of the ensemble. For higher implantation doses, the homogeneous intermixing reduces the broadening of the localized QDas state distribution and the measured linewidth temperature behavior matches that of the nonintermixed QDas. An anomalous temperature-dependent emission energy behavior has been observed for extremely high implantation doses, which is interpreted by a possible QDas dissolution.

  6. Credible enforcement policies under illegal fishing: does individual transferable quotas induce to reduce the gap between approved and proposed allowable catches?

    PubMed

    Da Rocha, José María; Villasante, Sebastián; González, Rafael Trelles

    2013-12-01

    In general, approved Total Allowable Catches (TACs) are higher than proposed TACs by the scientific assessment and reported landings approved are higher than approved TAC. We build a simple enforcement agency's behavior model that generates-as a rational behavior-those two facts. The model has two ingredients. First, there exists illegal fishing generated by an imperfect enforcement technology; second, the enforcement agency cannot commit on announced penalties. We show that lack of commitment increases the potential benefits for national enforcement agency of deviating from proposal (scientific optimal) quotas. Although the enforcement agency wants to announce a low quota target to induce a low level of illegal harvest, it will find optimal to revise the quota announced in order to reduce penalties and improve fishermen welfare. Therefore, agencies find it optimal to approve higher quotas than that proposed by the scientific advice. Our main result is to show that when full compliance is not possible, and national agencies cannot commit, the introduction of Individual Transferable Quotas increases the potential benefits for agencies of deviating from the optimal proposed TAC by the scientific advised.

  7. Mass gap without confinement

    NASA Astrophysics Data System (ADS)

    Faedo, Antón F.; Mateos, David; Pravos, David; Subils, Javier G.

    2017-06-01

    We revisit a one-parameter family of three-dimensional gauge theories with known supergravity duals. We show that three infrared behaviors are possible. For generic values of the parameter, the theories exhibit a mass gap but no confinement, meaning no linear quark-antiquark potential; for one limiting value of the parameter the theory flows to an infrared fixed point; and for another limiting value it exhibits both a mass gap and confinement. Theories close to these limiting values exhibit quasi-conformal and quasi-confining dynamics, respectively. Eleven-dimensional supergravity provides a simple, geometric explanation of these features.

  8. Mechanical antihypersensitivity effect induced by repeated spinal administrations of a TRPA1 antagonist or a gap junction decoupler in peripheral neuropathy.

    PubMed

    Wei, Hong; Wu, Hai-Yun; Chen, Zuyue; Ma, Ai-Niu; Mao, Xiao-Fang; Li, Teng-Fei; Li, Xin-Yan; Wang, Yong-Xiang; Pertovaara, Antti

    Spinal transient receptor potential ankyrin 1 (TRPA1) channel is associated with various pain hypersensitivity conditions. Spinally, TRPA1 is expressed by central terminals of nociceptive nerve fibers and astrocytes. Among potential endogenous agonists of TRPA1 is H2O2 generated by d-amino acid oxidase (DAAO) in astrocytes. Here we studied whether prolonged block of the spinal TRPA1 or astrocytes starting at time of injury attenuates development and/or maintenance of neuropathic hypersensitivity. Additionally, TRPA1 and DAAO mRNA were determined in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH). Experiments were performed in rats with spared nerve injury (SNI) and chronic intrathecal catheter. Drugs were administered twice daily for the first seven injury days or only once seven days after injury. Mechanical hypersensitivity was assessed with monofilaments. Acute and prolonged treatment with Chembridge-5861528 (a TRPA1 antagonist), carbenoxolone (an inhibitor of activated astrocytes), or gabapentin (a comparison drug) attenuated tactile allodynia-like responses evoked by low (2g) stimulus. However, antihypersensitivity effect of these compounds was short of significance at a high (15g) stimulus intensity. No preemptive effects were observed. In healthy controls, carbenoxolone failed to prevent hypersensitivity induced by spinal cinnamaldehyde, a TRPA1 agonist. TRPA1 and DAAO mRNA in the DRG but not SDH were slightly increased in SNI, independent of drug treatment. The results indicate that prolonged peri-injury block of spinal TRPA1 or inhibition of spinal astrocyte activation attenuates maintenance but not development of mechanical (tactile allodynia-like) hypersensitivity after nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Estimating Gender Wage Gaps

    ERIC Educational Resources Information Center

    McDonald, Judith A.; Thornton, Robert J.

    2011-01-01

    Course research projects that use easy-to-access real-world data and that generate findings with which undergraduate students can readily identify are hard to find. The authors describe a project that requires students to estimate the current female-male earnings gap for new college graduates. The project also enables students to see to what…

  10. The Academic Generation Gap

    ERIC Educational Resources Information Center

    Dronzek, Anna

    2008-01-01

    The current generation gap in academia is different--fundamentally shaped by the structural problems of academic employment. The job market has especially exacerbated tensions between senior and junior faculty by ratcheting up expectations and requirements at every stage of the academic career. The disparities have been mentioned often enough to…

  11. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  12. Gaining on the Gap

    ERIC Educational Resources Information Center

    Smith, Robert G.

    2010-01-01

    About three-quarters of the 2009 graduates of the highly diverse Arlington, Virginia, Public Schools completed one or more Advanced Placement or International Baccalaureate courses during their high school careers. That figure serves as one indicator of a decade-long initiative to eliminate achievement gaps while raising achievement for all…

  13. Confronting the Autonomy Gap

    ERIC Educational Resources Information Center

    Adamowski, Steven; Petrilli, Michael J.

    2007-01-01

    "The Autonomy Gap," a recent study by the American Institute for Research and the Thomas B. Fordham Institute, found that many public elementary school principals feel constrained by a bureaucracy that impedes their ability to raise student achievement. Unfortunately, those principals are still held accountable for their school's results--even…

  14. The Academic Generation Gap

    ERIC Educational Resources Information Center

    Dronzek, Anna

    2008-01-01

    The current generation gap in academia is different--fundamentally shaped by the structural problems of academic employment. The job market has especially exacerbated tensions between senior and junior faculty by ratcheting up expectations and requirements at every stage of the academic career. The disparities have been mentioned often enough to…

  15. Confronting the Autonomy Gap

    ERIC Educational Resources Information Center

    Adamowski, Steven; Petrilli, Michael J.

    2007-01-01

    "The Autonomy Gap," a recent study by the American Institute for Research and the Thomas B. Fordham Institute, found that many public elementary school principals feel constrained by a bureaucracy that impedes their ability to raise student achievement. Unfortunately, those principals are still held accountable for their school's results--even…

  16. Structuring the Information Gap.

    ERIC Educational Resources Information Center

    Edge, Julian

    1984-01-01

    Describes an information gap procedure to teach a new structure which requires students to look for and exchange information in order to complete a task in an English as a second language class. Illustrates the method with a set of materials and suggests ways for teachers to produce similar materials. (SED)

  17. Closing the Performance Gap.

    ERIC Educational Resources Information Center

    Riggins, Cheryl G.

    2002-01-01

    Describes how the principal of a K-2, 400-student suburban elementary school near Flint, Michigan, worked with her staff and superintendent to develop and implement a strategic plan to close the student achievement gap. Reports significant improvement in reading and math scores after 1 year. (PKP)

  18. Rho GAPs and GEFs

    PubMed Central

    van Buul, Jaap D; Geerts, Dirk; Huveneers, Stephan

    2014-01-01

    Within blood vessels, endothelial cell–cell and cell–matrix adhesions are crucial to preserve barrier function, and these adhesions are tightly controlled during vascular development, angiogenesis, and transendothelial migration of inflammatory cells. Endothelial cellular signaling that occurs via the family of Rho GTPases coordinates these cell adhesion structures through cytoskeletal remodelling. In turn, Rho GTPases are regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). To understand how endothelial cells initiate changes in the activity of Rho GTPases, and thereby regulate cell adhesion, we will discuss the role of Rho GAPs and GEFs in vascular biology. Many potentially important Rho regulators have not been studied in detail in endothelial cells. We therefore will first overview which GAPs and GEFs are highly expressed in endothelium, based on comparative gene expression analysis of human endothelial cells compared with other tissue cell types. Subsequently, we discuss the relevance of Rho GAPs and GEFs for endothelial cell adhesion in vascular homeostasis and disease. PMID:24622613

  19. Closing the Performance Gap.

    ERIC Educational Resources Information Center

    Riggins, Cheryl G.

    2002-01-01

    Describes how the principal of a K-2, 400-student suburban elementary school near Flint, Michigan, worked with her staff and superintendent to develop and implement a strategic plan to close the student achievement gap. Reports significant improvement in reading and math scores after 1 year. (PKP)

  20. Estimating Gender Wage Gaps

    ERIC Educational Resources Information Center

    McDonald, Judith A.; Thornton, Robert J.

    2011-01-01

    Course research projects that use easy-to-access real-world data and that generate findings with which undergraduate students can readily identify are hard to find. The authors describe a project that requires students to estimate the current female-male earnings gap for new college graduates. The project also enables students to see to what…

  1. STEMMING the Gap

    ERIC Educational Resources Information Center

    Kahler, Jim; Valentine, Nancy

    2011-01-01

    America has a gap when it comes to youth pursuing science and technology careers. In an effort to improve the knowledge and application of science, technology, engineering, and math (STEM), after-school programs can work in conjunction with formal in-school curriculum to improve science education. One organization that actively addresses this…

  2. Bridge the Gap.

    ERIC Educational Resources Information Center

    Klein, Mel; Cufaude, Jeffrey B.

    1989-01-01

    This document consists of two paired articles: the first, "Preparing Faculty Out of Class Experiences," by Mel Klein, and the second, "Help Advisers Be More Than Ghost Signatures," by Jeffrey B. Calfaude. Each article shares insights on how faculty advisers "bridge the gap" between students and faculty. When faculty members are asked to advise…

  3. Bridging a Communication Gap

    ERIC Educational Resources Information Center

    Kahn, Ethel

    1972-01-01

    Description of a community program in cooperation with a regional extension service. The goals were to explore the generation gap, and conflict in life values, understand family role, increase self awareness, improve adult-youth communication, and understand the individual and his relationship to basic social principles. (Author/JB)

  4. Bridging the Development Gap.

    DTIC Science & Technology

    1999-11-01

    Bridging the Development Gap is contractual cooperative agreement between Mercury Computer Systems, Inc. and DARPA. This program was developed...processing, interfacing with I/O devices, memory constraints, as well as real-time throughput and latency challenges. Mercury has bridged the indicated

  5. Bimodal loop-gap resonator

    NASA Astrophysics Data System (ADS)

    Piasecki, W.; Froncisz, W.; Hyde, James S.

    1996-05-01

    A bimodal loop-gap resonator for use in electron paramagnetic resonance (EPR) spectroscopy at S band is described. It consists of two identical one-loop-one-gap resonators in coaxial juxtaposition. In one mode, the currents in the two loops are parallel and in the other antiparallel. By introducing additional capacitors between the loops, the frequencies of the two modes can be made to coincide. Details are given concerning variable coupling to each mode, tuning of the resonant frequency of one mode to that of the other, and adjustment of the isolation between modes. An equivalent circuit is given and network analysis carried out both experimentally and theoretically. EPR applications are described including (a) probing of the field distributions with DPPH, (b) continuous wave (cw) EPR with a spin-label line sample, (c) cw electron-electron double resonance (ELDOR), (d) modulation of saturation, and (e) saturation-recovery (SR) EPR. Bloch induction experiments can be performed when the sample extends half way through the structure, but microwave signals induced by Mx and My components of magnetization cancel when it extends completely through. This latter situation is particularly favorable for SR, modulation of saturation, and ELDOR experiments, which depend on observing Mz indirectly using a second weak observing microwave source.

  6. Role of heteromeric gap junctions in the cytotoxicity of cisplatin.

    PubMed

    Tong, Xuhui; Dong, Shuying; Yu, Meiling; Wang, Qin; Tao, Liang

    2013-08-09

    In several systems, the presence of gap junctions made of a single connexin has been shown to enhance the cytotoxicity of cisplatin. However, most gap junction channels in vivo appear to be heteromeric (composed of more than one connexin isoform). Here we explore in HeLa cells the cytotoxicity to cisplatin that is enhanced by heteromeric gap junctions composed of Cx26 and Cx32, which have been shown to be more selective among biological permeants than the corresponding homomeric channels. We found that survival and subsequent proliferation of cells exposed to cisplatin were substantially reduced when gap junctions were present than when there were no gap junctions. Functional inhibition of gap junctions by oleamide enhanced survival/proliferation, and enhancement of gap junctions by retinoic acid decreased survival/proliferation. These effects occurred only in high density cultures, and the treatments were without effect when there was no opportunity for gap junction formation. The presence of functional gap junctions enhanced apoptosis as reflected in markers of both early-stage and late-stage apoptosis. Furthermore, analysis of caspases 3, 8 and 9 showed that functional gap junctions specifically induced apoptosis by the mitochondrial pathway. These results demonstrate that heteromeric Cx26/Cx32 gap junctions increase the cytotoxicity of cisplatin by induction of apoptosis via the mitochondrial pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Deterministic multidimensional nonuniform gap sampling.

    PubMed

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-06-01

    The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27–61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72–93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.

  9. In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As revealed by scanning tunnelling spectroscopy

    PubMed Central

    Yang, Huan; Wang, Zhenyu; Fang, Delong; Deng, Qiang; Wang, Qiang-Hua; Xiang, Yuan-Yuan; Yang, Yang; Wen, Hai-Hu

    2013-01-01

    The origin of superconductivity in the iron pnictides remains unclear. One suggestion is that superconductivity in these materials has a magnetic origin, which would imply a sign-reversal s± pairing symmetry. Another suggests it is the result of orbital fluctuations, which would imply a sign-equal s++ pairing symmetry. There is no consensus yet which of these two distinct and contrasting pairing symmetries is the right one in iron pnictide superconductors. Here we explore the nature of the pairing symmetry in the superconducting state of Na(Fe0.97−xCo0.03Cux)As by probing the effect of scattering of Cooper pairs by non-magnetic Cu impurities. Using scanning tunnelling spectroscopy, we identify the in-gap quasiparticle states induced by the Cu impurities, showing signatures of Cooper pair breaking by these non-magnetic impurities–a process that is only consistent with s± pairing. This experiment provides strong evidence for the s± pairing. PMID:24248097

  10. Review of seismic gaps and gap model for the South American subduction zone

    NASA Astrophysics Data System (ADS)

    Roth, Frank; Dahm, Torsten; Hainzl, Sebastian

    2016-04-01

    The seismic gap hypothesis describes a long-period decrease of the probability of earthquake occurrence after major earthquakes, as a consequence of the induced stress shadow. The gap model assumes that the continuous build-up of tectonic strain and stress is released by characteristic major earthquakes. The size of the characteristic earthquakes is for instance controlled by structural heterogeneities or the geometry of the plate boundaries. The gap model is commonly accepted by geologists and a fundamental assumption of our approaches to estimate seismic hazard and time dependent earthquake probability. Interestingly, systematic and rigorous tests to verify the seismic gap model have often failed. In this study we analyze the historical record of major earthquakes at the South American plate boundary with a special look to seismic gaps. The aim of our study is to compare and proof different seismic gap models. We discuss whether the characteristic earthquakes assumption is justified for the South American plate boundary. Two different gap models are discussed: (a) a traditional quasi-periodic recurrence model involving time dependent conditional occurrence probabilities, and (b) a new model describing earthquake rates by rate and state seismicity models considering the estimated spatial pattern of stress drop during major earthquakes.

  11. Tuning the singlet-triplet energy gap of AIE luminogens: crystallization-induced room temperature phosphorescence and delay fluorescence, tunable temperature response, highly efficient non-doped organic light-emitting diodes.

    PubMed

    Li, Jie; Jiang, Yibin; Cheng, Juan; Zhang, Yilin; Su, Huimin; Lam, Jacky W Y; Sung, Herman H Y; Wong, Kam Sing; Kwok, Hoi Sing; Tang, Ben Zhong

    2015-01-14

    In this contribution, we finely tuned the singlet-triplet energy gap (ΔEST) of AIE-active materials to modulate their fluorescence, phosphorescence and delay fluorescence via rational molecular design and investigated the possible ways to harvest their triplet energy in OLEDs. Noteworthily, two molecules o-TPA-3TPE-o-PhCN and o-TPA-3TPE-p-PhCN with larger ΔEST values (0.59 eV and 0.45 eV, respectively) emitted efficient long-lived low temperature phosphorescence in their glassy solutions and exhibited efficient crystallization-induced room temperature phosphorescence (RTP). Meanwhile, it was the first time to observe a novel crystallization-induced delay fluorescence phenomenon in another AIE-active molecule p-TPA-3TPE-p-PhCN owing to its very small ΔEST value (0.21 eV). It was also found that molecules with various ΔEST values showed significantly different temperature sensitivity. Non-doped electroluminescent (EL) devices using these molecules as light-emitting layers were fabricated, exhibiting external quantum efficiencies (EQE) higher than theoretical values of purely singlet emitter type devices. Particularly, p-TPA-3TPE-p-PhCN showed outstanding device performances with high luminance and efficiencies up to 36,900 cd m(-2), 11.2 lm W(-1), 12.8 cd A(-1) and 4.37%, respectively, considering that its solid-state quantum yield was only 42%. All the above observations suggested that tuning the ΔEST values of AIE materials is a powerful methodology to generate many more interesting and meaningful optoelectronic properties.

  12. Variable Gap Conjugated Polymers

    DTIC Science & Technology

    2005-12-01

    conducting gold interfacial layer interjected between the ITO glass electrode and the PEDOT/PSS hole transport layer . A family of low band gap, and near IR...which can be used as both electrochromics and as the hole transport layers in light emitting diodes. Hybrid electrochromic and electroluminescent (EC...MEH-PPV, P3HT, etc.) in order to blanket the solar spectrum. Initial device results on these multi-component blends are promising. In addition, we

  13. Minding the Gap

    SciTech Connect

    Firestone, Millicent Anne

    2015-02-23

    Neutron & X-ray scattering provides nano- to meso-scale details of complex fluid structure; 1D electronic density maps dervied from SAXS yield molecular level insights; Neutron reflectivity provides substructure details of substrate supported complex fluids; Complex fluids composition can be optimized to support a wide variety of both soluble and membrane proteins; The water gap dimensions can be finely tuned through polymer component.

  14. Air-gap heterostructures

    NASA Astrophysics Data System (ADS)

    Heyn, Ch.; Schmidt, M.; Schwaiger, S.; Stemmann, A.; Mendach, S.; Hansen, W.

    2011-01-01

    We demonstrate the fabrication of thin GaAs layers which quasi hover above the underlying GaAs substrate. The hovering layers have a perfect epitaxial relationship to the substrate crystal lattice and are connected to the substrate surface only by lattice matched nanopillars of low density. These air-gap heterostructures are created by combining in situ molecular beam epitaxy compatible self-assembled droplet-etching and ex situ selective wet-chemical etching.

  15. GapBlaster—A Graphical Gap Filler for Prokaryote Genomes

    PubMed Central

    Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T. J.

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer. PMID:27171416

  16. Edge currents shunt the insulating bulk in gapped graphene

    NASA Astrophysics Data System (ADS)

    Zhu, M. J.; Kretinin, A. V.; Thompson, M. D.; Bandurin, D. A.; Hu, S.; Yu, G. L.; Birkbeck, J.; Mishchenko, A.; Vera-Marun, I. J.; Watanabe, K.; Taniguchi, T.; Polini, M.; Prance, J. R.; Novoselov, K. S.; Geim, A. K.; Ben Shalom, M.

    2017-02-01

    An energy gap can be opened in the spectrum of graphene reaching values as large as 0.2 eV in the case of bilayers. However, such gaps rarely lead to the highly insulating state expected at low temperatures. This long-standing puzzle is usually explained by charge inhomogeneity. Here we revisit the issue by investigating proximity-induced superconductivity in gapped graphene and comparing normal-state measurements in the Hall bar and Corbino geometries. We find that the supercurrent at the charge neutrality point in gapped graphene propagates along narrow channels near the edges. This observation is corroborated by using the edgeless Corbino geometry in which case resistivity at the neutrality point increases exponentially with increasing the gap, as expected for an ordinary semiconductor. In contrast, resistivity in the Hall bar geometry saturates to values of about a few resistance quanta. We attribute the metallic-like edge conductance to a nontrivial topology of gapped Dirac spectra.

  17. Skills Gaps in Australian Firms

    ERIC Educational Resources Information Center

    Lindorff, Margaret

    2011-01-01

    This paper reports the results of a survey of more than 2000 managers examining perceptions of skills gaps in a range of Australian firms. It finds that three quarters report a skills gap, and almost one third report skills gaps across the whole organisation. Firm size and industry differences exist in perceptions of the effect of the skills gap…

  18. SOUTHWEST REGIONAL GAP LAND COVER

    EPA Science Inventory

    The Gap Analysis Program is a national inter-agency program that maps the distribution

    of plant communities and selected animal species and compares these distributions with land

    stewardship to identify gaps in biodiversity protection. GAP uses remote satellite imag...

  19. SOUTHWEST REGIONAL GAP LAND COVER

    EPA Science Inventory

    The Gap Analysis Program is a national inter-agency program that maps the distribution

    of plant communities and selected animal species and compares these distributions with land

    stewardship to identify gaps in biodiversity protection. GAP uses remote satellite imag...

  20. Skills Gaps in Australian Firms

    ERIC Educational Resources Information Center

    Lindorff, Margaret

    2011-01-01

    This paper reports the results of a survey of more than 2000 managers examining perceptions of skills gaps in a range of Australian firms. It finds that three quarters report a skills gap, and almost one third report skills gaps across the whole organisation. Firm size and industry differences exist in perceptions of the effect of the skills gap…

  1. Molecular determinants of membrane potential dependence in vertebrate gap junction channels.

    PubMed

    Revilla, A; Bennett, M V; Barrio, L C

    2000-12-19

    The conductance, g(j), of many gap junctions depends on voltage between the coupled cells (transjunctional voltage, V(j)) with little effect of the absolute membrane potential (V(m)) in the two cells; others show combined V(j) and V(m) dependence. We examined the molecular determinants of V(m) dependence by using rat connexin 43 expressed in paired Xenopus oocytes. These junctions have, in addition to V(j) dependence, V(m) dependence such that equal depolarization of both cells decreases g(j). The dependence of g(j) on V(m) was abolished by truncation of the C-terminal domain (CT) at residue 242 but not at 257. There are two charged residues between 242 and 257. In full-length Cx43, mutations neutralizing either one of these charges, Arg243Gln and Asp245Gln, decreased and increased V(m) dependence, respectively, suggesting that these residues are part of the V(m) sensor. Mutating both residues together abolished V(m) dependence, although there is no net change in charge. The neutralizing mutations, together or separately, had no effect on V(j) dependence. Thus, the voltage sensors must differ. However, V(j) gating was somewhat modulated by V(m), and V(m) gating was reduced when the V(j) gate was closed. These data suggest that the two forms of voltage dependence are mediated by separate but interacting domains.

  2. Effects of chronic gap junction conduction-enhancing antiarrhythmic peptide GAP-134 administration on experimental atrial fibrillation in dogs.

    PubMed

    Laurent, Gabriel; Leong-Poi, Howard; Mangat, Iqwal; Moe, Gordon W; Hu, Xudong; So, Petsy Pui-Sze; Tarulli, Emidio; Ramadeen, Andrew; Rossman, Eric I; Hennan, James K; Dorian, Paul

    2009-04-01

    Abnormal intercellular communication caused by connexin dysfunction may contribute to atrial fibrillation (AF). The present study assessed the effect of the gap junction conduction-enhancing antiarrhythmic peptide GAP-134 on AF inducibility and maintenance in a dog model of atrial cardiomyopathy. Twenty-four dogs subject to simultaneous atrioventricular pacing (220 bpm for 14 days) were randomly assigned to placebo treatment (PACED-CTRL; 12 dogs) or oral GAP-134 (2.9 mg/kg BID; PACED-GAP-134; 12 dogs) starting on day 0. UNPACED-CTRL (4 dogs) and UNPACED-GAP-134 (4 dogs) served as additional control groups. Change in left atrial (LA) systolic area from baseline to 14 days was calculated using transoesophageal echocardiography. At 14 days, animals underwent an open-chest electrophysiological study. PACED-CTRL dogs (versus UNPACED-CTRL) had a shorter estimated LA wavelength (8.0+/-1.4 versus 24.4+/-2.5 cm, P<0.05) and a greater AF vulnerability (mean AF duration, 1588+/-329 versus 25+/-34 seconds, P<0.05). Oral GAP-134 had no effect on AF vulnerability in UNPACED dogs. Compared with PACED-CTRL dogs, PACED-GAP-134 dogs had a longer estimated LA wavelength (10.2+/-2.8 versus 8.0+/-1.4 cm, respectively, P<0.05). Oral GAP-134 did not significantly reduce AF inducibility or maintenance in the entire group of 24 PACED dogs; in a subgroup of dogs (n=11) with less than 100% increase in LA systolic area, oral GAP-134 reduced AF induction from 100% to 40% and mean AF duration from 1737+/-120 to 615+/-280 seconds (P<0.05). Oral GAP-134 reduces pacing-induced decrease in LA wavelength and appears to attenuate AF vulnerability in dogs with less atrial mechanical remodeling. Gap junction modulation may affect AF in some circumstances.

  3. Mind the gap.

    SciTech Connect

    Bhagwat, M. S.; Krassnigg, A.; Maris, P.; Roberts, C. D.; Physics; Univ. Graz; Univ. of Pittsburgh

    2007-03-01

    In this summary of the application of Dyson-Schwinger equations to the theory and phenomenology of hadrons, some deductions following from a nonperturbative, symmetry-preserving truncation are highlighted, notable amongst which are results for pseudoscalar mesons. We also describe inferences from the gap equation relating to the radius of convergence of a chiral expansion, applications to heavy-light and heavy-heavy mesons, and quantitative estimates of the contribution of quark orbital angular momentum in pseudoscalar mesons; and recapitulate upon studies of nucleon electromagnetic form factors.

  4. The global drug gap.

    PubMed

    Reich, M R

    2000-03-17

    Global inequities in access to pharmaceutical products exist between rich and poor countries because of market and government failures as well as huge income differences. Multiple policies are required to address this global drug gap for three categories of pharmaceutical products: essential drugs, new drugs, and yet-to-be-developed drugs. Policies should combine "push" approaches of subsidies to support targeted drug development, "pull" approaches of financial incentives such as market guarantees, and "process" approaches aimed at improved institutional capacity. Constructive solutions are needed that can both protect the incentives for research and development and reduce the inequities of access.

  5. GAP-REACH

    PubMed Central

    Lewis-Fernández, Roberto; Raggio, Greer A.; Gorritz, Magdaliz; Duan, Naihua; Marcus, Sue; Cabassa, Leopoldo J.; Humensky, Jennifer; Becker, Anne E.; Alarcón, Renato D.; Oquendo, María A.; Hansen, Helena; Like, Robert C.; Weiss, Mitchell; Desai, Prakash N.; Jacobsen, Frederick M.; Foulks, Edward F.; Primm, Annelle; Lu, Francis; Kopelowicz, Alex; Hinton, Ladson; Hinton, Devon E.

    2015-01-01

    Growing awareness of health and health care disparities highlights the importance of including information about race, ethnicity, and culture (REC) in health research. Reporting of REC factors in research publications, however, is notoriously imprecise and unsystematic. This article describes the development of a checklist to assess the comprehensiveness and the applicability of REC factor reporting in psychiatric research publications. The 16-itemGAP-REACH© checklist was developed through a rigorous process of expert consensus, empirical content analysis in a sample of publications (N = 1205), and interrater reliability (IRR) assessment (N = 30). The items assess each section in the conventional structure of a health research article. Data from the assessment may be considered on an item-by-item basis or as a total score ranging from 0% to 100%. The final checklist has excellent IRR (κ = 0.91). The GAP-REACH may be used by multiple research stakeholders to assess the scope of REC reporting in a research article. PMID:24080673

  6. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  7. Small Multiples with Gaps.

    PubMed

    Meulemans, Wouter; Dykes, Jason; Slingsby, Aidan; Turkay, Cagatay; Wood, Jo

    2017-01-01

    Small multiples enable comparison by providing different views of a single data set in a dense and aligned manner. A common frame defines each view, which varies based upon values of a conditioning variable. An increasingly popular use of this technique is to project two-dimensional locations into a gridded space (e.g. grid maps), using the underlying distribution both as the conditioning variable and to determine the grid layout. Using whitespace in this layout has the potential to carry information, especially in a geographic context. Yet, the effects of doing so on the spatial properties of the original units are not understood. We explore the design space offered by such small multiples with gaps. We do so by constructing a comprehensive suite of metrics that capture properties of the layout used to arrange the small multiples for comparison (e.g. compactness and alignment) and the preservation of the original data (e.g. distance, topology and shape). We study these metrics in geographic data sets with varying properties and numbers of gaps. We use simulated annealing to optimize for each metric and measure the effects on the others. To explore these effects systematically, we take a new approach, developing a system to visualize this design space using a set of interactive matrices. We find that adding small amounts of whitespace to small multiple arrays improves some of the characteristics of 2D layouts, such as shape, distance and direction. This comes at the cost of other metrics, such as the retention of topology. Effects vary according to the input maps, with degree of variation in size of input regions found to be a factor. Optima exist for particular metrics in many cases, but at different amounts of whitespace for different maps. We suggest multiple metrics be used in optimized layouts, finding topology to be a primary factor in existing manually-crafted solutions, followed by a trade-off between shape and displacement. But the rich range of possible

  8. Gap Opening in 3D: Single-planet Gaps

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Chiang, Eugene

    2016-12-01

    Giant planets can clear deep gaps when embedded in 2D (razor-thin) viscous circumstellar disks. We show by direct simulation that giant planets are just as capable of carving out gaps in 3D. Surface density maps are similar between 2D and 3D, even in detail. In particular, the scaling {{{Σ }}}{gap}\\propto {q}-2 of gap surface density with planet mass, derived from a global “zero-dimensional” balance of Lindblad and viscous torques, applies equally well to results obtained at higher dimensions. Our 3D simulations reveal extensive, near-sonic, meridional flows both inside and outside the gaps; these large-scale circulations might bear on disk compositional gradients, in dust or other chemical species. At high planet mass, gap edges are mildly Rayleigh unstable and intermittently shed streams of material into the gap—less so in 3D than in 2D.

  9. Undecidability of the spectral gap.

    PubMed

    Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M

    2015-12-10

    The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  10. Riparian canopy gaps: within-gap heating and downstream cooling

    NASA Astrophysics Data System (ADS)

    Jackson, C. R.; Coats, W. A.

    2016-12-01

    Summer stream temperatures are a primary determinant of stream habitat suitability for cold-water species. Trout, for example, are at the southern end of their range in the Southern Appalachian Mountains due to temperature constraints. Short and longwave radiation exchange with the atmosphere are the dominant drivers of spatial and temporal variability in stream temperatures. Consequently, when riparian forest cover is absent, stream temperatures rise until the outgoing longwave radiation (proportional to Tabs^4) matches the incoming shortwave. We have observed both rapid increases of daytime stream temperatures within riparian gaps and rapid declines of daytime stream temperatures after the stream returns to forested riparian conditions. Others have previously documented downstream cooling below riparian gaps, but with low replication. These previous case studies have found very different rates of cooling below gaps. To quantify and better understand cooling downstream of gaps, we measured temperatures above, within, and below 12 riparian gaps within and near the Upper Little Tennessee River basin in the Southern Appalachian Mountains of western North Carolina. Temperature responses to riparian cover changes varied widely. Below gaps, some streams cooled rapidly, some cooled slowly, and some continued to warm. The data suggest that smaller streams can cool rapidly below riparian gaps. Temperature increases within gaps were similarly variable. Akaike Information Criteria (AIC) is applied to candidate model variable sets for explaining within-gap temperature sensitivity and downstream cooling rates. Understanding downstream cooling is critical for the development of riparian management policies for cold-water species.

  11. Molecular doping and band-gap opening of bilayer graphene.

    PubMed

    Samuels, Alexander J; Carey, J David

    2013-03-26

    The ability to induce an energy band gap in bilayer graphene is an important development in graphene science and opens up potential applications in electronics and photonics. Here we report the emergence of permanent electronic and optical band gaps in bilayer graphene upon adsorption of π electron containing molecules. Adsorption of n- or p-type dopant molecules on one layer results in an asymmetric charge distribution between the top and bottom layers and in the formation of an energy gap. The resultant band gap scales linearly with induced carrier density though a slight asymmetry is found between n-type dopants, where the band gap varies as 47 meV/10(13) cm(-2), and p-type dopants where it varies as 40 meV/10(13) cm(-2). Decamethylcobaltocene (DMC, n-type) and 3,6-difluoro-2,5,7,7,8,8-hexacyano-quinodimethane (F2-HCNQ, p-type) are found to be the best molecules at inducing the largest electronic band gaps up to 0.15 eV. Optical adsorption transitions in the 2.8-4 μm region of the spectrum can result between states that are not Pauli blocked. Comparison is made between the band gaps calculated from adsorbate-induced electric fields and from average displacement fields found in dual gate bilayer graphene devices. A key advantage of using molecular adsorption with π electron containing molecules is that the high binding energy can induce a permanent band gap and open up possible uses of bilayer graphene in mid-infrared photonic or electronic device applications.

  12. THE DYNAMICS OF STAR STREAM GAPS

    SciTech Connect

    Carlberg, R. G.

    2013-10-01

    A massive object crossing a narrow stream of stars orbiting in the halo of the galaxy induces velocity changes both along and transverse to the stream that can lead to the development of a visible gap. For a stream narrow relative to its orbital radius, the stream crossing time is sufficiently short that the impact approximation can be used to derive the changes in angular momenta and radial actions along the star stream. The epicyclic approximation is used to calculate the evolution of the density of the stream as it orbits around in a galactic potential. Analytic expressions are available for a point mass, however, the general expressions are easily numerically evaluated for perturbing objects with arbitrary density profiles. With a simple allowance for the velocity dispersion of the stream, moderately warm streams can be modeled. The predicted evolution agrees well with the outcomes of simulations of stellar streams for streams with widths up to 1% of the orbital radius of the stream. The angular momentum distribution within the stream shears out gaps with time, further reducing the visibility of streams, although the size of the shear effect requires more detailed simulations that account for the creation of the stream. An illustrative model indicates that shear will set a lower limit of a few times the stream width for the length of gaps that persist. In general, the equations are useful for dynamical insights into the development of stream gaps and their measurement.

  13. Electron elevator: Excitations across the band gap via a dynamical gap state

    SciTech Connect

    Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; Mason, D. R.; Schleife, A.; Draeger, E. W.; Correa, A. A.

    2016-01-27

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

  14. Electron elevator: Excitations across the band gap via a dynamical gap state

    DOE PAGES

    Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...

    2016-01-27

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less

  15. Axial gap rotating electrical machine

    DOEpatents

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  16. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  17. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  18. Gap and stripline combined monitor

    DOEpatents

    Yin, Yan

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  19. Tunable nanometer electrode gaps by MeV ion irradiation

    SciTech Connect

    Cheang-Wong, J.-C.; Narumi, K.; Schuermann, G. M.; Aziz, M. J.; Golovchenko, J. A.

    2012-04-09

    We report the use of MeV ion-irradiation-induced plastic deformation of amorphous materials to fabricate electrodes with nanometer-sized gaps. Plastic deformation of the amorphous metal Pd{sub 80}Si{sub 20} is induced by 4.64 MeV O{sup 2+} ion irradiation, allowing the complete closing of a sub-micrometer gap. We measure the evolving gap size in situ by monitoring the field emission current-voltage (I-V) characteristics between electrodes. The I-V behavior is consistent with Fowler-Nordheim tunneling. We show that using feedback control on this signal permits gap size fabrication with atomic-scale precision. We expect this approach to nanogap fabrication will enable the practical realization of single molecule controlled devices and sensors.

  20. fastGapFill: efficient gap filling in metabolic networks

    PubMed Central

    Thiele, Ines; Vlassis, Nikos; Fleming, Ronan M. T.

    2014-01-01

    Motivation: Genome-scale metabolic reconstructions summarize current knowledge about a target organism in a structured manner and as such highlight missing information. Such gaps can be filled algorithmically. Scalability limitations of available algorithms for gap filling hinder their application to compartmentalized reconstructions. Results: We present fastGapFill, a computationally efficient tractable extension to the COBRA toolbox that permits the identification of candidate missing knowledge from a universal biochemical reaction database (e.g. Kyoto Encyclopedia of Genes and Genomes) for a given (compartmentalized) metabolic reconstruction. The stoichiometric consistency of the universal reaction database and of the metabolic reconstruction can be tested for permitting the computation of biologically more relevant solutions. We demonstrate the efficiency and scalability of fastGapFill on a range of metabolic reconstructions. Availability and implementation: fastGapFill is freely available from http://thielelab.eu. Contact: ines.thiele@uni.lu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24812336

  1. Activated microglia do not form functional gap junctions in vivo.

    PubMed

    Wasseff, Sameh K; Scherer, Steven S

    2014-04-15

    We investigated whether microglia form gap junctions with themselves, or with astrocytes, oligodendrocytes, or neurons in vivo in normal mouse brains, and in pathological conditions that induce microglial activation - brain injury and a model of Alzheimer's disease. Although microglia are in close physical proximity to glia and neurons, they do not form functional gap junctions under these pathological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. MODELING GD-1 GAPS IN A MILKY WAY POTENTIAL

    SciTech Connect

    Carlberg, R. G.

    2016-03-20

    The GD-1 star stream is currently the best available for identifying density fluctuations, “gaps,” along its length as a test of the LCDM prediction of large numbers of dark matter sub-halos orbiting in the halo. Density variations of some form are present, since the variance of the density along the stream is three times that expected from the empirically estimated variation in the filtered mean star counts. The density variations are characterized with filters that approximate the shape of sub-halo, gravitationally induced stream gaps. The filters locate gaps and measure their amplitude, leading to a measurement of the distribution of gap widths. To gain an understanding of the factors influencing the gap width distribution, a suite of collisionless n-body simulations for a GD-1-like orbit in a Milky-Way-like potential provides a dynamically realistic statistical prediction of the gap distribution. The simulations show that every location in the stream has been disturbed to some degree by a sub-halo. The small gaps found via the filtering are largely noise. Larger gaps, those longer than 1 kpc, or 10° for GD-1, are the source of the excess variance. The suite of stream simulations shows that sub-halos at the predicted inner halo abundance or possibly somewhat higher can produce the required large-scale density variations.

  3. Modeling GD-1 Gaps in a Milky Way Potential

    NASA Astrophysics Data System (ADS)

    Carlberg, R. G.

    2016-03-01

    The GD-1 star stream is currently the best available for identifying density fluctuations, “gaps,” along its length as a test of the LCDM prediction of large numbers of dark matter sub-halos orbiting in the halo. Density variations of some form are present, since the variance of the density along the stream is three times that expected from the empirically estimated variation in the filtered mean star counts. The density variations are characterized with filters that approximate the shape of sub-halo, gravitationally induced stream gaps. The filters locate gaps and measure their amplitude, leading to a measurement of the distribution of gap widths. To gain an understanding of the factors influencing the gap width distribution, a suite of collisionless n-body simulations for a GD-1-like orbit in a Milky-Way-like potential provides a dynamically realistic statistical prediction of the gap distribution. The simulations show that every location in the stream has been disturbed to some degree by a sub-halo. The small gaps found via the filtering are largely noise. Larger gaps, those longer than 1 kpc, or 10° for GD-1, are the source of the excess variance. The suite of stream simulations shows that sub-halos at the predicted inner halo abundance or possibly somewhat higher can produce the required large-scale density variations.

  4. Nodal and nodeless gap in proximity-induced superconductivity: Application to monolayer CuO2 on a Bi2Sr2CaCu2O8 +δ substrate

    NASA Astrophysics Data System (ADS)

    Wang, Yimeng; Wang, Zhen-Hua; Chen, Wei-Qiang

    2017-09-01

    We present a detailed analysis on the hopping between monolayer CuO2 and bulk CuO2 plane in the Bi2Sr2CaCu2O8 +δ substrate. With a two-band model, we demonstrate that the nodeless gap can only exist when the hole concentration in the monolayer CuO2 plane is very large. We argue that the possible phase separation may play an important role in the recent experimental observation of a nodeless gap.

  5. Measuring the Gap

    PubMed Central

    She, Xinshu; Zhao, Deqing; Scholnick, Jenna

    2016-01-01

    China is a large country where rapid development is accompanied by growing inequalities. How economic inequalities translate to health inequalities is unknown. Baseline health assessment is lacking among rural Chinese children. We aimed at assessing baseline student health of rural Chinese children and comparing them with those of urban children of similar ages. A cross-sectional study was conducted using the 2003 Global School-Based Student Health Survey among 100 students Grade 4 to 6 from rural Guizhou, China. Results were summarized and compared with public data from urban Beijing using multivariate logistic regression models. Rural children are more likely to not wash their hands before a meal (odds ratio [OR] = 5.71, P < .01) and after using the toilet (OR = 5.41, P < .01). They are more likely to feel sick or to get into trouble after drinking (OR = 7.28, P < .01). They are more likely to have used drugs (OR = 8.54, P < .01) and to have no close friends (OR = 8.23, P < .01). An alarming percentage of rural (8.22%) and urban (14.22%) children have had suicidal ideation in the past year (OR = 0.68, P > .05). Rural parents are more likely to not know their children’s whereabouts (OR = 1.81, P < .05). Rural children are more than 4 times likely to have serious injuries (OR = 4.64, P < .01) and to be bullied (OR = 4.01, P < .01). In conclusion, school-age rural Chinese children exhibit more health risk behaviors and fewer protective factors at baseline compared to their urban counterparts. Any intervention aimed at improving child health should take this distributive gap into consideration. PMID:27335999

  6. The appearance of gap solitons in a nonlinear Schrödinger lattice

    NASA Astrophysics Data System (ADS)

    Kroon, L.; Johansson, M.; Kovalev, A. S.; Malyuta, E. Yu.

    2010-03-01

    We study the appearance of discrete gap solitons in a nonlinear Schrödinger model with a periodic on-site potential that possesses a gap evacuated of plane-wave solutions in the linear limit. For finite lattices supporting an anti-phase ( q=π/2) gap edge phonon as an anharmonic standing wave in the nonlinear regime, gap solitons are numerically found to emerge via pitchfork bifurcations from the gap edge. Analytically, modulational instabilities between pairs of bifurcation points on this “nonlinear gap boundary” are found in terms of critical gap widths, turning to zero in the infinite-size limit, which are associated with the birth of the localized soliton as well as discrete multisolitons in the gap. Such tunable instabilities can be of relevance in exciting soliton states in modulated arrays of nonlinear optical waveguides or Bose-Einstein condensates in periodic potentials. For lattices whose gap edge phonon only asymptotically approaches the anti-phase solution, the nonlinear gap boundary splits in a bifurcation scenario leading to the birth of the discrete gap soliton as a continuable orbit to the gap edge in the linear limit. The instability-induced dynamics of the localized soliton in the gap regime is found to thermalize according to the Gibbsian equilibrium distribution, while the spontaneous formation of persisting intrinsically localized modes (discrete breathers) from the extended out-gap soliton reveals a phase transition of the solution.

  7. GAP Analysis Bulletin Number 15

    USGS Publications Warehouse

    Maxwell, Jill; Gergely, Kevin; Aycrigg, Jocelyn; Canonico, Gabrielle; Davidson, Anne; Coffey, Nicole

    2008-01-01

    The Mission of the Gap Analysis Program (GAP) is to promote conservation by providing broad geographic information on biological diversity to resource managers, planners, and policy makers who can use the information to make informed decisions. As part of the National Biological Information Infrastructure (NBII) ?a collaborative program to provide increased access to data and information on the nation?s biological resources--GAP data and analytical tools have been used in hundreds of applications: from basic research to comprehensive state wildlife plans; from educational projects in schools to ecoregional assessments of biodiversity. The challenge: keeping common species common means protecting them BEFORE they become threatened. To do this on a state or regional basis requires key information such as land cover descriptions, predicted distribution maps for native animals, and an assessment of the level of protection currently given to those plants and animals. GAP works cooperatively with Federal, state, and local natural resource professionals and academics to provide this kind of information. GAP activities focus on the creation of state and regional databases and maps that depict patterns of land management, land cover, and biodiversity. These data can be used to identify ?gaps? in conservation--instances where an animal or plant community is not adequately represented on the existing network of conservation lands. GAP is administered through the U.S. Geological Survey. Through building partnerships among disparate groups, GAP hopes to foster the kind of collaboration that is needed to address conservation issues on a broad scale. For more information, contact: John Mosesso National GAP Director 703-648-4079 Kevin Gergely National GAP Operations Manager 208-885-3565

  8. The Potemkin Gap

    NASA Astrophysics Data System (ADS)

    Laughlin, R. B.

    2003-03-01

    for photoemission - is powerfully suppressed, and that the rest of the propagator sum rule appears as a fictitious ``gap" at the scale of U. the superfluid density is also powerfully suppressed. Thus I show by example that it is possible for a system that unambiguously superconducts to appear in low-resolution spectroscopy to be an insulator. This is not different conceptually from melted stripes, but it is exact and therefore not conceptually dependent on stripes as an ordering concept. The point of the calculation is that the difference between an insulator and a superconductor can be subtle and not necessarily elucidated by high-energy spectroscopy.

  9. Gap junctions, pannexins and pain.

    PubMed

    Spray, David C; Hanani, Menachem

    2017-06-22

    Enhanced expression and function of gap junctions and pannexin (Panx) channels have been associated with both peripheral and central mechanisms of pain sensitization. At the level of the sensory ganglia, evidence includes augmented gap junction and pannexin1 expression in glial cells and neurons in inflammatory and neuropathic pain models and increased synchrony and enhanced cross-excitation among sensory neurons by gap junction-mediated coupling. In spinal cord and in suprapinal areas, evidence is largely limited to increased expression of relevant proteins, although in several rodent pain models, hypersensitivity is reduced by treatment with gap junction/Panx1 channel blocking compounds. Moreover, targeted modulation of Cx43 expression was shown to modulate pain thresholds, albeit in somewhat contradictory ways, and mice lacking Panx1 expression globally or in specific cell types show depressed hyperalgesia. We here review the evidence for involvement of gap junctions and Panx channels in a variety of animal pain studies and then discuss ways in which gap junctions and Panx channels may mediate their action in pain processing. This discussion focusses on spread of signals among satellite glial cells, in particular intercellular Ca(2+) waves, which are propagated through both gap junction and Panx1-dependent routes and have been associated with the phenomenon of spreading depression and the malady of migraine headache with aura. Copyright © 2017. Published by Elsevier B.V.

  10. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.

  11. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, Karl T.; King, Edward L.; Follstaedt, Donald W.

    1992-01-01

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

  12. Mass gap in Yang's theory of gravity

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.

    2015-06-01

    The quantization of a curvature-squared model of gravity, in the affine form proposed by Yang, is reconsidered in the path integral formulation. Due to its inherent Weyl invariance, sharing this with internal Yang-Mills fields, it or some of its topological generalizations are still a possible route to quantum gravity. Instanton type solutions with double duality properties exhibit a "vacuum degeneracy", i.e. a bifurcation into distinct classical Einsteinian backgrounds. For linearized fields, this conclusively induces a mass gap in the graviton spectrum, a feature which is an open problem in the quantization of internal Yang-Mills fields.

  13. The Time Evolution of Gaps in Tidal Streams

    NASA Astrophysics Data System (ADS)

    Helmi, Amina; Koppelman, Helmer H.

    2016-09-01

    We model the time evolution of gaps in tidal streams that are caused by the impact of a dark matter subhalo, while these orbit a spherical gravitational potential. To this end, we make use of the simple behavior of orbits in action-angle space. A gap effectively results from the divergence of two nearby orbits whose initial phase-space separation is, for very cold thin streams, largely given by the impulse induced by the subhalo. We find that in a spherical potential, the size of a gap increases linearly with time for sufficiently long timescales. We have derived an analytic expression that shows how the growth rate depends on the mass of the perturbing subhalo, its scale, and its relative velocity with respect to the stream. We have verified these scalings using N-body simulations and find excellent agreement. For example, a subhalo of mass {10}8 {M}⊙ directly impacting a very cold thin stream on an inclined orbit can induce a gap that may reach a size of several tens of kiloparsecs after a few gigayears. The gap size fluctuates importantly with phase on the orbit, and it is largest close to pericenter. This indicates that it may not be fully straightforward to invert the spectrum of gaps present in a stream to recover the mass spectrum of the subhalos.

  14. Mechanisms of stem cell based cardiac repair-gap junctional signaling promotes the cardiac lineage specification of mesenchymal stem cells.

    PubMed

    Lemcke, Heiko; Gaebel, Ralf; Skorska, Anna; Voronina, Natalia; Lux, Cornelia Aquilina; Petters, Janine; Sasse, Sarah; Zarniko, Nicole; Steinhoff, Gustav; David, Robert

    2017-08-29

    Different subtypes of bone marrow-derived stem cells are characterized by varying functionality and activity after transplantation into the infarcted heart. Improvement of stem cell therapeutics requires deep knowledge about the mechanisms that mediate the benefits of stem cell treatment. Here, we demonstrated that co-transplantation of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) led to enhanced synergistic effects on cardiac remodeling. While HSCs were associated with blood vessel formation, MSCs were found to possess transdifferentiation capacity. This cardiomyogenic plasticity of MSCs was strongly promoted by a gap junction-dependent crosstalk between myocytes and stem cells. The inhibition of cell-cell coupling significantly reduced the expression of the cardiac specific transcription factors NKX2.5 and GATA4. Interestingly, we observed that small non-coding RNAs are exchanged between MSCs and cardiomyocytes in a GJ-dependent manner that might contribute to the transdifferentiation process of MSCs within a cardiac environment. Our results suggest that the predominant mechanism of HSCs contribution to cardiac regeneration is based on their ability to regulate angiogenesis. In contrast, transplanted MSCs have the capability for intercellular communication with surrounding cardiomyocytes, which triggers the intrinsic program of cardiogenic lineage specification of MSCs by providing cardiomyocyte-derived cues.

  15. Pan Alone in the Gap

    NASA Image and Video Library

    2014-09-08

    Saturn's innermost moon Pan orbits the giant planet seemingly alone in a ring gap its own gravity creates. Pan (17 miles, or 28 kilometers across) maintains the Encke Gap in Saturn's A ring by gravitationally nudging the ring particles back into the rings when they stray in the gap. Scientists think similar processes might be at work as forming planets clear gaps in the circumstellar disks from which they form. This view looks toward the sunlit side of the rings from about 38 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on May 3, 2014. The view was acquired at a distance of approximately 2 million miles (3.2 million kilometers) from Pan and at a Sun-Pan-spacecraft, or phase, angle of 56 degrees. Image scale is 12 miles (19 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18281

  16. Attentional Capacity Limits Gap Detection during Concurrent Sound Segregation.

    PubMed

    Leung, Ada W S; Jolicoeur, Pierre; Alain, Claude

    2015-11-01

    Detecting a brief silent interval (i.e., a gap) is more difficult when listeners perceive two concurrent sounds rather than one in a sound containing a mistuned harmonic in otherwise in-tune harmonics. This impairment in gap detection may reflect the interaction of low-level encoding or the division of attention between two sound objects, both of which could interfere with signal detection. To distinguish between these two alternatives, we compared ERPs during active and passive listening with complex harmonic tones that could include a gap, a mistuned harmonic, both features, or neither. During active listening, participants indicated whether they heard a gap irrespective of mistuning. During passive listening, participants watched a subtitled muted movie of their choice while the same sounds were presented. Gap detection was impaired when the complex sounds included a mistuned harmonic that popped out as a separate object. The ERP analysis revealed an early gap-related activity that was little affected by mistuning during the active or passive listening condition. However, during active listening, there was a marked decrease in the late positive wave that was thought to index attention and response-related processes. These results suggest that the limitation in detecting the gap is related to attentional processing, possibly divided attention induced by the concurrent sound objects, rather than deficits in preattentional sensory encoding.

  17. Eight electrode optical readout gap

    DOEpatents

    Boettcher, Gordon E.; Crain, Robert W.

    1985-01-01

    A protective device for a plurality of electrical circuits includes a pluity of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  18. Plasmon-driven surface catalysis in hybridized plasmonic gap modes

    PubMed Central

    Wang, Hui; Liu, Ting; Huang, Yingzhou; Fang, Yurui; Liu, Ruchuan; Wang, Shuxia; Wen, Weijia; Sun, Mengtao

    2014-01-01

    Plasmon-driven surface catalytic (PDSC) reaction in Ag/Au nanoparticle monomer or dimer-film gaps are experimentally and theoretically investigated, using surface enhanced Raman scattering (SERS) and finite element method. The variation of SERS spectra in different nano gaps of nanoparticle-film systems indicated the PDSC reaction was largely depended on the number of nanoparticles. The higher Raman intensity of p,p′-dimercaptoazobenzene (DMAB) in dimer-film nanogap was because effective coupling of induced image charge on metal film in hybridized plasmonic gap mode, which was confirmed by the electric field distribution. Furthermore, the influence of material and wavelength was also studied to obtain the optimal experimental condition for best surface catalysis in hybridized plasmonic gap mode. Our studies in this common configuration of plasmonic nanostructure are of great significance not only in the field of catalysis on metal surface but also in other surface plasmon fields such as senor, photon detection, water splitting, etc. PMID:25404139

  19. Plasmon-driven surface catalysis in hybridized plasmonic gap modes.

    PubMed

    Wang, Hui; Liu, Ting; Huang, Yingzhou; Fang, Yurui; Liu, Ruchuan; Wang, Shuxia; Wen, Weijia; Sun, Mengtao

    2014-11-18

    Plasmon-driven surface catalytic (PDSC) reaction in Ag/Au nanoparticle monomer or dimer-film gaps are experimentally and theoretically investigated, using surface enhanced Raman scattering (SERS) and finite element method. The variation of SERS spectra in different nano gaps of nanoparticle-film systems indicated the PDSC reaction was largely depended on the number of nanoparticles. The higher Raman intensity of p,p'-dimercaptoazobenzene (DMAB) in dimer-film nanogap was because effective coupling of induced image charge on metal film in hybridized plasmonic gap mode, which was confirmed by the electric field distribution. Furthermore, the influence of material and wavelength was also studied to obtain the optimal experimental condition for best surface catalysis in hybridized plasmonic gap mode. Our studies in this common configuration of plasmonic nanostructure are of great significance not only in the field of catalysis on metal surface but also in other surface plasmon fields such as senor, photon detection, water splitting, etc.

  20. Shock wave propagation past a gap in a pipeline

    NASA Astrophysics Data System (ADS)

    Hall, Russell; Kapfudzaruwa, Simbarashe; Skews, Beric; Paton, Randall

    2017-08-01

    This study numerically and experimentally examines the resulting flow field of a shock wave passing through a pipe gap. The effects of gap geometry and shock Mach number variation are investigated. Incident shock Mach numbers of 1.3, 1.4, and 1.5 and gap widths of 25 and 50 mm were used, which correspond to 0.5 and 1.0 pipe inner diameters, respectively. For both cases, the incident shock wave propagated into the downstream pipe at much reduced strength. A strong expansion propagated into the upstream pipe causing a significant pressure drop from the initial post-shock pressure. Expansion waves at the outflow resulted in supersonic speeds as the flow entered the gap for Mach 1.4 and 1.5. A notable feature was the formation of a standing shock at the inlet to the downstream pipe for the higher two Mach numbers in both cases. Decreasing the gap width moved the standing shock closer to the downstream pipe. For the lowest Mach number of 1.3, no standing shock system was set up. The propagation conditions in the downstream pipe showed that the pressure is initially unsteady, but becomes more uniform, controlled by the developed wave system in the gap. For the flanged gap case, the flow within the gap is confined for much longer and hence produces more intense and complex flow feature interactions and an earlier transition to turbulence. The induced shock strength in the downstream pipe is independent of gap geometry and separation distance examined in this paper as verified by experimental pressure traces.

  1. Stabilizers for GAP and GAP-based Propellants Interim Report

    DTIC Science & Technology

    2008-10-09

    the m j o r deconposit inn pathways of GAP and U P prope l lan ts i n o r d e r to i n p r o w long term storage stabi l i ty. Model c- s inw...la t i ng t h e ut ido-bear ing frmctional units of GAP ( a z i d e adjacent t o po lye ther k k b o n e , az ide sd jacent t o terminal...binder i n prope l lan t -ag ing studies has varied accord2~g t o the to t of GAP used. This v a r i a b i l i t y my k linked to residual i n p

  2. Explaining the Gender Wealth Gap

    PubMed Central

    Ruel, Erin; Hauser, Robert M.

    2013-01-01

    To assess and explain the United States’ gender wealth gap, we use the Wisconsin Longitudinal Study to examine wealth accumulated by a single cohort over 50 years by gender, by marital status, and limited to the respondents who are their family’s best financial reporters. We find large gender wealth gaps between currently married men and women, and never-married men and women. The never-married accumulate less wealth than the currently married, and there is a marital disruption cost to wealth accumulation. The status-attainment model shows the most power in explaining gender wealth gaps between these groups explaining about one-third to one-half of the gap, followed by the human-capital explanation. In other words, a lifetime of lower earnings for women translates into greatly reduced wealth accumulation. A gender wealth gap remains between married men and women after controlling for the full model that we speculate may be related to gender differences in investment strategies and selection effects. PMID:23264038

  3. Explaining the gender wealth gap.

    PubMed

    Ruel, Erin; Hauser, Robert M

    2013-08-01

    To assess and explain the United States' gender wealth gap, we use the Wisconsin Longitudinal Study to examine wealth accumulated by a single cohort over 50 years by gender, by marital status, and limited to the respondents who are their family's best financial reporters. We find large gender wealth gaps between currently married men and women, and between never-married men and women. The never-married accumulate less wealth than the currently married, and there is a marital disruption cost to wealth accumulation. The status-attainment model shows the most power in explaining gender wealth gaps between these groups explaining about one-third to one-half of the gap, followed by the human-capital explanation. In other words, a lifetime of lower earnings for women translates into greatly reduced wealth accumulation. After controlling for the full model, we find that a gender wealth gap remains between married men and women that we speculate may be related to gender differences in investment strategies and selection effects.

  4. Crop yield gaps in Cameroon.

    PubMed

    Yengoh, Genesis T; Ardö, Jonas

    2014-03-01

    Although food crop yields per hectare have generally been increasing in Cameroon since 1961, the food price crisis of 2008 and the ensuing social unrest and fatalities raised concerns about the country's ability to meet the food needs of its population. This study examines the country's potential for increasing crop yields and food production to meet this food security challenge. Fuzzy set theory is used to develop a biophysical spatial suitability model for different crops, which in turn is employed to ascertain whether crop production is carried out in biophysically suited areas. We use linear regression to examine the trend of yield development over the last half century. On the basis of yield data from experimental stations and farmers' fields we assess the yield gap for major food crops. We find that yields have generally been increasing over the last half century and that agricultural policies can have significant effects on them. To a large extent, food crops are cultivated in areas that are biophysically suited for their cultivation, meaning that the yield gap is not a problem of biophysical suitability. Notwithstanding, there are significantly large yield gaps between actual yields on farmers' farms and maximum attainable yields from research stations. We conclude that agronomy and policies are likely to be the reasons for these large yield gaps. A key challenge to be addressed in closing the yield gaps is that of replenishing and properly managing soil nutrients.

  5. Virtual gap dielectric wall accelerator

    DOEpatents

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  6. Direct band gap silicon allotropes.

    PubMed

    Wang, Qianqian; Xu, Bo; Sun, Jian; Liu, Hanyu; Zhao, Zhisheng; Yu, Dongli; Fan, Changzeng; He, Julong

    2014-07-16

    Elemental silicon has a large impact on the economy of the modern world and is of fundamental importance in the technological field, particularly in solar cell industry. The great demand of society for new clean energy and the shortcomings of the current silicon solar cells are calling for new materials that can make full use of the solar power. In this paper, six metastable allotropes of silicon with direct or quasidirect band gaps of 0.39-1.25 eV are predicted by ab initio calculations at ambient pressure. Five of them possess band gaps within the optimal range for high converting efficiency from solar energy to electric power and also have better optical properties than the Si-I phase. These Si structures with different band gaps could be applied to multiple p-n junction photovoltaic modules.

  7. ABORT GAP CLEANING IN RHIC.

    SciTech Connect

    DREES,A.; AHRENS,L.; III FLILLER,R.; GASSNER,D.; MCINTYRE,G.T.; MICHNOFF,R.; TRBOJEVIC,D.

    2002-06-03

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance.

  8. Src Family Tyrosine Kinase Signaling Regulates FilGAP through Association with RBM10

    PubMed Central

    Yamada, Hazuki; Tsutsumi, Koji; Nakazawa, Yuki; Shibagaki, Yoshio; Hattori, Seisuke; Ohta, Yasutaka

    2016-01-01

    FilGAP is a Rac-specific GTPase-activating protein (GAP) that suppresses lamellae formation. In this study, we have identified RBM10 (RNA Binding Motif domain protein 10) as a FilGAP-interacting protein. Although RBM10 is mostly localized in the nuclei in human melanoma A7 cells, forced expression of Src family tyrosine kinase Fyn induced translocation of RBM10 from nucleus into cell peripheries where RBM10 and FilGAP are co-localized. The translocation of RBM10 from nucleus appears to require catalytic activity of Fyn since kinase-negative Fyn mutant failed to induce translocation of RBM10 in A7 cells. When human breast carcinoma MDA-MB-231 cells are spreading on collagen-coated coverslips, endogenous FilGAP and RBM10 were localized at the cell periphery with tyrosine-phosphorylated proteins. RBM10 appears to be responsible for targeting FilGAP at the cell periphery because depletion of RBM10 by siRNA abrogated peripheral localization of FilGAP during cell spreading. Association of RBM10 with FilGAP may stimulate RacGAP activity of FilGAP. First, forced expression of RBM10 suppressed FilGAP-mediated cell spreading on collagen. Conversely, depletion of endogenous RBM10 by siRNA abolished FilGAP-mediated suppression of cell spreading on collagen. Second, FilGAP suppressed formation of membrane ruffles induced by Fyn and instead produced spiky cell protrusions at the cell periphery. This protrusive structure was also induced by depletion of Rac, suggesting that the formation of protrusions may be due to suppression of Rac by FilGAP. We found that depletion of RBM10 markedly reduced the formation of protrusions in cells transfected with Fyn and FilGAP. Finally, depletion of RBM10 blocked FilGAP-mediated suppression of ruffle formation induced by EGF. Taken together, these results suggest that Src family tyrosine kinase signaling may regulate FilGAP through association with RBM10. PMID:26751795

  9. Method and radial gap machine for high strength undiffused brushless operation

    DOEpatents

    Hsu, John S.

    2006-10-31

    A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). A method of non-diffused flux enhancement and flux weakening for a radial gap machine is also disclosed.

  10. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    SciTech Connect

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.

    2015-11-09

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. Contrasting with other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.

  11. Want to Close the Achievement Gap? Close the Teaching Gap

    ERIC Educational Resources Information Center

    Darling-Hammond, Linda

    2015-01-01

    For years now, educators have looked to international tests as a yardstick to measure how well students from the United States are learning compared with their peers. The answer has been: not so well. The United States has been falling further behind other nations and has struggled with a large achievement gap. Federal policy under No Child Left…

  12. Folk Belief Theory, the Rigor Gap, and the Achievement Gap

    ERIC Educational Resources Information Center

    Torff, Bruce

    2014-01-01

    Folk belief theory is suggested as a primary cause for the persistence of the achievement gap. In this research-supported theory, culturally specified folk beliefs about learning and teaching prompt educators to direct more rigorous curriculum to high-advantage students but not to low-advantage students, resulting in impoverished pedagogy in…

  13. Folk Belief Theory, the Rigor Gap, and the Achievement Gap

    ERIC Educational Resources Information Center

    Torff, Bruce

    2014-01-01

    Folk belief theory is suggested as a primary cause for the persistence of the achievement gap. In this research-supported theory, culturally specified folk beliefs about learning and teaching prompt educators to direct more rigorous curriculum to high-advantage students but not to low-advantage students, resulting in impoverished pedagogy in…

  14. Stacked insulator induction accelerator gaps

    SciTech Connect

    Houck, T.I.; Westenskow, G.A.; Kim, J.S.; Eylon, S.; Henestroza, E.; Yu, S.S.; Vanecek, D.

    1997-05-01

    Stacked insulators, with alternating layers of insulating material and conducting film, have been shown to support high surface electrical field stresses. We have investigated the application of the stacked insulator technology to the design of induction accelerator modules for the Relativistic-Klystron Two-Beam Accelerator program. The rf properties of the accelerating gaps using stacked insulators, particularly the impedance at frequencies above the beam pipe cutoff frequency, are investigated. Low impedance is critical for Relativistic-Klystron Two-Beam Accelerator applications where a high current, bunched beam is trsnsported through many accelerating gaps. An induction accelerator module designs using a stacked insulator is presented.

  15. Gap narrowing in charged and doped silicon nanoclusters

    NASA Astrophysics Data System (ADS)

    Titov, Andrey; Michelini, Fabienne; Raymond, Laurent; Kulatov, Erkin; Uspenskii, Yurii A.

    2010-12-01

    The gap narrowing in charged Si35H36 and n -type doped Si34DH36 ( D=P , As, Sb, S, Se, and Te) clusters is studied within the GW approximation, including energy dependence of the dielectric matrix and local-field effects. It is shown that the density functional theory does not properly describe the gap narrowing in clusters, as it was found earlier in bulk Si. The main mechanisms of this effect in clusters are the same as in bulk Si: (i) the screened exchange interaction between additional electrons and (ii) the extra screening of the Coulomb interaction by additional electrons. At the same time, our calculations show that the carrier-induced gap narrowing has peculiar features in the clusters. A much weaker screening of the electron-electron interaction strongly increases the first and decreases the second mechanism of gap narrowing in Si clusters as compared to bulk Si. We find also that the gap-narrowing effect is more pronounced in doped clusters than in charged ones due to the charge localization near impurity ions. The electronic spectrum of the charged and doped Si clusters with one electron is spin split. The local-density approximation calculation greatly underestimates the value of the spin splitting. A calculation performed with the screened Hartree-Fock method shows that the splitting is large. It considerably narrows the gap and brings important spin effects into cluster properties.

  16. Edge currents shunt the insulating bulk in gapped graphene

    PubMed Central

    Zhu, M. J.; Kretinin, A. V.; Thompson, M. D.; Bandurin, D. A.; Hu, S.; Yu, G. L.; Birkbeck, J.; Mishchenko, A.; Vera-Marun, I. J.; Watanabe, K.; Taniguchi, T.; Polini, M.; Prance, J. R.; Novoselov, K. S.; Geim, A. K.; Ben Shalom, M.

    2017-01-01

    An energy gap can be opened in the spectrum of graphene reaching values as large as 0.2 eV in the case of bilayers. However, such gaps rarely lead to the highly insulating state expected at low temperatures. This long-standing puzzle is usually explained by charge inhomogeneity. Here we revisit the issue by investigating proximity-induced superconductivity in gapped graphene and comparing normal-state measurements in the Hall bar and Corbino geometries. We find that the supercurrent at the charge neutrality point in gapped graphene propagates along narrow channels near the edges. This observation is corroborated by using the edgeless Corbino geometry in which case resistivity at the neutrality point increases exponentially with increasing the gap, as expected for an ordinary semiconductor. In contrast, resistivity in the Hall bar geometry saturates to values of about a few resistance quanta. We attribute the metallic-like edge conductance to a nontrivial topology of gapped Dirac spectra. PMID:28211517

  17. Computational study of flow noise from small gaps in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Hao, Jin; Ji, Minsuk; Wang, Meng

    2011-11-01

    The noise induced by small gaps underneath low-Mach-number turbulent boundary layers is studied using large-eddy simulation and Lighthill's equation. The latter is solved by employing an acoustically compact Green's function for the gap and by a boundary-element method. The gap leading-edge height is 13 % of the boundary-layer thickness, and the gap width and trailing-edge height are varied to investigate their effect on sound generation. The radiated acoustic field is dominated by the forward-facing step in the gap and resembles forward-step noise for wide gaps and/or asymmetric gaps with the trailing edge higher than the leading edge. For narrow and symmetric gaps, destructive interference of the sound from leading and trailing edges causes a significant decline in the low-frequency spectral content and thereby creates a broad spectral peak in the mid-frequency range. The effect of acoustic noncompactness of gaps is investigated by comparing solutions based on a compact Green's function and those from a boundary-element calculation. Excellent agreement is observed at low frequencies and away from the wall-normal direction. At higher frequencies, the sound field deviates from that of a compact streamwise dipole. The elevated level of surface pressure fluctuations induced by gaps and their recovery to equilibrium conditions are also examined. Supported by ONR Grant N00014-09-1-0602.

  18. Fear Similarly Alters Perceptual Estimates of and Actions over Gaps

    PubMed Central

    Geuss, Michael N.; McCardell, Michael J.; Stefanucci, Jeanine K.

    2016-01-01

    Previous research has demonstrated an influence of one’s emotional state on estimates of spatial layout. For example, estimates of heights are larger when the viewer is someone typically afraid of heights (trait fear) or someone who, in the moment, is experiencing elevated levels of fear (state fear). Embodied perception theories have suggested that such a change in perception occurs in order to alter future actions in a manner that reduces the likelihood of injury. However, other work has argued that when acting, it is important to have access to an accurate perception of space and that a change in conscious perception does not necessitate a change in action. No one has yet investigated emotional state, perceptual estimates, and action performance in a single paradigm. The goal of the current paper was to investigate whether fear influences perceptual estimates and action measures similarly or in a dissociable manner. In the current work, participants either estimated gap widths (Experiment 1) or were asked to step over gaps (Experiment 2) in a virtual environment. To induce fear, the gaps were placed at various heights up to 15 meters. Results showed an increase in gap width estimates as participants indicated experiencing more fear. The increase in gap estimates was mirrored in participants’ stepping behavior in Experiment 2; participants stepped over fewer gaps when experiencing higher state and trait fear and, when participants actually stepped, they stepped farther over gap widths when experiencing more fear. The magnitude of the influence of fear on both perception and action were also remarkably similar (5.3 and 3.9 cm, respectively). These results lend support to embodied perception claims by demonstrating an influence on action of a similar magnitude as seen on estimates of gap widths. PMID:27389399

  19. Fear Similarly Alters Perceptual Estimates of and Actions over Gaps.

    PubMed

    Geuss, Michael N; McCardell, Michael J; Stefanucci, Jeanine K

    2016-01-01

    Previous research has demonstrated an influence of one's emotional state on estimates of spatial layout. For example, estimates of heights are larger when the viewer is someone typically afraid of heights (trait fear) or someone who, in the moment, is experiencing elevated levels of fear (state fear). Embodied perception theories have suggested that such a change in perception occurs in order to alter future actions in a manner that reduces the likelihood of injury. However, other work has argued that when acting, it is important to have access to an accurate perception of space and that a change in conscious perception does not necessitate a change in action. No one has yet investigated emotional state, perceptual estimates, and action performance in a single paradigm. The goal of the current paper was to investigate whether fear influences perceptual estimates and action measures similarly or in a dissociable manner. In the current work, participants either estimated gap widths (Experiment 1) or were asked to step over gaps (Experiment 2) in a virtual environment. To induce fear, the gaps were placed at various heights up to 15 meters. Results showed an increase in gap width estimates as participants indicated experiencing more fear. The increase in gap estimates was mirrored in participants' stepping behavior in Experiment 2; participants stepped over fewer gaps when experiencing higher state and trait fear and, when participants actually stepped, they stepped farther over gap widths when experiencing more fear. The magnitude of the influence of fear on both perception and action were also remarkably similar (5.3 and 3.9 cm, respectively). These results lend support to embodied perception claims by demonstrating an influence on action of a similar magnitude as seen on estimates of gap widths.

  20. The Widening Income Achievement Gap

    ERIC Educational Resources Information Center

    Reardon, Sean F.

    2013-01-01

    Has the academic achievement gap between high-income and low-income students changed over the last few decades? If so, why? And what can schools do about it? Researcher Sean F. Reardon conducted a comprehensive analysis of research to answer these questions and came up with some striking findings. In this article, he shows that income-related…

  1. Brain Responses to Filled Gaps

    ERIC Educational Resources Information Center

    Hestvik, Arild; Maxfield, Nathan; Schwartz, Richard G.; Shafer, Valerie

    2007-01-01

    An unresolved issue in the study of sentence comprehension is whether the process of gap-filling is mediated by the construction of empty categories (traces), or whether the parser relates fillers directly to the associated verb's argument structure. We conducted an event-related potentials (ERP) study that used the violation paradigm to examine…

  2. Closing the Teacher Quality Gap

    ERIC Educational Resources Information Center

    Haycock, Kati; Crawford, Candace

    2008-01-01

    Schools and districts rarely have a fair distribution of teacher talent. Poor children and black children are less likely to be taught by the strongest teachers and more likely to be taught by the weakest. Several districts have implemented programs to reduce the teacher quality gap. Hamilton County, Tennessee, launched an initiative that included…

  3. Multiple input electrode gap controller

    DOEpatents

    Hysinger, Christopher L.; Beaman, Joseph J.; Melgaard, David K.; Williamson, Rodney L.

    1999-01-01

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows.

  4. Featured Image: Simulating Planetary Gaps

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    The authors model of howthe above disk would look as we observe it in a scattered-light image. The morphology of the gap can be used to estimate the mass of the planet that caused it. [Dong Fung 2017]The above image from a computer simulation reveals the dust structure of a protoplanetary disk (with the star obscured in the center) as a newly formed planet orbits within it. A recent study by Ruobing Dong (Steward Observatory, University of Arizona) and Jeffrey Fung (University of California, Berkeley) examines how we can determine mass of such a planet based on our observations of the gap that the planet opens in the disk as it orbits. The authors models help us to better understand how our observations of gaps might change if the disk is inclined relative to our line of sight, and how we can still constrain the mass of the gap-opening planet and the viscosity of the disk from the scattered-light images we have recently begun to obtain of distant protoplanetary disks. For more information, check out the paper below!CitationRuobing Dong () and Jeffrey Fung () 2017 ApJ 835 146. doi:10.3847/1538-4357/835/2/146

  5. Literary Gaps Invite Creative Interaction.

    ERIC Educational Resources Information Center

    Watson, Jerry J.

    Literary gaps were identified by Wolfgang Iser in 1974 as "vacant pages" that invite the reader to reflect and enter into the text thereby motivating students to experience the text as reality. Arthur Applebee, in 1979, identified three categories to distinguish children's types of interaction with stories: (1) the complexity of literary…

  6. The Widening Income Achievement Gap

    ERIC Educational Resources Information Center

    Reardon, Sean F.

    2013-01-01

    Has the academic achievement gap between high-income and low-income students changed over the last few decades? If so, why? And what can schools do about it? Researcher Sean F. Reardon conducted a comprehensive analysis of research to answer these questions and came up with some striking findings. In this article, he shows that income-related…

  7. Bridging the Multimedia Generation Gap.

    ERIC Educational Resources Information Center

    Hurn, Janet; Thibeault, Nancy

    This paper outlines efforts at Miami University (Middletown, Ohio) to bridge the "generation gap" between students who are comfortable using computer technologies and the faculty and staff who are reluctant to use them. Two Instructional Technology Fairs were held on campus (in Springs 1995 and 1996) to show faculty, staff, students, and…

  8. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  9. Multiple input electrode gap controller

    DOEpatents

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  10. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  11. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  12. A study of the influence of forest gaps on fire–atmosphere interactions

    Treesearch

    Michael T. Kiefer; Warren E. Heilman; Shiyuan Zhong; Joseph J. (Jay) Charney; Xindi (Randy) Bian

    2016-01-01

    Much uncertainty exists regarding the possible role that gaps in forest canopies play in modulating fire–atmosphere interactions in otherwise horizontally homogeneous forests. This study examines the influence of gaps in forest canopies on atmospheric perturbations induced by a low-intensity fire using the ARPS-CANOPY model, a version of the Advanced Regional...

  13. Continuously controlled optical band gap in oxide semiconductor thin films

    DOE PAGES

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion, chargemore » density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less

  14. Continuously controlled optical band gap in oxide semiconductor thin films

    SciTech Connect

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion, charge density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.

  15. Gaps"

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    This study investigated the effect of daily quizzes on the performance of college students. Students in an introductory psychology course used their own wireless-enabled devices to take short Internet-based quizzes at the beginning of every class. The quiz items were drawn approximately equally from material covered in the readings and the…

  16. Air Gap Effects in LX-17

    SciTech Connect

    Souers, P C; Ault, S; Avara, R; Bahl, K L; Boat, R; Cunningham, B; Gidding, D; Janzen, J; Kuklo, D; Lee, R; Lauderbach, L; Weingart, W C; Wu, B; Winer, K

    2005-09-26

    Three experiments done over twenty years on gaps in LX-17 are reported. For the detonation front moving parallel to the gaps, jets of gas products were seen coming from the gaps at velocities greater than the detonation velocity. A case can be made that the jet velocity increased with gap thickness but the data is scattered. For the detonation front moving transverse to the gap, time delays were seen. The delays roughly increase with gap width, going from 0-70 ns at 'zero gap' to around 300 ns at 0.5-1 mm gap. Larger gaps of up to 6 mm width almost certainly stopped the detonation, but this was not proved. Real-time resolution of the parallel jets and determination of the actual re-detonation or failure in the transverse case needs to be done in future experiments.

  17. Emplacement Gantry Gap Analysis Study

    SciTech Connect

    R. Thornley

    2005-05-27

    To date, the project has established important to safety (ITS) performance requirements for structures, systems, and components (SSCs) based on the identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Bases for License Application'' (NSDB) (BSC 2005 [DIRS 171512], Table A-11). Further, SSCs credited with performing safety functions are classified as ITS. In turn, assurance that these SSCs will perform as required is sought through the use of consensus codes and standards. This gap analysis is based on the design completed for license application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and final selection will not be determined until further design development has occurred. Therefore, for completeness, alternative designs currently under consideration will be discussed throughout this study. This gap analysis will evaluate each code and standard identified within the ''Emplacement Gantry ITS Standards Identification Study'' (BSC 2005 [DIRS 173586]) to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied, a gap is highlighted. This study will identify requirements to supplement or augment the code or standard to meet performance requirements. Further, this gap analysis will identify nonstandard areas of the design that will be subject to a design development plan. Nonstandard components and nonstandard design configurations are defined as areas of the design that do not follow standard industry practices or codes and standards. Whereby, assurance that an SSC will perform as required may not be readily sought though the use of consensus standards. This

  18. Pregnancy-induced remodelling and enhanced endothelium-derived hyperpolarization-type vasodilator activity in rat uterine radial artery: transient receptor potential vanilloid type 4 channels, caveolae and myoendothelial gap junctions

    PubMed Central

    Senadheera, Sevvandi; Bertrand, Paul P; Grayson, T Hilton; Leader, Leo; Murphy, Timothy V; Sandow, Shaun L

    2013-01-01

    In pregnancy, the vasculature of the uterus undergoes rapid remodelling to increase blood flow and maintain perfusion to the fetus. The present study determines the distribution and density of caveolae, transient receptor potential vanilloid type 4 channels (TRPV4) and myoendothelial gap junctions, and the relative contribution of related endothelium-dependent vasodilator components in uterine radial arteries of control virgin non-pregnant and 20-day late-pregnant rats. The hypothesis examined is that specific components of endothelium-dependent vasodilator mechanisms are altered in pregnancy-related uterine radial artery remodelling. Conventional and serial section electron microscopy were used to determine the morphological characteristics of uterine radial arteries from control and pregnant rats. TRPV4 distribution and expression was examined using conventional confocal immunohistochemistry, and the contribution of endothelial TRPV4, nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-type activity determined using pressure myography with pharmacological intervention. Data show outward hypertrophic remodelling occurs in uterine radial arteries in pregnancy. Further, caveolae density in radial artery endothelium and smooth muscle from pregnant rats was significantly increased by ∼94% and ∼31%, respectively, compared with control, whereas caveolae density did not differ in endothelium compared with smooth muscle from control. Caveolae density was significantly higher by ∼59% on the abluminal compared with the luminal surface of the endothelium in uterine radial artery of pregnant rats but did not differ at those surfaces in control. TRPV4 was present in endothelium and smooth muscle, but not associated with internal elastic lamina hole sites in radial arteries. TRPV4 fluorescence intensity was significantly increased in the endothelium and smooth muscle of radial artery of pregnant compared with control rats by ∼2.6- and 5.5-fold

  19. Tuning and switching of band gap of the periodically undulated beam by the snap through buckling

    NASA Astrophysics Data System (ADS)

    Li, Y.; Xu, Y. L.

    2017-05-01

    We propose highly tuning and switching band gaps of phononic crystals through the snap through buckling by investigating wave propagation in a designed tractable undulated beam with single material and periodically arched shape. A series of numerical analyses are conducted to offer a thorough understanding of the evolution of the band gaps as a function of the vertical applied load. We find out that the interesting snap through buckling induced by the vertical load can alter the width of the band gap of the undulated beam dramatically, even switch them on and off. Our researches show an effective strategy to tune the band gaps of phononic crystals through the snap through buckling behavior.

  20. Bright and gap solitons in membrane-type acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangyi; Romero-García, Vicente; Theocharis, Georgios; Richoux, Olivier; Achilleos, Vassos; Frantzeskakis, Dimitrios J.

    2017-08-01

    We study analytically and numerically envelope solitons (bright and gap solitons) in a one-dimensional, nonlinear acoustic metamaterial, composed of an air-filled waveguide periodically loaded by clamped elastic plates. Based on the transmission line approach, we derive a nonlinear dynamical lattice model which, in the continuum approximation, leads to a nonlinear, dispersive, and dissipative wave equation. Applying the multiple scales perturbation method, we derive an effective lossy nonlinear Schrödinger equation and obtain analytical expressions for bright and gap solitons. We also perform direct numerical simulations to study the dissipation-induced dynamics of the bright and gap solitons. Numerical and analytical results, relying on the analytical approximations and perturbation theory for solions, are found to be in good agreement.

  1. Hard gap in epitaxial semiconductor-superconductor nanowires.

    PubMed

    Chang, W; Albrecht, S M; Jespersen, T S; Kuemmeth, F; Krogstrup, P; Nygård, J; Marcus, C M

    2015-03-01

    Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunnelling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on the proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunnelling conductance below the superconducting gap, suggesting a continuum of subgap states--a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by the proximity effect in a semiconductor, using epitaxial InAs-Al semiconductor-superconductor nanowires. The hard gap, together with favourable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.

  2. Gap solitons under competing local and nonlocal nonlinearities

    NASA Astrophysics Data System (ADS)

    Kuo, Kuan-Hsien; Lin, Yuanyao; Lee, Ray-Kuang; Malomed, Boris A.

    2011-05-01

    We analyze the existence, bifurcations, and shape transformations of one-dimensional gap solitons (GSs) in the first finite band gap induced by a periodic potential built into materials with local self-focusing and nonlocal self-defocusing nonlinearities. Originally stable on-site GS modes become unstable near the upper edge of the band gap with the introduction of the nonlocal self-defocusing nonlinearity with a small nonlocality radius. Unstable off-site GSs bifurcate into a new branch featuring single-humped, double-humped, and flat-top modes due to the competition between local and nonlocal nonlinearities. The mechanism underlying the complex bifurcation pattern and cutoff effects (termination of some bifurcation branches) is illustrated in terms of the shape transformation under the action of the varying degree of the nonlocality. The results of this work suggest a possibility of optical-signal processing by means of the competing nonlocal and local nonlinearities.

  3. Band gap formation in graphene by in-situ doping

    SciTech Connect

    Park, Jeongho; Mitchel, W. C.; Brown, Gail J.; Grazulis, Lawrence; Smith, Howard E.; Pacley, Shanee D.; Boeckl, John J.; Eyink, Kurt G.; Mou, Shin; Tomich, David H.; Hoelscher, John E.; Elhamri, Said

    2011-05-16

    We report the formation of band gaps in as-grown stacks of epitaxial graphene with opposite doping. Control of in-situ doping during carbon source molecular beam epitaxy growth on SiC was achieved by using different carbon sources. Doping heterostructures were grown by stacking n-type material from a C{sub 60} source on p-type material from a graphite filament source. Activation energies for the resistivity and carrier concentration indicated band gaps up to 200 meV. A photoconductivity threshold was observed in the range of the electrical activation energies. Band gap formation is attributed to electric fields induced by spatially separated ionized dopants of opposite charge.

  4. Dynamical current-current susceptibility of gapped graphene

    NASA Astrophysics Data System (ADS)

    Scholz, Andreas; Schliemann, John

    2011-06-01

    We present analytical expressions for the current-current correlation function in graphene for arbitrary frequency, wave vector, doping, and band gap induced by a mass term. In the static limit, we analyze the Landau (orbital) and Pauli magnetization, as well as the Lindhard correction, which describes Friedel and Ruderman-Kittel-Kasuya-Yosida oscillations. In the nonrelativistic limit, we compare our results with the situation of the usual two-dimensional electron gas (2DEG). We find that the orbital magnetic susceptibility (OMS) in gapped graphene is smeared out on an energy scale given by the inverse mass. The nonrelativistic limit of the plasmon dispersion and the Lindhard function reproduces the results of the 2DEG. The same conclusion is true for the Pauli part of the susceptibility. The peculiar band structure of gapped graphene leads to pseudospin paramagnetism and thus to a special form of the OMS.

  5. Electronic gap sensor and method

    DOEpatents

    Williams, R.S.; King, E.L.; Campbell, S.L.

    1991-08-06

    Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.

  6. Electronic gap sensor and method

    DOEpatents

    Williams, Robert S.; King, Edward L.; Campbell, Steven L.

    1991-01-01

    An apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces.

  7. Introspections on the Semantic Gap

    DTIC Science & Technology

    2015-04-14

    essential goal of virtual machine introspection ( VMI ) is security policy enforcement in the presence of an untrustworthy OS. One obstacle to this goal is...ABSTRACT Introspections on the Semantic Gap Report Title An essential goal of virtual machine introspection ( VMI ) is security policy enforcement in the...machine introspection ( VMI ) is security policy enforcement in the presence of an untrustworthy OS. One obstacle to this goal is the difficulty in

  8. Military Pay Gaps and Caps.

    DTIC Science & Technology

    1994-01-01

    RATIOS AND ENLISTED RECRUIT QUALITY AND RETENTION 27 C. MILITARY-CrVIL SERVICE PAY ADJUSTMENT LINKAGE: LEGISLATIVE BACKGROUND, 1967-1993 30...DECI), which we constructed previously and have updated to include fiscal 1992. We compare pay gaps based on the ECI versus the DECI and present DECI...do. There is no claim that the levels of military and civilian pay are equal at base point. If pay levels are equal at the base point, the divergence

  9. Homolumo gap and matrix model

    SciTech Connect

    Andric, I.; Jonke, L.; Jurman, D.; Nielsen, H. B.

    2008-06-15

    We discuss a dynamical matrix model by which probability distribution is associated with Gaussian ensembles from random matrix theory. We interpret the matrix M as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show that a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest occupied eigenvalue and the lowest unoccupied eigenvalue.

  10. The Fundamental Gap of Simplices

    NASA Astrophysics Data System (ADS)

    Lu, Zhiqin; Rowlett, Julie

    2013-04-01

    The gap function of a domain {Ω subset {R}^n} is ξ(Ω) := d^2 (λ_2 - λ_1) , where d is the diameter of Ω, and λ1 and λ2 are the first two positive Dirichlet eigenvalues of the Euclidean Laplacian on Ω. It was recently shown by Andrews and Clutterbuck (J Amer Math Soc 24:899-916, 2011) that for any convex {Ω subset {R}^n}, ξ(Ω) ≥ 3 π^2 , where the infimum occurs for n = 1. On the other hand, the gap function on the moduli space of n-simplices behaves differently. Our first theorem is a compactness result for the gap function on the moduli space of n-simplices. Next, specializing to n = 2, our second main result proves the recent conjecture of Antunes-Freitas (J Phys A: Math Theor 41(5):055201, 2008) for any triangle {T subset {R}^2}, ξ(T) ≥ 64 π^2/9 , with equality if and only if T is equilateral.

  11. Prometheus and the Keeler gap

    NASA Astrophysics Data System (ADS)

    Tajeddine, Radwan; Nicholson, Phillip D.; Hedman, Matthew M.; French, Richard G.; Tiscareno, Matthew S.; Burns, Joseph A.

    2014-11-01

    Linblad resonances with Saturn’s satellites are located at many radii in the rings. While some cause density or bending waves, others hold gap edges from spreading, like the 2:1 resonance with Mimas located at the B-ring edge, the 7:6 resonance with Janus at the A-ring edge, and the 32:31 resonance with Prometheus at the inner edge of the Keeler gap. The latter is the case of study here.Theoretically, the inner edge of the Keeler gap should have 32 regular sinusoidal lobes, where either the maximum or the minimum radius is expected to be aligned with Prometheus and rotating with its mean motion. We show that such is not the case. Fit of occultation data shows the presence of the 32:31 resonance, however, the fit residuals is as high as the amplitude of the resonance amplitude (about 2 km). Analysis of the ISS data, shows irregularities overlapping the lobes (Tiscareno et al. 2005, DPS), that follow Keplerian motion. These irregularities may be due to clumps of particles with different eccentricities than the rest of the edge particles. This phenomenon may be caused by the resonance, as it has not been observed at other circular edges were no resonance is present at their location. The ISS data also shows that the lobe’s minimum/maximum is not perfectly aligned with the longitude of Prometheus, which may be due to libration about the centre of the resonance.

  12. Epithelial gap closure governed by forces and geometry

    NASA Astrophysics Data System (ADS)

    Ladoux, Benoit

    The closure of gaps within epithelia is crucial to maintain the integrity and the homeostasis of the tissue during wound healing or cell extrusion processes. Cells mediate gap closure through either the assembly of multicellular actin-based contractile cables (purse-string contraction) or the protrusive activity of border cells into the gap (cell crawling). I will present experimental data and numerical modeling that show how these mechanisms can mutually interact to promote efficient epithelial gap closure and how mechanical constraints can regulate these mechanisms. I will first present how geometrical constraints dictate mechanisms of epithelial gap closure. We determine the importance of tissue shape during closure and the role of curvature of cell boundaries in this process. An essential difference between the two closure mechanisms is that cell crawling always pulls the edge of the tissue forward (i.e. towards the gap) while purse string pulls the edge forward or backwards depending on the local geometry. Our study demonstrates how the interplay between these two mechanisms is crucial for closing gaps and wounds, which naturally come in arbitrary shapes. Then I will focus on epithelial closure mechanism during cell extrusion. Within confluent cell layers, cellular motions coupled between neighbors are tightly regulated by the packing density of the epithelium inducing drastic changes in the dynamics of these tissues. I will show how cell density and tissue mechanics regulate the extrusion of cells within a confluent epithelial cell sheet, simultaneously measuring collective movements and traction forces. Epithelial packing and collective cell dynamics dictate the modes of cellular extrusions from lamellipodia crawling of the neighboring cells at low densities to coordinated actin-based contractile purse-string mechanism at higher density.

  13. Electroluminescence from indirect band gap semiconductor ReS2

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Lezama, Ignacio; Aditya Reddy, Bojja; Ubrig, Nicolas; Morpurgo, Alberto F.

    2016-12-01

    It has been recently claimed that bulk crystals of transition metal dichalcogenide (TMD) ReS2 are direct band gap semiconductors, which would make this material an ideal candidate, among all TMDs, for the realization of efficient opto-electronic devices. The situation is however unclear, because even more recently an indirect transition in the PL spectra of this material has been detected, whose energy is smaller than the supposed direct gap. To address this issue we exploit the properties of ionic liquid gated field-effect transistors (FETs) to investigate the gap structure of bulk ReS2. Using these devices, whose high quality is demonstrated by a record high electron FET mobility of 1100 cm2 V-1 s-1 at 4 K, we can induce hole transport at the surface of the material and determine quantitatively the smallest band gap present in the material, irrespective of its direct or indirect nature. The value of the band gap is found to be 1.41 eV, smaller than the 1.5 eV direct optical transition but in good agreement with the energy of the indirect optical transition, providing an independent confirmation that bulk ReS2 is an indirect band gap semiconductor. Nevertheless, contrary to the case of more commonly studied semiconducting TMDs (e.g., MoS2, WS2, etc) in their bulk form, we also find that ReS2 FETs fabricated on bulk crystals do exhibit electroluminescence when driven in the ambipolar injection regime, likely because the difference between direct and indirect gap is only 100 meV. We conclude that ReS2 does deserve more in-depth investigations in relation to possible opto-electronic applications.

  14. Hard Superconducting Gap in InSb Nanowires.

    PubMed

    Gül, Önder; Zhang, Hao; de Vries, Folkert K; van Veen, Jasper; Zuo, Kun; Mourik, Vincent; Conesa-Boj, Sonia; Nowak, Michał P; van Woerkom, David J; Quintero-Pérez, Marina; Cassidy, Maja C; Geresdi, Attila; Koelling, Sebastian; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Kouwenhoven, Leo P

    2017-04-12

    Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation.

  15. Hard Superconducting Gap in InSb Nanowires

    PubMed Central

    2017-01-01

    Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation. PMID:28355877

  16. Hard Superconducting Gap in InSb Nanowires

    NASA Astrophysics Data System (ADS)

    Gül, Önder; Zhang, Hao; de Vries, Folkert K.; van Veen, Jasper; Zuo, Kun; Mourik, Vincent; Conesa-Boj, Sonia; Nowak, Michał P.; van Woerkom, David J.; Quintero-Pérez, Marina; Cassidy, Maja C.; Geresdi, Attila; Koelling, Sebastian; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Kouwenhoven, Leo P.

    2017-04-01

    Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor, and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (~ 0.5 Tesla), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two dimensional electron gases and topological insulators, and holds relevance for topological superconductivity and quantum computation.

  17. Electric field dependence of hybridized gap in InAs/GaSb quantum well system

    NASA Astrophysics Data System (ADS)

    Ruan, Jiufu; Wei, Xiangfei; Wang, Weiyang

    2017-02-01

    We demonstrate theoretically that exchange interaction induced by electron-hole scattering via Coulomb interaction can cause a hybridized gap in InAs/GaSb based type II and broken-gap quantum wells. The hybridized energy spectra are obtained analytically at the low temperature and long wave limits. An electric field depended hybridized gap about 4 meV opens at the anti-crossing points of the hybridized energy spectra, in accordance with experimental measurements. The hybridized gap varies linearly with the gate electric voltage due to the fact that the electric field can change the exchange self-energy by tuning the overlap of the wavefunctions and the Fermi energy. Our theoretical results can give a deep insight of the origin of the hybridized gap and provide a simple way to determine the value and the position of the hybridized gap in the presence of the gate electric voltage.

  18. Closing the Prescription Drug Coverage Gap

    MedlinePlus

    ... coverage gap discount work for brand-name drugs? Companies that make brand-name prescription drugs must sign ... Coverage Gap Discount Program. This program requires the companies to offer discounts on brand-name drugs to ...

  19. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  20. The band gap variation of a two dimensional binary locally resonant structure in thermal environment

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Wang, Xian; Li, Yue-ming

    2017-01-01

    In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap). A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.

  1. Comparison of the surface dielectric barrier discharge characteristics under different electrode gaps

    NASA Astrophysics Data System (ADS)

    Gao, Guoqiang; Dong, Lei; Peng, Kaisheng; Wei, Wenfu; Li, Chunmao; Wu, Guangning

    2017-01-01

    Currently, great interests are paid to the surface dielectric barrier discharge due to the diverse and interesting application. In this paper, the influences of the electrode gap on the discharge characteristics have been studied. Aspects of the electrical parameters, the optical emission, and the discharge induced gas flow were considered. The electrode gap varied from 0 mm to 21 mm, while the applied AC voltage was studied in the range of 17 kV-27 kV. Results indicate that with the increase of the electrode gap, the variation of discharge voltage exhibits an increasing trend, while the other parameters (i.e., the current, power, and induced flow velocity) increase first, and then decrease once the gap exceeded the critical value. Mechanisms of the electrode gap influencing these key parameters were discussed from the point of equivalent circuit. The experimental results reveal that an optimal discharge gap can be obtained, which is closely related to the applied voltage. Visualization of the induced flow with different electrode gaps was realized by the Schlieren diagnostic technique. Finally, the velocities of induced gas flow determined by the pitot tube were compared with the results of intensity-integral method, and good agreements were found.

  2. Gap Year: Time off, with a Plan

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2009-01-01

    A gap year allows people to step off the usual educational or career path and reassess their future. According to people who have taken a gap year, the time away can be well worth it. This article can help a person decide whether to take a gap year and how to make the most of his time off. It describes what a gap year is, including its pros and…

  3. Closing the Achievement Gap: Four States' Efforts

    ERIC Educational Resources Information Center

    Wixom, Micah Ann

    2015-01-01

    The achievement gap separating economically disadvantaged students from their more advantaged peers disproportionately affects students of color and has been the focus of discussion, research and controversy for more than 40 years. While the gap between black and white students narrowed considerably from the 1950s to the 1980s, that gap has…

  4. Calibration curves for some standard Gap Tests

    SciTech Connect

    Bowman, A.L.; Sommer, S.C.

    1989-01-01

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  5. Closing the gap between research and management

    Treesearch

    Deborah M. Finch; Marcia Patton-Mallory

    1993-01-01

    In this paper, we evaluate the reasons for gaps in communication between researchers and natural resource managers and identify methods to close these gaps. Gaps originate from differing patterns of language use, disparities in organizational culture and values, generation of knowledge that is too narrowly-focused to solve complex problems, failure by managers to relay...

  6. Gapping in Farsi: A Crosslinguistic Investigation

    ERIC Educational Resources Information Center

    Farudi, Annahita

    2013-01-01

    This dissertation explores a longstanding challenge in work on gapping through the empirical lens of gapping in Farsi (the Tehrani variant of Modern Persian). While gapping has much in common with more uncontroversial elliptical constructions such as VPE and sluicing, it also differs from ellipsis in ways that accounts combining TP or CP…

  7. Gap junctions - guards of excitability.

    PubMed

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus; Delmar, Mario; Nielsen, Morten Schak

    2015-06-01

    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances of the heart and focuses on the role of the gap junctional protein connexin 43 (Cx43). Current evidence shows that Cx43 plays a crucial role in organizing microtubules at the intercalated disc and thereby regulating the trafficking of the cardiac sodium channel NaV1.5 to the membrane.

  8. Long-gap esophageal atresia.

    PubMed

    Shieh, Hester F; Jennings, Russell W

    2017-04-01

    The management of long-gap esophageal atresia remains challenging with limited consensus on the definition, evaluation, and surgical approach to treatment. Efforts to preserve the native esophagus have been successful with delayed primary anastomosis and tension-based esophageal growth induction processes. Esophageal replacement is necessary in a minority of cases, with the conduit of choice and patient outcomes largely dependent on institutional expertise. Given the complexity of this patient population with significant morbidity, treatment and long-term follow-up are best done in multidisciplinary esophageal and airway treatment centers. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Band gaps in bubble phononic crystals

    NASA Astrophysics Data System (ADS)

    Leroy, V.; Bretagne, A.; Lanoy, M.; Tourin, A.

    2016-12-01

    We investigate the interaction between Bragg and hybridization effects on the band gap properties of bubble phononic crystals. These latter consist of air cavities periodically arranged in an elastomer matrix and are fabricated using soft-lithography techniques. Their transmission properties are affected by Bragg effects due to the periodicity of the structure as well as hybridization between the propagating mode of the embedding medium and bubble resonance. The hybridization gap survives disorder while the Bragg gap requires a periodic distribution of bubbles. The distance between two bubble layers can be tuned to make the two gaps overlap or to create a transmission peak in the hybridization gap.

  10. Tunable Transport Gap in Phosphorene

    SciTech Connect

    Das, Saptarshi; Zhang, Wei; Demarteau, Marcel; Hoffmann, Axel; Dubey, Madan; Roelofs, Andreas

    2014-08-11

    In this paper, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from ~0.3 to ~1.0 eV when the flake thickness is scaled down from bulk to a single layer. As a consequence, the ON current, the OFF current, and the current ON/OFF ratios of phosphorene field effect transistors (FETs) were found to be significantly impacted by the layer thickness. The transport gap was determined from the transfer characteristics of phosphorene FETs using a robust technique that has not been reported before. The detailed mathematical model is also provided. By scaling the thickness of the gate oxide, we were also able to demonstrate enhanced ambipolar conduction in monolayer and few layer phosphorene FETs. The asymmetry of the electron and the hole current was found to be dependent on the layer thickness that can be explained by dynamic changes of the metal Fermi level with the energy band of phosphorene depending on the layer number. We also extracted the Schottky barrier heights for both the electron and the hole injection as a function of the layer thickness. In conclusion, we discuss the dependence of field effect hole mobility of phosphorene on temperature and carrier concentration.

  11. Tunable Transport Gap in Phosphorene

    DOE PAGES

    Das, Saptarshi; Zhang, Wei; Demarteau, Marcel; ...

    2014-08-11

    In this paper, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from ~0.3 to ~1.0 eV when the flake thickness is scaled down from bulk to a single layer. As a consequence, the ON current, the OFF current, and the current ON/OFF ratios of phosphorene field effect transistors (FETs) were found to be significantly impacted by the layer thickness. The transport gap was determined from the transfer characteristics of phosphorene FETs using a robust technique that has not been reported before. The detailed mathematical model is also provided. By scaling the thickness of the gatemore » oxide, we were also able to demonstrate enhanced ambipolar conduction in monolayer and few layer phosphorene FETs. The asymmetry of the electron and the hole current was found to be dependent on the layer thickness that can be explained by dynamic changes of the metal Fermi level with the energy band of phosphorene depending on the layer number. We also extracted the Schottky barrier heights for both the electron and the hole injection as a function of the layer thickness. In conclusion, we discuss the dependence of field effect hole mobility of phosphorene on temperature and carrier concentration.« less

  12. Role of gap junctions on synchronization in human neocortical networks.

    PubMed

    Gigout, S; Deisz, R A; Dehnicke, C; Turak, B; Devaux, B; Pumain, R; Louvel, J

    2016-04-15

    Gap junctions (GJ) have been implicated in the synchronization of epileptiform activities induced by 4-aminopyrine (4AP) in slices from human epileptogenic cortex. Previous evidence implicated glial GJ to govern the frequency of these epileptiform events. The synchrony of these events (evaluated by the phase unlocking index, PUI) in adjacent areas however was attributed to neuronal GJ. In the present study, we have investigated the effects of GAP-134, a recently developed specific activator of glial GJ, on both the PUI and the frequency of the 4AP-induced epileptiform activities in human neocortical slices of temporal lobe epilepsy tissue. To delineate the impact of GJ on spatial spread of synchronous activity we evaluated the effects of carbenoxolone (CBX, a non-selective GJ blocker) on the spread in three axes 1. vertically in a given cortical column, 2. laterally within the deep cortical layers and 3. laterally within the upper cortical layers. GAP-134 slightly increased the frequency of the 4AP-induced spontaneous epileptiform activities while leaving the PUI unaffected. CBX had no effect on the PUI within a cortical column or on the PUI in the deep cortical layers. CBX increased the PUI for long interelectrodes distances in the upper cortical layers. In conclusion we provide new arguments toward the role played by glial GJ to maintain the frequency of spontaneous activities. We show that neuronal GJ control the PUI only in upper cortical layers. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Role of gap junctions in epilepsy.

    PubMed

    Jin, Miao-Miao; Chen, Zhong

    2011-12-01

    Epilepsy is a common neurological disorder characterized by periodic and unpredictable seizures. Gap junctions have recently been proposed to be involved in the generation, synchronization and maintenance of seizure events. The present review mainly summarizes recent reports concerning the contribution of gap junctions to the pathophysiology of epilepsy, together with the regulation of connexin after clinical and experimental seizure activity. The anticonvulsant effects of gap junction blockers both in vitro and in vivo suggest that the gap junction is a candidate target for the development of antiepileptic drugs. It is also of interest that the roles of neuronal and astrocytic gap junctions in epilepsy have been investigated independently, based on evidence from pharmacological manipulations and connexin-knockout mice. Further studies using more specific manipulations of gap junctions in different cell types and in human epileptic tissue are needed to fully uncover the role of gap junctions in epilepsy.

  14. NMR parameters in gapped graphene systems

    NASA Astrophysics Data System (ADS)

    Crisan, Mircea; Grosu, Ioan; Ţifrea, Ionel

    2016-06-01

    We calculate the nuclear spin-lattice relaxation time and the Knight shift for the case of gapped graphene systems. Our calculations consider both the massive and massless gap scenarios. Both the spin-lattice relaxation time and the Knight shift depend on temperature, chemical potential, and the value of the electronic energy gap. In particular, at the Dirac point, the electronic energy gap has stronger effects on the system nuclear magnetic resonance parameters in the case of the massless gap scenario. Differently, at large values of the chemical potential, both gap scenarios behave in a similar way and the gapped graphene system approaches a Fermi gas from the nuclear magnetic resonance parameters point of view. Our results are important for nuclear magnetic resonance measurements that target the 13C active nuclei in graphene samples.

  15. Chlorpromazine reduces the intercellular communication via gap junctions in mammalian cells

    SciTech Connect

    Orellana, Juan A.; Palacios-Prado, Nicolas; Saez, Juan C. . E-mail: jsaez@bio.puc.cl

    2006-06-15

    In the work presented herein, we evaluated the effect of chlorpromazine (CPZ) on gap junctions expressed by two mammalian cell types; Gn-11 cells (cell line derived from mouse LHRH neurons) and rat cortical astrocytes maintained in culture. We also attempted to elucidate possible mechanisms of action of CPZ effects on gap junctions. CPZ, in concentrations comparable with doses used to treat human diseases, was found to reduce the intercellular communication via gap junctions as evaluated with measurements of dye coupling (Lucifer yellow). In both cell types, maximal inhibition of functional gap junctions was reached within about 1 h of treatment with CPZ, an recovery was almost complete at about 5 h after CPZ wash out. In both cell types, CPZ treatment increased the phosphorylation state of connexin43 (Cx43), a gap junction protein subunit. Moreover, CPZ reduced the reactivity of Cx43 (immunofluorescence) at cell interfaces and concomitantly increased its reactivity in intracellular vesicles, suggesting an increased retrieval from and/or reduced insertion into the plasma membrane. CPZ also caused cellular retraction reducing cell-cell contacts in a reversible manner. The reduction in contact area might destabilize existing gap junctions and abrogate formation of new ones. Moreover, the CPZ-induced reduction in gap junctional communication may depend on the connexins (Cxs) forming the junctions. If Cx43 were the only connexin expressed, MAPK-dependent phosphorylation of this connexin would induce closure of gap junction channels.

  16. Assessment of the Chemosensitizing Activity of TAT-RasGAP317-326 in Childhood Cancers

    PubMed Central

    Chevalier, Nadja; Gross, Nicole; Widmann, Christian

    2015-01-01

    Although current anti-cancer protocols are reasonably effective, treatment-associated long-term side effects, induced by lack of specificity of the anti-cancer procedures, remain a challenging problem in pediatric oncology. TAT-RasGAP317-326 is a RasGAP-derived cell-permeable peptide that acts as a sensitizer to various anti-cancer treatments in adult tumor cells. In the present study, we assessed the effect of TAT-RasGAP317-326 in several childhood cancer cell lines. The RasGAP-derived peptide-induced cell death was analyzed in several neuroblastoma, Ewing sarcoma and leukemia cell lines (as well as in normal lymphocytes). Cell death was evaluated using flow cytometry methods in the absence or in the presence of the peptide in combination with various genotoxins used in the clinics (4-hydroperoxycyclophosphamide, etoposide, vincristine and doxorubicin). All tested pediatric tumors, in response to at least one genotoxin, were sensitized by TAT-RasGAP317-326. The RasGAP-derived peptide did not increase cell death of normal lymphocytes, alone or in combination with the majority of the tested chemotherapies. Consequently, TAT-RasGAP317-326 may benefit children with tumors by increasing the efficacy of anti-cancer therapies notably by allowing reductions in anti-cancer drug dosage and the associated drug-induced side effects. PMID:25826368

  17. The influence of GAP-43 on orientation of cell division through G proteins.

    PubMed

    Huang, Rui; Zhao, Junpeng; Ju, Lili; Wen, Yujun; Xu, Qunyuan

    2015-12-01

    Recent studies have shown that GAP-43 is highly expressed in horizontally dividing neural progenitor cells, and G protein complex are required for proper mitotic-spindle orientation of those progenitors in the mammalian developing cortex. In order to verify the hypothesis that GAP-43 may influence the orientation of cell division through interacting with G proteins during neurogenesis, the GAP-43 RNA from adult C57 mouse was cloned into the pEGFP-N1 vector, which was then transfected into Madin-Darby Canine Kidney (MDCK) cells cultured in a three-dimensional (3D) cell culture system. The interaction of GAP-43 with Gαi was detected by co-immunoprecipitation (co-IP), while cystogenesis of 3D morphogenesis of MDCK cells and expression of GAP-43 and Gαi were determined by immunofluorescence and Western blotting. The results showed are as follows: After being transfected by pEGFP-N1-GAP-43, GAP-43 was localized on the cell membrane and co-localized with Gαi, and this dramatically induced a defective cystogenesis in 3D morphogenesis of MDCK cells. The functional interaction between GAP-43 and Gαi proteins was proven by the co-IP assay. It can be considered from the results that the GAP-43 is involved in the orientation of cell division by interacting with Gαi and this should be an important mechanism for neurogenesis in the mammalian brain.

  18. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  19. Updated Starshade Technology Gap List

    NASA Astrophysics Data System (ADS)

    Crill, Brendan P.; Siegler, Nicholas

    2017-01-01

    NASA's Exoplanet Exploration Program (ExEP) guides the development of technology that enables the direct imaging and characterization of exo-Earths in the habitable zone of their stars, for future space observatories. Here we present the Starshade portion of the 2017 ExEP Enabling Technology Gap List, an annual update to ExEP's list of of technology to be advanced in the next 1-5 years. A Starshade is an external occulter on an independent spacecraft, allowing a space telescope to achieve exo-Earth imaging contrast requirements by blocking starlight before it enters the telescope. Building and operating a Starshade requires new technology: the occulter is a structure tens of meters in diameter that must be positioned precisely at a distance of tens of thousands of kilometers from the telescope. We review the current state-of-the-art performance and the performance level that must be achieved for a Starshade.

  20. Interaction of wide-band-gap single crystals with 248-nm excimer laser irradiation. X. Laser-induced near-surface absorption in single-crystal NaCl

    SciTech Connect

    Nwe, K.H.; Langford, S.C.; Dickinson, J.T.; Hess, W.P.

    2005-02-15

    Ultraviolet laser-induced desorption of neutral atoms and molecules from nominally transparent, ionic materials can yield particle velocities consistent with surface temperatures of a few thousand kelvin even in the absence of visible surface damage. The origin of the laser absorption required for this surface heating has been often overlooked. In this work, we report simultaneous neutral emission and laser transmission measurements on single-crystal NaCl exposed to 248-nm excimer laser radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near-surface region to account for the observed particle velocities. We show that the laser absorption grows from low values over several pulses and saturates at values sufficient to account for the surface temperatures required to explain the observed particle velocity distributions. The growth of absorption in these early pulses is accompanied by a corresponding increase in the emission intensities. The diffuse reflectance spectra acquired after exposure suggest that near-surface V-type centers are responsible for most of the absorption at 248 nm in single-crystal NaCl.

  1. Interaction of Wide-Band-Gap Single Crystals with 248-nm Excimer Laser Irradiation: X. Laser-Induced Near-Surface Absorption in Single-Crystal NaCl

    SciTech Connect

    Nwe, K H.; Langford, Stephen C.; Dickinson, J T.; Hess, Wayne P.

    2005-02-15

    Ultraviolet laser-induced desorption of neutral atoms and molecules from nominally transparent, ionic materials can yield particle velocities consistent with surface temperatures of a few thousand Kelvin, even in the absence of visible surface damage. The origin of the laser required for this surface heating has been often overlooked. In this work, we report simultaneous neutral emission and laser transmission measurements on single crystal NaCl exposed to 248-nm excimer laser radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near surface region to account for the observed particle velocities. We show that the laser absorption grows from low values over several pulses and saturates at values sufficient to account for the surface temperatures required to explain the observed particle velocity distributions. The growth of absorption in these early pulses is accompanied by a corresponding increase in the emission intensities. Diffuse reflectance spectra acquired after exposure suggest that near surface V-type centers are responsible for most of the absorption at 248 nm in single crystal NaCl.

  2. Narrow gap electronegative capacitive discharges

    SciTech Connect

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2013-10-15

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  3. Giant Hall Photoconductivity in Narrow-Gapped Dirac Materials.

    PubMed

    Song, Justin C W; Kats, Mikhail A

    2016-12-14

    Carrier dynamics acquire a new character in the presence of Bloch-band Berry curvature, which naturally arises in gapped Dirac materials (GDMs). Here, we argue that photoresponse in GDMs with small band gaps is dramatically enhanced by Berry curvature. This manifests in a giant and saturable Hall photoconductivity when illuminated by circularly polarized light. Unlike Hall motion arising from a Lorentz force in a magnetic field, which impedes longitudinal carrier motion, Hall photoconductivity arising from Berry curvature can boost longitudinal carrier transport. In GDMs, this results in a helicity-dependent photoresponse in the Hall regime, where photoconductivity is dominated by its Hall component. We find that the induced Hall conductivity per incident irradiance is enhanced by up to 6 orders of magnitude when moving from the visible regime (with corresponding band gaps) to the far infrared. These results suggest that narrow-gap GDMs are an ideal test-bed for the unique physics that arise in the presence of Berry curvature and open a new avenue for infrared and terahertz optoelectronics.

  4. Gap junctions and connexin hemichannels underpin hemostasis and thrombosis.

    PubMed

    Vaiyapuri, Sakthivel; Jones, Chris I; Sasikumar, Parvathy; Moraes, Leonardo A; Munger, Stephanie J; Wright, Joy R; Ali, Marfoua S; Sage, Tanya; Kaiser, William J; Tucker, Katherine L; Stain, Christopher J; Bye, Alexander P; Jones, Sarah; Oviedo-Orta, Ernesto; Simon, Alexander M; Mahaut-Smith, Martyn P; Gibbins, Jonathan M

    2012-05-22

    Connexins are a widespread family of membrane proteins that assemble into hexameric hemichannels, also known as connexons. Connexons regulate membrane permeability in individual cells or couple between adjacent cells to form gap junctions and thereby provide a pathway for regulated intercellular communication. We have examined the role of connexins in platelets, blood cells that circulate in isolation but on tissue injury adhere to each other and the vessel wall to prevent blood loss and to facilitate wound repair. We report the presence of connexins in platelets, notably connexin37, and that the formation of gap junctions within platelet thrombi is required for the control of clot retraction. Inhibition of connexin function modulated a range of platelet functional responses before platelet-platelet contact and reduced laser-induced thrombosis in vivo in mice. Deletion of the Cx37 gene (Gja4) in transgenic mice reduced platelet aggregation, fibrinogen binding, granule secretion, and clot retraction, indicating an important role for connexin37 hemichannels and gap junctions in platelet thrombus function. Together, these data demonstrate that platelet gap junctions and hemichannels underpin the control of hemostasis and thrombosis and represent potential therapeutic targets.

  5. Gap junctional conductance and permeability are linearly related.

    PubMed

    Verselis, V; White, R L; Spray, D C; Bennett, M V

    1986-10-24

    The permeability of gap junctions to tetraethylammonium ions was measured in isolated pairs of blastomeres from Rana pipiens L. and compared to the junctional conductance. In this system, the junctional conductance is voltage-dependent and decreases with moderate transjunctional voltage of either sign. The permeability to tetraethylammonium ions was determined by injecting one cell of a pair with tetraethylammonium and monitoring its changing concentration in the prejunctional and postjunctional cells with ion-selective electrodes. Junctional conductance was determined by current-clamp and voltage-clamp techniques. For different cell pairs in which the transjunctional voltage was small and the junctional conductance at its maximum value, the permeability to tetraethylammonium ions was proportional to the junctional conductance. In individual cell pairs, a reduction in the junctional conductance induced by voltage was accompanied by a proportional reduction in the permeability of the gap junction over a wide range. The diameter of the tetraethylammonium ion (8.0 to 8.5 A, unhydrated) is larger than that of the potassium ion (4.6 A, hydrated), the predominant current-carrying species. The proportionality between the permeability to tetraethylammonium ions and the junctional conductance, measured here with exceptionally fine time resolution, indicates that a common gap junctional pathway mediates both electrical and chemical fluxes between cells, and that closure of single gap junction channels by voltage is all or none.

  6. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.

    PubMed

    Villegas, Cesar E P; Rocha, A R; Marini, Andrea

    2016-08-10

    Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).

  7. Prediction of gap asymmetry in differential micro accelerometers.

    PubMed

    Zhou, Wu; Li, Baili; Peng, Bei; Su, Wei; He, Xiaoping

    2012-01-01

    Gap asymmetry in differential capacitors is the primary source of the zero bias output of force-balanced micro accelerometers. It is also used to evaluate the applicability of differential structures in MEMS manufacturing. Therefore, determining the asymmetry level has considerable significance for the design of MEMS devices. This paper proposes an experimental-theoretical method for predicting gap asymmetry in differential sensing capacitors of micro accelerometers. The method involves three processes: first, bi-directional measurement, which can sharply reduce the influence of the feedback circuit on bias output, is proposed. Experiments are then carried out on a centrifuge to obtain the input and output data of an accelerometer. Second, the analytical input-output relationship of the accelerometer with gap asymmetry and circuit error is theoretically derived. Finally, the prediction methodology combines the measurement results and analytical derivation to identify the asymmetric error of 30 accelerometers fabricated by DRIE. Results indicate that the level of asymmetry induced by fabrication uncertainty is about ±5 × 10(-2), and that the absolute error is about ±0.2 μm under a 4 μm gap.

  8. Prediction of Gap Asymmetry in Differential Micro Accelerometers

    PubMed Central

    Zhou, Wu; Li, Baili; Peng, Bei; Su, Wei; He, Xiaoping

    2012-01-01

    Gap asymmetry in differential capacitors is the primary source of the zero bias output of force-balanced micro accelerometers. It is also used to evaluate the applicability of differential structures in MEMS manufacturing. Therefore, determining the asymmetry level has considerable significance for the design of MEMS devices. This paper proposes an experimental-theoretical method for predicting gap asymmetry in differential sensing capacitors of micro accelerometers. The method involves three processes: first, bi-directional measurement, which can sharply reduce the influence of the feedback circuit on bias output, is proposed. Experiments are then carried out on a centrifuge to obtain the input and output data of an accelerometer. Second, the analytical input-output relationship of the accelerometer with gap asymmetry and circuit error is theoretically derived. Finally, the prediction methodology combines the measurement results and analytical derivation to identify the asymmetric error of 30 accelerometers fabricated by DRIE. Results indicate that the level of asymmetry induced by fabrication uncertainty is about ±5 × 10−2, and that the absolute error is about ±0.2 μm under a 4 μm gap. PMID:22969325

  9. Dynamically Active Compartments Coupled by a Stochastically Gated Gap Junction

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Lawley, Sean D.

    2017-03-01

    We analyze a one-dimensional PDE-ODE system representing the diffusion of signaling molecules between two cells coupled by a stochastically gated gap junction. We assume that signaling molecules diffuse within the cytoplasm of each cell and then either bind to some active region of the cell's membrane (treated as a well-mixed compartment) or pass through the gap junction to the interior of the other cell. We treat the gap junction as a randomly fluctuating gate that switches between an open and a closed state according to a two-state Markov process. This means that the resulting PDE-ODE is stochastic due to the presence of a randomly switching boundary in the interior of the domain. It is assumed that each membrane compartment acts as a conditional oscillator, that is, it sits below a supercritical Hopf bifurcation. In the ungated case (gap junction always open), the system supports diffusion-induced oscillations, in which the concentration of signaling molecules within the two compartments is either in-phase or anti-phase. The presence of a reflection symmetry (for identical cells) means that the stochastic gate only affects the existence of anti-phase oscillations. In particular, there exist parameter choices where the gated system supports oscillations, but the ungated system does not, and vice versa. The existence of oscillations is investigated by solving a spectral problem obtained by averaging over realizations of the stochastic gate.

  10. TLR2 Regulates Gap Junction Intercellular Communication in Airway Cells

    PubMed Central

    Martin, Francis J.; Prince, Alice S.

    2009-01-01

    The innate immune response to inhaled bacteria, such as the opportunist Pseudomonas aeruginosa, is initiated by TLR2 displayed on the apical surface of airway epithelial cells. Activation of TLR2 is accompanied by an immediate Ca2+ flux that is both necessary and sufficient to stimulate NF-κB and MAPK proinflammatory signaling to recruit and activate polymorphonuclear leukocytes in the airway. In human airway cells gap junction channels were found to provide a regulated conduit for the movement of Ca2+ from cell to cell. In response to TLR2 stimulation, by either lipid agonists or P. aeruginosa, gap junctions functioned to transiently amplify proinflammatory signaling by communicating Ca2+ fluxes from stimulated to adjacent, non-stimulated cells thus increasing epithelial CXCL8 production. P. aeruginosa stimulation also induced tyrosine phosphorylation of Connexin 43 and association with c-Src, events linked to the closure of these channels. By 4 hours post bacterial stimulation, gap junction communication was decreased indicating an autoregulatory control of the connexins. Thus, gap junction channels comprised of Connexin 43 and other connexins in airway cells provide a mechanism to coordinate and regulate the epithelial immune response even in the absence of signals from the immune system. PMID:18354224

  11. The psychostimulant modafinil enhances gap junctional communication in cortical astrocytes.

    PubMed

    Liu, Xinhe; Petit, Jean-Marie; Ezan, Pascal; Gyger, Joël; Magistretti, Pierre; Giaume, Christian

    2013-12-01

    Sleep-wake cycle is characterized by changes in neuronal network activity. However, for the last decade there is increasing evidence that neuroglial interaction may play a role in the modulation of sleep homeostasis and that astrocytes have a critical impact in this process. Interestingly, astrocytes are organized into communicating networks based on their high expression of connexins, which are the molecular constituents of gap junction channels. Thus, neuroglial interactions should also be considered as the result of the interplay between neuronal and astroglial networks. Here, we investigate the effect of modafinil, a wakefulness-promoting agent, on astrocyte gap junctional communication. We report that in the cortex modafinil injection increases the expression of mRNA and protein of connexin 30 but not those of connexin 43, the other major astroglial connexin. These increases are correlated with an enhancement of intercellular dye coupling in cortical astrocytes, which is abolished when neuronal activity is silenced by tetrodotoxin. Moreover, gamma-hydroxybutyric acid, which at a millimolar concentration induces sleep, has an opposite effect on astroglial gap junctions in an activity-independent manner. These results support the proposition that astroglia may play an important role in complex physiological brain functions, such as sleep regulation, and that neuroglial networking interaction is modified during sleep-wake cycle. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.

  12. National GAP Conference 2007-Discussion Groups Report

    USGS Publications Warehouse

    Ratz, Joan M.; Lamb, Berton Lee

    2010-01-01

    We led two discussion groups during the 2007 National GAP Conference. These discussion groups provided information to help develop a survey of National Gap Analysis Program (GAP) data users. One group discussed technical issues, and the second group discussed the use of GAP data for decisionmaking. Themes emerging from the technical issues group included concerns about data quality, need for information on how to use data, and passive data distribution. The decisionmaking discussion included a wide range of topics including the need to understand presentation of information, the need to connect with and understand users of data, the revision of GAP's mission, and the adaptability of products and data. The decisionmaking group also raised concerns regarding technical issues. One conclusion is that a deep commitment to ongoing information transfer and support is a key component of success for the GAP program.

  13. [Gap edge effect of Castanopsis kawakamii community].

    PubMed

    Liu, Jinfu; Hong, Wei; Li, Junqing; Lin, Rongfu

    2003-09-01

    This paper reported the characters of gap edge effect of Castanopsis kawakamii community in Sanming, Fujian Province. The species diversity, ecological dominance, and edge effect strength of 38 forest gaps with different development stages in different stands of Castanopsis kawakamii community were measured, and Shannon-Wiener index, Simpson index, and index of edge effect strength were calculated. The results showed that the index of the gap edge effect of Castanopsis kawakamii community was about 0.7-1.3 (according to the species diversity index) and 0.3-1.8 (according to the ecological dominance index). The gap edge effect had the trend of increasing the species diversity of forest communities. The index of gap effect was affected by the size and development stage of the gap and the related forest type. The study provided a theoretical basis for the maintenance of species diversity and the forest management in Castanopsis kawakamii community.

  14. GAP-43 augments G protein-coupled receptor transduction in Xenopus laevis oocytes.

    PubMed Central

    Strittmatter, S M; Cannon, S C; Ross, E M; Higashijima, T; Fishman, M C

    1993-01-01

    The neuronal protein GAP-43 is thought to play a role in determining growth-cone motility, perhaps as an intracellular regulator of signal transduction, but its molecular mechanism of action has remained unclear. We find that GAP-43, when microinjected into Xenopus laevis oocytes, increases the oocyte response to G protein-coupled receptor agonists by 10- to 100-fold. Higher levels of GAP-43 cause a transient current flow, even without receptor stimulation. The GAP-43-induced current, like receptor-stimulated currents, is mediated by a calcium-activated chloride channel and can be desensitized by injection of inositol 1,4,5-trisphosphate. This suggests that neuronal GAP-43 may serve as an intracellular signal to greatly enhance the sensitivity of G protein-coupled receptor transduction. Images Fig. 1 Fig. 2 PMID:7685122

  15. The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently

    PubMed Central

    Coutinho-Budd, Jaeda; Ghukasyan, Vladimir; Zylka, Mark J.; Polleux, Franck

    2012-01-01

    Summary Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis. PMID:22467852

  16. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  17. [Gap junctions and cancer: implications and perspectives].

    PubMed

    Mesnil, Marc

    2004-02-01

    Gap junctions are made of intercellular channels which permit the diffusion from cytoplasm to cytoplasm of small hydrophilic molecules (<1,200 Da) such as ions, sugars, amino acids, nucleotides, second messengers (calcium, inositol triphosphate, etc.). Since their discovery in the early sixties, several groups have described the loss of their function in cancer cells. The accumulation of such data led to the hypothesis that gap junctions are involved in the carcinogenesis process. This assumption has been confirmed by data establishing that gap junctional intercellular communication is inhibited by most of the tumor promoters and that the restoration of such a communication, by transfection of cDNAs encoding gap junction proteins (connexins), inhibits the aberrant growth rates of tumorigenic cells. Despite these important informations, several fundamental questions remain still open. First, we do not know how gap junctions mediate such a tumor suppressor effect and whether it may depend either on the cell type or on the connexin type. Moreover, most of the data concerning a possible involvement of gap junctions in carcinogenesis have been obtained from in vitro and animal models. The very few results which have been currently collected from human tumors are not sufficient to have a clear idea concerning the real involvement of gap junctions in sporadic human cancers. These points as well as other unresolved questions about the role of gap junctional intercellular communication in carcinogenesis are mentioned. To bring some answers, some prospects are proposed with the objective to use gap junctions for increasing the effect of anticancer therapies.

  18. The Los Alamos Gap Stick Test

    NASA Astrophysics Data System (ADS)

    Preston, Daniel; Hill, Larry; Johnson, Carl

    2015-06-01

    In this paper we describe a novel shock sensitivity test, the Gap Stick Test, which is a generalized variant of the ubiquitous Gap Test. Despite the popularity of the Gap Test, it has some disadvantages: multiple tests must be fired to obtain a single metric, and many tests must be fired to obtain its value to high precision and confidence. Our solution is a test wherein multiple gap tests are joined in series to form a rate stick. The complex re-initiation character of the traditional gap test is thereby retained, but the propagation speed is steady when measured at periodic intervals, and initiation delay in individual segments acts to decrement the average speed. We measure the shock arrival time before and after each inert gap, and compute the average detonation speed through the HE alone (discounting the gap thicknesses). We perform tests for a range of gap thicknesses. We then plot the aforementioned propagation speed as a function of gap thickness. The resulting curve has the same basic structure as a Diameter Effect (DE) curve, and (like the DE curve) terminates at a failure point. Comparison between experiment and hydrocode calculations using ALE3D and the Ignition and Growth reactive burn model calibrated for short duration shock inputs in PBX 9501 is discussed.

  19. Structural Dynamics of Tropical Moist Forest Gaps

    PubMed Central

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23

  20. Gaps between jets in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Kepka, O.; Marquet, C.; Royon, C.

    2011-02-01

    We propose a model to describe diffractive events in hadron-hadron collisions where a rapidity gap is surrounded by two jets. The hard color-singlet object exchanged in the t-channel and responsible for the rapidity gap is described by the perturbative QCD Balitsky-Fadin-Kuraev-Lipatov Pomeron, including corrections due to next-to-leading logarithms. We allow the rapidity gap to be smaller than the interjet rapidity interval, and the corresponding soft radiation is modeled using the HERWIG Monte Carlo. Our model is able to reproduce all Tevatron data, and allows one to estimate the jet-gap-jet cross section at the LHC.