Science.gov

Sample records for induces local inflammatory

  1. Local and systemic inflammatory responses to experimentally induced gingivitis.

    PubMed

    Leishman, Shaneen J; Seymour, Gregory J; Ford, Pauline J

    2013-01-01

    This study profiled the local and systemic inflammatory responses to experimentally induced gingivitis. Eight females participated in a 21-day experimental gingivitis model followed by a 14-day resolution phase. Bleeding on probing and plaque index scores were assessed before, during, and after resolution of gingival inflammation, and samples of saliva, GCF, and plasma were collected. Samples were assessed for biomarkers of inflammation using the BioPlex platform and ELISA. There were no significant changes in GCF levels of cytokines during the experimental phase; however, individual variability in cytokine profiles was noted. During resolution, mean GCF levels of IL-2, IL-6, and TNF-α decreased and were significantly lower than baseline levels (P = 0.003, P = 0.025, and P = 0.007, resp.). Furthermore, changes in GCF levels of IL-2, IL-6, and TNF-α during resolution correlated with changes in plaque index scores (r = 0.88, P = 0.004; r = 0.72, P = 0.042; r = 0.79, P = 0.019, resp.). Plasma levels of sICAM-1 increased significantly during the experimental phase (P = 0.002) and remained elevated and significantly higher than baseline levels during resolution (P < 0.001). These results support the concept that gingivitis adds to the systemic inflammatory burden of an individual.

  2. Local inflammatory reaction induced by Scolopendra viridicornis centipede venom in mice.

    PubMed

    Kimura, Louise Faggionato; Prezotto-Neto, José Pedro; Távora, Bianca de Carvalho Lins Fernandes; Antoniazzi, Marta Maria; Knysak, Irene; Gióia Guizze, Samuel Paulo; Santoro, Marcelo Larami; Barbaro, Katia Cristina

    2013-12-15

    Centipede envenomation is generally mild, and human victims usually manifest burning pain, erythema and edema. Despite the abundance and ubiquity of these animals, centipede venom has been poorly characterized in literature. For this reason, the aim of this work was to investigate local inflammatory features induced by Scolopendra viridicornis centipede envenomation in mice, evaluating edema formation, leukocyte infiltration, production of inflammatory mediators, and also performing histological analysis. The highest edematogenic activity induced by the venom, determined by plethysmometry, was noticed 0.5 h after injection in mice footpad. At 24 h, edema was still detected in animals that received 15 and 60 μg of venom, and at 48 h, only in animals injected with 60 μg of venom. In relation to leukocyte count, S. viridicornis venom induced cell recruitment, mainly neutrophils and monocytes/macrophages, in all doses and time periods analyzed in comparison with PBS-injected mice. An increase in lymphocytes was detected especially between 1 and 24 h at 60 μg dose. Besides, eosinophil recruitment was observed mainly for 15 and 60 μg doses in early time periods. Edema formation and cell recruitment were also confirmed by histological analysis. Moreover, S. viridicornis venom stimulated the release of IL-6, MCP-1, KC, and IL-1β. Conversely, S. viridicornis venom did not induce the release of detectable levels of TNF-α. We demonstrated that the edematogenic activity induced by S. viridicornis venom was of rapid onset, and the venom stimulated secretion of pro-inflammatory mediators which contribute to the inflammatory reaction induced by S. viridicornis venom in an experimental model.

  3. Expression of bacterial superantigen genes in mice induces localized mononuclear cell inflammatory responses.

    PubMed Central

    Dow, S W; Potter, T A

    1997-01-01

    Bacterial superantigens are potent T cell activators, and superantigen proteins have been injected into mice and other animals to study T cell responses in vivo. When superantigen proteins are injected, however, the T cell stimulatory effects cannot be confined to specific tissues. Therefore, to target superantigen expression to specific tissues, we used gene transfer techniques to express bacterial superantigen genes in mammalian cells in vitro and in tissues in vivo. Murine, human, and canine cells transfected with superantigen genes in vitro all produced superantigen proteins both intracellularly and extracellularly, as assessed by bioassay, immunocytochemistry, and antigen ELISA. Superantigens produced by transfected eukaryotic cells retained their biologic specificity for T cell receptor binding. Intramuscular injection of superantigen plasmid DNA in vivo induced an intense intramuscular mononuclear cell infiltrate, an effect that could not be reproduced by intramuscular injection of superantigen protein. Intradermal and intravenous injection of superantigen DNA induced cutaneous and intrapulmonary mononuclear cell inflammatory responses, respectively. Thus, superantigen genes can be expressed by mammalian cells in vivo. Superantigen gene therapy represents a novel method of targeting localized T cell inflammatory reactions, with potential application to treatment of cancer and certain infectious diseases. PMID:9169491

  4. Injury Induces Localized Airway Increases in Pro-Inflammatory Cytokines in Humans and Mice

    PubMed Central

    Jonker, Mark A.; Hermsen, Joshua L.; Gomez, F. Enrique; Sano, Yoshifumi

    2011-01-01

    Abstract Background Secretory immunoglobulin A (sIgA) increases in the airways of humans and mice after injury to protect against infection. The pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 are linked molecularly to sIgA production and secretion and are required for sIgA increases in the airway after injury in a mouse model. We investigated the injury effect on airway and serum concentrations to determine the source of the cytokines involved in the airway IgA response. Methods In the first experiment, TNF-α, IL-1β, and IL-6 concentrations in bronchoalveolar lavage (BAL) fluid and serum obtained from 11 ventilated trauma patients within 30 h of admission were compared with those in eight elective surgical patients. In the second experiment, male ICR mice received no injury (n = 7) or injury with sham celiotomy and neck incisions (n = 8) with sacrifice of all animals at 8 h for BAL fluid and serum cytokine measurements by enzyme-linked immunosorbent assay. Results Injured patients had significantly higher BAL fluid and serum TNF-α, IL-1β, and IL-6 concentrations, with greater increases in the BAL fluid than in the serum. Injured mice had significantly increased BAL fluid concentrations of TNF-α, IL-1β, and IL-6 without significant changes in serum TNF-α or IL-1β. Serum IL-6 increased significantly. Conclusions Injury significantly increases human and mouse airway TNF-α, IL-1β, and IL-6. Increases are greater in the airway than in serum, implying a local rather than a systemic stress response to injury. PMID:21166596

  5. Hyperbaric oxygen therapy ameliorates local brain metabolism, brain edema and inflammatory response in a blast-induced traumatic brain injury model in rabbits.

    PubMed

    Zhang, Yongming; Yang, Yanyan; Tang, Hong; Sun, Wenjiang; Xiong, Xiaoxing; Smerin, Daniel; Liu, Jiachuan

    2014-05-01

    Many studies suggest that hyperbaric oxygen therapy (HBOT) can provide some clinically curative effects on blast-induced traumatic brain injury (bTBI). The specific mechanism by which this occurs still remains unknown, and no standardized time or course of hyperbaric oxygen treatment is currently used. In this study, bTBI was produced by paper detonators equivalent to 600 mg of TNT exploding at 6.5 cm vertical to the rabbit's head. HBO (100% O2 at 2.0 absolute atmospheres) was used once, 12 h after injury. Magnetic resonance spectroscopy was performed to investigate the impact of HBOT on the metabolism of local injured nerves in brain tissue. We also examined blood-brain barrier (BBB) integrity, brain water content, apoptotic factors, and some inflammatory mediators. Our results demonstrate that hyperbaric oxygen could confer neuroprotection and improve prognosis after explosive injury by promoting the metabolism of local neurons, inhibiting brain edema, protecting BBB integrity, decreasing cell apoptosis, and inhibiting the inflammatory response. Furthermore, timely intervention within 1 week after injury might be more conducive to improving the prognosis of patients with bTBI.

  6. Fat-water MRI is sensitive to local adipose tissue inflammatory changes in a diet-induced obesity mouse model at 15T

    NASA Astrophysics Data System (ADS)

    Ong, Henry H.; Webb, Corey D.; Gruen, Marnie L.; Hasty, Alyssa H.; Gore, John C.; Welch, E. B.

    2015-03-01

    In obesity, fat-water MRI (FWMRI) methods provide valuable information about adipose tissue (AT) distribution. AT is known to undergo complex metabolic and endocrine changes in association with chronic inflammation including iron overloading. Here, we investigate the potential for FWMRI parameters (fat signal fraction (FSF), local magnetic field offset, and T2*) to be sensitive to AT inflammatory changes in an established diet-induced obesity mouse model. Male C57BL/6J mice were placed on a low fat (LFD) or a high fat diet (HFD). 3D multi- gradient-echo MRI at 15.2T was performed at baseline, 4, 8, 12, and 16 weeks after diet onset. A 3D fat-water separation algorithm and additional processing was used to generate FSF, local field offset, and T2* maps. We examined these parameters in perirenal AT ROIs from HFD and LFD mice. Results: The data suggest that FSF, local field offset, and T2* can differentiate time course behavior between inflamed and control AT (increasing FSF, decreasing local field offset, increasing followed by decreasing T2*). The biophysical mechanisms of these observed changes are not well understood and require further study. To the best of our knowledge, we report the first evidence that FWMRI can provide biomarkers sensitive to AT inflammation, and that FWMRI has the potential for longitudinal non-invasive assessment of AT inflammation in obesity.

  7. Noninvasive assessment of localized inflammatory responses

    PubMed Central

    Zhou, Jun; Tsai, Yi-Ting; Weng, Hong; Tang, Liping

    2011-01-01

    Inflammatory diseases are associated with the accumulation of activated inflammatory cells, particularly polymorphonuclear neutrophils (PMN), which release reactive oxygen species (ROS) to eradicate foreign bodies and microorganisms. To assess the location and extent of localized inflammatory responses, L-012, a highly-sensitive chemiluminescence probe, was employed to non-invasively monitor the production of ROS. We find that L-012-associated chemiluminescence imaging can be used to identify and to quantify the extent of inflammatory responses. Furthermore, regardless of differences among animal models, there is a good linear relationship between chemiluminescence intensity and PMN numbers surrounding inflamed tissue. Depletion of PMN substantially diminished L-012-associated chemiluminescence in vivo. Finally, L-012-associated chemiluminescence imaging was found to be a powerful tool for assessing implant-mediated inflammatory responses by measuring chemiluminescent intensities at the implantation sites. These results support the use of L-012 for monitoring the kinetics of inflammatory responses in vivo via the detection and quantification of ROS production. PMID:22080048

  8. PDT-induced inflammatory and host responses.

    PubMed

    Firczuk, Małgorzata; Nowis, Dominika; Gołąb, Jakub

    2011-05-01

    Photodynamic therapy (PDT) is used in the management of neoplastic and nonmalignant diseases. Its unique mechanisms of action include direct cytotoxic effects exerted towards tumor cells, destruction of tumor and peritumoral vasculature and induction of local acute inflammatory reaction. The latter develops in response to (1) damage to tumor and stromal cells that leads to the release of cell death-associated molecular patterns (CDAMs) or damage associated molecular patterns (DAMPs), (2) early vascular changes that include increased vascular permeability, vascular occlusion, and release of vasoactive and proinflammatory mediators, (3) activation of alternative pathway of complement leading to generation of potent chemotactic factors, and (4) induction of signaling cascades and transcription factors that trigger secretion of cytokines, matrix metalloproteinases, or adhesion molecules. The majority of studies indicate that induction of local inflammatory response contributes to the antitumor effects of PDT and facilitates development of systemic immunity. However, the degree of PDT-induced inflammation and its subsequent contribution to its antitumor efficacy depend on multiple parameters, such as chemical nature, concentration and subcellular localization of the photosensitizers, the spectral characteristics of the light source, light fluence and fluence rate, oxygenation level, and tumor type. Identification of detailed molecular mechanisms and development of therapeutic approaches modulating PDT-induced inflammation will be necessary to tailor this treatment to particular clinical conditions.

  9. Local Anesthetic-Induced Neurotoxicity

    PubMed Central

    Verlinde, Mark; Hollmann, Markus W.; Stevens, Markus F.; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-01-01

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor. PMID:26959012

  10. Homocysteine induces inflammatory transcriptional signaling in monocytes

    PubMed Central

    Meng, Shu; Ciment, Stephen; Jan, Michael; Tran, Tran; Pham, Hung; Cueto, Ramón; Yang, Xiao-Feng; Wang, Hong

    2013-01-01

    Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease. This study is to investigate transcriptional mechanism underlying homocysteine (Hcy)-induced and monocytes (MC)-derived inflammatory response. We identified 11 Hcy-induced genes, 17 anti-inflammatory cytokine interleukin 10-induced, 8 pro-inflammatory cytokine interferon γ (IFNγ)-induced and 8 pro-inflammatory cytokine tumor necrosis factor α (TNFα)-induced genes through literature search. Binding frequency of 36 transcription factors (TFs) implicated in inflammation and MC differentiation were analyzed within core promoter regions of identified genes, and classified into 3 classes based on the significant binding frequency to the promoter of Hcy-induced genes. Class 1 TFs exert high significant binding frequency in Hcy-induced genes. Class 2 and 3 TFs have low and no significant binding frequency, respectively. Class 1 TF binding occurrence in Hcy-induced genes is similar to that in IFNγ-induced genes, but not that in TNFα-induced. We conclude that Hcy is a pro-inflammatory amino acid and induces inflammatory transcriptional signal pathways mediated by class 1 TF. We term class 1 TF, which includes heat shock factor, MC enhancer factor-2, nuclear factor of activated T-cells, nuclear factor kappa light chain enhancer of activated B cells and Krueppel-like factor 4, as putative Hcy-responsive TFs. PMID:23276953

  11. A probiotic strain of Escherichia coli, Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice

    PubMed Central

    Arribas, B; Rodríguez-Cabezas, ME; Camuesco, D; Comalada, M; Bailón, E; Utrilla, P; Nieto, A; Concha, A; Zarzuelo, A; Gálvez, J

    2009-01-01

    Background and purpose: Escherichia coli Nissle 1917 is a probiotic strain used in the treatment of intestinal immune diseases, including ulcerative colitis. The aim of the present study was to test if this probiotic bacterium can also show systemic immunomodulatory properties after oral administration. Experimental approach: The probiotic strain was administered to rats or mice for 2 weeks before its assay in two experimental models of altered immune response, the trinitrobenzenesulphonic acid (TNBS) model of rat colitis, localized in the colon, and the lipopolysaccharide (LPS) model of systemic septic shock in mice. Inflammatory status was evaluated both macroscopically and biochemically after 1 week in the TNBS model or after 24 h in the LPS shock model. In addition, splenocytes were obtained from mice and stimulated, ex vivo, with concanavalin A or LPS to activate T or B cells, respectively, and cytokine production (IL-2, IL-5 and IL-10) by T cells and IgG secretion by B cells measured. Key results: E. coli Nissle 1917 was anti-inflammatory in both models of altered immune response. This included a reduction in the pro-inflammatory cytokine tumour necrosis factor-α both in the intestine from colitic rats, and in plasma and lungs in mice treated with LPS. The systemic beneficial effect was associated with inhibited production of the T cell cytokines and by down-regulation of IgG release from splenocyte-derived B cells. Conclusions and implications: The anti-inflammatory effects of E. coli Nissle 1917 given orally were not restricted to the gastrointestinal tract. PMID:19486007

  12. Homocysteine induces inflammatory transcriptional signaling in monocytes.

    PubMed

    Meng, Shu; Ciment, Stephen; Jan, Michael; Tran, Tran; Pham, Hung; Cueto, Ramon; Yang, Xiao-Feng; Wang, Hong

    2013-01-01

    Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease. Here, we studied transcriptional regulation in homocysteine (Hcy)-induced gene expression in monocytes (MC). We identified 11 Hcy-induced genes, 17 anti-inflammatory cytokine interleukin 10-induced, 8 pro-inflammatory cytokine interferon gamma (IFN gamma)-induced and 8 pro-inflammatory cytokine tumor necrosis factor alpha (TNF alpha)-induced genes through literature search. Binding frequency of 36 transcription factors (TFs) implicated in inflammation and MC differentiation were analyzed within core promoter regions of identified genes, and classified into 3 classes based on the significant binding frequency to the promoter of Hcy-induced genes. Class 1 TFs exert high significant binding frequency in Hcy-induced genes. Class 2 and 3 TFs have low and no significant binding frequency, respectively. Class 1 TF binding occurrence in Hcy-induced genes is similar to that in IFN gamma -induced genes, but not that in TNF alpha -induced. We conclude that Hcy is a pro-inflammatory amino acid and induces inflammatory transcriptional signal pathways mediated by class 1 TF. We term class 1 TF as putative Hcy-responsive TFs.

  13. Inhibition of titanium-particle-induced inflammatory osteolysis after local administration of dopamine and suppression of osteoclastogenesis via D2-like receptor signaling pathway.

    PubMed

    Yang, Huilin; Xu, Yaozeng; Zhu, Mo; Gu, Ye; Zhang, Wen; Shao, Hongguo; Wang, Yijun; Ping, Zichuan; Hu, Xuanyang; Wang, Liangliang; Geng, Dechun

    2016-02-01

    Chronic inflammation and extensive osteoclast formation play critical roles in wear-debris-induced peri-implant osteolysis. We investigated the potential impact of dopamine on titanium-particle-induced inflammatory osteolysis in vivo and in vitro. Twenty-eight C57BL/6J mice were randomly assigned to four groups: sham control (PBS treatment), titanium (titanium/PBS treatment), low- (titanium/2 μg kg(-1) day(-1) dopamine) and high-dopamine (titanium/10 μg kg(-1) day(-1) dopamine). After 2 weeks, mouse calvariae were collected for micro-computed tomography (micro-CT) and histomorphometry analysis. Bone-marrow-derived macrophages (BMMs) were isolated to assess osteoclast differentiation. Dopamine significantly reduced titanium-particle-induced osteolysis compared with the titanium group as confirmed by micro-CT and histomorphometric data. Osteoclast numbers were 34.9% and 59.7% (both p < 0.01) lower in the low- and high-dopamine-treatment groups, respectively, than in the titanium group. Additionally, low RANKL, tumor necrosis factor-α, interleukin-1β and interleukin-6 immunochemistry staining were noted in dopamine-treatment groups. Dopamine markedly inhibited osteoclast formation, osteoclastogenesis-related gene expression and pro-inflammatory cytokine expression in BMMs in a dose-dependent manner. Moreover, the resorption area was decreased with 10(-9) M and 10(-8) M dopamine to 40.0% and 14.5% (both p < 0.01), respectively. Furthermore, the inhibitory effect of dopamine was reversed by the D2-like-receptor antagonist haloperidol but not by the D1-like-receptor antagonist SCH23390. These results suggest that dopamine therapy could be developed into an effective and safe method for osteolysis-related disease caused by chronic inflammation and excessive osteoclast formation.

  14. DNA Vaccines: MHC II-Targeted Vaccine Protein Produced by Transfected Muscle Fibres Induces a Local Inflammatory Cell Infiltrate in Mice

    PubMed Central

    Løvås, Tom-Ole; Gundersen, Kristian; Bogen, Bjarne

    2014-01-01

    Vaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined. Here we have constructed DNA vaccines that express the fluorescent protein mCherry, a strategy which allowed tracking of vaccine proteins. Transfected muscle fibres in mice were visualized, and their relationship to infiltrating mononuclear cells could be determined. Interestingly, muscle fibers that produced MHC class II-specific dimeric vaccine proteins with mCherry were for weeks surrounded by a localized intense cellular infiltrate composed of CD45+, MHC class II+ and CD11b+ cells. Increasing numbers of eosinophils were observed among the infiltrating cells from day 7 after immunization. The local infiltrate surrounding mCherry+ muscle fibers was dependent on the MHC II-specificity of the vaccine proteins since the control, a non-targeted vaccine protein, failed to induce similar infiltrates. Chemokines measured on day 3 in immunized muscle indicate both a DNA effect and an electroporation effect. No influence of targeting was observed. These results contribute to our understanding for why targeted DNA vaccines have an improved immunogenicity. PMID:25299691

  15. DNA vaccines: MHC II-targeted vaccine protein produced by transfected muscle fibres induces a local inflammatory cell infiltrate in mice.

    PubMed

    Løvås, Tom-Ole; Bruusgaard, Jo C; Øynebråten, Inger; Gundersen, Kristian; Bogen, Bjarne

    2014-01-01

    Vaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined. Here we have constructed DNA vaccines that express the fluorescent protein mCherry, a strategy which allowed tracking of vaccine proteins. Transfected muscle fibres in mice were visualized, and their relationship to infiltrating mononuclear cells could be determined. Interestingly, muscle fibers that produced MHC class II-specific dimeric vaccine proteins with mCherry were for weeks surrounded by a localized intense cellular infiltrate composed of CD45+, MHC class II+ and CD11b+ cells. Increasing numbers of eosinophils were observed among the infiltrating cells from day 7 after immunization. The local infiltrate surrounding mCherry+ muscle fibers was dependent on the MHC II-specificity of the vaccine proteins since the control, a non-targeted vaccine protein, failed to induce similar infiltrates. Chemokines measured on day 3 in immunized muscle indicate both a DNA effect and an electroporation effect. No influence of targeting was observed. These results contribute to our understanding for why targeted DNA vaccines have an improved immunogenicity.

  16. BH3-only protein Bim is associated with the degree of Helicobacter pylori-induced gastritis and is localized to the mitochondria of inflammatory cells in the gastric mucosa.

    PubMed

    Akazawa, Yuko; Matsuda, Katsuya; Isomoto, Hajime; Matsushima, Kayoko; Kido, Yoko; Urabe, Shigetoshi; Yamaghchi, Naoyuki; Ohnita, Ken; Takeshima, Fuminao; Kondo, Hisayoshi; Tsugawa, Hitoshi; Suzuki, Hidekazu; Moss, Joel; Nakao, Kazuhiko; Nakashima, Masahiro

    2015-09-01

    BH3-only protein, Bim, is a pro-apoptotic protein that mediates mitochondria-dependent cell death. However, the role of Bim in Helicobacter pylori-associated gastritis remains unclear. This study aimed to assess the cellular localization of Bim and its possible role in H. pylori-induced gastritis. The study was conducted on biopsy specimens obtained from 80 patients who underwent upper gastrointestinal endoscopy (H. pylori-negative: n=30, positive: n=50). Association between Bim mRNA expression and severity of gastritis was evaluated and the localization of Bim was examined by immunofluorescence. Bim mRNA expression was positively correlated with the degree of gastritis, as defined by the Sydney system. Immunohistochemical analysis confirmed increased Bim expression in H. pylori-infected gastric mucosa compared with uninfected mucosa in both humans and mice. Bim localized in myeloperoxidase- and CD138-positive cells of H. pylori-infected lamina propria and submucosa of the gastric tract, indicating that this protein is predominantly expressed in neutrophils and plasma cells. In contrast, Bim did not localize in CD20-, CD3-, or CD68-positive cells. Bim was expressed in the mitochondria, where it was partially co-localized with activated Bax and cleaved-PARP. In conclusion, Bim is expressed in neutrophils and plasma cells in H. pylori-associated gastritis, where it may participate in the termination of inflammatory response by causing mitochondria-mediated apoptosis in specific leucocytes.

  17. Immunoscintigraphic localization of inflammatory lesions: clinical experience.

    PubMed

    Seybold, K; Locher, J T; Coosemans, C; Andres, R Y; Schubiger, P A; Bläuenstein, P

    1988-01-01

    This clinical study was based on the experimental results reported in the two preceding papers, showing that the highly selective affinity of the 123I-anti-CEA monoclonal antibody 47 (123I-Mabgc) for human granulocytes makes this compound suitable for the immunoscintigraphic detection of inflammatory lesions. Forty five patients with suspected infections have been studied after infusion of 4 mCi (148 MBq) 123I-Mabgc corresponding to 120 micrograms labeled protein. No adverse reactions have been seen. Because of the high number of labeled cells, the quality of the images was excellent. SPECT was performed in 15 cases in order to define the extent of the lesion. Infectious foci were usually seen 3-5 h postinjection, but the unimpaired function of the granulocytes guarantees diagnostically relevant examinations over a much longer period of time. Scans were read as being negative if no pathological accumulation of activity was detected after 24 h. The new scanning method is technically easy to perform and provides distinct advantages over other techniques necessitating in vitro labeling of the white blood cells. Therefore, recommended indications are acute infections of unknown origin or extent, especially recurrent episodes of osteomyelitis and infections of joint prostheses.

  18. Inflammatory response in the pig uterus induced by seminal plasma.

    PubMed

    Bischof, R J; Lee, C S; Brandon, M R; Meeusen, E

    1994-03-01

    The immunological and physiological influence of seminal plasma on the local uterine environment was investigated by immunohistochemical and flow cytometrical studies on uterine tissues and lymph nodes taken from gilts after mating with a vasectomised boar and from control, unmated gilts. These studies revealed that mating with a vasectomised boar induces an acute transient inflammatory response in the endometrium resulting in marked changes in the presence and distribution of leukocytes and extensive proliferation of the endometrial glands. At the same time there was an increase in CD8L and sIg+ cells and an up-regulation of MHC class II and IL-2 receptor expression in the uterine lymph nodes of mated pigs. This would suggest that seminal plasma deposited in the uterus can activate cells in the local draining lymph nodes. Together, these results demonstrate in utero that pronounced immunological and physiological changes are induced in vivo by seminal plasma.

  19. Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain

    PubMed Central

    Xie, Wenrui; Chen, Sisi; Strong, Judith A.; Li, Ai-Ling; Lewkowich, Ian P.

    2016-01-01

    Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a “microsympathectomy” by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal

  20. Local brain heavy ion irradiation induced Immunosuppression

    NASA Astrophysics Data System (ADS)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  1. Characterisation of the local inflammatory response in appendicitis.

    PubMed

    Tsuji, M; Puri, P; Reen, D J

    1993-01-01

    In this study we have characterised the local inflammatory response in acute suppurative appendicitis (S), focal appendicitis (F), and normal appendices (C). Enumeration of lymphocyte subpopulations, cells expressing IL-2 receptor, natural killer (NK) cells, monocytes and plasma cell isotypes and subclasses infiltrating the lamina propria was carried out on all specimens using immunoperoxidase staining procedures. Total T cells were significantly increased in both acute suppurative appendicitis and focal appendicitis compared with controls (p < 0.001). Cells infiltrating the lamina propria expressed IL-2 receptor in all appendiceal specimens but were significantly increased in both acute and focal appendicitis (p < 0.01). IgG and IgA plasma cell isotypes were significantly increased in all S and F appendiceal specimens (p < 0.001). Monocyte and NK cell numbers, however, were only increased in acute suppurative appendiceal specimens. The increased lymphocyte and plasma cell isotypes seen in focal appendicitis occurred throughout the entire organ even through the inflammatory focus was confined to only three to seven serial sections. These results clearly show a differential pattern of cellular infiltration in focal appendicitis from that seen in acute suppurative appendicitis. The selective lymphocyte and plasma cell nature of the cellular infiltrate in the lamina propria of focal appendicitis may reflect the presence of a specific immune response to an as yet unidentified luminal antigen as a possible cause of appendicitis.

  2. Local enema treatment to inhibit FOLH1/GCPII as a novel therapy for inflammatory bowel disease.

    PubMed

    Date, Abhijit A; Rais, Rana; Babu, Taarika; Ortiz, Jairo; Kanvinde, Pranjali; Thomas, Ajit G; Zimmermann, Sarah C; Gadiano, Alexandra J; Halpert, Gilad; Slusher, Barbara S; Ensign, Laura M

    2017-01-31

    Here we evaluate the potential for local administration of a small molecule FOLH1/GCPII inhibitor 2-phosphonomethyl pentanedioic acid (2-PMPA) as a novel treatment for inflammatory bowel disease (IBD). We found that FOLH1/GCPII enzyme activity was increased in the colorectal tissues of mice with TNBS-induced colitis, and confirmed that 2-PMPA inhibited FOLH1/GCPII enzyme activity ex vivo. In order to maximize local enema delivery of 2-PMPA, we studied the effect of vehicle tonicity on the absorption of 2-PMPA in the colon. Local administration of 2-PMPA in a hypotonic enema vehicle resulted in increased colorectal tissue absorption at 30min compared to 2-PMPA administered in an isotonic enema vehicle. Furthermore, local delivery of 2-PMPA in hypotonic enema vehicle resulted in prolonged drug concentrations for at least 24h with minimal systemic exposure. Finally, daily treatment with the hypotonic 2-PMPA enema ameliorated macroscopic and microscopic symptoms of IBD in the TNBS-induced colitis mouse model, indicating the potential of FOLH1/GCPII inhibitors for the local treatment of IBD.

  3. Transport induced inflammatory responses in horses.

    PubMed

    Wessely-Szponder, J; Bełkot, Z; Bobowiec, R; Kosior-Korzecka, U; Wójcik, M

    2015-01-01

    Deleterious response to road transport is an important problem in equine practice. It determines different physiological, immunological and metabolic changes which lead to increased susceptibility to several disorders such as pneumonia, diarrhea, colics, laminitis, injuries and rhabdomyolisis. The aim of our study was to look for possible relationships between transportation of female young and older horses over a long and short distance and an inflammatory state reflected by an increase of acute phase protein concentration, oxidative stress and muscle injury. The study was conducted on 24 cold-blooded female horses divided into four groups. Six fillies aged 6-18 months and six mares aged 10-12 years were transported over the distance of about 550 km, six fillies aged 6-18 months and six mares aged 10-12 years were transported over the distance of about 50 km. Plasma and serum were obtained from blood samples taken before transportation (T0), immediately after transportation (T1) and at an abattoir during slaughter (T2). In these samples fibrinogen, MDA, AST and CK were assessed. Fibrinogen increased in all studied groups especially in fillies after long distance transportation, where it reached 205±7.07 mg/dl before transportation, 625±35.35 mg/dl after transportation, and 790±14.14 mg/dl during slaughter. MDA concentrations rose after transportation and reached the maximal level during slaughter. CK activity was more elevated after short transportation in younger horses, whereas initial activity of AST was higher in older horses. We estimated that intensified responses from acute phase, oxidative stress and muscle injury parameters indicated an inflammatory state.

  4. Myeloid hypoxia-inducible factors in inflammatory diseases.

    PubMed

    Aragonés, Julian; Elorza, Ainara; Acosta-Iborra, Barbara; Landázuri, Manuel O

    2011-01-01

    Hypoxia inducible factors (HIF1 and HIF2) have emerged as central regulators of the activity of myeloid cells at inflammatory sites where O(2) is frequently limited. Novel insights in the field have revealed that the expression of HIFs by myeloid cells is not exclusively induced by hypoxia but also in response to central inflammatory mediators independently of O(2) shortage. This has substantially elevated the biological significance of HIFs in the context of inflammatory diseases. As a consequence, the loss of HIF1 or HIF2 in myeloid cells specifically compro-mises some of the processes driven by myeloid cells, such as bactericidal activity and myeloid invasion, as well as inflammation-associated detrimental consequences.

  5. Suppression of local and systemic responses in streptococcal cell wall-induced acute inflammation of the air pouch by cyclosporine A. Comparison with the effects of two anti-inflammatory bis-benzimidazoles.

    PubMed Central

    Dieter Geratz, J.; Pryzwansky, K. B.; Schwab, J. H.; Anderle, S. K.; Tidwell, R. R.

    1993-01-01

    Injection of streptococcus group A cell wall-derived peptidoglycan polysaccharide into a subcutaneous air pouch causes local outpouring of neutrophils and macrophages and distant hemopoietic proliferation in spleen and bone marrow. Cyclosporine A (CyA) suppressed neutrophil accumulation and all cell lines of hemopoiesis. trans-1,2-Bis(5-amidino-2-benzimidazolyl)ethene (BBE) also interfered with neutrophil exudation, yet reduced only the erythroid component of the hemopoietic process. The ethane analogue of BBE, on the other hand, did not prevent neutrophil emigration, but held down splenic erythropoiesis and myelopoiesis. All three compounds stimulated streptococcus group A cell wall-derived peptidoglycan polysaccharide uptake by pouch macrophages. CyA being the least active, BBE and its ethane analogue also produced a shift of wear-and-tear pigment from large numbers of small splenic macro-phages into small numbers of large macrophages. The pouch model is very useful in the study of anti-inflammatory compounds and has furnished the first evidence of CyA interference with massive neutrophilic infiltration and with hemopoietic signals. Images Figure 3 Figure 4 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:8475995

  6. Cockroach induces inflammatory responses through protease-dependent pathways.

    PubMed

    Wada, Kota; Matsuwaki, Yoshinori; Moriyama, Hiroshi; Kita, Hirohito

    2011-01-01

    Exposure to cockroaches is a major risk factor for asthma. Products from cockroaches may contain proteases and ligands for pattern recognition receptors. These molecules may activate airway inflammatory cells, such as eosinophils, that are involved in asthma. Among inner-city children, cockroach allergens play an especially important role in increasing asthma morbidity. The molecular mechanism for this association between cockroach exposure and asthma is not fully understood. Enzymatic activities from cockroaches activate inflammatory cells in the airways and may also exacerbate certain human airway diseases, such as asthma. We recently reported that cockroach extracts contain pepstatin A-sensitive proteases that activate PAR-2 and induce activation and degranulation of human eosinophils. This review focuses on the effects of cockroach on various inflammatory cells, including eosinophils, epithelial cells, fibroblasts, dendritic cells, and T cells, in allergic reactions.

  7. Platelets protect lung from injury induced by systemic inflammatory response

    PubMed Central

    Luo, Shuhua; Wang, Yabo; An, Qi; Chen, Hao; Zhao, Junfei; Zhang, Jie; Meng, Wentong; Du, Lei

    2017-01-01

    Systemic inflammatory responses can severely injure lungs, prompting efforts to explore how to attenuate such injury. Here we explored whether platelets can help attenuate lung injury in mice resulting from extracorporeal circulation (ECC)-induced systemic inflammatory responses. Mice were subjected to ECC for 30 min, then treated with phosphate-buffered saline, platelets, the GPIIb/IIIa inhibitor Tirofiban, or the combination of platelets and Tirofiban. Blood and lung tissues were harvested 60 min later, and lung injury and inflammatory status were assessed. As expected, ECC caused systemic inflammation and pulmonary dysfunction, and platelet transfusion resulted in significantly milder lung injury and higher lung function. It also led to greater numbers of circulating platelet-leukocyte aggregates and greater platelet accumulation in the lung. Platelet transfusion was associated with higher production of transforming growth factor-β and as well as lower levels of tumour necrosis factor-α and neutrophil elastase in plasma and lung. None of these platelet effects was observed in the presence of Tirofiban. Our results suggest that, at least under certain conditions, platelets can protect lung from injury induced by systemic inflammatory responses. PMID:28155889

  8. Local anesthetics induce human renal cell apoptosis.

    PubMed

    Lee, H Thomas; Xu, Hua; Siegel, Cory D; Krichevsky, Igor E

    2003-01-01

    Renal cell apoptosis contributes significantly to the pathogenesis of acute renal failure. Local anesthetics induce apoptosis in neuronal and lymphocytic cell lines. We examined the effects of chronic (48 h) local anesthetic treatment (lidocaine, bupivacaine and tetracaine) on human proximal tubular (HK-2) cells. Apoptosis induction was assessed by detecting poly(ADP)-ribose polymerase fragmentation, caspase activation, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, DNA laddering and by cellular morphology. Cell death was quantified by measuring neutral red dye uptake and lactate dehydrogenase released into the cell culture medium. All 3 local anesthetics caused concentration-dependent cell death, induced HK-2 cell apoptosis and potentiated TNF-alpha induced apoptosis. Local anesthetics induced HK-2 cell apoptosis by activation of caspases 3, 6, 7, 8 and 9. ZVAD-fmk, a pan-caspase inhibitor, blocked the local anesthetic induced HK-2 cell apoptosis. Local anesthetics also inhibited the activities of anti-apoptotic kinases protein kinase B (Akt) and extracellular signal regulated mitrogen-activated protein kinase. Local anesthetic's pro-apoptotic effects are independent of sodium channel inhibition as tetrodotoxin, a selective voltage-gated sodium channel blocker, failed to mimic local anesthetic-mediated induction or potentiation of HK-2 cell apoptosis. We conclude that local anesthetics induce human renal cell apoptotic signaling by caspase activation and via inhibition of pro-survival signaling pathways.

  9. Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension.

    PubMed

    Kossmann, Sabine; Lagrange, Jeremy; Jäckel, Sven; Jurk, Kerstin; Ehlken, Moritz; Schönfelder, Tanja; Weihert, Yvonne; Knorr, Maike; Brandt, Moritz; Xia, Ning; Li, Huige; Daiber, Andreas; Oelze, Matthias; Reinhardt, Christoph; Lackner, Karl; Gruber, Andras; Monia, Brett; Karbach, Susanne H; Walter, Ulrich; Ruggeri, Zaverio M; Renné, Thomas; Ruf, Wolfram; Münzel, Thomas; Wenzel, Philip

    2017-02-01

    Multicellular interactions of platelets, leukocytes, and the blood vessel wall support coagulation and precipitate arterial and venous thrombosis. High levels of angiotensin II cause arterial hypertension by a complex vascular inflammatory pathway that requires leukocyte recruitment and reactive oxygen species production and is followed by vascular dysfunction. We delineate a previously undescribed, proinflammatory coagulation-vascular circuit that is a major regulator of vascular tone, blood pressure, and endothelial function. In mice with angiotensin II-induced hypertension, tissue factor was up-regulated, as was thrombin-dependent endothelial cell vascular cellular adhesion molecule 1 expression and integrin αMβ2- and platelet-dependent leukocyte adhesion to arterial vessels. The resulting vascular inflammation and dysfunction was mediated by activation of thrombin-driven factor XI (FXI) feedback, independent of factor XII. The FXI receptor glycoprotein Ibα on platelets was required for this thrombin feedback activation in angiotensin II-infused mice. Inhibition of FXI synthesis with an antisense oligonucleotide was sufficient to prevent thrombin propagation on platelets, vascular leukocyte infiltration, angiotensin II-induced endothelial dysfunction, and arterial hypertension in mice and rats. Antisense oligonucleotide against FXI also reduced the increased blood pressure and attenuated vascular and kidney dysfunction in rats with established arterial hypertension. Further, platelet-localized thrombin generation was amplified in an FXI-dependent manner in patients with uncontrolled arterial hypertension, suggesting that platelet-localized thrombin generation may serve as an inflammatory marker of high blood pressure. Our results outline a coagulation-inflammation circuit that promotes vascular dysfunction, and highlight the possible utility of FXI-targeted anticoagulants in treating hypertension, beyond their application as antithrombotic agents in

  10. Allergen-sensitization in vivo enhances mast cell-induced inflammatory responses and supports innate immunity.

    PubMed

    Salinas, Eva; Quintanar, J Luis; Ramírez-Celis, Nora Alejandra; Quintanar-Stephano, Andrés

    2009-12-02

    Mast cells are immune cells that play a crucial role in inflammatory reactions related to allergic reactions and the defense against certain parasites and bacteria. In allergy, the binding of immunoglobulin E (IgE) to its high-affinity receptor (FcepsilonRI) sensitizes mast cells. Subsequent cross-linking of IgE-FcepsilonRI by multivalent antigen results in cellular activation and the release of proinflammatory mediators. Recent in vivo and in vitro experiments suggest that IgE not only acts as an allergen sensor, but also induces molecular and biological changes in mast cells. In the present study we examined whether allergen-sensitization in vivo could modify the magnitude of mast cells-induced inflammatory responses. Moreover, we studied changes in peritoneal mast cell number and histamine amount during and after sensitization. We provided evidence that sensitization, at the time of the maximum allergen-specific IgE-titer, increases the intensity of a local inflammatory process generated in a cutaneous anaphylactic reaction. Sensitization also supports innate immunity, improving survival and speeding up the resolution of an acute inflammatory reaction induced by polymicrobial sepsis, while decreasing the amount of histamine in peritoneal mast cells. In addition, our results showed that sensitization induces a late increase in the number and histamine amount of peritoneal mast cells. Thus, our findings clearly demonstrated that sensitization induces changes in mast cells which prepare the cell to induce more intense inflammatory responses. This entails an increased detrimental role in subsequent IgE-dependent allergic reactions and an improved protective function in innate defense against pathogens.

  11. Induced inflammatory process in Peripatus acacioi Marcus et Marcus (Onychophora).

    PubMed

    Silva, J R; Coelho, M P; Nogueira, M I

    2000-01-01

    The inflammatory response induced by the implant of a suture thread in Peripatus acacioi muscle was characterized under light and transmission electron microscopy (TEM). After 24 and 48 h granulocytes were observed migrating through the connective tissue toward the suture thread. These cells contain cytoplasmic eosinophilic granules as well as free granules near to the thread. There were few spherule cells with eccentric smooth kidney-shaped acidophilic nuclei and basophilic granules. Cells with intermediary characteristics as well as cells with a central basophilic nucleus with scarce acidophilic cytoplasm devoid of granules were also found. Under TEM, the granulocytic coelomocytes show small and homogeneous electron dense granules, while the spherule cells possess spherules that can be heterogeneous, granular, or with myelin figures. An acute induced inflammatory process is described for the first time in Onychophora and contributes to the scarce available literature on the function of the coelomocytes within this group.

  12. Characterization of inflammatory response induced by Potamotrygon motoro stingray venom in mice.

    PubMed

    Kimura, Louise F; Prezotto-Neto, José P; Antoniazzi, Marta M; Jared, Simone Gs; Santoro, Marcelo L; Barbaro, Katia C

    2014-05-01

    Freshwater stingray accidents cause intense pain followed by edema, erythema, and necrosis formation. Treatment for stingray envenomation is based on administration of analgesic, antipyretic, and anti-inflammatory drugs. This report evaluated the local inflammatory reaction-including edema formation, leukocyte recruitment, release of inflammatory mediators, and histopathological changes-after the intraplantar injection of Potamotrygon motoro stingray venom in mice. Edema was observed as soon as 15 min after venom injection, peaking at 30 min, and lasted up to 48 h. In addition, P. motoro venom increased neutrophil counts in the site of injection, at all time periods and venom doses analyzed. Increased eosinophil and lymphocyte counts were detected mainly at 24 h. Moreover, monocytes/macrophages were observed in large amounts at 24 and 48 h. Microscopically, the venom induced leukocyte migration to the injured tissue, edema, mast cell degranulation, angiogenesis, and epidermal damage. Inflammatory mediator release (IL-6, MCP-1 and KC) was detected as soon as 1 h after venom injection, and it increased significantly at 4 h. At 24 h, the venom induced only the production of MCP-1. These results show that this stingray venom evokes a complex inflammatory reaction, with rapid and persistent edema formation, leukocyte recruitment, and release of cytokines and chemokines.

  13. Anti-inflammatory agents and inducibility of hepatic drug metabolism.

    PubMed

    Pappas, P; Stephanou, P; Vasiliou, V; Marselos, M

    1998-01-01

    Two rat liver cytosolic aldehyde dehydrogenases, ALDH1 and ALDH3c, are of particular interest because they are inducible by different classes of xenobiotics. ALDHI is mainly increased by phenobarbital-type inducers; polycyclic aromatic hydrocarbons (PAHs), such as 3- methylcholanthrene (3MC), increase ALDH3c enzyme activity in all rat species currently tested. In addition, ALDH3c has been found to reflect the subfamily CYPIA of cytochrome P-450, as well as other enzymes functionally related to the aryl hydrocarbon receptor (the "Ah-receptor enzyme battery"), which is activated by the same type of inducers. In the present study we investigated whether the induction of ALDH3c might be connected with a chemically produced aseptic inflammation of the hepatocyte. To answer this question, we examined the relationship between the induction of ALDH3c by 3MC and the arachidonic acid cascade. Different non-steroid anti-inflammatory drugs (NSAIDs) were tested in combination with 3MC and in post-treatment. The 3MC-induced ALDH3c activity was significantly diminished by the co-administered anti-inflammatory agents. Two microsomal enzyme activities (ethoxyresorufin-O-deethylase, EROD; aryl-hydrocarbon-hydroxylase, AHH) were also decreased. Similar results were obtained with NSAIDs administered to animals pre- treated with 3MC, as far as the ALDH3c activity was concerned, but not for the microsomal enzyme activity (EROD and AHH). In conclusion, the induction of ALDH3c, after PAH treatment, may be related to an aseptic inflammation of the hepatocytes. This effect is reduced by commonly used steroid and non-steroid anti- inflammatory drugs, and although the mechanism of inhibition has not yet been elucidated, it appears likely that ALDH3c and CYP1A activities are associated with the "acute phase" response.

  14. Inflammatory stress potentiates emodin-induced liver injury in rats

    PubMed Central

    Tu, Can; Gao, Dan; Li, Xiao-Fei; Li, Chun-Yu; Li, Rui-Sheng; Zhao, Yan-Ling; Li, Na; Jia, Ge-Liu-Chang; Pang, Jing-Yao; Cui, He-Rong; Ma, Zhi-Jie; Xiao, Xiao-He; Wang, Jia-Bo

    2015-01-01

    Herbal medicines containing emodin, widely used for the treatment of hepatitis in clinic, have been reported with hepatotoxicity in individuals. A modest inflammatory stress potentiating liver injury has been linked to the idiosyncratic drug-induced liver injury (IDILI). In this study, we investigated the hypothesis that lipopolysaccharide (LPS) interacts with emodin could synergize to cause liver injury in rats. Emodin (ranging from 20, 40, to 80 mg/kg), which is in the range of liver protection, was administered to rats, before LPS (2.8 mg/kg) or saline vehicle treatment. The biochemical tests showed that non-toxic dosage of LPS coupled with emodin caused significant increases of plasma ALT and AST activities as compared to emodin alone treated groups (P < 0.05). In addition, with LPS or emodin alone could not induce any changes in ALT and AST activity, as compared with the control group (0.5% CMC-Na treatment). Meanwhile, the plasma proinflammatory cytokines, TNF-α, IL-1β, and IL-6 increased significantly in the emodin/LPS groups compared to either emodin groups or the LPS (P < 0.05). Histological analysis showed that liver damage was only found in emodin/LPS cotreatmented rat livers samples. These results indicate that non-toxic dosage of LPS potentiates the hepatotoxicity of emodin. This discovery raises the possibility that emodin and herbal medicines containing it may induce liver injury in the inflammatory stress even in their therapeutic dosages. PMID:26557087

  15. Linking lung function and inflammatory responses in ventilator-induced lung injury.

    PubMed

    Cannizzaro, Vincenzo; Hantos, Zoltan; Sly, Peter D; Zosky, Graeme R

    2011-01-01

    Despite decades of research, the mechanisms of ventilator-induced lung injury are poorly understood. We used strain-dependent responses to mechanical ventilation in mice to identify associations between mechanical and inflammatory responses in the lung. BALB/c, C57BL/6, and 129/Sv mice were ventilated using a protective [low tidal volume and moderate positive end-expiratory pressure (PEEP) and recruitment maneuvers] or injurious (high tidal volume and zero PEEP) ventilation strategy. Lung mechanics and lung volume were monitored using the forced oscillation technique and plethysmography, respectively. Inflammation was assessed by measuring numbers of inflammatory cells, cytokine (IL-6, IL-1β, and TNF-α) levels, and protein content of the BAL. Principal components factor analysis was used to identify independent associations between lung function and inflammation. Mechanical and inflammatory responses in the lung were dependent on ventilation strategy and mouse strain. Three factors were identified linking 1) pulmonary edema, protein leak, and macrophages, 2) atelectasis, IL-6, and TNF-α, and 3) IL-1β and neutrophils, which were independent of responses in lung mechanics. This approach has allowed us to identify specific inflammatory responses that are independently associated with overstretch of the lung parenchyma and loss of lung volume. These data provide critical insight into the mechanical responses in the lung that drive local inflammation in ventilator-induced lung injury and the basis for future mechanistic studies in this field.

  16. Local bias-induced phase transitions

    DOE PAGES

    Seal, Katyayani; Baddorf, Arthur P.; Jesse, Stephen; ...

    2008-11-27

    Electrical bias-induced phase transitions underpin a wide range of applications from data storage to energy generation and conversion. The mechanisms behind these transitions are often quite complex and in many cases are extremely sensitive to local defects that act as centers for local transformations or pinning. Furthermore, using ferroelectrics as an example, we review methods for probing bias-induced phase transitions and discuss the current limitations and challenges for extending the methods to field-induced phase transitions and electrochemical reactions in energy storage, biological and molecular systems.

  17. Granzymes A and B Regulate the Local Inflammatory Response during Klebsiella pneumoniae Pneumonia.

    PubMed

    García-Laorden, M Isabel; Stroo, Ingrid; Blok, Dana C; Florquin, Sandrine; Medema, Jan Paul; de Vos, Alex F; van der Poll, Tom

    2016-01-01

    Klebsiella pneumoniae is a common cause of hospital-acquired pneumonia. Granzymes (gzms), mainly found in cytotoxic lymphocytes, have been implicated as mediators of infection and inflammation. We here sought to investigate the role of gzmA and gzmB in the host response to K. pneumoniae-induced airway infection and sepsis. For this purpose, pneumonia was induced in wild-type (WT) and gzmA-deficient (gzmA-/-), gzmB-/- and gzmAxB-/- mice by intranasal infection with K. pneumoniae. In WT mice, gzmA and gzmB were mainly expressed by natural killer cells. Pneumonia was associated with reduced intracellular gzmA and increased intracellular gzmB levels. Gzm deficiency had little impact on antibacterial defence: gzmA-/- and gzmAxB-/- mice transiently showed modestly higher bacterial loads in the lungs but not in distant organs. GzmB-/- and, to a larger extent, gzmAxB-/- mice displayed transiently increased lung inflammation, reflected in the semi-quantitative histology scores and levels of pro-inflammatory cytokines and chemokines. Most differences between gzm-deficient and WT mice had disappeared during late-stage pneumonia. Gzm deficiency did not impact on distant organ injury or survival. These results suggest that gzmA and gzmB partly regulate local inflammation during early pneumonia but eventually play an insignificant role during pneumosepsis by the common human pathogen K. pneumoniae.

  18. Citrate modulates lipopolysaccharide-induced monocyte inflammatory responses

    PubMed Central

    Ashbrook, M J; McDonough, K L; Pituch, J J; Christopherson, P L; Cornell, T T; Selewski, D T; Shanley, T P; Blatt, N B

    2015-01-01

    Citrate, a central component of cellular metabolism, is a widely used anti-coagulant due to its ability to chelate calcium. Adenosine triphosphate (ATP)-citrate lyase, which metabolizes citrate, has been shown to be essential for inflammation, but the ability of exogenous citrate to impact inflammatory signalling cascades remains largely unknown. We hypothesized that citrate would modulate inflammatory responses as both a cellular metabolite and calcium chelator, and tested this hypothesis by determining how clinically relevant levels of citrate modulate monocyte proinflammatory responses to lipopolysaccharide (LPS) in a human acute monocytic leukaemia cell line (THP-1). In normal medium (0·4 mM calcium), citrate inhibited LPS-induced tumour necrosis factor (TNF)-α and interleukin (IL)-8 transcripts, whereas in medium supplemented with calcium (1·4 mM), TNF-α and IL-8 levels increased and appeared independent of calcium chelation. Using an IL-8–luciferase plasmid construct, the same increased response was observed in the activation of the IL-8 promoter region, suggesting transcriptional regulation. Tricarballylic acid, an inhibitor of ATP-citrate lyase, blocked the ability of citrate to augment TNF-α, linking citrate's augmentation effect with its metabolism by ATP-citrate lyase. In the presence of citrate, increased histone acetylation was observed in the TNF-α and IL-8 promoter regions of THP-1 cells. We observed that citrate can both augment and inhibit proinflammatory cytokine production via modulation of inflammatory gene transactivation. These findings suggest that citrate anti-coagulation may alter immune function through complex interactions with the inflammatory response. PMID:25619261

  19. Endothelin Regulates Porphyromonas gingivalis-Induced Production of Inflammatory Cytokines

    PubMed Central

    Kim, Ji-Hye; Lee, Dong Eun; Kang, Si-Mook; Lee, So Yun; Choi, Lin; Sun, Ji Su; Kim, Seul Ki; Park, Wonse; Kim, Baek Il; Yoo, Yun-Jung; Chang, Inik; Shin, Dong Min

    2016-01-01

    Periodontitis is a very common oral inflammatory disease that results in the destruction of supporting connective and osseous tissues of the teeth. Although the exact etiology is still unclear, Gram-negative bacteria, especially Porphyromonas gingivalis in subgingival pockets are thought to be one of the major etiologic agents of periodontitis. Endothelin (ET) is a family of three 21-amino acid peptides, ET-1, -2, and -3, that activate G protein-coupled receptors, ETA and ETB. Endothelin is involved in the occurrence and progression of various inflammatory diseases. Previous reports have shown that ET-1 and its receptors, ETA and ETB are expressed in the periodontal tissues and, that ET-1 levels in gingival crevicular fluid are increased in periodontitis patients. Moreover, P. gingivalis infection has been shown to induce the production of ET-1 along with other inflammatory cytokines. Despite these studies, however, the functional significance of endothelin in periodontitis is still largely unknown. In this study, we explored the cellular and molecular mechanisms of ET-1 action in periodontitis using human gingival epithelial cells (HGECs). ET-1 and ETA, but not ETB, were abundantly expressed in HGECs. Stimulation of HGECs with P. gingivalis or P. gingivalis lipopolysaccharide increased the expression of ET-1 and ETA suggesting the activation of the endothelin signaling pathway. Production of inflammatory cytokines, IL-1β, TNFα, and IL-6, was significantly enhanced by exogenous ET-1 treatment, and this effect depended on the mitogen-activated protein kinases via intracellular Ca2+ increase, which resulted from the activation of the phospholipase C/inositol 1,4,5-trisphosphate pathway. The inhibition of the endothelin receptor-mediated signaling pathway with the dual receptor inhibitor, bosentan, partially ameliorated alveolar bone loss and immune cell infiltration. These results suggest that endothelin plays an important role in P. gingivalis

  20. The inflammatory basis of exercise-induced bronchoconstriction.

    PubMed

    Brannan, John D; Turton, James A

    2010-12-01

    Exercise-induced bronchoconstriction (EIB) is common in individuals with asthma, and may be observed even in the absence of a clinical diagnosis of asthma. Exercise-induced bronchoconstriction can be diagnosed via standardized exercise protocols, and anti-inflammatory therapy with inhaled corticosteroids (ICS) is often warranted. Exercise-related symptoms are commonly reported in primary care; however, access to standardized exercise protocols to assess EIB are often restricted because of the need for specialized equipment, as well as time constraints. Symptoms and lung function remain the most accessible indicators of EIB, yet these are poor predictors of its presence and severity. Evidence suggests that exercise causes the airways to narrow as a result of the osmotic and thermal consequences of respiratory water loss. The increase in airway osmolarity leads to the release of bronchoconstricting mediators (eg, histamine, prostaglandins, leukotrienes) from inflammatory cells (eg, mast cells and eosinophils). The objective assessment of EIB suggests the presence of airway inflammation, which is sensitive to ICS in association with a responsive airway smooth muscle. Surrogate tests for EIB, such as eucapnic voluntary hyperpnea or the osmotic challenge tests, cause airway narrowing via a similar mechanism, and a response indicates likely benefit from ICS therapy. The complete inhibition of EIB with ICS therapy in individuals with asthma may be a useful marker of control of airway pathology. Furthermore, inhibition of EIB provides additional, useful information regarding the identification of clinical control based on symptoms and lung function. This article explores the inflammatory basis of EIB in asthma as well as the effect of ICS on the pathophysiology of EIB.

  1. Autoimmune/Inflammatory Syndrome Induced by Adjuvants and Thyroid Autoimmunity

    PubMed Central

    Watad, Abdulla; David, Paula; Brown, Stav; Shoenfeld, Yehuda

    2017-01-01

    The autoimmune/inflammatory syndrome induced by adjuvants (ASIA), presented by Shoenfeld and Agmon-Levin in 2011, is an entity that incorporates diverse autoimmune conditions induced by the exposure to various adjuvants. Adjuvants are agents that entail the capability to induce immune reactions. Adjuvants are found in many vaccines and used mainly to increase the response to vaccination in the general population. Silicone has also been reported to be able to induce diverse immune reactions. Clinical cases and series of heterogeneous autoimmune conditions including systemic sclerosis, systemic lupus erythematosus, and rheumatoid arthritis have been reported to be induced by several adjuvants. However, only a small number of cases of autoimmune thyroid disorder have been included under the umbrella of ASIA syndrome. Indeed, clinical cases of Hashimoto’s thyroiditis and/or subacute thyroiditis were observed after the exposure to vaccines as well as silicone implantation. In our review, we aimed to summarize the current knowledge on ASIA syndrome presented as endocrinopathies, focusing on autoimmune thyroid disorders associated with the various adjuvants. PMID:28167927

  2. ECL-cell histamine mobilization in conscious rats: effects of locally applied regulatory peptides, candidate neurotransmitters and inflammatory mediators.

    PubMed

    Norlén, P; Bernsand, M; Konagaya, T; Håkanson, R

    2001-12-01

    1. The ECL cells control gastric acid secretion by mobilizing histamine in response to circulating gastrin. In addition, the ECL cells are thought to operate under nervous control and to be influenced by local inflammatory processes. 2. The purpose of the present study was to monitor histamine mobilization from ECL cells in conscious rats in response to locally applied regulatory peptides, candidate neurotransmitters and inflammatory mediators. 3. Microdialysis probes were implanted in the submucosa of the acid-producing part of the rat stomach. Three days later, the agents to be tested were administered via the microdialysis probe and their effects on basal (48 h fast) and stimulated (intravenous infusion of gastrin-17, 3 nmol kg(-1) h(-1)) mobilization of ECL-cell histamine was monitored by continuous measurement of histamine in the perfusate (radioimmunoassay). 4. Locally administered gastrin-17 and sulfated cholecystokinin-8 mobilized histamine as did pituitary adenylate cyclase-activating peptide-27, vasoactive intestinal peptide, peptide YY, met-enkephalin, endothelin and noradrenaline, adrenaline and isoprenaline. 5. While gastrin, sulfated-cholecystokinin-8, met-enkephalin and isoprenaline induced a sustained elevation of the submucosal histamine concentration, endothelin, peptide YY, pituitary adenylate cyclase activating peptide, vasoactive intestinal peptide, noradrenaline and adrenaline induced a transient elevation. 6. Calcitonin gene-related peptide, galanin, somatostatin and the prostanoid misoprostol inhibited gastrin-stimulated histamine mobilization. 7. The gut hormones neurotensin and secretin and the neuropeptides gastrin-releasing peptide, neuropeptide Y and substance P failed to affect ECL-cell histamine mobilization, while motilin and neuromedin U-25 had weak stimulatory effects. Also acetylcholine, carbachol, serotonin and the amino acid neurotransmitters aspartate, gamma-aminobutyric acid, glutamate and glycine were inactive or weakly

  3. Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses.

    PubMed

    Kobori, Masuko; Nakayama, Hirosuke; Fukushima, Kenji; Ohnishi-Kameyama, Mayumi; Ono, Hiroshi; Fukushima, Tatsunobu; Akimoto, Yukari; Masumoto, Saeko; Yukizaki, Chizuko; Hoshi, Yoshikazu; Deguchi, Tomoaki; Yoshida, Mitsuru

    2008-06-11

    Bitter gourd ( Momordica charantia L.) is a popular tropical vegetable in Asian countries. Previously it was shown that bitter gourd placenta extract suppressed lipopolysaccharide (LPS)-induced TNFalpha production in RAW 264.7 macrophage-like cells. Here it is shown that the butanol-soluble fraction of bitter gourd placenta extract strongly suppresses LPS-induced TNFalpha production in RAW 264.7 cells. Gene expression analysis using a fibrous DNA microarray showed that the bitter gourd butanol fraction suppressed expression of various LPS-induced inflammatory genes, such as those for TNF, IL1alpha, IL1beta, G1p2, and Ccl5. The butanol fraction significantly suppressed NFkappaB DNA binding activity and phosphorylation of p38, JNK, and ERK MAPKs. Components in the active fraction from bitter gourd were identified as 1-alpha-linolenoyl-lysophosphatidylcholine (LPC), 2-alpha-linolenoyl-LPC, 1-lynoleoyl-LPC, and 2-linoleoyl-LPC. Purified 1-alpha-linolenoyl-LPC and 1-linoleoyl-LPC suppressed the LPS-induced TNFalpha production of RAW 264.7 cells at a concentration of 10 microg/mL.

  4. Rosmarinus officinalis extract suppresses Propionibacterium acnes-induced inflammatory responses.

    PubMed

    Tsai, Tsung-Hsien; Chuang, Lu-Te; Lien, Tsung-Jung; Liing, Yau-Rong; Chen, Wei-Yu; Tsai, Po-Jung

    2013-04-01

    Propionibacterium acnes is a key pathogen involved in the progression of acne inflammation. The development of a new agent possessing antimicrobial and anti-inflammatory activity against P. acnes is therefore of interest. In this study, we investigated the inhibitory effect of rosemary (Rosmarinus officinalis) extract on P. acnes-induced inflammation in vitro and in vivo. The results showed that ethanolic rosemary extract (ERE) significantly suppressed the secretion and mRNA expression of proinflammatory cytokines, including interleukin (IL)-8, IL-1β, and tumor necrosis factor-α in P. acnes-stimulated monocytic THP-1 cells. In an in vivo mouse model, concomitant intradermal injection of ERE attenuated the P. acnes-induced ear swelling and granulomatous inflammation. Since ERE suppressed the P. acnes-induced nuclear factor kappa-B (NF-κB) activation and mRNA expression of Toll-like receptor (TLR) 2, the suppressive effect of ERE might be due, at least partially, to diminished NF-κB activation and TLR2-mediated signaling pathways. Furthermore, three major constituents of ERE, carnosol, carnosic acid, and rosmarinic acid, exerted different immumodulatory activities in vitro. In brief, rosmarinic acid significantly suppressed IL-8 production, while the other two compounds inhibited IL-1β production. Further study is needed to explore the role of bioactive compounds of rosemary in mitigation of P. acnes-induced inflammation.

  5. Rosmarinus officinalis Extract Suppresses Propionibacterium acnes–Induced Inflammatory Responses

    PubMed Central

    Tsai, Tsung-Hsien; Chuang, Lu-Te; Lien, Tsung-Jung; Liing, Yau-Rong; Chen, Wei-Yu

    2013-01-01

    Abstract Propionibacterium acnes is a key pathogen involved in the progression of acne inflammation. The development of a new agent possessing antimicrobial and anti-inflammatory activity against P. acnes is therefore of interest. In this study, we investigated the inhibitory effect of rosemary (Rosmarinus officinalis) extract on P. acnes–induced inflammation in vitro and in vivo. The results showed that ethanolic rosemary extract (ERE) significantly suppressed the secretion and mRNA expression of proinflammatory cytokines, including interleukin (IL)-8, IL-1β, and tumor necrosis factor-α in P. acnes–stimulated monocytic THP-1 cells. In an in vivo mouse model, concomitant intradermal injection of ERE attenuated the P. acnes–induced ear swelling and granulomatous inflammation. Since ERE suppressed the P. acnes–induced nuclear factor kappa-B (NF-κB) activation and mRNA expression of Toll-like receptor (TLR) 2, the suppressive effect of ERE might be due, at least partially, to diminished NF-κB activation and TLR2-mediated signaling pathways. Furthermore, three major constituents of ERE, carnosol, carnosic acid, and rosmarinic acid, exerted different immumodulatory activities in vitro. In brief, rosmarinic acid significantly suppressed IL-8 production, while the other two compounds inhibited IL-1β production. Further study is needed to explore the role of bioactive compounds of rosemary in mitigation of P. acnes–induced inflammation. PMID:23514231

  6. Activation of peroxisome proliferator activated receptor γ in brain inhibits inflammatory pain, dorsal horn expression of Fos, and local edema

    PubMed Central

    Morgenweck, J.; Abdel-aleem, O.S.; McNamara, K.C.; Donahue, R.R.; Badr, M.Z.; Taylor, B.K.

    2009-01-01

    Systemic administration of thiazolidinediones reduces peripheral inflammation in vivo, presumably by acting at peroxisome proliferator-activated receptor γ (PPARγ) in peripheral tissues. Based on a rapidly growing body of literature indicating the CNS as a functional target of PPARγ actions, we postulated that brain PPARγ modulates peripheral edema and the processing of inflammatory pain signals in the dorsal horn of the spinal cord. To test this in the plantar carrageenan model of inflammatory pain, we measured paw edema, heat hyperalgesia, and dorsal horn expression of the immediate-early gene c-fos after intracerebroventricular (ICV) administration of PPARγ ligands or vehicle. We found that ICV rosiglitazone (0.5–50 µg) or 15d-PGJ2 (50–200 µg), but not vehicle, dose-dependently reduced paw thickness, paw volume and behavioral withdrawal responses to noxious heat. These anti-inflammatory and anti-hyperalgesia effects result from direct actions in the brain and not diffusion to other sites, because intraperitoneal and intrathecal administration of rosiglitazone (50 µg) and 15d-PGJ2 (200 µg) had no effect. PPARγ agonists changed neither overt behavior nor motor coordination, indicating that non-specific behavioral effects do not contribute to PPAR ligand-induced anti-hyperalgesia. ICV administration of structurally dissimilar PPARγ antagonists (either GW9662 or BADGE) reversed the anti-inflammatory and anti-hyperalgesic actions of both rosiglitazone and 15d-PGJ2. To evaluate the effects of PPARγ agonists on a classic marker of noxious stimulus-evoked gene expression, we quantified Fos protein expression in the dorsal horn. The number of carrageenan-induced Fos-like immunoreactive profiles was less in rosiglitazone-treated rats as compared to vehicle controls. We conclude that pharmacological activation of PPARγ in the brain rapidly inhibits local edema and the spinal transmission of noxious inflammatory signals. PMID:19891980

  7. Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia.

    PubMed

    Liu, Jiao; Du, Junxie; Yang, Yanrui; Wang, Yun

    2015-11-01

    Cyclin-dependent kinase 5 (Cdk5) is an important serine/threonine kinase that plays critical roles in many physiological processes. Recently, Cdk5 has been reported to phosphorylate TRPV1 at threonine 407 (Thr-407) in humans (Thr-406 in rats), which enhances the function of TRPV1 channel and promotes thermal hyperalgesia in the complete Freund's adjuvant (CFA)-induced inflammatory pain rats. However, the underlying mechanisms are still unknown. Here, we demonstrate that Cdk5 phosphorylates TRPV1 at Threonine 406 and promotes the surface localization of TRPV1, leading to inflammatory thermal hyperalgesia. The mutation of Thr-406 of TRPV1 to alanine reduced the interaction of TRPV1 with the cytoskeletal elements and decreased the binding of TRPV1 with the motor protein KIF13B, which led to reduced surface distribution of TRPV1. Disrupting the phosphorylation of TRPV1 at Thr-406 dramatically reduced the surface level of TRPV1 in HEK 293 cells after transient expression and the channel function in cultured dorsal root ganglion (DRG) neurons. Notably, intrathecal administration of the interfering peptide against the phosphorylation of Thr-406 alleviated heat hyperalgesia and reduced the surface level of TRPV1 in inflammatory pain rats. Together, these results demonstrate that Cdk5-mediated phosphorylation of TRPV1 at Thr-406 increases the surface level and the function of TRPV1, while the TAT-T406 peptide can effectively attenuate thermal hyperalgesia. Our studies provide a potential therapy for inflammatory pain.

  8. Anti-inflammatory effect of Taraxacum officinale leaves on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells.

    PubMed

    Koh, Yoon-Jeoung; Cha, Dong-Soo; Ko, Je-Sang; Park, Hyun-Jin; Choi, Hee-Don

    2010-08-01

    To investigate the efficacy and the mechanism of the anti-inflammatory effect of Taraxacum officinale leaves (TOLs), the effect of a methanol extract and its fractions recovered from TOLs on lipopolysaccharide (LPS)-induced responses was studied in the mouse macrophage cell line, RAW 264.7. Cells were pretreated with various concentrations of the methanol extract and its fractions and subsequently incubated with LPS (1 microg/mL). The levels of nitric oxide (NO), prostaglandin (PG) E(2), and pro-inflammatory cytokines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 were determined using enzyme-linked immunosorbent assays. Expressions of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and activation of mitogen-activated protein (MAP) kinases were analyzed using western blotting. The methanol extract and its fractions inhibited LPS-induced production of NO, pro-inflammatory cytokines, and PGE(2) in a dose-dependent manner. The chloroform fraction significantly suppressed production of NO, PGE(2), and two pro-inflammatory cytokines (TNF-alpha and IL-1beta) in a dose-dependent manner with 50% inhibitory concentration values of 66.51, 90.96, 114.76, and 171.06 microg/mL, respectively. The ethyl acetate fraction also inhibited production of the inflammatory molecules. The chloroform and ethyl acetate fractions reduced LPS-induced expressions of iNOS and COX-2 and activation of MAP kinases in a dose-dependent manner. Among the fractions of the methanol extract, the chloroform and ethyl acetate fractions exhibited the most effective anti-inflammatory activities. These results show that the anti-inflammatory effects of TOLs are probably due to down-regulation of NO, PGE(2), and pro-inflammatory cytokines and reduced expressions of iNOS and COX-2 via inactivation of the MAP kinase signal pathway.

  9. Sirt2 suppresses inflammatory responses in collagen-induced arthritis

    SciTech Connect

    Lin, Jiangtao; Sun, Bing; Jiang, Chuanqiang; Hong, Huanyu; Zheng, Yanping

    2013-11-29

    Highlights: •Sirt2 expression decreases in collagen-induced arthritis (CIA). •Sirt2 knockout aggravates severity of arthritis in mice with CIA. •Sirt2 knockout increases levels of pro-inflammatory factors in the serum. •Sirt2 deacetylates p65 and inhibits pro-inflammatory factors expression. •Sirt2 rescue abates severity of arthritis in mice with CIA. -- Abstract: Arthritis is a common autoimmune disease that is associated with progressive disability, systemic complications and early death. However, the underling mechanisms of arthritis are still unclear. Sirtuins are a NAD{sup +}-dependent class III deacetylase family, and regulate cellular stress, inflammation, genomic stability, carcinogenesis, and energy metabolism. Among the sirtuin family members, Sirt1 and Sirt6 are critically involved in the development of arthritis. It remains unknown whether other sirtuin family members participate in arthritis. Here in this study, we demonstrate that Sirt2 inhibits collagen-induced arthritis (CIA) using in vivo and in vitro evidence. The protein and mRNA levels of Sirt2 significantly decreased in joint tissues of mice with CIA. When immunized with collagen, Sirt2-KO mice showed aggravated severity of arthritis based on clinical scores, hind paw thickness, and radiological and molecular findings. Mechanically, Sirt2 deacetylated p65 subunit of nuclear factor-kappa B (NF-κB) at lysine 310, resulting in reduced expression of NF-κB-dependent genes, including interleukin 1β (IL-1β), IL-6, monocyte chemoattractant protein 1(MCP-1), RANTES, matrix metalloproteinase 9 (MMP-9) and MMP-13. Importantly, our rescue experiment showed that Sirt2 re-expression abated the severity of arthritis in Sirt2-KO mice. Those findings strongly indicate Sirt2 as a considerably inhibitor of the development of arthritis.

  10. Viewpoints on Acid-Induced Inflammatory Mediators in Esophageal Mucosa

    PubMed Central

    Harnett, Karen M; Rieder, Florian; Behar, Jose

    2010-01-01

    We have focused on understanding the onset of gastroesophageal reflux disease by examining the mucosal response to the presence of acid in the esophageal lumen. Upon exposure to HCl, inflammation of the esophagus begins with activation of the transient receptor potential channel vanilloid subfamily member-1 (TRPV1) in the mucosa, and production of IL-8, substance P (SP), calcitonin gene related peptide (CGRP) and platelet activating factor (PAF). Production of SP and CGRP, but not PAF, is abolished by the neural blocker tetrodotoxin suggesting that SP and CGRP are neurally released and that PAF arises from non neural pathways. Epithelial cells contain TRPV1 receptor mRNA and protein and respond to HCl and to the TRPV1 agonist capsaicin with production of PAF. PAF, SP and IL-8 act as chemokines, inducing migration of peripheral blood leukocytes. PAF and SP activate peripheral blood leukocytes inducing the production of H2O2. In circular muscle, PAF causes production of IL-6, and IL-6 causes production of additional H2O2, through activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Among these, NADPH oxidase 5 cDNA is significantly up-regulated by exposure to PAF; H2O2 content of esophageal and lower esophageal sphincter circular muscle is elevated in human esophagitis, causing dysfunction of esophageal circular muscle contraction and reduction in esophageal sphincter tone. Thus esophageal keratinocytes, that constitute the first barrier to the refluxate, may also serve as the initiating cell type in esophageal inflammation, secreting inflammatory mediators and pro-inflammatory cytokines and affecting leukocyte recruitment and activity. PMID:21103419

  11. The inhibitory effect of locally injected dexmedetomidine on carrageenan-induced nociception in rats.

    PubMed

    Honda, Yuka; Higuchi, Hitoshi; Matsuoka, Yoshikazu; Yabuki-Kawase, Akiko; Ishii-Maruhama, Minako; Tomoyasu, Yumiko; Maeda, Shigeru; Morimatsu, Hiroshi; Miyawaki, Takuya

    2015-10-05

    Recent studies showed that the administration of dexmedetomidine relieved hyperalgesia in the presence of neuropathic pain. These findings have led to the hypothesis that the local administration of dexmedetomidine is useful for relieving acute inflammatory nociception, such as postoperative pain. Thus, we evaluated the inhibitory effect of locally injected dexmedetomidine on acute inflammatory nociception. Acute inflammatory nociception was induced by an intraplantar injection of 1% carrageenan into the hindpaws of rats, and dexmedetomidine was also injected combined with carrageenan. The paw withdrawal threshold based on von Frey filament stimulation was measured until 12 h after injection. We compared the area under the time-curve (AUC) between carrageenan and carrageenan with dexmedetomidine. To clarify that the action of dexmedetomidine was via α2-adrenoceptors, we evaluated the effect of yohimbine, a selective antagonist of α2-adrenoceptors, on the anti-nociception of dexmedetomidine. As the results, the intraplantar injection of carrageenan with over 10 μM dexmedetomidine significantly increased AUC, compared to that with only carrageenan injection. This effect of dexmedetomidine was reversed by the addition of yohimbine to carrageenan and dexmedetomidine. These results demonstrated that the locally injected dexmedetomidine was effective against carrageenan-induced inflammatory nociception via α2-adrenoceptors. The findings suggest that the local injection of dexmedetomidine is useful for relieving local acute inflammatory nociception.

  12. Epigallocatechin-3-gallate attenuates lipopolysaccharide-induced mastitis in rats via suppressing MAPK mediated inflammatory responses and oxidative stress.

    PubMed

    Chen, Jinglou; Xu, Jun; Li, Jingjing; Du, Lifen; Chen, Tao; Liu, Ping; Peng, Sisi; Wang, Mingwei; Song, Hongping

    2015-05-01

    Green tea (Camellia sinensis) is an extremely popular beverage worldwide. Epigallocatechin-3-gallate (EGCG) is one of the major catechins isolated from green tea and contributes to its beneficial therapeutic functions including antioxidant, anti-inflammatory and anti-cancer effects. However, the effect of EGCG on mastitis is not yet known. This study was to investigate the protective potential of EGCG against mastitis in rats. The rat mastitis model was induced by injecting lipopolysaccharide (LPS) into the duct of mammary gland. The mammary gland was collected after the experimental period. The levels of mammary oxidative stress and inflammatory responses were assessed by measuring the local activities of antioxidant enzymes and the levels of inflammatory cytokines. The mammary expressions of mitogen-activated protein kinases (MAPKs), nuclear factor κB-p65 (NFκB-p65) and hypoxia-inducible factor-1α (HIF-1α) were evaluated by western blot analysis. It was found that EGCG obviously normalized LPS-induced low activities of antioxidant enzymes as well as decreased the high levels of inflammatory cytokines. Additionally, EGCG inhibited the mammary over-expression of MAPKs, NFκB-p65 and HIF-1α. These results indicated that EGCG was able to attenuate LPS-induced mastitis in rats by suppressing MAPK related oxidative stress and inflammatory responses.

  13. Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response

    SciTech Connect

    Hong, Hyun Sook; Son, Youngsook

    2014-10-10

    Highlights: • SP can increase IL-10 levels and reduce TNF-α and IL-17 levels in RA. • SP causes the increase in T{sub reg}, M2 macrophage, and MSCs in RA. • SP-induced immune suppression leads to the blockade of RA progression. • SP can be used as the therapeutics for autoimmune-related inflammatory diseases. - Abstract: Current rheumatoid arthritis (RA) therapies such as biologics inhibiting pathogenic cytokines substantially delay RA progression. However, patient responses to these agents are not always complete and long lasting. This study explored whether substance P (SP), an 11 amino acids long endogenous neuropeptide with the novel ability to mobilize mesenchymal stem cells (MSC) and modulate injury-mediated inflammation, can inhibit RA progression. SP efficacy was evaluated by paw swelling, clinical arthritis scoring, radiological analysis, histological analysis of cartilage destruction, and blood levels of tumor necrosis factor-alpha (TNF-α) interleukin (IL)-10, and IL-17 in vivo. SP treatment significantly reduced local inflammatory signs, mean arthritis scores, degradation of joint cartilage, and invasion of inflammatory cells into the synovial tissues. Moreover, the SP treatment markedly reduced the size of spleens enlarged by excessive inflammation in CIA, increased IL-10 levels, and decreased TNF-α and IL-17 levels. Mobilization of stem cells and induction of T{sub reg} and M2 type macrophages in the circulation were also increased by the SP treatment. These effect of SP might be associated with the suppression of inflammatory responses in RA and, furthermore, blockade of RA progression. Our results propose SP as a potential therapeutic for autoimmune-related inflammatory diseases.

  14. Agmatine ameliorates adjuvant induced arthritis and inflammatory cachexia in rats.

    PubMed

    Taksande, Brijesh G; Gawande, Dinesh Y; Chopde, Chandrabhan T; Umekar, Milind J; Kotagale, Nandkishor R

    2017-02-01

    The present study investigated the pharmacological effect of agmatine in Complete Freud Adjuvant (CFA) induced arthritis and cachexia in rats. The rats were injected with CFA (0.1ml/rat) to induced symptoms of arthritis. Day 8 onwards of CFA administration, rats were injected daily with agmatine for next 7days, and arthritis score, body weights and food intake were monitored daily (g). Since cachexia is known to produce severe inflammation, malnutrition and inhibition of albumin gene expression, we have also monitored the total proteins, albumin, TNF-α and IL-6 levels in arthritic rats and its modulation by agmatine. In the present study, CFA treated rats showed a progressive reduction in both food intake and body weight. In addition analysis of blood serum of arthritis animals showed a significant reduction in proteins and albumin and significant elevation in tumor necrosis factor (TNF)-α and Interleukins (IL)-6. Chronic agmatine (20-40mg/kg, ip) treatment not only attenuated the signs of arthritis but also reverses anorexia and body weight loss in CFA treated rats. In addition, agmatine restored total protein and albumin and reduces TNF-α and IL-6 levels in arthritis rats. These results suggest that agmatine administration can prevent the body weights loss and symptoms of arthritis via inhibition of inflammatory cytokines.

  15. Local anesthetic failure associated with inflammation: verification of the acidosis mechanism and the hypothetic participation of inflammatory peroxynitrite

    PubMed Central

    Ueno, Takahiro; Tsuchiya, Hironori; Mizogami, Maki; Takakura, Ko

    2008-01-01

    The presence of inflammation decreases local anesthetic efficacy, especially in dental anesthesia. Although inflammatory acidosis is most frequently cited as the cause of such clinical phenomena, this has not been experimentally proved. We verified the acidosis mechanism by studying the drug and membrane lipid interaction under acidic conditions together with proposing an alternative hypothesis. Liposomes and nerve cell model membranes consisting of phospholipids and cholesterol were treated at different pH with lidocaine, prilocaine and bupivacaine (0.05%–0.2%, w/v). Their membrane-interactive potencies were compared by the induced-changes in membrane fluidity. Local anesthetics fluidized phosphatidylcholine membranes with the potency being significantly lower at pH 6.4 than at pH 7.4 (p < 0.01), supporting the acidosis theory. However, they greatly fluidized nerve cell model membranes even at pH 6.4 corresponding to inflamed tissues, challenging the conventional mechanism. Local anesthetics acted on phosphatidylserine liposomes, as well as nerve cell model membranes, at pH 6.4 with almost the same potency as that at pH 7.4, but not on phosphatidylcholine, phosphatidylethanolamine and sphingomyelin liposomes. Since the positively charged anesthetic molecules are able to interact with nerve cell membranes by ion-paring with anionic components like phosphatidylserine, tissue acidosis is not essentially responsible for the local anesthetic failure associated with inflammation. The effects of local anesthetics on nerve cell model membranes were inhibited by treating with peroxynitrite (50 μM), suggesting that inflammatory cells producing peroxynitrite may affect local anesthesia. PMID:22096346

  16. Helicobacter hepaticus Induces an Inflammatory Response in Primary Human Hepatocytes

    PubMed Central

    Kleine, Moritz; Worbs, Tim; Schrem, Harald; Vondran, Florian W. R.; Kaltenborn, Alexander; Klempnauer, Jürgen; Förster, Reinhold; Josenhans, Christine; Suerbaum, Sebastian; Bektas, Hüseyin

    2014-01-01

    Helicobacter hepaticus can lead to chronic hepatitis and hepatocellular carcinoma in certain strains of mice. Until now the pathogenic role of Helicobacter species on human liver tissue is still not clarified though Helicobacter species identification in human liver cancer was successful in case controlled studies. Therefore we established an in vitro model to investigate the interaction of primary human hepatocytes (PHH) with Helicobacter hepaticus. Successful co-culturing of PHH with Helicobacter hepaticus was confirmed by visualization of motile bacteria by two-photon-microscopy. Isolated human monocytes were stimulated with PHH conditioned media. Changes in mRNA expression of acute phase cytokines and proteins in PHH and stimulated monocytes were determined by Real-time PCR. Furthermore, cytokines and proteins were analyzed in PHH culture supernatants by ELISA. Co-cultivation with Helicobacter hepaticus induced mRNA expression of Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha, Interleukin-8 (IL-8) and Monocyte chemotactic protein-1 (MCP-1) in PHH (p<0.05) resulting in a corresponding increase of IL-8 and MCP-1 concentrations in PHH supernatants (p<0.05). IL-8 and IL-1β mRNA expression was induced in monocytes stimulated with Helicobacter hepaticus infected PHH conditioned media (p<0.05). An increase of Cyclooxygenase-2 mRNA expression was observed, with a concomitant increase of prostaglandin E2 concentration in PHH supernatants at 24 and 48 h (p<0.05). In contrast, at day 7 of co-culture, no persistent elevation of cytokine mRNA could be detected. High expression of intercellular adhesion molecule-1 on PHH cell membranes after co-culture was shown by two-photon-microscopy and confirmed by flow-cytomety. Finally, expression of Cytochrome P450 3A4 and albumin mRNA were downregulated, indicating an impairment of hepatocyte synthesis function by Helicobacter hepaticus presence. This is the first in vitro model demonstrating a pathogenic effect of a

  17. Pathogen-mediated inflammatory atherosclerosis is mediated in part via Toll-like receptor 2-induced inflammatory responses.

    PubMed

    Hayashi, Chie; Madrigal, Andres G; Liu, Xinyan; Ukai, Takashi; Goswami, Sulip; Gudino, Cynthia V; Gibson, Frank C; Genco, Caroline A

    2010-01-01

    Studies in humans have established that polymorphisms in genes encoding the innate immune Toll-like receptors (TLRs) are associated with inflammatory atherosclerosis. In hyperlipidemic mice, TLR2 and TLR4 have been reported to contribute to atherosclerosis progression. Human and mouse studies support a role for the oral pathogen Porphyromonas gingivalis in atherosclerosis, although the mechanisms by which this pathogen stimulates inflammatory atherosclerosis via innate immune system activation is not known. Using a genetically defined apolipoprotein E-deficient (ApoE(-/-)) mouse model we demonstrate that pathogen-mediated inflammatory atherosclerosis occurs via both TLR2-dependent and TLR2-independent mechanisms. P. gingivalis infection in mice possessing functional TLR2 induced the accumulation of macrophages as well as inflammatory mediators including CD40, IFN-gamma and the pro-inflammatory cytokines IL-1 beta, IL-6 and tumor necrosis factor-alpha in atherosclerotic lesions. The expression of these inflammatory mediators was reduced in atherosclerotic lesions from P. gingivalis-infected TLR2-deficient (TLR2(-/-)) mice. These studies provide a mechanistic link between an innate immune receptor and pathogen-accelerated atherosclerosis by a clinically and biologically relevant bacterial pathogen.

  18. Inflammatory cytokines promote growth of intestinal smooth muscle cells by induced expression of PDGF-Rβ.

    PubMed

    Nair, Dileep G; Miller, Kurtis G; Lourenssen, Sandra R; Blennerhassett, Michael G

    2014-03-01

    Thickening of the inflamed intestinal wall involves growth of smooth muscle cells (SMC), which contributes to stricture formation. Earlier, the growth factor platelet-derived growth factor (PDGF)-BB was identified as a key mitogen for SMC from the rat colon (CSMC), and CSMC growth in colitis was associated with both appearance of its receptor, PDGF-Rβ and modulation of phenotype. Here, we examined the role of inflammatory cytokines in inducing and modulating the growth response to PDGF-BB. CSMC were enzymatically isolated from Sprague-Dawley rats, and the effect of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, transforming growth factor (TGF), IL-17A and IL-2 on CSMC growth and responsiveness to PDGF-BB were assessed using proliferation assays, PCR and western blotting. Conditioned medium (CM) was obtained at 48 hrs of trinitrobenzene sulphonic acid-induced colitis. Neither CM alone nor cytokines caused proliferation of early-passage CSMC. However, CM from inflamed, but not control colon significantly promoted the effect of PDGF-BB. IL-1β, TNF-α and IL-17A, but not other cytokines, increased the effect of PDGF-BB because of up-regulation of mRNA and protein for PDGF-Rβ without change in receptor phosphorylation. PDGF-BB was identified in adult rat serum (RS) and RS-induced CSMC proliferation was inhibited by imatinib, suggesting that blood-derived PDGF-BB is a local mitogen in vivo. In freshly isolated CSMC, CM from the inflamed colon as well as IL-1β and TNF-α induced the early expression of PDGF-Rβ, while imatinib blocked subsequent RS-induced cell proliferation. Thus, pro-inflammatory cytokines both initiate and maintain a growth response in CSMC via PDGF-Rβ and serum-derived PDGF-BB, and control of PDGF-Rβ expression may be beneficial in chronic intestinal inflammation.

  19. Acquired Localized Hypertrichosis Induced by Rivastigmine

    PubMed Central

    Imbernón-Moya, Adrian; Podlipnik, Sebastian; Burgos, Fernando; Vargas-Laguna, Elena; Aguilar-Martínez, Antonio; Fernández-Cogolludo, Eva; Gallego-Valdes, Miguel Angel

    2016-01-01

    Hypertrichosis is the excessive hair growth in any area of the skin surface. Acquired localized hypertrichosis may be secondary to multiple causes and there is a secondary form due to several drugs, which is usually reversible with discontinuation of the causative agent. Rivastigmine is a reversible and competitive inhibitor of acetylcholinesterase and butyrylcholinesterase used for symptomatic treatment of Alzheimer dementia and Parkinson's disease. It has an adequate safety profile and cutaneous side effects are unusual. Irritant contact dermatitis, allergic dermatitis, baboon syndrome, and cutaneous rash due to rivastigmine have been reported. We report on a Caucasian 80-year-old male with personal history of Alzheimer's disease. The patient started therapy with oral rivastigmine one month prior to clinical presentation of localized hypertrichosis on both forearms. Norgalanthamine has been shown to promote hair growth activity via the proliferation of dermal papilla. Acetylcholinesterase inhibitors can induce hair growth. PMID:27073702

  20. Neurocysticercosis: local and systemic immune-inflammatory features related to severity.

    PubMed

    Sáenz, Brenda; Fleury, Agnes; Chavarría, Anahí; Hernández, Marisela; Crispin, José C; Vargas-Rojas, María I; Fragoso, Gladis; Sciutto, Edda

    2012-02-01

    Neurocysticercosis (NC) is caused by the establishment of Taenia solium cysticerci in the central nervous system. Previous studies have established that neuroinflammation plays a key role in the severity of the disease. However, the relationship between peripheral and local immune response remains inconclusive. This work studies the peripheral and local immune-inflammatory features and their relationships, toward the identification of potential peripheral immunologic features related to severity. A panel of cytokines was measured in paired cerebrospinal fluid (CSF) and in the supernatant of antigen-specific stimulated peripheral blood mononuclear cells samples (SN) in a total of 31 untreated inflammatory and non-inflammatory NC patients. Increased clinical and radiologic severity was associated with an increased cerebrospinal fluid cell count. A peripheral proliferative depression that negatively correlates with CSF cellularity and TNFα and that positively correlates with SN IL5 was observed in severe NC patients. These results provide evidences to support the systemic proliferative response as a biomarker to monitor the level of neuroinflammation, of possible value in the patients' follow-up during treatment.

  1. Role of Inflammatory Monocytes in Vaccine-Induced Reduction of Helicobacter felis Infection

    PubMed Central

    Moyat, Mati; Mack, Matthias; Bouzourene, Hanifa

    2015-01-01

    Despite the proven ability of immunization to reduce Helicobacter infection in mouse models, the precise mechanism of protection has remained elusive. In this study, we evaluated the role of inflammatory monocytes in the vaccine-induced reduction of Helicobacter felis infection. We first showed by using flow cytometric analysis that Ly6Clow major histocompatibility complex class II-positive chemokine receptor type 2 (CCR2)-positive CD64+ inflammatory monocytes accumulate in the stomach mucosa during the vaccine-induced reduction of H. felis infection. To determine whether inflammatory monocytes played a role in the protection, these cells were depleted with anti-CCR2 depleting antibodies. Indeed, depletion of inflammatory monocytes was associated with an impaired vaccine-induced reduction of H. felis infection on day 5 postinfection. To determine whether inflammatory monocytes had a direct or indirect role, we studied their antimicrobial activities. We observed that inflammatory monocytes produced tumor necrosis factor alpha and inducible nitric oxide synthase (iNOS), two major antimicrobial factors. Lastly, by using a Helicobacter in vitro killing assay, we showed that mouse inflammatory monocytes and activated human monocytes killed H. pylori in an iNOS-dependent manner. Collectively, these data show that inflammatory monocytes play a direct role in the immunization-induced reduction of H. felis infection from the gastric mucosa. PMID:26283332

  2. Anti-inflammatory activity of IFN-beta in carrageenan-induced pleurisy in the mouse.

    PubMed Central

    Ghiara, P; Bartalini, M; Tagliabue, A; Boraschi, D

    1986-01-01

    The effect of IFN-beta on the development of the inflammatory reaction was studied in an experimental animal model, carrageenan-induced pleurisy in the mouse. Intrapleural inoculation of IFN-beta at the same time as carrageenan administration inhibited both migration of inflammatory cells and exudate formation in the pleural cavity in a dose-dependent fashion. Similarly, IFN-beta decreased the presence of the arachidonate metabolites PGI2, TXA2 and PGE2 (highly active molecules involved in the regulation of the inflammatory reaction) in inflammatory exudates. A marked inhibition of the inflammatory response to carrageenan was also evident when IFN-beta was administered several hours after the inflammatory challenge. In contrast, administration of IFN-gamma did not modify significantly any of the inflammatory parameters considered. PMID:3105936

  3. Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis.

    PubMed

    Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2015-02-01

    Bovine mastitis is defined as the inflammation of mammary gland and is the most multiple diseases in dairy cattle. There is still no effective treatment now. Leonurine, extracted from Leonurus cardiaca, has been proved to have anti-inflammatory effect. In the present study, we utilized a mouse mastitis model to study the effect of leonurine on LPS-induced mastitis. Leonurine was administered three times during the 24 h after inducing infection in the mammary gland. The results showed that leonurine significantly alleviated LPS-induced histopathological changes, downregulated the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), upregulated the level of anti-inflammatory cytokine interleukin-10 (IL-10), and inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further study revealed that leonurine inhibited the expression of Toll-like receptor 4 (TLR4) and the activation of nuclear factor-kappaB (NF-κB) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK). Therefore, the results demonstrated that leonurine could downregulate the expression of TNF-α, IL-6, iNOS, and COX-2 and upregulate the expression of IL-10 mainly by inhibiting the expression of TLR4 and the activation of NF-κB and the phosphorylation of p38, ERK, and JNK. Leonurine may be a potential agent for mastitis therapy.

  4. Inflammatory Genes and Psychological Factors Predict Induced Shoulder Pain Phenotype

    PubMed Central

    George, Steven Z.; Parr, Jeffrey J.; Wallace, Margaret R.; Wu, Samuel S.; Borsa, Paul A.; Dai, Yunfeng; Fillingim, Roger B.

    2014-01-01

    Purpose The pain experience has multiple influences but little is known about how specific biological and psychological factors interact to influence pain responses. The current study investigated the combined influences of genetic (pro-inflammatory) and psychological factors on several pre-clinical shoulder pain phenotypes. Methods An exercise-induced shoulder injury model was used, and a priori selected genetic (IL1B, TNF/LTA region, IL6 single nucleotide polymorphisms, SNPs) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, kinesiophobia) factors were included as the predictors of interest. The phenotypes were pain intensity (5-day average and peak reported on numerical rating scale), upper-extremity disability (5-day average and peak reported on the QuickDASH instrument), and duration of shoulder pain (in days). Results After controlling for age, sex, and race, the genetic and psychological predictors were entered separately as main effects and interaction terms in regression models for each pain phenotype. Results from the recruited cohort (n = 190) indicated strong statistical evidence for the interactions between 1) TNF/LTA SNP rs2229094 and depressive symptoms for average pain intensity and duration and 2) IL1B two-SNP diplotype and kinesiophobia for average shoulder pain intensity. Moderate statistical evidence for prediction of additional shoulder pain phenotypes included interactions of kinesiophobia, fear of pain, or depressive symptoms with TNF/LTA rs2229094 and IL1B. Conclusion These findings support the combined predictive ability of specific genetic and psychological factors for shoulder pain phenotypes by revealing novel combinations that may merit further investigation in clinical cohorts, to determine their involvement in the transition from acute to chronic pain conditions. PMID:24598699

  5. SR-BI mediates high density lipoprotein (HDL)-induced anti-inflammatory effect in macrophages.

    PubMed

    Song, Gyun Jee; Kim, Seong-Min; Park, Ki-Hoon; Kim, Jihoe; Choi, Inho; Cho, Kyung-Hyun

    2015-01-30

    High density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), mediates selective cholesteryl ester uptake from lipoproteins into the liver as well as cholesterol efflux from macrophages to HDL. Recently, strong evidence has demonstrated the anti-inflammatory effect of HDL, although the mechanism of action is not fully understood. In this study, we showed that the anti-inflammatory effects of HDL are dependent on SR-BI expression in THP-1 macrophages. Consistent with earlier findings, pretreatment of macrophages with HDL abolished LPS-induced TNFα production. HDL also inhibited LPS-induced NF-κB activation. In addition, knockdown of SR-BI or inhibition of SR-BI ligand binding abolished the anti-inflammatory effect of HDL. SR-BI is a multi-ligand receptor that binds to modified lipoproteins as well as native HDL. Since modified lipoproteins have pro-inflammatory properties, it is unclear whether SR-BI activated by modified HDL has an anti- or pro-inflammatory effect. Glycated HDL induced NF-κB activation and cytokine production in macrophages in vitro, suggesting a pro-inflammatory effect for modified HDL. Moreover, inhibition of SR-BI function or expression potentiated glycated HDL-induced TNF-α production, suggesting an anti-inflammatory effect for SR-BI. In conclusion, SR-BI plays an important function in regulating HDL-mediated anti-inflammatory response in macrophages.

  6. DECREASED HEART RATE IS ASSOCIATED WITH CARBAMATE-INDUCED ACTIVATION OF PRO-INFLAMMATORY SERUM PROTEINS.

    EPA Science Inventory

    Previously we reported that chlorpyrifos (CHP), an irreversible cholinesterase (ChE) inhibitor, induces hypertension in rats. Concomitant with hypertension, we found an increase in C-reactive protein, macrophage inflammatory protein-2 , monocyte chemotactic protein-5 and interfer...

  7. Contribution of Lung Macrophages to the Inflammatory Responses Induced by Exposure to Air Pollutants

    PubMed Central

    van Eeden, Stephan F.

    2013-01-01

    Large population cohort studies have indicated an association between exposure to particulate matter and cardiopulmonary morbidity and mortality. The inhalation of toxic environmental particles and gases impacts the innate and adaptive defense systems of the lung. Lung macrophages play a critically important role in the recognition and processing of any inhaled foreign material such as pathogens or particulate matter. Alveolar macrophages and lung epithelial cells are the predominant cells that process and remove inhaled particulate matter from the lung. Cooperatively, they produce proinflammatory mediators when exposed to atmospheric particles. These mediators produce integrated local (lung, controlled predominantly by epithelial cells) and systemic (bone marrow and vascular system, controlled predominantly by macrophages) inflammatory responses. The systemic response results in an increase in the release of leukocytes from the bone marrow and an increased production of acute phase proteins from the liver, with both factors impacting blood vessels and leading to destabilization of existing atherosclerotic plaques. This review focuses on lung macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants. PMID:24058272

  8. Local hippocampal methamphetamine-induced reinforcement.

    PubMed

    Ricoy, Ulises M; Martinez, Joe L

    2009-01-01

    Drug abuse and addiction are major problems in the United States. In particular methamphetamine (METH) use has increased dramatically. A greater understanding of how METH acts on the brain to induce addiction may lead to better therapeutic targets for this problem. The hippocampus is recognized as an important structure in learning and memory, but is not typically associated with drug reinforcement or reward processes. Here, the focus is on the hippocampus which has been largely ignored in the addiction literature as compared to the nucleus accumbens (NAc), ventral tegmental area (VTA), and prefrontal cortex (PFC). The results show that METH administered unilaterally via a microdialysis probe to rats' right dorsal hippocampus will induce drug-seeking (place preference) and drug-taking (lever-pressing) behavior. Furthermore, both of these responses are dependent on local dopamine (DA) receptor activation, as they are impaired by a selective D(1)/D(5) receptor antagonist. The results suggest that the hippocampus is part of the brain's reward circuit that underlies addiction.

  9. Osteoimmunology: Major and Costimulatory Pathway Expression Associated with Chronic Inflammatory Induced Bone Loss

    PubMed Central

    Crotti, Tania N.; Dharmapatni, Anak A. S. S. K.; Alias, Ekram; Haynes, David R.

    2015-01-01

    The field of osteoimmunology has emerged in response to the range of evidences demonstrating the close interrelationship between the immune system and bone metabolism. This is pertinent to immune-mediated diseases, such as rheumatoid arthritis and periodontal disease, where there are chronic inflammation and local bone erosion. Periprosthetic osteolysis is another example of chronic inflammation with associated osteolysis. This may also involve immune mediation when occurring in a patient with rheumatoid arthritis (RA). Similarities in the regulation and mechanisms of bone loss are likely to be related to the inflammatory cytokines expressed in these diseases. This review highlights the role of immune-related factors influencing bone loss particularly in diseases of chronic inflammation where there is associated localized bone loss. The importance of the balance of the RANKL-RANK-OPG axis is discussed as well as the more recently appreciated role that receptors and adaptor proteins involved in the immunoreceptor tyrosine-based activation motif (ITAM) signaling pathway play. Although animal models are briefly discussed, the focus of this review is on the expression of ITAM associated molecules in relation to inflammation induced localized bone loss in RA, chronic periodontitis, and periprosthetic osteolysis, with an emphasis on the soluble and membrane bound factor osteoclast-associated receptor (OSCAR). PMID:26064999

  10. Venipuncture Induced Complex Regional Pain Syndrome Presenting as Inflammatory Arthritis

    PubMed Central

    Arora, Pramod; Mittal, Manoj; Nair, Anugrah; Sultana, Waqia

    2016-01-01

    Venipuncture is one of the most commonly done medical procedures. We report a unique case of a 23-year-old young male who presented with features suggestive of inflammatory arthritis. The symptoms, which initially started on the right side, also involved the other side after a few weeks. Although the patient's symptoms and signs were simulating inflammatory arthritis, he had atypical features like poor response to anti-inflammatory medicines and normal laboratory parameters. His musculoskeletal ultrasonography was also not suggestive of arthritis. His history was reviewed and on direct questioning he revealed a history of venipuncture for blood sample withdrawal, done from right antecubital region for routine health check on the day prior to the onset of symptoms. Complex regional pain syndrome was suspected and triple-phase radioisotope bone scan was done which was highly suggestive of this diagnosis. The patient was managed with multidimensional approach and responded very well to the treatment. Complex regional pain syndrome is usually not thought of in the initial differential diagnosis of inflammatory arthritis. In this report we highlight the need to elicit the often overlooked history of trivial trauma like venipuncture, especially in atypical cases of arthritis. Also the role of newer diagnostic modalities in such cases is emphasized. PMID:27891152

  11. Multifocal inflammatory leukoencephalopathy induced by accidental consumption of levamisole: A case report.

    PubMed

    Sariaslani, Payam; Ghanbari, Ali; Ghanbari, Parvin

    2012-01-01

    Levamisole is an anthelmintic agent and also immunostimulant drug which is used to treat colorectal cancer. The present study aimed to show accidental consumption of levamisole alone induced multifocal inflammatory leukoencephalopathy. A 53-year-old male was admitted to the Neurology Department of Farabi Hospital (Kermanshah, Iran) with walking inability and recognition disorder. Following clinical examinations, the patient diagnosed as multifocal inflammatory leukoencephalopathy following levamisole consumption.The patient was treated with intravenous methylprednisolone followed by prednisolone. The magnetic resonance imaging (MRI) was done 1 month later and did not show a reduction or remission in the lesions. History of the patient showed that he had accidentally consumed levamisole 8 months ago. It seems that the consumption of levamisole can induce multifocal inflammatory leukoencephalopathy and delayed treatment of the patient with corticosteroid cannot diminish the neurotoxicity of levamisole. In addition, the cytotoxic dose of levamisole induces irreversible multifocal inflammatory leukoencephalopathy.

  12. Local and systemic inflammatory and immunologic reactions to cyathostomin larvicidal therapy in horses.

    PubMed

    Nielsen, M K; Loynachan, A T; Jacobsen, S; Stewart, J C; Reinemeyer, C R; Horohov, D W

    2015-12-15

    Encysted cyathostomin larvae are ubiquitous in grazing horses. Arrested development occurs in this population and can lead to an accumulation of encysted larvae. Large numbers of tissue larvae place the horse at risk for developing larval cyathostominosis. This disease complex is caused by mass emergence of these larvae and is characterized by a generalized acute typhlocolitis and manifests itself as a profuse protein-losing watery diarrhea with a reported case-fatality rate of about 50%. Two anthelmintic formulations have a label claim for larvicidal therapy of these encysted stages; moxidectin and a five-day regimen of fenbendazole. There is limited knowledge about inflammatory and immunologic reactions to larvicidal therapy. This study was designed to evaluate blood acute phase reactants as well as gene expression of pro-inflammatory cytokines, both locally in the large intestinal walls and systemically. Further, mucosal tissue samples were evaluated histopathologically as well as analyzed for gene expression of pro- and anti-inflammatory cytokines, cluster of differentiation (CD) cell surface proteins, and select transcription factors. Eighteen juvenile horses with naturally acquired cyathostomin infections were randomly assigned to three treatment groups; one group served as untreated controls (Group 1), one received a five-day regimen of fenbendazole (10mg/kg) (Group 2), and one group received moxidectin (0.4mg/kg) (Group 3). Horses were treated on day 0 and euthanatized on days 18-20. Serum and whole blood samples were collected on days 0, 5, and 18. All horses underwent necropsy with collection of tissue samples from the ventral colon and cecum. Acute phase reactants measured included serum amyloid A, iron and fibrinogen, and the cytokines evaluated included interferon γ, tumor necrosis factor α, transforming growth factor (TGF)-β, and interleukins 1β, 4, 5, 6, and 10. Transcription factors evaluated were FoxP3, GATA3 and tBet, and CD markers included

  13. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974

    PubMed Central

    Jang, Jaewoong; Jung, Yoonju; Kim, Youngeun; Jho, Eek-hoon; Yoon, Yoosik

    2017-01-01

    In this study, LPS-induced inflammatory responses in BEAS-2B human bronchial epithelial cells and human umbilical vein endothelial cell (HUVEC)s were found to be prevented by Dickkopf-1 (DKK-1), a secreted Wnt antagonist, and LGK974, a small molecular inhibitor of the Wnt secretion. LPS-induced IκB degradation and NF-κB nuclear translocation as well as the expressions of pro-inflammatory genes including IL-6, IL-8, TNF- α, IL-1β, MCP-1, MMP-9, COX-2 and iNOS, were all suppressed by DKK-1 and LGK974 in a dose-dependent manner. The suppressive effects of LGK974 on NF-κB, IκB, and pro-inflammatory gene expression were rescued by ectopic expression of β-catenin, suggesting that the anti-inflammatory activity of LGK974 is mediated by modulation of the Wnt/β-catenin pathway and not by unrelated side effects. When Wnt recombinant proteins were treated to cells, Wnt3a and Wnt5a significantly induced pro-inflammatory gene expressions, while Wnt7a and Wnt10b showed little effects. It was also found that Wnt3a and Wnt5a expressions were significantly induced by LPS treatment. Consistently, knockdown of Wnt3a and Wnt5a blocked LPS-induced inflammatory responses, while treatment of recombinant Wnt3a and Wnt5a proteins rescued the inhibition of inflammatory responses by LGK974. Findings of this study showed that DKK-1 and LGK974 suppress LPS-induced inflammatory response by modulating Wnt/β-catenin pathway. PMID:28128299

  14. Anti-inflammatory effects of orally ingested lactoferrin and glycine in different zymosan-induced inflammation models: evidence for synergistic activity.

    PubMed

    Hartog, Anita; Leenders, Inge; van der Kraan, Peter M; Garssen, Johan

    2007-12-15

    There is a growing awareness of the interaction of food constituents with the immune system. The present study aims to evaluate the anti-inflammatory effects of two of these nutritional components (glycine and bovine-lactoferrin (b-LF)) using two different mouse models. In a zymosan-induced ear-skin inflammation model both components decreased the inflammatory response locally (ear swelling and inflammatory cytokine concentration in the ears) and systemically (number of TNF-alpha producing spleen cells). Glycine effects (20, 50 or 100 mg/mouse/day) were concentration dependent. B-LF (0.1 or 1 mg/mouse/day) inhibited the inflammatory response although higher doses (5 and 25 mg/mouse/day) were not effective. A combination of b-LF 0.1 mg/mouse/day and glycine 20 or 50 mg/mouse/day counteracted the zymosan-induced ear swelling synergistically and enhanced the decrease in the number of TNF-alpha producing spleen cells of the individual components. In a zymosan-induced acute arthritis model glycine (50 mg/mouse/day) inhibited joint swelling, inflammatory cell infiltration and cartilage proteoglycan depletion. A b-LF dose of 5 mg/mouse/day reduced the zymosan-induced joint swelling without modulating inflammatory cell infiltration and cartilage proteoglycan depletion. The present study indicates that the anti-inflammatory effects of glycine are independent of the used models. B-LF displays a reversed concentration dependency and the activity is model dependent. A combination of glycine and lactoferrin demonstrated a synergistic anti-inflammatory effect on zymosan-induced skin inflammation and an enhanced decrease in the number of TNF-alpha producing spleen cells compared to the effect of the single components. Therefore, this nutritional concept might be a new option for the treatment of chronic inflammatory diseases.

  15. Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response.

    PubMed

    Liu, Hongqi; Redline, Raymond W; Han, Yiping W

    2007-08-15

    Intrauterine infection plays a pivotal role in preterm birth (PTB) and is characterized by inflammation. Currently, there is no effective therapy available to treat or prevent bacterial-induced PTB. Using Fusobacterium nucleatum, a Gram-negative anaerobe frequently associated with PTB, as a model organism, the mechanism of intrauterine infection was investigated. Previously, it was shown that F. nucleatum induced preterm and term stillbirth in mice. Fusobacterial-induced placental infection was characterized by localized bacterial colonization, inflammation, and necrosis. In this study, F. nucleatum was shown to activate both TLR2 and TLR4 in vitro. In vivo, the fetal death rate was significantly reduced in TLR4-deficient mice (C57BL/6 TLR4(-/-) and C3H/HeJ (TLR4(d/d))), but not in TLR2-deficient mice (C57BL/6 TLR2(-/-)), following F. nucleatum infection. The reduced fetal death in TLR4-deficient mice was accompanied by decreased placental necroinflammatory responses in both C57BL/6 TLR4(-/-) and C3H/HeJ. Decreased bacterial colonization in the placenta was observed in C3H/HeJ, but not in C57BL/6 TLR4(-/-). These results suggest that inflammation, rather than the bacteria per se, was the likely cause of fetal loss. TLR2 did not appear to be critically involved, as no difference in bacterial colonization, inflammation, or necrosis was observed between C57BL/6 and C57BL/6 TLR2(-/-) mice. A synthetic TLR4 antagonist, TLR4A, significantly reduced fusobacterial-induced fetal death and decidual necrosis without affecting the bacterial colonization in the placentas. TLR4A had no bactericidal activity nor did it affect the birth outcome in sham-infected mice. TLR4A could have promise as an anti-inflammatory agent for the treatment or prevention of bacterial-induced preterm birth.

  16. Localization of antimicrobial peptides in the tunic of Ciona intestinalis (Ascidiacea, Tunicata) and their involvement in local inflammatory-like reactions

    PubMed Central

    Di Bella, M.A.; Fedders, H.; De Leo, G.; Leippe, M.

    2011-01-01

    Tunicates comprising a wide variety of different species synthesize antimicrobial peptides as important effector molecules of the innate immune system. Recently, two putative gene families coding for antimicrobial peptides were identified in the expressed sequence tag database of the tunicate Ciona intestinalis. Two synthetic peptides representing the cationic core region of one member of each of the families displayed potent antibacterial and antifungal activities. Moreover, the natural peptides were demonstrated to be synthesized and stored in distinct hemocyte types. Here, we investigated the presence of these natural peptides, namely Ci-MAM-A and Ci-PAP-A, in the tunic of C. intestinalis considering that the ascidian tunic is a body surface barrier exposed to constant microbial assault. Furthermore, as the tunic may represent a major route of entry for pathogen invasion after its damage we monitored the location of these peptides upon a local inflammatory-like reaction induced by injection of foreign cells. Using immunocytochemistry and electron microscopy both peptides were localized to the tunic and were massively present in granulocytes of inflamed tissue. Conclusively, antimicrobial peptides may constitute a chemical barrier within the tunic of urochordates. PMID:24371555

  17. Protective Effect of Strawberry Extract against Inflammatory Stress Induced in Human Dermal Fibroblasts.

    PubMed

    Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Giampieri, Francesca; Afrin, Sadia; Mezzetti, Bruno; Quiles, Josè L; Bompadre, Stefano; Battino, Maurizio

    2017-01-21

    A protracted pro-inflammatory state is a major contributing factor in the development, progression and complication of the most common chronic pathologies. Fruit and vegetables represent the main sources of dietary antioxidants and their consumption can be considered an efficient tool to counteract inflammatory states. In this context an evaluation of the protective effects of strawberry extracts on inflammatory stress induced by E. coli LPS on human dermal fibroblast cells was performed in terms of viability assays, ROS and nitrite production and biomarkers of oxidative damage of the main biological macromolecules. The results demonstrated that strawberry extracts exerted an anti-inflammatory effect on LPS-treated cells, through an increase in cell viability, and the reduction of ROS and nitrite levels, and lipid, protein and DNA damage. This work showed for the first time the potential health benefits of strawberry extract against inflammatory and oxidative stress in LPS-treated human dermal fibroblast cells.

  18. Disruption of antigen-induced inflammatory responses in CD40 ligand knockout mice.

    PubMed Central

    Lei, X F; Ohkawara, Y; Stämpfli, M R; Mastruzzo, C; Marr, R A; Snider, D; Xing, Z; Jordana, M

    1998-01-01

    The objective of this study was to investigate the contribution of the interaction between CD40 and its ligand (CD40L) to antigen-induced airways inflammatory responses. To this end, we used a model involving ovalbumin (OVA) sensitization followed by OVA aerosol challenge in CD40L knockout (KO) mice. OVA-specific IgE and IgG1 were detected in the serum of the sensitized control, but not in CD40L-KO mice. After antigen challenge, sensitized control mice developed airway inflammation that was primarily eosinophilic. This inflammatory response was dramatically reduced in CD40L-KO mice. In contrast, similar numbers of eosinophils were observed in both the bone marrow and the peripheral blood in the sensitized controls and mutant strains after antigen challenge. To investigate the mechanisms underlying these findings, we examined levels of the cytokines IL-5, IL-4, and TNFalpha in both bronchoalveolar lavage (BAL) and serum. Similar levels of IL-5 were detected in BAL and serum of control and CD40L-KO mice; however, negligible levels of IL-4 in BAL and serum and of TNFalpha in BAL were detected in CD40L-KO mice when compared with control mice. Furthermore, we demonstrated that endothelial cell expression of vascular cell adhesion molecule 1 in OVA-sensitized and -challenged CD40L-KO mice was, as detected by immunohistochemistry, markedly decreased compared with that observed in similarly treated control mice. In addition, we locally overexpressed IL-4 and TNFalpha by using an adenoviral (Ad)-mediated gene transfer approach. Intranasal administration of either Ad/TNFalpha or Ad/IL-4 into OVA-sensitized and -challenged CD40L-KO mice did not reconstitute airway eosinophilia. However, concurrent administration of Ad/TNFalpha and Ad/IL-4 upregulated endothelial expression of vascular cell adhesion molecule 1, and resulted in full reconstitution of the inflammatory response in the airways. Together, these findings demonstrate the importance of the CD40-CD40L costimulatory

  19. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.

  20. Chronic combined stress induces selective and long-lasting inflammatory response evoked by changes in corticosterone accumulation and signaling in rat hippocampus.

    PubMed

    Piskunov, Aleksey; Stepanichev, Mikhail; Tishkina, Anna; Novikova, Margarita; Levshina, Irina; Gulyaeva, Natalia

    2016-04-01

    Hippocampus is believed to be selectively vulnerable to stress. We hypothesized that this phenomenon may be mediated by relatively high vulnerability to neuroinflammation related to impairments of local glucocorticoid metabolism and signaling. We have evaluated inflammatory responses induced by acute or chronic combined stress in the cerebral cortex and hippocampus as well as circulating and brain corticosterone (CS) levels as well as expression of corticosterone target genes. The hippocampus showed higher stress-induced expression of the proinflammatory cytokine IL-1β as compared to the cerebral cortex. A month after the termination of the chronic stress, IL-1β mRNA in the cerebral cortex reached control level, while in the hippocampus it remained significantly increased. Under chronic stress, the maladaptive inflammatory response in hippocampus was accompanied by a significant increase in local CS levels, as compared to cerebral cortex. Under acute stress, the increased CS level induced changes in CS-regulated genes expression (CRF and IGF1), while this phenomenon was not observed after chronic stress. Thus, the hippocampus appears to be more vulnerable to stress-induced inflammation as compared to the neocortex and demonstrates persistent inflammatory response induced by chronic stress. Stress-induced maladaptive inflammatory response is associated with a selective increase in hippocampal CS accumulation and changes in CS signaling.

  1. Anti-inflammatory activities of isorhamnetin-3-O-galactoside against HMGB1-induced inflammatory responses in both HUVECs and CLP-induced septic mice.

    PubMed

    Kim, Tae Hoon; Ku, Sae-Kwang; Bae, Jong-Sup

    2013-02-01

    High mobility group box 1 (HMGB1) protein is a crucial nuclear cytokine that elicits severe vascular inflammatory diseases. Oenanthe javanica (water dropwort) extract has anti-arrhythmic, neuroprotective and anti-diabetic activity. However, isorhamnetin-3-O-galactoside (I3G), an active compound from O. javanica, is not researched well for its biological activity. Here, we investigated the anti-inflammatory activities of I3G by monitoring the effects of I3G on the lipopolysaccharide (LPS) or cecal ligation and puncture (CLP)-mediated release of HMGB1 and HMGB1 or CLP-mediated modulation of inflammatory responses. I3G potently inhibited the release of HMGB1 and down-regulated HMGB1-dependent inflammatory responses in human endothelial cells. I3G also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. Further studies revealed that I3G suppressed the production of tumor necrosis factor-α and activation of nuclear factor-κB by HMGB1. In addition, I3G reduced CLP-induced HMGB1 release and sepsis-related mortality. Given these results, I3G should be viewed as a candidate therapeutic agent for the treatment of severe vascular inflammatory diseases such as sepsis or septic shock via inhibition of the HMGB1 signaling pathway.

  2. Abarema cochliacarpos extract decreases the inflammatory process and skeletal muscle injury induced by Bothrops leucurus venom.

    PubMed

    Saturnino-Oliveira, Jeison; Santos, Daiana Do Carmo; Guimarães, Adriana Gibara; Santos Dias, Antônio; Tomaz, Marcelo Amorim; Monteiro-Machado, Marcos; Estevam, Charles Santos; De Lucca Júnior, Waldecy; Maria, Durvanei Augusto; Melo, Paulo A; Araújo, Adriano Antunes de Souza; Santos, Márcio Roberto Viana; Almeida, Jackson Roberto Guedes da Silva; Oliveira, Rita de Cássia Meneses; Pereira de Oliveira, Aldeidia; Quintans Júnior, Lucindo José

    2014-01-01

    Snakebites are a public health problem, especially in tropical countries. However, treatment with antivenom has limited effectiveness against venoms' local effects. Here, we investigated the ability of Abarema cochliacarpos hydroethanolic extract (EAc) to protect mice against injection of Bothrops leucurus venom. Swiss mice received perimuscular venom injection and were subsequently treated orally with EAc in different doses. Treatment with EAc 100, 200, and 400 mg/kg reduced the edema induced by B. leucurus in 1%, 13%, and 39%, respectively. Although lower doses showed no antihypernociceptive effect in the Von Frey test, the higher dose significantly reduced hyperalgesia induced by the venom. Antimyotoxic activity of EAc was also observed by microscopy assessment, with treated muscles presenting preserved structures, decreased edema, and inflammatory infiltrate as compared to untreated ones. Finally, on the rotarod test, the treated mice showed better motor function, once muscle fibers were preserved and there were less edema and pain. Treated mice could stand four times more time on the rotating rod than untreated ones. Our results have shown that EAc presented relevant activities against injection of B. leucurus venom in mice, suggesting that it can be considered as an adjuvant in the treatment of envenomation.

  3. Abarema cochliacarpos Extract Decreases the Inflammatory Process and Skeletal Muscle Injury Induced by Bothrops leucurus Venom

    PubMed Central

    Saturnino-Oliveira, Jeison; Santos, Daiana Do Carmo; Guimarães, Adriana Gibara; Santos Dias, Antônio; Tomaz, Marcelo Amorim; Monteiro-Machado, Marcos; Estevam, Charles Santos; Lucca Júnior, Waldecy De; Maria, Durvanei Augusto; Melo, Paulo A.; Araújo, Adriano Antunes de Souza; Santos, Márcio Roberto Viana; Almeida, Jackson Roberto Guedes da Silva; Oliveira, Rita de Cássia Meneses; Pereira de Oliveira, Aldeidia; Quintans Júnior, Lucindo José

    2014-01-01

    Snakebites are a public health problem, especially in tropical countries. However, treatment with antivenom has limited effectiveness against venoms' local effects. Here, we investigated the ability of Abarema cochliacarpos hydroethanolic extract (EAc) to protect mice against injection of Bothrops leucurus venom. Swiss mice received perimuscular venom injection and were subsequently treated orally with EAc in different doses. Treatment with EAc 100, 200, and 400 mg/kg reduced the edema induced by B. leucurus in 1%, 13%, and 39%, respectively. Although lower doses showed no antihypernociceptive effect in the Von Frey test, the higher dose significantly reduced hyperalgesia induced by the venom. Antimyotoxic activity of EAc was also observed by microscopy assessment, with treated muscles presenting preserved structures, decreased edema, and inflammatory infiltrate as compared to untreated ones. Finally, on the rotarod test, the treated mice showed better motor function, once muscle fibers were preserved and there were less edema and pain. Treated mice could stand four times more time on the rotating rod than untreated ones. Our results have shown that EAc presented relevant activities against injection of B. leucurus venom in mice, suggesting that it can be considered as an adjuvant in the treatment of envenomation. PMID:25136627

  4. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells.

    PubMed

    Cohen, Evan N; Gao, Hui; Anfossi, Simone; Mego, Michal; Reddy, Neelima G; Debeb, Bisrat; Giordano, Antonio; Tin, Sanda; Wu, Qiong; Garza, Raul J; Cristofanilli, Massimo; Mani, Sendurai A; Croix, Denise A; Ueno, Naoto T; Woodward, Wendy A; Luthra, Raja; Krishnamurthy, Savitri; Reuben, James M

    2015-01-01

    Inflammatory breast cancer (IBC) is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT) in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1), a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction.

  5. Anti-inflammatory effect of thalidomide in paraquat-induced pulmonary injury in mice.

    PubMed

    Amirshahrokhi, Keyvan

    2013-10-01

    Thalidomide has been used in inflammatory and autoimmune disorders due to its anti-inflammatory activity. Paraquat (PQ) poisoning causes severe lung injury. PQ-induced pulmonary inflammation and fibrosis are due to its ability to induce oxidative stress, inflammatory and fibrotic reactions. This study was designed to evaluate the anti-inflammatory and anti-fibrotic effect of thalidomide on PQ-induced lung damage in a mouse model. Mice were injected with a single dose of PQ (20mg/kg, i.p.), and treated with thalidomide (25 and 50mg/kg/day, i.p.) for six days. Lung tissues were dissected six days after PQ injection. The results showed that thalidomide ameliorated the biochemical and histological lung alterations induced by PQ. Thalidomide decreased production of inflammatory and fibrogenic cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β1. In addition thalidomide reduced myeloperoxidase (MPO), nitric oxide (NO), and hydroxyproline content in lung tissue. Taken together, the results of this study suggest that thalidomide might be a valuable therapeutic drug in preventing the progression of PQ-induced pulmonary injury.

  6. Uric Acid Is a Mediator of the Plasmodium falciparum-Induced Inflammatory Response

    PubMed Central

    Orengo, Jamie Marie; Leliwa-Sytek, Aleksandra; Evans, James E.; Evans, Barbara; van de Hoef, Diana; Nyako, Marian; Day, Karen; Rodriguez, Ana

    2009-01-01

    Background Malaria triggers a high inflammatory response in the host that mediates most of the associated pathologies and contributes to death. The identification of pro-inflammatory molecules derived from Plasmodium is essential to understand the mechanisms of pathogenesis and to develop targeted interventions. Uric acid derived from hypoxanthine accumulated in infected erythrocytes has been recently proposed as a mediator of inflammation in rodent malaria. Methods and Findings We found that human erythrocytes infected with Plasmodium falciparum gradually accumulate hypoxanthine in their late stages of development. To analyze the role of hypoxanthine-derived uric acid induced by P. falciparum on the inflammatory cytokine response from human blood mononuclear cells, cultures were treated with allopurinol, to inhibit uric acid formation from hypoxanthine, or with uricase, to degrade uric acid. Both treatments significantly reduce the secretion of TNF, IL-6, IL-1β and IL-10 from human cells. Conclusions and Significance Uric acid is a major contributor of the inflammatory response triggered by P. falciparum in human peripheral blood mononuclear cells. Since the inflammatory reaction induced by P. falciparum is considered a major cause of malaria pathogenesis, identifying the mechanisms used by the parasite to induce the host inflammatory response is essential to develop urgently needed therapies against this disease. PMID:19381275

  7. Inflammatory Stress Sensitizes the Liver to Atorvastatin-Induced Injury in ApoE-/- Mice

    PubMed Central

    Wu, Wei; Zhao, Lei; Yang, Ping; Zhou, Wei; Li, Beibei; Moorhead, John F.; Varghese, Zac; Ruan, Xiong Z.; Chen, Yaxi

    2016-01-01

    Statins, which are revolutionized cholesterol-lowing agents, have been reported to have unfavorable effects on the liver. Inflammatory stress is a susceptibility factor for drug-induced liver injury. This study investigated whether inflammatory stress sensitized the liver to statin-induced toxicity in mice and explored the underlying mechanisms. We used casein injection in ApoE-/- mice to induce inflammatory stress. Half of the mice were orally administered atorvastatin (10mg/kg/d) for 8 weeks. The results showed that casein injection increased the levels of serum pro-inflammatory cytokines (IL-6 and TNFα). Atorvastatin treatment increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in casein injection mice. Moreover, atorvastatin treatment exacerbated hepatic steatosis, inflammation and fibrosis, as well as increased hepatic reactive oxygen species (ROS) and malondialdehyde in casein injection mice. However, above changes were not observed in atorvastatin treated alone mice. The protein expression of liver nuclear factor erythroid 2-related factor 2 (Nrf2) and the mRNA expressions of Nrf2 target genes were increased, together with the enhancement of activities of hepatic catalase and superoxide dismutase in atorvastatin treated alone mice, but these antioxidant responses were lost in mice treated with atorvastatin under inflammatory stress. This study demonstrates that atorvastatin exacerbates the liver injury under inflammatory stress, which may be associated with the loss of adaptive antioxidant response mediated by Nrf2. PMID:27428373

  8. Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy.

    PubMed

    Bouchlaka, Myriam N; Sckisel, Gail D; Chen, Mingyi; Mirsoian, Annie; Zamora, Anthony E; Maverakis, Emanual; Wilkins, Danice E C; Alderson, Kory L; Hsiao, Hui-Hua; Weiss, Jonathan M; Monjazeb, Arta M; Hesdorffer, Charles; Ferrucci, Luigi; Longo, Dan L; Blazar, Bruce R; Wiltrout, Robert H; Redelman, Doug; Taub, Dennis D; Murphy, William J

    2013-10-21

    Cancer commonly occurs in the elderly and immunotherapy (IT) is being increasingly applied to this population. However, the majority of preclinical mouse tumor models assessing potential efficacy and toxicities of therapeutics use young mice. We assessed the impact of age on responses to systemic immune stimulation. In contrast to young mice, systemic cancer IT regimens or LPS given to aged mice resulted in rapid and lethal toxicities affecting multiple organs correlating with heightened proinflammatory cytokines systemically and within the parenchymal tissues. This inflammatory response and increased morbidity with age was independent of T cells or NK cells. However, prior in vivo depletion of macrophages in aged mice resulted in lesser cytokine levels, increased survival, and decreased liver histopathology. Furthermore, macrophages from aged mice and normal human elderly volunteers displayed heightened TNF and IL-6 production upon in vitro stimulation. Treatment of both TNF knockout mice and in vivo TNF blockade in aged mice resulted in significant increases in survival and lessened pathology. Importantly, TNF blockade in tumor-bearing, aged mice receiving IT displayed significant anti-tumor effects. These data demonstrate the critical role of macrophages in the age-associated hyper-inflammatory cytokine responses to systemic immunostimulation and underscore the importance of performing preclinical assessments in aged mice.

  9. Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy

    PubMed Central

    Bouchlaka, Myriam N.; Sckisel, Gail D.; Chen, Mingyi; Mirsoian, Annie; Zamora, Anthony E.; Maverakis, Emanual; Wilkins, Danice E.C.; Alderson, Kory L.; Hsiao, Hui-Hua; Weiss, Jonathan M.; Monjazeb, Arta M.; Hesdorffer, Charles; Ferrucci, Luigi; Longo, Dan L.; Blazar, Bruce R.; Wiltrout, Robert H.; Redelman, Doug; Taub, Dennis D.

    2013-01-01

    Cancer commonly occurs in the elderly and immunotherapy (IT) is being increasingly applied to this population. However, the majority of preclinical mouse tumor models assessing potential efficacy and toxicities of therapeutics use young mice. We assessed the impact of age on responses to systemic immune stimulation. In contrast to young mice, systemic cancer IT regimens or LPS given to aged mice resulted in rapid and lethal toxicities affecting multiple organs correlating with heightened proinflammatory cytokines systemically and within the parenchymal tissues. This inflammatory response and increased morbidity with age was independent of T cells or NK cells. However, prior in vivo depletion of macrophages in aged mice resulted in lesser cytokine levels, increased survival, and decreased liver histopathology. Furthermore, macrophages from aged mice and normal human elderly volunteers displayed heightened TNF and IL-6 production upon in vitro stimulation. Treatment of both TNF knockout mice and in vivo TNF blockade in aged mice resulted in significant increases in survival and lessened pathology. Importantly, TNF blockade in tumor-bearing, aged mice receiving IT displayed significant anti-tumor effects. These data demonstrate the critical role of macrophages in the age-associated hyper-inflammatory cytokine responses to systemic immunostimulation and underscore the importance of performing preclinical assessments in aged mice. PMID:24081947

  10. Silencing MR-1 attenuates inflammatory damage in mice heart induced by AngII

    SciTech Connect

    Dai, Wenjian; Chen, Haiyang; Jiang, Jiandong; Kong, Weijia; Wang, Yiguang

    2010-01-15

    Myofibrillogenesis regulator-1(MR-1) can aggravate cardiac hypertrophy induced by angiotensin(Ang) II in mice through activation of NF-{kappa}B signaling pathway, and nuclear transcription factor (NF)-{kappa}B and activator protein-1(AP-1) regulate inflammatory and immune responses by increasing the expression of specific inflammatory genes in various tissues including heart. Whether inhibition of MR-1 expression will attenuate AngII-induced inflammatory injury in mice heart has not been explored. Herein, we monitored the activation of NF-{kappa}B and AP-1, together with expression of pro-inflammatory of interleukin(IL)-6, tumor necrosis factor(TNF)-{alpha}, vascular-cell adhesion molecule (VCAM)-1, platelet endothelial cell adhesion molecule (PECAM), and inflammatory cell infiltration in heart of mice which are induced firstly by AngII (PBS),then received MR-1-siRNA or control-siRNA injecting. We found that the activation of NF-{kappa}B and AP-1 was inhibited significantly, together with the decreased expression of IL-6, TNF-{alpha}, VCAM-1, and PECAM in AngII-induced mice myocardium in MR-1-siRNA injection groups compared with control-siRNA injecting groups. However, the expression level of MR-1 was not an apparent change in PBS-infused groups than in unoperation groups, and MR-1-siRNA do not affect the expression of MR-1 in PBS-infused mice. Our findings suggest that silencing MR-1 protected mice myocardium against inflammatory injury induced by AngII by suppression of pro-inflammatory transcription factors NF-{kappa}B and AP-1 signaling pathway.

  11. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα.

    PubMed

    Tang, Jing; Luo, Kang; Li, Yan; Chen, Quan; Tang, Dan; Wang, Deming; Xiao, Ji

    2015-09-01

    Here, we investigated the role of LXRα in capsaicin mediated anti-inflammatory effects. Results revealed that capsaicin inhibits LPS-induced IL-1β, IL-6 and TNF-α production in a time- and dose-dependent manner. Moreover, capsaicin increases LXRα expression through PPARγ pathway. Inhibition of LXRα activation by siRNA diminished the inhibitory action of capsaicin on LPS-induced IL-1β, IL-6 and TNF-α production. Additionally, LXRα siRNA abrogated the inhibitory action of capsaicin on p65 NF-κB protein expression. Thus, we propose that the anti-inflammatory effects of capsaicin are LXRα dependent, and LXRα may potentially link the capsaicin mediated PPARγ activation and NF-κB inhibition in LPS-induced inflammatory response.

  12. Diosgenin inhibits IL-1β-induced expression of inflammatory mediators in human osteoarthritis chondrocytes

    PubMed Central

    Wang, Leisheng; Ma, Tian; Zheng, Yanpin; Lv, Shiqiao; Li, Yu; Liu, Shaoxian

    2015-01-01

    It is well known that the inflammatory cytokines play important roles in osteoarthritis (OA). Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species and possesses diverse biological activities including anti-inflammatory properties. However, the role of diosgenin in inflammatory responses in OA chondrocytes is still unclear. Therefore, in this study, we investigated the anti-inflammatory properties of diosgenin in human OA chondrocytes. We found that diosgenin inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) induced by interleukin-1-beta (IL-1β). Diosgenin significantly inhibited the IL-1β-stimulated expression of metalloproteinase-3 (MMP-3), MMP-13, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in human OA chondrocytes. In addition, diosgenin suppressed the degradation of IκB-α in IL-1β-induced human OA chondrocytes. Taken together, this study showed that diosgenin can effectively inhibit the IL-1β-induced expression of inflammatory mediators, suggesting that diosgenin may be a potential agent in the treatment of OA. PMID:26191174

  13. Anti-inflammatory Effects of Resveratrol on Hypoxia/Reoxygenation-Induced Alveolar Epithelial Cell Dysfunction.

    PubMed

    Liu, Po-Len; Chong, Inn-Wen; Lee, Yi-Chen; Tsai, Jong-Rung; Wang, Hui-Min; Hsieh, Chong-Chao; Kuo, Hsuan-Fu; Liu, Wei-Lun; Chen, Yung-Hsiang; Chen, Hsiu-Lin

    2015-11-04

    Reducing oxidative stress is crucial to prevent hypoxia-reoxygenation (H/R)-induced lung injury. Resveratrol has excellent antioxidant and anti-inflammatory effects, and this study investigated its role in H/R-induced type II pneumocyte dysfunction. H/R conditions increased expression of inflammatory cytokines including interleukin (IL)-1β (142.3 ± 21.2%, P < 0.05) and IL-6 (301.9 ± 35.1%, P < 0.01) in a type II alveolar epithelial cell line (A549), while the anti-inflammatory cytokine IL-10 (64.6 ± 9.8%, P < 0.05) and surfactant proteins (SPs) decreased. However, resveratrol treatment effectively inhibited these effects. H/R significantly activated an inflammatory transcription factor, nuclear factor (NF)-κB, while resveratrol significantly inhibited H/R-induced NF-κB transcription activities. To the best of our knowledge, this is the first study showing resveratrol-mediated reversal of H/R-induced inflammatory responses and dysfunction of type II pneumocyte cells in vitro. The effects of resveratrol were partially mediated by promoting SP expression and inhibiting inflammation with NF-κB pathway involvement. Therefore, our study provides new insights into mechanisms underlying the action of resveratrol in type II pneumocyte dysfunction.

  14. Mouse models of alphavirus-induced inflammatory disease.

    PubMed

    Taylor, Adam; Herrero, Lara J; Rudd, Penny A; Mahalingam, Suresh

    2015-02-01

    Part of the Togaviridae family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.

  15. Anti-inflammatory property of Kalpaamruthaa on myocardium in type 2 diabetes mellitus induced cardiovascular complication.

    PubMed

    Raja, Latha; Palanivelu, Shanthi; Panchanatham, Sachdanandam

    2013-02-01

    Efficacy of Kalpaamruthaa (KA) on the modulation of inflammatory markers in cardiovascular disease (CVD) induced by type 2 diabetes mellitus in experimental rats has been investigated in this study. Oxidative stress in hyperglycemia develops CVD by increasing the inflammatory markers. Administration of KA reduced the blood glucose level towards baseline in rats with diabetes induced CVD. Plasma C-reactive protein was elevated in CVD, while its level was markedly reduced upon KA treatment. Inducible nitric oxide synthase and cycloxygenase-2 expressions in immunoblots, interleukin-1β and interleukin-6 expressions in reverse transcriptase polymerase chain reaction and immunohistochemical expressions of tumor necrosis factor-α and nuclear factor-κB were increased in CVD-induced rats. KA renders its protection by decreasing these inflammatory markers in CVD-induced rats. Histochemical analysis of mast cell was studied. KA treated rats showed reduced count of mast cell in CVD-induced rat myocardium. This study provides the evidence of cardiovascular protective effect of KA in type 2 diabetes mellitus through its anti-inflammatory property.

  16. Light-emitting diodes at 940nm attenuate colitis-induced inflammatory process in mice.

    PubMed

    Belém, Mônica O; de Andrade, Giovana M M; Carlos, Thalita M; Guazelli, Carla F S; Fattori, Victor; Toginho Filho, Dari O; Dias, Ivan F L; Verri, Waldiceu A; Araújo, Eduardo J A

    2016-09-01

    Inflammatory bowel disease (IBD) presents intense inflammatory infiltrate, crypt abscesses, ulceration and even loss of function. Despite the clinical relevance of IBD, its current therapy remains poorly effective. Infrared wavelength phototherapy shows therapeutic potential on inflammation. Our goal was to evaluate whether light-emitting diodes (LED) at 940nm are capable of mitigating the colitis-induced inflammatory process in mice. Forty male Swiss mice were assigned into five groups: control; control treated with LED therapy; colitis without treatment; colitis treated with LED therapy; colitis treated with Prednisolone. Experimental colitis was induced by acetic acid 7.5% (pH2.5) rectal administration. LED therapy was performed with light characterized by wavelength of 940nm, 45nm bandwidth, intensity of 4.05J/cm(2), total power of 270mW and total dose of 64.8J for 4min in a single application. Colitis-induced intestinal transit delay was inhibited by LED therapy. Colitis caused an increase of colon dimensions (length, diameter, total area) and colon weight (edema), which were inhibited by LED therapy. LED therapy also decreased colitis-induced tissue gross lesion, myeloperoxidase activity, microscopic tissue damage score and the presence of inflammatory infiltrate in all intestinal layers. Furthermore, LED therapy inhibited colitis-induced IL-1β, TNF-α, and IL-6 production. We conclude LED therapy at 940nm inhibited experimental colitis-induced colon inflammation in mice, therefore, rendering it a promising therapeutic approach that deserves further investigation.

  17. Anti-Inflammatory Effect of Erythropoietin in the TNBS-induced Colitis.

    PubMed

    Mateus, Vanessa; Rocha, João; Alves, Paula; Mota-Filipe, Helder; Sepodes, Bruno; Pinto, Rui Manuel Amaro

    2017-02-01

    Erythropoietin is a potent stimulator of erythroid progenitor cells, which is able to inhibit NF-kB activation, due to its pleiotropic properties, thus promoting an anti-inflammatory effect. As inflammatory bowel disease is a chronic disease with reduced quality of life, and the current pharmacotherapy only induces or maintains the patient in remission, there is a crucial need of new pharmacological approaches. The main objective of this study was to evaluate the effect of erythropoietin in the TNBS-induced colitis model in mice with a normal intestinal flora. Mice with TNBS-induced colitis were treated with a daily dose of erythropoietin at 500 IU/kg bw/day and 1000 IU/Kg bw/day IP during 4 days. As to clinical symptoms/signs, erythropoietin attenuated the decreased body-weight and reduced diarrhoea and oedema of the anus registered in the non-treated mice group in a dose-dependent manner. The anti-inflammatory properties of erythropoietin in the TNBS-induced colitis were confirmed by suppression of pro-inflammatory mediators, such as TNF-α, IL-1β and MPO, as well as a significant increase in the anti-inflammatory cytokine, IL-10, was promoted. These treated mice also presented a reduction in haemoglobin faecal and ALP, suggesting a beneficial effect of erythropoietin in the haemorrhagic focus and destruction of the enterocyte associated with the colon injury induced by TNBS, respectively. The histopathological score was reduced after treatment with erythropoietin, decreasing the severity and extension of the colitis. Furthermore, renal and hepatic biomarkers, as well as haematocrit concentration, remained stabilized after treatment. In conclusion, erythropoietin reduces the inflammatory response associated with TNBS-induced colitis in mice.

  18. Interleukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in mice.

    PubMed

    Robertson, Sarah A; Care, Alison S; Skinner, Rebecca J

    2007-05-01

    Interleukin 10 (IL10) is a potent immune-regulating cytokine and inhibitor of inflammatory cytokine synthesis. To evaluate the anti-inflammatory role of IL10 in pregnancy, the response of genetically IL10-deficient mice to low-dose lipopolysaccharide (LPS)-induced abortion was examined. When IL10-null mutant C57Bl/6 (Il10(-/-)) and control (Il10(+/+)) mice were administered low-dose LPS on Day 9.5 of gestation, IL10 deficiency predisposed to fetal loss accompanied by growth restriction in remaining viable fetuses, with an approximately 10-fold reduction in the threshold dose for 100% abortion. After LPS administration, inflammatory cytokines tumor necrosis factor-alpha (TNFA) and IL6 were markedly increased in serum, uterine, and conceptus tissues in Il10(-/-) mice compared with Il10(+/+) mice, with elevated local synthesis of Tnfa and Il6 mRNAs in the gestational tissues. IL1A and IL12p40 were similarly elevated in serum and gestational tissues, whereas interferon gamma (IFNG) and soluble TNFRII content were unchanged in the absence of IL10. Recombinant IL10 rescued the increased susceptibility to LPS-induced fetal loss in Il10(-/-) mice but did not improve outcomes in Il10(+/+) mice. IL10 genotype also influenced the responsiveness of mice to a TNFA antagonist, etanercept. Fetal loss in Il10(-/-) mice was partly alleviated by moderate or high doses of etanercept, whereas Il10(+/+) mice were refractory to high-dose etanercept, consistent with attenuation by IL10 status of TNFA bioavailability after etanercept treatment. These data show that IL10 modulates resistance to inflammatory stimuli by downregulating expression of proinflammatory cytokines TNFA, IL6, IL1A, and IL12, acting to protect against inflammation-induced pathology in the implantation site.

  19. A mouse model for pathogen-induced chronic inflammation at local and systemic sites.

    PubMed

    Papadopoulos, George; Kramer, Carolyn D; Slocum, Connie S; Weinberg, Ellen O; Hua, Ning; Gudino, Cynthia V; Hamilton, James A; Genco, Caroline A

    2014-08-08

    Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies

  20. Experimental diabetes induces structural, inflammatory and vascular changes of Achilles tendons.

    PubMed

    de Oliveira, Rodrigo R; Martins, Conceição S; Rocha, Yuri R; Braga, Allysson B R; Mattos, Rômulo M; Hecht, Fábio; Brito, Gerly A C; Nasciutti, Luiz E

    2013-01-01

    This study aims to demonstrate how the state of chronic hyperglycemia from experimental Diabetes Mellitus can influence the homeostatic imbalance of tendons and, consequently, lead to the characteristics of tendinopathy. Twenty animals were randomly divided into two experimental groups: control group, consisting of healthy rats and diabetic group constituted by rats induced to Diabetes Mellitus I. After twenty-four days of the induction of Diabetes type I, the Achilles tendon were removed for morphological evaluation, cellularity, number and cross-sectional area of blood vessel, immunohistochemistry for Collagen type I, VEGF and NF-κB nuclear localization sequence (NLS) and nitrate and nitrite level. The Achilles tendon thickness (µm/100g) of diabetic animals was significantly increased and, similarly, an increase was observed in the density of fibrocytes and mast cells in the tendons of the diabetic group. The average number of blood vessels per field, in peritendinous tissue, was statistically higher in the diabetic group 3.39 (2.98) vessels/field when compared to the control group 0.89 (1.68) vessels/field p = 0.001 and in the intratendinous region, it was observed that blood vessels were extremely rare in the control group 0.035 (0.18) vessels/field and were often present in the tendons of the diabetic group 0.89 (0.99) vessels/field. The immunohistochemistry analysis identified higher density of type 1 collagen and increased expression of VEGF as well as increased immunostaining for NFκB p50 NLS in the nucleus in Achilles tendon of the diabetic group when compared to the control group. Higher levels of nitrite/nitrate were observed in the experimental group induced to diabetes. We conclude that experimental DM induces notable structural, inflammatory and vascular changes in the Achilles tendon which are compatible with the process of chronic tendinopathy.

  1. Wogonin prevents immunosuppressive action but not anti-inflammatory effect induced by glucocorticoid.

    PubMed

    Enomoto, Riyo; Suzuki, Chie; Koshiba, Chika; Nishino, Takayuki; Nakayama, Mikiko; Hirano, Hiroyuki; Yokoi, Toshio; Lee, Eibai

    2007-01-01

    Glucocorticoid, such as dexamethasone, has anti-inflammatory and immunosuppressive action as major pharmacological effects. The latter action caused by lymphocyte apoptosis is not only a therapeutic effect but also an adverse reaction. Wogonin, a plant flavone found in Scutellaria baicalensis Georgi, inhibited dexamethasone-induced apoptotic changes, such as DNA fragmentation, nuclear condensation, phosphatidylserine translocation, and caspase activation in rat thymocytes. Since wogonin inhibited dexamethasone-induced DNA fragmentation in a noncompetitive manner, a target of this flavone is unlikely to be an antagonist of glucocorticoid receptor. Wogonin did not only act as an inhibitor of caspases, but also protected apoptosis induced by other glucocorticoids. Since wogonin reduced one of the major pharmacological effects of dexamethasone, we examined whether this flavone diminishes the anti-inflammatory action, another pharmacological effect. The anti-inflammatory action of dexamethasone was evaluated by carrageenan-induced paw edema model. Although dexamethasone significantly suppressed paw edema induced by carrageenan, wogonin had no effect on the anti-inflammatory action of dexamethasone. These results suggest that wogonin may be a useful compound to reduce the immunosuppressive side effect of glucocorticoid.

  2. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  3. Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA.

    PubMed

    Reddy, Marpadga A; Chen, Zhuo; Park, Jung Tak; Wang, Mei; Lanting, Linda; Zhang, Qiang; Bhatt, Kirti; Leung, Amy; Wu, Xiwei; Putta, Sumanth; Sætrom, Pål; Devaraj, Sridevi; Natarajan, Rama

    2014-12-01

    The mechanisms by which macrophages mediate the enhanced inflammation associated with diabetes complications are not completely understood. We used RNA sequencing to profile the transcriptome of bone marrow macrophages isolated from diabetic db/db mice and identified 1,648 differentially expressed genes compared with control db/+ mice. Data analyses revealed that diabetes promoted a proinflammatory, profibrotic, and dysfunctional alternatively activated macrophage phenotype possibly via transcription factors involved in macrophage function. Notably, diabetes altered levels of several long noncoding RNAs (lncRNAs). Because the role of lncRNAs in diabetes complications is unknown, we further characterized the function of lncRNA E330013P06, which was upregulated in macrophages from db/db and diet-induced insulin-resistant type 2 diabetic (T2D) mice, but not from type 1 diabetic mice. It was also upregulated in monocytes from T2D patients. E330013P06 was also increased along with inflammatory genes in mouse macrophages treated with high glucose and palmitic acid. E330013P06 overexpression in macrophages induced inflammatory genes, enhanced responses to inflammatory signals, and increased foam cell formation. In contrast, small interfering RNA-mediated E330013P06 gene silencing inhibited inflammatory genes induced by the diabetic stimuli. These results define the diabetic macrophage transcriptome and novel functional roles for lncRNAs in macrophages that could lead to lncRNA-based therapies for inflammatory diabetes complications.

  4. EGCG Attenuates Uric Acid-Induced Inflammatory and Oxidative Stress Responses by Medicating the NOTCH Pathway

    PubMed Central

    Xie, Hua; Sun, Jianqin; Chen, Yanqiu; Zong, Min; Li, Shijie; Wang, Yan

    2015-01-01

    Background. The aim of this study is to investigate whether (-)-epigallocatechin-3-gallate (EGCG) can prevent the UA-induced inflammatory effect of human umbilical vein endothelial cells (HUVEC) and the involved mechanisms in vitro. Methods. HUVEC were subjected to uric acid (UA) with or without EGCG treatment. RT-PCR and western blots were performed to determine the level of inflammation marker. The antioxidant activity was evaluated by measuring scavenged reactive oxygen species (ROS). Functional studies of the role of Notch-1 in HUVEC lines were performed using RNA interference analyses. Results. UA significantly increased the expressions of IL-6, ICAM-1, TNF-α, and MCP-1 and the production of ROS in HUVEC. Meanwhile, the expression of Notch-1 and its downstream effects significantly increased. Using siRNA, inhibition of Notch-1 signaling significantly impeded the expressions of inflammatory cytokines under UA treatment. Interestingly, EGCG suppressed the expressions of inflammatory cytokines and the generation of ROS. Western blot analysis of Notch-1 showed that EGCG significantly decreased the expressions of inflammatory cytokines through Notch-1 signaling pathways. Conclusions. In summary, our findings indicated that Notch-1 plays an important role in the UA-induced inflammatory response, and the downregulation of Notch-1 by EGCG could be an effective approach to decrease inflammation and oxidative stress induced by UA. PMID:26539255

  5. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J

    PubMed Central

    Zhao, Baohong; Grimes, Shannon N.; Hu, Xiaoyu

    2012-01-01

    Tumor necrosis factor (TNF) plays a key role in the pathogenesis of inflammatory bone resorption and associated morbidity in diseases such as rheumatoid arthritis and periodontitis. Mechanisms that regulate the direct osteoclastogenic properties of TNF to limit pathological bone resorption in inflammatory settings are mostly unknown. Here, we show that the transcription factor recombinant recognition sequence binding protein at the Jκ site (RBP-J) strongly suppresses TNF-induced osteoclastogenesis and inflammatory bone resorption, but has minimal effects on physiological bone remodeling. Myeloid-specific deletion of RBP-J converted TNF into a potent osteoclastogenic factor that could function independently of receptor activator of NF-κB (RANK) signaling. In the absence of RBP-J, TNF effectively induced osteoclastogenesis and bone resorption in RANK-deficient mice. Activation of RBP-J selectively in osteoclast precursors suppressed inflammatory osteoclastogenesis and arthritic bone resorption. Mechanistically, RBP-J suppressed induction of the master regulator of osteoclastogenesis (nuclear factor of activated T cells, cytoplasmic 1) by attenuating c-Fos activation and suppressing induction of B lymphocyte–induced maturation protein-1, thereby preventing the down-regulation of transcriptional repressors such as IRF-8 that block osteoclast differentiation. Thus, RBP-J regulates the balance between activating and repressive signals that regulate osteoclastogenesis. These findings identify RBP-J as a key upstream negative regulator of osteoclastogenesis that restrains excessive bone resorption in inflammatory settings. PMID:22249448

  6. Candida albicans-induced inflammatory response in human keratinocytes.

    PubMed

    Wollina, U; Künkel, W; Bulling, L; Fünfstück, C; Knöll, B; Vennewald, I; Hipler, U-C

    2004-06-01

    Candida albicans strains 3153a, ATCC 48867, CBS 2730, DSM 70014, and Vir 13 were cultivated and sterile C. albicans filtrates were produced. The interaction of soluble Candida factors of these infiltrates with human HaCaT keratinocytes was assayed in vitro. The following parameters were analyzed: cell proliferation, protein synthesis, nuclear matrix protein (NMP) 41 release, cytokine release (IL-1beta, soluble IL-2 receptor, IL-6, and IL-8), and reactive oxygen species (ROS). Cell counts at 1, 12, and 24 h were significantly lower for C. albicans strains CBS 2730 and VIR 13 (P < 0.05). There was no significant change for the remaining strains. Neither the protein synthesis nor the NMP-41 release was significantly affected. IL-6 and IL-8 were stimulated by C. albicans filtrates to different amounts with higher levels in strains of low virulence. There was no effect on the other cytokines. The production of ROS by HaCaT keratinocytes was suppressed. The induction of an inflammatory keratinocyte response by soluble C. albicans factors may play a role among the host-yeast interactions.

  7. Local peripheral opioid effects and expression of opioid genes in the spinal cord and dorsal root ganglia in neuropathic and inflammatory pain.

    PubMed

    Obara, Ilona; Parkitna, Jan Rodriguez; Korostynski, Michal; Makuch, Wioletta; Kaminska, Dorota; Przewlocka, Barbara; Przewlocki, Ryszard

    2009-02-01

    We investigated the efficacy of local intraplantar (i.pl.) injection of peptide and non-peptide mu-, delta- and kappa-opioid receptor agonists in rat models of inflammatory and neuropathic pain. Locally applied agonists dose-dependently reduced formalin-induced flinching of the inflamed paw and induced antiallodynic and antihyperalgesic effects in sciatic nerve ligation-induced neuropathic pain. These effects were mediated by peripheral opioid receptors localized at the side of tissue/nerve injury, as was demonstrated by selective and non-selective opioid receptors antagonists. The ED(50) dose range of mu- and kappa-agonists required to induce analgesia in neuropathy was much higher than the ED(50) for inflammation; moreover, only delta-agonists were effective in the same dose range in both pain models. Additionally, effective antinociception was achieved at a lower dose of peptide, compared to non-peptide, opioids. Such findings support the use of the peripheral administration of opioid peptides, especially delta-agonists, in treating chronic pain. Furthermore, in order to assess whether adaptations in the expression of opioid genes could underlie the clinical observation of reduced opioid effectiveness in neuropathic pain, we analyzed the abundance of opioid transcripts in the spinal cord and dorsal root ganglia (DRG) during the neuropathy and inflammation. Nerve injury down-regulated mRNA for all types of opioid receptors in the DRG, which is predicted to decrease in the synthesis of opioid receptors to possibly account for the reduced effectiveness of locally administered opioids in neuropathy. The obtained results differentiate inflammatory and neuropathic pain and provide a novel insight into the peripheral effectiveness of opioids in both types of pain.

  8. The Regulatory Role of Rolipram on Inflammatory Mediators and Cholinergic/Adrenergic Stimulation-Induced Signals in Isolated Primary Mouse Submandibular Gland Cells

    PubMed Central

    Lee, Dong Un; Shin, Dong Min; Hong, Jeong Hee

    2016-01-01

    Exposure to bacterial lipopolysaccharides (LPS) induces inflammatory signals in salivary glands. We investigated the regulatory role of phosphodiesterase 4 (PDE4) inhibitor rolipram on inflammatory mediators and cholinergic/adrenergic stimulation-induced intracellular Ca2+ signaling in salivary acinar and ductal cells. Submandibular gland (SMG) expressed PDE4A through 4D mRNA and PDE4 was localized in the luminal membrane of SMG. LPS induced Ca2+ signaling and ROS production in SMG. Treatment with rolipram blocked LPS-induced Ca2+ increase and ROS production. The application of histamine evoked Ca2+ signals and ROS production, which were attenuated by rolipram in SMG cells. Moreover, LPS-induced NLRP3 inflammasome and cleaved caspase-1 were inhibited by rolipram. The inhibitory role of rolipram in ROS-induced Ca2+ signaling was mainly observed in acinar cells and not in ductal cells. Rolipram also protected SMG acinar but not ductal cells from LPS-induced cell membrane damage. In the case of cholinergic/adrenergic stimulation, carbachol/isoproterenol-induced Ca2+ signals were upregulated by the treatment of rolipram in SMG. In the case of cAMP-dependent ductal bicarbonate secretion by rolipram, no effect was observed on the modulation of ductal chloride/bicarbonate exchange activity. Rolipram could suppress the inflammatory signals and could be a potential therapeutic strategy against LPS-induced inflammation to protect the salivary gland cells. PMID:27143817

  9. Follistatin-like protein 1 suppressed pro-inflammatory cytokines expression during neuroinflammation induced by lipopolysaccharide.

    PubMed

    Cheng, Kai-Yuan; Liu, Yi; Han, Ying-Guang; Li, Jing-Kun; Jia, Jia-Lin; Chen, Bin; Yao, Zhi-Xiao; Nie, Lin; Cheng, Lei

    2017-04-01

    Follistain-like protein 1 (FSTL1), has been recently demonstrated to be involved in the embryo development of nervous system and glioblastoma. However, the role of FSTL1 in neuroinflammation remains unexplored. In this study, the expression of FSTL1 in astrocytes was verified and its role was studied in neuroinflammation induced by in vivo intracerebroventricular (ICV) injection of lipopolysaccharide (LPS) or LPS treatment to astrocytes in vitro. FSTL1 was significantly induced after ICV LPS injection or LPS treatment. FSTL1 suppressed upregulation of pro-inflammatory cytokines in astrocytes after LPS treatment. Moreover, FSTL1 downregulated expression of pro-inflammatory cytokines through suppressing MAPK/p-ERK1/2 pathway in astrocytes. Our results suggest that FSTL1 may play an anti-inflammatory role in neuroinflammation mediated by astrocytes.

  10. Strong correlation induced charge localization in antiferromagnets

    PubMed Central

    Zhu, Zheng; Jiang, Hong-Chen; Qi, Yang; Tian, Chushun; Weng, Zheng-Yu

    2013-01-01

    The fate of a hole injected in an antiferromagnet is an outstanding issue of strongly correlated physics. It provides important insights into doped Mott insulators closely related to high-temperature superconductivity. Here, we report a systematic numerical study of t-J ladder systems based on the density matrix renormalization group. It reveals a surprising result for the single hole's motion in an otherwise well-understood undoped system. Specifically, we find that the common belief of quasiparticle picture is invalidated by the self-localization of the doped hole. In contrast to Anderson localization caused by disorders, the charge localization discovered here is an entirely new phenomenon purely of strong correlation origin. It results from destructive quantum interference of novel signs picked up by the hole, and since the same effect is of a generic feature of doped Mott physics, our findings unveil a new paradigm which may go beyond the single hole doped system. PMID:24002668

  11. Thymoquinone inhibits lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells.

    PubMed

    Wang, Yanan; Gao, Hongmei; Zhang, Weina; Zhang, Wenjie; Fang, Liqun

    2015-05-01

    Thymoquinone, the major active compound isolated from the medicinal Nigella sativa, has been demonstrated to have anti-inflammatory activity. The aim of this study was to investigate the anti-inflammatory effects and mechanisms of thymoquinone on LPS-stimulated BV2 microglial cells. The effects of thymoquinone on inflammatory mediators TNF-α, IL-1β, NO and PGE2 production were detected by ELISA. The effects of thymoquinone on PI3K, Akt phosphorylation, and NF-κB activation were detected by western blot analysis. Our results showed that thymoquinone dose-dependently inhibited LPS-induced TNF-α, IL-1β, NO and PGE2 production. Thymoquinone also inhibited LPS-induced NF-κB activation. Furthermore, thymoquinone was found to inhibit LPS-induced PI3K and Akt phosphorylation, which were upstream molecules of NF-κB. In conclusion, our data demonstrated that thymoquinone might inhibit LPS-induced PI3K and Akt phosphorylation, which leading to the inhibition of NF-κB activation and inflammatory mediator production in BV2 microglia cells.

  12. Dehydroepiandrosterone Protects Endothelial Cells against Inflammatory Events Induced by Urban Particulate Matter and Titanium Dioxide Nanoparticles

    PubMed Central

    Huerta-García, Elizabeth; Montiél-Dávalos, Angélica; Alfaro-Moreno, Ernesto; Gutiérrez-Iglesias, Gisela; López-Marure, Rebeca

    2013-01-01

    Particulate matter (PM) and nanoparticles (NPs) induce activation and dysfunction of endothelial cells characterized by inhibition of proliferation, increase of adhesion and adhesion molecules expression, increase of ROS production, and death. DHEA has shown anti-inflammatory and antioxidant properties in HUVEC activated with proinflammatory agents. We evaluated if DHEA could protect against some inflammatory events produced by PM10 and TiO2 NPs in HUVEC. Adhesion was evaluated by a coculture with U937 cells, proliferation by crystal violet staining, and oxidative stress through DCFDA and Griess reagent. PM10 and TiO2 NPs induced adhesion and oxidative stress and inhibited proliferation of HUVEC; however, when particles were added in combination with DHEA, the effects previously observed were abolished independently from the tested concentrations and the time of addition of DHEA to the cultures. These results indicate that DHEA exerts significant anti-inflammatory and antioxidative effects on the damage induced by particles in HUVEC, suggesting that DHEA could be useful to counteract the harmful effects and inflammatory diseases induced by PM and NPs. PMID:23484113

  13. GENETIC INFLUENCES ON IN VTIRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE

    EPA Science Inventory

    GENETIC INFLUENCES ON IN VITRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE.
    JA Dye, JH Richards, DA Andrews, UP Kodavanti. US EPA, RTP, NC, USA.

    Particulate matter (PM) air pollution is capable of damaging the airway epitheli...

  14. Thromboxane and isoprostanes as inflammatory and vasoactive mediators in black walnut heartwood extract induced equine laminitis.

    PubMed

    Noschka, Erik; Moore, James N; Peroni, John F; Lewis, Stephen J; Morrow, Jason D; Robertson, Tom P

    2009-06-15

    in laminar veins from BWHE horses when compared to controls. In contrast, responses to U46619 were smaller in laminar veins isolated from BWHE horses when compared to those in laminar veins from control horses. In the presence of SQ 29,548, iso-PGF(2alpha) elicited a small dilation in laminar veins from control horses, which was not apparent in laminar veins from BWHE horses. These results are consistent with both systemic and local inflammatory events occurring during the prodromal stages of BWHE-induced laminitis. Because laminar veins are sensitive to thromboxane and isoprostanes, these substances may act as conduits between the inflammatory and vascular events occurring in laminitis and may be therapeutic targets for this crippling condition.

  15. Fasciola hepatica Kunitz type molecule decreases dendritic cell activation and their ability to induce inflammatory responses.

    PubMed

    Falcón, Cristian R; Masih, Diana; Gatti, Gerardo; Sanchez, María Cecilia; Motrán, Claudia C; Cervi, Laura

    2014-01-01

    The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh) has not yet been fully described. Here, we demonstrated that Fh total extract (TE) reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa) was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L) induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM), present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite.

  16. Fasciola hepatica Kunitz Type Molecule Decreases Dendritic Cell Activation and Their Ability to Induce Inflammatory Responses

    PubMed Central

    Falcón, Cristian R.; Masih, Diana; Gatti, Gerardo; Sanchez, María Cecilia; Motrán, Claudia C.; Cervi, Laura

    2014-01-01

    The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh) has not yet been fully described. Here, we demonstrated that Fh total extract (TE) reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa) was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L) induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM), present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite. PMID:25486609

  17. Mycobacterium fortuitum induces A20 expression that impairs macrophage inflammatory responses.

    PubMed

    Lee, Gippeum Joy; Lee, Hye-Mi; Kim, Tae Sung; Kim, Jin Kyung; Sohn, Kyung Mok; Jo, Eun-Kyeong

    2016-04-01

    Mycobacterium fortuitum is a rapidly growing mycobacterium that has been regarded as an etiological agent of a variety of human infections. However, little is known about the host inflammatory responses and the molecular mechanisms by which MF-induced inflammation is regulated in macrophages. In this study, we report that MF infection leads to the induction of an anti-inflammatory molecule, A20 (also known as TNFAIP3), which is essential for the regulation of MF-induced inflammatory responses in murine bone marrow-derived macrophages (BMDMs). MF triggered the expression of tumor necrosis factor-α and interleukin-6 in BMDMs through signaling of the Toll-like receptor 2 (TLR2)-myeloid differentiation primary response gene 88. Additionally, MF rapidly induced the expression of A20, which inhibited proinflammatory cytokine expression and nuclear factor (NF)-κB reporter gene activities in BMDMs. Notably, MF-induced activation of NF-κB signaling was required for A20 expression and proinflammatory responses in BMDMs. Furthermore, the rough morphotype of the MF clinical strain induced a higher level of proinflammatory signaling activation, but less A20 induction in BMDMs, compared to the smooth morphotype. Taken together, these results suggest that MF-induced activation of host proinflammatory responses is negatively regulated through TLR2-dependent A20 expression.

  18. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    PubMed

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment.

  19. Immune cells and mediators involved in the inflammatory responses induced by a P-I metalloprotease and a phospholipase A2 from Bothrops atrox venom.

    PubMed

    Menaldo, Danilo L; Bernardes, Carolina P; Zoccal, Karina F; Jacob-Ferreira, Anna L; Costa, Tássia R; Del Lama, Maria P F M; Naal, Rose M Z G; Frantz, Fabiani G; Faccioli, Lúcia H; Sampaio, Suely V

    2017-05-01

    Bothrops envenomations can promote severe inflammatory responses by inducing edema, pain, leukocyte recruitment and release of chemical mediators by local cells. In the present study, two toxins from Bothrops atrox venom (the P-I metalloprotease Batroxase and the acidic phospholipase A2 BatroxPLA2) were evaluated in relation to their inflammatory effects induced in vivo and in vitro, mainly focusing on the participation of different immune cells and inflammatory mediators. Both toxins mainly promoted acute inflammatory responses with significant recruitment of neutrophils in the early hours (1-4h) after administration into the peritoneal cavity of C57BL/6 mice, and increased infiltration of mononuclear cells especially after 24h. Among the mediators induced by both toxins are IL-6, IL-10 and PGE2, with Batroxase also inducing the release of L-1β, and BatroxPLA2 of LTB4 and CysLTs. These responses pointed to possible involvement of immune cells such as macrophages and mast cells, which were then evaluated in vitro. Mice peritoneal macrophages stimulated with Batroxase produced significant levels of IL-6, IL-1β, PGE2 and LTB4, whereas stimulus with BatroxPLA2 induced increases of IL-6, PGE2 and LTB4. Furthermore, both toxins were able to stimulate degranulation of RBL-2H3 mast cells, but with distinct concentration-dependent effects. Altogether, these results indicated that Batroxase and BatroxPLA2 promoted local and acute inflammatory responses related to macrophages and mast cells and to the production of several mediators. Our findings should contribute for better understanding the different mechanisms of toxicity induced by P-I metalloproteases and phospholipases A2 after snakebite envenomations.

  20. Beauveria attenuates asthma by inhibiting inflammatory response and inducing lymphocytic cell apoptosis

    PubMed Central

    Zhang, Jingying; Zhou, Xianmei; Zhu, Jiping

    2016-01-01

    The present study aimed to investigate the role of beauveria (BEA) in asthma. We investigated the cytotoxic effect of BEA on the proliferation of inflammatory cells and secretion of inflammatory mediators both in-vitro and in-vivo. In in-vitro studies, BEA inhibited lymphocytic cell proliferation and the proliferation of lymphocytic cells induced by Phorbol-12-myristate-13-acetate (PMA). We used ELISA to test the effects of BEA on the secretion of inflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12) and interferon-gamma (IFN-γ). Flow cytometry was used to evaluate the influence of BEA on cell apoptosis. The effect of BEA on the cell numbers of eosinophils, lymphocytes, macrophages, neutrophils and other cells in mouse bronchoalveolar lavage fluid (BALF) was also evaluated. The expression of apoptosis related molecules Bax, Caspase-3 and Bcl-2 was examined by Western blotting analysis. Our results indicated that BEA played a protective role in asthma. BEA inhibited lymphocytic cell proliferation and secretion of inflammatory mediators. BEA promoted cell apoptosis, stimulated the expression of Bax and Caspase-3 and inhibited Bcl-2 protein expression in a dose-dependent manner. In in-vivo experiments, BEA reduced the cell number of eosinophils, lymphocytes, macrophages, neutrophils and other cells in mouse BALF. BEA inhibited secretion of inflammatory mediators, stimulated expression of Bax and Caspase-3, and inhibited expression of Bcl-2 in mouse lung tissue dose-dependently. All together, our results indicated that BEA could attenuate asthma by inhibiting inflammatory response and induce apoptosis of inflammatory cells. PMID:27801673

  1. Anti-oxidant inhibition of hyaluronan fragment-induced inflammatory gene expression

    PubMed Central

    Eberlein, Michael; Scheibner, Kara A; Black, Katharine E; Collins, Samuel L; Chan-Li, Yee; Powell, Jonathan D; Horton, Maureen R

    2008-01-01

    Background The balance between reactive oxygen species (ROS) and endogenous anti-oxidants is important in maintaining healthy tissues. Excessive ROS states occur in diseases such as ARDS and Idiopathic Pulmonary Fibrosis. Redox imbalance breaks down the extracellular matrix component hyaluronan (HA) into fragments that activate innate immune responses and perpetuate tissue injury. HA fragments, via a TLR and NF-κB pathway, induce inflammatory gene expression in macrophages and epithelial cells. NAC and DMSO are potent anti-oxidants which may help balance excess ROS states. Methods We evaluated the effect of H2O2, NAC and DMSO on HA fragment induced inflammatory gene expression in alveolar macrophages and epithelial cells. Results NAC and DMSO inhibit HA fragment-induced expression of TNF-α and KC protein in alveolar and peritoneal macrophages. NAC and DMSO also show a dose dependent inhibition of IP-10 protein expression, but not IL-8 protein, in alveolar epithelial cells. In addition, H2O2 synergizes with HA fragments to induce inflammatory genes, which are inhibited by NAC. Mechanistically, NAC and DMSO inhibit HA induced gene expression by inhibiting NF-κB activation, but NAC had no influence on HA-fragment-AP-1 mediated gene expression. Conclusion ROS play a central role in a pathophysiologic "vicious cycle" of inflammation: tissue injury generates ROS, which fragment the extracellular matrix HA, which in turn synergize with ROS to activate the innate immune system and further promote ROS, HA fragment generation, inflammation, tissue injury and ultimately fibrosis. The anti-oxidants NAC and DMSO, by inhibiting the HA induced inflammatory gene expression, may help re-balance excessive ROS induced inflammation. PMID:18986521

  2. Differential role of Dok1 and Dok2 in TLR2-induced inflammatory signaling in glia.

    PubMed

    Downer, Eric J; Johnston, Daniel G W; Lynch, Marina A

    2013-09-01

    Accumulating evidence continues to underpin the role of the innate immune system in pathologies associated with neuroinflammation. Innate immunity is regulated by pattern recognition receptors that detect pathogens, and in the case of Gram-positive bacteria, binding of bacterial lipopeptides to toll-like receptor (TLR)2 is emerging as an important mechanism controlling glial cell activation. In the present study, we employed the use of the synthetic bacterial lipoprotein and a selective TLR2 agonist, Pam3CSK4, to induce inflammatory signaling in microglia and astrocytes. The adaptor proteins, downstream of kinase (Dok)1 and Dok2, are known to have a role in negatively regulating the Ras-ERK signaling cascade, with downstream consequences on pro-inflammatory cytokine expression. Data presented herein demonstrate that TLR2 enhanced the tyrosine phosphorylation of Dok1 and Dok2 in astrocytes and microglia, and that knockdown of these adaptors using small interfering RNA robustly elevated TLR2-induced ERK activation. Importantly, TLR2-induced NF-κB activation, and IL-6 production was exacerbated in astrocytes transfected with Dok1 and Dok2 siRNA, indicating that both Dok proteins negatively regulate TLR2-induced inflammatory signaling in astrocytes. In contrast, Dok1 knockdown attenuated TLR2-induced NF-κB activation and IL-6 production in microglia, while Dok2 siRNA failed to affect TLR2-induced NF-κB activity and subsequent cytokine expression in this cell type. Overall, this indicates that Dok1 and Dok2 are novel adaptors for TLR2 in glial cells and importantly indicates that Dok1 and Dok2 differentially regulate TLR2-induced pro-inflammatory signaling in astrocytes and microglia.

  3. Estradiol inhibits vascular endothelial cells pro-inflammatory activation induced by C-reactive protein.

    PubMed

    Cossette, Émilie; Cloutier, Isabelle; Tardif, Kim; DonPierre, Geneviève; Tanguay, Jean-François

    2013-01-01

    In addition of being an important inflammatory biomarker and a risk factor for cardiovascular disease, much evidence indicates that the C-reactive protein (CRP) contributes to the atherosclerosis development process. This plasmatic protein synthesized by hepatocytes in response to inflammation and tissue injury induces pro-inflammatory molecules' expression by endothelial cells (ECs). Previous studies showed that the 17β-estradiol (E2) has beneficial effects on vascular cells by reducing in vitro pro-inflammatory molecules expressions in EC. Therefore, we hypothesize that E2 blocks or reduces CRP-mediated inflammatory responses by modulating endogenous production of CRP in EC and/or activation mechanisms. Using human aortic ECs (HAECs), we first evaluated CRP production by vascular EC and second demonstrated its self-induction. Indeed, recombinant human CRP stimulation induces a fivefold increase of CRP expression. A 1-h pre-treatment of E2 at a physiologic dose (10(-9 )M) leads to an important decrease of CRP production suggesting a partial blockage of its amplification loop mechanism. Furthermore, in HAEC, E2 reduces the secretion of the most potent agonist of CRP induction, the IL-6, by 21 %. E2 pre-treatment also decreased the expression of pro-inflammatory molecules IL-8, VCAM-1, and ICAM-1 induced by CRP and involved in leukocytes recruitment. In addition, we demonstrated that E2 could restore vascular endothelial growth factor-mediated EC migration response impaired by CRP suggesting another pro-angiogenic property of this hormone. These findings suggest that E2 can interfere with CRP pro-inflammatory effects via activation signals using its rapid, non-genomic pathway that may provide a new mechanism to improve vascular repair.

  4. Evaluation of Anti-Inflammatory Potential of the New Ganghwaljetongyeum on Adjuvant-Induced Inflammatory Arthritis in Rats

    PubMed Central

    Kim, Wangin; Park, Sangbin; Kim, Youg Ran; Shin, Wook; Lee, Yumi; Choi, Donghee; Kim, Mirae; Lee, Hyunju; Kim, Seonjong; Na, Changsu

    2016-01-01

    Ganghwaljetongyeum (GHJTY) has been used as a standard treatment for arthritis for approximately 15 years at the Korean Medicine Hospital of Dongshin University. GHJTY is composed of 18 medicinal herbs, of which five primary herbs were selected and named new Ganghwaljetongyeum (N-GHJTY). The purpose of the present study was to observe the effect of N-GHJTY on arthritis and to determine its mechanism of action. After confirming arthritis induction using complete Freund's adjuvant (CFA) in rats, N-GHJTY (62.5, 125, and 250 mg/kg/day) was administered once a day for 10 days. In order to determine pathological changes, edema of the paws and weight were measured before and for 10 days after N-GHJTY administration. Cytokine (TNF-α, IL-1β, and IL-6) levels and histopathological lesions in the knee joint were also examined. Edema in the paw and knee joint of N-GHJTY-treated rats was significantly decreased at 6, 8, and 10 days after administration, compared to that in the CFA-control group, while weight consistently increased. Rats in N-GHJTY-treated groups also recovered from the CFA-induced pathological changes and showed a significant decline in cytokine levels. Taken together, our results showed that N-GHJTY administration was effective in inhibiting CFA-induced arthritis via anti-inflammatory effects while promoting cartilage recovery by controlling cytokine levels. PMID:27382402

  5. Inflammatory cytokines induce phosphorylation and ubiquitination of prostate suppressor protein NKX3.1.

    PubMed

    Markowski, Mark C; Bowen, Cai; Gelmann, Edward P

    2008-09-01

    Inflammation of the prostate is a risk factor for the development of prostate cancer. In the aging prostate, regions of inflammatory atrophy are foci for prostate epithelial cell transformation. Expression of the suppressor protein NKX3.1 is reduced in regions of inflammatory atrophy and in preinvasive prostate cancer. Inflammatory cytokines tumor necrosis factor (TNF)-alpha and interleukin-1beta accelerate NKX3.1 protein loss by inducing rapid ubiquitination and proteasomal degradation. The effect of TNF-alpha is mediated via the COOH-terminal domain of NKX3.1 where phosphorylation of serine 196 is critical for cytokine-induced degradation. Mutation of serine 196 to alanine abrogates phosphorylation at that site and the effect of TNF-alpha on NKX3.1 ubiquitination and protein loss. This is in contrast to control of steady-state NKX3.1 turnover, which is mediated by serine 185. Mutation of serine 185 to alanine increases NKX3.1 protein stability by inhibiting ubiquitination and doubling the protein half-life. A third COOH-terminal serine at position 195 has a modulating effect on both steady-state protein turnover and on ubiquitination induced by TNF-alpha. Thus, cellular levels of the NKX3.1 tumor suppressor are affected by inflammatory cytokines that target COOH-terminal serine residues to activate ubiquitination and protein degradation. Our data suggest that strategies to inhibit inflammation or to inhibit effector kinases may be useful approaches to prostate cancer prevention.

  6. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  7. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways.

    PubMed

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor.

  8. Extended DNFB-induced contact hypersensitivity models display characteristics of chronic inflammatory dermatoses.

    PubMed

    Röse, Lars; Schneider, Claudia; Stock, Christine; Zollner, Thomas M; Döcke, Wolf-Dietrich

    2012-01-01

    Despite recent developments, there is a high medical need for new treatment options for chronic inflammatory dermatoses like allergic contact dermatitis (ACD) and psoriasis. Particularly, more predictive skin inflammation models are required to facilitate the process of drug discovery. Murine contact hypersensitivity (CHS) models adequately reflect ACD and are also used to characterize therapeutic approaches for psoriasis. Using the hapten 2,4-dinitrofluorobenzene (DNFB), we established new subacute and subchronic DNFB-induced CHS models in C57BL/6 mice, which more closely reflect the characteristics of chronic T-cell-dependent inflammatory dermatoses as pronounced keratinocyte proliferation, strong hypervascularization, immune cell infiltration and overexpression of T cell and inflammatory cytokines. For the subacute DNFB model, we demonstrated anti-inflammatory activity of the glucocorticoid, prednisolone, as well as of neutralization of TNFα, IL-12/IL-23 or IL-18. In the subchronic DNFB-induced CHS model, deficiency for MyD88 and IL-12/IL-35 p35 chain but not IL-12/IL-23 p40 chain led to decreased skin inflammation. Furthermore, as exemplified by the dose-dependently effective therapeutic prednisolone treatment, the subchronic model allows the continuous therapy of a pre-established stable contact dermatitis. Altogether, prolonged DNFB-induced mouse CHS models closely reflect ACD sensitive to glucocorticoids as standard therapy, reveal a more chronic skin inflammation and are responsive to cytokine antagonization.

  9. Mercury induces inflammatory mediator release from human mast cells

    PubMed Central

    2010-01-01

    Background Mercury is known to be neurotoxic, but its effects on the immune system are less well known. Mast cells are involved in allergic reactions, but also in innate and acquired immunity, as well as in inflammation. Many patients with Autism Spectrum Disorders (ASD) have "allergic" symptoms; moreover, the prevalence of ASD in patients with mastocytosis, characterized by numerous hyperactive mast cells in most tissues, is 10-fold higher than the general population suggesting mast cell involvement. We, therefore, investigated the effect of mercuric chloride (HgCl2) on human mast cell activation. Methods Human leukemic cultured LAD2 mast cells and normal human umbilical cord blood-derived cultured mast cells (hCBMCs) were stimulated by HgCl2 (0.1-10 μM) for either 10 min for beta-hexosaminidase release or 24 hr for measuring vascular endothelial growth factor (VEGF) and IL-6 release by ELISA. Results HgCl2 induced a 2-fold increase in β-hexosaminidase release, and also significant VEGF release at 0.1 and 1 μM (311 ± 32 pg/106 cells and 443 ± 143 pg/106 cells, respectively) from LAD2 mast cells compared to control cells (227 ± 17 pg/106 cells, n = 5, p < 0.05). Addition of HgCl2 (0.1 μM) to the proinflammatory neuropeptide substance P (SP, 0.1 μM) had synergestic action in inducing VEGF from LAD2 mast cells. HgCl2 also stimulated significant VEGF release (360 ± 100 pg/106 cells at 1 μM, n = 5, p < 0.05) from hCBMCs compared to control cells (182 ± 57 pg/106 cells), and IL-6 release (466 ± 57 pg/106 cells at 0.1 μM) compared to untreated cells (13 ± 25 pg/106 cells, n = 5, p < 0.05). Addition of HgCl2 (0.1 μM) to SP (5 μM) further increased IL-6 release. Conclusions HgCl2 stimulates VEGF and IL-6 release from human mast cells. This phenomenon could disrupt the blood-brain-barrier and permit brain inflammation. As a result, the findings of the present study provide a biological mechanism for how low levels of mercury may contribute to ASD

  10. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats.

    PubMed

    El-Ghazaly, M A; Fadel, N; Rashed, E; El-Batal, A; Kenawy, S A

    2017-02-01

    Selenium (Se) has been reported to possess anti-inflammatory properties, but its bioavailability and toxicity are considerable limiting factors. The present study aimed to investigate the possible anti-inflammatory and analgesic effects of selenium nanoparticles (Nano-Se) on inflammation induced in irradiated rats. Paw volume and nociceptive threshold were measured in carrageenan-induced paw edema and hyperalgesia model. Leukocytic count, tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), thiobarbituric acid reactive substances (TBAR), and total nitrate/nitrite (NOx) were estimated in the exudate collected from 6 day old air pouch model. Irradiated rats were exposed to 6 Gy gamma (γ)-irradiation. Nano-Se were administered orally in a dose of 2.55 mg/kg once before carrageenan injection in the first model and twice in the second model. The paw volume but not the nociceptive response produced by carrageenan in irradiated rats was higher than that induced in non-irradiated rats. Nano-Se were effective in reducing the paw volume in non-irradiated and irradiated rats but it did not alter the nociceptive threshold. The inflammation induced in irradiated rats increased all the estimated parameters in the exudate whereas; Nano-Se decreased their elevation in non-irradiated and irradiated rats. Nano-Se possess a potential anti-inflammatory activity on inflammation induced in irradiated rats.

  11. Mesenchymal stem cells attenuated PLGA-induced inflammatory responses by inhibiting host DC maturation and function.

    PubMed

    Zhu, Heng; Yang, Fei; Tang, Bo; Li, Xi-Mei; Chu, Ya-Nan; Liu, Yuan-Lin; Wang, Shen-Guo; Wu, De-Cheng; Zhang, Yi

    2015-01-01

    The poly lactic-co-glycolic acid (PLGA) bio-scaffold is a biodegradable scaffold commonly used for tissue repair. However, implanted PLGA scaffolds usually cause serious inflammatory responses around grafts. To improve PLGA scaffold-based tissue repair, it is important to control the PLGA-mediated inflammatory responses. Recent evidence indicated that PLGA induce dendritic cell (DC) maturation in vitro, which may initiate host immune responses. In the present study, we explored the modulatory effects of mesenchymal stem cells (MSC) on PLGA-induced DCs (PLGA-DC). We found that mouse MSCs inhibited PLGA-DC dendrite formation, as well as co-stimulatory molecule and pro-inflammatory factor expression. Functionally, MSC-educated PLGA-DCs promoted Th2 and regulatory T cell differentiation but suppressed Th1 and Th17 cell differentiation. Mechanistically, we determined that PLGA elicited DC maturation via inducing phosphorylation of p38/MAPK and ERK/MAPK pathway proteins in DCs. Moreover, MSCs suppressed PLGA-DCs by partially inactivating those pathways. Most importantly, we found that the MSCs were capable of suppressing DC maturation and immune function in vivo. Also, the proportion of mature DCs in the mice that received MSC-PLGA constructs greatly decreased compared with that of their PLGA-film implantation counterparts. Additionally, MSCs co-delivery increased regulatory T and Th2 cells but decreased the Th1 and Th17 cell numbers in the host spleens. Histological analysis showed that MSCs alleviated the inflammatory responses around the grafted PLGA scaffolds. In summary, our findings reveal a novel function for MSCs in suppressing PLGA-induced host inflammatory response and suggest that DCs are a new cellular target in improving PLGA scaffold-based tissue repair.

  12. Low-intensity infrared laser effects on zymosan-induced articular inflammatory response

    NASA Astrophysics Data System (ADS)

    Januária dos Anjos, Lúcia Mara; da Fonseca, Adenilson d. S.; Gameiro, Jacy; de Paoli, Flávia

    2015-03-01

    Low-level therapy laser is a phototherapy treatment that involves the application of low power light in the red or infrared wavelengths in various diseases such as arthritis. In this work, we investigated whether low-intensity infrared laser therapy could cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosaninduced articular inflammatory process. Inflammatory process was induced in C57BL/6 mouse by intra-articular injection of zymosan into rear tibio-tarsal joints. Thirty animals were divided in five groups: (I) control, (II) laser, (III) zymosan-induced, (IV) zymosan-induced + laser and (V). Laser exposure was performed after zymosan administration with low-intensity infrared laser (830 nm), power 10 mW, fluence 3.0 J/cm2 at continuous mode emission, in five doses. Twenty-four hours after last irradiation, the animals were sacrificed and the right joints fixed and demineralized. Morphological analysis was observed by hematoxylin and eosin stain, pro-apoptotic (caspase-6) was analyzed by immunocytochemistry and DNA fragmentation was performed by TUNEL assay in articular cartilage cells. Inflammatory process was observed in connective tissue near to articular cartilage, in IV and V groups, indicating zymosan effect. This process was decreased in both groups after laser treatment and dexamethasone. Although groups III and IV presented higher caspase-6 and DNA fragmentation percentages, statistical differences were not observed when compared to groups I and II. Our results suggest that therapies based on low-intensity infrared lasers could reduce inflammatory process and could not cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosan-induced articular inflammatory process.

  13. A Review on Chemical-Induced Inflammatory Bowel Disease Models in Rodents

    PubMed Central

    Randhawa, Puneet Kaur; Singh, Kavinder; Singh, Nirmal

    2014-01-01

    Ulcerative colitis and Crohn's disease are a set of chronic, idiopathic, immunological and relapsing inflammatory disorders of the gastrointestinal tract referred to as inflammatory bowel disorder (IBD). Although the etiological factors involved in the perpetuation of IBD remain uncertain, development of various animal models provides new insights to unveil the onset and the progression of IBD. Various chemical-induced colitis models are widely used on laboratory scale. Furthermore, these models closely mimic morphological, histopathological and symptomatical features of human IBD. Among the chemical-induced colitis models, trinitrobenzene sulfonic acid (TNBS)-induced colitis, oxazolone induced-colitis and dextran sulphate sodium (DSS)-induced colitis models are most widely used. TNBS elicits Th-1 driven immune response, whereas oxazolone predominantly exhibits immune response of Th-2 phenotype. DSS-induced colitis model also induces changes in Th-1/Th-2 cytokine profile. The present review discusses the methodology and rationale of using various chemical-induced colitis models for evaluating the pathogenesis of IBD. PMID:25177159

  14. TSG attenuates LPC-induced endothelial cells inflammatory damage through notch signaling inhibition.

    PubMed

    Zhao, Jing; Liang, Yuan; Song, Fan; Xu, Shouzhu; Nian, Lun; Zhou, Xuanxuan; Wang, Siwang

    2016-01-01

    Lysophosphatidylcholine (LPC) induces inflammation in endothelial cells (ECs) but the mechanism is not fully understood. The Notch signaling pathway is involved in chronic EC inflammation, but its functions in LPC-induced endothelial inflammatory damage and 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside's (TSG) protective effect during LPC-induced inflammatory damage in human umbilical vein endothelial cells (HUVECs) is largely unknown. We report that Notch signaling activation contributed to LPC-induced injury in HUVECs, and that TSG protected HUVECs from LPC-induced injury by antagonizing Notch signaling activation by LPC. γ-secretase inhibitor (DAPT), a specific inhibitor of the Notch signaling pathway, and Notch1 siRNA were used to inhibit Notch activity. HUVECs were exposed to LPC in the presence or absence of TSG, DAPT, and Notch1 siRNA. LPC treatment of HUVECs resulted in reduced cell viability, and Notch1 and Hes1 upregulation. Either silencing of Notch1 by siRNA or pharmacological inhibition of Notch signaling by DAPT prevented the loss of cell viability, and induction of apoptosis, and enhanced expression Notch1, Hes1 and MCP-1 by LPC in HUVECs. Similarly, TSG reduced LPC stimulation of Notch1, Hes1, and MCP-1 expression, prevented the release of IL-6 and CRP and rescued HUVECs from LPC-induced cell damage. Our data indicate that the Notch signaling pathway is a crucial mediator of endothelial inflammatory damage and that TSG protects against endothelial inflammatory damage by inhibiting the Notch signaling pathway. Our findings suggest that targeting Notch signaling by natural products such as TSG is a promising strategy for the prevention and treatment of chronic inflammation associated diseases, including atherosclerosis. © 2015 IUBMB Life, 68(1):37-50, 2016.

  15. Fluoride-Induced Oxidative and Inflammatory Stress in Osteosarcoma Cells: Does It Affect Bone Development Pathway?

    PubMed

    Gandhi, Deepa; Naoghare, Pravin K; Bafana, Amit; Kannan, Krishnamurthi; Sivanesan, Saravanadevi

    2017-01-01

    Oxidative stress is reported to negatively affect osteoblast cells. Present study reports oxidative and inflammatory signatures in fluoride-exposed human osteosarcoma (HOS) cells, and their possible association with the genes involved in osteoblastic differentiation and bone development pathways. HOS cells were challenged with sublethal concentration (8 mg/L) of sodium fluoride for 30 days and analyzed for transcriptomic expression. In total, 2632 transcripts associated with several biological processes were found to be differentially expressed. Specifically, genes involved in oxidative stress, inflammation, osteoblastic differentiation, and bone development pathways were found to be significantly altered. Variation in expression of key genes involved in the abovementioned pathways was validated through qPCR. Expression of serum amyloid A1 protein, a key regulator of stress and inflammatory pathways, was validated through western blot analysis. This study provides evidence that chronic oxidative and inflammatory stress may be associated with the fluoride-induced impediment in osteoblast differentiation and bone development.

  16. Therapeutic anti-inflammatory effects of luteolin on endotoxin-induced uveitis in Lewis rats

    PubMed Central

    KANAI, Kazutaka; NAGATA, Sho; HATTA, Takuya; SUGIURA, Yuichi; SATO, Kazuaki; YAMASHITA, Yohei; KIMURA, Yuya; ITOH, Naoyuki

    2016-01-01

    The present study aimed to investigate the therapeutic efficacy of post-inflammatory treatment with luteolin on endotoxin-induced uveitis (EIU) in rats. Intraperitoneal injection of 10 mg/kg luteolin or 1 mg/kg prednisolone (Pred) at 4 hr post-lipopolysaccharide (LPS) injection (200 µg) was associated at 24 hr post-LPS injection with decreased clinical severity scores, number of inflammatory cells, protein levels and levels of tumor necrosis factor (TNF)-α, nitric oxide (NO) and prostaglandin (PG) E2 in the aqueous humor (AqH) and degrees of histological ocular tissue injury. The anti-inflammatory potency of luteolin was comparable to that of Pred. Luteolin exhibited robust efficacy in the treatment of EIU in rats, indicating its potential clinical utility in treating uveitis. PMID:27170432

  17. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation.

    PubMed

    Rocha, Joao; Eduardo-Figueira, Maria; Barateiro, Andreia; Fernandes, Adelaide; Brites, Dora; Bronze, Rosario; Duarte, Catarina M M; Serra, Ana Teresa; Pinto, Rui; Freitas, Marisa; Fernandes, Eduarda; Silva-Lima, Beatriz; Mota-Filipe, Helder; Sepodes, Bruno

    2015-05-01

    Rosmarinic acid is a polyphenolic compound and main constituent of Rosmarinus officinalis and has been shown to possess antioxidant and anti-inflammatory properties. We aimed to evaluate the anti-inflammatory properties of rosmarinic acid and of an extract of R. officinalis in local inflammation (carrageenin-induced paw oedema model in the rat), and further evaluate the protective effect of rosmarinic acid in rat models of systemic inflammation: liver ischaemia-reperfusion (I/R) and thermal injury models. In the local inflammation model, rosmarinic acid was administered at 10, 25 and 50 mg/kg (p.o.), and the extract was administered at 10 and 25 mg/kg (equivalent doses to rosmarinic acid groups) to male Wistar rats. Administration of rosmarinic acid and extract at the dose of 25 mg/kg reduced paw oedema at 6 hr by over 60%, exhibiting a dose-response effect, suggesting that rosmarinic was the main contributor to the anti-inflammatory effect. In the liver I/R model, rosmarinic acid was administered at 25 mg/kg (i.v.) 30 min. prior to the induction of ischaemia and led to the significant reduction in the serum concentration of transaminases (AST and ALT) and LDH. In the thermal injury model, rosmarinic acid was administered at 25 mg/kg (i.v.) 5 min. prior to the induction of injury and significantly reduced multi-organ dysfunction markers (liver, kidney, lung) by modulating NF-κB and metalloproteinase-9. For the first time, the anti-inflammatory potential of rosmarinic acid has been identified, as it causes a substantial reduction in inflammation, and we speculate that it might be useful in the pharmacological modulation of injuries associated to inflammation.

  18. Anti-inflammatory effects of cannabinoid CB2 receptor activation in endotoxin-induced uveitis

    PubMed Central

    Toguri, J T; Lehmann, C; Laprairie, R B; Szczesniak, A M; Zhou, J; Denovan-Wright, E M; Kelly, M E M

    2014-01-01

    Background and PurposeCannabinoid CB2 receptors mediate immunomodulation. Here, we investigated the effects of CB2 receptor ligands on leukocyte-endothelial adhesion and inflammatory mediator release in experimental endotoxin-induced uveitis (EIU). Experimental ApproachEIU was induced by intraocular injection of lipopolysaccharide (LPS, 20 ng·μL−1). Effects of the CB2 receptor agonist, HU308 (1.5% topical), the CB2 receptor antagonist, AM630 (2.5 mg·kg−1 i.v.), or a combination of both compounds on leukocyte-endothelial interactions were measured hourly for 6 h in rat iridial vasculature using intravital microscopy. Anti-inflammatory actions of HU308 were compared with those of clinical treatments for uveitis - dexamethasone, prednisolone and nepafenac. Transcription factors (NF-κB, AP-1) and inflammatory mediators (cytokines, chemokines and adhesion molecules) were measured in iris and ciliary body tissue. Key ResultsLeukocyte-endothelium adherence was increased in iridial microvasculature between 4–6 h after LPS. HU308 reduced this effect after LPS injection and decreased pro-inflammatory mediators: TNF-α, IL-1β, IL-6, CCL5 and CXCL2. AM630 blocked the actions of HU-308, and increased leukocyte-endothelium adhesion. HU-308 decreased levels of the transcription factors NF-κB and AP-1, while AM630 increased levels of NF-κB. Topical treatments with dexamethasone, prednisolone or nepafenac, failed to alter leukocyte adhesion or mitigate LPS-induced increases in inflammatory mediators during the 6 h of EIU. Conclusion and ImplicationsActivation of CB2 receptors was anti-inflammatory in a model of acute EIU and involved a reduction in NF-κB, AP-1 and inflammatory mediators. CB2 receptors may be promising drug targets for the development of novel ocular anti-inflammatory agents. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014

  19. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  20. CBCT fine preoperative evaluation of inflammatory radicular cysts and postoperative local integration appreciation of alloplastic grafts materials.

    PubMed

    Nica, Diana; Ianes, Emilia; Brad, S

    2014-01-01

    The purpose of this paper is to point out the value of CBCT exam in pre and postoperative diagnosis assessment of inflammatory radicular cysts together with full appreciation of local integration of alloplastic graft materials used to repair the osseous defects. There were statistically retrospective evaluated the pre and postoperative results of CBCT and x-ray examinations of 34 patients with inflammatory radicular cysts clinically, biologically and histopathologically assessed at Oral and Maxilo-Facial Surgery Clinic from Timisoara. In all cases we proceeded to surgical radicular cysts removement, extraction of the associated non-vital tooth together with alloplastic graft materials repairement of the osseous defects. The CBCT preoperative scans clearly showed the extent, the morphological characteristics and the topoanatomic reports, in all 34 cases of inflammatory radicular cysts together with regional endodontic status. The CBCT postoperative scans revealed the very local integration of alloplastic graft materials used to repair the osseous defects and, in some cases, the dental rehabilitation by metallic implants. CBCT scan is the imaging method of choice in pre and postoperative diagnosis assessment of inflammatory radicular cysts together with alloplastic graft materials repairement of the osseous defects and dental rehabilitation by metallic implants, due to high specific abilities in bone tissue 3D evaluation.

  1. Anti-inflammatory effect of Ulmus davidiana Planch (Ulmaceae) on collagen-induced inflammation in rats.

    PubMed

    Song, In-Kwang; Kim, Kap-Sung; Suh, Seok-Jong; Kim, Myung-Sunny; Kwon, Dae Young; Kim, Sun-Lim; Kim, Cheorl-Ho

    2007-01-01

    Ulmus davidiana Planch (Ulmaceae) extract (UD) has long been known to have anti-inflammatory and anticancer activities. UD has been also known to have protective effects on damaged tissue, inflammation and bone among other functions. Effects of UD on inflammatory and immune responses and its mechanisms in collagen-induced inflammation (CII) rat were studied. Hind paw volumes of rats were measured by volume meter; lymphocyte proliferation, interleukin (IL)-1, IL-2, tumor necrosis factor (TNF)-α level was determined by 3-(4,5-2dimethylthiazal-2yl)2,5-diphenyltetrazoliumbromide assay. Antibodies to collagen type II (BC-II) were determined by enzyme-linked immunosorbent assay. There was a marked secondary inflammatory response in CII model, which accompanied with the decrease of body weight and the weight of immune organs simultaneously. The administration of UD (20, 80, 150mg/kg, intragastrically×10 days) inhibited the inflammatory response and restored body weight and the weight of immune organs of CII rats. Lymphocyte proliferation and IL-2 production of CII rats increases, together with IL-1 and TNF-α in peritoneal macrophages and synoviocytes. The administration of UD (20, 80, 150mg/kg, 10 days) reduced above changes significantly. UD had no effect on the concentration of antibodies to BC-II. From the results, it was concluded that UD possesses anti-inflammatory and immunoregulatory activities and has a therapeutic effect on CII rats.

  2. Protective effects of leucine against lipopolysaccharide-induced inflammatory response in Labeo rohita fingerlings.

    PubMed

    Giri, Sib Sankar; Sen, Shib Sankar; Jun, Jin Woo; Sukumaran, Venkatachalam; Park, Se Chang

    2016-05-01

    The present study investigated the protective effects of leucine against lipopolysaccharide (LPS)-induced inflammatory responses in Labeo rohita (rohu) in vivo and in vitro. Primary hepatocytes, isolated from the hepatopancreas, were exposed to different concentrations of LPS for 24 h to induce an inflammatory response, and the protective effects of leucine against LPS-induced inflammation were studied. Finally, we investigated the efficiency of dietary leucine supplementation in attenuating an immune challenge induced by LPS in vivo. Exposure of cells to 10-25 μg mL(-1) of LPS for 24 h resulted in a significant production of nitric oxide and release of lactate dehydrogenase to the medium, whereas cell viability and protein content were reduced (p < 0.05). LPS exposure (10 μg mL(-1)) increased mRNA levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-8 in vitro (p < 0.05). However, pretreatment with leucine prevented the LPS-induced upregulation of TNF-α, IL-1β and IL-8 mRNAs by downregulating TLR4, MyD88, NF-κBp65, and MAPKp38 mRNA expression. Interestingly, mRNA expression of the anti-inflammatory cytokine, IL-10, which was increased by LPS treatment, was further enhanced (p < 0.05) by leucine pretreatment. The enhanced expression of IL-10 might inhibit the production of other pro-inflammatory cytokines. It was found that leucine pretreatment attenuated the excessive activation of LPS-induced TLR4-MyD88 signaling as manifested by lower level of TLR4, MyD88, MAPKp38, NF-κBp65 and increased level of IκB-α protein in leucine pre-treatment group. In vivo experiments demonstrated that leucine pre-supplementation could protect fish against LPS-induced inflammation through an attenuation of TLR4-MyD88 signaling pathway. Taken together, we propose that leucine pre-supplementation decreases LPS-induced immune damage in rohu by enhancing the expression of IL-10 and by regulating the TLR4-MyD88 signaling pathways.

  3. Picroside II protects myocardium from ischemia/reperfusion-induced injury through inhibition of the inflammatory response

    PubMed Central

    Li, Jian-Zhe; Xie, Mei-Qing; Mo, Dan; Zhao, Xiao-Fang; Yu, Shu-Yi; Liu, Li-Juan; Wu, Cheng; Yang, Yang

    2016-01-01

    The inflammatory response is important in the pathogenesis of myocardial ischemia/reperfusion (I/R) injury. Picroside II, the primary active constituent of Picrorhizae, has been reported to protect the myocardium from I/R-induced injury, however, the exact mechanism underlying these protective effects remains unclear. The aim of the present study was to investigate the mechanism underlying the protective effects of picroside II on I/R-induced myocardial injury. Adult male Sprague-Dawley rats underwent 1 h left coronary artery occlusion followed by 3 h reperfusion. Picroside II was administered (10 mg/kg) via the tail vein 30 min prior to left coronary artery occlusion. The results revealed that pretreatment of picroside II could significantly alleviate I/R-induced myocardial injury concomitantly with a decrease in inflammatory factor production. In addition, picroside II was also able to decrease high mobility group box 1 (HMGB1) expression, and release and downregulate the expression of the receptor for advanced glycation end products (RAGE), toll-like receptor (TLR)-2 and TLR-4. Furthermore, picroside II was able to inhibit nuclear factor-κB (NF-κB) activation. The results indicated that the protective effect of picroside II on I/R-induced myocardial injury was associated, at least partly, with inhibition of the inflammatory response by suppressing the HMGB1-RAGE/TLR-2/TLR-4-NF-κB signaling pathway. PMID:28105084

  4. Intensity modulated radiotherapy induces pro-inflammatory and pro-survival responses in prostate cancer patients

    PubMed Central

    EL-SAGHIRE, HOUSSEIN; VANDEVOORDE, CHARLOT; OST, PIET; MONSIEURS, PIETER; MICHAUX, ARLETTE; DE MEERLEER, GERT; BAATOUT, SARAH; THIERENS, HUBERT

    2014-01-01

    Intensity modulated radiotherapy (IMRT) is one of the modern conformal radiotherapies that is widely used within the context of cancer patient treatment. It uses multiple radiation beams targeted to the tumor, however, large volumes of the body receive low doses of irradiation. Using γ-H2AX and global genome expression analysis, we studied the biological responses induced by low doses of ionizing radiation in prostate cancer patients following IMRT. By means of different bioinformatics analyses, we report that IMRT induced an inflammatory response via the induction of viral, adaptive, and innate immune signaling. In response to growth factors and immune-stimulatory signaling, positive regulation in the progression of cell cycle and DNA replication were induced. This denotes pro-inflammatory and pro-survival responses. Furthermore, double strand DNA breaks were induced in every patient 30 min after the treatment and remaining DNA repair and damage signaling continued after 18–24 h. Nine genes belonging to inflammatory responses (TLR3, SH2D1A and IL18), cell cycle progression (ORC4, SMC2 and CCDC99) and DNA damage and repair (RAD17, SMC6 and MRE11A) were confirmed by quantitative RT-PCR. This study emphasizes that the risk assessment of health effects from the out-of-field low doses during IMRT should be of concern, as these may increase the risk of secondary cancers and/or systemic inflammation. PMID:24435511

  5. Xanthohumol suppresses inflammatory response to warm ischemia-reperfusion induced liver injury.

    PubMed

    Dorn, Christoph; Massinger, Sabine; Wuzik, Andreas; Heilmann, Jörg; Hellerbrand, Claus

    2013-02-01

    Liver ischemia/reperfusion (I/R) leads to formation of reactive oxygen species (ROS), which cause hepatic injury and initiate an inflammatory response, which is a critical problem after liver surgery and transplantation. Xanthohumol, the major prenylated chalcone found in hops, has been discussed for its anti-inflammatory and ROS-scavenging properties, and thus, we aimed to investigate the effect of xanthohumol in a model of warm I/R liver injury. Xanthohumol was applied to BALB/c mice orally at a dose of 1 mg/g body weight for 5 days before I/R-injury was induced by clamping the vascular blood supply to the median and left lateral liver lobe for 1 h followed by a 6 h period of reperfusion. At this time, HPLC analysis revealed hepatic xanthohumol levels of approximately 2 μM, a concentration which has been shown to inhibit inflammatory effects in vitro. Assessment of hepatic HMOX1 expression, hepatic glutathione content and immunohistochemical analysis for proteins conjugated with the reactive aldehyde 4-hydroxynonenal indicated that I/R-induced oxidative stress was significantly inhibited in xanthohumol-fed compared to control mice. Histological analysis, TUNEL staining and determination of transaminase serum levels revealed no significant effects of xanthohumol on acute hepatocellular injury. However, at the same time point, pretreatment with xanthohumol almost completely blunted the I/R-induced AKT and NFκB activation and the expression of the proinflammatory genes IL-1alpha, IL-6, MCP-1 and ICAM-1, which are known to play a crucial role in the subacute phase of I/R-induced liver damage. In conclusion, these data indicate the potential of xanthohumol application to prevent adverse inflammatory responses to I/R-induced liver damage such as after surgical liver resection or transplantation.

  6. Immunohistochemical localization of endothelial and inducible nitric oxide synthase within neurons of cattle with rabies.

    PubMed

    Shin, Taekyun; Weinstock, Daniel; Castro, Marlene D; Hamir, Amir N; Wampler, Thomas; Walter, Mark; Kim, Hyun Young; Acland, Helen

    2004-05-01

    The expression of constitutive endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) in the brains of cattle with natural rabies was studied. Increased expression of eNOS was detected in neurons of the brain stem and Purkinje cells of cerebellum. By contrast, iNOS was diffusely localized in the cytoplasm of affected neurons, and some inflammatory cells were positive. eNOS and rabies antigen were co-localized in inclusion bodies (Negri bodies) in neurons. The specific localization of eNOS, but not iNOS, in the Negri bodies suggests that eNOS is involved in the formation of rabies virus inclusion bodies.

  7. Anti-Inflammatory Effects of a Pomegranate Leaf Extract in LPS-Induced Peritonitis.

    PubMed

    Marques, Lucia C F; Pinheiro, Aruanã J M C R; Araújo, João G G; de Oliveira, Raimundo A G; Silva, Selma N; Abreu, Iracelle C; de Sousa, Eduardo M; Fernandes, Elizabeth S; Luchessi, André D; Silbiger, Vivian N; Nicolete, Roberto; Lima-Neto, Lidio G

    2016-11-01

    Folk medicine suggests that pomegranate (peels, seeds and leaves) has anti-inflammatory properties; however, the precise mechanisms by which this plant affects the inflammatory process remain unclear. Herein, we analyzed the anti-inflammatory properties of a hydroalcoholic extract prepared from pomegranate leaves using a rat model of lipopolysaccharide-induced acute peritonitis. Male Wistar rats were treated with either the hydroalcoholic extract, sodium diclofenac, or saline, and 1 h later received an intraperitoneal injection of lipopolysaccharides. Saline-injected animals (i. p.) were used as controls. Animals were culled 4 h after peritonitis induction, and peritoneal lavage and peripheral blood samples were collected. Serum and peritoneal lavage levels of TNF-α as well as TNF-α mRNA expression in peritoneal lavage leukocytes were quantified. Total and differential leukocyte populations were analyzed in peritoneal lavage samples. Lipopolysaccharide-induced increases of both TNF-α mRNA and protein levels were diminished by treatment with either pomegranate leaf hydroalcoholic extract (57 % and 48 % mean reduction, respectively) or sodium diclofenac (41 % and 33 % reduction, respectively). Additionally, the numbers of peritoneal leukocytes, especially neutrophils, were markedly reduced in hydroalcoholic extract-treated rats with acute peritonitis. These results demonstrate that pomegranate leaf extract may be used as an anti-inflammatory drug which suppresses the levels of TNF-α in acute inflammation.

  8. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts.

    PubMed

    Tang, Xi-Lan; Liu, Jian-Xun; Dong, Wei; Li, Peng; Li, Lei; Hou, Jin-Cai; Zheng, Yong-Qiu; Lin, Cheng-Ren; Ren, Jun-Guo

    2015-02-01

    Inflammatory response is an important mechanism in the pathogenesis of cardiovascular diseases. Cardiac fibroblasts play a crucial role in cardiac inflammation and might become a potential therapeutic target in cardiovascular diseases. Kaempferol, a flavonoid commonly existing in many edible fruits, vegetables, and Chinese herbs, is well known to possess anti-inflammatory property and thus has a therapeutic potential for the treatment of inflammatory diseases. To date, the effect of kaempferol on cardiac fibroblasts inflammation is unknown. In this study, we investigated the anti-inflammatory effect of kaempferol on lipopolysaccharide (LPS) plus ATP-induced cardiac fibroblasts and explored the underlying mechanisms. Our results showed that kaempferol at concentrations of 12.5 and 25 μg/mL significantly suppressed the release of TNF-α, IL-1β, IL-6, and IL-18 and inhibited activation of NF-κB and Akt in LPS plus ATP-induced cardiac fibroblasts. These findings suggest that kaempferol attenuates cardiac fibroblast inflammation through suppression of activation of NF-κB and Akt.

  9. Induced Treg Cells Augment the Th17-Mediated Intestinal Inflammatory Response in a CTLA4-Dependent Manner

    PubMed Central

    Watanabe, Nobumasa; Kaminuma, Osamu; Kitamura, Noriko; Hiroi, Takachika

    2016-01-01

    Th17 cells and Foxp3+ regulatory T cells (Tregs) are thought to promote and suppress inflammatory responses, respectively. However, whether they counteract each other or synergize in regulating immune reactions remains controversial. To determine their interactions, we describe the results of experiments employing mouse models of intestinal inflammation by transferring antigen-specific Th cells (Th1, Th2, and Th17) differentiated in vitro followed by the administration of the cognate antigen via enema. We show that cotransfer of induced Tregs (iTregs) suppressed Th1- and Th2-mediated colon inflammation. In contrast, colon inflammation induced by transfer of Th17 cells, was augmented by the cotransfer of iTregs. Furthermore, oral delivery of antigen potentiated Th17-mediated colon inflammation. Administration of a blocking antibody against cytotoxic T lymphocyte-associated antigen 4 (CTLA4) abrogated the effects of cotransfer of iTregs, while the injection of a soluble recombinant immunoglobulin (Ig) fusion protein, CTLA4-Ig substituted for the cotransfer of iTregs. These results suggest that antigen-specific activation of iTregs in a local environment stimulates the Th17-mediated inflammatory response in a CTLA4-dependent manner. PMID:26950218

  10. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain.

    PubMed

    Liu, Boyi; Fan, Lu; Balakrishna, Shrilatha; Sui, Aiwei; Morris, John B; Jordt, Sven-Eric

    2013-10-01

    Menthol, the cooling natural product of peppermint, is widely used in medicinal preparations for the relief of acute and inflammatory pain in sports injuries, arthritis, and other painful conditions. Menthol induces the sensation of cooling by activating TRPM8, an ion channel in cold-sensitive peripheral sensory neurons. Recent studies identified additional targets of menthol, including the irritant receptor, TRPA1, voltage-gated ion channels and neurotransmitter receptors. It remains unclear which of these targets contribute to menthol-induced analgesia, or to the irritating side effects associated with menthol therapy. Here, we use genetic and pharmacological approaches in mice to probe the role of TRPM8 in analgesia induced by L-menthol, the predominant analgesic menthol isomer in medicinal preparations. L-menthol effectively diminished pain behavior elicited by chemical stimuli (capsaicin, acrolein, acetic acid), noxious heat, and inflammation (complete Freund's adjuvant). Genetic deletion of TRPM8 completely abolished analgesia by L-menthol in all these models, although other analgesics (acetaminophen) remained effective. Loss of L-menthol-induced analgesia was recapitulated in mice treated with a selective TRPM8 inhibitor, AMG2850. Selective activation of TRPM8 with WS-12, a menthol derivative that we characterized as a specific TRPM8 agonist in cultured sensory neurons and in vivo, also induced TRPM8-dependent analgesia of acute and inflammatory pain. L-menthol- and WS-12-induced analgesia was blocked by naloxone, suggesting activation of endogenous opioid-dependent analgesic pathways. Our data show that TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. In contrast to menthol, selective TRPM8 agonists may produce analgesia more effectively, with diminished side effects.

  11. The anti-inflammatory effect of alloferon on UVB-induced skin inflammation through the down-regulation of pro-inflammatory cytokines.

    PubMed

    Kim, Yejin; Lee, Seung Koo; Bae, Seyeon; Kim, Hyemin; Park, Yunseong; Chu, Nag Kyun; Kim, Stephanie G; Kim, Hang-Rae; Hwang, Young-Il; Kang, Jae Seung; Lee, Wang Jae

    2013-01-01

    UVB irradiation can induce biological changes in the skin, modulate immune responses and activate inflammatory reactions leading to skin damage. Alloferon, which is isolated from the blood of an experimentally infected insect, the blow fly Calliphora vicina, is known for its anti-viral and anti-tumor activities in mice model. However, the effect of alloferon against UVB irradiation and its specific mechanism are still unknown. In this study, we investigated the effect of alloferon on UVB-induced cutaneous inflammation in a human keratinocyte cell line, HaCaT. RPA and ELISA data showed that alloferon decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6 and IL-18, both on the mRNA and protein level. Western blot analysis was done to determine if alloferon regulates the MAPK signaling pathway since the MAPK signaling pathway is activated by numerous inflammatory mediators and environmental stresses including UVB irradiation. Alloferon inhibited the activation of p38 mitogen-activated protein kinase (MAPK) induced by UVB irradiation. Furthermore, the topical application of alloferon on the UVB exposed skin of hairless mice showed that alloferon treatment significantly inhibited an increase in epithelial thickness in chronic UVB-irradiated mouse skin. These findings suggest that alloferon has significant anti-inflammatory effects not only on UVB-induced inflammation in the human keratinocyte cell line, HaCaT, but also on mouse skin.

  12. Telmisartan treatment targets inflammatory cytokines to suppress the pathogenesis of acute colitis induced by dextran sulphate sodium.

    PubMed

    Arumugam, Somasundaram; Sreedhar, Remya; Thandavarayan, Rajarajan A; Giridharan, Vijayasree V; Karuppagounder, Vengadeshprabhu; Pitchaimani, Vigneshwaran; Afrin, Mst Rejina; Miyashita, Shizuka; Nomoto, Mayumi; Harima, Meilei; Suzuki, Hiroshi; Nakamura, Takashi; Nakamura, Masahiko; Suzuki, Kenji; Watanabe, Kenichi

    2015-08-01

    The renin angiotensin system (RAS) is essential for the regulation of cardiovascular and renal functions to maintain the fluid and electrolyte homeostasis. Recent studies have demonstrated a locally expressed RAS in various tissues of mammals, which is having pathophysiological roles in those organ system. Interestingly, local RAS has important role during the inflammatory bowel disease pathogenesis. Further to delineate its role and also to identify the potential effects of telmisartan, an angiotensin receptor blocker, we have used a mouse model of acute colitis induced by dextran sulphate sodium. We have used 0.01 and 5mg/kg body weight doses of telmisartan and administered as enema to facilitate the on-site action and to reduce the systemic adverse effects. Telmisartan high dose treatment significantly reduced the disease activity index score when compared with the colitis control mice. In addition, oxidative stress and endoplasmic reticulum stress markers expression were also significantly reduced when compared with the colitis control mice. Subsequent experiments were carried out to investigate some of the mechanisms underlying its anti-inflammatory effects and identified that the mRNA levels of pro-inflammatory cytokines such as tumour necrosis factor α, interleukin 1β, interleukin 6 and monocyte chemoattractant protein 1 as well as cellular DNA damage were significantly suppressed when compared with the colitis control mice. Similarly the apoptosis marker proteins such as cleaved caspase 3 and 7 levels were down-regulated and anti-apoptotic protein Bcl2 level was significantly upregulated by telmisartan treatment. These results indicate that blockade of RAS by telmisartan can be an effective therapeutic option against acute colitis.

  13. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    SciTech Connect

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  14. Jungia sellowii suppresses the carrageenan-induced inflammatory response in the mouse model of pleurisy.

    PubMed

    Nader, Marina; Vicente, Geison; da Rosa, Julia Salvan; Lima, Tamires Cardoso; Barbosa, Alyne Machado; Santos, Alan Diego Conceição; Barison, Andersson; Dalmarco, Eduardo Monguilhott; Biavatti, Maique Weber; Fröde, Tânia Silvia

    2014-12-01

    This study was conducted to explore the anti-inflammatory effect of Jungia sellowii (Asteraceae) using a murine model of pleurisy induced by carrageenan (Cg). This plant is used in southern Brazil to treat inflammatory diseases. J. sellowii leaves were extracted with ethanol/water to obtain the crude extract (CE), which was fractionated with different solvents, yielding n-hexane (Hex), dichloromethane (DCM), ethyl acetate (EtOAc) and n-butanol (BuOH) fractions, and aqueous fraction (Aq). The major compounds succinic acid (SA) and lactic acid (LA) were isolated from Aq fraction, and their structures were determined by (1)H and (13)C NMR. Pleurisy was induced by Cg (Saleh et al. 1996). The leukocytes, exudation, myeloperoxidase (MPO) and adenosine-deaminase (ADA) activities, metabolites of nitric oxide (NO x ) levels, protein levels and mRNA expression for interleukin 1 beta (IL-1β), tumour necrosis factor alpha (TNF-α), interleukin 17A (IL17A) and inducible of nitric oxide synthase (iNOs), and p65 protein phosphorylation (NF-κB) were analysed 4 h after pleurisy induction. Animals pre-treated with CE, BuOH, Aq, SA, or LA inhibited leukocytes, exudation, MPO and ADA activities, NO x , IL-1β, TNF-α, and IL-17A levels, and the mRNA expression for IL-1β, TNF-α, IL-17A, iNOS, and p65 protein phosphorylation (NF-κB) (p < 0.05). Our study demonstrated that J. sellowii can protect against inflammation induced by Cg by decreasing the leukocytes and exudation. Its effects are related to the decrease of either proinflammatory cytokines and/or NO x . The isolated compounds SA and LA may play an important role in this anti-inflammatory action by inhibiting all the studied parameters. The anti-inflammatory properties of these compounds are due to the downregulation of NF-κB.

  15. Pro-inflammatory effects of hydrogen sulphide on substance P in caerulein-induced acute pancreatitis.

    PubMed

    Bhatia, Madhav; Sidhapuriwala, Jenab N; Ng, Siaw Wei; Tamizhselvi, Ramasamy; Moochhala, Shabbir M

    2008-04-01

    Hydrogen sulphide (H(2)S), a novel gasotransmitter, has been recognized to play an important role in inflammation. Cystathionine-gamma-lyase (CSE) is a major H(2)S synthesizing enzyme in the cardiovascular system and DL-propargylglycine (PAG) is an irreversible inhibitor of CSE. Substance P (SP), a product of preprotachykinin-A (PPT-A) gene, is a well-known pro-inflammatory mediator which acts principally through the neurokinin-1 receptor (NK-1R). We have shown an association between H(2)S and SP in pulmonary inflammation as well as a pro-inflammatory role of H(2)S and SP in acute pancreatitis. The present study was aimed to investigate the interplay between pro-inflammatory effects of H(2)S and SP in a murine model of caerulein-induced acute pancreatitis. Acute pancreatitis was induced in mice by 10 hourly intraperitoneal injections of caerulein (50 (g/kg). PAG (100 mg/kg, i.p.) was administered either 1 hr before (prophylactic) or 1 hr after (therapeutic) the first caerulein injection. PAG, given prophylactically as well as therapeutically, significantly reduced plasma H(2)S levels and pancreatic H(2)S synthesizing activities as well as SP concentrations in plasma, pancreas and lung compared with caerulein-induced acute pancreatitis. Furthermore, prophylactic as well as therapeutic administration of PAG significantly reduced PPT-A mRNA expression and NK-1R mRNA expression in both pancreas and lung when compared with caerulein-induced acute pancreatitis. These results suggest that the pro-inflammatory effects of H(2)S may be mediated by SP-NK-1R pathway in acute pancreatitis.

  16. In vivo effect of surfactant on inflammatory cytokines during endotoxin-induced lung injury in rodents.

    PubMed

    Mittal, Neha; Sanyal, Sankar Nath

    2011-01-01

    Lipopolysaccharide (LPS) is a known inducer of acute respiratory distress syndrome (ARDS) in humans and animals. In this study, ARDS was developed in rats by intratracheal instillation of LPS and the effect of two types of surfactant (natural vs. synthetic) was examined to determine their potential corrective roles in general, as well as to compare the two surfactants against one another in particular, in endotoxin-induced lung injury. Sprague-Dawley male rats were divided into four groups, i.e., rats given: buffer controls; 055:B5 E. coli LPS only; LPS and then porcine surfactant (P-SF); or, LPS and then synthetic surfactant (S-SF). In vivo administration of LPS led to an increase in expression of the cytokines tumor necrosis factor-α, interleukin (IL)-1β, IL-2, IL-4, interferon-γ, monocyte chemotactic protein-1, and macrophage inflammatory protein-1β in the lungs of rats. These effects were confirmed by immunofluorescence in lung tissue sections and/or by protein (Western immunoblot) and mRNA expression (reverse transcription polymerase chain reaction) analyses of tissue samples. Apart from IL-4, concentrations of each of these cytokines in bronchoalveolar lavage fluid recovered from the animals were significantly increased in the LPS-treated hosts. Instillation of either surfactant (70 h after the LPS) into the airways diminished the expression of each of the inducible-cytokines, with the porcine (natural) form seeming having the greater inhibitory effect. These data suggest that surfactant can play an important role in the treatment of endotoxin-induced lung injury and might possess robust anti-inflammatory effects. Further, it seems that both the natural and synthetic surfactants prevent inflammatory outcomes in the lungs by controlling cytokine(s) production by various inflammatory cells. Last, the studies here clearly indicated that in this aspect, natural surfactant appears to be more beneficial compared to synthetic surfactant.

  17. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    SciTech Connect

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, K. Monica; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  18. Anti-inflammatory activity of flavonol glycosides from Erythrospermum monticolum depending on single or repeated local TPA administration.

    PubMed

    del Carmen Recio, M; Giner, R M; Máñez, S; Talens, A; Cubells, L; Gueho, J; Julien, H R; Hostettmann, K; Rios, J L

    1995-12-01

    Two anti-inflammatory principles were isolated from the methanol extract of the leaves of Erythrospermum monticolum (Flacourtiaceae). The isolation was based on a guided bioassay of the inhibitory activity on TPA-induced ear edema in mice. These compounds were identified as quercetin 3-O-xylosyl(1-->2) rhamnoside and quercetin 3-O-rhamnoside. In addition, their effects on a chronic topic inflammation model were evaluated.

  19. Anti-Inflammatory Effects of Adrenomedullin on Acute Lung Injury Induced by Carrageenan in Mice

    PubMed Central

    Elena, Talero; Rosanna, Di Paola; Emanuela, Mazzon; Esposito, Emanuela; Virginia, Motilva; Salvatore, Cuzzocrea

    2012-01-01

    Adrenomedullin (AM) is a 52 amino acid peptide that has shown predominant anti-inflammatory activities. In the present study, we evaluated the possible therapeutic effect of this peptide in an experimental model of acute inflammation, the carrageenan- (CAR-) induced pleurisy. Pleurisy was induced by injection of CAR into the pleural cavity of mice. AM (200 ng/kg) was administered by intraperitoneal route 1 h after CAR, and the animals were sacrificed 4 h after that. AM treatment attenuated the recruitment of leucocytes in the lung tissue and the generation and/or the expression of the proinflammatory cytokines as well as the expression of the intercellular cell adhesion molecules. Moreover, AM inhibited the induction of inducible nitric oxide synthase (iNOS), thereby abating the generation of nitric oxide (NO) and prevented the oxidative and nitroxidative lung tissue injury, as shown by the reduction of nitrotyrosine, malondialdehyde (MDA), and poly (ADP-ribose) polymerase (PARP) levels. Finally, we demonstrated that these anti-inflammatory effects of AM were associated with the inhibition of nuclear factor-κB (NF-κB) activation. All these parameters were markedly increased by intrapleural CAR in the absence of any treatment. We report that treatment with AM significantly reduces the development of acute lung injury by downregulating a broad spectrum of inflammatory factors. PMID:22685374

  20. Anti-inflammatory effects of melatonin in a rat model of caerulein-induced acute pancreatitis.

    PubMed

    Carrasco, Cristina; Marchena, Ana M; Holguín-Arévalo, María S; Martín-Partido, Gervasio; Rodríguez, Ana B; Paredes, Sergio D; Pariente, José A

    2013-10-01

    The purpose of our study was to evaluate the protective effect of melatonin in a rat model of caerulein-induced acute pancreatitis. For the induction of experimental acute pancreatitis, four subcutaneous injections of caerulein (20 mgkg–1 body weight) were given to Wistar rats at 2-h intervals. Melatonin was injected intraperitoneally (25 mg kg–1 body weight) 30 min before each caerulein injection. After 12 h, rats were sacrificed by decapitation. Blood and pancreas samples were collected and processed for serological and histopathological studies,respectively. Lipase, a-amylase, corticosterone, total antioxidant power and cytokines interleukin (IL)-1b, IL-4 and tumour necrosis factor(TNF)-a were determined using commercial kits. ANOVA and Tukey tests (P<0.05) were performed for the statistical analysis of the results.Results showed that the administration of melatonin reduced histological damage induced by caerulein treatment as well as the hyperamylasemia and hyperlipidemia. Corticosterone and antioxidant total power were also reverted to basal activities. Furthermore, melatonin pre-treatment reduced pro-inflammatory cytokines IL-1b and TNF-a and increased the serum levels of anti-inflammatory cytokine IL-4. In conclusion,the findings suggest that the protective effect of melatonin in caerulein-induced acute pancreatitis is mediated by the anti-inflammatory ability of this indolamine. Thus, melatonin may have a protective effect against acute pancreatitis.

  1. SIRT1 protects osteoblasts against particle-induced inflammatory responses and apoptosis in aseptic prosthesis loosening.

    PubMed

    Deng, Zhantao; Wang, Zhenheng; Jin, Jiewen; Wang, Yong; Bao, Nirong; Gao, Qian; Zhao, Jianning

    2017-02-01

    We hypothesized that SIRT1 downregulation in osteoblasts induced by wear particles was one of the reasons for particle-induced osteolysis (PIO) in total joint arthroplasty failure. In the present study, the expression of SIRT1 was examined in osteoblasts treated with TiAl6V4 particles (TiPs) and CoCrMo particles (CoPs) from materials used in prosthetics and specimens from PIO animal models. To address whether SIRT1 downregulation triggers inflammatory responses and apoptosis in osteoblasts, the effect of a SIRT1 activator, resveratrol on the expression of inflammatory cytokines and apoptosis in particle-treated osteoblasts was tested. The results demonstrated that SIRT1 expression was significantly downregulated in particle-treated osteoblasts and PIO animal models. Both pharmacological activation and overexpression of SIRT1 dramatically reduced the particle-induced expression of inflammatory cytokines and osteoblast apoptosis through NF-κB and p53 signaling, respectively. Furthermore, in PIO animal models, resveratrol significantly reduced the severity of osteolysis. Collectively, the results of the present study indicated that SIRT1 plays a vital role in the pathogenesis of aseptic loosening, and further treatment targeted at SIRT1 possibly lead to novel approaches for prevention of aseptic prosthesis loosening.

  2. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis

    PubMed Central

    Fatani, Amal Jamil; Alrojayee, Fatima Salih; Parmar, Mihir Yogeshkumar; Abuohashish, Hatem Mustafa; Ahmed, Mohammed Mahboobuddin; Al-Rejaie, Salim Salih

    2016-01-01

    The pathogenesis of ulcerative colitis (UC) has been associated with a weakened antioxidant capacity and increased inflammatory processes. Myrrh is traditionally used for the treatment of inflammatory diseases due to its antioxidant and anti-inflammatory properties. The present study aimed to evaluate the effects of myrrh on an experimental rat model of UC. UC was induced in rats using acetic acid (AA) after pre-treatment with myrrh (125, 250 or 500 mg/kg/day) or mesalazine (MES; 300 mg/kg/day) for 7 days. The levels of various inflammatory cytokines, prostaglandin E2 (PGE2) and nitric oxide (NO) in the rat colon tissues were assessed. In addition, the colonic levels of thiobarbituric acid reactive substances (TBARS) and non-protein sulfhydryl groups (NP-SH), as well as the activities of superoxide dismutase (SOD) and catalase (CAT), were estimated. Furthermore, total protein (TP) contents and the levels of DNA and RNA were measured, and histopathological changes in colonic tissues were analyzed. The results indicated that the levels of pro-inflammatory cytokines, PGE2, NO and TBARS were markedly increased. By contrast, the levels of interleukin-10, NP-SH, TP and nucleic acids, and the enzymatic activities of SOD and CAT were significantly decreased in the AA model group. In addition, pretreatment with myrrh and MES was able to attenuate the impaired oxidative stress response and upregulation of inflammatory biomarkers. Furthermore, the enzymatic activities of SOD and CAT were near to normal in the myrrh and MES pretreated groups. The ability of myrrh to protect against UC was further confirmed by histopathological analysis, and the high dose of myrrh exerted an effect comparable to MES. In conclusion, the results of the present study suggested that myrrh has potent therapeutic value in the amelioration of experimental colitis in laboratory animals by downregulating the expression of proinflammatory mediators and improving endogenous antioxidative activities. PMID

  3. RhoB regulates the function of macrophages in the hypoxia-induced inflammatory response

    PubMed Central

    Huang, Gaoxiang; Su, Jie; Zhang, Mingzhuo; Jin, Yiduo; Wang, Yan; Zhou, Peng; Lu, Jian

    2017-01-01

    Immune cells, particularly macrophages, play critical roles in the hypoxia-induced inflammatory response. The small GTPase RhoB is usually rapidly induced by a variety of stimuli and has been described as an important regulator of cytoskeletal organization and vesicle and membrane receptor trafficking. However, it is unknown whether RhoB is involved in the hypoxia-induced inflammatory response. Here, we investigated the effect of hypoxia on the expression of RhoB and the mechanism and significance of RhoB expression in macrophages. We found that hypoxia significantly upregulated the expression of RhoB in RAW264.7 cells, mouse peritoneal macrophages, and the spleen of rats. Hypoxia-induced expression of RhoB was significantly blocked by a specific inhibitor of hypoxia-inducible factor-1α (HIF-1α), c-Jun N-terminal kinase (JNK), or extracellular-signal regulated protein kinase (ERK), indicating that hypoxia-activated HIF-1α, JNK, and ERK are involved in the upregulation of RhoB by hypoxia. Knockdown of RhoB expression not only significantly suppressed basal production of interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) in normoxia but also more markedly decreased the hypoxia-stimulated production of these cytokines. Furthermore, we showed that RhoB increased nuclear factor-kappa B (NF-κB) activity, and the inhibition of NF-κB transcriptional activity significantly decreased the RhoB-increased mRNA levels of IL-1β, IL-6, and TNF-α. Finally, we demonstrated that RhoB enhanced cell adhesion and inhibited cell migration in normoxia and hypoxia. Taken together, these results suggest that RhoB plays an important role in the hypoxia-induced activation of macrophages and the inflammatory response. PMID:26388235

  4. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Zhang, Zhi-Hui; Wang, Hua; Zhao, Hui; Yu, De-Xin; Xu, De-Xiang

    2015-12-22

    Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury.

  5. RhoB regulates the function of macrophages in the hypoxia-induced inflammatory response.

    PubMed

    Huang, Gaoxiang; Su, Jie; Zhang, Mingzhuo; Jin, Yiduo; Wang, Yan; Zhou, Peng; Lu, Jian

    2017-03-01

    Immune cells, particularly macrophages, play critical roles in the hypoxia-induced inflammatory response. The small GTPase RhoB is usually rapidly induced by a variety of stimuli and has been described as an important regulator of cytoskeletal organization and vesicle and membrane receptor trafficking. However, it is unknown whether RhoB is involved in the hypoxia-induced inflammatory response. Here, we investigated the effect of hypoxia on the expression of RhoB and the mechanism and significance of RhoB expression in macrophages. We found that hypoxia significantly upregulated the expression of RhoB in RAW264.7 cells, mouse peritoneal macrophages, and the spleen of rats. Hypoxia-induced expression of RhoB was significantly blocked by a specific inhibitor of hypoxia-inducible factor-1α (HIF-1α), c-Jun N-terminal kinase (JNK), or extracellular-signal regulated protein kinase (ERK), indicating that hypoxia-activated HIF-1α, JNK, and ERK are involved in the upregulation of RhoB by hypoxia. Knockdown of RhoB expression not only significantly suppressed basal production of interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) in normoxia but also more markedly decreased the hypoxia-stimulated production of these cytokines. Furthermore, we showed that RhoB increased nuclear factor-kappa B (NF-κB) activity, and the inhibition of NF-κB transcriptional activity significantly decreased the RhoB-increased mRNA levels of IL-1β, IL-6, and TNF-α. Finally, we demonstrated that RhoB enhanced cell adhesion and inhibited cell migration in normoxia and hypoxia. Taken together, these results suggest that RhoB plays an important role in the hypoxia-induced activation of macrophages and the inflammatory response.Cellular & Molecular Immunology advance online publication, 21 September 2015; doi:10.1038/cmi.2015.78.

  6. TNFα induces sustained signaling and a prolonged and unremitting inflammatory response in synovial fibroblasts

    PubMed Central

    Lee, Angela; Qiao, Yu; Grigoriev, Galina; Chen, Janice; Park-Min, Kyung-Hyun; Park, Sung Ho; Ivashkiv, Lionel B.; Kalliolias, George D.

    2013-01-01

    Objective The non resolving character of synovial inflammation in rheumatoid arthritis (RA) is a conundrum. To identify the contribution of fibroblast-like synoviocytes (FLS) to the perpetuation of synovitis, we investigated the molecular mechanisms that govern the TNFα-driven inflammatory program in human FLS. Methods FLS obtained from synovial tissues of patients with RA or osteoarthritis were stimulated with TNFα and assayed for gene expression and cytokine production by qPCR and ELISA. NF-κB signaling was evaluated using Western blotting. Histone acetylation, chromatin accessibility, and NF-κB p65 and RNA polymerase II (Pol II) occupancy at the IL6 promoter were measured by chromatin immunoprecipitation and restriction enzyme accessibility assays. Results In FLS, TNFα induced prolonged transcription of IL6 and progressive accumulation of IL-6 protein over four days. Similarly, induction of CXCL8/IL-8, CCL5/RANTES, MMP1 and MMP3 mRNA after TNFα stimulation was sustained for several days. This contrasted with the macrophage response to TNFα, which characteristically involved a transient increase in the expression of pro-inflammatory genes. In FLS, TNFα induced prolonged activation of NF-κB signaling and sustained transcriptional activity indicated by increased histone acetylation, chromatin accessibility, and p65 and Pol II occupancy at the IL6 promoter. Furthermore, FLS expressed low levels of the feedback inhibitors ABIN3, IRAK-M, SOCS3 and ATF3 that terminate inflammatory responses in macrophages. Conclusions TNFα signaling is not effectively terminated in FLS, leading to an uncontrolled inflammatory response. The results suggest that prolonged and sustained inflammatory responses by FLS, in response to synovial TNFα, contribute to the persistence of synovial inflammation in RA. PMID:23335080

  7. Synthesis of Lipid Mediators during UVB-Induced Inflammatory Hyperalgesia in Rats and Mice

    PubMed Central

    Sisignano, Marco; Angioni, Carlo; Ferreiros, Nerea; Schuh, Claus-Dieter; Suo, Jing; Schreiber, Yannick; Dawes, John M.; Antunes-Martins, Ana; Bennett, David L. H.; McMahon, Stephen B.; Geisslinger, Gerd; Scholich, Klaus

    2013-01-01

    Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs). However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs) as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP) genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18∶1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18∶1, 9-and 13-HODE and HETEs. PMID:24349046

  8. microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease.

    PubMed

    Thome, Aaron D; Harms, Ashley S; Volpicelli-Daley, Laura A; Standaert, David G

    2016-02-24

    Increasing evidence points to inflammation as a chief mediator of Parkinson's disease (PD), a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein α-synuclein (α-syn). Recently, microRNAs, small, noncoding RNAs involved in regulating gene expression at the posttranscriptional level, have been recognized as important regulators of the inflammatory environment. Using an array approach, we found significant upregulation of microRNA-155 (miR-155) in an in vivo model of PD produced by adeno-associated-virus-mediated expression of α-syn. Using a mouse with a complete deletion of miR-155, we found that loss of miR-155 reduced proinflammatory responses to α-syn and blocked α-syn-induced neurodegeneration. In primary microglia from miR-155(-/-) mice, we observed a markedly reduced inflammatory response to α-syn fibrils, with attenuation of major histocompatibility complex class II (MHCII) and proinflammatory inducible nitric oxide synthase expression. Treatment of these microglia with a synthetic mimic of miR-155 restored the inflammatory response to α-syn fibrils. Our results suggest that miR-155 has a central role in the inflammatory response to α-syn in the brain and in α-syn-related neurodegeneration. These effects are at least in part due to a direct role of miR-155 on the microglial response to α-syn. These data implicate miR-155 as a potential therapeutic target for regulating the inflammatory response in PD.

  9. Phenytoin-Induced Gingival Overgrowth: A Review of the Molecular, Immune, and Inflammatory Features

    PubMed Central

    Corrêa, Jôice Dias; Queiroz-Junior, Celso Martins; Costa, José Eustáquio; Teixeira, Antônio Lúcio; Silva, Tarcilia Aparecida

    2011-01-01

    Gingival overgrowth (GO) is a side effect associated with some distinct classes of drugs, such as anticonvulsants, immunosuppressant, and calcium channel blockers. GO is characterized by the accumulation of extracellular matrix in gingival connective tissues, particularly collagenous components, with varying degrees of inflammation. One of the main drugs associated with GO is the antiepileptic phenytoin, which affects gingival tissues by altering extracellular matrix metabolism. Nevertheless, the pathogenesis of such drug-induced GO remains fulfilled by some contradictory findings. This paper aims to present the most relevant studies regarding the molecular, immune, and inflammatory aspects of phenytoin-induced gingival overgrowth. PMID:21991476

  10. Prevention and treatment of ulcers induced by nonsteroidal anti-inflammatory drugs: an update.

    PubMed

    Dajani, E Z; Agrawal, N M

    1995-03-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are most frequently used for the treatment of rheumatic disease due to their anti-inflammatory and analgesic properties. All NSAIDs have the potential to cause damage to the gastrointestinal (GI) tract and have been associated with the induction of peptic ulcers and massive life-threatening bleeding. The therapeutic approaches for the treatment and prevention of NSAID-induced ulcers is critically reviewed using data derived from carefully controlled, world-wide clinical studies with anti-ulcer drugs. Histamine (H2) antagonists, omeprazole, sucralfate and E-prostaglandin (PGE) analogs are effective for the treatment of NSAID-induced gastric and duodenal ulcers, if NSAIDs are discontinued. However, if NSAIDs are continued while GI damage is present, the PGE analogs misoprostol, arbaprostil and enprostil have shown efficacy in healing NSAID-induced ulcers. Furthermore, one limited clinical study demonstrated that omeprazole has efficacy in healing NSAID-associated ulcers. Neither H2 antagonists, sucralfate and sulglycotide (a cytoprotective drug) have shown efficacy in preventing NSAID-induced gastric ulcers. However H2 antagonists have shown efficacy in preventing NSAID-induced duodenal ulcers. In contrast, only misoprostol prevents the development of NSAID-induced gastric and duodenal ulcers. Such pharmacological observations suggest that the pathophysiologic mechanisms for the induction of NSAID-induced gastric ulcer are distinctly different from those of NSAID-induced duodenal ulcers. Mild diarrhea and GI intolerance were the predominant adverse reactions experienced by patients receiving synthetic PGEs, particularly enprostil and arbaprostil. From the published data, we conclude that misoprostol is the only anti-ulcer drug proven to be well tolerated and effective for the treatment and prevention of NSAID-induced gastric and duodenal ulcers in patients receiving chronic NSAIDs therapy.

  11. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway.

    PubMed

    Wang, Jing; Liu, Yu-Tao; Xiao, Lu; Zhu, Lingpeng; Wang, Qiujuan; Yan, Tianhua

    2014-12-01

    This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of apigenin lipopolysaccharide (LPS)-induced inflammatory in acute lung injury. In this study, the anti-inflammatory effects of apigenin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible mechanisms involved in this protection were investigated. Pretreatment with apigenin prior to the administration of intratracheal LPS significantly induced a decrease in lung wet weight/dry weight ratio in total leukocyte number and neutrophil percent in the bronchoalveolar lavage fluid (BALF) and in IL-6 and IL-1β, the tumor neurosis factor-α (TNF-α) in the BALF. These results showed that anti-inflammatory effects of apigenin against the LPS-induced ALI may be due to its ability of primary inhibition of cyclooxygenase-2 (COX-2) gene expression and nuclear factor kB (NF-kB) gene expression of lung. The results presented here suggest that the protective mechanism of apigenin may be attributed partly to decreased production of proinflammatory cytokines through the inhibition of COX-2 and NF-kB activation. The results support that use of apigenin is beneficial in the treatment of ALI.

  12. The Anti-Inflammatory Effects and Mechanisms of Eupafolin in Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Macrophages

    PubMed Central

    Chen, Chin-Chaun; Lin, Ming-Wei; Liang, Chan-Jung; Wang, Shu-Huei

    2016-01-01

    Eupafolin is a flavone isolated from Artemisia princeps Pampanini (family Asteraceae). The aim of this study was to examine the anti-inflammatory effects of eupafolin in lipopolysaccharide (LPS)-treated RAW264.7 macrophages and LPS-induced mouse skin and lung inflammation models and to identify the mechanism underlying these effects. Eupafolin decreased the LPS-induced release of inflammatory mediators (iNOS, COX-2 and NO) and proinflammatory cytokines (IL-6 and TNF-α) from the RAW264.7 macrophages. Eupafolin inhibited the LPS-induced phosphorylation of p38 MAPK, ERK1/2, JNK, AKT and p65 and the nuclear translocation of p65 and c-fos. These effects were mainly mediated by the inhibition of JNK. In the mouse paw and lung models, eupafolin effectively suppressed the LPS-induced edema formation and down-regulated iNOS and COX-2 expression. These results demonstrated that eupafolin exhibits anti-inflammatory properties and suggested that eupafolin can be developed as an anti-inflammatory agent. PMID:27414646

  13. The Avian Head Induces Cues for Sound Localization in Elevation

    PubMed Central

    Schnyder, Hans A.; Vanderelst, Dieter; Bartenstein, Sophia; Firzlaff, Uwe; Luksch, Harald

    2014-01-01

    Accurate sound source localization in three-dimensional space is essential for an animal’s orientation and survival. While the horizontal position can be determined by interaural time and intensity differences, localization in elevation was thought to require external structures that modify sound before it reaches the tympanum. Here we show that in birds even without external structures like pinnae or feather ruffs, the simple shape of their head induces sound modifications that depend on the elevation of the source. Based on a model of localization errors, we show that these cues are sufficient to locate sounds in the vertical plane. These results suggest that the head of all birds induces acoustic cues for sound localization in the vertical plane, even in the absence of external ears. PMID:25390036

  14. Interactions between Nitric Oxide and Hypoxia-Inducible Factor Signaling Pathways in Inflammatory Disease

    PubMed Central

    Olson, Nels; van der Vliet, Albert

    2011-01-01

    Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O2) consumption and redistribution, the ability of NO to regulate various aspects of hypoxia-induced signaling has received widespread attention. Conditions of tissue hypoxia and the activation of hypoxia-inducible factors (HIF) have been implicated in hypoxia or in cancer biology, but are also being increasingly recognized as important features of acute and chronic inflammation. Thus, the activation of HIF transcription factors has been increasingly implicated in inflammatory diseases, and recent studies have indicated its critical importance in regulating phagocyte function, inflammatory mediator production, and regulation of epithelial integrity and repair processes. Finally, HIF also appears to contribute to important features of tissue fibrosis and epithelial-to-mesenchymal transition, processes that are associated with tissue remodeling in various non-malignant chronic inflammatory disorders. In this review, we briefly summarize the current state of knowledge with respect to the general mechanisms involved in HIF regulation and the impact of NO on HIF activation. Secondly, we will summarize the major recent findings demonstrating a role for HIF signaling in infection, inflammation, and tissue repair and remodeling, and will address the involvement of NO. The growing interest in hypoxia-induced signaling and its relation with NO biology is expected to lead to further insights into the complex roles of NO in acute or chronic inflammatory diseases and may point to the importance of HIF signaling as key feature of NO-mediated events during these disorders. PMID

  15. Stress-Induced Inflammatory Responses in Women: Effects of Race and Pregnancy

    PubMed Central

    Christian, Lisa M.; Glaser, Ronald; Porter, Kyle; Iams, Jay D.

    2013-01-01

    Objective African Americans experience preterm birth at nearly twice the rate of Whites. Chronic stress associated with minority status is implicated in this disparity. Inflammation is a key biological pathway by which stress may affect birth outcomes. This study examined effects of race and pregnancy on stress-induced inflammatory responses. Methods Thirty-nine women in the 2nd trimester of pregnancy (19 African American; 20 White) and 39 demographically similar nonpregnant women completed an acute stressor (Trier Social Stress Test). Psychosocial characteristics, health behaviors, and affective responses were assessed. Serum interleukin(IL)-6 was measured via high sensitivity ELISA at baseline, 45 minutes, and 120 minutes post-stressor. Results IL-6 responses at 120 minutes post-stressor were 46% higher in African Americans versus Whites (95%CI:8%-81%; t(72)=3.51, p=.001). This effect was present in pregnancy and nonpregnancy. IL-6 responses at 120 minutes post-stressor tended to be lower (15%) in pregnant versus nonpregnant women (95%CI:-5%-32%; p=0.14). Racial differences in inflammatory responses were not accounted for by demographics, psychological characteristics, health behaviors, or differences in salivary cortisol across the study session. Pregnant Whites showed lower negative affective responses than nonpregnant women of either race (ps≤.007). Conclusion This study provides novel evidence that stress-induced inflammatory responses are more robust among African American women versus Whites during pregnancy and nonpregnancy. The ultimate impact of stress on health is a function of stressor exposure and physiological responses. Individual differences in stress-induced inflammatory responses represent a clear target for continued research efforts in racial disparities in health during pregnancy and nonpregnancy. PMID:23873713

  16. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis.

    PubMed

    Umar, Sadiq; Umar, Khalid; Sarwar, Abu Hasnath Md Golam; Khan, Altaf; Ahmad, Niyaz; Ahmad, Sayeed; Katiyar, Chandra Kant; Husain, Syed Akhtar; Khan, Haider A

    2014-05-15

    Rheumatoid arthritis (RA) is a chronic inflammatory disease which leads to destruction of joints. Current treatment modalities for RA either produce symptomatic relief (NSAIDs) or modify the disease process (DMARDs). Though effective, their use is also limited by their side effects. As a result, the interest in alternative, well tolerated anti-inflammatory remedies has re-emerged. Our aim was to evaluate the antioxidant and antiarthritic activity of Boswellia serrata gum resin extract (BSE) in collagen induced arthritis. Arthritis was induced in male Wistar rats by collagen induced arthritis (CIA) method. BSE was administered at doses of 100 and 200mg/kg body weight once daily for 21 days. The effects of treatment in the rats were assessed by biochemical (articular elastase, MPO, LPO, GSH, catalase, SOD and NO), inflammatory mediators (IL-1β, IL-6, TNF-α, IL-10, IFN-γ and PGE2), and histological studies in joints. BSE was effective in bringing significant changes on all the parameters (articular elastase, MPO, LPO, GSH, catalase, SOD and NO) studied. Oral administration of BSE resulted in significantly reduced levels of inflammatory mediators (IL-1β, IL-6, TNF-α, IFN-γ and PGE2), and increased level of IL-10. The protective effects of BSE against RA were also evident from the decrease in arthritis scoring and bone histology. The abilities to inhibit proinflammatory cytokines and modulation of antioxidant status suggest that the protective effect of Boswellia serrata extract on arthritis in rats might be mediated via the modulation of immune system.

  17. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    PubMed

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis.

  18. Modulation of ConA-induced inflammatory ascites by histamine - short communication.

    PubMed

    Baintner, Károly

    2015-03-01

    The early phase of the ConA-induced inflammatory ascites was studied, with special reference to histamine. Concanavalin A (ConA), a cell-surface binding lectin was injected i.p. (25 mg/kg bw) to mice. After 1 h the animals were killed, the ascitic fluid collected and measured. Other agents were injected s.c., 10 min before the ConA-challenge. Exogenous histamine markedly inhibited the ConA-induced ascites. Release of endogenous vasoactive agents from the mast cells by Compound 48/80 had a similar, but slight effect. Cromolyn, a mast cell stabilizing agent, and chloropyramine, a histamine H1 receptor antagonist was ineffective. Although histamine increases endothelial permeability, it did not enhance the formation of ascitic fluid, on the contrary, it inhibited the ConA-induced ascites, presumably due to its known hypotonic effect. It is concluded that ConA-induced ascites is not mediated by mast cell histamine.

  19. Non-viable Borrelia burgdorferi induce inflammatory mediators and apoptosis in human oligodendrocytes.

    PubMed

    Parthasarathy, Geetha; Fevrier, Helene B; Philipp, Mario T

    2013-11-27

    In previous studies, exposure to live Borrelia burgdorferi was shown to induce inflammation and apoptosis of human oligodendrocytes. In this study we assessed the ability of non-viable bacteria (heat killed or sonicated) to induce inflammatory mediators and cell death. Both heat-killed and sonicated bacteria induced release of CCL2, IL-6, and CXCL8 from oligodendrocytes in a dose dependent manner. In addition, non-viable B. burgdorferi also induced cell death as evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and another cell viability assay. These results suggest that spirochetal residues left after bacterial demise, due to treatment or otherwise, may continue to be pathogenic to the central nervous system.

  20. Analysis of the inflammatory reaction induced by the catfish (Cathorops spixii) venoms.

    PubMed

    Junqueira, Marcos Emerson Pinheiro; Grund, Lidiane Zito; Orii, Noêmia M; Saraiva, Tânia Cristina; de Magalhães Lopes, Carlos Alberto; Lima, Carla; Lopes-Ferreira, Mônica

    2007-06-01

    Cathorops spixii is one of the most abundant venomous fish of the southeastern coast of the State of São Paulo, and consequently causes a great part of the accidents seen there. The accidents affect mainly fishermen, swimmers and tourists and are characterized by punctiform or wide wounds, erythema, edema, pain, sudoresis, indisposition, fever, nausea, vomiting and secondary infection. The objective of this work was to characterize the inflammatory response induced in mice by both venoms (mucus and sting) of the catfish C. spixii. Our results demonstrated that both venoms induced a great number of rolling and adherent leukocytes in the post-capillary venules of cremaster muscle of mice, and an increase in the vascular permeability in peritoneal cavity. Mucus induced the recruitment of neutrophils immediately after injection followed later by macrophage infiltration. In contrast, the cellular infiltration elicited by sting venom was rapidly resolved. The peritonitis reaction provoked by venoms was characterized by cytokine (IL-6), chemokines (MCP-1 and KC) or lipid mediator (LTB4) production in the peritoneal cavity. The macrophages from 7-day mucus venom-induced exudates upon in vitro mucus venom stimulation, expressed CD11c x MHC class II and release bioactive IL-12p70. On the other hand, sting venom-elicited peritoneal macrophages lost the ability to differentiate into dendritic cells, following re-stimulation in vitro with sting venom, they do not express CD11c, nor do they exhibit sufficient levels of MHC class II. In conclusion, both types of venoms (mucus or sting) promote inflammatory reaction with different profiles, and the inflammatory reaction induced by the first was characterized by antigen persistence in peritoneal cavity that allowed the activation of phagocytic cells with capacity of antigenic presentation.

  1. Anti-inflammatory effect of geranium nanoemulsion macrophages induced with soluble protein of Candida albicans.

    PubMed

    Giongo, Janice Luehring; de Almeida Vaucher, Rodrigo; Sagrillo, Michele; Vianna Santos, Roberto Christ; Duarte, Marta M M F; Rech, Vírginia Cielo; Soares Lopes, Leonardo Quintana; Beatriz da Cruz, Ivana; Tatsch, Etiane; Moresco, Rafael Noal; Gomes, Patricia; Steppe, Martin

    2017-01-31

    Pelargonium graveolens is a member of the Geraniaceae family and has been used in folk medicine in many countries because of its anti-inflammatory activity. No studies have yet been reported to evaluate the anti-inflammatory activity of a nanoemulsion containing geranium oil (GO) model in macrophages. In this study the anti-inflammatory effect of Geranium nanoemulsion (NEG) macrophages induced with soluble proteins of Candida albicans was investigated. GO presented citronellol (17.74%) and geraniol (14.43%) as main constituents. The characterization in NEG was demonstrated, showing the particle size of 164 ± 3.5 nm, PDI of 0.12 ± 0.006 and zeta potential -10 mV ± 1.7. The MIC obtained for NEG and GO were 3.64 μg ml(-1) and 1.82 μg ml(-1), respectively. The viability of the macrophages treated with NEG and GO concentrations (1/2 x, 1x and 2x MIC) was evaluated. There was a significant reduction of viability and the MTT assay was not confirmed after the LDH assay. Anti-inflammatory activity was evaluated by determining nitric oxide (NO), cytokines (interleukin IL-1, IL-6 and IL-10), tumor necrosis factor-α (TNF) and the expression levels gene of interleukin (IL-2), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). The apoptosis inhibition capacity was assessed by determination of INFγ, caspase 3 and caspase 8. The results indicated that there was a significant increase of NO in the levels after treatment with NEG and significantly reduced levels after treatment with GO. The cytokines (IL-1, IL-6, IL-10, and TNF) were evaluated and NEG (½ x, 1x MIC) decreased IL-1 levels by 1.25-1.37 times, respectively. The NEG did not decrease IL-6 levels and a significant increase was observed for IL-10. GO significantly decreased IL-6 and IL-10 levels. There was a significant decrease in IL-2 and COX-2 levels and increased levels of iNOs. The levels of IFNγ and caspase-3 after treatment with NEG decreased indicating an anti-inflammatory

  2. Both inflammatory and classical lipolytic pathways are involved in lipopolysaccharide-induced lipolysis in human adipocytes.

    PubMed

    Grisouard, Jean; Bouillet, Elisa; Timper, Katharina; Radimerski, Tanja; Dembinski, Kaethi; Frey, Daniel M; Peterli, Ralph; Zulewski, Henryk; Keller, Ulrich; Müller, Beat; Christ-Crain, Mirjam

    2012-02-01

    High fat diet-induced endotoxaemia triggers low-grade inflammation and lipid release from adipose tissue. This study aims to unravel the cellular mechanisms leading to the lipopolysaccharide (LPS) effects in human adipocytes. Subcutaneous pre-adipocytes surgically isolated from patients were differentiated into mature adipocytes in vitro. Lipolysis was assessed by measurement of glycerol release and mRNA expression of pro-inflammatory cytokines were evaluated by real-time PCR. Treatment with LPS for 24 h induced a dose-dependent increase in interleukin (IL)-6 and IL-8 mRNA expression. At 1 µg/ml LPS, IL-6 and IL-8 were induced to 19.5 ± 1.8-fold and 662.7 ± 91.5-fold (P < 0.01 vs basal), respectively. From 100 ng/ml to 1 µg/ml, LPS-induced lipolysis increased to a plateau of 3.1-fold above basal level (P < 0.001 vs basal). Co-treatment with inhibitors of inhibitory kappa B kinase kinase beta (IKKβ) or NF-κB inhibited LPS-induced glycerol release. Co-treatment with the protein kinase A (PKA) inhibitor H-89, the lipase inhibitor orlistat or the hormone-sensitive lipase (HSL) inhibitor CAY10499 abolished the lipolytic effects of LPS. Co-treatment with the MAPK inhibitor, U0126 also reduced LPS-induced glycerol release. Inhibition of lipolysis by orlistat or CAY10499 reduced LPS-induced IL-6 and IL-8 mRNA expression. Induction of lipolysis by the synthetic catecholamine isoproterenol or the phosphodiesterase type III inhibitor milrinone did not alter basal IL-6 and IL-8 mRNA expression after 24 treatments whereas these compounds enhanced LPS-induced IL-6 and IL-8 mRNA expression. Both the inflammatory IKKβ/NF-κB pathway and the lipolytic PKA/HSL pathways mediate LPS-induced lipolysis. In turn, LPS-induced lipolysis reinforces the expression of pro-inflammatory cytokines and, thereby, triggers its own lipolytic activity.

  3. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  4. Anti-inflammatory Effect of Alloferon on Ovalbumin-induced Asthma

    PubMed Central

    Jeon, Jane; Kim, Yejin; Kim, Hyemin; Lee, Wang Jae

    2015-01-01

    Asthma is a well-known inflammatory lung disease; however, the specific underlying mechanism is largely unknown. We previously demonstrated that alloferon effectively downregulates pulmonary inflammation. In this study, we examined whether alloferon has a therapeutic effect on asthma. Alloferon remarkably decreased the number of eosinophils, macrophages, and neutrophils in the bronchoalveolar lavage fluid (BALF) from ovalbumin (OVA)-induced asthma mice. It was synergistically decreased with 2.5 mg/kg prednisolone (PDA). Inflammatory cell infiltration around the bronchioles and in the alveolus of OVA-induced asthma mice was effectively prevented by alloferon alone and combined treatment with alloferon and PDS. The production of IL-5 and IL-17 was decreased by alloferon alone and combined treatment with alloferon and PDS. There was no change the level of total immunoglobulin (Ig) following alloferon administration; however, total Ig was decreased by PDS. IgG2a levels were not changed by either alloferon alone or alloferon in combination with PDS. However, the levels of OVA-specific IgG1 and IgE were decreased by alloferon and PDS. In conclusion, our results suggest that a combination of alloferon and prednisolone is effective for the treatment of asthma, as it prevents inflammatory cell infiltration via the downregulation of IL-5 and IL-17 production and decreases IgG1 and IgE production via the suppression of T helper type 2 immune response. PMID:26770184

  5. Anti-inflammatory Effect of Alloferon on Ovalbumin-induced Asthma.

    PubMed

    Jeon, Jane; Kim, Yejin; Kim, Hyemin; Kang, Jae Seung; Lee, Wang Jae

    2015-12-01

    Asthma is a well-known inflammatory lung disease; however, the specific underlying mechanism is largely unknown. We previously demonstrated that alloferon effectively downregulates pulmonary inflammation. In this study, we examined whether alloferon has a therapeutic effect on asthma. Alloferon remarkably decreased the number of eosinophils, macrophages, and neutrophils in the bronchoalveolar lavage fluid (BALF) from ovalbumin (OVA)-induced asthma mice. It was synergistically decreased with 2.5 mg/kg prednisolone (PDA). Inflammatory cell infiltration around the bronchioles and in the alveolus of OVA-induced asthma mice was effectively prevented by alloferon alone and combined treatment with alloferon and PDS. The production of IL-5 and IL-17 was decreased by alloferon alone and combined treatment with alloferon and PDS. There was no change the level of total immunoglobulin (Ig) following alloferon administration; however, total Ig was decreased by PDS. IgG2a levels were not changed by either alloferon alone or alloferon in combination with PDS. However, the levels of OVA-specific IgG1 and IgE were decreased by alloferon and PDS. In conclusion, our results suggest that a combination of alloferon and prednisolone is effective for the treatment of asthma, as it prevents inflammatory cell infiltration via the downregulation of IL-5 and IL-17 production and decreases IgG1 and IgE production via the suppression of T helper type 2 immune response.

  6. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity.

    PubMed

    Lumeng, Carey N; Deyoung, Stephanie M; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Although recent studies show that adipose tissue macrophages (ATMs) participate in the inflammatory changes in obesity and contribute to insulin resistance, the properties of these cells are not well understood. We hypothesized that ATMs recruited to adipose tissue during a high-fat diet have unique inflammatory properties compared with resident tissue ATMs. Using a dye (PKH26) to pulse label ATMs in vivo, we purified macrophages recruited to white adipose tissue during a high-fat diet. Comparison of gene expression in recruited and resident ATMs using real-time RT-PCR and cDNA microarrays showed that recruited ATMs overexpress genes important in macrophage migration and phagocytosis, including interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and C-C chemokine receptor 2 (CCR2). Many of these genes were not induced in ATMs from high-fat diet-fed CCR2 knockout mice, supporting the importance of CCR2 in regulating recruitment of inflammatory ATMs during obesity. Additionally, expression of Apoe was decreased, whereas genes important in lipid metabolism, such as Pparg, Adfp, Srepf1, and Apob48r, were increased in the recruited macrophages. In agreement with this, ATMs from obese mice had increased lipid content compared with those from lean mice. These studies demonstrate that recruited ATMs in obese animals represent a subclass of macrophages with unique properties.

  7. Mechanical Ventilation Induces an Inflammatory Response in Preinjured Lungs in Late Phase of Sepsis.

    PubMed

    Xuan, Wei; Zhou, Quanjun; Yao, Shanglong; Deng, Qingzhu; Wang, Tingting; Wu, Qingping

    2015-01-01

    Mechanical ventilation (MV) may amplify the lung-specific inflammatory response in preinjured lungs by elevating cytokine release and augmenting damage to the alveolar integrity. In this study, we test the hypothesis that MV exerts different negative impacts on inflammatory response at different time points of postlung injury. Basic lung injury was induced by cecal ligation and puncture (CLP) surgery in rats. Physiological indexes including blood gases were monitored during MV and samples were assessed following each experiment. Low V T (tidal volume) MV caused a slight increase in cytokine release and tissue damage at day 1 and day 4 after sepsis induced lung injury, while cytokine release from the lungs in the two moderately ventilated V T groups was amplified. Interestingly, in the two groups where rats received low V T MV, we found that infiltration of inflammatory cells was only profound at day 4 after CLP. Marked elevation of protein leakage indicated a compromise in alveolar integrity in rats that received moderate V T MV at day 4 following CLP, correlating with architectural damage to the alveoli. Our study indicates that preinjured lungs are more sensitive to mechanical MV at later phases of sepsis, and this situation may be a result of differing immune status.

  8. The anti-inflammatory effect of diclofenac is considerably augmented by topical capsaicinoids-containing patch in carrageenan-induced paw oedema of rat.

    PubMed

    Ercan, Nilufer; Uludag, Mecit Orhan; Agis, Erol Rauf; Demirel-Yilmaz, Emine

    2013-12-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most used drugs in musculoskeletal disorders, but their systemic adverse effects limit their therapeutic benefit in local inflammation. On the other hand, topical preparations of capsaicinoids are widely used for musculoskeletal disorders as a complementary therapy. In this study, the effects of both topical capsaicinoids-containing patch and local subcutaneous capsaicin application on the anti-inflammatory action of NSAID were examined. Carrageenan-induced paw oedema of rats was used as the inflammation model. The volume and weight of the paw oedema and plasma extravasation in the paw were determined after carrageenan injection. The systemic application of diclofenac (3 mg/kg), which is an NSAID, significantly decreased the volume and weight of the paw oedema. Topical capsaicinoids-containing patch application or local capsaicin injection (2, 10, 20 μg/paw) alone did not cause any effect on oedema volume and weight. However, the combination of diclofenac with topical capsaicinoids-containing patch significantly increased the effectiveness of diclofenac on inflammation. Evans blue content of the paws that represents plasma extravasation was decreased by capsaicinoids-containing patch with and without diclofenac and diclofenac combination with the lowest dose of capsaicin injection. The results of this study indicate that topical application of capsaicinoids-containing patch enhances the anti-inflammatory effect of diclofenac and its beneficial effect may not purely relate to its capsaicin content. In the treatment of local inflammatory disorders, the combination of NSAID with topical capsaicinoids-containing patch could increase the anti-inflammatory efficiency of drug without systemic side effects.

  9. Natural small molecule FMHM inhibits lipopolysaccharide-induced inflammatory response by promoting TRAF6 degradation via K48-linked polyubiquitination.

    PubMed

    Zeng, Ke-Wu; Liao, Li-Xi; Lv, Hai-Ning; Song, Fang-Jiao; Yu, Qian; Dong, Xin; Li, Jun; Jiang, Yong; Tu, Peng-Fei

    2015-10-01

    TNF receptor-associated factor 6 (TRAF6) is a key hub protein involved in Toll-like receptor-dependent inflammatory signaling pathway, and it recruits additional proteins to form multiprotein complexes capable of activating downstream NF-κB inflammatory signaling pathway. Ubiquitin-proteasome system (UPS) plays a crucial role in various protein degradations, such as TRAF6, leading to inhibitory effects on inflammatory response and immunologic function. However, whether ubiquitination-dependent TRAF6 degradation can be used as a novel anti-inflammatory drug target still remains to be explored. FMHM, a bioactive natural small molecule compound extracted from Chinese herbal medicine Radix Polygalae, suppressed acute inflammatory response by targeting ubiquitin protein and inducing UPS-dependent TRAF6 degradation mechanism. It was found that FMHM targeted ubiquitin protein via Lys48 site directly induced Lys48 residue-linked polyubiquitination. This promoted Lys48 residue-linked polyubiquitin chain formation on TRAF6, resulting in increased TRAF6 degradation via UPS and inactivation of downstream NF-κB inflammatory pathway. Consequently, FMHM down-regulated inflammatory mediator levels in circulation, protected multiple organs against inflammatory injury in vivo, and prolong the survival of endotoxemia mouse models. Therefore, FMHM can serve as a novel lead compound for the development of TRAF6 scavenging agent via ubiquitination-dependent mode, which represents a promising strategy for treating inflammatory diseases.

  10. FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines

    PubMed Central

    Su, Ke; Zeng, Ping; Liang, Wei; Luo, Zhengyu; Wang, Yiman; Lv, Xifeng; Han, Qi; Yan, Miao

    2017-01-01

    FTY720, a new chemical substance derived from the ascomycete Isaria sinclairii, is used for treating multiple sclerosis, renal cancer, and asthma. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite and exists in red blood cells. FTY720 is a synthetic S1P analog which can block S1P evoking physiological effects. Recently studies show that S1P was participating in activated inflammation cells induced renal injury. The objective of this study was to assess the protective effect of FTY720 on kidney damage and the potential mechanism of FTY720 which alleviate podocyte injury in chronic kidney disease. In this study, we selected 40 patients with IgA nephropathy and examined their clinical characteristics. Ang II-infusion rat renal injury model was established to evaluate the glomeruli and tubulointerstitial lesion. The result showed that the concentration of S1P in serum and urine was positively correlated with IgA nephropathy patients' renal injury. FTY720 could reduce renal histological lesions induced by Ang II-infusion in rats. Moreover, FTY720 decreased S1P synthesis in Ang II-infusion rats via downregulation of inflammatory cytokines including TNF-α and IL-6. In addition, FTY720 alleviated exogenous S1P-induced podocyte damage. In conclusion, FTY720 is able to attenuate S1P-induced podocyte damage via reducing inflammatory cytokines. PMID:28270699

  11. A fatal cytokine-induced systemic inflammatory response reveals a critical role for NK cells.

    PubMed

    Carson, W E; Yu, H; Dierksheide, J; Pfeffer, K; Bouchard, P; Clark, R; Durbin, J; Baldwin, A S; Peschon, J; Johnson, P R; Ku, G; Baumann, H; Caligiuri, M A

    1999-04-15

    The mechanism of cytokine-induced shock remains poorly understood. The combination of IL-2 and IL-12 has synergistic antitumor activity in vivo, yet has been associated with significant toxicity. We examined the effects of IL-2 plus IL-12 in a murine model and found that the daily, simultaneous administration of IL-2 and IL-12 resulted in shock and 100% mortality within 4 to 12 days depending on the strain employed. Mice treated with IL-2 plus IL-12 exhibited NK cell apoptosis, pulmonary edema, degenerative lesions of the gastrointestinal tract, and elevated serum levels of proinflammatory cytokines and acute phase reactants. The actions of TNF-alpha, IFN-gamma, macrophage-inflammatory protein-1alpha, IL-1, IL-1-converting enzyme, Fas, perforin, inducible nitric oxide synthase, and STAT1 did not contribute to the observed toxicity, nor did B or T cells. However, toxicity and death from treatment with IL-2 plus IL-12 could be completely abrogated by elimination of NK cells. These results suggest that the fatal systemic inflammatory response induced by this cytokine treatment is critically dependent upon NK cells, but does not appear to be mediated by the known effector molecules of this cellular compartment. These data may provide insight into the pathogenesis of cytokine-induced shock in humans.

  12. Excretory and Secretory Proteins of Naegleria fowleri Induce Inflammatory Responses in BV-2 Microglial Cells.

    PubMed

    Lee, Jinyoung; Kang, Jung-Mi; Kim, Tae Im; Kim, Jong-Hyun; Sohn, Hae-Jin; Na, Byoung-Kuk; Shin, Ho-Joon

    2017-03-01

    Naegleria fowleri, a free-living amoeba that is found in diverse environmental habitats, can cause a type of fulminating hemorrhagic meningoencephalitis, primary amoebic meningoencephalitis (PAM), in humans. The pathogenesis of PAM is not fully understood, but it is likely to be primarily caused by disruption of the host's nervous system via a direct phagocytic mechanism by the amoeba. Naegleria fowleri trophozoites are known to secrete diverse proteins that may indirectly contribute to the pathogenic function of the amoeba, but this factor is not clearly understood. In this study, we analyzed the inflammatory responses in BV-2 microglial cells induced by excretory and secretory proteins of N. fowleri (NfESP). Treatment of BV-2 cells with NfESP induced the expression of various cytokines and chemokines, including the proinflammatory cytokines IL-1α and TNF-α. NfESP-induced IL-1α and TNF-α expression in BV-2 cells were regulated by p38, JNK, and ERK MAPKs. NfESP-induced IL-1α and TNF-α production in BV-2 cells were effectively downregulated by inhibition of NF-kB and AP-1. These results collectively suggest that NfESP stimulates BV-2 cells to release IL-1α and TNF-α via NF-kB- and AP-1-dependent MAPK signaling pathways. The released cytokines may contribute to inflammatory responses in microglia and other cell types in the brain during N. fowleri infection.

  13. Antinociceptive and Anti-Inflammatory Effects of Zerumbone against Mono-Iodoacetate-Induced Arthritis.

    PubMed

    Chien, Ting-Yi; Huang, Steven Kuan-Hua; Lee, Chia-Jung; Tsai, Po-Wei; Wang, Ching-Chiung

    2016-02-18

    The fresh rhizome of Zingiber zerumbet Smith (Zingiberaceae) is used as a food flavoring and also serves as a folk medicine as an antipyretic and for analgesics in Taiwan. Zerumbone, a monocyclic sesquiterpene was isolated from the rhizome of Z. zerumbet and is the major active compound. In this study, the anti-inflammatory and antinociceptive effects of zerumbone on arthritis were explored using in vitro and in vivo models. Results showed that zerumbone inhibited inducible nitric oxide (NO) synthase (iNOS), cyclooxygenase (COX)-2 expressions, and NO and prostaglandin E₂ (PGE₂) production, but induced heme oxygenase (HO)-1 expression in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. When zerumbone was co-treated with an HO-1 inhibitor (tin protoporphyrin (SnPP)), the NO inhibitory effects of zerumbone were recovered. The above results suggest that zerumbone inhibited iNOS and COX-2 through induction of the HO-1 pathway. Moreover, matrix metalloproteinase (MMP)-13 and COX-2 expressions of interleukin (IL)-1β-stimulated primary rat chondrocytes were inhibited by zerumbone. In an in vivo assay, an acetic acid-induced writhing response in mice was significantly reduced by treatment with zerumbone. Furthermore, zerumbone reduced paw edema and the pain response in a mono-iodoacetate (MIA)-induced rat osteoarthritis model. Therefore, we suggest that zerumbone possesses anti-inflammatory and antinociceptive effects which indicate zerumbone could be a potential candidate for osteoarthritis treatment.

  14. Antinociceptive and Anti-Inflammatory Effects of Zerumbone against Mono-Iodoacetate-Induced Arthritis

    PubMed Central

    Chien, Ting-Yi; Huang, Steven Kuan-Hua; Lee, Chia-Jung; Tsai, Po-Wei; Wang, Ching-Chiung

    2016-01-01

    The fresh rhizome of Zingiber zerumbet Smith (Zingiberaceae) is used as a food flavoring and also serves as a folk medicine as an antipyretic and for analgesics in Taiwan. Zerumbone, a monocyclic sesquiterpene was isolated from the rhizome of Z. zerumbet and is the major active compound. In this study, the anti-inflammatory and antinociceptive effects of zerumbone on arthritis were explored using in vitro and in vivo models. Results showed that zerumbone inhibited inducible nitric oxide (NO) synthase (iNOS), cyclooxygenase (COX)-2 expressions, and NO and prostaglandin E2 (PGE2) production, but induced heme oxygenase (HO)-1 expression in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. When zerumbone was co-treated with an HO-1 inhibitor (tin protoporphyrin (SnPP)), the NO inhibitory effects of zerumbone were recovered. The above results suggest that zerumbone inhibited iNOS and COX-2 through induction of the HO-1 pathway. Moreover, matrix metalloproteinase (MMP)-13 and COX-2 expressions of interleukin (IL)-1β-stimulated primary rat chondrocytes were inhibited by zerumbone. In an in vivo assay, an acetic acid-induced writhing response in mice was significantly reduced by treatment with zerumbone. Furthermore, zerumbone reduced paw edema and the pain response in a mono-iodoacetate (MIA)-induced rat osteoarthritis model. Therefore, we suggest that zerumbone possesses anti-inflammatory and antinociceptive effects which indicate zerumbone could be a potential candidate for osteoarthritis treatment. PMID:26901193

  15. Dietary selenium deficiency exacerbates lipopolysaccharide-induced inflammatory response in mouse mastitis models.

    PubMed

    Wei, Zhengkai; Yao, Minjun; Li, Yimeng; He, Xuexiu; Yang, Zhengtao

    2014-12-01

    Selenium (Se) is an essential micronutrient that plays a critical role in anti-inflammatory processes and antioxidant defense system. In this study, we investigated the effects of dietary selenium deficiency on lipopolysaccharide (LPS)-induced mastitis in mouse models. Se content in the liver was assessed by fluorescent atomic absorption spectrometry. Glutathione peroxidase (GPx) activity in the blood, myeloperoxidase (MPO) activity, tumor necrosis actor alpha (TNF-α), and interleukin (IL)-1β in the supernatant of the mammary tissue were determined according to the corresponding kits. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions were evaluated by Western blotting. The results showed that the Se-deficient mouse model was successfully replicated, and selenium deficiency exacerbated mammary gland histopathology, increased the expressions of TNF-α and IL-1β, and facilitated the activation of iNOS and COX-2 in LPS-induced mouse mastitis. In conclusion, our studies demonstrated that selenium deficiency resulted in more severe inflammatory response in LPS-induced mouse mastitis.

  16. Macrophages participate in local and systemic inflammation induced by amorphous silica nanoparticles through intratracheal instillation

    PubMed Central

    Yang, Man; Jing, Li; Wang, Ji; Yu, Yang; Cao, Lige; Zhang, Lianshuang; Zhou, Xianqing; Sun, Zhiwei

    2016-01-01

    Silica nanoparticles (SiNPs) are amongst the most commonly used materials in the field of nanomedicine and, therefore, their influence on organisms has drawn increasing attention in recent years. Most reports have focused on the single tissue reactions induced by SiNPs. Herein, the reaction of primary organs to SiNPs following intratracheal instillation in mice was analyzed by histopathology and ultrastructure observation. Following elucidation of the role of macrophages in local and systemic inflammation, the underlying mechanisms were explored using a macrophage cell line in vitro. The results suggest that macrophages swallow the SiNPs and secrete inflammatory factors by activating the NLRP3 inflammasome, thus participating in local and systemic inflammation. PMID:27920528

  17. Calea uniflora Less. attenuates the inflammatory response to carrageenan-induced pleurisy in mice.

    PubMed

    da Rosa, Julia Salvan; de Mello, Silvana Virginia Gagliotti Vigil; Vicente, Geison; Moon, Yeo Jim K; Daltoé, Felipe Perozzo; Lima, Tamires Cardoso; de Jesus Souza, Rafaela; Biavatti, Maique Weber; Fröde, Tânia Silvia

    2017-01-01

    Calea uniflora Less. (family Asteraceae), also named "arnica" and "erva-de-lagarto", is a native plant to the South and Southeast of Brazil. This species was used to treat rheumatism, respiratory diseases, and digestive problems in Brazilian folk medicine. In vitro studies have shown the important biological effects of C. uniflora. However no studies have focused on the mechanism of action of anti-inflammatory activity of C. uniflora. The aim of this study was to evaluate the anti-inflammatory effects of the crude extract, its fractions, and isolated compounds obtained from of C. uniflora, using mouse model of carrageenan-induced inflammation. The following inflammatory parameters: leukocyte influx, degree of exudation, myeloperoxidase (MPO) and adenosine deaminase (ADA) activities, nitric oxide metabolites (NOx), proinflammatory cytokines and phosphorylation of the p65 subunit of NF-κB (p-p65 NF-κB), and p38 mitogen-activated protein kinase (p-p38 MAPK) levels were determined. The crude extract of C. uniflora, its fractions and its isolated compounds reduced the leukocyte influx, degree of exudation, MPO and ADA activities, NOx, TNF-α, IFN-γ, MCP-1 and IL-6 levels (p<0.05). The isolated compounds reduced p-p65 NF-κB and p-p38 MAPK levels (p<0.01). This study demonstrated that C. uniflora exhibits a significant anti-inflammatory activity via inhibition of the leukocyte influx and degree of exudation. These effects were associated with a decrease in the levels of several proinflammatory mediators. The mechanism of the anti-inflammatory action of C. uniflora may be, at least in part, via the inhibition of p65 NF-κB and p38 MAPK activation by the isolated compounds.

  18. Convective Flow Induced by Localized Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    An axisymmetric traveling magnetic field induces a meridional base flow in a cylindrical zone of an electrically conducting liquid. This remotely induced flow can be conveniently controlled, in magnitude and direction, and can have benefits for crystal growth applications. In particular, it can be used to offset natural convection. For long vertical cylinders, non-uniform and localized in the propagating direction, magnetic fields are required for this purpose. Here we investigate a particular form of this field, namely that induced by a set of a few electric current coils. An order of magnitude reduction of buoyancy convection is theoretically demonstrated for a vertical Bridgman crystal growth configuration.

  19. Lithothamnion muelleri treatment ameliorates inflammatory and hypernociceptive responses in antigen-induced arthritis in mice.

    PubMed

    Costa, Vivian V; Amaral, Flavio A; Coelho, Fernanda M; Queiroz-Junior, Celso M; Malagoli, Bruna G; Gomes, Jose Hugo S; Lopes, Fernando; Silveira, Kátia D; Sachs, Daniela; Fagundes, Caio T; Tavares, Lívia D; Pinho, Vanessa; Silva, Tarcilia A; Teixeira, Mauro M; Braga, Fernão C; Souza, Danielle G

    2015-01-01

    Rheumatoid Arthritis (RA) is a chronic disease characterized by persistent inflammation and pain. Alternative therapies to reduce these symptoms are needed. Marine algae are valuable sources of diverse bioactive compounds. Lithothamnion muelleri (Hapalidiaceae) is a marine algae with anti-inflammatory, antitumor, and immunomodulatory properties. Here, we investigated the potential anti-inflammatory and analgesic activities of L. muelleri in a murine model of antigen-induced arthritis (AIA) in mice. Our results demonstrate that treatment with L. muelleri prevented inflammation and hypernociception in arthritic mice. Mechanistically, the crude extract and the polysaccharide-rich fractions of L. muelleri may act impairing the production of the chemokines CXCL1 and CXCL2, and consequently inhibit neutrophil influx to the knee joint by dampening the adhesion step of leukocyte recruitment in the knee microvessels. Altogether our results suggest that treatment with L.muelleri has a potential therapeutic application in arthritis treatment.

  20. Lithothamnion muelleri Treatment Ameliorates Inflammatory and Hypernociceptive Responses in Antigen-Induced Arthritis in Mice

    PubMed Central

    Costa, Vivian V.; Amaral, Flavio A.; Coelho, Fernanda M.; Queiroz-Junior, Celso M.; Malagoli, Bruna G.; Gomes, Jose Hugo S.; Lopes, Fernando; Silveira, Kátia D.; Sachs, Daniela; Fagundes, Caio T.; Tavares, Lívia D.; Pinho, Vanessa; Silva, Tarcilia A.; Teixeira, Mauro M.; Braga, Fernão C.; Souza, Danielle G.

    2015-01-01

    Rheumatoid Arthritis (RA) is a chronic disease characterized by persistent inflammation and pain. Alternative therapies to reduce these symptoms are needed. Marine algae are valuable sources of diverse bioactive compounds. Lithothamnion muelleri (Hapalidiaceae) is a marine algae with anti-inflammatory, antitumor, and immunomodulatory properties. Here, we investigated the potential anti-inflammatory and analgesic activities of L. muelleri in a murine model of antigen-induced arthritis (AIA) in mice. Our results demonstrate that treatment with L. muelleri prevented inflammation and hypernociception in arthritic mice. Mechanistically, the crude extract and the polysaccharide-rich fractions of L. muelleri may act impairing the production of the chemokines CXCL1 and CXCL2, and consequently inhibit neutrophil influx to the knee joint by dampening the adhesion step of leukocyte recruitment in the knee microvessels. Altogether our results suggest that treatment with L.muelleri has a potential therapeutic application in arthritis treatment. PMID:25793994

  1. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses

    PubMed Central

    Aho, Vilma; Ollila, Hanna M.; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J.; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S.A.; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M.; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T.; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja

    2016-01-01

    Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases. PMID:27102866

  2. Therapeutic effects of sesame oil on monosodium urate crystal-induced acute inflammatory response in rats.

    PubMed

    Hsu, Dur-Zong; Chen, Si-Jin; Chu, Pei-Yi; Liu, Ming-Yie

    2013-01-01

    Sesame oil has been used in traditional Taiwanese medicine to relieve the inflammatory pain in people with joint inflammation, toothache, scrapes, and cuts. However, scientific evidence related to the effectiveness or action mechanism of sesame oil on relief of pain and inflammation has not been examined experimentally. Here, we investigated the therapeutic effect of sesame oil on monosodium urate monohydrate (MSU) crystal-induced acute inflammatory response in rats. Air pouch, a pseudosynovial cavity, was established by injecting 24 mL of filtered sterile air subcutaneously in the backs of the rats. At day 0, inflammation in air pouch was induced by injecting MSU crystal (5 mg/rat, suspended in sterilized phosphate buffered saline, pH 7.4), while sesame oil (0, 1, 2, or 4 mL/kg, orally) was given 6 h after MSU crystal injection. Parameters in lavage and skin tissue from the air pouches were assessed 6 h after sesame oil was given. Sesame oil decreased MSU crystal-induced total cell counts, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 levels in lavage and pouch tissue. Sesame oil significantly decreased leukocyte and neutrophil counts in lavage compared with MSU crystal alone group. Sesame oil decreased activated mast cell counts in skin tissue in MSU crystal-treated rats. Sesame oil significantly decreased nuclear factor (NF)-κB activity and IL-4 level in isolated mast cells from rats treated with MSU crystal. Furthermore, sesame oil decreased lavage complement proteins C3a and C5a levels in MSU crystal-treated rats. In conclusion, sesame oil shows a potent therapeutic effect against MSU crystal-induced acute inflammatory response in rats.

  3. Wear particles generated from studded tires and pavement induces inflammatory reactions in mouse macrophage cells.

    PubMed

    Lindbom, John; Gustafsson, Mats; Blomqvist, Göran; Dahl, Andreas; Gudmundsson, Anders; Swietlicki, Erik; Ljungman, Anders G

    2007-06-01

    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. These health risks are of increasing concern in society, and to protect public health, a clarification of the toxic properties of particles from different sources is of importance. Lately, wear particles generated from traffic have been recognized as a major contributing source to the overall particle load, especially in the Nordic countries where studded tires are used. The aim of this study was to further investigate and compare the ability to induce inflammatory mediators of different traffic-related wear particles collected from an urban street, a subway station, and studded tire-pavement wear. Inflammatory effects were measured as induction of nitric oxide (NO), IL-6, TNF-alpha, arachidonic acid (AA), and lipid peroxidation after exposure of the murine macrophage like cell line RAW 264.7. In addition, the redox potential of the particles was measured in a cell-free system. The results show that all particles tested induce IL-6, TNF-alpha, and NO, and those from the urban street were the most potent ones. In contrast, particles collected from a subway station were most potent to induce lipid peroxidation, AA release, and formation of ROS. Particles from studded tire-pavement wear, generated using a road simulator, were able to induce inflammatory cytokines, NO, lipid peroxidation, and ROS formation. Interestingly, particles generated from pavement containing granite as the main stone material were more potent than those generated from pavement containing quartzite as the main stone material.

  4. Anti-inflammatory mechanism of lonchocarpine in LPS- or poly(I:C)-induced neuroinflammation.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kang, Jihee Lee; Kim, Hee-Sun

    2017-03-10

    Neuroinflammation plays an important role in the progression of various neurodegenerative diseases. In this study, we investigated the anti-inflammatory effects of lonchocarpine, a natural compound isolated from Abrus precatorius, under in vitro and in vivo neuroinflammatory conditions induced by challenge with lipopolysaccharide (LPS)- or polyinosinic-polycytidylic acid (poly(I:C)). Lonchocarpine suppressed the expression of iNOS and proinflammatory cytokines in LPS or poly(I:C)-stimulated BV2 microglial cells. These anti-inflammatory effects were verified in brains of mice with systemic inflammation induced by administration of LPS or poly(I:C). Lonchocarpine reduced the number of Iba-1-positive activated microglia, and suppressed the mRNA expression of various proinflammatory markers in the cortex of LPS- or poly(I:C)-injected mice. Molecular mechanistic experiments showed that lonchocarpine inhibited NF-κB activity by reducing the phosphorylation and degradation of IκBα in LPS- or poly(I:C)-stimulated BV2 cells. Analysis of further upstream signaling pathways in LPS-stimulated microglia showed that lonchocarpine inhibited the phosphorylation of IκB kinase and TGFβ-activated kinase 1 (TAK1). Moreover, lonchocarpine suppressed the interaction of myeloid differentiation factor 88 (MyD88) and intereleukin-1 receptor-associated kinase 4 (IRAK4). These data suggest that toll-like receptor 4 downstream signals such as MyD88/IRAK4-TAK1-NF-κB are at least partly involved in the anti-inflammatory mechanism of lonchocarpine in LPS-stimulated microglia. Its strong anti-inflammatory effects may make lonchocarpine an effective preventative drug for neuroinflammatory disorders that are associated with systemic inflammation.

  5. VDIPEN, a metalloproteinase-generated neoepitope, is induced and immunolocalized in articular cartilage during inflammatory arthritis.

    PubMed Central

    Singer, I I; Kawka, D W; Bayne, E K; Donatelli, S A; Weidner, J R; Williams, H R; Ayala, J M; Mumford, R A; Lark, M W; Glant, T T

    1995-01-01

    The destruction of articular cartilage in immune inflammatory arthritic disease involves the proteolytic degradation of its extracellular matrix. The role of activated matrix metalloproteinases (MMPs) in the chondrodestructive process was studied by identifying a selective cleavage product of aggrecan in murine arthritis models initiated by immunization with either type II collagen or proteoglycan. We conducted semiquantitative immunocytochemical studies of VDIPEN341 using a monospecific polyclonal antibody requiring the free COOH group of the COOH-terminal Asn for epitope detection. This antibody recognizes the aggrecan G1 domain fragment generated by MMP [i.e., stromelysin (SLN) or gelatinase A] cleavage of aggrecan between Asn341-Phe342 but does not recognize intact aggrecan. VDIPEN was undetectable in normal mouse cartilage but was observed in the articular cartilage (AC) of mice with collagen-induced arthritis 10 d after immunization, without histological damage and clinical symptoms. This aggrecan neoepitope was colocalized with high levels of glycosaminoglycans (GAGs) in pericellular matrices of AC chondrocytes but was not seen at the articular surface at this early time. Digestion of normal (VDIPEN negative) mouse paw cryosections with SLN also produced heavy pericellular VDIPEN labeling. Computer-based image analysis showed that the amount of VDIPEN expression increased dramatically by 20 d (70% of the SLN maximum) and was correlated with GAG depletion. Both infiltration of inflammatory cells into the synovial cavity and early AC erosion were also very prominent at this time. Analysis of adjacent sections showed that both induction of VDIPEN and GAG depletion were strikingly codistributed within sites of articular cartilage damage. Similar results occurred in proteoglycan-induced arthritis, a more progressive and chronic model of inflammatory arthritis. These studies demonstrate for the first time the MMP-dependent catabolism of aggrecan at sites of

  6. An in vitro alveolar macrophage assay for the assessment of inflammatory cytokine expression induced by atmospheric particulate matter.

    PubMed

    Sijan, Zana; Antkiewicz, Dagmara S; Heo, Jongbae; Kado, Norman Y; Schauer, James J; Sioutas, Constantinos; Shafer, Martin M

    2015-07-01

    Exposures to air pollution in the form of particulate matter (PM) can result in excess production of reactive oxygen species (ROS) in the respiratory system, potentially causing both localized cellular injury and triggering a systemic inflammatory response. PM-induced inflammation in the lung is modulated in large part by alveolar macrophages and their biochemical signaling, including production of inflammatory cytokines, the primary mechanism via which inflammation is initiated and sustained. We developed a robust, relevant, and flexible method employing a rat alveolar macrophage cell line (NR8383) which can be applied to routine samples of PM from air quality monitoring sites to gain insight into the drivers of PM toxicity that lead to oxidative stress and inflammation. Method performance was characterized using extracts of ambient and vehicular engine exhaust PM samples. Our results indicate that the reproducibility and the sensitivity of the method are satisfactory and comparisons between PM samples can be made with good precision. The average relative percent difference for all genes detected during 10 different exposures was 17.1%. Our analysis demonstrated that 71% of genes had an average signal to noise ratio (SNR) ≥ 3. Our time course study suggests that 4 h may be an optimal in vitro exposure time for observing short-term effects of PM and capturing the initial steps of inflammatory signaling. The 4 h exposure resulted in the detection of 57 genes (out of 84 total), of which 86% had altered expression. Similarities and conserved gene signaling regulation among the PM samples were demonstrated through hierarchical clustering and other analyses. Overlying the core congruent patterns were differentially regulated genes that resulted in distinct sample-specific gene expression "fingerprints." Consistent upregulation of Il1f5 and downregulation of Ccr7 was observed across all samples, while TNFα was upregulated in half of the samples and downregulated in

  7. Two-dimensional atom localization induced by a squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Xu, Jun

    2016-10-01

    A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148).

  8. Intramuscular administration of paliperidone palmitate extended-release injectable microsuspension induces a subclinical inflammatory reaction modulating the pharmacokinetics in rats.

    PubMed

    Darville, Nicolas; van Heerden, Marjolein; Vynckier, An; De Meulder, Marc; Sterkens, Patrick; Annaert, Pieter; Van den Mooter, Guy

    2014-07-01

    The present study aims at elucidating the intricate nature of the drug release and absorption following intramuscular (i.m.) injection of sustained-release prodrug nanocrystals/microcrystals. A paliperidone palmitate (PPP) long-acting suspension was characterized with regard to particle size (Dv,50 = 1.09 μm) and morphology prior to i.m. injection in rats. The local disposition was rigorously investigated by means of (immuno)histochemistry and transmission electron microscopy while the concurrent multiphasic pharmacokinetics was linked to the microanatomy. A transient (24 h) trauma-induced inflammation promptly evolved into a subclinical but chronic granulomatous inflammatory reaction initiated by the presence of solid material. The dense inflammatory envelope (CD68(+) macrophages) led to particle agglomeration with subsequent drop in dissolution rate beyond 24 h postinjection. This was associated with a decrease in apparent paliperidone (PP) absorption (near-zero order) until 96 h and a delayed time of occurrence of observed maximum drug plasma concentration (168 h). The infiltrating macrophages phagocytosed large fractions of the depot, thereby influencing the (pro)drug release. Radial angiogenesis (CD31(+)) was observed throughout the inflammatory rim from 72 h onwards and presumably contributed to the sustained systemic PP concentrations by maintaining a sufficient absorptive capacity. No solid-state transitions of the retrieved formulation were recorded with X-ray diffraction analysis. In summary, the initial formulation-driven prodrug (PPP) dissolution and drug (PP) absorption were followed by a complex phase determined by the relative contribution of formulation factors and dynamic physiological variables.

  9. Crucial role of Toll-like receptors in the zinc/nickel-induced inflammatory response in vascular endothelial cells

    SciTech Connect

    Tsou, Tsui-Chun; Liou, Saou-Hsing; Yeh, Szu-Ching; Tsai, Feng-Yuan; Chao, How-Ran

    2013-12-15

    Our previous studies indicated that zinc induced inflammatory response in both vascular endothelial cells and promonocytes. Here, we asked if other metals could cause the similar effect on vascular endothelial cells and tried to determine its underlying mechanism. Following screening of fifteen metals, zinc and nickel were identified with a marked proinflammatory effect, as determined by ICAM-1 and IL-8 induction, on human umbilical vein endothelial cells (HUVECs). Inhibiting protein expression of myeloid differentiation primary response protein-88 (MyD88), a Toll-like receptor (TLR) adaptor acting as a TLR-signaling transducer, significantly attenuated the zinc/nickel-induced inflammatory response, suggesting the critical roles of TLRs in the inflammatory response. Blockage of TLR-4 signaling by CLI-095, a TLR-4 inhibitor, completely inhibited the nickel-induced ICAM-1 and IL-8 expression and NFκB activation. The same CLI-095 treatment significantly blocked the zinc-induced IL-8 expression, however with no significant effect on the ICAM-1 expression and a minor inhibitory effect on the NFκB activation. The finding demonstrated the differential role of TLR-4 in regulation of the zinc/nickel-induced inflammatory response, where TLR-4 played a dominant role in NFκB activation by nickel, but not by zinc. Moreover, inhibition of NFκB by adenovirus-mediated IκBα expression and Bay 11-7025, an inhibitor of cytokine-induced IκB-α phosphorylation, significantly attenuated the zinc/nickel-induced inflammatory responses, indicating the critical of NFκB in the process. The study demonstrates the crucial role of TLRs in the zinc/nickel-induced inflammatory response in vascular endothelial cells and herein deciphers a potential important difference in NFκB activation via TLRs. The study provides a molecular basis for linkage between zinc/nickel exposure and pathogenesis of the metal-related inflammatory vascular disease. - Highlights: • Both zinc and nickel cause

  10. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling.

    PubMed

    Zhao, Yun-peng; Wei, Jian-lu; Tian, Qing-yun; Liu, Alexander Tianxing; Yi, Young-su; Einhorn, Thomas A; Liu, Chuan-ju

    2016-02-11

    Aseptic loosening is a major complication of prosthetic joint surgery, characterized by chronic inflammation, pain, and osteolysis surrounding the bone-implant interface. Progranulin (PGRN) is known to have anti-inflammatory action by binding to Tumor Necrosis Factor (TNF) receptors and antagonizing TNFα. Here we report that titanium particles significantly induced PGRN expression in RAW264.7 cells and also in a mouse air-pouch model of inflammation. PGRN-deficiency enhanced, whereas administration of recombinant PGRN effectively inhibited, titanium particle-induced inflammation in an air pouch model. In addition, PGRN also significantly inhibited titanium particle-induced osteoclastogenesis and calvarial osteolysis in vitro, ex vivo and in vivo. Mechanistic studies demonstrated that the inhibition of PGRN on titanium particle induced-inflammation is primarily via neutralizing the titanium particle-activated TNFα/NF-κB signaling pathway and this is evidenced by the suppression of particle-induced IκB phosphorylation, NF-κB p65 nuclear translocation, and activity of the NF-κB-specific reporter gene. Collectively, these findings not only demonstrate that PGRN plays an important role in inhibiting titanium particle-induced inflammation, but also provide a potential therapeutic agent for the prevention of wear debris-induced inflammation and osteolysis.

  11. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling

    PubMed Central

    Zhao, Yun-peng; Wei, Jian-lu; Tian, Qing-yun; Liu, Alexander Tianxing; Yi, Young-Su; Einhorn, Thomas A.; Liu, Chuan-ju

    2016-01-01

    Aseptic loosening is a major complication of prosthetic joint surgery, characterized by chronic inflammation, pain, and osteolysis surrounding the bone-implant interface. Progranulin (PGRN) is known to have anti-inflammatory action by binding to Tumor Necrosis Factor (TNF) receptors and antagonizing TNFα. Here we report that titanium particles significantly induced PGRN expression in RAW264.7 cells and also in a mouse air-pouch model of inflammation. PGRN-deficiency enhanced, whereas administration of recombinant PGRN effectively inhibited, titanium particle-induced inflammation in an air pouch model. In addition, PGRN also significantly inhibited titanium particle-induced osteoclastogenesis and calvarial osteolysis in vitro, ex vivo and in vivo. Mechanistic studies demonstrated that the inhibition of PGRN on titanium particle induced-inflammation is primarily via neutralizing the titanium particle-activated TNFα/NF-κB signaling pathway and this is evidenced by the suppression of particle-induced IκB phosphorylation, NF-κB p65 nuclear translocation, and activity of the NF-κB-specific reporter gene. Collectively, these findings not only demonstrate that PGRN plays an important role in inhibiting titanium particle-induced inflammation, but also provide a potential therapeutic agent for the prevention of wear debris-induced inflammation and osteolysis. PMID:26864916

  12. Eicosapentaenoic acid attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling

    PubMed Central

    Liu, Meng-Han; Lin, An-Hsuan; Lu, Shing-Hwa; Peng, Ruo-Yun; Lee, Tzong-Shyuan; Kou, Yu Ru

    2014-01-01

    Cigarette smoking causes chronic lung inflammation that is mainly regulated by redox-sensitive pathways. Our previous studies have demonstrated that cigarette smoke (CS) activates reactive oxygen species (ROS)-sensitive mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling resulting in induction of lung inflammation. Eicosapentaenoic acid (EPA), a major type of omega-3 polyunsaturated fatty acid, is present in significant amounts in marine-based fish and fish oil. EPA has been shown to possess antioxidant and anti-inflammatory properties in vitro and in vivo. However, whether EPA has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model, we show that subchronic CS exposure for 4 weeks caused pulmonary inflammatory infiltration (total cell count in bronchoalveolar lavage fluid (BALF), 11.0-fold increase), increased lung vascular permeability (protein level in BALF, 3.1-fold increase), elevated levels of chemokines (11.4–38.2-fold increase) and malondialdehyde (an oxidative stress biomarker; 2.0-fold increase) in the lungs, as well as lung inflammation; all of these CS-induced events were suppressed by daily supplementation with EPA. Using human bronchial epithelial cells, we further show that CS extract (CSE) sequentially activated NADPH oxidase (NADPH oxidase activity, 1.9-fold increase), increased intracellular levels of ROS (3.0-fold increase), activated both MAPKs and NF-κB, and induced interleukin-8 (IL-8; 8.2-fold increase); all these CSE-induced events were inhibited by pretreatment with EPA. Our findings suggest a novel role for EPA in alleviating the oxidative stress and lung inflammation induced by subchronic CS exposure in vivo and in suppressing the CSE-induced IL-8 in vitro via its antioxidant function and by inhibiting MAPKs/NF-κB signaling. PMID:25452730

  13. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc

    PubMed Central

    Mao, Lu; Han, Xiuguo; Zhang, Kai; Zhao, Changqing

    2016-01-01

    Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future. PMID:27190710

  14. Acupuncture suppresses kainic acid-induced neuronal death and inflammatory events in mouse hippocampus.

    PubMed

    Kim, Seung-Tae; Doo, Ah-Reum; Kim, Seung-Nam; Kim, Song-Yi; Kim, Yoon Young; Kim, Jang-Hyun; Lee, Hyejung; Yin, Chang Shik; Park, Hi-Joon

    2012-09-01

    The administration of kainic acid (KA) causes seizures and produces neurodegeneration in hippocampal CA3 pyramidal cells. The present study investigated a possible role of acupuncture in reducing hippocampal cell death and inflammatory events, using a mouse model of kainic acid-induced epilepsy. Male C57BL/6 mice received acupuncture treatments at acupoint HT8 or in the tail area bilaterally once a day for 2 days and again immediately after an intraperitoneal injection of KA (30 mg/kg). HT8 is located on the palmar surface of the forelimbs, between the fourth and fifth metacarpal bones. Twenty-four hours after the KA injection, neuronal cell survival, the activations of microglia and astrocytes, and mRNA expression of two proinflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), were measured in the hippocampus. Acupuncture stimulation at HT8, but not in the tail area, significantly reduced the KA-induced seizure, neuron death, microglial and astrocyte activations, and IL-1β mRNA expression in the hippocampus. The acupuncture stimulation also decreased the mRNA expression of TNF-α, but it was not significant. These results indicate that acupuncture at HT8 can inhibit hippocampal cell death and suppress KA-induced inflammatory events, suggesting a possible role for acupuncture in the treatment of epilepsy.

  15. Tannerella forsythia GroEL induces inflammatory bone resorption and synergizes with interleukin-17.

    PubMed

    Jung, Y-J; Choi, Y-J; An, S-J; Lee, H-R; Jun, H-K; Choi, B-K

    2016-08-03

    Tannerella forsythia is a major periodontal pathogen, and T. forsythia GroEL is a molecular chaperone homologous to human heat-shock protein 60. Interleukin-17 (IL-17) has been implicated in the pathogenesis of periodontitis and several systemic diseases. This study investigated the potential of T. forsythia GroEL to induce inflammatory bone resorption and examined the cooperative effect of IL-17 and T. forsythia GroEL on inflammatory responses. Human gingival fibroblasts (HGFs) and periodontal ligament (PDL) fibroblasts were stimulated with T. forsythia GroEL and/or IL-17. Gene expression of IL-6, IL-8, and cyclooxygenase-2 (COX-2) and concentrations of IL-6, IL-8, and prostaglandin E2 (PGE2 ) were measured by real-time reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assays, respectively. After stimulation of MG63 cells with T. forsythia GroEL and/or IL-17, gene expression of osteoprotegerin (OPG) was examined. After subcutaneous injection of T. forsythia GroEL and/or IL-17 above the calvaria of BALB/c mice, calvarial bone resorption was assessed by micro-computed tomography and histological examination. Tannerella forsythia GroEL induced IL-6 and IL-8 production in HGFs and PDL cells, and IL-17 further promoted IL-6 and IL-8 production. Both T. forsythia GroEL and IL-17 synergistically increased PGE2 production and inhibited OPG gene expression. Calvarial bone resorption was induced by T. forsythia GroEL injection, and simultaneous injection of T. forsythia GroEL and IL-17 further increased bone resorption. These results suggest that T. forsythia GroEL is a novel virulence factor that can contribute to inflammatory bone resorption caused by T. forsythia and synergizes with IL-17 to exacerbate inflammation and bone resorption.

  16. The effect of dexmedetomidine post-treatment on the inflammatory response of astrocyte induced by lipopolysaccharide.

    PubMed

    Xie, Cuiying; Wang, Zhenhong; Tang, Jiajia; Shi, Zhiqian; He, Zhenzhou

    2015-01-01

    To explore the effect of dexmedetomidine (DEX) post-treatment on the inflammatory response of astrocyte induced by lipopolysaccharide (LPS). The astrocytes of neonatal mice were primarily cultured in vitro. After purification and identification, the cells were divided into five groups: group C: control group; group L: astrocytes were treated with 1 μg/ml LPS for 24 h; group D1, D2, and D3: astrocytes were pretreated with 1 μg/ml for 24 h LPS, and then cultured with low (0.1 μM), medium (1 μM), high (10 μM) concentration of DEX for 30 min, respectively. The cell survival rate was detected by cell counting kit. The expressions of inducible nitric oxide synthase (iNOS) mRNA, tumor necrosis gactor-α (TNF-α) mRNA, and interleukin-1β (IL-1β) mRNA were measured by RT-PCR in cell lysis solution of every group. The concentration of nitric oxide (NO) was detected by Griess method. The concentrations of IL-1β and TNF-α were measured, respectively, by enzyme-linked immuno sorbent assay. Compared with the group C, the expressions of iNOS mRNA, TNF-α mRNA, and IL-1βm RNA were significantly up-regulated, the release of NO, TNF-α, and IL-1β was significantly increased in group L (P < 0.05). Compared with group L, mRNA levels of inflammation-related factors and release of inflammatory factors were significantly down-regulated in group D2 and D3 (P < 0.05). There was no statistical difference between group D1 and group L. Pre-treatment with medium and high concentration of DEX can inhibit the LPS-induced inflammatory response of astrocyte.

  17. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells.

    PubMed

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P

    2014-03-28

    Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer's disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  18. Comparison of mycobacteria-induced cytotoxicity and inflammatory responses in human and mouse cell lines.

    PubMed

    Huttunen, K; Jussila, J; Hirvonen, M R; Iivanainen, E; Katila, M L

    2001-11-01

    Environmental mycobacteria, which are ubiquitous in nature, are also detected in moisture-damaged buildings. Their potential role inducing the adverse health effects associated with living in moisture damaged buildings requires clarification. To establish a model for these studies, we evaluated inflammatory responsiveness in different cell lines exposed to environmental mycobacterial species. Four mycobacterial isolates belonging to Mycobacterium avium complex and Mycobacterium terrae, recovered from the indoor air sampled when a moldy building was being demolished, were studied for their cytotoxicity and ability to stimulate the production of inflammatory mediators in mouse RAW264.7 and human 28SC macrophage cell lines, and human A549 lung epithelial cell line. Lipopolysaccharide (LPS) was used as a positive control. Production of cytokines (tumor necrosis factor alpha, TNF-alpha; interleukin 6, IL-6; and interleukin beta, IL-1beta) was analyzed immunochemically, nitric oxide (NO) by the Griess method, expression of inducible NO synthase with Western blot analysis, and cytotoxicity with the MTT test. Both human and mouse cells produced NO and IL-6 after mycobacterial exposure. Mouse macrophages also showed production of TNF-alpha induced by both mycobacteria and LPS, whereas the human cell lines failed to produce TNF-alpha after mycobacterial exposure and the human epithelial cell line also failed to respond to LPS. Similarly, only mouse macrophages produced IL-1beta. Mycobacterial exposure was not cytotoxic to human cells and was only slightly cytotoxic to mouse macrophages. The results indicate that environmental mycobacterial isolates from moldy buildings are capable of activating inflammatory mechanisms in both human and murine cells. The human and mouse cell lines, however, differ significantly in the grade and type of the responses.

  19. Joint immobilization induced hypoxic and inflammatory conditions in rat knee joints.

    PubMed

    Yabe, Yutaka; Hagiwara, Yoshihiro; Suda, Hideaki; Ando, Akira; Onoda, Yoshito; Tsuchiya, Masahiro; Hatori, Kouki; Itoi, Eiji

    2013-01-01

    The purpose of this study was to examine the hypoxic and inflammatory conditions after immobilization in the joint capsule of rat knees. The unilateral knee joints of adult male rats were immobilized with an internal fixator (Im group) for 1 day, 3 days, and 1, 2, 4, 8, and 16 weeks. Sham-operated animals had holes drilled in the femur and tibia and screws inserted without a plate (control group). The number of cells and blood vessels in the capsule were histologically examined. The hypoxic condition in the capsule was histologically examined with a Hypoxyprobe™-1. The gene expressions related to the hypoxic (hypoxia inducible factor-1α, vascular endothelial growth factor, and fibroblast growth factor 2) and inflammatory conditions [interleukin-6 (IL-6), IL-1α, IL-1β, tumor necrosis factor-α, and tumor necrosis factor-β] were evaluated by quantitative reverse transcription polymerase chain reaction. The number of cells was unchanged at 1 day in the two groups; however, the number significantly increased at 3 days in the Im group. The number of blood vessels in the Im group gradually decreased. Strong immunostaining of Hypoxyprobe™-1 around the blood vessels was observed in the Im group. The gene expressions of hypoxia inducible factor-1α and fibroblast growth factor 2 were significantly higher in the Im group compared with those in the control group. The gene expressions of IL-6, IL-1α, IL-1β, and tumor necrosis factor-β were significantly higher in the Im group compared with those in the control group. These data indicated that joint immobilization induced hypoxic and inflammatory conditions in the joint capsule, which might be an initiating factor for joint contracture.

  20. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity

    PubMed Central

    ZHU, GUANG-FA; GUO, HONG-JUAN; HUANG, YAN; WU, CHUN-TING; ZHANG, XIANG-FENG

    2015-01-01

    Acute lung injury (ALI) is characterized by excessive inflammatory responses and oxidative injury in the lung tissue. It has been suggested that anti-inflammatory or antioxidative agents could have therapeutic effects in ALI, and eriodictyol has been reported to exhibit antioxidative and anti-inflammatory activity in vitro. The aim of the present study was to investigate the effect of eriodictyol on lipopolysaccharide (LPS)-induced ALI in a mouse model. The mice were divided into four groups: Phosphate-buffered saline-treated healthy control, LPS-induced ALI, vehicle-treated ALI (LPS + vehicle) and eriodictyol-treated ALI (LPS + eriodictyol). Eriodictyol (30 mg/kg) was administered orally once, 2 days before the induction of ALI. The data showed that eriodictyol pretreatment attenuated LPS-induced ALI through its antioxidative and anti-inflammatory activity. Furthermore, the eriodictyol pretreatment activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway in the ALI mouse model, which attenuated the oxidative injury and inhibited the inflammatory cytokine expression in macrophages. In combination, the results of the present study demonstrated that eriodictyol could alleviate the LPS-induced lung injury in mice by regulating the Nrf2 pathway and inhibiting the expression of inflammatory cytokines in macrophages, suggesting that eriodictyol could be used as a potential drug for the treatment of LPS-induced lung injury. PMID:26668626

  1. HSF-1 is involved in attenuating the release of inflammatory cytokines induced by LPS through regulating autophagy.

    PubMed

    Tong, Zhongyi; Jiang, Bimei; Zhang, Lingli; Liu, Yanjuan; Gao, Min; Jiang, Yu; Li, Yuanbin; Lu, Qinglan; Yao, Yongming; Xiao, Xianzhong

    2014-05-01

    Autophagy plays a protective role in endotoxemic mice. Heat shock factor 1 (HSF-1) also plays a crucial protective role in endotoxemic mice by decreasing inflammatory cytokines. The purpose of this study was to determine whether HSF-1 is involved in attenuating the release of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated mice and peritoneal macrophages (PMs) through regulating autophagy activity. Autophagosome formation in HSF-1(+/+) and HSF-1(-/-) mice and PMs stimulated by LPS was examined by Western blotting and immunofluorescence. Lipopolysaccharide-induced autophagy and inflammatory cytokines were examined in HSF-1(+/+) and HSF-1(-/-) PMs treated with 3-methyladenine (3-MA) or rapamycin. Results showed that LPS-induced autophagy was elevated transiently at 12 h but declined at 24 h in the livers and lungs of mice. Higher levels of inflammatory cytokines and lower autophagy activity were detected in HSF-1(-/-) mice and PMs compared with HSF-1(+/+) mice and PMs. Interestingly, LPS-induced release of inflammatory cytokines did not further increase in HSF-1(-/-) PMs treated with 3-MA but aggravated in HSF-1(+/+) PMs. Lipopolysaccharide-induced autophagy did not decrease in HSF-1(-/-) PMs treated with 3-MA but decreased in HSF-1 PMs(+/+). Taken together, our results suggested that HSF-1 attenuated the release of inflammatory cytokines induced by LPS by regulating autophagy activity.

  2. Detecting measurement-induced relative-position localization

    NASA Astrophysics Data System (ADS)

    Knott, P. A.; Sindt, J.; Dunningham, J. A.

    2013-05-01

    The theory of decoherence explains how classicality emerges from an underlying quantum reality. An additional interpretation to this has been proposed in which scattering events induce the localization of relative observables (Rau et al 2003 Science 301 1081). An interesting consequence of this process is that it involves the build-up of certain robust entanglements between the observables being localized. To date the weakness of this interpretation has been the lack of a clear experimental signature that allows it to be tested. Here we provide a simple experimentally accessible scheme that enables just that. We also discuss a Bayesian technique that could, in principle, allow experiments to confirm the localization to any desired degree of accuracy and we present precision requirements that are achievable with current experiments. Finally, we extend the scheme from its initial one dimensional proof of principle to the more real world scenario of three dimensional localization.

  3. Spatially localized recruitment of anti-inflammatory monocytes by SDF-1α-releasing hydrogels enhances microvascular network remodeling.

    PubMed

    Krieger, J R; Ogle, M E; McFaline-Figueroa, J; Segar, C E; Temenoff, J S; Botchwey, E A

    2016-01-01

    Tissue repair processes are characterized by the biphasic recruitment of distinct subpopulations of blood monocytes, including classical ("inflammatory") monocytes (IMs, Ly6C(hi)Gr1(+)CX3CR1(lo)) and non-classical anti-inflammatory monocytes (AMs, Ly6C(lo)Gr1(-)CX3CR1(hi)). Drug-eluting biomaterial implants can be used to tune the endogenous repair process by the preferential recruitment of pro-regenerative cells. To enhance recruitment of AMs during inflammatory injury, a novel N-desulfated heparin-containing poly(ethylene glycol) diacrylate (PEG-DA) hydrogel was engineered to deliver exogenous stromal derived factor-1α (SDF-1α), utilizing the natural capacity of heparin to sequester and release growth factors. SDF-1α released from the hydrogels maintained its bioactivity and stimulated chemotaxis of bone marrow cells in vitro. Intravital microscopy and flow cytometry demonstrated that SDF-1α hydrogels implanted in a murine dorsal skinfold window chamber promoted spatially-localized recruitment of AMs relative to unloaded internal control hydrogels. SDF-1α delivery stimulated arteriolar remodeling that was correlated with AM enrichment in the injury niche. SDF-1α, but not unloaded control hydrogels, supported sustained arteriogenesis and microvascular network growth through 7 days. The recruitment of AMs correlated with parameters of vascular remodeling suggesting that tuning the innate immune response by biomaterial SDF-1α release is a promising strategy for promoting vascular remodeling in a spatially controlled manner.

  4. Autoimmune or auto-inflammatory syndrome induced by adjuvants (ASIA): old truths and a new syndrome?

    PubMed

    Meroni, Pier Luigi

    2011-02-01

    There has been considerable interest in the role of environmental factors and the induction of autoimmunity and the ways by which they facilitate loss of tolerance. Clearly both genetic and environmental factors are incriminated, as evidenced by the lack of concordance in identical twins and the relatively recent identification of the shared epitope in rheumatoid arthritis. In this issue a new syndrome called 'Asia'-autoimmune/auto-inflammatory syndrome induced by adjuvants has been proposed. It is an intriguing issue and one that is likely to be provocative and lead to further biologic and molecular investigations.

  5. Stellera chamaejasme and its constituents induce cutaneous wound healing and anti-inflammatory activities

    PubMed Central

    Kim, Myungsuk; Lee, Hee Ju; Randy, Ahmad; Yun, Ji Ho; Oh, Sang-Rok; Nho, Chu Won

    2017-01-01

    Stellera chamaejasme L. (Thymelaeaceae) is a perennial herb that is widely used in traditional Chinese medicine to treat tumours, tuberculosis and psoriasis. S. chamaejasme extract (SCE) possesses anti-inflammatory, analgesic and wound healing activities; however, the effect of S. chamaejasme and its active compounds on cutaneous wound healing has not been investigated. We assessed full-thickness wounds of Sprague-Dawley (SD) rats and topically applied SCE for 2 weeks. In vitro studies were performed using HaCaT keratinocytes, Hs68 dermal fibroblasts and RAW 264.7 macrophages to determine cell viability (MTT assay), cell migration, collagen expression, nitric oxide (NO) production, prostaglandin E2 (PGE2) production, inflammatory cytokine expression and β-catenin activation. In vivo, wound size was reduced and epithelisation was improved in SCE-treated SD rats. In vitro, SCE and its active compounds induced keratinocyte migration by regulating the β-catenin, extracellular signal-regulated kinase and Akt signalling pathways. Furthermore, SCE and its active compounds increased mRNA expression of type I and III collagen in Hs68 fibroblasts. SCE and chamechromone inhibited NO and PGE2 release and mRNA expression of inflammatory mediators in RAW 264.7 macrophages. SCE enhances the motility of HaCaT keratinocytes and improves cutaneous wound healing in SD rats. PMID:28220834

  6. Allograft inflammatory factor-1 stimulates chemokine production and induces chemotaxis in human peripheral blood mononuclear cells.

    PubMed

    Kadoya, Masatoshi; Yamamoto, Aihiro; Hamaguchi, Masahide; Obayashi, Hiroshi; Mizushima, Katsura; Ohta, Mitsuhiro; Seno, Takahiro; Oda, Ryo; Fujiwara, Hiroyoshi; Kohno, Masataka; Kawahito, Yutaka

    2014-06-06

    Allograft inflammatory factor-1 (AIF-1) is expressed by macrophages, fibroblasts, endothelial cells and smooth muscle cells in immune-inflammatory disorders such as systemic sclerosis, rheumatoid arthritis and several vasculopathies. However, its molecular function is not fully understood. In this study, we examined gene expression profiles and induction of chemokines in monocytes treated with recombinant human AIF (rhAIF-1). Using the high-density oligonucleotide microarray technique, we compared mRNA expression profiles of rhAIF-1-stimulated CD14(+) peripheral blood mononuclear cells (CD14(+) PBMCs) derived from healthy volunteers. We demonstrated upregulation of genes for several CC chemokines such as CCL1, CCL2, CCL3, CCL7, and CCL20. Next, using ELISAs, we confirmed that rhAIF-1 promoted the secretion of CCL3/MIP-1α and IL-6 by CD14(+) PBMCs, whereas only small amounts of CCL1, CCL2/MCP-1, CCL7/MCP-3 and CCL20/MIP-3α were secreted. Conditioned media from rhAIF-1stimulated CD14(+) PBMCs resulted in migration of PBMCs. These findings suggest that AIF-1, which induced chemokines and enhanced chemotaxis of monocytes, may represent a molecular target for the therapy of immune-inflammatory disorders.

  7. Stellera chamaejasme and its constituents induce cutaneous wound healing and anti-inflammatory activities.

    PubMed

    Kim, Myungsuk; Lee, Hee Ju; Randy, Ahmad; Yun, Ji Ho; Oh, Sang-Rok; Nho, Chu Won

    2017-02-21

    Stellera chamaejasme L. (Thymelaeaceae) is a perennial herb that is widely used in traditional Chinese medicine to treat tumours, tuberculosis and psoriasis. S. chamaejasme extract (SCE) possesses anti-inflammatory, analgesic and wound healing activities; however, the effect of S. chamaejasme and its active compounds on cutaneous wound healing has not been investigated. We assessed full-thickness wounds of Sprague-Dawley (SD) rats and topically applied SCE for 2 weeks. In vitro studies were performed using HaCaT keratinocytes, Hs68 dermal fibroblasts and RAW 264.7 macrophages to determine cell viability (MTT assay), cell migration, collagen expression, nitric oxide (NO) production, prostaglandin E2 (PGE2) production, inflammatory cytokine expression and β-catenin activation. In vivo, wound size was reduced and epithelisation was improved in SCE-treated SD rats. In vitro, SCE and its active compounds induced keratinocyte migration by regulating the β-catenin, extracellular signal-regulated kinase and Akt signalling pathways. Furthermore, SCE and its active compounds increased mRNA expression of type I and III collagen in Hs68 fibroblasts. SCE and chamechromone inhibited NO and PGE2 release and mRNA expression of inflammatory mediators in RAW 264.7 macrophages. SCE enhances the motility of HaCaT keratinocytes and improves cutaneous wound healing in SD rats.

  8. Rapamycin protects neurons from brain contusion-induced inflammatory reaction via modulation of microglial activation

    PubMed Central

    SONG, QI; XIE, DUJIANG; PAN, SHIYONG; XU, WEIJUN

    2015-01-01

    The inflammatory reaction is important in secondary injury following traumatic brain injury (TBI). Rapamycin has been demonstrated as a neuroprotective agent in a mouse model of TBI, however, there is a lack of data regarding the effects of rapamycin on the inflammatory reaction following TBI. Therefore, the present study was designed to assess the effects of treatment with rapamycin on inflammatory reactions and examine the possible involvement of microglial activation following TBI. Male imprinting control region mice were randomly divided into four groups: Sham group (n=23), TBI group (n=23), TBI + dimethyl sulfoxide (DMSO) group (n=31) and TBI + rapamycin group (n=31). Rapamycin was dissolved in DMSO (50 mg/ml) and injected 30 min after TBI (2 mg/Kg; intraperitoneally). A weight-drop model of TBI was induced, and the brain tissues were harvested 24 h after TBI. The findings indicated that the administration of rapamycin following TBI was associated with decreased levels of activated microglia and neuron degeneration at the peri-injury site, reduced levels of proinflammatory cytokines and increased neurobehavioral function, possibly mediated by inactivation of the mammalian target of rapamycin pathway. The results of the present study offer novel insight into the mechanisms responsible for the anti-neuroinflammatory effects of rapamycin, possibly involving the modulation of microglial activation. PMID:26458361

  9. Glutamate-induced RNA localization and translation in neurons

    PubMed Central

    Yoon, Young J.; Wu, Bin; Buxbaum, Adina R.; Das, Sulagna; Tsai, Albert; English, Brian P.; Grimm, Jonathan B.; Lavis, Luke D.

    2016-01-01

    Localization of mRNA is required for protein synthesis to occur within discrete intracellular compartments. Neurons represent an ideal system for studying the precision of mRNA trafficking because of their polarized structure and the need for synapse-specific targeting. To investigate this targeting, we derived a quantitative and analytical approach. Dendritic spines were stimulated by glutamate uncaging at a diffraction-limited spot, and the localization of single β-actin mRNAs was measured in space and time. Localization required NMDA receptor activity, a dynamic actin cytoskeleton, and the transacting RNA-binding protein, Zipcode-binding protein 1 (ZBP1). The ability of the mRNA to direct newly synthesized proteins to the site of localization was evaluated using a Halo-actin reporter so that RNA and protein were detected simultaneously. Newly synthesized Halo-actin was enriched at the site of stimulation, required NMDA receptor activity, and localized preferentially at the periphery of spines. This work demonstrates that synaptic activity can induce mRNA localization and local translation of β-actin where the new actin participates in stabilizing the expanding synapse in dendritic spines. PMID:27791158

  10. Sensory and inflammatory colonic changes induced by vincristine in distinct rat models of colitis.

    PubMed

    Viana-Cardoso, K V; Silva, M T B; Peixoto-Junior, A A; Marinho, L S; Matias, N S; Soares, P M G; Santos, A A; Brito, G A C; Rola, F H; Gondim, F de A A

    2015-04-01

    Preclinical and clinical studies show that gastrointestinal (GI) inflammation can evoke sensory changes occasionally far from the original inflammatory site. Animal models of colitis with either trinitrobenzenesulphonic acid (TNBS) or mustard oil (MO) produce distinct patterns of somatic and visceral sensory changes. We evaluated the effects of four doses of i.v. vincristine 150 μg kg(-1) (total of 600 μg kg(-1) ) treatment on the somatic (thermal nociceptive threshold) and colonic (morphological) changes induced by TNBS or MO in rats. TNBS and MO groups were further submitted to vincristine or saline pretreatments. TNBS induced somatic hypersensitivity, while MO induced somatic hyposensitivity (P < 0.05) when compared to the saline and ethanol control groups. Vincristine per se induced somatic hypersensitivity (P < 0.05). This effect was enhanced by TNBS and reversed by MO treatments. Although vincristine increased the colitis area (colonic weight length(-1) ratio) and the Morris' score in TNBS-treated rats, it did not alter the colitis area and even lowered the Morris' score in MO-treated rats. Compared to the saline (control) group, vincristine did not alter the colonic microscopic pattern. However, such lesions scores are higher (P < 0.05) in colitis groups induced by TNBS and MO, pretreated or not with vincristine. In conclusion, the somatic changes induced by different models of experimental colitis are diverse and modulated differently by vincristine.

  11. Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses

    PubMed Central

    Chen, Qian-Qian; Yan, Li; Wang, Chang-Zheng; Wang, Wei-Hua; Shi, Hui; Su, Bin-Bin; Zeng, Qing-Huan; Du, Hai-Tao; Wan, Jun

    2013-01-01

    AIM: To investigate the potential therapeutic effects of mesenchymal stem cells (MSCs) in inflammatory bowel disease (IBD), we transplanted MSCs into an experimental model of IBD. METHODS: A rectal enema of trinitrobenzene sulfonic acid (TNBS) (100 mg/kg body weight) was administered to female BALB/c mice. Bone marrow mesenchymal stem cells (BMSCs) were derived from male green fluorescent protein (GFP) transgenic mice and were transplanted intravenously into the experimental animals after disease onset. Clinical activity scores and histological changes were evaluated. GFP and Sex determining region Y gene (SRY) expression were used for cell tracking. Ki67 positive cells and Lgr5-expressing cells were determined to measure proliferative activity. Inflammatory response was determined by measuring the levels of different inflammatory mediators in the colon and serum. The inflammatory cytokines included tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-6, IL-17, IL-4, IL-10, and transforming growth factor (TGF-β). Master regulators of Th1 cells (T-box expressed in T cells, T-bet), Th17 cells (retinoid related orphan receptor gamma(t), RORγt), Th2 cells (GATA family of transcription factors 3, GATA3) and regulatory T cells (forkhead box P3, Foxp3) were also determined. RESULTS: Systemic infusion of GFP-BMSCs ameliorated the clinical and histopathologic severity of colitis, including body weight loss, diarrhea and inflammation, and increased survival (P < 0.05). The cell tracking study showed that MSCs homed to the injured colon. MSCs promoted proliferation of intestinal epithelial cells and differentiation of intestinal stem cells (P < 0.01). This therapeutic effect was mainly mediated by down-regulation of both Th1-Th17-driven autoimmune and inflammatory responses (IL-2, TNF-α, IFN-γ, T-bet; IL-6, IL-17, RORγt), and by up-regulation of Th2 activities (IL-4, IL-10, GATA-3) (P < 0.05). MSCs also induced activated CD4+CD25+Foxp3

  12. Antioxidant and anti-inflammatory role of zingerone in ethanol-induced hepatotoxicity.

    PubMed

    Mani, Vijay; Arivalagan, Sivaranjani; Siddique, Aktarul Islam; Namasivayam, Nalini

    2016-10-01

    Alcoholic liver disease is a direct result of alcohol-induced hepatotoxicity coupled with impaired hepatic regenerative activity. Our aim of the study was to investigate the beneficial effect of zingerone on hepatic oxidative stress and inflammation induced by ethanol in experimental rats. Male albino Wistar rats were divided into four groups. Rats of groups 1 and 2 received isocaloric glucose and dimethyl sulfoxide (2 % DMSO). Hepatotoxicity was induced in groups 3 and 4 by supplementing 30 % ethanol post orally for 60 days. Rats of groups 2 and 4 received zingerone (20 mg/kg body weight in 2 % DMSO p.o) daily during the final 30 days of the experimental period. Ethanol alone administered rats showed significant increase in the plasma and tissue lipid peroxidation markers such as thiobarbituric acid reactive substances, lipid hydroperoxides, conjugated dienes, and a significant decrease in the activities of plasma and tissue enzymic and non-enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, reduced glutathione, vitamin C, and vitamin E. Moreover, the presence of mast cells and increase in the expressions of inflammatory markers such as NF-κB, COX-2, TNF-α, and IL-6 and decrease in the expression of Nrf2 in the liver was observed in ethanol-fed rats. Supplementation with zingerone to ethanol-fed rats reversed the changes induced by ethanol in the experimental rats. Thus, zingerone, through its antioxidant and anti-inflammatory effects, may represent a therapeutic option to protect against ethanol-induced hepatotoxicity.

  13. Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase

    PubMed Central

    Trebino, Catherine E.; Stock, Jeffrey L.; Gibbons, Colleen P.; Naiman, Brian M.; Wachtmann, Timothy S.; Umland, John P.; Pandher, Karamjeet; Lapointe, Jean-Martin; Saha, Sipra; Roach, Marsha L.; Carter, Demetrius; Thomas, Nathalie A.; Durtschi, Becky A.; McNeish, John D.; Hambor, John E.; Jakobsson, Per-Johan; Carty, Thomas J.; Perez, Jose R.; Audoly, Laurent P.

    2003-01-01

    Prostaglandin (PG)E2 is a potent mediator of pain and inflammation, and high levels of this lipid mediator are observed in numerous disease states. The inhibition of PGE2 production to control pain and to treat diseases such as rheumatoid arthritis to date has depended on nonsteroidal antiinflammatory agents such as aspirin. However, these agents inhibit the synthesis of all prostanoids. To produce biologically active PGE2, PGE synthases catalyze the isomerization of PGH2 into PGE2. Recently, several PGE synthases have been identified and cloned, but their role in inflammation is not clear. To study the physiological role of the individual PGE synthases, we have generated by targeted homologous recombination a mouse line deficient in microsomal PGE synthase 1 (mPGES1) on the inbred DBA/1lacJ background. mPGES1-deficient (mPGES1-/-) mice are viable and fertile and develop normally compared with wild-type controls. However, mPGES1-/- mice displayed a marked reduction in inflammatory responses compared with mPGES1+/+ mice in multiple assays. Here, we identify mPGES1 as the PGE synthase that contributes to the pathogenesis of collagen-induced arthritis, a disease model of human rheumatoid arthritis. We also show that mPGES1 is responsible for the production of PGE2 that mediates acute pain during an inflammatory response. These findings suggest that mPGES1 provides a target for the treatment of inflammatory diseases and pain associated with inflammatory states. PMID:12835414

  14. Tissue heme oxygenase-1 exerts anti-inflammatory effects on LPS-induced pulmonary inflammation.

    PubMed

    Konrad, F M; Knausberg, U; Höne, R; Ngamsri, K-C; Reutershan, J

    2016-01-01

    Heme oxygenase-1 (HO-1) has been shown to display anti-inflammatory properties in models of acute pulmonary inflammation. For the first time, we investigated the role of leukocytic HO-1 using a model of HO-1(flox/flox) mice lacking leukocytic HO-1 that were subjected to lipopolysaccharide (LPS)-induced acute pulmonary inflammation. Immunohistology and flow cytometry demonstrated that activation of HO-1 using hemin decreased migration of polymorphonuclear leukocytes (PMNs) to the lung interstitium and bronchoalveolar lavage (BAL) in the wild-type and, surprisingly, also in HO-1(flox/flox) mice, emphasizing the anti-inflammatory potential of nonmyeloid HO-1. Nevertheless, hemin reduced the CXCL1, CXCL2/3, tumor necrosis factor-α (TNFα), and interleukin 6 (IL6) levels in both animal strains. Microvascular permeability was attenuated by hemin in wild-type and HO-1(flox/flox) mice, indicating a crucial role of non-myeloid HO-1 in endothelial integrity. The determination of the activity of HO-1 in mouse lungs revealed no compensatory increase in the HO-1(flox/flox) mice. Topical administration of hemin via inhalation reduced the dose required to attenuate PMN migration and microvascular permeability by a factor of 40, emphasizing its clinical potential. In addition, HO-1 stimulation was protective against pulmonary inflammation when initiated after the inflammatory stimulus. In conclusion, nonmyeloid HO-1 is crucial for the anti-inflammatory effect of this enzyme on PMN migration to different compartments of the lung and on microvascular permeability.

  15. Ketamine suppresses hypoxia-induced inflammatory responses in the late-gestation ovine fetal kidney cortex.

    PubMed

    Chang, Eileen I; Zárate, Miguel A; Rabaglino, Maria B; Richards, Elaine M; Keller-Wood, Maureen; Wood, Charles E

    2016-03-01

    Acute fetal hypoxia is a form of fetal stress that stimulates renal vasoconstriction and ischaemia as a consequence of the physiological redistribution of combined ventricular output. Because of the potential ischaemia-reperfusion injury to the kidney, we hypothesized that it would respond to hypoxia with an increase in the expression of inflammatory genes, and that ketamine (an N-methyl-D-aspartate receptor antagonist) would reduce or block this response. Hypoxia was induced for 30 min in chronically catheterized fetal sheep (125 ± 3 days), with or without ketamine (3 mg kg(-1)) administered intravenously to the fetus 10 min prior to hypoxia. Gene expression in fetal kidney cortex collected 24 h after the onset of hypoxia was analysed using ovine Agilent 15.5k array and validated with qPCR and immunohistochemistry in four groups of ewes: normoxic control, normoxia + ketamine, hypoxic control and hypoxia + ketamine (n = 3-4 per group). Significant differences in gene expression between groups were determined with t-statistics using the limma package for R (P ≤ 0.05). Enriched biological processes for the 427 upregulated genes were immune and inflammatory responses and for the 946 downregulated genes were metabolic processes. Ketamine countered the effects of hypoxia on upregulated immune/inflammatory responses as well as the downregulated metabolic responses. We conclude that our transcriptomics modelling predicts that hypoxia activates inflammatory pathways and reduces metabolism in the fetal kidney cortex, and ketamine blocks or ameliorates this response. The results suggest that ketamine may have therapeutic potential for protection from ischaemic renal damage.

  16. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways.

    PubMed

    Park, Junghyung; Min, Ju-Sik; Kim, Bokyung; Chae, Un-Bin; Yun, Jong Won; Choi, Myung-Sook; Kong, Il-Keun; Chang, Kyu-Tae; Lee, Dong-Seok

    2015-01-01

    Activation of microglia cells in the brain contributes to neurodegenerative processes promoted by many neurotoxic factors such as pro-inflammatory cytokines and nitric oxide (NO). Reactive oxygen species (ROS) actively affect microglia-associated neurodegenerative diseases through their role as pro-inflammatory molecules and modulators of pro-inflammatory processes. Although the ROS which involved in microglia activation are thought to be generated primarily by NADPH oxidase (NOX) and involved in the immune response, mitochondrial ROS have also been proposed as important regulators of the inflammatory response in the innate immune system. However, the role of mitochondrial ROS in microglial activation has yet to be fully elucidated. In this study, we demonstrate that inhibition of mitochondrial ROS by treatment with Mito-TEMPO effectively suppressed the level of mitochondrial and intracellular ROS. Mito-TEMPO treatment also significantly prevented LPS-induced increase in the TNF-α, IL-1β, IL-6, iNOS and Cox-2 in BV-2 and primary microglia cells. Furthermore, LPS-induced suppression of mitochondrial ROS generation not only affected LPS-stimulated activation of MAPKs, including ERK, JNK, and p38, but also regulated IκB activation and NF-κB nuclear localization. These results indicate that mitochondria constitute a major source of ROS generation in LPS-mediated activated microglia cells. Additionally, suppression of LPS-induced mitochondrial ROS plays a role in modulating the production of pro-inflammatory mediators by preventing MAPK and NF-κB activation in microglia cells. Our findings suggest that a potential strategy in the development of therapy for inflammation-associated degenerative neurological diseases involves targeting the regulation of mitochondrial ROS in microglial cells.

  17. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status.

    PubMed

    Huang, Xianfeng; Liu, Yuanyuan; Lu, Yingxun; Ma, Chunhua

    2015-05-01

    Acute lung injury (ALI) represents a clinical syndrome that results from complex responses of the lung to a multitude of direct and indirect insults. This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of eugenol (EUL) on lipopolysaccharide (LPS)-induced inflammatory reaction in ALI. ALI was induced in mice by intratracheal instillation of LPS (0.5 mg/kg), and EUL (5, and 10 mg/kg) was injected intraperitoneally 1h prior to LPS administration. After 6h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The findings suggest that the protective mechanism of EUL may be attributed partly to decreased production of proinflammatory cytokines through the regulating inflammation and redox status. The results support that use of EUL is beneficial in the treatment of ALI.

  18. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease

    PubMed Central

    Zhang, Sufeng; Ermann, Joerg; Succi, Marc D.; Zhou, Allen; Hamilton, Matthew J.; Cao, Bonnie; Korzenik, Joshua R.; Glickman, Jonathan N.; Vemula, Praveen K.; Glimcher, Laurie H.; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M.

    2016-01-01

    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD. PMID:26268315

  19. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease.

    PubMed

    Zhang, Sufeng; Ermann, Joerg; Succi, Marc D; Zhou, Allen; Hamilton, Matthew J; Cao, Bonnie; Korzenik, Joshua R; Glickman, Jonathan N; Vemula, Praveen K; Glimcher, Laurie H; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M

    2015-08-12

    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD.

  20. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis.

    PubMed

    Lambertucci, Flavia; Motiño, Omar; Villar, Silvina; Rigalli, Juan Pablo; de Luján Alvarez, María; Catania, Viviana A; Martín-Sanz, Paloma; Carnovale, Cristina Ester; Quiroga, Ariel Darío; Francés, Daniel Eleazar; Ronco, María Teresa

    2017-01-15

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis.

  1. P2X3 receptors induced inflammatory nociception modulated by TRPA1, 5-HT3 and 5-HT1A receptors.

    PubMed

    Krimon, Suzy; Araldi, Dionéia; do Prado, Filipe César; Tambeli, Cláudia Herrera; Oliveira-Fusaro, Maria Cláudia G; Parada, Carlos Amílcar

    2013-11-01

    It has been described that endogenous ATP via activation of P2X3 and P2X2/3 receptors contributes to inflammatory nociception in different models, including the formalin injected in subcutaneous tissue of the rat's hind paw. In this study, we have evaluated whether TRPA1, 5-HT3 and 5-HT1A receptors, whose activation is essential to formalin-induced inflammatory nociception, are involved in the nociception induced by activation of P2X3 receptors on subcutaneous tissue of the rat's hind paw. We have also evaluated whether the activation of P2X3 receptors increases the susceptibility of primary afferent neurons to formalin action modulated by activation of TRPA1, 5-HT3 or 5-HT1A receptors. Nociceptive response intensity was measured by observing the rat's behavior and considering the number of times the animal reflexively raised its hind paw (flinches) in 60min. Local subcutaneous administration of the selective TRPA1, 5-HT3 or 5-HT1A receptor antagonists HC 030031, tropisetron and WAY 100,135, respectively, prevented the nociceptive responses induced by the administration in the same site of the non-selective P2X3 receptor agonist αβmeATP. Administration of the selective P2X3 and P2X2/3 receptor antagonist A-317491 or pretreatment with oligonucleotides antisense against P2X3 receptor prevented the formalin-induced behavioral nociceptive responses during the first and second phases. Also, the co-administration of a subthreshold dose of αβmeATP with a subthreshold dose of formalin induced nociceptive behavior, which was prevented by local administration of tropisetron, HC 030031 or WAY 100, 135. These findings have demonstrated that the activation of P2X3 receptors induces inflammatory nociception modulated by TRPA1, 5-HT3 and 5-HT1A receptors. Also, they suggest that inflammatory nociception is modulated by the release of endogenous ATP and P2X3 receptor activation, which in turn, increases primary afferent nociceptor susceptibility to the action of inflammatory

  2. Reverse signaling initiated from GITRL induces NF-kappaB activation through ERK in the inflammatory activation of macrophages.

    PubMed

    Bae, Eun Mi; Kim, Won-Jung; Suk, Kyoungho; Kang, Young-Mo; Park, Jeong-Euy; Kim, Won Young; Choi, Eun Mi; Choi, Beom Kyu; Kwon, Byoung S; Lee, Won-Ha

    2008-01-01

    Glucocorticoid-induced TNF receptor family related protein ligand (GITRL) is known to interact with its cognate receptor GITR. In order to investigate the potential role of GITRL in the pro-inflammatory activation of macrophages and the signaling pathway induced by GITRL, we stimulated the macrophage cell line, THP-1, and primary macrophages with an anti-GITRL monoclonal antibody or a GITR:Fc fusion protein and analyzed the cellular responses. The stimulation of GITRL induced the expression of pro-inflammatory cytokines and matrix metalloproteinase (MMP)-9 and up-regulated ICAM-1 expression levels, which was responsible for enhanced cellular aggregation and adhesion to extracellular matrix proteins. The activation of these pro-inflammatory mediators required the activation of ERK1/2 mitogen-activated protein kinase (MAPK) and negatively regulated by p38 MAPK and JNK. Immunofluorescence analysis detected nuclear translocation of the NF-kappaB p50 subunit and this was blocked by ERK inhibitor, indicating that GITRL stimulation induced ERK1/2 phosphorylation and subsequent activation of NF-kappaB. Furthermore, the expression of GITRL and GITR was detected in macrophages in inflammatory disease specimens such as atherosclerotic plaques and synovial tissues of rheumatoid arthritis. These observations raise the possibility that the GITRL-mediated inflammatory activation of macrophages is involved in the pathogenesis of inflammatory diseases.

  3. Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs.

    PubMed

    Chung, Ming-Min; Nicol, Christopher J; Cheng, Yi-Chuan; Lin, Kuan-Hung; Chen, Yen-Lin; Pei, Dee; Lin, Chien-Hung; Shih, Yi-Nuo; Yen, Chia-Hui; Chen, Shiang-Jiuun; Huang, Rong-Nan; Chiang, Ming-Chang

    2017-03-01

    A growing body of evidence suggests type 2 diabetes mellitus (T2DM) is linked to neurodegenerative diseases such as Alzheimer's disease (AD). Although the precise mechanisms remain unclear, T2DM may exacerbate neurodegenerative processes. AMP-activated protein kinase (AMPK) signaling is an evolutionary preserved pathway that is important during homeostatic energy biogenesis responses at both the cellular and whole-body levels. Metformin, a ubiquitously prescribed anti-diabetic drug, exerts its effects by AMPK activation. However, while the roles of AMPK as a metabolic mediator are generally well understood, its performance in neuroprotection and neurodegeneration are not yet well defined. Given hyperglycemia is accompanied by an accelerated rate of advanced glycosylation end product (AGE) formation, which is associated with the pathogenesis of diabetic neuronal impairment and, inflammatory response, clarification of the role of AMPK signaling in these processes is needed. Therefore, we tested the hypothesis that metformin, an AMPK activator, protects against diabetic AGE induced neuronal impairment in human neural stem cells (hNSCs). In the present study, hNSCs exposed to AGE had significantly reduced cell viability, which correlated with elevated inflammatory cytokine expression, such as IL-1α, IL-1β, IL-2, IL-6, IL-12 and TNF-α. Co-treatment with metformin significantly abrogated the AGE-mediated effects in hNSCs. In addition, metformin rescued the transcript and protein expression levels of acetyl-CoA carboxylase (ACC) and inhibitory kappa B kinase (IKK) in AGE-treated hNSCs. NF-κB is a transcription factor with a key role in the expression of a variety of genes involved in inflammatory responses, and metformin did prevent the AGE-mediated increase in NF-κB mRNA and protein levels in the hNSCs exposed to AGE. Indeed, co-treatment with metformin significantly restored inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) levels in AGE-treated h

  4. Dehydroepiandrosterone inhibits the TNF-alpha-induced inflammatory response in human umbilical vein endothelial cells.

    PubMed

    Gutiérrez, Gisela; Mendoza, Criselda; Zapata, Estrella; Montiel, Angélica; Reyes, Elba; Montaño, Luis Felipe; López-Marure, Rebeca

    2007-01-01

    Dehydroepiandrosterone (DHEA) has a protective role against atherosclerosis. We determined the effect of pharmacological doses of DHEA upon the adhesion of monocytic U937 cells to human umbilical vein endothelial cells (HUVEC), as well as the expression of adhesion and chemoattractant molecules, the translocation of NF-kappaB, the degradation of IkappaB-alpha and the production of reactive oxygen species (ROS) in HUVEC. Adhesion of U937 cells to DHEA-treated HUVEC was evaluated by co-culture experiments using [(3)H]-thymidine-labeled U937 cells. The expression of adhesion and chemoattractant molecules was evaluated by flow cytometry and RT-PCR, respectively; NF-kappaB translocation was determined by Electrophoretic Mobility Shift Assay (EMSA) and IkappaB-alpha degradation by Western blot. ROS production was determined by the reduction of fluorescent DCFDA. TNF-alpha was used to induce inflammatory responses in HUVEC. One hundred micromolar of DHEA-treatment inhibited the TNF-alpha-induced expression of ICAM-1, E-selectin, ROS production and U937 cells adhesion to HUVEC, and interfered with NF-kappaB translocation and IkappaB-alpha degradation. DHEA at the above mention concentration also inhibited the mRNA expression of MCP-1 and IL-8 in basal conditions but not in TNF-alpha-stimulated conditions. Our results suggest that DHEA inhibits the expression of molecules involved in the inflammatory process, therefore it could be used as an alternative in the treatment of chronic inflammatory diseases such as atherosclerosis.

  5. Croton antisyphiliticus Mart. attenuates the inflammatory response to carrageenan-induced pleurisy in mice.

    PubMed

    Dos Reis, Gustavo Oliveira; Vicente, Geison; de Carvalho, Francieli Kanumfre; Heller, Melina; Micke, Gustavo Amadeu; Pizzolatti, Moacir Geraldo; Fröde, Tânia Silvia

    2014-04-01

    The aim of this study was to investigate the anti-inflammatory effect of the crude hydroalcoholic extract (CHE) from the aerial parts of Croton antisyphiliticus, its fractions and isolated compounds derived from it on the mouse model of pleurisy induced by carrageenan. The aerial parts of C. antisyphiliticus were dried, macerated and extracted with ethanol to obtain the CHE, which was fractionated by liquid-liquid extraction using solvents with increasing polarity to obtain hexane (Hex), ethyl acetate (EA) and aqueous (Aq) fractions. Vitexin and quinic acid were isolated from Aq fraction. Capillary electrophoresis analysis, physical characteristics and spectral data produced by infrared (IR), nuclear magnetic resonance ((1)H and (13)C NMR) and mass spectrometry analyses were used to identify and elucidate the structure of the isolated compounds. The experimental model of pleurisy was induced in mice by a single intrapleural injection of carrageenan (1 %). Leukocytes, exudate concentrations, myeloperoxidase (MPO) and adenosine-deaminase (ADA) activities and nitrate/nitrite (NOx), tumor necrosis factor-α (TNF-α) and interleukin-17 (IL-17) levels were determined in the pleural fluid leakage at 4 h after pleurisy induction. Animals pre-treated with CHE, Hex, EA, Aq, vitexin and quinic acid exhibited decreases in leukocytes, exudate concentrations, MPO and ADA activities and NOx levels (p < 0.05). Also CHE, Hex, EA and vitexin but not quinic acid inhibited TNF-α and IL-17 levels (p < 0.05). C. antisyphiliticus caused anti-inflammatory effect by inhibiting the activated leukocytes, exudate concentrations, NOx, TNF-α, and IL-17 levels. The compounds vitexin and quinic acid may be responsible for this anti-inflammatory action.

  6. Autoimmune/inflammatory syndrome induced by adjuvant (ASIA) evolution after silicone implants. Who is at risk?

    PubMed

    Goren, Idan; Segal, Gad; Shoenfeld, Yehuda

    2015-10-01

    Silicone implants have been in use since the mid-twentieth century, especially in the field of reconstructive breast surgery, and have long been considered as biologically inert and harmless. However, growing body of evidence from the past two decades links silicone with subsequent autoimmunity-related complications, collectively known as autoimmune/inflammatory syndrome induced by adjuvant--ASIA. Previous data suggest that while some patients tend to develop post-exposure autoimmune phenomena such as ASIA, other do not. However, thus far, no criteria for risk stratification were suggested. This current review summarizes the data linking silicone implants and autoimmunity, suggesting means of defining individuals who are at increased risk to develop silicone-induced ASIA, and therefore, a recommendation was made to avoid silicone implantation, e.g., individuals with previously diagnosed autoimmune disorders or with genetic preponderance for hyperactive immune system should not be considered as candidates for silicone implantation.

  7. Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model.

    PubMed

    Kang, Jun Mo; Park, Hi Joon; Choi, Yeong Gon; Choe, Il Hwan; Park, Jae Hyun; Kim, Yong Sik; Lim, Sabina

    2007-02-02

    Using a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD), this study investigated on the neuroprotective effects of acupuncture by examining whether acupuncture contributed to inhibiting microglial activation and inflammatory events. C57BL/6 mice were treated with MPTP (30 mg/kg, i.p.) for 5 consecutive days. Acupuncture was then applied to acupoints Yanglingquan (GB34) and Taichong (LR3) starting 2 h after the first MPTP administration and then at 48 h intervals until the mice were sacrificed for analyses at 1, 3, and 7 days after the last MPTP injection. These experiments demonstrated that acupuncture inhibited the decreased of the tyrosine hydroxylase (TH) immunoreactivity (IR) and generated a neuroprotective effects in the striatum (ST) and the substantia nigra (SN) on days 1, 3, and 7 post-MPTP injections. Acupuncture attenuated the increase of macrophage antigen complex-1 (MAC-1), a marker of microglial activation, at 1 and 3 days and reduced the increases in cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression on days 1, 3, and 7. In MPTP group, striatal dopamine (DA) was measured by 46% at 7 days, whereas DA in the acupuncture group was 78%. On the basis of these results, we suggest that acupuncture could be used as a neuroprotective intervention for the purpose of inhibiting microglial activation and inflammatory events in PD.

  8. Radiation Promotes Colorectal Cancer Initiation and Progression by Inducing Senescence-Associated Inflammatory Responses

    PubMed Central

    Kim, Sang Bum; Bozeman, Ronald; Kaisani, Aadil; Kim, Wanil; Zhang, Lu; Richardson, James A.; Wright, Woodring E.; Shay, Jerry W.

    2015-01-01

    Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  9. Insulin therapy induces changes in the inflammatory response in a murine 2-hit model.

    PubMed

    Barkhausen, Tanja; Probst, Christian; Hildebrand, Frank; Pape, Hans-Christoph; Krettek, Christian; van Griensven, Martijn

    2009-08-01

    Post-traumatic complications commonly seen on intensive care units include sepsis and associated disorders, which are accompanied by alterations in inflammatory cytokine expression patterns and in activation of neutrophils. Hyperglycaemia, often occurring after trauma and sepsis, is a further risk factor for morbidity and mortality among critically ill people. Clinical investigations have suggested that strict glycaemic control by insulin titration reduces overall mortality. This study aimed to further elucidate the pathophysiological and immunomodulative actions of insulin. Femoral fracture was induced in a murine model, followed by 1h of haemorrhage. Two days after the first hit, sepsis was induced by caecal ligation and puncture (CLP). In control animals, laparotomy only was performed. Insulin in two different concentrations (10IU or 20IU) or vehicle was administered daily. Insulin therapy was associated with improvement of clinical parameters, slightly improved survival rates and, in lungs and liver, fewer infiltrating neutrophils and reduced IL-6 and IL-10 mRNA expression. These results suggested that, in this animal model, insulin had a direct anti-inflammatory effect that was independent of modulation of blood glucose levels.

  10. Astaxanthin Inhibits Expression of Retinal Oxidative Stress and Inflammatory Mediators in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Yeh, Po-Ting; Huang, Hsin-Wei; Yang, Chung-May; Yang, Wei-Shiung; Yang, Chang-Hao

    2016-01-01

    Purpose We evaluated whether orally administered astaxanthin (AST) protects against oxidative damage in the ocular tissues of streptozotocin (STZ)-induced diabetic rats. Methods and Results Fifty 6-week-old female Wistar rats were randomly assigned to receive an injection of STZ to induce diabetes (n = 40) or to remain uninduced (n = 10). The diabetic rats were randomly selected into four groups and they were separately administered normal saline, 0.6 mg/kg AST, 3 mg/kg AST, or 0.5 mg/kg lutein daily for eight weeks. Retinal functions of each group were evaluated by electroretinography. The expression of oxidative stress and inflammatory mediators in the ocular tissues was then assessed by immunohistochemistry, western blot analysis, ELISA, RT-PCR, and electrophoretic mobility shift assay (EMSA). Retinal functions were preserved by AST and lutein in different levels. Ocular tissues from AST- and lutein-treated rats had significantly reduced levels of oxidative stress mediators (8-hydroxy-2'-deoxyguanosine, nitrotyrosine, and acrolein) and inflammatory mediators (intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and fractalkine), increased levels of antioxidant enzymes (heme oxygenase-1 and peroxiredoxin), and reduced activity of the transcription factor nuclear factor-kappaB (NF-κB). Conclusion The xanthophyll carotenoids AST and lutein have neuroprotective effects and reduce ocular oxidative stress, and inflammation in the STZ diabetic rat model, which may be mediated by downregulation of NF-κB activity. PMID:26765843

  11. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve

    PubMed Central

    2012-01-01

    Background Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched. Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied to studies in mice. A mouse trigeminal inflammatory compression (TIC) model is introduced here which successfully and reliably promotes vibrissal whisker pad hypersensitivity. Results The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42, postoperative day 70). Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of microglial activation. Cold allodynia was detected at 4 weeks. Conclusions A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic pain (Type 2) is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at least 10 weeks and cold allodynia measureable at 4 weeks. PMID:23270529

  12. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations

    PubMed Central

    Hurtado-Alvarado, Gabriela; Castillo-García, Stephanie Ariadne; Hernández, María Eugenia; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier; Gómez-González, Beatriz

    2013-01-01

    A reduction in the amount of time spent sleeping occurs chronically in modern society. Clinical and experimental studies in humans and animal models have shown that immune function is impaired when sleep loss is experienced. Sleep loss exerts a strong regulatory influence on peripheral levels of inflammatory mediators of the immune response. An increasing number of research projects support the existence of reciprocal regulation between sleep and low-intensity inflammatory response. Recent studies show that sleep deficient humans and rodents exhibit a proinflammatory component; therefore, sleep loss is considered as a risk factor for developing cardiovascular, metabolic, and neurodegenerative diseases (e.g., diabetes, Alzheimer's disease, and multiple sclerosis). Circulating levels of proinflammatory mediators depend on the intensity and duration of the method employed to induce sleep loss. Recognizing the fact that the concentration of proinflammatory mediators is different between acute and chronic sleep-loss may expand the understanding of the relationship between sleep and the immune response. The aim of this review is to integrate data from recent published reports (2002–2013) on the effects of sleep loss on the immune response. This review may allow readers to have an integrated view of the mechanisms involved in central and peripheral deficits induced by sleep loss. PMID:24367384

  13. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats.

    PubMed

    Gong, Qi-Hai; Wang, Qian; Pan, Li-Long; Liu, Xin-Hua; Huang, Hui; Zhu, Yi-Zhun

    2010-07-01

    The present study investigated the effect of sodium hydrosulfide (NaHS), a H(2)S donor, on cognitive impairment and neuroinflammatory changes induced by bilateral intracerebroventricular injections of LPS at a dose of 10mug/rat. Rats received 5mg/kg NaHS or volume-matched vehicle administration by intraperitoneal injection 3days before LPS injection then for 9days once daily. Morris water maze was used to detect the cognitive function. Compared to the sham-treated rats, LPS injection significantly prolonged the mean escape latency in the navigation test (P<0.05) and shortened the adjusted escape latency by approximately 30% (P<0.05). Meanwhile, LPS injection decreased H(2)S level but increased pro-inflammatory mediators (i.e., TNF-alpha, TNFR1, degradation of IkappaB-alpha and thereafter activation of NF-kappaB) in hippocampus. However, these effects of LPS were significantly ameliorated with NaHS treatment (P<0.05 vs vehicle-treated group). The present data suggest that H(2)S attenuates LPS-induced cognitive impairment through reducing the overproduction of pro-inflammatory mediators via inhibition of NF-kappaB pathways in rats. This study sets the stage for exploring a novel H(2)S releasing agent for preventing or retarding the development or progression of neurological disorders such as Alzheimer's disease.

  14. Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia.

    PubMed

    Park, Euteum; Chun, Hong Sung

    2017-02-01

    Melatonin, a naturally occurring neurohormone in the pineal gland, has been shown to exert antioxidant and anti-inflammatory effects. This study examined the effects of melatonin on manganese (Mn) and/or lipopolysaccharide (LPS)-induced microglial activation. Melatonin (10 μM) inhibited Mn (100 μM) and/or LPS (0.5 μg/ml)-induced phagocytotic activity of activated BV2 microglia. It also inhibited the lipid peroxidation and intracellular reduced glutathione (GSH) depletion induced by Mn and/or LPS. Melatonin effectively suppressed the upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in Mn and/or LPS-stimulated BV2 microglia. In addition, melatonin pretreatment attenuated Mn and/or LPS-induced degradation of IκB-α, nuclear translocation of nuclear factor-κB (NF-κB) and its activation, and the expressions of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in BV2 microglial cells. These results suggest that melatonin can effectively modulate phagocytosis and expression of proinflammatory mediators, and can prevent neuroinflammatory disorders accompanied by microglial activation.

  15. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin.

    PubMed

    Tilton, Susan C; Waters, Katrina M; Karin, Norman J; Webb-Robertson, Bobbie-Jo M; Zangar, Richard C; Lee, K Monica; Bigelow, Diana J; Pounds, Joel G; Corley, Richard A

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  16. Inhibition of monoacylglycerol lipase attenuates nonsteroidal anti-inflammatory drug-induced gastric hemorrhages in mice.

    PubMed

    Kinsey, Steven G; Nomura, Daniel K; O'Neal, Scott T; Long, Jonathan Z; Mahadevan, Anu; Cravatt, Benjamin F; Grider, John R; Lichtman, Aron H

    2011-09-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used analgesics, but can cause gastric and esophageal hemorrhages, erosion, and ulceration. The endogenous cannabinoid (endocannabinoid; eCB) system possesses several potential targets to reduce gastric inflammatory states, including cannabinoid receptor type 1 (CB(1)), cannabinoid receptor type 2 (CB(2)), and enzymes that regulate the eCB ligands 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (anandamide; AEA). In the presented study, we tested whether 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), a selective inhibitor of the primary catabolic enzyme of 2-AG, monoacylglycerol lipase (MAGL), would protect against NSAID-induced gastric damage. Food-deprived mice administered the nonselective cyclooxygenase inhibitor diclofenac sodium displayed gastric hemorrhages and increases in proinflammatory cytokines. JZL184, the proton pump inhibitor omeprazole (positive control), or the primary constituent of marijuana, Δ(9)-tetrahydrocannabinol (THC), significantly prevented diclofenac-induced gastric hemorrhages. JZL184 also increased stomach levels of 2-AG, but had no effect on AEA, arachidonic acid, or the prostaglandins E(2) and D(2). MAGL inhibition fully blocked diclofenac-induced increases in gastric levels of proinflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor α, and granulocyte colony-stimulating factor, as well as IL-10. Pharmacological inhibition or genetic deletion of CB(1) or CB(2) revealed that the gastroprotective effects of JZL184 and THC were mediated via CB(1). The antihemorrhagic effects of JZL184 persisted with repeated administration, indicating a lack of tolerance. These data indicate that increasing 2-AG protects against gastric damage induced by NSAIDs, and its primary catabolic enzyme MAGL offers a promising target for the development of analgesic therapeutics possessing gastroprotective properties.

  17. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    SciTech Connect

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  18. Effect of different doses of Manuka honey in experimentally induced inflammatory bowel disease in rats.

    PubMed

    Prakash, A; Medhi, B; Avti, P K; Saikia, U N; Pandhi, P; Khanduja, K L

    2008-11-01

    To evaluate the effect of different doses of Manuka honey in experimentally induced inflammatory bowel disease in rats. Adult Wistar rats of either sex were used (n = 30). Colitis was induced by a single intracolonic administration of TNBS dissolved in 35% ethanol. The rats (n = 30) were divided into five groups (n = 6) and were treated with vehicle (ethanol), TNBS, Manuka honey (5 g/kg, p.o.), Manuka honey (10 g/kg, p.o.) or sulfasalazine (360 mg/kg, p.o.) body weight for 14 days. After completion of treatment, the animals were killed and the following parameters were assessed: morphological score, histological score and different antioxidant parameters.Manuka honey at different doses provided protection against TNBS-induced colonic damage. There was significant protection with Manuka honey 5 g/kg as well as with 10 g/kg body weight compared with the control (p < 0.001). All the treated groups showed reduced colonic inflammation and all the biochemical parameters were significantly reduced compared with the control in the Manuka honey treated groups (p < 0.001). Manuka honey at different doses restored lipid peroxidation as well as improved antioxidant parameters. Morphological and histological scores were significantly reduced in the low dose Manuka honey treated group (p < 0.001). In the inflammatory model of colitis, oral administration of Manuka honey 5 g/kg and Manuka honey 10 g/kg body weight significantly reduced the colonic inflammation. The present study indicates that Manuka honey is efficacious in the TNBS-induced rat colitis model, but these results require further confirmation in human studies.

  19. The "genomic storm" induced by bacterial endotoxin is calmed by a nuclear transport modifier that attenuates localized and systemic inflammation.

    PubMed

    DiGiandomenico, Antonio; Veach, Ruth Ann; Zienkiewicz, Jozef; Moore, Daniel J; Wylezinski, Lukasz S; Hutchens, Martha A; Hawiger, Jacek

    2014-01-01

    Lipopolysaccharide (LPS) is a potent microbial virulence factor that can trigger production of proinflammatory mediators involved in the pathogenesis of localized and systemic inflammation. Importantly, the role of nuclear transport of stress responsive transcription factors in this LPS-generated "genomic storm" remains largely undefined. We developed a new nuclear transport modifier (NTM) peptide, cell-penetrating cSN50.1, which targets nuclear transport shuttles importin α5 and importin β1, to analyze its effect in LPS-induced localized (acute lung injury) and systemic (lethal endotoxic shock) murine inflammation models. We analyzed a human genome database to match 46 genes that encode cytokines, chemokines and their receptors with transcription factors whose nuclear transport is known to be modulated by NTM. We then tested the effect of cSN50.1 peptide on proinflammatory gene expression in murine bone marrow-derived macrophages stimulated with LPS. This NTM suppressed a proinflammatory transcriptome of 37 out of 84 genes analyzed, without altering expression of housekeeping genes or being cytotoxic. Consistent with gene expression analysis in primary macrophages, plasma levels of 23 out of 26 LPS-induced proinflammatory cytokines, chemokines, and growth factors were significantly attenuated in a murine model of LPS-induced systemic inflammation (lethal endotoxic shock) while the anti-inflammatory cytokine, interleukin 10, was enhanced. This anti-inflammatory reprogramming of the endotoxin-induced genomic response was accompanied by complete protection against lethal endotoxic shock with prophylactic NTM treatment, and 75% protection when NTM was first administered after LPS exposure. In a murine model of localized lung inflammation caused by direct airway exposure to LPS, expression of cytokines and chemokines in the bronchoalveolar space was suppressed with a concomitant reduction of neutrophil trafficking. Thus, calming the LPS-triggered "genomic storm" by

  20. Development and characterization of local anti-inflammatory implantation for the controlled release of the hexane extract of the flower-heads of Euryops pectinatus L. (Cass.).

    PubMed

    Nesseem, D I; Michel, C G

    2011-04-01

    A hexane extract of the flower-heads of Euryops pectinatus L. (Cass.) was formulated into local anti-inflammatory implantation patches with controlled release. Cross-linked sodium hyaluronate patches (F1-F3) and chitosan patches (F4-F6) were prepared by a casting/solvent evaporation technique. Morphological and mechanical characterizations including the components ratio, surfactant and the loaded amount of the hexane extract (50, 100, and 200 mg/kg b.wt.) were investigated. Release studies were performed during 24 h using a diffusion cell. Films with optimum in vitro release rate have been investigated for testing the anti-inflammatory activity and the sustaining effect of the formulations. The sustained anti-inflammatory effect of the hexane extract of E. pectinatus flower-heads from the selected films was studied by inducing paw edema in rats with 1% (w/v) carrageenan solution. The results indicated the compatibility of hexane extract with both sodium hyaluronate and chitosan patches forming yellowish transparent films. Based on variations in drug release profiles throughout the 24-h among the formulations (F1-F6) studies, F3 and F6 were selected for further investigation. When the films were applied 1 h before the subplantar injection of carrageenan in the hind paw of male Albino rats, formulation (F3) provided its maximum inhibition of paw edema in rats (91.3%) 4 h after edema induction whereas, formulation (F6) showed less inhibition after 4 h (70.6%). The previous two formulations (F3 and F6) produced potent results (95.3 and 89.5%, respectively) after 24 h when compared with a local market preparation containing 25% β-sitosterol used as positive control. Histophathological investigation was conducted for 1, 4, and 12 weeks to study the tissue response for the two formulations (F3 and F6) at the implantation site. Chemical investigation of the hexane extract was achieved for both unsaponifiable matter (USM) and fatty acid methyl esters (FAME) using gas

  1. Progranulin protects against endotoxin-induced acute kidney injury by downregulating renal cell death and inflammatory responses in mice.

    PubMed

    Xu, Xiaoying; Gou, Linfeng; Zhou, Meng; Yang, Fusheng; Zhao, Yihan; Feng, Tingting; Shi, Peikun; Ghavamian, Armin; Zhao, Weiming; Yu, Yuan; Lu, Yi; Yi, Fan; Liu, Guangyi; Tang, Wei

    2016-09-01

    Progranulin (PGRN), a pluripotent secreted growth factor, is involved in various physiologic and disease processes. However, the role of PGRN in endotoxin-induced septic acute kidney injury (AKI) remains unknown. The objective of this study is to investigate the protective effects of PGRN on an endotoxin-induced AKI mouse model by using PGRN-deficient mice and recombinant PGRN (rPGRN) pretreatment. PGRN levels were increased in kidneys of wild-type (WT) mice at 6 and 24h after lipopolysaccharide (LPS) injection. Renal function detection, hematoxylin and eosin staining, immunohistochemical staining, ELISA and in situ terminal deoxynucleotidyl transferase-mediated uridine triphosphate nick-end labeling were used to reveal tissue injury, inflammatory cell infiltration, production of inflammatory mediators and cell death in mouse kidneys after LPS injection. PGRN deficiency resulted in severe kidney injury and increased apoptotic death, inflammatory cell infiltration, production of pro-inflammatory mediators and the expression and nucleus-to-cytoplasmic translocation of HMGB1 in the kidney. In addition, rPGRN administration before LPS treatment ameliorated the endotoxin-induced AKI in WT mice. PGRN may be a novel biologic agent with therapeutic potential for endotoxin-induced septic AKI possibly by inhibiting LPS-induced renal cell death and inflammatory responses in mice.

  2. Anti-inflammatory effects of formoterol and ipratropium bromide against acute cadmium-induced pulmonary inflammation in rats.

    PubMed

    Zhang, Wenhui; Fievez, Laurence; Cheu, Esteban; Bureau, Fabrice; Rong, Weifang; Zhang, Fan; Zhang, Yong; Advenier, Charles; Gustin, Pascal

    2010-02-25

    In this study, the anti-inflammatory properties of formoterol and ipratropium bromide, alone or in combination, were investigated in a rat model of acute pulmonary inflammation induced by cadmium inhalation. Airway resistance and inflammatory responses, including matrix metalloproteinease-2 (MMP-2) and matrix metalloproteinease-9 (MMP-9) activities, were evaluated. Compared to values obtained in rats exposed to cadmium, pretreatment by bronchodilators administered alone significantly prevented the cadmium-induced increase of airway resistance. Formoterol elicited a significant decrease in total cell number, neutrophil and macrophage counts in bronchoalveolar lavage fluid, whereas ipratropium bromide reduced neutrophil numbers. The two compounds administered alone significantly attenuated the lung lesions associated with parenchyma inflammatory cell influx and congestion observed in the cadmium group. The increased MMP-9 activity was significantly attenuated. Although only formoterol induced a decrease protein concentration in bronchoalveolar lavage fluid, both compounds inhibited the pulmonary edema by reducing wet-to-dry weight ratio which returned to values similar to those recorded in the sham group. All the effects of formoterol on the cadmium-induced inflammatory responses were reversed by propranolol. Similar anti-inflammatory effects were obtained in rats pretreated with ilomastat which showed a significant reduction on inflammatory cell infiltration and MMP-9 activity in bronchoalveolar lavage fluid. Neither synergistic nor additive effects were obtained when the two bronchodilators were administered in combination. In conclusion, formoterol and ipratropium bromide partially protect the lungs against the inflammation by reducing neutrophilic infiltration. This protective effect is associated with reduced MMP-9 activity known to play an important pro-inflammatory role in acute inflammatory process.

  3. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis

    PubMed Central

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Otegui, Marisa S; Grotewold, Erich

    2015-01-01

    Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress. PMID:26179363

  4. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    PubMed

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (p<0.05). Whereas, levels of reduced glutathione (GSH) and superoxide dismutase (SOD) were found significantly decreased in microwave exposed groups (p<0.05). A significant increase in levels of pro-inflammatory cytokines (IL-2, IL-6, TNF-α, and IFN-γ) was observed in microwave exposed animal (p<0.05). Furthermore, significant DNA damage was also observed in microwave exposed groups as compared to their corresponding values in sham exposed group (p<0.05). In conclusion, the present study suggests that low intensity microwave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect

  5. Doxorubicin Induces Inflammatory Modulation and Metabolic Dysregulation in Diabetic Skeletal Muscle

    PubMed Central

    Supriya, Rashmi; Tam, Bjorn T.; Pei, Xiao M.; Lai, Christopher W.; Chan, Lawrence W.; Yung, Benjamin Y.; Siu, Parco M.

    2016-01-01

    Anti-cancer agent doxorubicin (DOX) has been demonstrated to worsen insulin signaling, engender muscle atrophy, trigger pro-inflammation, and induce a shift to anaerobic glycolytic metabolism in skeletal muscle. The myotoxicity of DOX in diabetic skeletal muscle remains largely unclear. This study examined the effects of DOX on insulin signaling, muscle atrophy, pro-/anti-inflammatory microenvironment, and glycolysis metabolic regulation in skeletal muscle of db/db diabetic and db/+ non-diabetic mice. Non-diabetic db/+ mice and diabetic db/db mice were randomly assigned to the following groups: db/+CON, db/+DOX, db/dbCON, and db/dbDOX. Mice in db/+DOX and db/dbDOX groups were intraperitoneally injected with DOX at a dose of 15 mg per kg body weight whereas mice in db/+CON and db/dbCON groups were injected with the same volume of saline instead of DOX. Gastrocnemius was immediately harvested, weighed, washed with cold phosphate buffered saline, frozen in liquid nitrogen, and stored at −80°C for later analysis. The effects of DOX on diabetic muscle were neither seen in insulin signaling markers (Glut4, pIRS1Ser636∕639, and pAktSer473) nor muscle atrophy markers (muscle mass, MuRF1 and MAFbx). However, DOX exposure resulted in enhancement of pro-inflammatory favoring microenvironment (as indicated by TNF-α, HIFα and pNFκBp65) accompanied by diminution of anti-inflammatory favoring microenvironment (as indicated by IL15, PGC1α and pAMPKβ1Ser108). Metabolism of diabetic muscle was shifted to anaerobic glycolysis after DOX exposure as demonstrated by our analyses of PDK4, LDH and pACCSer79. Our results demonstrated that there might be a link between inflammatory modulation and the dysregulation of aerobic glycolytic metabolism in DOX-injured diabetic skeletal muscle. These findings help to understand the pathogenesis of DOX-induced myotoxicity in diabetic muscle. PMID:27512375

  6. Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells

    SciTech Connect

    Askari, Ara A.; Thomson, Scott; Edin, Matthew L.; Lih, Fred B.; Zeldin, Darryl C.; Bishop-Bailey, David

    2014-04-04

    Highlights: • We examined epoxygenase product formation and regulation in endothelial cells. • The epoxygenase CYP2J2 is an LPS (TLR-4) inducible enzyme in endothelial cells. • The endothelial cell line EA.Hy926 synthesises epoxygenase products. • Inhibition of endothelial epoxygenases increases TNFα secretion. • Soluble epoxide hydrolase inhibitors reduce inflammation-induced TNFα and NFκB. - Abstract: The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.

  7. Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations.

    PubMed

    Boullu-Ciocca, S; Tassistro, V; Dutour, A; Grino, M

    2015-12-01

    Immediate postnatal overfeeding in rats, obtained by reducing the litter size, results in early-onset obesity. Such experimental paradigm programs overweight, insulin resistance, dyslipidemia, increased adipose glucocorticoid metabolism [up-regulation of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)], and overexpression of proinflammatory cytokines in mesenteric adipose tissue (MAT) in adulthood. We studied the effects of pioglitazone, a PPARγ agonist, treatment on the above-mentioned overfeeding-induced alterations. Nine-month-old rats normofed or overfed during the immediate postnatal period were given pioglitazone (3 mg/kg/day) for 6 weeks. Pioglitazone stimulated weight gain and induced a redistribution of adipose tissue toward epididymal location with enhanced plasma adiponectin. Treatment normalized postnatal overfeeding-induced metabolic alterations (increased fasting insulinemia and free fatty acids) and mesenteric overexpression of GR, 11β-HSD11, CD 68, and proinflammatory cytokines mRNAs, including plasminogen-activator inhibitor type 1. Mesenteric GR mRNA levels correlated positively with mesenteric proinflammatory cytokines mRNA concentrations. In vitro incubation of MAT obtained from overfed rats demonstrated that pioglitazone induced a down-regulation of GR gene expression and normalized glucocorticoid-induced stimulation of 11β-HSD1 and plasminogen-activator inhibitor type 1 mRNAs. Our data show for the first time that the metabolic, endocrine, and inflammatory alterations induced by early-onset postnatal obesity can be reversed by pioglitazone at the adulthood. They demonstrate that pioglitazone, in addition to its well-established effect on adipose tissue redistribution and adiponectin secretion, reverses programing-induced adipose GR, 11β-HSD1, and proinflammatory cytokines overexpression, possibly through a GR-dependent mechanism.

  8. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-04-07

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  9. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    SciTech Connect

    Luo, Ying; Li, Shu-Jun; Yang, Jian; Qiu, Yuan-Zhen; Chen, Fang-Ping

    2013-09-06

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulum stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.

  10. MiRNA-194 Regulates Palmitic Acid-Induced Toll-Like Receptor 4 Inflammatory Responses in THP-1 Cells.

    PubMed

    Tian, Huiqun; Liu, Chaoqi; Zou, Xiaohua; Wu, Wei; Zhang, Changcheng; Yuan, Ding

    2015-05-13

    There is strong evidence to suggest that inflammatory responses link obesity and diseases, and the understanding of obesity-induced inflammatory mechanisms is central to the pathogenesis of diseases such asnonalcoholic fatty liver disease(NAFLD) and atherosclerosis that are modified by obesity. Based on this, anti-inflammatory treatments become a potential therapies for obesity-related diseases like NAFLD.A critical role of toll-like receptor (TLR) and its downstream molecules such as tumor necrosis factor receptor-associated factor 6(TRAF6) has been documented in inflammatory response induced by fatty acid. TLR pathway regulation provides a new insight to controlling the inflammatory response induced by fatty acid. Taken together, our study was aimed to understand the mechanism of fatty acid-mediated inflammation and look for an effective target which can prevent the inflammatory response induced by obesity. In this study, we used the saturated fatty acid palmitic acid (PA) to activate TLR4 signal pathway in human monocyte cells THP-1 that established an intracellular inflammatory model. Followed with activated TLR4, downstream molecular TRAF6 was upregulated and ultimately induced proinflammatory cytokine production. Based on this model, we also found that PA downregulated miR-194 expression with TLR4 activation. Moreover, our results showed that key signal molecular TRAF6 is a target of miR-194, overexpression of miR-194 directly decreased TRAF6 expression and attenuated the release of proinflammatory cytokine TNF-α in PA-activated monocyte THP-1. We conclude that miR-194 negatively regulates the TLR4 signal pathway which is activated by PA through directly negative TRAF6 expression.

  11. Anti-inflammatory drug (BW755C) inhibits airway hyperresponsiveness induced by ozone in dogs

    SciTech Connect

    Fabbri, L.M.; Aizawa, H.; O'Byrne, P.M.; Bethel, R.A.; Walters, E.H.; Holtzman, M.J.; Nadel, J.A.

    1985-08-01

    To follow up a previous observation that airway hyperresponsiveness induced by ozone is linked to airway inflammation, the authors investigated the effect of BW755C, an anti-inflammatory drug, on ozone-induced hyperresponsiveness in dogs. Airway responsiveness was assessed with dose-response curves of acetylcholine aerosol versus pulmonary resistance in two sets of experiments. In one set (placebo treatment), five dogs were given only saline solution treatment and were studied before treatment or ozone exposure and then after treatment both before and after ozone (3.0 ppm, 2 hours); in another set (BW755C treatment), the same dogs were studied before BW755C treatment or ozone and then after treatment (10 mg/kg intravenously) both before and after ozone. When the dogs were given no BW755C treatment, ozone induced a marked increase in airway responsiveness to acetylcholine. When the dogs were given BW755C, responsiveness was no different during treatment than before treatment but, more importantly, responsiveness did not increase significantly after ozone. The authors conclude that BW755C markedly inhibits ozone-induced airway hyperresponsiveness in dogs, probably by inhibiting the formation of oxygenation products of arachidonic acid.

  12. The aldosterone-mineralocorticoid receptor pathway exerts anti-inflammatory effects in endotoxin-induced uveitis.

    PubMed

    Bousquet, Elodie; Zhao, Min; Ly, André; Leroux Les Jardins, Guillaume; Goldenberg, Brigitte; Naud, Marie-Christine; Jonet, Laurent; Besson-Lescure, Bernadette; Jaisser, Frederic; Farman, Nicolette; De Kozak, Yvonne; Behar-Cohen, Francine

    2012-01-01

    We have previously shown that the eye is a mineralocorticoid-sensitive organ and we now question the role of mineralocorticoid receptor (MR) in ocular inflammation. The endotoxin-induced uveitis (EIU), a rat model of human intraocular inflammation, was induced by systemic administration of lipopolysaccharide (LPS). Evaluations were made 6 and 24 hours after intraocular injection of aldosterone (simultaneous to LPS injection). Three hours after onset of EIU, the MR and the glucocorticoid metabolizing enzyme 11-beta hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression were down-regulated in iris/ciliary body and the corticosterone concentration was increased in aqueous humor, altering the normal MR/glucocorticoid receptor (GR) balance. At 24 hours, the GR expression was also decreased. In EIU, aldosterone reduced the intensity of clinical inflammation in a dose-dependent manner. The clinical benefit of aldosterone was abrogated in the presence of the MR antagonist (RU26752) and only partially with the GR antagonist (RU38486). Aldosterone reduced the release of inflammatory mediators (6 and 24 hours: TNF-α, IFN-γ, MIP-1α) in aqueous humor and the number of activated microglia/macrophages. Aldosterone partly prevented the uveitis-induced MR down-regulation. These results suggest that MR expression and activation in iris/ciliary body could protect the ocular structures against damages induced by EIU.

  13. A20 Ameliorates Intracerebral Hemorrhage–Induced Inflammatory Injury by Regulating TRAF6 Polyubiquitination

    PubMed Central

    Meng, Zhaoyou; Zhao, Ting; Zhou, Kai; Zhong, Qi; Wang, Yanchun; Xiong, Xiaoyi; Wang, Faxiang; Yang, Yuanrui; Zhu, Wenyao; Liu, Juan; Liao, Maofan; Wu, Lirong; Duan, Chunmei; Li, Jie; Gong, Qiuwen; Liu, Liang; Xiong, Ao; Yang, Meihua; Wang, Jian

    2017-01-01

    Reducing excessive inflammation is beneficial for the recovery from intracerebral hemorrhage (ICH). Here, the roles and mechanisms of A20 (TNFAIP3), an important endogenous anti-inflammatory factor, are examined in ICH. A20 expression in the PBMCs of ICH patients and an ICH mouse model was detected, and the correlation between A20 expression and neurologic deficits was analyzed. A20 expression was increased in PBMCs and was negatively related to the modified Rankin Scale score. A20 expression was also increased in mouse perihematomal tissues. A20−/− and A20-overexpressing mice were generated to further analyze A20 function. Compared with wild-type (WT) mice, A20−/− and A20-overexpressing mice showed significant increases and decreases, respectively, in hematoma volume, neurologic deficit score, mortality, neuronal degeneration, and proinflammatory factors. Moreover, WT-A20−/− parabiosis was established to explore the role of A20 in peripheral blood in ICH injury. ICH-induced damage, including brain edema, neurologic deficit score, proinflammatory factors, and neuronal apoptosis, was reduced in A20−/− parabionts compared with A20−/− mice. Finally, the interactions between TRAF6 and Ubc13 and UbcH5c were increased in A20−/− mice compared with WT mice; the opposite occurred in A20-overexpressing mice. Enhanced IκBα degradation and NF-κB activation were observed in A20−/− mice, but the results were reversed in A20-overexpressing mice. These results suggested that A20 is involved in regulating ICH-induced inflammatory injury in both the central and peripheral system and that A20 reduces ICH-induced inflammation by regulating TRAF6 polyubiquitination. Targeting A20 may thus be a promising therapeutic strategy for ICH. PMID:27986908

  14. The anti-inflammatory effects of palmitoylethanolamide (PEA) on endotoxin-induced uveitis in rats.

    PubMed

    Impellizzeri, Daniela; Ahmad, Akbar; Bruschetta, Giuseppe; Di Paola, Rosanna; Crupi, Rosalia; Paterniti, Irene; Esposito, Emanuela; Cuzzocrea, Salvatore

    2015-08-15

    The aim of this study was to investigate the effects of palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the family of the N-acylethanolamines (NAEs), in rats subjected to endotoxin-induced uveitis (EIU). EIU was induced in male rats by a single footpad injection of 200μg lipopolysaccharide (LPS). PEA was administered intraperitoneally at 1h before and 7h after injection of LPS. Another group of animals was treated with vehicle. Dexamethasone (DEX) was administered as a positive control. Rats were sacrificed 16h after injection and the eyes tissues were collected for histology, immunohistochemical and western blot analyses. The histological evaluation of the iris-ciliary body showed an increase of neutrophilic infiltration and nuclear modification of vessel of endothelial cells. PEA treatment decreased the inflammatory cell infiltration and improved histological damage of eye tissues. In addition, PEA treatment reduced pro-inflammatory tumor necrosis factor (TNF-α) levels, protein extravasion and lipid peroxidation. Immunohistochemical analysis for intracellular adhesion molecule (ICAM)-1 and nitrotyrosine showed a positive staining from LPS-injected rats. The degree of staining for ICAM-1 and nitrotyrosine was significantly reduced in eye sections from LPS-injected rats treated with PEA. In addition, an increase of inducible nitric oxide synthase (iNOS) and nuclear factor (NF-κB) was also evaluated in inflammed ocular tissues by western blot. PEA strongly inhibited iNOS expression and nuclear NF-κB translocation. Thus, in this study we demonstrated that PEA reduces the degree of ocular inflammation in a rat model of EIU.

  15. Interleukin-4 modulates the inflammatory response in ifosfamide-induced hemorrhagic cystitis.

    PubMed

    Macedo, Francisco Yuri Bulcão; Mourão, Lívia Talita Cajaseiras; Freitas, Helano Carioca; Lima, Roberto C P; Wong, Deysi Viviana Tenazoa; Oriá, Reinaldo Barreto; Vale, Mariana L; Brito, Gerly Anne Casto; Cunha, Fernando Q; Ribeiro, Ronaldo A

    2012-02-01

    We investigated whether interleukin-4 (IL-4) is present and capable of reducing inflammatory changes seen in ifosfamide-induced hemorrhagic cystitis. Male Swiss mice were treated with saline or ifosfamide alone or ifosfamide with the classical protocol with mesna and analyzed by changes in bladder wet weight (BWW), macroscopic and microscopic parameters, exudate, and hemoglobin quantification. In other groups, IL-4 was administered intraperitoneally 1 h before ifosfamide. In other experimental groups, C57BL/6 WT (wild type) and C57BL/6 WT IL-4 (-/-) knockout animals were treated with ifosfamide and analyzed for changes in BWW. Quantification of bladder IL-4 protein by ELISA in control, ifosfamide-, and mesna-treated groups was performed. Immunohistochemistry to tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) as well as protein identification by Western blot assay for inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was carried out on ifosfamide- and IL-4-treated animals. In other experimental groups, antiserum against IL-4 was given 30 min before ifosfamide. In IL-4-treated animals, the severity of hemorrhagic cystitis was significantly milder than in animals treated with ifosfamide only, an effect that was reverted with serum anti-IL-4. Moreover, knockout animals for IL-4 (-/-) exhibit a worse degree of inflammation when compared to C57BL/6 wild type. Exogenous IL-4 also attenuated TNF-α, IL-1β, iNOS, and COX-2 expressions in ifosfamide-treated bladders. IL-4, an anti-inflammatory cytokine, attenuates the inflammation seen in ifosfamide-induced hemorrhagic cystitis.

  16. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor.

    PubMed

    Zhang, Xianxie; Wang, Yuguang; Ma, Zengchun; Liang, Qiande; Tang, Xianglin; Hu, Donghua; Tan, Hongling; Xiao, Chengrong; Gao, Yue

    2015-01-01

    Tanshinone IIA (Tan IIA) (C19H18O3) is one of the major active lipophilic components in a conventional Chinese medicine called danshen, and it has long been used in the People's Republic of China and other neighboring countries to treat patients suffering from inflammatory bowel disease (IBD). Previous experiments by many teams determined which mechanism of Tan IIA is relevant to the treatment of IBD associated with inflammation and the pregnane X receptor (PXR). The current study demonstrated that Tan IIA is an efficacious PXR agonist and its ability to induce CYP3A4 mRNA and protein expression was mediated by the transactivation of PXR, a known target of abrogating inflammation in IBD. Clinical symptoms in mice and histological assessment data suggested that administration of Tan IIA in mice demonstrated significant protection and showed that in DSS-induced IBD it acts in a concentration-dependent manner. PXR-silenced mice treated with Tan IIA demonstrated low protection against DSS-induced mouse IBD and exacerbated the severity of IBD compared with wild-type mice; PXR-silenced mice demonstrated the necessity for PXR in Tan IIA-mediated upregulation of xenobiotic metabolism genes. The IBD treatment effects of Tan IIA are partially due to PXR-mediated upregulation of xenobiotic metabolism and downregulation of inflammatory mediators. The novel findings reported here may contribute to the effective utilization of Tan IIA and its derivatives as a PXR ligand in the treatment of human IBD. This suggests that Tan IIA may have considerable clinical utility.

  17. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor

    PubMed Central

    Zhang, Xianxie; Wang, Yuguang; Ma, Zengchun; Liang, Qiande; Tang, Xianglin; Hu, Donghua; Tan, Hongling; Xiao, Chengrong; Gao, Yue

    2015-01-01

    Tanshinone IIA (Tan IIA) (C19H18O3) is one of the major active lipophilic components in a conventional Chinese medicine called danshen, and it has long been used in the People’s Republic of China and other neighboring countries to treat patients suffering from inflammatory bowel disease (IBD). Previous experiments by many teams determined which mechanism of Tan IIA is relevant to the treatment of IBD associated with inflammation and the pregnane X receptor (PXR). The current study demonstrated that Tan IIA is an efficacious PXR agonist and its ability to induce CYP3A4 mRNA and protein expression was mediated by the transactivation of PXR, a known target of abrogating inflammation in IBD. Clinical symptoms in mice and histological assessment data suggested that administration of Tan IIA in mice demonstrated significant protection and showed that in DSS-induced IBD it acts in a concentration-dependent manner. PXR-silenced mice treated with Tan IIA demonstrated low protection against DSS-induced mouse IBD and exacerbated the severity of IBD compared with wild-type mice; PXR-silenced mice demonstrated the necessity for PXR in Tan IIA-mediated upregulation of xenobiotic metabolism genes. The IBD treatment effects of Tan IIA are partially due to PXR-mediated upregulation of xenobiotic metabolism and downregulation of inflammatory mediators. The novel findings reported here may contribute to the effective utilization of Tan IIA and its derivatives as a PXR ligand in the treatment of human IBD. This suggests that Tan IIA may have considerable clinical utility. PMID:26674743

  18. Anti-Inflammatory and Analgesic Effects of Pyeongwisan on LPS-Stimulated Murine Macrophages and Mouse Models of Acetic Acid-Induced Writhing Response and Xylene-Induced Ear Edema

    PubMed Central

    Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Ha, Jeong-Ho; Gu, Min Jung; Ma, Jin Yeul

    2015-01-01

    Pyeongwisan (PW) is an herbal medication used in traditional East Asian medicine to treat anorexia, abdominal distension, borborygmus and diarrhea caused by gastric catarrh, atony and dilatation. However, its effects on inflammation-related diseases are unknown. In this study, we investigated the biological effects of PW on lipopolysaccharide (LPS)-mediated inflammation in macrophages and on local inflammation in vivo. We investigated the biological effects of PW on the production of inflammatory mediators, pro-inflammatory cytokines and related products as well as the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated macrophages. Additionally, we evaluated the analgesic effect on the acetic acid-induced writhing response and the inhibitory activity on xylene-induced ear edema in mice. PW showed anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and interleukin-1β (IL-1β). In addition, PW strongly suppressed inducible nitric oxide synthase (iNOS), a NO synthesis enzyme, induced heme oxygenase-1 (HO-1) expression and inhibited NF-κB activation and MAPK phosphorylation. Also, PW suppressed TNF-α, IL-6 and IL-1β cytokine production in LPS-stimulated peritoneal macrophage cells. Furthermore, PW showed an analgesic effect on the writhing response and an inhibitory effect on mice ear edema. We demonstrated the anti-inflammatory effects and inhibitory mechanism in macrophages as well as inhibitory activity of PW in vivo for the first time. Our results suggest the potential value of PW as an inflammatory therapeutic agent developed from a natural substance. PMID:25569097

  19. Anti-inflammatory and analgesic effects of pyeongwisan on LPS-stimulated murine macrophages and mouse models of acetic acid-induced writhing response and xylene-induced ear edema.

    PubMed

    Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Ha, Jeong-Ho; Gu, Min Jung; Ma, Jin Yeul

    2015-01-06

    Pyeongwisan (PW) is an herbal medication used in traditional East Asian medicine to treat anorexia, abdominal distension, borborygmus and diarrhea caused by gastric catarrh, atony and dilatation. However, its effects on inflammation-related diseases are unknown. In this study, we investigated the biological effects of PW on lipopolysaccharide (LPS)-mediated inflammation in macrophages and on local inflammation in vivo. We investigated the biological effects of PW on the production of inflammatory mediators, pro-inflammatory cytokines and related products as well as the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated macrophages. Additionally, we evaluated the analgesic effect on the acetic acid-induced writhing response and the inhibitory activity on xylene-induced ear edema in mice. PW showed anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and interleukin-1β (IL-1β). In addition, PW strongly suppressed inducible nitric oxide synthase (iNOS), a NO synthesis enzyme, induced heme oxygenase-1 (HO-1) expression and inhibited NF-κB activation and MAPK phosphorylation. Also, PW suppressed TNF-α, IL-6 and IL-1β cytokine production in LPS-stimulated peritoneal macrophage cells. Furthermore, PW showed an analgesic effect on the writhing response and an inhibitory effect on mice ear edema. We demonstrated the anti-inflammatory effects and inhibitory mechanism in macrophages as well as inhibitory activity of PW in vivo for the first time. Our results suggest the potential value of PW as an inflammatory therapeutic agent developed from a natural substance.

  20. Pseudomonas-Derived Ceramidase Induces Production of Inflammatory Mediators from Human Keratinocytes via Sphingosine-1-Phosphate

    PubMed Central

    Oizumi, Ami; Nakayama, Hitoshi; Okino, Nozomu; Iwahara, Chihiro; Kina, Katsunari; Matsumoto, Ryo; Ogawa, Hideoki; Takamori, Kenji; Ito, Makoto; Suga, Yasushi; Iwabuchi, Kazuhisa

    2014-01-01

    Ceramide is important for water retention and permeability barrier functions in the stratum corneum, and plays a key role in the pathogenesis of atopic dermatitis (AD). A Pseudomonas aeruginosa-derived neutral ceramidase (PaCDase) isolated from a patient with AD was shown to effectively degrade ceramide in the presence of Staphylococcus aureus-derived lipids or neutral detergents. However, the effect of ceramide metabolites on the functions of differentiating keratinocytes is poorly understood. We found that the ceramide metabolite sphingosine-1-phosphate (S1P) stimulated the production of inflammatory mediators such as TNF-α and IL-8 from three-dimensionally cultured human primary keratinocytes (termed “3D keratinocytes”), which form a stratum corneum. PaCDase alone did not affect TNF-α gene expression in 3D keratinocytes. In the presence of the detergent Triton X-100, which damages stratum corneum structure, PaCDase, but not heat-inactivated PaCDase or PaCDase-inactive mutant, induced the production of TNF-α, endothelin-1, and IL-8, indicating that this production was dependent on ceramidase activity. Among various ceramide metabolites, sphingosine and S1P enhanced the gene expression of TNF-α, endothelin-1, and IL-8. The PaCDase-enhanced expression of these genes was inhibited by a sphingosine kinase inhibitor and by an S1P receptor antagonist VPC 23019. The TNF-α-binding antibody infliximab suppressed the PaCDase-induced upregulation of IL-8, but not TNF-α, mRNA. PaCDase induced NF-κB p65 phosphorylation. The NF-κB inhibitor curcumin significantly inhibited PaCDase-induced expression of IL-8 and endothelin-1. VPC 23019 and infliximab inhibited PaCDase-induced NF-κB p65 phosphorylation and reduction in the protein level of the NF-κB inhibitor IκBα. Collectively, these findings suggest that (i) 3D keratinocytes produce S1P from sphingosine, which is produced through the hydrolysis of ceramide by PaCDase, (ii) S1P induces the production of TNF

  1. Protective Role of Curcumin and Flunixin Against Acetic Acid-Induced Inflammatory Bowel Disease via Modulating Inflammatory Mediators and Cytokine Profile in Rats.

    PubMed

    Gopu, Boobalan; Dileep, Rasakatla; Rani, Matukumalli Usha; Kumar, C S V Satish; Kumar, Matham Vijay; Reddy, Alla Gopala

    2015-01-01

    Ulcerative colitis is a chronically recurrent inflammatory bowel disease of unknown origin. The present study is to evaluate the effect of flunixin and curcumin in experimentally induced ulcerative colitis in rats. Animals were randomly divided into four groups, each consisting of 12 animals: normal control group, acetic acid group, curcumin-treated group, and flunixin-treated group. Induction of colitis by intracolonic administration of 4% acetic acid produced severe macroscopic inflammation in the colon, 14 days after acetic acid administration as assessed by the colonic damage score. Microscopically, colonic tissues showed ulceration, edema, and inflammatory cells infiltration. Biochemical studies revealed increased serum levels of lactate dehydrogenase (LDH), colonic alkaline phosphatase (ALP), and myeloperoxidase (MPO). Oxidative stress was indicated by elevated lipid peroxide formation and depleted reduced glutathione concentrations in colonic tissues. After induction of colitis, treatment with curcumin (50 mg/kg daily, p.o.) and flunixin (2.5 mg/kg daily, s.c.) decreased serum LDH, ALP, interleukin (IL)-1β, and tumor necrosis factor-α levels, as well as colonic MPO and lipid peroxide levels, whereas increased colonic prostaglandin E2 and IL-10 concentrations were observed. Moreover, effective doses of curcumin and flunixin were effective in restoring the histopathological changes induced by acetic acid administration. The findings of the present study provide evidence that flunixin may be beneficial in patients with inflammatory bowel disease.

  2. Down-Regulation of CXCL12/CXCR4 Expression Alleviates Ischemia-Reperfusion-Induced Inflammatory Pain via Inhibiting Glial TLR4 Activation in the Spinal Cord.

    PubMed

    Li, Xiao-Qian; Zhang, Zai-Li; Tan, Wen-Fei; Sun, Xi-Jia; Ma, Hong

    2016-01-01

    Toll-like receptor 4 (TLR4) is important for the pathogenesis of inflammatory reactions and the promotion of pain processing after ischemia/reperfusion (IR) in spinal cord. Recently, C-X-C chemokine ligand 12 (CXCL12) and its receptor, C-X-C chemokine receptor 4 (CXCR4), were demonstrated to be simultaneously critical for inflammatory reactions, thereby facilitating glial activation. However, whether CXCL12/CXCR4 expression can contribute to IR-induced inflammatory pain via spinal TLR4 remained unclear. A rat model was established by 8 min of aortic arch occlusion. The effects of CXCL12/CXCR4 expression and TLR4 activation on inflammatory hyperalgesia were investigated by pretreatments with CXCL12-neutralizing antibody, CXCR4 antagonist (AMD3100) and TLR4 antagonist (TAK-242) for 5 consecutive days before surgery. The results indicated that IR induced significant and sustained inflammatory pain, observed as decreases in paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), throughout the post-injury period. The increased levels of TLR4 and proinflammatory chemokine CXCL12, as well as its receptor, CXCR4, were closely correlated with the PWT and PWL trends. Double immunostaining further suggested that TLR4, which is mainly expressed on astrocytes and microglia, was closely co-localized with CXCL12 and CXCR4 in spinal dorsal horn. As expected, intrathecal pretreatment with the TLR4 antagonist, TAK-242 markedly ameliorated pain by inhibiting astrocytic and microglial activation, as shown by decreases in TLR4 immunoreactivity and the percentage of double-labeled cells. These protective effects were likely due in part to the reduced production of the downstream cytokines IL-1β and TNF-α, as well as for the recruitment of CXCL12 and CXCR4. Additionally, intrathecal pretreatment with CXCL12-neutralizing antibody and AMD3100 resulted in similar analgesic and anti-inflammatory effects as those receiving TAK-242 pretreatment. These results suggest that

  3. Prevention of Chlamydia-Induced Infertility by Inhibition of Local Caspase Activity

    PubMed Central

    Igietseme, Joseph U.; Omosun, Yusuf; Partin, James; Goldstein, Jason; He, Qing; Joseph, Kahaliah; Ellerson, Debra; Ansari, Uzma; Eko, Francis O.; Bandea, Claudiu; Zhong, Guangming; Black, Carolyn M.

    2013-01-01

    Tubal factor infertility (TFI) represents 36% of female infertility and genital infection by Chlamydia trachomatis (C. trachomatis) is a major cause. Although TFI is associated with host inflammatory responses to bacterial components, the molecular pathogenesis of Chlamydia-induced infertility remains poorly understood. We investigated the hypothesis that activation of specific cysteine proteases, the caspases, during C. trachomatis genital infection causes the disruption of key fertility-promoting molecules required for embryo development and implantation. We analyzed the effect of caspase inhibition on infertility and the integrity of Dicer, a caspase-sensitive, fertility-promoting ribonuclease III enzyme, and key micro-RNAs in the reproductive system. Genital infection with the inflammation- and caspase-inducing, wild-type C. trachomatis serovar L2 led to infertility, but the noninflammation-inducing, plasmid-free strain did not. We confirmed that caspase-mediated apoptotic tissue destruction may contribute to chlamydial pathogenesis. Caspase-1 or -3 deficiency, or local administration of the pan caspase inhibitor, Z-VAD-FMK into normal mice protected against Chlamydia-induced infertility. Finally, the oviducts of infected infertile mice showed evidence of caspase-mediated cleavage inactivation of Dicer and alteration in critical miRNAs that regulate growth, differentiation, and development, including mir-21. These results provide new insight into the molecular pathogenesis of TFI with significant implications for new strategies for treatment and prevention of chlamydial complications. PMID:23303804

  4. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages.

    PubMed

    Banerjee, Somenath; Bose, Dipayan; Chatterjee, Nabanita; Das, Subhadip; Chakraborty, Sreeparna; Das, Tanya; Saha, Krishna Das

    2016-03-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain pre-exposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in future.

  5. Does carboxy-hemoglobin serve as a stress-induced inflammatory marker reflecting surgical insults?

    PubMed

    Sakamoto, Atsuhiro; Nakanishi, Kazuhiro; Takeda, Shinhiro; Ogawa, Ryo

    2005-02-01

    Endogenous carbon monoxide (CO) production has been recently observed to be an index of the inflammatory response, reflecting various insults in critically ill patients. Major surgery is supposed to modulate the production of CO by transcriptional regulation of heme oxygenase (HO). CO is easy to measure as carboxyhemoglobin (CO-Hb) by spectrophotometry; however, whether CO-Hb can be used as an index reflecting surgical insults is unknown. We investigated changes in CO generation during coronary artery bypass graft by measuring CO-Hb concentrations and the expression of HO in circulating blood as well as the expressions of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta). The expression ratios of heme oxygenase-1 (HO-1), TNF-alpha, and IL-1 beta significantly increased after surgery, and these values correlated significantly with one another. CO-Hb concentrations significantly increased after surgery; however, many of those values during artificial ventilation with high inspired oxygen fraction were within normal limits. Furthermore, changes in CO-Hb concentrations were small when preoperative values were high. On the whole, CO-Hb concentrations significantly but weakly correlated with the expression ratios of the inflammatory mediators. However, they did not correlate in the patients who showed higher preoperative CO-Hb concentrations. These data indicate that CO-Hb concentrations can, in general, reflect the inflammatory response induced by surgical insult; however, CO-Hb measurement may not be a useful form of clinical monitoring because of the limited degree of changes, the variation of baseline values, and the necessity for the management under fixed conditions.

  6. P2X7 Receptor Modulates Inflammatory and Functional Pulmonary Changes Induced by Silica

    PubMed Central

    Santana, Patrícia T.; Vieira, Flávia S.; da Graça, Carolyne Lalucha A. L.; Marques-da-Silva, Camila; Machado, Mariana N.; Caruso-Neves, Celso; Zin, Walter A.; Borojevic, Radovan; Coutinho-Silva, Robson

    2014-01-01

    Silicosis is an occupational lung disease, characterized by irreversible and progressive fibrosis. Silica exposure leads to intense lung inflammation, reactive oxygen production, and extracellular ATP (eATP) release by macrophages. The P2X7 purinergic receptor is thought to be an important immunomodulator that responds to eATP in sites of inflammation and tissue damage. The present study investigates the role of P2X7 receptor in a murine model of silicosis. To that end wild-type (C57BL/6) and P2X7 receptor knockout mice received intratracheal injection of saline or silica particles. After 14 days, changes in lung mechanics were determined by the end-inflation occlusion method. Bronchoalveolar lavage and flow cytometry analyzes were performed. Lungs were harvested for histological and immunochemistry analysis of fibers content, inflammatory infiltration, apoptosis, as well as cytokine and oxidative stress expression. Silica particle effects on lung alveolar macrophages and fibroblasts were also evaluated in cell line cultures. Phagocytosis assay was performed in peritoneal macrophages. Silica exposure increased lung mechanical parameters in wild-type but not in P2X7 knockout mice. Inflammatory cell infiltration and collagen deposition in lung parenchyma, apoptosis, TGF-β and NF-κB activation, as well as nitric oxide, reactive oxygen species (ROS) and IL-1β secretion were higher in wild-type than knockout silica-exposed mice. In vitro studies suggested that P2X7 receptor participates in silica particle phagocytosis, IL-1β secretion, as well as reactive oxygen species and nitric oxide production. In conclusion, our data showed a significant role for P2X7 receptor in silica-induced lung changes, modulating lung inflammatory, fibrotic, and functional changes. PMID:25310682

  7. Effects of helium on inflammatory and oxidative stress-induced endothelial cell damage.

    PubMed

    Smit, Kirsten F; Kerindongo, Raphaela P; Böing, Anita; Nieuwland, Rienk; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2015-09-10

    Helium induces preconditioning in human endothelium protecting against postischemic endothelial dysfunction. Circulating endothelial microparticles are markers of endothelial dysfunction derived in response to injury. Another noble gas, xenon, protected human umbilical vein endothelial cells (HUVEC) against inflammatory stress in vitro. We hypothesised that helium protects the endothelium in vitro against inflammatory and oxidative stress. HUVEC were isolated from fresh umbilical cords and grown upon confluence. Cells were subjected to starving medium for 12h before the experiment and treated for either 3 × 5 min or 1 × 30 min with helium (5% CO2, 25% O2, 70% He) or control gas (5% CO2, 25% O2, 70% N2) in a specialised gas chamber. Subsequently, cells were stimulated with TNF-α (40 ng/ml for 24h or 10 ng/ml for 2h) or H2O2 (500 μM for 2h) or left untreated. Adhesion molecule expression was analysed using real-time quantitative polymerase chain reaction. Caspase-3 expression and viability of the cells was measured by flowcytometry. Microparticles were investigated by nanoparticle tracking analysis. Helium had no effect on adhesion molecule expression after TNF-α stimulation but in combination with oxidative stress decreased cell viability (68.9 ± 1.3% and 58 ± 1.9%) compared to control. Helium further increased TNF-α induced release of caspase-3 containing particles compared to TNF-α alone (6.4 × 10(6) ± 1.1 × 10(6) and 2.9 × 10(6) ± 0.7 × 10(6), respectively). Prolonged exposure of helium increased microparticle formation (2.4 × 10(9) ± 0.5 × 10(9)) compared to control (1.7 × 10(9) ± 0.2 × 10(9)). Summarized, helium increases inflammatory and oxidative stress-induced endothelial damage and is thus not biologically inert. A possible noxious effects on the cellular level causing alterations in microparticle formation both in number and content should be acknowledged.

  8. Pro-inflammatory Cytokines Impair Vitamin D-induced Host Defense in Cultured Airway Epithelial Cells.

    PubMed

    Schrumpf, Jasmijn A; Amatngalim, Gimano D; Veldkamp, Joris B; Verhoosel, Renate M; Ninaber, Dennis K; Ordonez, Soledad R; van der Does, Anne M; Haagsman, Henk P; Hiemstra, Pieter S

    2017-02-23

    Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells (PBEC) to pro-inflammatory cytokines alters their vitamin D metabolism, antibacterial activity and expression of hCAP18/LL-37. To investigate this, PBEC were differentiated at the air-liquid interphase for 14 days in presence of the pro-inflammatory cytokines TNF-α and IL-1β (TNF-α/IL-1β), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2D3). Expression of hCAP18/LL-37, vitamin D receptor (VDR) and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using qPCR, Western blot and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using non-typeable Haemophilus influenzae (NTHi). We found that TNF-α/IL-1β treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of NTHi. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1β, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and VDR expression remained unaffected. Furthermore, we demonstrated that the TNF-α/IL-1β-mediated induction of CYP24A1 was at least in part mediated by the transcription factor specific protein 1 (Sp1) and the EGFR-MAPK-pathway. These findings indicate that TNF-α/IL-1β decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1, and suggests that chronic inflammation impairs protective responses induced by vitamin D.

  9. Sodium channel γENaC mediates IL-17 synergized high salt induced inflammatory stress in breast cancer cells.

    PubMed

    Amara, Suneetha; Ivy, Michael T; Myles, Elbert L; Tiriveedhi, Venkataswarup

    2016-04-01

    Chronic inflammation is known to play a critical role in the development of cancer. Recent evidence suggests that high salt in the tissue microenvironment induces chronic inflammatory milieu. In this report, using three breast cancer-related cell lines, we determined the molecular basis of the potential synergistic inflammatory effect of sodium chloride (NaCl) with interleukin-17 (IL-17). Combined treatment of high NaCl (0.15M) with sub-effective IL-17 (0.1 nM) induced enhanced growth in breast cancer cells along with activation of reactive nitrogen and oxygen (RNS/ROS) species known to promote cancer. Similar effect was not observed with equi-molar mannitol. This enhanced of ROS/RNS activity correlates with upregulation of γENaC an inflammatory sodium channel. The similar culture conditions have also induced expression of pro-inflammatory cytokines such as IL-6, TNFα etc. Taken together, these data suggest that high NaCl in the cellular microenvironment induces a γENaC mediated chronic inflammatory response with a potential pro-carcinogenic effect.

  10. Viscum album Exerts Anti-Inflammatory Effect by Selectively Inhibiting Cytokine-Induced Expression of Cyclooxygenase-2

    PubMed Central

    Hegde, Pushpa; Maddur, Mohan S.; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srini V.

    2011-01-01

    Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2. PMID:22028854

  11. Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles.

    PubMed

    Alabastri, Alessandro; Yang, Xiao; Manjavacas, Alejandro; Everitt, Henry O; Nordlander, Peter

    2016-04-26

    The intense local field induced near metallic nanostructures provides strong enhancements for surface-enhanced spectroscopies, a major focus of plasmonics research over the past decade. Here we consider that plasmonic nanoparticles can also induce remarkably large electromagnetic field gradients near their surfaces. Sizeable field gradients can excite dipole-forbidden transitions in nearby atoms or molecules and provide unique spectroscopic fingerprinting for chemical and bimolecular sensing. Specifically, we investigate how the local field gradients near metallic nanostructures depend on geometry, polarization, and wavelength. We introduce the concept of the local angular momentum (LAM) vector as a useful figure of merit for the design of nanostructures that provide large field gradients. This quantity, based on integrated fields rather than field gradients, is particularly well-suited for optimization using numerical grid-based full wave electromagnetic simulations. The LAM vector has a more compact structure than the gradient matrix and can be straightforwardly associated with the angular momentum of the electromagnetic field incident on the plasmonic structures.

  12. Multiple Viral Determinants Mediate Myopathogenicity in Coxsackievirus B1-Induced Chronic Inflammatory Myopathy

    PubMed Central

    Tam, Patricia E.; Weber-Sanders, Melissa L.; Messner, Ronald P.

    2003-01-01

    Mice infected with myopathic coxsackievirus B1 Tucson (CVB1T) develop chronic inflammatory myopathy (CIM) consisting of hind limb weakness and inflammation. Amyopathic virus variants are infectious but attenuated for CIM. In this report, viral clones, chimeras, and sequencing were used to identify viral determinants of CIM. Chimeras identified several regions involved in CIM and localized a weakness determinant to nucleotides 2493 to 3200 of VP1. Sequencing of multiple clones and viruses identified five candidate determinants that were strictly conserved in myopathic viruses with one located in the 5′ untranslated region (UTR), three in the VP1 capsid, and one in the 3C protease. Taken together, these studies implicate Tyr-87 and/or Val-136 as candidate determinants of weakness. They also indicate that there are at least two determinants of inflammation and one additional determinant of weakness encoded by myopathic CVB1T. PMID:14557670

  13. Neuroprotection of Ischemic Preconditioning is Mediated by Anti-inflammatory, Not Pro-inflammatory, Cytokines in the Gerbil Hippocampus Induced by a Subsequent Lethal Transient Cerebral Ischemia.

    PubMed

    Kim, Dong Won; Lee, Jae-Chul; Cho, Jeong-Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Seo, Jeong Yeol; Cho, Jun Hwi; Kang, Il Jun; Hong, Seongkweon; Kim, Young-Myeong; Won, Moo-Ho; Kim, In Hye

    2015-09-01

    Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral ischemia. We, in this study, compared expressions of interleukin (IL)-2 and tumor necrosis factor (TNF)-α as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines in the gerbil hippocampal CA1 region between animals with lethal ischemia and ones with IPC followed by lethal ischemia. In the animals with lethal ischemia, pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region were dead at 5 days post-ischemia; however, IPC protected the CA1 pyramidal neurons from lethal ischemic injury. Expressions of all cytokines were significantly decreased in the SP after lethal ischemia and hardly detected in the SP at 5 days post-ischemia because the CA1 pyramidal neurons were dead. IPC increased expressions of anti-inflammatory cytokines (IL-4 and IL-13) in the stratum pyramidale of the CA1 region following no lethal ischemia (sham-operation), and the increased expressions of IL-4 and IL-13 by IPC were continuously maintained is the SP of the CA1 region after lethal ischemia. However, pro-inflammatory cytokines (IL-2 and TNF-α) in the SP of the CA1 region were similar those in the sham-operated animals with IPC, and the IL-4 and IL-13 expressions in the SP were maintained after lethal ischemia. In conclusion, this study shows that anti-inflammatory cytokines significantly increased and longer maintained by IPC and this might be closely associated with neuroprotection after lethal transient cerebral ischemia.

  14. Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines: Lactobacillus casei: COX-2 inhibitor.

    PubMed

    Amdekar, Sarika; Singh, Vinod; Singh, Rambir; Sharma, Poonam; Keshav, Poonam; Kumar, Avnish

    2011-04-01

    This study evaluated the therapeutic efficacy of Lactobacillus casei in treating rheumatoid arthritis using collagen-induced arthritis (CIA) animal model. Healthy female Wistar rats (weight-180-200 g) were included in this study. Oral administration of L. casei was started on the same day. Indomethacin was used as standard reference drug. Serum level of IL-6, α-TNF, and IL-10 were observed. Four-point arthritis indexes were also assessed at the end of week for 28th day. L. casei-treated rats had shown normal histopathology without any synovial infiltration, pannus formation, cartilage, and bone destruction. Arthritis score was also lower for the group treated with L. casei. Oral administration of L. casei significantly decreased the pro-inflammatory cytokines. Present study suggests that L. casei has potent antiarthritic effect in CIA model. Inhibition of COX-2 via inhibiting the pro-inflammatory cytokines is an understanding of the complex interactions involved in these pathways.

  15. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms.

    PubMed

    Mendes, Saulo J F; Sousa, Fernanda I A B; Pereira, Domingos M S; Ferro, Thiago A F; Pereira, Ione C P; Silva, Bruna L R; Pinheiro, Aruanã J M C R; Mouchrek, Adriana Q S; Monteiro-Neto, Valério; Costa, Soraia K P; Nascimento, José L M; Grisotto, Marcos A G; da Costa, Robson; Fernandes, Elizabeth S

    2016-05-01

    Cinnamaldehyde is a natural essential oil suggested to possess anti-bacterial and anti-inflammatory properties; and to activate transient receptor potential ankyrin 1 (TRPA1) channels expressed on neuronal and non-neuronal cells. Here, we investigated the immunomodulatory effects of cinnamaldehyde in an in vivo model of systemic inflammatory response syndrome (SIRS) induced by lipopolysaccharide. Swiss mice received a single oral treatment with cinnamaldehyde 1 h before LPS injection. To investigate whether cinnamaldehyde effects are dependent on TRPA1 activation, animals were treated subcutaneously with the selective TRPA1 antagonist HC-030031 5 min prior to cinnamaldehyde administration. Vehicle-treated mice were used as controls. Cinnamaldehyde ameliorated SIRS severity in LPS-injected animals. Diminished numbers of circulating mononuclear cells and increased numbers of peritoneal mononuclear and polymorphonuclear cell numbers were also observed. Cinnamaldehyde augmented the number of peritoneal Ly6C(high) and Ly6C(low) monocyte/macrophage cells in LPS-injected mice. Reduced levels of nitric oxide, plasma TNFα and plasma and peritoneal IL-10 were also detected. Additionally, IL-1β levels were increased in the same animals. TRPA1 antagonism by HC-030031 reversed the changes in the number of circulating and peritoneal leukocytes in cinnamaldehyde-treated animals, whilst increasing the levels of peritoneal IL-10 and reducing peritoneal IL-1β. Overall, cinnamaldehyde modulates SIRS through TRPA1-dependent and independent mechanisms.

  16. Inhibitory effect of Malvidin on TNF-α-induced inflammatory response in endothelial cells.

    PubMed

    Huang, Wu-Yang; Wang, Jian; Liu, Ya-Mei; Zheng, Qi-Sheng; Li, Chun-Yang

    2014-01-15

    Vascular inflammatory responses are key mediators of endothelial dysfunction that leads to various pathologies in many diseases including atherosclerosis and cancer. The purpose of the study was to investigate the effects and molecular mechanisms of Malvidin, a natural pigment with strong antioxidant activity, on regulating inflammatory response in endothelial cells. Our results showed that tumor necrosis factor-alpha (TNF-α) significantly increased the protein or mRNA levels of monocyte chemotactic protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), whereas pretreatment with Malvidin inhibited TNF-α-induced increases of MCP-1, ICAM-1, and VCAM-1 production in a concentration-dependent manner. In addition, Malvidin could inhibit degradation of IκBα and the nuclear translocation of p65, which suggesting the anti-inflammation mechanism of Malvidin by the nuclear factor kappa B (NF-κB) pathway. These results indicate the potential role of Malvidin in preventing chronic inflammation in many diseases.

  17. Inflammatory events in a vascular remodeling model induced by surgical injury to the rat carotid artery

    PubMed Central

    Rinaldi, Barbara; Romagnoli, Paolo; Bacci, Stefano; Carnuccio, Rosa; Maiuri, Maria Chiara; Donniacuo, Maria; Capuano, Annalisa; Rossi, Francesco; Filippelli, Amelia

    2005-01-01

    The aim of our study was to gain insight into the molecular and cellular mechanisms of the inflammatory response to arterial injury in a rat experimental model. Rats (five for each experimental time) were subjected to brief clamping and longitudinal incision of a carotid artery and monitored for 30 days. Subsequently, Nuclear Factor-kappaB (NF-κB) expression was measured by electrophoretic mobility shift assay. Heat shock protein (HSP) 27, HSP47 and HSP70 were evaluated by Western blot. Morphological changes of the vessel wall were investigated by light and electron microscopy. In injured rat carotid artery NF-κB activity started immediately upon injury, and peaked between 2 and 3 weeks later. Western blot showed a significant increase of HSP47 and HSP70 7 days after injury. At 2 weeks postinjury, HSP27 expression peaked. Ligth microscopy showed a neointima formation, discontinuity of the media layer and a rich infiltrate. Among infiltrating cells electron microscopy identified dendritic-like cells in contact with lymphocytes. Our model of surgical injury induces a significant inflammatory process characterized by enhanced NF-κB activity and HSPs hyperexpression. Dendritic-like cells were for the first time identified as a novel component of tissue repair consequent to acute arterial injury. PMID:16299548

  18. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells.

    PubMed

    Gallina, Giovanna; Dolcetti, Luigi; Serafini, Paolo; De Santo, Carmela; Marigo, Ilaria; Colombo, Mario P; Basso, Giuseppe; Brombacher, Frank; Borrello, Ivan; Zanovello, Paola; Bicciato, Silvio; Bronte, Vincenzo

    2006-10-01

    Active suppression of tumor-specific T lymphocytes can limit the efficacy of immune surveillance and immunotherapy. While tumor-recruited CD11b+ myeloid cells are known mediators of tumor-associated immune dysfunction, the true nature of these suppressive cells and the fine biochemical pathways governing their immunosuppressive activity remain elusive. Here we describe a population of circulating CD11b+IL-4 receptor alpha+ (CD11b+IL-4Ralpha+), inflammatory-type monocytes that is elicited by growing tumors and activated by IFN-gamma released from T lymphocytes. CD11b+IL-4Ralpha+ cells produced IL-13 and IFN-gamma and integrated the downstream signals of these cytokines to trigger the molecular pathways suppressing antigen-activated CD8+ T lymphocytes. Analogous immunosuppressive circuits were active in CD11b+ cells present within the tumor microenvironment. These suppressor cells challenge the current idea that tumor-conditioned immunosuppressive monocytes/macrophages are alternatively activated. Moreover, our data show how the inflammatory response elicited by tumors had detrimental effects on the adaptive immune system and suggest novel approaches for the treatment of tumor-induced immune dysfunctions.

  19. Small bowel intussusception by local recurrence of an inflammatory myofibroblastic tumor: report of a case and review of the literature.

    PubMed

    Zuccarello, C; Arena, F; Fazzari, C; Arena, S; Nicòtina, P A

    2006-10-01

    Inflammatory myofibroblastic tumor (IMT) of the ileum is a rare, usually solitary lesion, that frequently presents small-intestinal intussusception and obstruction. We describe an IMT of the ileum in a 4.5-year old child who presented a small bowel intussusception. During laparotomy, an annular mass around the ileum was resected, and the IMT was histologically diagnosed. Three months after the operation, the patients were hospitalized with the symptoms of intestinal obstruction. Laparotomy showed a ileal intussusception. Along the previous suture line of anastomosis, a smooth polypoid tumor was evident. Segmental resection of the ileum, including the tumor mass, was performed. The IMT was immunohistochemically diagnosed. The patient was asymptomatic at 3 year follow-up. A review of the literature for this rare entity emphasizes the importance of immunohistochemical confirmation of its benign nature. Because of the risk of local recurrence, IMT cases should have a long-term follow-up.

  20. Breast cancer local recurrence under the form of inflammatory carcinoma, treated with concurrent radiation and chemotherapy, a case report

    PubMed Central

    Reis, Isabel; Pereira, Helena; Azevedo, Isabel; Conde, João; Bravo, Isabel; Craveiro, Rogéria; Pereira, Deolinda

    2013-01-01

    The authors present a case report of a patient with breast cancer diagnosed in 2005, treated with conservative surgery, adjuvant chemotherapy and radiotherapy, followed by hormonal therapy until 2010, who relapsed under the form of inflammatory breast cancer in 2011. After tumor progression detected during primary systemic therapy, a concurrent radiation and radiosensitizing chemotherapy were proposed. There was a significant clinical response to this treatment, enabling curative chance with total mastectomy. The histological examination of the breast and regional lymph nodes revealed a complete response, since there was no evidence of residual tumor. There are few reports concerning concurrent radiotherapy and chemotherapy in locally advanced breast cancer, but it could be a suitable “loco regional rescue therapy” to further reduce tumor progression and allow curative surgery. Study of this treatment strategy in randomized clinical trials is warranted. PMID:24936322

  1. Expression of tak1 and tram induces synergistic pro-inflammatory signalling and adjuvants DNA vaccines.

    PubMed

    Larsen, Karen Colbjørn; Spencer, Alexandra J; Goodman, Anna L; Gilchrist, Ashley; Furze, Julie; Rollier, Christine S; Kiss-Toth, Endre; Gilbert, Sarah C; Bregu, Migena; Soilleux, Elizabeth J; Hill, Adrian V S; Wyllie, David H

    2009-09-18

    Improving vaccine immunogenicity remains a major challenge in the fight against developing country diseases like malaria and AIDS. We describe a novel strategy to identify new DNA vaccine adjuvants. We have screened components of the Toll-like receptor signalling pathways for their ability to activate pro-inflammatory target genes in transient transfection assays and assessed in vivo adjuvant activity by expressing the activators from the DNA backbone of vaccines. We find that a robust increase in the immune response necessitates co-expression of two activators. Accordingly, the combination of tak1 and tram elicits synergistic reporter activation in transient transfection assays. In a mouse model this combination, but not the individual molecules, induced approximately twofold increases in CD8+ T-cell immune responses. These results indicate that optimal immunogenicity may require activation of distinct innate immune signalling pathways. Thus this strategy offers a novel route to the discovery of a new generation of adjuvants.

  2. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo

    PubMed Central

    Stayte, Sandy; Rentsch, Peggy; Tröscher, Anna R.; Bamberger, Maximilian; Li, Kong M.; Vissel, Bryce

    2017-01-01

    Parkinson’s disease is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta region and a subsequent loss of dopamine within the striatum. A promising avenue of research has been the administration of growth factors to promote the survival of remaining midbrain neurons, although the mechanism by which they provide neuroprotection is not understood. Activin A, a member of the transforming growth factor β superfamily, has been shown to be a potent anti-inflammatory following acute brain injury and has been demonstrated to play a role in the neuroprotection of midbrain neurons against MPP+-induced degeneration in vitro. We hypothesized that activin A may offer similar anti-inflammatory and neuroprotective effects in in vivo mouse models of Parkinson’s disease. We found that activin A significantly attenuated the inflammatory response induced by both MPTP and intranigral administration of lipopolysaccharide in C57BL/6 mice. We found that administration of activin A promoted survival of dopaminergic and total neuron populations in the pars compacta region both 8 days and 8 weeks after MPTP-induced degeneration. Surprisingly, no corresponding protection of striatal dopamine levels was found. Furthermore, activin A failed to protect against loss of striatal dopamine transporter expression in the striatum, suggesting the neuroprotective action of activin A may be localized to the substantia nigra. Together, these results provide the first evidence that activin A exerts potent neuroprotection and anti-inflammatory effects in the MPTP and lipopolysaccharide mouse models of Parkinson’s disease. PMID:28121982

  3. Tokamak Plasma Flows Induced by Local RF Forces

    NASA Astrophysics Data System (ADS)

    Chen, Jiale; Gao, Zhe

    2015-10-01

    The tokamak plasma flows induced by the local radio frequency (RF) forces in the core region are analyzed. The effective components of local RF forces are composed of the momentum absorption term and the resonant parallel momentum transport term (i.e. the parallel component of the resonant ponderomotive forces). Different momentum balance relations are employed to calculate the plasma flows depending on different assumptions of momentum transport. With the RF fields solved from RF simulation codes, the toroidal and poloidal flows by these forces under the lower hybrid current drive and the mode conversion ion cyclotron resonance heating on EAST-like plasmas are evaluated. supported by National Natural Science Foundation of China (Nos. 11405218, 11325524, 11375235 and 11261140327), in part by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB111002, 2013GB112001 and 2013GB112010), and the Program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning

  4. Permittivity disorder induced Anderson localization in magnetophotonic crystals

    NASA Astrophysics Data System (ADS)

    Abdi-Ghaleh, R.; Namdar, A.

    2016-11-01

    This theoretical study was carried out to investigate the permittivity disorder induced Anderson localization of light in one-dimensional magnetophotonic crystals. It was shown that the disorder create the resonant transmittance modes associated with enhanced Faraday rotations inside the photonic band gap. The average localization length of the right- and left-handed circular polarizations (RCP and LCP), the total transmittance together with the ensemble average of the RCP and LCP phases, and the Faraday rotation of the structure were also investigated. For this purpose, the off-diagonal elements of the permittivity tensor were varied for various wavelengths of incident light. The obtained results revealed the nonreciprocal property of circular eigen modes. This study can potentially open up a new aspect for utilizing the disorder magnetophotonic structures in nonreciprocal systems such as isolators and circulators.

  5. Efficient Inhibition of wear debris-induced inflammation by locally delivered siRNA

    SciTech Connect

    Peng Xiaochun; Tao Kun; Cheng Tao; Zhu Junfeng; Zhang Xianlong

    2008-12-12

    Aseptic loosening is the most common long-term complication of total joint replacement, which is associated with the generation of wear debris. The purpose of this study was to investigate the inhibitory effect of small interfering RNA (siRNA) targeting tumor necrosis factor-{alpha} (TNF-{alpha}) on wear debris-induced inflammation. A local delivery of lentivirus-mediated TNF-{alpha} siRNA into the modified murine air pouch, which was stimulated by polymethylmethacrylate (PMMA) particles, resulted in significant blockage of TNF-{alpha} both in mRNA and protein levels for up to 4 weeks. In addition, significant down-regulation of interleukin-1 (IL-1) and interleukin-6 (IL-6) was observed in TNF-{alpha} siRNA-treated pouches. The safety profile of gene therapy was proven by Bioluminescent assay and quantitative fluorescent flux. Histological analysis revealed less inflammatory responses (thinner pouch membrane and decreased cellular infiltration) in TNF-{alpha} siRNA-treated pouches. These findings suggest that local delivery of TNF-{alpha} siRNA might be an excellent therapeutic candidate to inhibit particle-induced inflammation.

  6. Lipid isolated from a Leishmania donovani strain reduces Escherichia coli induced sepsis in mice through inhibition of inflammatory responses.

    PubMed

    Das, Subhadip; Chatterjee, Nabanita; Bose, Dipayan; Banerjee, Somenath; Pal, Prajnamoy; Jha, Tarun; Das Saha, Krishna

    2014-01-01

    Sepsis is the reflection of systemic immune response that manifests in the sequential inflammatory process in presence of infection. This may occur as a result of gram-negative bacterial sepsis including Escherichia coli infection that gives rise to excessive production of inflammatory mediators and causes severe tissue injuries. We have reported earlier that the lipid of attenuated Leishmania donovani suppresses the inflammatory responses in arthritis patients. Using heat killed E. coli stimulated macrophages, we have now investigated the effect of leishmanial total lipid (LTL) isolated from Leishmania donovani (MHO/IN/1978/UR6) for amelioration of the inflammatory mediators and transcriptional factor with suppression of TLR4-CD14 expression. To evaluate the in vivo effect, E. coli induced murine sepsis model was used focusing on the changes in different parameter(s) of lung injury caused by sepsis, namely, edema, vascular permeability, and pathophysiology, and the status of different cytokine-chemokine(s) and adhesion molecule(s). Due to the effect of LTL, E. coli induced inflammatory cytokine-chemokine(s) levels were significantly reduced in serum and bronchoalveolar lavage fluid simultaneously. LTL also improved the lung injury and suppressed the cell adhesion molecules in lung tissue. These findings indicate that LTL may prove to be a potential anti-inflammatory agent and provide protection against gram-negative bacterial sepsis with pulmonary impairment.

  7. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages

    PubMed Central

    Limagne, Emeric; Lançon, Allan; Delmas, Dominique; Cherkaoui-Malki, Mustapha; Latruffe, Norbert

    2016-01-01

    State of the art. Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation and osteophyte formation. OA physiopathology is multifactorial and involves mechanical and hereditary factors. So far, there is neither preventive medicine to delay cartilage breakdown nor curative treatment. Objectives. To investigate pro-inflammatory paracrine interactions between human primary chondrocytes and macrophages following interleukin-1-β (IL-1β) treatment; to evaluate the molecular mechanism responsible for the inhibitory effect of resveratrol. Results. The activation of NF-κB in chondrocytes by IL-1β induced IL-6 secretion. The latter will then activate STAT3 protein in macrophages. Moreover, STAT3 was able to positively regulate IL-6 secretion, as confirmed by the doubling level of IL-6 in the coculture compared to macrophage monoculture. These experiments confirm the usefulness of the coculture model in the inflammatory arthritis-linked process as a closer biological situation to the synovial joint than separated chondrocytes and macrophages. Il also demonstrated the presence of an inflammatory amplification loop induced by IL-1β. Resveratrol showed a strong inhibitory effect on the pro-inflammatory marker secretion. The decrease of IL-6 secretion is dependent on the NFκB inhibition in the chondrocytes. Such reduction of the IL-6 level can limit STAT3 activation in the macrophages, leading to the interruption of the inflammatory amplification loop. Conclusion. These results increase our understanding of the anti-inflammatory actions of resveratrol and open new potential approaches to prevent and treat osteoarthritis. PMID:27187448

  8. TRAIL administration down-modulated the acute systemic inflammatory response induced in a mouse model by muramyldipeptide or lipopolysaccharide.

    PubMed

    Marcuzzi, Annalisa; Secchiero, Paola; Crovella, Sergio; Zauli, Giorgio

    2012-10-01

    The potent inducer of apoptosis TRAIL/Apo2 ligand is now under considerations in clinical trials for the treatment of different types of cancer. Since the natural history of cancer is often characterized by microbial infections, we have investigated the effect of recombinant human TRAIL in a mouse model of systemic acute inflammation of microbial origin represented by BALB/c mice treated with either bacterial muramyldipeptide (MDP) or lipopolysaccharide (LPS). When administered intraperitoneally (i.p.), these inflammatory bacterial compounds triggered a severe systemic inflammatory response within 2h, represented by body temperature elevation, increase of circulating serum amyloid-A (SAA) and of the number of leukocytes in the peritoneal cavity. Moreover, both MDP and LPS induced a significant elevation of the circulating levels of several inflammatory cytokines and chemokines. Noteworthy, pre-treatment with recombinant human TRAIL 48 and 72 h before administration of either MDP or LPS, significantly counteracted all acute inflammatory responses, including the elevation of key pro-inflammatory cytokines/chemokines such as IL-1α, IL-6, G-CSF, MCP-1. These data demonstrate for the first time that TRAIL has a potent anti-inflammatory activity, which might be beneficial for the anti-tumoral activity of TRAIL.

  9. Inhibition of Zymosan-Induced Inflammatory Factors Expression by ATRA Nanostructured Lipid Carriers

    PubMed Central

    Zhou, Hongyan; Zhang, Wensong; Gao, Xunyi; Zhang, Hongguang; Kong, Ning

    2016-01-01

    Purpose. The study aimed to evaluate the effect of all-trans retinoic acid-loaded nanostructured lipid carriers (ATRA-NLCs) on the zymosan-induced expression of the cytokines IL-4, IL-10, and IFN-γ and the matrix metalloproteinases/tissue inhibitor of metalloproteinases (MMPs/TIMPs) and TLR2 in rabbit corneal fibroblasts (RCFs). Methods. ATRA-NLCs were prepared by emulsification. RCFs were isolated and harvested after four to seven passages in monolayer culture. Cytokine release (IL-4, IL-10, and IFN-γ) induced by zymosan was analyzed by cytokine release assay, reverse transcription, and real-time polymerase chain reaction (RT-PCR) analysis detection. MMP-1, MMP-3, and MMP-13, TIMP-1 and TIMP-2, and TLR2 expression were analyzed by immunoblotting. Results. ATRA-NLCs were resistant to light and physically stable, and the average size of the ATRA-NLCs was 200 nm. ATRA-NLCs increased the zymosan-induced release of IL-4 and IL-10 and decreased the release of IFN-γ by RCFs. ATRA-NLCs decreased the levels of TLR2 and MMPs/TIMPs above. Conclusions. ATRA may be a potent anti-inflammatory agent for the therapy of fungal keratitis (FK). PMID:27340562

  10. Establishment of hydrochloric acid/lipopolysaccharide-induced pelvic inflammatory disease model.

    PubMed

    Oh, Yeonsu; Lee, Jaehun; Kim, Hyeon-Cheol; Hahn, Tae-Wook; Yoon, Byung-Il; Han, Jeong-Hee; Kwon, Yong-Soo; Park, Joung Jun; Koo, Deog-Bon; Rhee, Ki-Jong; Jung, Bae Dong

    2016-09-30

    Pelvic inflammatory disease (PID), which is one of the most problematic complications experienced by women with sexually transmitted diseases, frequently causes secondary infections after reproductive abnormalities in veterinary animals. Although the uterus is self-protective, it becomes fragile during periods or pregnancy. To investigate PID, bacteria or lipopolysaccharide (LPS) extracted from gram negative bacteria has been used to induce the disease in several animal models. However, when LPS is applied to the peritoneum, it often causes systemic sepsis leading to death and the PID was not consistently demonstrated. Hydrochloric acid (HCl) has been used to induce inflammation in the lungs and stomach but not tested for reproductive organs. In this study, we developed a PID model in mice by HCl and LPS sequential intracervical (i.c.) administration. The proinflammatory cytokines, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α, were detected in the mouse uterus by western blot analysis and cytokine enzyme-linked immunosorbent assay after HCl (25 mg/kg) administration i.c. followed by four LPS (50 mg/kg) treatments. Moreover, mice exhibited increased infiltration of neutrophils in the endometrium and epithelial layer. These results suggest that ic co-administration of HCl and LPS induces PID in mice. This new model may provide a consistent and reproducible PID model for future research.

  11. Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L.

    PubMed

    Yu, Mi-Hee; Choi, Jun-Hyeok; Chae, In-Gyeong; Im, Hyo-Gwon; Yang, Seun-Ah; More, Kunal; Lee, In-Seon; Lee, Jinho

    2013-01-15

    Rosemary (Rosmarinus officinalis L.) has been used in folk medicine to treat headaches, epilepsy, poor circulation, and many other ailments. It was found that rosemary could act as a stimulant and mild analgesic and could reduce inflammation. However, the mechanisms underlying the anti-inflammatory effects of rosemary need more study to be established. Therefore, in this study, the effects of rosemary on the activation of nuclear factor kappa beta (NF-kB) and mitogen-activated protein kinases (MAPKs), the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)), and cytokine in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were investigated. A methanol extract of rosemary and its hexane fraction reduced NO generation with an IC(50) of 2.75 and 2.83 μg/ml, respectively. Also, the methanol extract and the hexane fraction inhibited LPS-induced MAPKs and NF-kB activation associated with the inhibition of iNOS or COX-2 expression. LPS-induced production of PGE(2) and tumour necrosis factor-alpha (TNF-α) were blocked by rosemary. Rosemary extract and its hexane fraction are important for the prevention of phosphorylation of MAPKs, thereby blocking NF-kB activation, which in turn leads to decreased expression of iNOS and COX-2, thus preventing inflammation.

  12. Artificial stone dust-induced functional and inflammatory abnormalities in exposed workers monitored quantitatively by biometrics.

    PubMed

    Ophir, Noa; Shai, Amir Bar; Alkalay, Yifat; Israeli, Shani; Korenstein, Rafi; Kramer, Mordechai R; Fireman, Elizabeth

    2016-01-01

    The manufacture of kitchen and bath countertops in Israel is based mainly on artificial stone that contains 93% silica as natural quartz, and ∼3500 workers are involved in cutting and processing it. Artificial stone produces high concentrations of silica dust. Exposure to crystalline silica may cause silicosis, an irreversible lung disease. Our aim was to screen exposed workers by quantitative biometric monitoring of functional and inflammatory parameters. 68 exposed artificial stone workers were compared to 48 nonexposed individuals (controls). Exposed workers filled in questionnaires, and all participants underwent pulmonary function tests and induced sputum analyses. Silica was quantitated by a Niton XL3 X-ray fluorescence spectrometer. Pulmonary function test results of exposed workers were significantly lower and induced sputa showed significantly higher neutrophilic inflammation compared to controls; both processes were slowed down by the use of protective measures in the workplace. Particle size distribution in induced sputum samples of exposed workers was similar to that of artificial stone dust, which contained aluminium, zirconium and titanium in addition to silica. In conclusion, the quantitation of biometric parameters is useful for monitoring workers exposed to artificial stone in order to avoid deterioration over time.

  13. Artificial stone dust-induced functional and inflammatory abnormalities in exposed workers monitored quantitatively by biometrics

    PubMed Central

    Ophir, Noa; Shai, Amir Bar; Alkalay, Yifat; Israeli, Shani; Korenstein, Rafi; Kramer, Mordechai R.

    2016-01-01

    The manufacture of kitchen and bath countertops in Israel is based mainly on artificial stone that contains 93% silica as natural quartz, and ∼3500 workers are involved in cutting and processing it. Artificial stone produces high concentrations of silica dust. Exposure to crystalline silica may cause silicosis, an irreversible lung disease. Our aim was to screen exposed workers by quantitative biometric monitoring of functional and inflammatory parameters. 68 exposed artificial stone workers were compared to 48 nonexposed individuals (controls). Exposed workers filled in questionnaires, and all participants underwent pulmonary function tests and induced sputum analyses. Silica was quantitated by a Niton XL3 X-ray fluorescence spectrometer. Pulmonary function test results of exposed workers were significantly lower and induced sputa showed significantly higher neutrophilic inflammation compared to controls; both processes were slowed down by the use of protective measures in the workplace. Particle size distribution in induced sputum samples of exposed workers was similar to that of artificial stone dust, which contained aluminium, zirconium and titanium in addition to silica. In conclusion, the quantitation of biometric parameters is useful for monitoring workers exposed to artificial stone in order to avoid deterioration over time. PMID:27730180

  14. Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils.

    PubMed

    Jin, Jun-O; Yu, Qing

    2015-02-01

    Although some immune modulatory effects of fucoidan have been elucidated, the effects of fucoidan on the apoptosis and activation of human neutrophils have not been investigated. In this study, we demonstrated that fucoidan purified from the brown seaweed Undaria pinnatifilda delays spontaneous apoptosis of human neutrophils and induces their activation. Fucoidan treatment inhibited apoptotic nuclei changes and phosphatidyl serine (PS) exposure on neutrophils cultured in vitro for 24h. The delay in neutrophil apoptosis mediated by fucoidan was associated with increased levels of the anti-apoptotic protein Mcl-1 and decreased levels of activated caspase-3. Screening of the signaling pathways by specific inhibitors indicated that fucoidan-induced delay in neutrophil apoptosis was dependent on the activation of PI3K/AKT signaling pathway, whereas MAPK signaling pathway was not critical. In addition, fucoidan enhanced the production of IL-6, IL-8 and TNF-α from neutrophils in an AKT-dependent manner. Taken together, these results demonstrated that fucoidan delays human neutrophil apoptosis and induces their production of pro-inflammatory cytokines. This knowledge could facilitate the development of novel therapeutic strategies for infectious diseases and neutropenia by controlling neutrophil homeostasis and function with fucoidan.

  15. Establishment of hydrochloric acid/lipopolysaccharide-induced pelvic inflammatory disease model

    PubMed Central

    Oh, Yeonsu; Lee, Jaehun; Kim, Hyeon-Cheol; Hahn, Tae-Wook; Yoon, Byung-Il; Han, Jeong-Hee; Kwon, Yong-Soo; Park, Joung Jun; Koo, Deog-Bon; Rhee, Ki-Jong

    2016-01-01

    Pelvic inflammatory disease (PID), which is one of the most problematic complications experienced by women with sexually transmitted diseases, frequently causes secondary infections after reproductive abnormalities in veterinary animals. Although the uterus is self-protective, it becomes fragile during periods or pregnancy. To investigate PID, bacteria or lipopolysaccharide (LPS) extracted from gram negative bacteria has been used to induce the disease in several animal models. However, when LPS is applied to the peritoneum, it often causes systemic sepsis leading to death and the PID was not consistently demonstrated. Hydrochloric acid (HCl) has been used to induce inflammation in the lungs and stomach but not tested for reproductive organs. In this study, we developed a PID model in mice by HCl and LPS sequential intracervical (i.c.) administration. The proinflammatory cytokines, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α, were detected in the mouse uterus by western blot analysis and cytokine enzyme-linked immunosorbent assay after HCl (25 mg/kg) administration i.c. followed by four LPS (50 mg/kg) treatments. Moreover, mice exhibited increased infiltration of neutrophils in the endometrium and epithelial layer. These results suggest that ic co-administration of HCl and LPS induces PID in mice. This new model may provide a consistent and reproducible PID model for future research. PMID:26726020

  16. Dietary zinc deficiency fuels esophageal cancer development by inducing a distinct inflammatory signature

    PubMed Central

    Taccioli, C; Chen, H; Jiang, Y; Liu, XP; Huang, K; Smalley, KJ; Farber, JL; Croce, CM; Fong, LY

    2011-01-01

    Chronic inflammation is implicated in the pathogenesis of esophageal squamous cell cancer (ESCC). The causes of inflammation in ESCC, however, are undefined. Dietary zinc-deficiency (ZD) increases the risk of ESCC. We have previously shown that short-term ZD (6 weeks) in rats induces overexpression of the proinflammatory mediators S100a8 and S100a9 in the esophageal mucosa with accompanying esophageal epithelial hyperplasia. Here we report that prolonged ZD (21 weeks) in rats amplified this inflammation that when combined with non-carcinogenic low doses of the environmental carcinogen N-nitrosomethylbenzylamine (NMBA) elicited a 66.7% (16/24) incidence of ESCC. With zinc-sufficiency NMBA produced no cancers (0/21) (P<0.001). At tumor endpoint, the neoplastic ZD esophagus as compared with zinc-sufficient esophagus had an inflammatory gene signature with upregulation of numerous cancer-related inflammation genes (CXC and CC chemokines, chemokine receptors, cytokines, and Cox-2) in addition to S100a8 and S100a9. This signature was already activated in the earlier dysplastic stage. Additionally, time-course bioinformatics analysis of expression profiles at tumor endpoint and prior to NMBA exposure revealed that this sustained inflammation was due to ZD rather than carcinogen exposure. Importantly, zinc replenishment reversed this inflammatory signature at both the dysplastic and neoplastic stages of ESCC development, and prevented cancer formation. Thus, the molecular definition of ZD-induced inflammation as a critical factor in ESCC development has important clinical implications with regard to development and prevention of this deadly disease. PMID:22179833

  17. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice

    SciTech Connect

    Park, Eun-Jung; Kim, Hero; Kim, Younghun; Yi, Jongheop; Choi, Kyunghee; Park, Kwangsik

    2010-04-15

    Fullerenes (C60s) occur in the environment due to natural and anthropogenic sources such as volcanic eruptions, forest fires, and the combustion of carbon-based materials. Recently, production and application of engineered C60s have also rapidly increased in diverse industrial fields and biomedicine due to C60' unique physico-chemical properties, so toxicity assessment on environmental and human health is being evaluated as a valuable work. However, data related to the toxicity of C60s have not been abundant up to now. In this study, we studied the immunotoxic mechanism and change of gene expression caused by the instillation of C60s. As a result, C60s induced an increase in sub G1 and G1 arrest in BAL cells, an increase in pro-inflammatory cytokines such as IL-1, TNF-alpha, and IL-6, and an increase of Th1 cytokines such as IL-12 and IFN-r in BAL fluid. In addition, IgE reached the maximum at 1 day after treatment in both BAL fluid and the blood, and decreased in a time-dependent manner. Gene expression of the MHC class II (H2-Eb1) molecule was stronger than that of the MHC class I (H2-T23), and an increase in T cell distribution was also observed during the experiment period. Furthermore, cell infiltration and expression of tissue damage related genes in lung tissue were constantly observed during the experiment period. Based on this, C60s may induce inflammatory responses in the lung of mice.

  18. Effect of vitamin E succinate on inflammatory cytokines induced by high-intensity interval training

    PubMed Central

    Sarir, Hadi; Emdadifard, Ghodsieh; Farhangfar, Homayoun; TaheriChadorneshin, Hossein

    2015-01-01

    Aim and Scope: The anti-inflammatory effect of vitamin E under moderate exercises has been evaluated. However, the effect of vitamin E succinate, which has more potent anti-inflammatory effect than other isomers of vitamin E has not been evaluated. Therefore, the aim of the present study was to evaluate the effects of vitamin E succinate on tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) production induced by high-intensity interval training (HIIT). Materials and Methods: In the present study, 24 rats were randomly divided into control (C), supplementation (S), HIIT, and HIIT + supplementation (HIIT+S) groups. HIIT training protocol on a treadmill (at a speed of 40–54 m/min) and vitamin E succinate supplementation (60 mg/kg/day) was conducted for 6 weeks. Results: Serum IL-6 in the HIIT group significantly increased compared with the C group (350.42 ± 123.31 pg/mL vs 158.60 ± 41.96 pg/mL; P = 0.002). Also, serum TNF-α concentrations significantly enhanced (718.15 ± 133.42 pg/mL vs 350.87 ± 64.93 pg/mL; P = 0.001) in the HIIT group compared with the C group. Treatment of the training group with vitamin E numerically reduced IL-6 and TNF-α when compared with the HIIT group (217.31 ± 29.21 and 510.23 ± 217.88, respectively, P > 0.05). However, no significant changes were observed in serum TNF-α (P = 0.31) and IL-6 (P = 0.52) concentrations in the HIIT + S group compared with the C group. Conclusion: HIIT-induced IL-6 and TNF-α decreased by administration of Vitamin E succinate. PMID:26958053

  19. Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes

    PubMed Central

    Hussain, Salik; Al-Nsour, Faris; Rice, Annette B; Marshburn, Jamie; Ji, Zhaoxia; Zink, Jeffery I; Yingling, Brenda; Walker, Nigel J; Garantziotis, Stavros

    2012-01-01

    Background Cerium dioxide (CeO2) nanoparticles have potential therapeutic applications and are widely used for industrial purposes. However, the effects of these nanoparticles on primary human cells are largely unknown. The ability of nanoparticles to exacerbate pre-existing inflammatory disorders is not well documented for engineered nanoparticles, and is certainly lacking for CeO2 nanoparticles. We investigated the inflammation-modulating effects of CeO2 nanoparticles at noncytotoxic concentrations in human peripheral blood monocytes. Methods CD14+ cells were isolated from peripheral blood samples of human volunteers. Cells were exposed to either 0.5 or 1 μg/mL of CeO2 nanoparticles over a period of 24 or 48 hours with or without lipopolysaccharide (10 ng/mL) prestimulation. Modulation of the inflammatory response was studied by measuring secreted tumor necrosis factor-alpha, interleukin-1beta, macrophage chemotactic protein-1, interferon-gamma, and interferon gamma-induced protein 10. Results CeO2 nanoparticle suspensions were thoroughly characterized using dynamic light scattering analysis (194 nm hydrodynamic diameter), zeta potential analysis (−14 mV), and transmission electron microscopy (irregular-shaped particles). Transmission electron microscopy of CD14+ cells exposed to CeO2 nanoparticles revealed that these nanoparticles were efficiently internalized by monocytes and were found either in vesicles or free in the cytoplasm. However, no significant differences in secreted cytokine profiles were observed between CeO2 nanoparticle-treated cells and control cells at noncytotoxic doses. No significant effects of CeO2 nanoparticle exposure subsequent to lipopolysaccharide priming was observed on cytokine secretion. Moreover, no significant difference in lipopolysaccharide-induced cytokine production was observed after exposure to CeO2 nanoparticles followed by lipopolysaccharide exposure. Conclusion CeO2 nanoparticles at noncytotoxic concentrations neither

  20. Trigeminal Inflammatory Compression (TIC) Injury Induces Chronic Facial Pain and Susceptibility to Anxiety-Related Behaviors

    PubMed Central

    Lyons, Danielle N.; Kniffin, Tracey C.; Zhang, Liping; Danaher, Robert J.; Miller, Craig S.; Bocanegra, Jose L.; Carlson, Charles R.; Westlund, Karin N.

    2015-01-01

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week 8 post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury which resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model’s chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. PMID:25818051

  1. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors.

    PubMed

    Lyons, D N; Kniffin, T C; Zhang, L P; Danaher, R J; Miller, C S; Bocanegra, J L; Carlson, C R; Westlund, K N

    2015-06-04

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model.

  2. Mast cells modulate the inflammatory process in endotoxin-induced uveitis

    PubMed Central

    Sebastião da Silva, Pierre; Girol, Ana Paula

    2011-01-01

    Purpose To investigate the role of mast cells and annexin-A1 (Anxa1) in endotoxin-induced uveitis (EIU). Methods EIU was induced by injection of lipopolysaccharide (LPS) into the paws of rats, which were then sacrificed after 24 and 48 h. To assess EIU in the absence of mast cells, groups of animals were pretreated with compound 48/80 (c48/80) and sacrificed after 24 h after no treatment or EIU induction. The eyes were used for histological studies and the aqueous humor (AqH) pool was used for the analysis of transmigrated cells and Anxa1 levels. In inflammatory cells, Anxa1 expression was monitored by immunohistochemistry. Results After 24 h, rats with EIU exhibited degranulated mast cells, associated with elevated numbers of infiltrating leukocytes and the high expression of Anxa1 in the AqH and the neutrophils. After 48 h of EIU, the mast cells were intact, indicating granule re-synthesis, and there was a reduction of neutrophil transmigration and an increase in the number of mononuclear phagocytic cells in ocular tissues. Anxa1 expression was decreased in neutrophils but increased in mononuclear phagocytic cells. In the animals pretreated with c48/80 and subjected to EIU, mast cells responded to this secretagogue by degranulating and few transmigrated neutrophils were observed. Conclustions We report that mast cells are a potential source of pharmacological mediators that are strongly linked to the pathophysiology of EIU, and the endogenous protein Anxa1 is a mediator in the homeostasis of the inflammatory process with anti-migratory effects on leukocytes, which supports further studies of this protein as an innovative therapy for uveitis. PMID:21633711

  3. Anti-inflammatory effects of intravenous methotrexate associated with lipid nanoemulsions on antigen-induced arthritis

    PubMed Central

    Mello, Suzana B V; Tavares, Elaine R; Guido, Maria Carolina; Bonfá, Eloisa; Maranhão, Raul C

    2016-01-01

    OBJECTIVE: To test the hypothesis that intravenous use of methotrexate associated with lipid nanoemulsions can achieve superior anti-inflammatory effects in the joints of rabbits with antigen-induced arthritis compared with commercial methotrexate. METHODS: Arthritis was induced in New Zealand rabbits sensitized with methylated bovine serum albumin and subsequently intra-articularly injected with the antigen. A nanoemulsion of methotrexate labeled with 3H-cholesteryl ether (4 mg/kg methotrexate) was then intravenously injected into four rabbits to determine the plasma decaying curves and the biodistribution of the methotrexate nanoemulsion by radioactive counting. Additionally, the pharmacokinetics of the methotrexate nanoemulsion were determined by high-pressure liquid chromatography. Twenty-four hours after arthritis induction, the animals were allocated into three groups, with intravenous injection with saline solution (n=9), methotrexate nanoemulsion (0.5 µmol/kg methotrexate, n=7), or commercial methotrexate (0.5 µmol/kg, n=4). The rabbits were sacrificed 24 h afterward. Synovial fluid was then collected for protein leakage and cell content analyses and synovial membranes were collected for histopathological analysis. RESULTS: The methotrexate nanoemulsion was taken up mainly by the liver and the uptake by arthritic joints was two-fold greater than that by control joints. The methotrexate nanoemulsion treatment reduced leukocyte influx into the synovial fluid by nearly 65%; in particular, mononuclear and polymorphonuclear cells were reduced by 47 and 72%, respectively. In contrast, cell influx was unaffected following treatment with commercial methotrexate. Protein leakage into the arthritic knees of the rabbits was also more limited following methotrexate nanoemulsion treatment than following commercial methotrexate treatment. CONCLUSIONS: The intravenous methotrexate nanoemulsion showed anti-inflammatory effects on the synovia of arthritic joints that were

  4. Betahistine attenuates murine collagen-induced arthritis by suppressing both inflammatory and Th17 cell responses.

    PubMed

    Tang, Kuo-Tung; Chao, Ya-Hsuan; Chen, Der-Yuan; Lim, Yun-Ping; Chen, Yi-Ming; Li, Yi-Rong; Yang, Deng-Ho; Lin, Chi-Chen

    2016-10-01

    The objective of this study was to evaluate the potential therapeutic effects of betahistine dihydrochloride (betahistine) in a collagen-induced arthritis (CIA) mouse model. CIA was induced in DBA/1 male mice by primary immunization with 100μl of emulsion containing 2mg/ml chicken type II collagen (CII) mixed with complete Freund's adjuvant (CFA) in an 1:1 ratio, and booster immunization with 100μl of emulsion containing 2mg/ml CII mixed with incomplete Freund's adjuvant (IFA) in an 1:1 ratio. Immunization was performed subcutaneously at the base of the tail. After being boosted on day 21, betahistine (1 and 5mg/kg) was orally administered daily for 2weeks. The severity of CIA was determined by arthritic scores and assessment of histopathological joint destruction. Expression of cytokines in the paw and anti-CII antibodies in the serum was evaluated by ELISA. The proliferative response against CII in the lymph node cells was measured by (3)H-thymidine incorporation assay. The frequencies of different CII specific CD4(+) T cell subsets in the lymph node were determined by flow-cytometric analysis. Betahistine treatment attenuated the severity of arthritis and reduced the levels of pro-inflammatory cytokines, including TNF-α, IL-6, IL-23 and IL-17A, in the paw tissues of CIA mice. Lymph node cells from betahistine-treated mice showed a decrease in proliferation, as well as a lower frequency of Th17 cells. In vitro, betahistine suppressed CD4(+) T cell differentiation into Th17 cells. These results indicate that betahistine is effective in suppressing both inflammatory and Th17 responses in mouse CIA and that it may have therapeutic value as an adjunct treatment for rheumatoid arthritis.

  5. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    SciTech Connect

    Xu, Demei; Hu, Lihua; Su, Chuanyang; Xia, Xiaomin; Zhang, Pu; Fu, Juanli; Wang, Wenchao; Xu, Duo; Du, Hong; Hu, Qiuling; Song, Erqun; Song, Yang

    2014-10-15

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent of apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably.

  6. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    SciTech Connect

    Jiang, Shao-Yun; Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan; Deng, Jia-Yin

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  7. The effect of thalidomide on ethanol-induced gastric mucosal damage in mice: involvement of inflammatory cytokines and nitric oxide.

    PubMed

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-01-05

    Excessive ethanol ingestion causes gastric mucosal damage through the inflammatory and oxidative processes. The present study was aimed to evaluate the protective effect of thalidomide on ethanol-induced gastric mucosal damage in mice. The animals were pretreated with vehicle or thalidomide (30 or 60 mg/kg, orally), and one hour later, the gastric mucosal injury was induced by oral administration of acidified ethanol. The animals were euthanized one hour after ethanol ingestion, and gastric tissues were collected to biochemical analyzes. The gastric mucosal lesions were assessed by macroscopic and histopathological examinations. The results showed that treatment of mice with thalidomide prior to the administration of ethanol dose-dependently reduced the gastric ulcer index. Thalidomide pretreatment significantly reduced the levels of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6], malondialdehyde (MDA) and myeloperoxidase (MPO) activity. In addition, thalidomide significantly inhibited ethanol-induced nitric oxide (NO) overproduction in gastric tissue. Histological observations showed that ethanol-induced gastric mucosal damage was attenuated by thalidomide pretreatment. It seems that thalidomide as an anti-inflammatory agent may have a protective effect against alcohol-induced mucosal damage by inhibition of neutrophil infiltration and reducing the production of nitric oxide and inflammatory cytokines in gastric tissue.

  8. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    SciTech Connect

    Pan, Hong; Wu, Xinyi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  9. Anti-inflammatory effect of Heliotropium indicum Linn on lipopolysaccharide-induced uveitis in New Zealand white rabbits

    PubMed Central

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Ameyaw, Elvis Ofori; Asiamah, Emmanuel Akomanin

    2016-01-01

    AIM To investigate the anti-inflammatory effect of an aqueous whole plant extract of Heliotropium indicum (HIE) on endotoxin-induced uveitis in New Zealand white rabbits. METHODS Clinical signs of uveitis including flares, iris hyperemia and miosis, were sought for and scored in 1.0 mg/kg lipopolysaccharide (LPS) -induced uveitic rabbits treated orally with HIE (30-300 mg/kg), prednisolone (30 mg/kg), or normal saline (10 mL/kg). The number of polymorphonuclear neutrophils infiltrating, the protein concentration, as well as levels of tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), and monocyte chemmoattrant protein-1 (MCP-1) in the aqueous humor after the various treatments were also determined. A histopathological study of the anterior uveal was performed. RESULTS The extract and prednisolone-treatment significantly reduced (P≤0.001) both the clinical scores of inflammation (1.0-1.8 compared to 4.40±0.40 in the normal saline-treated rabbits) and inflammatory cells infiltration. The level of protein, and the concentrations of TNF-α, PGE2 and MCP-1 in the aqueous humor were also significantly reduced (P≤0.001). Histopathological studies showed normal uveal morphology in the HIE and prednisolone-treated rabbits while normal saline-treated rabbits showed marked infiltration of inflammatory cells. CONCLUSION The HIE exhibits anti-inflammatory effect on LPS-induced uveitis possibly by reducing the production of pro-inflammatory mediators. PMID:27162723

  10. Platycodin D inhibits interleukin-13-induced the expression of inflammatory cytokines and mucus in nasal epithelial cells.

    PubMed

    Wang, Botao; Gao, Ying; Zheng, Guoxi; Ren, Xiaoyong; Sun, Bin; Zhu, Kang; Luo, Huanan; Wang, Zhenghui; Xu, Min

    2016-12-01

    Allergic rhinitis (AR) is a common chronic inflammatory condition of the nasal mucosal tissue. Platycodin D (PLD), a triterpenoid saponin isolated from the root of Platycodon grandiflorum, has anti-inflammatory effects in a mouse model of allergic asthma. However, the anti-inflammatory effects of PLD in the nasal mucosa have not been deeply investigated. The objective was to investigate the effect of PLD on inflammatory cytokines and mucus production from nasal epithelial cells. Our study showed that PLD inhibited the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and eotaxin in interleukin (IL)-13-stimulated RPMI2650 cells. PLD also suppressed IL-13-induced mucin 5AC (MUC5AC) expression in RPMI2650 cells. Moreover, PLD treatment prevented IL-13-induced p-NF-κB p65 expression in RPMI2650 cells, as well as MAPK signaling pathway activation. Taken together, our results provided evidence that PLD inhibits IL-13-induced the expression of inflammatory cytokines and mucus in nasal epithelial cells by inhibiting the activation of NF-κB and MAPK signaling pathways.

  11. Evaluation of a nanotechnology-based approach to induce gene-expression in human THP-1 macrophages under inflammatory conditions.

    PubMed

    Bernal, Laura; Alvarado-Vázquez, Abigail; Ferreira, David Wilson; Paige, Candler A; Ulecia-Morón, Cristina; Hill, Bailey; Caesar, Marina; Romero-Sandoval, E Alfonso

    2017-02-01

    Macrophages orchestrate the initiation and resolution of inflammation by producing pro- and anti-inflammatory products. An imbalance in these mediators may originate from a deficient or excessive immune response. Therefore, macrophages are valid therapeutic targets to restore homeostasis under inflammatory conditions. We hypothesize that a specific mannosylated nanoparticle effectively induces gene expression in human macrophages under inflammatory conditions without undesirable immunogenic responses. THP-1 macrophages were challenged with lipopolysaccharide (LPS, 5μg/mL). Polyethylenimine (PEI) nanoparticles grafted with a mannose receptor ligand (Man-PEI) were used as a gene delivery method. Nanoparticle toxicity, Man-PEI cellular uptake rate and gene induction efficiency (GFP, CD14 or CD68) were studied. Potential immunogenic responses were evaluated by measuring the production of tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-6 and IL-10. Man-PEI did not produce cytotoxicity, and it was effectively up-taken by THP-1 macrophages (69%). This approach produced a significant expression of GFP (mRNA and protein), CD14 and CD68 (mRNA), and transiently and mildly reduced IL-6 and IL-10 levels in LPS-challenged macrophages. Our results indicate that Man-PEI is suitable for inducing an efficient gene overexpression in human macrophages under inflammatory conditions with limited immunogenic responses. Our promising results set the foundation to test this technology to induce functional anti-inflammatory genes.

  12. Protective effects of Pogostemon cablin Bentham water extract on inflammatory cytokine expression in TNBS-induced colitis in rats.

    PubMed

    Park, Su-Young; Neupane, Ganesh Prasad; Lee, Sung Ok; Lee, Jong Suk; Kim, Mi-Young; Kim, Sun Yeou; Park, Byung Chul; Park, Young-Joon; Kim, Jung-Ae

    2014-02-01

    In inflammatory bowel disease (IBD), colon epithelial cells express a variety of inflammatory mediators, including chemokines, which perpetuate inflammatory response. In the current study, we report that water extract of Pogostemon cablin Bentham aerial parts (PCW), which has traditionally been used for treatment of the common cold and infectious disease, suppressed colon inflammation. Treatment with PCW resulted in effective inhibition of tumor necrosis factor (TNF)-α-induced adhesion of monocytes to HT-29 human colonic epithelial cells. In a trinitrobenzene sulfonic acid (TNBS)-induced rat model of IBD, PCW suppressed clinical signs of colitis, including weight loss, colon tissue myeloperoxidase activity, a marker for inflammatory cell infiltration, and cyclooxygenase-2 expression in a dose-dependent manner. In addition, PCW suppressed TNBS-induced mRNA expression of IL-8, MCP-1, and IL-6 in rat colon. The nuclear level of NF-κB in TNBS-treated rat colon and NF-κB luciferase reporter gene activity in TNF-α-treated HT-29 cells were significantly inhibited by PCW. Taken together, the results of this study suggest that PCW suppressed colon inflammation via suppression of NF-κB-dependent expression of pro-inflammatory cytokines.

  13. Amla (Emblica officinalis Gaertn.) extract inhibits lipopolysaccharide-induced procoagulant and pro-inflammatory factors in cultured vascular endothelial cells.

    PubMed

    Rao, Theertham Pradyumna; Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Kato-Yasuda, Naomi; Suzuki, Koji

    2013-12-01

    Amla (Emblica officinalis Gaertn.) has been used for many centuries in traditional Indian Ayurvedic formulations for the prevention and treatment of many inflammatory diseases. The present study evaluated the anti-inflammatory and anticoagulant properties of amla fruit extract. The amla fruit extract potentially and significantly reduced lipopolysaccharide (LPS)-induced tissue factor expression and von Willebrand factor release in human umbilical vein endothelial cells (HUVEC) in vitro at clinically relevant concentrations (1-100 μg/ml). In a leucocyte adhesion model of inflammation, it also significantly decreased LPS-induced adhesion of human monocytic cells (THP-1) to the HUVEC, as well as reduced the expression of endothelial-leucocyte adhesion molecule-1 (E-selectin) in the target cells. In addition, the in vivo anti-inflammatory effects were evaluated in a LPS-induced endotoxaemia rat model. Oral administration of the amla fruit extract (50 mg/kg body weight) significantly decreased the concentrations of pro-inflammatory cytokines, TNF-α and IL-6 in serum. These results suggest that amla fruit extract may be an effective anticoagulant and anti-inflammatory agent.

  14. Thiopurines related malignancies in inflammatory bowel disease: Local experience in Granada, Spain

    PubMed Central

    Gómez-García, María; Cabello-Tapia, Maria José; Sánchez-Capilla, Antonio Damián; De Teresa-Galván, Javier; Redondo-Cerezo, Eduardo

    2013-01-01

    AIM: To investigate the incidence of neoplasms in inflammatory bowel disease (IBD) patients and the potential causative role of thiopurines. METHODS: We performed an observational descriptive study comparing the incidence of malignancies in IBD patients treated with thiopurines and patients not treated with these drugs. We included 812 patients which were divided in two groups depending on whether they have received thiopurines or not. We have studied basal characteristics of both groups (age when the disease was diagnosed, sex, type of IBD, etc.) and treatments received (Azathioprine, mercaptopurine, infliximab, adalimumab or other immunomodulators), as well as neoplasms incidence. Univariate analysis was performed with the student t test, χ2 test or Wilcoxon exact test as appropriate. A logistic regression analysis was performed as multivariate analysis. Statistical significance was establish at P values of less than 0.05, and 95%CI were used for the odds ratios. RESULTS: Among 812 patients included, 429 (52.83%) have received thiopurines: 79.5% azathioprine, 14% mercaptopurine and 6.5% both drugs. 44.76% of patients treated with thiopurines and 46, 48% of patients who did not receive this treatment were women (P > 0.05). The proportion of ulcerative colitis patients treated with thiopurines was 30.3% compare to 66. 67% of patients not treated (P < 0.001). Mean azathioprine dose was 123.79 ± 36.5 mg/d (range: 50-250 mg/d), mean usage time was 72.16 ± 55.7 mo (range: 1-300 mo) and the accumulated dose along this time was 274.32 ± 233.5 g (1.5-1350 g). With respect to mercaptopurine, mean dose was 74.7 ± 23.9 mg/d (range: 25-150 mg/d), mean usage time of 23.37 ± 27.6 mo (range: 1-118 mo), and the accumulated dose along this time was 52.2 ± 63.5 g (range: 1.5-243 g). Thiopurine S-methyltransferase activity was tested in 66% of patients treated with thiopurines, among which 98.2% had an intermediate or high activity. Among the patients treated with thiopurines

  15. Are Anti-Inflammatory Lymphocytes Able to Induce Remission of Breast Cancer

    DTIC Science & Technology

    2006-08-01

    to cancer (1, 2). In humans, infectious inflammation associated with prolonged activation of the host immune system by parasitic , viral, and bacterial...inflammatory CD4+regulatory (TR) cells, as pivotal mediators in human health and disease . We have previously demonstrated that anti- inflammatory TR cells...inflammatory CD4+regulatory (TR) cells, as pivotal mediators in human health and disease (2). Anti- inflammatory TR cells inhibit destructive immune

  16. Coenzyme Q10 Suppresses TNF-α-Induced Inflammatory Reaction In Vitro and Attenuates Severity of Dermatitis in Mice.

    PubMed

    Li, Weiwei; Wu, Xiaojuan; Xu, Xiangling; Wang, Wenhan; Song, Sijia; Liang, Ke; Yang, Min; Guo, Linlin; Zhao, Yunpeng; Li, Ruifeng

    2016-02-01

    Anti-oxidant coenzyme Q10 (Co-Q10) is commonly used in clinic. Recently, Co-Q10 was reported to antagonize TNF-α-induced inflammation and play a protective role in various inflammatory conditions. However, its role in dermatitis is unknown. Herein, RAW264.7 macrophage cell line was cultured with stimulation of TNF-α, and administration of Co-Q10 alleviated TNF-α-mediated inflammatory reaction in vitro. Furthermore, oxazolone-induced dermatitis mice model was established, and treatment of Co-Q10 markedly attenuated dermatitis phenotype in this mice model. Moreover, the protective role of Co-Q10 in vitro and in dermatitis was probably due to its repression on NF-κB signaling. Collectively, Co-Q10 may represent a potential molecular target for prevention and treatment of inflammatory skin diseases.

  17. Immune regulation and anti-inflammatory effects of isogarcinol extracted from Garcinia mangostana L. against collagen-induced arthritis.

    PubMed

    Fu, Yanxia; Zhou, Hailing; Wang, Mengqi; Cen, Juren; Wei, Qun

    2014-05-07

    Isogarcinol is a natural compound that we extracted from Garcinia mangostana L., and we were the first to report that it is a new immunosuppressant. In the present study, we investigated the immune regulation and anti-inflammatory effects of isogarcinol on collagen-induced arthritis (CIA) and explored its potential mechanism in the treatment of rheumatoid arthritis. The oral administration of isogarcinol significantly reduced clinical scores, alleviated cartilage and bone erosion, and reduced the levels of serum inflammatory cytokines in CIA mice. Isogarcinol inhibited xylene-induced mouse ear edema in vivo. In vitro, isogarcinol decreased iNOS and COX-2 mRNA expression and NO content by inhibiting NF-κB expression. Furthermore, isogarcinol decreased the activity of NFAT and inhibited IL-2 expression. The mechanism of action of isogarcinol is associated with down-regulation of both autoimmune and inflammatory reactions.

  18. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    PubMed

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p < 0.03) versus control (no intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p < 0.03) and increased expression of α-smooth muscle actin in HLE B-3 after six days, although only poly(2-hydroxyethyl methacrylate) induced a significant difference versus control (p < 0.01). Our results imply that-contrary to prior uveal biocompatibility understanding-macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal

  19. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    SciTech Connect

    Kocbach, Anette Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-10-15

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 {mu}g/cm{sup 2} of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-{alpha}, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-{alpha}, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-{alpha} and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent.

  20. Slow infusion rate of doxorubicin induces higher pro-inflammatory cytokine production.

    PubMed

    Tien, Chin-Chieh; Peng, Yi-Chi; Yang, Fwu-Lin; Subeq, Yi-Maun; Lee, Ru-Ping

    2016-11-01

    Different infusion rates of doxorubicin (DOX) have been used for treating human malignancies. Organ toxicity after DOX infusion is a major issue in treatment disruption. However, whether different DOX infusion rates induce different toxicity is still unknown. In this study, we examined the toxicity effects of different DOX infusion rates in the early phase of organ toxicity. Thirty-six rats were randomly divided into 5-, 15-, and 30-min infusion rate groups. A single dose of DOX (8.3 mg/kg, I.V.) was administered at different infusion rates. Blood samples were collected from the femoral artery at 1, 3, 6, 9, 12, 18, 24, 36, and 48 h after DOX administration. The blood cell count and blood biochemistry were analyzed. The liver, kidney, and heart were removed for pathological examinations after the rats were sacrificed. Our findings show that the 30-min group had higher injury markers in the liver (glutamic oxaloacetic transaminase and glutamic pyruvic transaminase), kidneys (blood urea nitrogen and creatinine), and heart (creatine phosphokinase-MB and lactate dehydrogenase), and had higher tumor necrosis factor-alpha and interleukin 6 levels than did the other groups. The 30-min group also had more severe damage according to the pathological examinations. In conclusion, slower infusion of DOX induced a higher inflammatory response and greater organ damage.

  1. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes

    PubMed Central

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-01-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation. PMID:26906404

  2. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption.

    PubMed

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Bátkai, Sándor; Haskó, György; Liaudet, Lucas; Drel, Viktor R; Obrosova, Irina G; Pacher, Pál

    2007-07-01

    A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes. In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-kappaB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs). HG markedly increased mitochondrial superoxide generation (measured by flow cytometry using MitoSOX), NF-kappaB activation, nitrotyrosine formation, upregulation of iNOS and adhesion molecules ICAM-1 and VCAM-1, transendothelial migration of monocytes, and monocyte-endothelial adhesion in HCAECs. HG also decreased endothelial barrier function measured by increased permeability and diminished expression of vascular endothelial cadherin in HCAECs. Remarkably, all the above mentioned effects of HG were attenuated by CBD pretreatment. Since a disruption of the endothelial function and integrity by HG is a crucial early event underlying the development of various diabetic complications, our results suggest that CBD, which has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in humans, may have significant therapeutic benefits against diabetic complications and atherosclerosis.

  3. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes.

    PubMed

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-09-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.

  4. Mangiferin Inhibits IL-1β-Induced Inflammatory Response by Activating PPAR-γ in Human Osteoarthritis Chondrocytes.

    PubMed

    Qu, Yanlong; Zhou, Li; Wang, Chunlei

    2017-02-01

    Inflammation has been reported to play critical roles in the development of osteoarthritis. In the present study, we investigated whether mangiferin (MFN) had anti-inflammatory effects in IL-1β-stimulated human osteoarthritis chondrocytes. The cells were treated with various concentrations of MFN in the presence or absence of IL-1β. The production of MMP-1, MMP-3, PGE2, and NO was measured in this study. The expression of NF-kB and PPAR-γ was detected by western blot analysis. MFN inhibited IL-1β-induced inflammatory mediators PGE2 and NO production. MFN also inhibited IL-1β-induced MMP1 and MMP3 production. IL-1β-induced NF-kB activation was significantly inhibited by MFN. In addition, MFN was found to up-regulate the expression of PPAR-γ in human osteoarthritis chondrocytes. PPAR-γ inhibitor GW9662 significantly reversed the anti-inflammatory effects of MFN. These results suggest that MFN inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes by activating PPAR-γ.

  5. Eicosapentaenoic acid reduces high-fat diet-induced insulin resistance by altering adipose tissue glycolytic and inflammatory function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported Eicosapentaenoic Acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation. In this study, we dissected mechanisms mediating anti-inflammatory and anti-lipogenic actions of EPA, using histology/ immunohistochemistry, transcriptomi...

  6. Diet-induced obesity has a differential effect on adipose tissue and macrophage inflammatory responses of young and old mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity and aging are both associated with increased inflammation in adipose tissue. In this study, we investigated the effect of diet-induced obesity on inflammatory status in young and old mice. Young (2-mo) and old (19-mo) C57BL/6 mice were fed a low fat (10 percent LF) or high fat (60 percent, H...

  7. Laser induced plasma expansion and existence of local thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Skočić, Miloš; Bukvić, Srdjan

    2016-11-01

    In this paper we present a simple model of the laser induced plasma (LIP) expansion in a low pressure surrounding atmosphere. The model is based on assumption that expansion process is dominantly governed by kinematics of the heavy particles. The model is accompanied with a simple, yet effective, Monte-Carlo simulation. Results of the simulation are compared with spectroscopic measurements of the laser induced copper plasma expanding in low pressure (200 Pa) hydrogen atmosphere. We found that characteristic expansion time of the LIP is proportional to the linear dimension of the initial volume heated up by the laser. For sufficiently large initial volume copper plasma remains in local thermodynamic equilibrium on the submicrosecond-microsecond scale. It is shown that diagnostics based on the spectral lines of the hydrogen atmosphere is not suitable for characterization of the core of the copper plasma. We have demonstrated importance of radially resolved spectroscopic measurements as a key step for correct diagnostics and understanding of laser induced plasma.

  8. uPA Attenuated LPS-induced Inflammatory Osteoclastogenesis through the Plasmin/PAR-1/Ca2+/CaMKK/AMPK Axis

    PubMed Central

    Kanno, Yosuke; Ishisaki, Akira; Kawashita, Eri; Kuretake, Hiromi; Ikeda, Kanako; Matsuo, Osamu

    2016-01-01

    Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis-caused bone destruction, results from an increase of bone-resorbing osteoclasts (OCs) induced by inflammation. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated that the effect of urokinase-type plasminogen activator (uPA) on inflammatory osteoclastogenesis induced by lipopolysaccharide (LPS), which is a potent stimulator of bone resorption in inflammatory diseases. We found that the uPA deficiency promoted inflammatory osteoclastogenesis and bone loss induced by LPS. We also showed that LPS induced the expression of uPA, and the uPA treatment attenuated the LPS-induced inflammatory osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells. Additionally, we showed that the uPA-attenuated inflammatory osteoclastgenesis is associated with the activation of plasmin/protease-activated receptor (PAR)-1 axis by uPA. Moreover, we examined the mechanism underlying the effect of uPA on inflammatory osteoclastogenesis, and found that uPA/plasmin/PAR-1 activated the adenosine monophosphate-activated protein kinase (AMPK) pathway through Ca2+/calmodulin dependent protein kinase kinase (CaMKK) activation, and attenuated inflammatory osteoclastogenesis by inactivation of NF-κB in RAW264.7 cells. These data suggest that uPA attenuated inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis. Our findings may provide a novel therapeutic approach to bone loss caused by inflammatory diseases. PMID:26722218

  9. Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum.

    PubMed

    Chen, Hsiao-Jou Cortina; Spiers, Jereme G; Sernia, Conrad; Lavidis, Nickolas A

    2016-01-01

    Chronic mild stress has been shown to cause hippocampal neuronal nitric oxide synthase (NOS) overexpression and the resultant nitric oxide (NO) production has been implicated in the etiology of depression. However, the extent of nitrosative changes including NOS enzymatic activity and the overall output of NO production in regions of the brain like the hippocampus and striatum following acute stress has not been characterized. In this study, outbred male Wistar rats aged 6-7 weeks were randomly allocated into 0 (control), 60, 120, or 240 min stress groups and neural regions were cryodissected for measurement of constitutive and inducible NOS enzymatic activity, nitrosative status, and relative gene expression of neuronal and inducible NOS. Hippocampal constitutive NOS activity increased initially but was superseded by the inducible isoform as stress duration was prolonged. Interestingly, hippocampal neuronal NOS and interleukin-1β mRNA expression was downregulated, while the inducible NOS isoform was upregulated in conjunction with other inflammatory markers. This pro-inflammatory phenotype within the hippocampus was further confirmed with an increase in the glucocorticoid-antagonizing macrophage migration inhibitory factor, Mif, and the glial surveillance marker, Ciita. This indicates that despite high levels of glucocorticoids, acute stress sensitizes a neuroinflammatory response within the hippocampus involving both pro-inflammatory cytokines and inducible NOS while concurrently modulating the immunophenotype of glia. Furthermore, there was a delayed increase in striatal inducible NOS expression while no change was found in other pro-inflammatory mediators. This suggests that short term stress induces a generalized increase in inducible NOS signaling that coincides with regionally specific increased markers of adaptive immunity and inflammation within the brain.

  10. Anti-inflammatory effect of diosmectite in hapten-induced colitis in the rat

    PubMed Central

    González, Raquel; Sánchez de Medina, Fermin; Martínez-Augustin, Olga; Nieto, Ana; Gálvez, Julio; Risco, Severiano; Zarzuelo, Antonio

    2004-01-01

    Diosmectite is a natural silicate effectively used in the treatment of infectious diarrhoea. Its antidiarrhoeal properties involve adsorption of toxins and bacteria and modifications of the rheological characteristics of gastrointestinal mucus. Hence, the aim of this study was to test the intestinal anti-inflammatory activity of diosmectite. Diosmectite (500 mg kg−1 day−1, p.o.) was administered as a post-treatment to rats with chronic trinitrobenzene sulphonic acid colitis. Colonic status was checked 1 and 2 weeks after colitis induction by macroscopic, histological and biochemical examination. Diosmectite post-treatment resulted in amelioration of the morphological signs (intestinal weight, macroscopic damage, necrosed area, histology) and biochemical markers (myeloperoxidase activity, glutathione levels, MUC2 expression, inducible nitric oxide synthase and interleukin-1β (IL-1β) and leukotriene B4 synthesis), as well as in the reduction of the severity of diarrhoea. The effect of the clay was comparable to that of sulphasalazine (50 mg kg−1 day−1). Diosmectite exhibited a dose-dependent capacity to adsorb proteins in vitro as well as a dose-dependent inhibitory effect on the basolateral secretion of IL-8 by lipopolysaccharide (LPS)-stimulated HT29 cells. Diosmectite had a dose-dependent inhibitory effect on IL-1β production by LPS-stimulated THP-1 cells. The effect of diosmectite on MUC2 was post-transcriptional, since mRNA levels were unaffected. However, diosmectite is able to upregulate MUC2 mRNA levels in HT29-MTX cells. Diosmectite has anti-inflammatory activity administered as a post-treatment. Possible mechanisms include adsorption of luminal antigens, increase of colonic mucin levels and possibly a direct modulatory action of cytokine production by mucosal cells. PMID:14993105

  11. Anti-inflammatory effect of cinnamaldehyde in Helicobacter pylori induced gastric inflammation.

    PubMed

    Muhammad, Jibran Sualeh; Zaidi, Syed Faisal; Shaharyar, Saeeda; Refaat, Alaa; Usmanghani, Khan; Saiki, Ikuo; Sugiyama, Toshiro

    2015-01-01

    Cinnamomum cassia is widely employed for gastrointestinal complaints such as dyspepsia, flatulence, diarrhea, and vomiting. Studies report cinnamaldehyde (CM) as a major active constituent of cinnamon. The aim of this study was to evaluate the anti-inflammatory mechanism of CM on Helicobacter (H.) pylori-infected gastric epithelial cells in order to validate cinnamon traditional use in gastrointestinal (GI)-related disorders. AGS/MKN-45 cells and H. pylori (193C) were employed for co-culture experiments. Anti-H. pylori cytotoxic and anti-adhesion activity of CM were determined. Enzyme linked immunosorbent assay, real time polymerase chain reaction analysis and immunoblotting were used to measure the effect on interleukin-8 (IL-8) secretion/expression. The effect on activation of nuclear factor kappa B (NF-κB) was determined by immunoblot analysis. The non-cytotoxic CM (≤125 µM) was also non-bactericidal at the given time, suggesting the effect in H. pylori/cell co-culture system was not due to alteration in H. pylori viability or the toxicity to the cells. Also, CM did not show any anti-adhesion effect against H. pylori/cell co-culture. However, pre-incubation of the cells with CM significantly inhibited the IL-8 secretion/expression from H. pylori-infected cells (p<0.01). In addition, CM suppressed H. pylori-induced NF-κB activation and prevented degradation of inhibitor (I)-κB This study provides evidence that the anti-inflammatory effect of C. cassia on H. pylori-infected gastric cells is due to blockage of the NF-κB pathway by cinnamaldehyde. This agent can be considered as a potential candidate for in vivo and clinical studies against various H. pylori related gastric pathogenic processes.

  12. Inflammatory Cytokines Induce a Unique Mineralizing Phenotype in Mesenchymal Stem Cells Derived from Human Bone Marrow*

    PubMed Central

    Ferreira, Elisabeth; Porter, Ryan M.; Wehling, Nathalie; O'Sullivan, Regina P.; Liu, Fangjun; Boskey, Adele; Estok, Daniel M.; Harris, Mitchell B.; Vrahas, Mark S.; Evans, Christopher H.; Wells, James W.

    2013-01-01

    Bone marrow contains mesenchymal stem cells (MSCs) that can differentiate along multiple mesenchymal lineages. In this capacity they are thought to be important in the intrinsic turnover and repair of connective tissues while also serving as a basis for tissue engineering and regenerative medicine. However, little is known of the biological responses of human MSCs to inflammatory conditions. When cultured with IL-1β, marrow-derived MSCs from 8 of 10 human subjects deposited copious hydroxyapatite, in which authenticity was confirmed by Fourier transform infrared spectroscopy. Transmission electron microscopy revealed the production of fine needles of hydroxyapatite in conjunction with matrix vesicles. Alkaline phosphatase activity did not increase in response to inflammatory mediators, but PPi production fell, reflecting lower ectonucleotide pyrophosphatase activity in cells and matrix vesicles. Because PPi is the major physiological inhibitor of mineralization, its decline generated permissive conditions for hydroxyapatite formation. This is in contrast to MSCs treated with dexamethasone, where PPi levels did not fall and mineralization was fuelled by a large and rapid increase in alkaline phosphatase activity. Bone sialoprotein was the only osteoblast marker strongly induced by IL-1β; thus these cells do not become osteoblasts despite depositing abundant mineral. RT-PCR did not detect transcripts indicative of alternative mesenchymal lineages, including chondrocytes, myoblasts, adipocytes, ligament, tendon, or vascular smooth muscle cells. IL-1β phosphorylated multiple MAPKs and activated nuclear factor-κB (NF-κB). Certain inhibitors of MAPK and PI3K, but not NF-κB, prevented mineralization. The findings are of importance to soft tissue mineralization, tissue engineering, and regenerative medicine. PMID:23970554

  13. Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization.

    PubMed

    Cunha, Carolina; Gomes, Cátia; Vaz, Ana Rita; Brites, Dora

    2016-01-01

    Identification of mediators triggering microglia activation and transference of noncoding microRNA (miRNA) into exosomes are critical to dissect the mechanisms underlying neurodegeneration. We used lipopolysaccharide- (LPS-) induced N9 microglia activation to explore new biomarkers/signaling pathways and to identify inflammatory miRNA (inflamma-miR) in cells and their derived exosomes. Upregulation of iNOS and MHC-II (M1-markers) and downregulation of arginase 1, FIZZ1 (M2-markers), and CX3CR1 (M0/M2 polarization) confirmed the switch of N9 LPS-treated cells into the M1 phenotype, as described for macrophages/microglia. Cells showed increased proliferation, activated TLR4/TLR2/NF-κB pathway, and enhanced phagocytosis, further corroborated by upregulated MFG-E8. We found NLRP3-inflammasome activation in these cells, probably accounting for the increased extracellular content of the cytokine HMGB1 and of the MMP-9 we have observed. We demonstrate for the first time that the inflamma-miR profiling (upregulated miR-155 and miR-146a plus downregulated miR-124) in M1 polarized N9 cells, noticed by others in activated macrophages/microglia, was replicated in their derived exosomes, likely regulating the inflammatory response of recipient cells and dissemination processes. Data show that LPS-treated N9 cells behave like M1 polarized microglia/macrophages, while providing new targets for drug discovery. In particular, the study yields novel insights into the exosomal circulating miRNA during neuroinflammation important for emerging therapeutic approaches targeting microglia activation.

  14. Inflammatory demyelination induces ependymal modifications concomitant to activation of adult (SVZ) stem cell proliferation.

    PubMed

    Pourabdolhossein, Fereshteh; Gil-Perotín, Sara; Garcia-Belda, Paula; Dauphin, Aurelien; Mozafari, Sabah; Tepavcevic, Vanja; Manuel Garcia Verdugo, Jose; Baron-Van Evercooren, Anne

    2017-05-01

    Ependymal cells (E1/E2) and ciliated B1cells confer a unique pinwheel architecture to the ventricular surface of the subventricular zone (SVZ), and their cilia act as sensors to ventricular changes during development and aging. While several studies showed that forebrain demyelination reactivates the SVZ triggering proliferation, ectopic migration, and oligodendrogenesis for myelin repair, the potential role of ciliated cells in this process was not investigated. Using conventional and lateral wall whole mount preparation immunohistochemistry in addition to electron microscopy in a forebrain-targeted model of experimental autoimmune encephalomyelitis (tEAE), we show an early decrease in numbers of pinwheels, B1 cells, and E2 cells. These changes were transient and simultaneous to tEAE-induced SVZ stem cell proliferation. The early drop in B1/E2 cell numbers was followed by B1/E2 cell recovery. While E1 cell division and ependymal ribbon disruption were never observed, E1 cells showed important morphological modifications reflected by their enlargement, extended cytoskeleton, and reinforced cell-cell junction complexes overtime, possibly reflecting protective mechanisms against ventricular insults. Finally, tEAE disrupted motile cilia planar cell polarity and cilia orientation in ependymal cells. Therefore, significant ventricular modifications in ciliated cells occur early in response to tEAE suggesting a role for these cells in SVZ stem cell signalling not only during development/aging but also during inflammatory demyelination. These observations may have major implications for understanding pathophysiology of and designing therapeutic approaches for inflammatory demyelinating diseases such as MS.

  15. Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization

    PubMed Central

    2016-01-01

    Identification of mediators triggering microglia activation and transference of noncoding microRNA (miRNA) into exosomes are critical to dissect the mechanisms underlying neurodegeneration. We used lipopolysaccharide- (LPS-) induced N9 microglia activation to explore new biomarkers/signaling pathways and to identify inflammatory miRNA (inflamma-miR) in cells and their derived exosomes. Upregulation of iNOS and MHC-II (M1-markers) and downregulation of arginase 1, FIZZ1 (M2-markers), and CX3CR1 (M0/M2 polarization) confirmed the switch of N9 LPS-treated cells into the M1 phenotype, as described for macrophages/microglia. Cells showed increased proliferation, activated TLR4/TLR2/NF-κB pathway, and enhanced phagocytosis, further corroborated by upregulated MFG-E8. We found NLRP3-inflammasome activation in these cells, probably accounting for the increased extracellular content of the cytokine HMGB1 and of the MMP-9 we have observed. We demonstrate for the first time that the inflamma-miR profiling (upregulated miR-155 and miR-146a plus downregulated miR-124) in M1 polarized N9 cells, noticed by others in activated macrophages/microglia, was replicated in their derived exosomes, likely regulating the inflammatory response of recipient cells and dissemination processes. Data show that LPS-treated N9 cells behave like M1 polarized microglia/macrophages, while providing new targets for drug discovery. In particular, the study yields novel insights into the exosomal circulating miRNA during neuroinflammation important for emerging therapeutic approaches targeting microglia activation. PMID:28096568

  16. Echinacoside Protects against 6-Hydroxydopamine-Induced Mitochondrial Dysfunction and Inflammatory Responses in PC12 Cells via Reducing ROS Production

    PubMed Central

    Wang, Yue-Hua; Xuan, Zhao-Hong; Tian, Shuo; Du, Guan-Hua

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction and inflammatory responses are involved in the mechanism of cell damage in PD. 6-Hydroxydopamine (6-OHDA), a dopamine analog, specifically damages dopaminergic neurons. Echinacoside (ECH) is a phenylethanoid glycoside isolated from the stems of Cistanche salsa, showing a variety of neuroprotective effects in previous studies. The present study was to investigate its effect against 6-OHDA-induced neurotoxicity and possible mechanisms in PC12 cells. The results showed that 6-OHDA reduced cell viability, decreased oxidation-reduction activity, decreased mitochondrial membrane potential, and induced mitochondria-mediated apoptosis compared with untreated PC12 cells. However, echinacoside treatment significantly attenuated these changes induced by 6-OHDA. In addition, echinacoside also could significantly alleviate the inflammatory responses induced by 6-OHDA. Further research showed that echinacoside could reduce 6-OHDA-induced ROS production in PC12 cells. These results suggest that the underlying mechanism of echinacoside against 6-OHDA-induced neurotoxicity may be involve in attenuating mitochondrial dysfunction and inflammatory responses by reducing ROS production. PMID:25788961

  17. Polymethoxyflavone Apigenin-Trimethylether Suppresses LPS-Induced Inflammatory Response in Nontransformed Porcine Intestinal Cell Line IPEC-J2.

    PubMed

    Farkas, Orsolya; Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2015-01-01

    The in vitro anti-inflammatory effect of apigenin and its trimethylated analogue (apigenin-trimethylether) has been investigated in order to evaluate whether these flavonoids could attenuate LPS-induced inflammation in IPEC-J2 non-transformed intestinal epithelial cells. Levels of IL-6, IL-8, TNF-α, and COX-2 mRNA were measured as a marker of inflammatory response. The extracellular H2O2 level in IPEC-J2 cells was also monitored by Amplex Red assay. Our data revealed that both compounds had significant lowering effect on the inflammatory response. Apigenin (at 25 μM) significantly decreased gene expression of IL-6 in LPS-treated cells, while apigenin-trimethylether in the same concentration did not influence IL-6 mRNA level. Both apigenin and apigenin-trimethylether reduced IL-8 gene expression significantly. TNF-α mRNA level was decreased by apigenin-trimethylether, which was not influenced by apigenin. Treatment with both flavonoids caused significant reduction in the mRNA level of COX-2, but the anti-inflammatory effect of the methylated analogue was more effective than the unmethylated one. Furthermore, both flavonoids reduced significantly the level of extracellular H2O2 compared to the control cells. In conclusion, the methylated apigenin analogue could avoid LPS-induced intestinal inflammation and it could be applied in the future as an effective anti-inflammatory compound.

  18. Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy.

    PubMed

    Li, Haiying; Miao, Weiguo; Ma, Jingfen; Xv, Zhen; Bo, Hai; Li, Jianyu; Zhang, Yong; Ji, Li Li

    2016-01-01

    Increasing evidence has indicated that acute strenuous exercise can induce a range of adverse reactions including oxidative stress and tissue inflammation. However, little is currently known regarding the mechanisms that underlie the regulation of the inflammatory response in the myocardium during acute heavy exercise. This study evaluated the mitochondrial function, NLRP3 inflammasome activation, and mitochondrial autophagy-related proteins to investigate the regulation and mechanism of mitochondrial stress regarding the inflammatory response of the rat myocardium during acute heavy exercise. The results indicated that the mitochondrial function of the myocardium was adaptively regulated to meet the challenge of stress during acute exercise. The exercise-induced mitochondrial stress also enhanced ROS generation and triggered an inflammatory reaction via the NLRP3 inflammasome activation. Moreover, the mitochondrial autophagy-related proteins including Beclin1, LC3, and Bnip3 were all significantly upregulated during acute exercise, which suggests that mitophagy was stimulated in response to the oxidative stress and inflammatory response in the myocardium. Taken together, our data suggest that, during acute exercise, mitochondrial stress triggers the rat myocardial inflammatory response via NLRP3 inflammasome activation and activates mitophagy to minimize myocardial injury.

  19. Polymethoxyflavone Apigenin-Trimethylether Suppresses LPS-Induced Inflammatory Response in Nontransformed Porcine Intestinal Cell Line IPEC-J2

    PubMed Central

    Farkas, Orsolya; Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2015-01-01

    The in vitro anti-inflammatory effect of apigenin and its trimethylated analogue (apigenin-trimethylether) has been investigated in order to evaluate whether these flavonoids could attenuate LPS-induced inflammation in IPEC-J2 non-transformed intestinal epithelial cells. Levels of IL-6, IL-8, TNF-α, and COX-2 mRNA were measured as a marker of inflammatory response. The extracellular H2O2 level in IPEC-J2 cells was also monitored by Amplex Red assay. Our data revealed that both compounds had significant lowering effect on the inflammatory response. Apigenin (at 25 μM) significantly decreased gene expression of IL-6 in LPS-treated cells, while apigenin-trimethylether in the same concentration did not influence IL-6 mRNA level. Both apigenin and apigenin-trimethylether reduced IL-8 gene expression significantly. TNF-α mRNA level was decreased by apigenin-trimethylether, which was not influenced by apigenin. Treatment with both flavonoids caused significant reduction in the mRNA level of COX-2, but the anti-inflammatory effect of the methylated analogue was more effective than the unmethylated one. Furthermore, both flavonoids reduced significantly the level of extracellular H2O2 compared to the control cells. In conclusion, the methylated apigenin analogue could avoid LPS-induced intestinal inflammation and it could be applied in the future as an effective anti-inflammatory compound. PMID:26180592

  20. Mitochondrial DNA-Induced Inflammatory Responses and Lung Injury in Thermal Injury Rat Model: Protective Effect of Epigallocatechin Gallate.

    PubMed

    Liu, Ruiqi; Xu, Fei; Si, Si; Zhao, Xueshan; Bi, Siwei; Cen, Ying

    2017-02-06

    Lungs are easily damaged by the inflammatory responses induced after extensive burns. The aim here was to investigate the protective role of epigallocatechin gallate (EGCG) in mitochondrial DNA (mtDNA)-mediated inflammatory responses and acute respiratory distress syndrome (ARDS) in a rat model of thermal injury. Male Sprague-Dawley rats were randomly assigned to five groups. In the first experiment, a full-thickness thermal injury or control procedure, covering 30% of the TBSA, was inflicted on three groups designated as the thermal injury, EGCG, and sham control groups. In the second experiment, another two groups were established by transfusion with either mtDNA (mtDNA group) or phosphate-buffered saline (phosphate-buffered saline group). Blood samples and lung tissue from all five groups were collected and the plasma concentrations of mtDNA and inflammatory mediators were measured. Bronchoalveolar lavage fluid was collected and histological analysis of the lung tissue was performed to evaluate the severity of ARDS. Significant increases in mtDNA and inflammatory mediator plasma concentrations were seen in the thermal injury and EGCG groups when compared with controls (P < .05). The plasma concentrations of mtDNA and inflammatory mediators were significantly decreased after the administration of EGCG (P < .05). EGCG also significantly reduced the severity of acute lung injury (P < .05). Intravenous administration of mtDNA significantly increased concentrations of inflammatory mediators and caused severe ARDS (P < .05). Our results suggest that mtDNA is important for thermal injury-induced inflammation and associated ARDS. EGCG possesses anti-inflammatory and lung-protective properties, and might act by limiting mtDNA release after thermal injury.

  1. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    SciTech Connect

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  2. Local Effects Induced by Crustal Seismogenic Zone of Banat, Romania

    NASA Astrophysics Data System (ADS)

    Florin Balan, Stefan; Apostol, Bogdan Felix; Ortanza Cioflan, Carmen; Malita, Zina

    2013-04-01

    The aim of this study is to evaluate the seismic effects induced by the crustal earthquakes in the local structure of the Banat area. The investigated area belongs to the Eastern part of the Pannonia Depression, with geographical limits between 450N-460N latitude and 200E-220E longitude, and its geological, tectonic and geophysical particularities are presented. The area contains a complex system of faults crossing each other perpendicularly. The seismicity of the region is studied, along with a history of the seismic activity starting with the strong earthquakes of 1879 up to 2012. About 300 events were reported in the area, four of them with Mw ≥ 5.0. Macroseismic intensities observed during this period are about VII MSK for 24 events and VII-VIII for 9 other events. Time distribution indicates a higher activity in the last two decades, possible because of the much accurate seismic network. The parametric catalogue of Banat shows superficial depths (10-15 km) for hypocenters and a great variety of focal mechanism solutions. These local and crustal events influence seismic hazard of the region, being the only earthquakes that affect the Timisoara city area, the most important town situated in the studied zone. Several seismic scenarios are defined in order to study the seismic hazard for the city of Timisoara. The chosen scenario in this paper is based on the seismic sequence of July-December 1991. Local seismic effects in Timisoara area are discussed in terms of accelerations and response spectra at the surface, seismic response of the local structure is computed on the basis of synthetic processing for available records (the 2.12.1991 earthquake, Mw=5.5). Nonlinear effects induced by significant deformations need a certain method - linear equivalent - for a multi-stratified zone as we considered for the Banat superficial area. Therefore important nonlinear variations of shear modulus and damping function with state of strain, as a seismic event occurs, are

  3. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway.

  4. PU/PTFE-stimulated monocyte-derived soluble factors induced inflammatory activation in endothelial cells.

    PubMed

    Xue, Yang; Liu, Xin; Sun, Jiao

    2010-03-01

    Polyurethane (PU) and polytetrafluoroethylene (PTFE) are two commonly used blood-contacting biomaterials. In the present study, we used a noncontact coculture model to evaluate the thrombosis-causing potential of monocyte-mediated PU and PTFE. We used human endothelial cells from umbilical cord (HUVECs) and human monocytes (THP1 cells). The THP1 cells were directly exposed to PU/PTFE, and the resultant cell-free supernatants were harvested for stimulating HUVECs. The treated HUVECs constituted the test group. HUVECs treated with supernatants of LPS-stimulated THP1 cells were used as the positive controls. To investigate the effects of the supernatant treatment on HUVECs, we measured the expression of the leukocyte-endothelial-cell adhesion molecules (CAMs) CD54 (ICAM-1), CD106 (VCAM-1), and CD62E (E-selectin) and evaluated the release of tissue factor (TF). The results demonstrated that both PU and PTFE induced the expressions of CD62E and TF. These activation effects were accompanied by activation of the NF-kappaB transcription factor. To further investigate the monocyte-derived soluble factors that might contribute to these effects, we evaluated the effects of the PU/PTFE stimulation on the expression of reactive oxygen species (ROS), TNF-alpha, IL-1beta, and IL-6 in monocyte monocultures. In comparison with the results for the negative control, both PU and PTFE significantly induced ROS release after 0.5h, while the expressions of TNF-alpha, IL-1beta, and IL-6 were variably increased after 24h. Our results suggest that the biomaterial induces monocytic activation and subsequently causes the release of soluble factors, which contribute to the inflammatory activation in HUVECs.

  5. Anti-inflammatory Effect of Astaxanthin on the Sickness Behavior Induced by Diabetes Mellitus.

    PubMed

    Ying, Chang-jiang; Zhang, Fang; Zhou, Xiao-yan; Hu, Xiao-tong; Chen, Jing; Wen, Xiang-ru; Sun, Ying; Zheng, Kui-yang; Tang, Ren-xian; Song, Yuan-jian

    2015-10-01

    Chronic inflammation appears to play a critical role in sickness behavior caused by diabetes mellitus. Astaxanthin has been used in treating diabetes mellitus and diabetic complications because of its neuroprotective and anti-inflammatory actions. However, whether astaxanthin can improve sickness behavior induced by diabetes and its potential mechanisms are still unknown. The aim of this study was to investigate the effects of astaxanthin on diabetes-elicited abnormal behavior in mice and its corresponding mechanisms. An experimental diabetic model was induced by streptozotocin (150 mg/kg) and astaxanthin (25 mg/kg/day) was provided orally for 10 weeks. Body weight and water consumption were measured, and the sickness behavior was evaluated by the open field test (OFT) and closed field test (CFT). The expression of glial fibrillary acidic protein (GFAP) was measured, and the frontal cortical cleaved caspase-3 positive cells, interleukin-6 (IL-6), and interleukin-1β (IL-1β) expression levels were also investigated. Furthermore, cystathionine β-synthase (CBS) in the frontal cortex was detected to determine whether the protective effect of astaxanthin on sickness behavior in diabetic mice is closely related to CBS. As expected, we observed that astaxanthin improved general symptoms and significantly increase horizontal distance and the number of crossings in the OFT and CFT. Furthermore, data showed that astaxanthin could decrease GFAP-positive cells in the brain and down-regulate the cleaved caspase-3, IL-6, and IL-1β, and up-regulate CBS in the frontal cortex. These results suggest that astaxanthin provides neuroprotection against diabetes-induced sickness behavior through inhibiting inflammation, and the protective effects may involve CBS expression in the brain.

  6. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses.

    PubMed

    Chowdhury, Sayantani; Sinha, Krishnendu; Banerjee, Sharmistha; Sil, Parames C

    2016-11-12

    Oxidative stress, ER stress, inflammation, and apoptosis results in the pathogenesis of cisplatin-induced cardiotoxicity. The present study was designed to investigate the signaling mechanisms involved in the ameliorating effect of taurine, a conditionally essential amino acid, against cisplatin-mediated cardiac ER stress dependent apoptotic death and inflammation. Mice were simultaneously treated with taurine (150 mg kg(-1) body wt, i.p.) and cisplatin (10 mg kg(-1) body wt, i.p.) for a week. Cisplatin exposure significantly altered serum creatine kinase and troponin T levels. In addition, histological studies revealed disintegration in the normal radiation pattern of cardiac muscle fibers. However, taurine administration could abate such adverse effects of cisplatin. Taurine administration significantly mitigated the reactive oxygen species production, alleviated the overexpression of nuclear factor-κB (NF-κB), and inhibited the elevation of proinflammatoy cytokines, adhesion molecules, and chemokines. Cisplatin exposure resulted in the unfolded protein response (UPR)-regulated CCAAT/enhancer binding protein (CHOP) up-regulation, induction of GRP78: a marker of ER stress and eIF2α signaling. Increase in calpain-1 expression level, activation of caspase-12 and caspase-3, cleavage of the PARP protein as well as the inhibition of antiapoptotic protein Bcl-2 were reflected on cisplatin-triggered apoptosis. Taurine could, however, combat against such cisplatin induced cardiac-abnormalities. The above mentioned findings suggest that taurine plays a beneficial role in providing protection against cisplatin-induced cardiac damage by modulating inflammatory responses and ER stress. © 2016 BioFactors, 42(6):647-664, 2016.

  7. Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Ramesh, Govindarajan T; Chidananda Sharma, S

    2015-05-01

    Acute and chronic alveolar or bronchial inflammation is thought to be central to the pathogenesis of many respiratory disorders. Cytokines and granulocyte macrophage colony-stimulating factors (GM-CSF) play an important role in chronic inflammation. Activator protein-1 (AP-1) the superfamily of transcription factors is involved in proliferation, differentiation, apoptosis, and transformation including inflammation. Understanding the function and regulation of proinflammatory factors involved in inflammation may provide the novel therapeutic strategies in the treatment of inflammatory diseases. Our aim of the present study is to investigate the pro-inflammatory cytokines and pattern of AP-1 factors expressed during activation of lung adenocarcinoma A549 cells by Phorbol-12-myristate-13-acetate (PMA) and to understand the anti-inflammatory effect of apigenin. A549 cells were treated with and without PMA or apigenin, and the cell viability was assessed by MTT assay. Expressions of inflammatory mediators and different AP-1 factors were analyzed by semi-quantitative RT-PCR. IL-6 protein secreted was analyzed by ELISA, and expressions of IL-1β, c-Jun, and c-Fos proteins were analyzed by Western blotting. Activation of A549 cells by PMA, induced the expression of pro-inflammatory cytokine (IL-1β, IL-2, IL-6, IL-8, and TNF-α) mRNAs and secretion of IL-6 and the expression of specific AP-1 factors (c-Jun, c-Fos, and Fra-1). Treatment of cells with apigenin, significantly inhibited PMA-stimulated mRNA expression of above pro-inflammatory cytokines, AP-1 factors, cyclooxygenase-2, and secretion of IL-6 protein. Results suggested that the AP-1 factors may be involved in inflammation and apigenin has anti-inflammatory effect, which may be useful for therapeutic management of lung inflammatory diseases.

  8. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    SciTech Connect

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  9. Cross-talk between TLR4 and PPARγ pathways in the arachidonic acid-induced inflammatory response in pancreatic acini.

    PubMed

    Mateu, A; Ramudo, L; Manso, M A; De Dios, I

    2015-12-01

    Arachidonic acid (AA) is generally associated with inflammation in different settings. We assess the molecular mechanisms involved in the inflammatory response exerted by AA on pancreatic acini as an approach to acute pancreatitis (AP). Celecoxib (COX-2 inhibitor), TAK-242 (TLR4 inhibitor) and 15d-PGJ2 (PPARγ agonist) were used to ascertain the signaling pathways. In addition, we examine the effects of TAK-242 and 15d-PGJ2 on AP induced in rats by bile-pancreatic duct obstruction (BPDO). To carry out in vitro studies, acini were isolated from pancreas of control rats. Generation of PGE2 and TXB2, activation of pro-inflammatory pathways (MAPKs, NF-κB, and JAK/STAT3) and overexpression of CCL2 and P-selectin was found in AA-treated acini. In addition, AA up-regulated TLR4 and down-regulated PPARγ expression. Celecoxib prevented the up-regulation of CCL2 and P-selectin but did not show any effect on the AA-mediated changes in TLR4 and PPARγ expression. TAK-242, reduced the generation of AA metabolites and repressed both the cascade of pro-inflammatory events which led to CCL2 and P-selectin overexpression as well as the AA-induced PPARγ down-regulation. Thus, TLR4 acts as upstream activating pro-inflammatory and inhibiting anti-inflammatory pathways. 15d-PGJ2 down-regulated TLR4 expression and hence prevented the synthesis of AA metabolites and the inflammatory response mediated by them. Reciprocal negative cross-talk between TLR4 and PPARγ pathways is evidenced. In vivo experiments showed that TAK-242 and 15d-PGJ2 treatments reduced the inflammatory response in BPDO-induced AP. We conclude that through TLR4-dependent mechanisms, AA up-regulated CCL2 and P-selectin in pancreatic acini, partly mediated by the generation of PGE2 and TXB2, which activated pro-inflammatory pathways, but also directly by down-regulating PPARγ expression with anti-inflammatory activity. In vitro and in vivo studies support the role of TLR4 in AP and the use of TLR4 inhibitors and

  10. Measurement-Induced Localization of an Ultracold Lattice Gas

    NASA Astrophysics Data System (ADS)

    Patil, Y. S.; Chakram, S.; Vengalattore, M.

    2015-10-01

    The process of measurement can modify the state of a quantum system and its subsequent evolution. Here, we demonstrate the control of quantum tunneling in an ultracold lattice gas by the measurement backaction imposed by the act of imaging the atoms, i.e., light scattering. By varying the rate of light scattering from the atomic ensemble, we show the crossover from the weak measurement regime, where position measurements have little influence on tunneling dynamics, to the strong measurement regime, where measurement-induced localization causes a large suppression of tunneling—a manifestation of the quantum Zeno effect. Our study realizes an experimental demonstration of the paradigmatic Heisenberg microscope and sheds light on the implications of measurement on the coherent evolution of a quantum system.

  11. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  12. Unified entropic measures of quantum correlations induced by local measurements

    NASA Astrophysics Data System (ADS)

    Bosyk, G. M.; Bellomo, G.; Zozor, S.; Portesi, M.; Lamberti, P. W.

    2016-11-01

    We introduce quantum correlation measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of nonadditive entropies. In this way, we overcome the issue of the artificial increasing of the value of quantum correlation measures based on nonadditive entropies when an uncorrelated ancilla is appended to the system, without changing the computability of our entropic correlation measures with respect to the previous ones. Moreover, we recover as limiting cases the quantum correlation measures based on von Neumann and Rényi entropies (i.e., additive entropies), for which the adjustment factor becomes trivial. In addition, we distinguish between total and semiquantum correlations and obtain some inequalities between them. Finally, we obtain analytical expressions of the entropic correlation measures for typical quantum bipartite systems.

  13. Magnetite Nanoparticles Induce Genotoxicity in the Lungs of Mice via Inflammatory Response

    PubMed Central

    Totsuka, Yukari; Ishino, Kousuke; Kato, Tatsuya; Goto, Sumio; Tada, Yukie; Nakae, Dai; Watanabe, Masatoshi; Wakabayashi, Keiji

    2014-01-01

    Nanomaterials are useful for their characteristic properties and are commonly used in various fields. Nanosized-magnetite (MGT) is widely utilized in medicinal and industrial fields, whereas their toxicological properties are not well documented. A safety assessment is thus urgently required for MGT, and genotoxicity is one of the most serious concerns. In the present study, we examined genotoxic effects of MGT using mice and revealed that DNA damage analyzed by a comet assay in the lungs of imprinting control region (ICR) mice intratracheally instilled with a single dose of 0.05 or 0.2 mg/animal of MGT was approximately two- to three-fold higher than that of vehicle-control animals. Furthermore, in gpt delta transgenic mice, gpt mutant frequency (MF) in the lungs of the group exposed to four consecutive doses of 0.2 mg MGT was significantly higher than in the control group. Mutation spectrum analysis showed that base substitutions were predominantly induced by MGT, among which G:C to A:T transition and G:C to T:A transversion were the most significant. To clarify the mechanism of mutation caused by MGT, we analyzed the formation of DNA adducts in the lungs of mice exposed to MGT. DNA was extracted from lungs of mice 3, 24, 72 and 168 h after intratracheal instillation of 0.2 mg/body of MGT, and digested enzymatically. 8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and lipid peroxide-related DNA adducts were quantified by stable isotope dilution liquid chromatography-mass spectrometry (LC-MS/MS). Compared with vehicle control, these DNA adduct levels were significantly increased in the MGT-treated mice. In addition to oxidative stress- and inflammation related-DNA adduct formations, inflammatory cell infiltration and focal granulomatous formations were also observed in the lungs of MGT-treated mice. Based on these findings, it is suggested that inflammatory responses are probably involved in the genotoxicity induced by MGT in the lungs of mice.

  14. Indicaxanthin from cactus pear fruit exerts anti-inflammatory effects in carrageenin-induced rat pleurisy.

    PubMed

    Allegra, Mario; Ianaro, Angela; Tersigni, Mariaroberta; Panza, Elisabetta; Tesoriere, Luisa; Livrea, Maria Antonia

    2014-02-01

    Nutritional research has shifted recently from alleviating nutrient deficiencies to chronic disease prevention. We investigated the activity of indicaxanthin, a bioavailable phytochemical of the betalain class from the edible fruit of Opuntia ficus-indica (L. Miller) in a rat model of acute inflammation. Rat pleurisy was achieved by injection of 0.2 mL of λ-carrageenin in the pleural cavity, and rats were killed 4, 24, and 48 h later; exudates were collected to analyze inflammatory parameters, such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α); cells recruited in pleura were analyzed for cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) expression, and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation. Indicaxanthin (0.5, 1, or 2 μmol/kg), given orally before carrageenin, time- and dose-dependently, reduced the exudate volume (up to 70%) and the number of leukocytes recruited in the pleural cavity (up to 95%) at 24 h. Pretreatment with indicaxanthin at 2 μmol/kg inhibited the carrageenin-induced release of PGE(2) (91.4%), NO (67.7%), IL-1β (53.6%), and TNF-α (71.1%), and caused a decrease of IL-1β (34.5%), TNF-α (81.6%), iNOS (75.2%), and COX2 (87.7%) mRNA, as well as iNOS (71.9%) and COX-2 (65.9%) protein expression, in the recruited leukocytes. Indicaxanthin inhibited time- and dose- dependently the activation of NF-κB, a key transcription factor in the whole inflammatory cascade. A pharmacokinetic study with a single 2 μmol/kg oral administration showed a maximum 0.22 ± 0.02 μmol/L (n = 15) plasma concentration of indicaxanthin, with a half-life of 1.15 ± 0.11 h. When considering the high bioavailability of indicaxanthin in humans, our findings suggest that this dietary pigment has the potential to improve health and prevent inflammation-based disorders.

  15. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    PubMed Central

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  16. Development of a dendritic cell-targeting lipopeptide as an immunoadjuvant that inhibits tumor growth without inducing local inflammation.

    PubMed

    Akazawa, Takashi; Ohashi, Toshimitsu; Nakajima, Hiroko; Nishizawa, Yasuko; Kodama, Ken; Sugiura, Kikuya; Inaba, Toshio; Inoue, Norimitsu

    2014-12-15

    Materials used for the past 30 years as immunoadjuvants induce suboptimal antitumor immune responses and often cause undesirable local inflammation. Some bacterial lipopeptides that act as Toll-like receptor (TLR) 2 ligands activate immune cells as immunoadjuvants and induce antitumor effects. Here, we developed a new dendritic cell (DC)-targeting lipopeptide, h11c (P2C-ATPEDNGRSFS), which uses the CD11c-binding sequence of intracellular adhesion molecule-1 to selectively and efficiently activate DCs but not other immune cells. Although the h11c lipopeptide activated DCs similarly to an artificial lipopeptide, P2C-SKKKK (P2CSK4), via TLR2 in vitro, h11c induced more effective tumor inhibition than P2CSK4 at low doses in vivo with tumor antigens. Even without tumor antigens, h11c lipopeptide significantly inhibited tumor growth and induced tumor-specific cytotoxic T cells. P2CSK4 was retained subcutaneously at the vaccination site and induced severe local inflammation in in vivo experiments. In contrast, h11c was not retained at the vaccination site and was transported into the tumor within 24 hr. The recruitment of DCs into the tumor was induced by h11c more effectively, while P2CSK4 induced the accumulation of neutrophils leading to severe inflammation at the vaccination site. Because CD11b+ cells, but not CD11c+ cells, produced neutrophil chemotactic factors such as macrophage inflammatory protein (MIP)-2 in response to stimulation with TLR2 ligands, the DC-targeting lipopeptide h11c induced less MIP-2 production by splenocytes than P2CSK4. In this study, we succeeded in developing a novel immunoadjuvant, h11c, which effectively induces antitumor activity without adverse effects such as local inflammation via the selective activation of DCs.

  17. Ginsenoside Rg3 Alleviates Lipopolysaccharide-Induced Learning and Memory Impairments by Anti-Inflammatory Activity in Rats

    PubMed Central

    Lee, Bombi; Sur, Bongjun; Park, Jinhee; Kim, Sung-Hun; Kwon, Sunoh; Yeom, Mijung; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2013-01-01

    The purpose of this study was to examine whether ginsenoside Rg3 (GRg3) could improve learning and memory impairments and inflammatory reactions induced by injecting lipopolysaccharide (LPS) into the brains of rats. The effects of GRg3 on proinflammatory mediators in the hippocampus and the underlying mechanisms of these effects were also investigated. Injection of LPS into the lateral ventricle caused chronic inflammation and produced deficits in learning in a memory-impairment animal model. Daily administration of GRg3 (10, 20, and 50 mg/kg, i.p.) for 21 consecutive days markedly improved the LPS-induced learning and memory disabilities demonstrated on the step-through passive avoidance test and Morris water maze test. GRg3 administration significantly decreased expression of pro-inflammatory mediators such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2 in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. Together, these findings suggest that GRg3 significantly attenuated LPS-induced cognitive impairment by inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggest that GRg3 may be effective for preventing or slowing the development of neurological disorders, including Alzheimer’s disease, by improving cognitive and memory functions due to its anti-inflammatory activity in the brain. PMID:24244826

  18. TRPA1 contributes to the acute inflammatory response and mediates carrageenan-induced paw edema in the mouse.

    PubMed

    Moilanen, Lauri J; Laavola, Mirka; Kukkonen, Meiju; Korhonen, Riku; Leppänen, Tiina; Högestätt, Edward D; Zygmunt, Peter M; Nieminen, Riina M; Moilanen, Eeva

    2012-01-01

    Transient receptor potential ankyrin 1 (TRPA1) is an ion channel involved in thermosensation and nociception. TRPA1 is activated by exogenous irritants and also by oxidants formed in inflammatory reactions. However, our understanding of its role in inflammation is limited. Here, we tested the hypothesis that TRPA1 is involved in acute inflammatory edema. The TRPA1 agonist allyl isothiocyanate (AITC) induced inflammatory edema when injected intraplantarly to mice, mimicking the classical response to carrageenan. Interestingly, the TRPA1 antagonist HC-030031 and the cyclo-oxygenase (COX) inhibitor ibuprofen inhibited not only AITC but also carrageenan-induced edema. TRPA1-deficient mice displayed attenuated responses to carrageenan and AITC. Furthermore, AITC enhanced COX-2 expression in HEK293 cells transfected with human TRPA1, a response that was reversed by HC-030031. This study demonstrates a hitherto unknown role of TRPA1 in carrageenan-induced inflammatory edema. The results also strongly suggest that TRPA1 contributes, in a COX-dependent manner, to the development of acute inflammation.

  19. The Myeloid LSECtin Is a DAP12-Coupled Receptor That Is Crucial for Inflammatory Response Induced by Ebola Virus Glycoprotein

    PubMed Central

    Zhao, Dianyuan; Han, Xintao; Zheng, Xuexing; Wang, Hualei; Yang, Zaopeng; Liu, Di; Han, Ke; Liu, Jing; Wang, Xiaowen; Yang, Wenting; Dong, Qingyang; Yang, Songtao; Xia, Xianzhu; Tang, Li; He, Fuchu

    2016-01-01

    Fatal Ebola virus infection is characterized by a systemic inflammatory response similar to septic shock. Ebola glycoprotein (GP) is involved in this process through activating dendritic cells (DCs) and macrophages. However, the mechanism is unclear. Here, we showed that LSECtin (also known as CLEC4G) plays an important role in GP-mediated inflammatory responses in human DCs. Anti-LSECtin mAb engagement induced TNF-α and IL-6 production in DCs, whereas silencing of LSECtin abrogated this effect. Intriguingly, as a pathogen-derived ligand, Ebola GP could trigger TNF-α and IL-6 release by DCs through LSECtin. Mechanistic investigations revealed that LSECtin initiated signaling via association with a 12-kDa DNAX-activating protein (DAP12) and induced Syk activation. Mutation of key tyrosines in the DAP12 immunoreceptor tyrosine-based activation motif abrogated LSECtin-mediated signaling. Furthermore, Syk inhibitors significantly reduced the GP-triggered cytokine production in DCs. Therefore, our results demonstrate that LSECtin is required for the GP-induced inflammatory response, providing new insights into the EBOV-mediated inflammatory response. PMID:26943817

  20. Polyphenolics isolated from virgin coconut oil inhibits adjuvant induced arthritis in rats through antioxidant and anti-inflammatory action.

    PubMed

    Vysakh, A; Ratheesh, M; Rajmohanan, T P; Pramod, C; Premlal, S; Girish kumar, B; Sibi, P I

    2014-05-01

    We evaluated the protective efficacy of the polyphenolic fraction from virgin coconut oil (PV) against adjuvant induced arthritic rats. Arthritis was induced by intradermal injection of complete Freund's adjuvant. The activities of inflammatory, antioxidant enzymes and lipid peroxidation were estimated. PV showed high percentage of edema inhibition at a dose of 80mg/kg on 21st day of adjuvant arthritis and is non toxic. The expression of inflammatory genes such as COX-2, iNOS, TNF-α and IL-6 and the concentration of thiobarbituric acid reactive substance were decreased by treatment with PV. Antioxidant enzymes were increased and on treatment with PV. The increased level of total WBC count and C-reactive protein in the arthritic animals was reduced in PV treated rats. Synovial cytology showed that inflammatory cells and reactive mesothelial cells were suppressed by PV. Histopathology of paw tissue showed less edema formation and cellular infiltration on supplementation with PV. Thus the results demonstrated the potential beneficiary effect of PV on adjuvant induced arthritis in rats and the mechanism behind this action is due to its antioxidant and anti-inflammatory effects.

  1. Aqueous and methanolic extracts of Caulerpa mexicana suppress cell migration and ear edema induced by inflammatory agents.

    PubMed

    Bitencourt, Mariana Angelica Oliveira; Dantas, Gracielle Rodrigues; Lira, Daysianne Pereira; Barbosa-Filho, Jose Maria; de Miranda, George Emmanuel Cavalcanti; Santos, Barbara Viviana de Oliveira; Souto, Janeusa Trindade

    2011-01-01

    The regulation of the inflammatory response is essential to maintaining homeostasis. Several studies have investigated new drugs that may contribute to avoiding or minimizing excessive inflammatory process. The aim of this study was to evaluate the effect of extracts of green algae Caulerpa mexicana on models inflammation. In mice, the inflammatory peritonitis model is induced by zymosan. Previous treatment of mice with aqueous and methanolic extracts of C. mexicana was able to suppress the cell migration to the peritoneal cavity, in a time-dependent but not in a dose-dependent manner. The treatment of mice with C. mexicana extracts also decreased the xylene-induced ear edema, exerting strong inhibitory leukocyte migration elicited by zymosan into the air pouch. We concluded that administration of the extracts resulted in a reduction of cell migration to different sites as well as a decrease in edema formation induced by chemical irritants. This study demonstrates for the first time the anti-inflammatory effect of aqueous and methanolic extracts from the green marine algae Caulerpa mexicana.

  2. Aminoguanidine treatment ameliorates inflammatory responses and memory impairment induced by amyloid-beta 25-35 injection in rats.

    PubMed

    Díaz, Alfonso; Rojas, Karla; Espinosa, Blanca; Chávez, Raúl; Zenteno, Edgar; Limón, Daniel; Guevara, Jorge

    2014-06-01

    Alzheimer disease (AD) is a neurodegenerative disorder caused by accumulation of the amyloid-beta peptide (Aβ) in neuritic plaques. Its neurotoxic mechanisms are associated with inflammatory responses and nitrosative stress generation that promote expression of inducible nitric oxide synthase (iNOS) and increased nitric oxide causing neuronal death and memory impairment. Studies suggest that treatment with anti-inflammatory and anti-oxidant agents decreases the risk of developing AD. Aminoguanidine (AG) is an iNOS inhibitor with anti-inflammatory and anti-oxidant effects. In this study, we evaluated the effects of systemic administration of AG (100 mg/kg/day for 4 days) on spatial memory and inflammatory responses induced by an injection of Aβ(25-35) [100 μM] into the temporal cortex (TCx) of rats. A significant improvement of spatial memory was evident in the Aβ(25-35)-treated group at day 30 post-injection subjected to AG treatment; this effect was correlated with decreases in reactive gliosis, IL-1β, TNF-α, and nitrite levels, as well as a reduction in neurodegeneration in the TCx and hippocampus (Hp). These results suggest that AG treatment inhibited glia activation and cytokine release, which may help to counteract neurodegenerative events induced by the toxicity of Aβ.

  3. Inflammatory responses induced by lipopolysaccharide are amplified in primary human monocytes but suppressed in macrophages by complement protein C5a.

    PubMed

    Seow, Vernon; Lim, Junxian; Iyer, Abishek; Suen, Jacky Y; Ariffin, Juliana K; Hohenhaus, Daniel M; Sweet, Matthew J; Fairlie, David P

    2013-10-15

    Monocytes and macrophages are important innate immune cells equipped with danger-sensing receptors, including complement and Toll-like receptors. Complement protein C5a, acting via C5aR, is shown in this study to differentially modulate LPS-induced inflammatory responses in primary human monocytes versus macrophages. Whereas C5a enhanced secretion of LPS-induced IL-6 and TNF from primary human monocytes, C5a inhibited these responses while increasing IL-10 secretion in donor-matched human monocyte-derived macrophages differentiated by GM-CSF or M-CSF. Gαi/c-Raf/MEK/ERK signaling induced by C5a was amplified in macrophages but not in monocytes by LPS. Accordingly, the Gαi inhibitor pertussis toxin and MEK inhibitor U0126 blocked C5a inhibition of LPS-induced IL-6 and TNF production from macrophages. This synergy was independent of IL-10, PI3K, p38, JNK, and the differentiating agent. Furthermore, C5a did not inhibit IL-6 production from macrophages induced by other TLR agonists that are selective for Toll/IL-1R domain-containing adapter inducing IFN-β (polyinosinic-polycytidylic acid) or MyD88 (imiquimod), demonstrating selectivity for C5a regulation of LPS responses. Finally, suppression of proinflammatory cytokines IL-6 and TNF in macrophages did not compromise antimicrobial activity; instead, C5a enhanced clearance of the Gram-negative bacterial pathogen Salmonella enterica serovar Typhimurium from macrophages. C5aR is thus a regulatory switch that modulates TLR4 signaling via the Gαi/c-Raf/MEK/ERK signaling axis in human macrophages but not monocytes. The differential effects of C5a are consistent with amplifying monocyte proinflammatory responses to systemic danger signals, but attenuating macrophage cytokine responses (without compromising microbicidal activity), thereby restraining inflammatory responses to localized infections.

  4. Dual effect of nitric oxide in articular inflammatory pain in zymosan-induced arthritis in rats.

    PubMed

    da S Rocha, José C; Peixoto, Magno E B; Jancar, Sônia; de Q Cunha, Fernando; de A Ribeiro, Ronaldo; da Rocha, Francisco A C

    2002-06-01

    The contribution of nitric oxide (NO) to articular pain in arthritis induced by zymosan (1 mg, intra articular) in rats was assessed by measuring articular incapacitation (AI). Systemic treatment with the non-selective NO synthase (NOS) inhibitor L-NAME (10 - 100 mg kg(-1) i.p.) or with the selective iNOS inhibitors aminoguanidine (AG; 10 - 100 mg kg(-1) i.p.) or 1400W (0.5 - 1 mg kg(-1) s.c.) inhibited the AI induced by injection of zymosan 30 min later. Local (intra articular) treatment with the NOS inhibitors (L-NAME or AG, 0.1 - 1 micromol; 1400W, 0.01 (micromol) 30 min before zymosan also inhibited the AI. Systemic or local treatment with the NOS inhibitors (L-NAME; AG, 100 mg kg(-1) i.p. or 0.1 micromol joint(-1); 1400W, 1 mg kg(-1) s.c. or 0.01 micromol joint(-1)), 2 h after zymosan did not affect the subsequent AI. Local treatment with the NO donors SNP or SIN-1, 2 h after zymosan did inhibit AI. L-NAME and AG, given i.p. inhibited nitrite but not prostaglandin E(2) (PGE(2)) levels in the joints. L-NAME (100 mg kg(-1)) but not AG (100 mg kg(-1)) increased mean arterial blood pressure. Neither L-NAME, AG nor the NO donor SIN-1 altered articular oedema induced by zymosan. In conclusion, inhibitors of iNOS decrease pain in zymosan arthritis only when given before the zymosan. This was not due to inhibition of articular PGE(2) release or oedema. NO donors also promoted antinociception in zymosan arthritis without affecting oedema.

  5. Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction.

    PubMed

    Alecu, Irina; Tedeschi, Andrea; Behler, Natascha; Wunderling, Klaus; Lamberz, Christian; Lauterbach, Mario A R; Gaebler, Anne; Ernst, Daniela; Van Veldhoven, Paul P; Al-Amoudi, Ashraf; Latz, Eicke; Othman, Alaa; Kuerschner, Lars; Hornemann, Thorsten; Bradke, Frank; Thiele, Christoph; Penno, Anke

    2017-01-01

    1-Deoxysphingolipids (deoxySLs) are atypical sphingolipids that are elevated in the plasma of patients with type 2 diabetes and hereditary sensory and autonomic neuropathy type 1 (HSAN1). Clinically, diabetic neuropathy and HSAN1 are very similar, suggesting the involvement of deoxySLs in the pathology of both diseases. However, very little is known about the biology of these lipids and the underlying pathomechanism. We synthesized an alkyne analog of 1-deoxysphinganine (doxSA), the metabolic precursor of all deoxySLs, to trace the metabolism and localization of deoxySLs. Our results indicate that the metabolism of these lipids is restricted to only some lipid species and that they are not converted to canonical sphingolipids or fatty acids. Furthermore, exogenously added alkyne-doxSA [(2S,3R)-2-aminooctadec-17-yn-3-ol] localized to mitochondria, causing mitochondrial fragmentation and dysfunction. The induced mitochondrial toxicity was also shown for natural doxSA, but not for sphinganine, and was rescued by inhibition of ceramide synthase activity. Our findings therefore indicate that mitochondrial enrichment of an N-acylated doxSA metabolite may contribute to the neurotoxicity seen in diabetic neuropathy and HSAN1. Hence, we provide a potential explanation for the characteristic vulnerability of peripheral nerves to elevated levels of deoxySLs.

  6. Paeonol suppresses lipopolysaccharide-induced inflammatory cytokines in macrophage cells and protects mice from lethal endotoxin shock.

    PubMed

    Chen, Na; Liu, Dianfeng; Soromou, Lanan Wassy; Sun, Jingjing; Zhong, Weiting; Guo, Weixiao; Huo, Meixia; Li, Hongyu; Guan, Shuang; Chen, Zhenwen; Feng, Haihua

    2014-06-01

    Paeonol (2'-hydroxy-4'-methoxyacetophenone) is the main phenolic compound of the radix of Paeonia suffruticosa which has been used as traditional Chinese medicine. In this study, we primarily investigated the anti-inflammatory effects and the underlying mechanisms of paeonol in RAW macrophage cells; and based on these effects, we assessed the protective effects of paeonol on lipopolysaccharide-induced endotoxemia in mice. The in vitro study showed that paeonol regulated the production of TNF-α, IL-1β, IL-6, and IL-10 via inactivation of IκBα, ERK1/2, JNK, and p38 MAPK. In mouse model of lipopolysaccharide-induced endotoxemia, pro- and anti-inflammatory cytokines are significantly regulated, and thus the survival rates of lipolysaccharide-challenged mice are improved by paeonol (150, 200, or 250 mg/kg). Therefore, paeonol has a beneficial activity against lipopolysaccharide-induced inflammation in RAW 264.7 cell and mouse models.

  7. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    SciTech Connect

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  8. Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis

    PubMed Central

    Zhao, Zhiqing; Guan, Rui; Song, Shaohua; Zhang, Mingjian; Liu, Fang; Guo, Meng; Guo, Wenyuan; Yu, Qilin; Zhang, Luding; Wang, Quanxing

    2013-01-01

    Sinomenine (SIN) is a purified alkaloid from the Chinese herb Sinomenium acutum. Previous studies demonstrated that SIN possesses anti-inflammatory and anti-apoptotic properties. We thus in the present report conducted studies to examine its impact on ischemia reperfusion (IR) induced renal injury. Precondition of mice with 200 mg/kg of SIN provided significant protection for mice against IR-induced renal injury as manifested by the attenuated serum creatinine (Cre) and blood urea nitrogen (BUN) along with less severity for histological changes and tubular cell apoptosis. In line with these results, treatment of mice with SIN suppressed IR-induced inflammatory infiltration and the expression of chemokine CXCL-10, adhesion molecule ICAM-1, and cytokines TNF-а/IL-6. Mechanistic studies revealed that SIN inhibits NF-κB transcriptional activity to suppress IR-induced inflammatory response in the kidney, while it attenuates MAP kinase signaling to prevent tubular cells undergoing apoptosis after IR insult. Altogether, our data support that SIN could be a useful therapeutic agent for prevention and treatment of IR-induced renal injury in the clinical settings. PMID:24040435

  9. Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis.

    PubMed

    Zhao, Zhiqing; Guan, Rui; Song, Shaohua; Zhang, Mingjian; Liu, Fang; Guo, Meng; Guo, Wenyuan; Yu, Qilin; Zhang, Luding; Wang, Quanxing

    2013-01-01

    Sinomenine (SIN) is a purified alkaloid from the Chinese herb Sinomenium acutum. Previous studies demonstrated that SIN possesses anti-inflammatory and anti-apoptotic properties. We thus in the present report conducted studies to examine its impact on ischemia reperfusion (IR) induced renal injury. Precondition of mice with 200 mg/kg of SIN provided significant protection for mice against IR-induced renal injury as manifested by the attenuated serum creatinine (Cre) and blood urea nitrogen (BUN) along with less severity for histological changes and tubular cell apoptosis. In line with these results, treatment of mice with SIN suppressed IR-induced inflammatory infiltration and the expression of chemokine CXCL-10, adhesion molecule ICAM-1, and cytokines TNF-а/IL-6. Mechanistic studies revealed that SIN inhibits NF-κB transcriptional activity to suppress IR-induced inflammatory response in the kidney, while it attenuates MAP kinase signaling to prevent tubular cells undergoing apoptosis after IR insult. Altogether, our data support that SIN could be a useful therapeutic agent for prevention and treatment of IR-induced renal injury in the clinical settings.

  10. Regulation of NF-κB-Induced Inflammatory Signaling by Lipid Peroxidation-Derived Aldehydes

    PubMed Central

    Yadav, Umesh C. S.; Ramana, Kota V.

    2013-01-01

    Oxidative stress plays a critical role in the pathophysiology of a wide range of diseases including cancer. This view has broadened significantly with the recent discoveries that reactive oxygen species initiated lipid peroxidation leads to the formation of potentially toxic lipid aldehyde species such as 4-hydroxy-trans-2-nonenal (HNE), acrolein, and malondialdehyde which activate various signaling intermediates that regulate cellular activity and dysfunction via a process called redox signaling. The lipid aldehyde species formed during synchronized enzymatic pathways result in the posttranslational modification of proteins and DNA leading to cytotoxicity and genotoxicty. Among the lipid aldehyde species, HNE has been widely accepted as a most toxic and abundant lipid aldehyde generated during lipid peroxidation. HNE and its glutathione conjugates have been shown to regulate redox-sensitive transcription factors such as NF-κB and AP-1 via signaling through various protein kinase cascades. Activation of redox-sensitive transcription factors and their nuclear localization leads to transcriptional induction of several genes responsible for cell survival, differentiation, and death. In this review, we describe the mechanisms by which the lipid aldehydes transduce activation of NF-κB signaling pathways that may help to develop therapeutic strategies for the prevention of a number of inflammatory diseases. PMID:23710287

  11. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum.

    PubMed

    Li, Jian-Ming; Cai, Yan; Liu, Fei; Yang, La; Hu, Xia; Patrylo, Peter R; Cai, Huaibin; Luo, Xue-Gang; Xiao, Dong; Yan, Xiao-Xin

    2015-05-10

    Microbleeds are a common finding in aged human brains. In Alzheimer's disease (AD), neuritic plaques composed of β-amyloid (Aβ) deposits and dystrophic neurites occur frequently around cerebral vasculature, raising a compelling question as to whether, and if so, how, microvascular abnormality and amyloid/neuritic pathology might be causally related. Here we used a guinea pig model of cerebral microembolism to explore a potential inductive effect of vascular injury on neuritic and amyloid pathogenesis. Brains were examined 7-30 days after experimental microvascular embolization occupying ~0.5% of total cortical area. Compared to sham-operated controls, glial fibrillary acidic protein immunoreactivity was increased in the embolized cerebrum, evidently around intracortical vasculature. Swollen/sprouting neurites exhibiting increased reactivity of nicotinamide adenine dinucleotide phosphate diaphorase, parvalbumin, vesicular glutamate transporter 1 and choline acetyltransferase appeared locally in the embolized brains in proximity to intracortical vasculature. The embolization-induced swollen/sprouting neurites were also robustly immunoreactive for β-amyloid precursor protein and β-secretase-1, the substrate and initiating enzyme for Aβ genesis. These experimental data suggest that microvascular injury can induce multisystem neuritic pathology associated with an enhanced amyloidogenic potential in wild-type mammalian brain.

  12. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    PubMed

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.

  13. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    SciTech Connect

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo; Endo, Yuko; Dang, Nam H.

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  14. Analysis of local chronic inflammatory cell infiltrate combined with systemic inflammation improves prognostication in stage II colon cancer independent of standard clinicopathologic criteria.

    PubMed

    Turner, Natalie; Wong, Hui-Li; Templeton, Arnoud; Tripathy, Sagarika; Whiti Rogers, Te; Croxford, Matthew; Jones, Ian; Sinnathamby, Mathuranthakan; Desai, Jayesh; Tie, Jeanne; Bae, Susie; Christie, Michael; Gibbs, Peter; Tran, Ben

    2016-02-01

    In Stage II colon cancer, multiple independent studies have shown that a dense intratumoural immune infiltrate (local inflammation) is associated with improved outcomes, while systemic inflammation, measured by various markers, has been associated with poorer outcomes. However, previous studies have not considered the interaction between local and systemic inflammation, nor have they assessed the type of inflammatory response compared with standard clinicopathologic criteria. In order to evaluate the potential clinical utility of inflammatory markers in Stage II colon cancer, we examined local and systemic inflammation in a consecutive series of patients with resected Stage II colon cancer between 2000 and 2010 who were identified from a prospective clinical database. Increased intratumoural chronic inflammatory cell (CIC) density, as assessed by pathologist review of hematoxylin and eosin stained slides, was used to represent local inflammation. Neutrophil-to-lymphocyte ratio (NLR) >5, as calculated from pre-operative full blood counts, was used to represent systemic inflammation. In 396 eligible patients identified, there was a non-significant inverse relationship between local and systemic inflammation. Increased CIC density was significantly associated with improved overall (HR 0.45, p = 0.001) and recurrence-free survival (HR 0.37, p = 0.003). High NLR was significantly associated with poorer overall survival (HR 2.56, p < 0.001). The combination of these markers further stratified prognosis independent of standard high-risk criteria, with a dominant systemic inflammatory response (low CIC/high NLR) associated with the worst outcome (5-year overall survival 55.8%). With further validation this simple, inexpensive combined inflammatory biomarker might assist in patient selection for adjuvant chemotherapy in Stage II colon cancer.

  15. Bee venom suppresses testosterone-induced benign prostatic hyperplasia by regulating the inflammatory response and apoptosis.

    PubMed

    Chung, Kyung-Sook; An, Hyo-Jin; Cheon, Se-Yun; Kwon, Ki-Rok; Lee, Kwang-Ho

    2015-12-01

    Benign prostatic hyperplasia (BPH), which is a common disorder in aging men, involves inflammation that is associated with an imbalance between cell proliferation and cell death. Because current BPH drug treatments have undesirable side effects, the development of well-tolerated and effective alternative medicines to treat BPH is of interest. Bee venom (BV) has been used in traditional medicine to treat conditions, such as arthritis and rheumatism, and pain. Although inflammation has been associated with BPH and BV has strong anti-inflammatory effects, the effects of BV on BPH are not fully understood. Therefore, in this study, we evaluated the efficacy of BV against testosterone-induced BPH in rats. BV decreased prostate weight compared to the untreated group. In addition, BV suppressed serum dihydrotestosterone concentration levels and the levels of proliferating cell nuclear antigen in the histological analysis. Furthermore, BV significantly decreased the levels of the apoptotic suppressors, Bcl-2 and Bcl-xL, and increased the levels of the proapoptotic factors, Bax and caspase-3 activation. These results suggested that BV suppressed the development of BPH and has good potential as a treatment for BPH.

  16. Apigenin reduce lipoteichoic acid-induced inflammatory response in rat cardiomyoblast cells.

    PubMed

    Gutiérrez-Venegas, Gloria; González-Rosas, Zeltzin

    2017-02-01

    Infective endocarditis is caused by Streptococcus sanguinis present in dental plaque, which can induce inflammatory responses in the endocardium. The present study depicts research on the properties of apigenin in embryonic mouse heart cells (H9c2) treated with lipoteichoic acid (LTA) obtained from S. sanguinis. Interleukin-1β and cyclooxygenase (COX)-2 expression were detected by reverse transcriptase polymerase chain reaction. In addition, western blot assays and immuno-fluorescence staining were used to assess translocation of nuclear factor kappa beta (NF-κB), degradation of IκB, as well as activity of the mitogen activated protein kinases: extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun N-terminal kinase (JNK). Effect of apigenin on cell viability was equally assessed in other experimental series. Our results showed that apigenin blocked activation of ERK, JNK, and p38 in cardiomyocytes treated with LTA in a dose-dependent fashion. Moreover, apigenin showed no cytotoxic effects; it blocked NF-κB translocation and IκB degradation. Our findings suggested that apigenin possessed potential value in the treatment of infectious endocarditis.

  17. Benznidazole, a drug used in Chagas' disease, ameliorates LPS-induced inflammatory response in mice.

    PubMed

    Pascutti, María Fernanda; Pitashny, Milena; Nocito, Ana Lía; Guermonprez, Pierre; Amigorena, Sebastian; Wietzerbin, Juana; Serra, Esteban; Bottasso, Oscar; Revelli, Silvia

    2004-12-24

    Benznidazole (BZL) is a drug currently used for treating Chagas' disease. Given our earlier demonstration in which BZL downregulated cytokine and nitric oxide (NO) synthesis by LPS and/or IFN-gamma-stimulated murine macrophages, we have now analysed whether this compound could exert beneficial effects in a model of LPS-induced inflammation in C57BL/6 mice. The lethal model consisted of two LPS intraperitoneal injections, 200 microg each separated by 2 h, with BZL given orally at a dose of 200 mg/kg, 18 and 2 h before the first challenge and 20 and 44 hr following the second one. In this model, BZL treatment led to a significantly decreased mortality in comparison with untreated counterparts. Remaining experiments were carried out in mice given a unique LPS dose, pretreated with BZL or not, since those subjected to the lethal protocol were unsuitable for laboratory handling. Analysis of IL-1beta, IL-6, TNF-alpha, IL-12 and iNOS mRNA expression in liver samples taken at 90 min post-LPS showed a marked reduction of the two latter mRNAs in BZL-treated mice. These animals also displayed significantly decreased peaks levels of serum TNF-alpha and IL-6, accompanied by a diminished number of IL-6-producing peritoneal macrophages. Present effects may broaden the potential usefulness of BZL in situations accompanied by an excessive inflammatory response.

  18. Prevention of Renal Complications Induced by Non- Steroidal Anti-Inflammatory Drugs.

    PubMed

    Ković, Sonja Vuč; Vujović, Katarina Savić; Srebro, Dragana; Medić, Branislava; Ilic-Mostic, Tatjana

    2016-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for the treatment of pain, inflamation and fever. They are usually well tolerated in healthy persons, but in patients with risk factors (advanced age, renal impairment, heart failure, liver disease, concurrent medications with antihypertensive drugs), NSAIDs can induce serious renal adverse effects. They include sodium and water retention with edema, worsening of heart failure, hypertension, hyponatremia, hyperkalemia, acute kidney injury, chronic kidney disease, renal papillary necrosis and acute interstitial nephritis. The majority of these adverse effects are due to the inhibition of prostaglandins synthesis and they are dose and duration-dependent. Acute forms of kidney injuries are transient and often reversible upon drug withdrawal. Chronic use of NSAIDs in some patients may result in chronic kidney disease. It is recommended that patients at risk should have preventative strategies in place, including the use of the "lowest effective dose" of NSAID for the "shortest possible time" and monitoring renal function, fluid retention and electrolyte abnormalities. Patients who are taking antihypertensive medications should be monitored for high blood pressure and the doses of antihypertensive medications should be adjusted if needed. In general, the combination of NSAIDs and angiotensin inhibitors should be avoided. Some other preventive measures are dietary salt restriction, use of topical NSAIDs/non-pharmacological therapies and use of calcium channel blockers for treating hypertension.

  19. Hantaviruses induce antiviral and pro-inflammatory innate immune responses in astrocytic cells and the brain.

    PubMed

    Shin, Ok Sarah; Song, Gabriella Shinyoung; Kumar, Mukesh; Yanagihara, Richard; Lee, Ho-Wang; Song, Jin-Won

    2014-08-01

    Although hantaviruses are not generally considered neurotropic, neurological complications have been reported occasionally in patients with hemorrhagic fever renal syndrome (HFRS). In this study, we analyzed innate immune responses to hantavirus infection in vitro in human astrocytic cells (A172) and in vivo in suckling ICR mice. Infection of A172 cells with pathogenic Hantaan virus (HTNV) or a novel shrew-borne hantavirus, known as Imjin virus (MJNV), induced activation of antiviral genes and pro-inflammatory cytokines/chemokines. MicroRNA expression profiles of HTNV- and MJNV-infected A172 cells showed distinct changes in a set of miRNAs. Following intraperitoneal inoculation with HTNV or MJNV, suckling ICR mice developed rapidly progressive, fatal central nervous system-associated disease. Immunohistochemical staining of virus-infected mouse brains confirmed the detection of viral antigens within astrocytes. Taken together, these findings suggest that the neurological findings in HFRS patients may be associated with hantavirus-directed modulation of innate immune responses in the brain.

  20. Anthrapyrazolone analogues intercept inflammatory JNK signals to moderate endotoxin induced septic shock

    NASA Astrophysics Data System (ADS)

    Prasad, Karothu Durga; Trinath, Jamma; Biswas, Ansuman; Sekar, Kanagaraj; Balaji, Kithiganahalli N.; Guru Row, Tayur N.

    2014-11-01

    Severe sepsis or septic shock is one of the rising causes for mortality worldwide representing nearly 10% of intensive care unit admissions. Susceptibility to sepsis is identified to be mediated by innate pattern recognition receptors and responsive signaling pathways of the host. The c-Jun N-terminal Kinase (JNK)-mediated signaling events play critical role in bacterial infection triggered multi-organ failure, cardiac dysfunction and mortality. In the context of kinase specificities, an extensive library of anthrapyrazolone analogues has been investigated for the selective inhibition of c-JNK and thereby to gain control over the inflammation associated risks. In our comprehensive biochemical characterization, it is observed that alkyl and halogen substitution on the periphery of anthrapyrazolone increases the binding potency of the inhibitors specifically towards JNK. Further, it is demonstrated that hydrophobic and hydrophilic interactions generated by these small molecules effectively block endotoxin-induced inflammatory genes expression in in vitro and septic shock in vivo, in a mouse model, with remarkable efficacies. Altogether, the obtained results rationalize the significance of the diversity oriented synthesis of small molecules for selective inhibition of JNK and their potential in the treatment of severe sepsis.

  1. Bee venom suppresses testosterone-induced benign prostatic hyperplasia by regulating the inflammatory response and apoptosis

    PubMed Central

    Chung, Kyung-Sook; An, Hyo-Jin; Cheon, Se-Yun; Kwon, Ki-Rok

    2015-01-01

    Benign prostatic hyperplasia (BPH), which is a common disorder in aging men, involves inflammation that is associated with an imbalance between cell proliferation and cell death. Because current BPH drug treatments have undesirable side effects, the development of well-tolerated and effective alternative medicines to treat BPH is of interest. Bee venom (BV) has been used in traditional medicine to treat conditions, such as arthritis and rheumatism, and pain. Although inflammation has been associated with BPH and BV has strong anti-inflammatory effects, the effects of BV on BPH are not fully understood. Therefore, in this study, we evaluated the efficacy of BV against testosterone-induced BPH in rats. BV decreased prostate weight compared to the untreated group. In addition, BV suppressed serum dihydrotestosterone concentration levels and the levels of proliferating cell nuclear antigen in the histological analysis. Furthermore, BV significantly decreased the levels of the apoptotic suppressors, Bcl-2 and Bcl-xL, and increased the levels of the proapoptotic factors, Bax and caspase-3 activation. These results suggested that BV suppressed the development of BPH and has good potential as a treatment for BPH. PMID:26085572

  2. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages.

    PubMed

    Whiteman, Matthew; Li, Ling; Rose, Peter; Tan, Choon-Hong; Parkinson, David B; Moore, Philip K

    2010-05-15

    The role of hydrogen sulfide (H(2)S) in inflammation is controversial, with both pro- and antiinflammatory effects documented. Many studies have used simple sulfide salts as the source of H(2)S, which give a rapid bolus of H(2)S in aqueous solutions and thus do not accurately reflect the enzymatic generation of H(2)S. We therefore compared the effects of sodium hydrosulfide and a novel slow-releasing H(2)S donor (GYY4137) on the release of pro- and antiinflammatory mediators in lipopolysaccharide (LPS)-treated murine RAW264.7 macrophages. For the first time, we show that GYY4137 significantly and concentration-dependently inhibits LPS-induced release of proinflammatory mediators such as IL-1beta, IL-6, TNF-alpha, nitric oxide (*NO), and PGE(2) but increased the synthesis of the antiinflammatory chemokine IL-10 through NF-kappaB/ATF-2/HSP-27-dependent pathways. In contrast, NaHS elicited a biphasic effect on proinflammatory mediators and, at high concentrations, increased the synthesis of IL-1beta, IL-6, NO, PGE(2) and TNF-alpha. This study clearly shows that the effects of H(2)S on the inflammatory process are complex and dependent not only on H(2)S concentration but also on the rate of H(2)S generation. This study may also explain some of the apparent discrepancies in the literature regarding the pro- versus antiinflammatory role of H(2)S.

  3. Indomethacin can downregulate the levels of inflammatory mediators in the hippocampus of rats submitted to pilocarpine-induced status epilepticus

    PubMed Central

    Vieira, Michele Juliane; Perosa, Sandra Regina; Argañaraz, Gustavo Adolfo; Silva, José Antônio; Cavalheiro, Esper Abrão; da Graça Naffah-Mazzacoratti, Maria

    2014-01-01

    OBJECTIVE: Refractory status epilepticus is one of the most life-threatening neurological emergencies and is characterized by high morbidity and mortality. Additionally, the use of anti-inflammatory drugs during this period is very controversial. Thus, this study has been designed to analyze the effect of a low dose of indomethacin (a COX inhibitor) on the expression of inflammatory molecules. METHOD: The hippocampus of rats submitted to pilocarpine-induced long-lasting status epilepticus was analyzed to determine the expression of inflammatory molecules with RT-PCR and immunohistochemistry. RESULTS: Compared with controls, reduced levels of the kinin B2 receptors IL1β and TNFα were found in the hippocampus of rats submitted to long-lasting status epilepticus and treated with indomethacin. CONCLUSIONS: These data show that low doses of indomethacin could be employed to minimize inflammation during long-lasting status epilepticus. PMID:25318094

  4. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages

    SciTech Connect

    Gammelsrud, A.; Solhaug, A.; Dendelé, B.; Sandberg, W.J.; Ivanova, L.; Kocbach Bølling, A.; Lagadic-Gossmann, D.; Refsnes, M.; Becher, R.; Eriksen, G.; Holme, J.A.

    2012-05-15

    The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte–macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B. -- Highlights: ► The mycotoxin EnnB induced cell cycle arrest, cell death and inflammation. ► The G0/G1-arrest was linked to a reduced ability to internalize receptors. ► EnnB caused lysosomal damage, leakage of cathepsin B and caspase-1 cleavage. ► Caspase-1 was partly involved in both apoptosis and release of IL-1

  5. Insulin modulates inflammatory and repair responses to elastase-induced emphysema in diabetic rats.

    PubMed

    Di Petta, Antonio; Greco, Karin V; Castro, Eveline O; Lopes, Fernanda D T Q S; Martins, Milton A; Capelozzi, Vera L; Moreira, Luiz F P; Sannomiya, Paulina

    2011-12-01

    As pulmonary emphysema and diabetes mellitus are common diseases, concomitance of both is correspondingly expected to occur frequently. To examine whether insulin influences the development of inflammation in the alveolar septa, diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., n = 37) and matching controls (n = 31) were used. Ten days after alloxan injection, diabetic and control rats were instilled with physiologic saline solution containing porcine pancreatic elastase (PPE, 0.25 IU/0.2 ml, right lung) or saline only (left lung). The following analyses were performed: (i) number of leucocytes in the bronchoalveolar lavage (BAL) fluid of the animals, 6 h after PPE/saline instillation (early time point); and (ii) mean alveolar diameter (μm) and quantification of elastic and collagen fibres (%) 50 days after PPE/saline instillation (late time point). Relative to controls, alloxan-induced diabetic rats showed a 42% reduction in the number of neutrophils in BAL fluid, a 20% increase in the mean alveolar diameter and a 33% decrease in elastic fibre density in the alveolar septa. Treatment of diabetic rats with 4 IU neutral protamine Hagedorn (NPH) insulin, 2 h before elastase instillation, restored the number of neutrophils in the BAL fluid. The mean alveolar diameter and elastic fibre content in alveolar septa matched the values observed in control rats if diabetic rats were treated with 4 IU NPH insulin 2 h before instillation followed by 2 IU/day for the next 50 days. Density of collagen fibres did not differ between the various groups. Thus, the data presented suggest that insulin modulates the inflammatory and repair responses in elastase-induced emphysema, and assures normal repair and tissue remodelling.

  6. Human recombinant RNASET2-induced inflammatory response and connective tissue remodeling in the medicinal leech.

    PubMed

    Baranzini, Nicolò; Pedrini, Edoardo; Girardello, Rossana; Tettamanti, Gianluca; de Eguileor, Magda; Taramelli, Roberto; Acquati, Francesco; Grimaldi, Annalisa

    2017-01-09

    In recent years, several studies have demonstrated that the RNASET2 gene is involved in the control of tumorigenicity in ovarian cancer cells. Furthermore, a role in establishing a functional cross-talk between cancer cells and the surrounding tumor microenvironment has been unveiled for this gene, based on its ability to act as an inducer of the innate immune response. Although several studies have reported on the molecular features of RNASET2, the details on the mechanisms by which this evolutionarily conserved ribonuclease regulates the immune system are still poorly defined. In the effort to clarify this aspect, we report here the effect of recombinant human RNASET2 injection and its role in regulating the innate immune response after bacterial challenge in an invertebrate model, the medicinal leech. We found that recombinant RNASET2 injection induces fibroplasias, connective tissue remodeling and the recruitment of numerous infiltrating cells expressing the specific macrophage markers CD68 and HmAIF1. The RNASET2-mediated chemotactic activity for macrophages has been further confirmed by using a consolidated experimental approach based on injection of the Matrigel biomatrice (MG) supplemented with recombinant RNASET2 in the leech body wall. One week after injection, a large number of CD68(+) and HmAIF-1(+) macrophages massively infiltrated MG sponges. Finally, in leeches challenged with lipopolysaccharides (LPS) or with the environmental bacteria pathogen Micrococcus nishinomiyaensis, numerous macrophages migrating to the site of inoculation expressed high levels of endogenous RNASET2. Taken together, these results suggest that RNASET2 is likely involved in the initial phase of the inflammatory response in leeches.

  7. Does heart rate variability reflect the systemic inflammatory response in a fetal sheep model of lipopolysaccharide-induced sepsis?

    PubMed Central

    Durosier, Lucien D; Herry, Christophe L; Cortes, Marina; Cao, Mingju; Burns, Patrick; Desrochers, André; Fecteau, Gilles; Seely, Andrew J E; Frasch, Martin G

    2017-01-01

    Fetal inflammatory response occurs during chorioamnionitis, a frequent and often subclinical inflammation associated with increased risk for brain injury and life-lasting neurologic deficits. No means of early detection exist. We hypothesized that systemic fetal inflammation without septic shock will be reflected in alterations of fetal heart rate (FHR) variability (fHRV) distinguishing baseline versus inflammatory response states. In chronically instrumented near-term fetal sheep (n = 24), we induced an inflammatory response with lipopolysaccharide (LPS) injected intravenously (n = 14). Ten additional fetuses served as controls. We measured fetal plasma inflammatory cytokine IL-6 at baseline, 1, 3, 6, 24 and 48 h. 44 fHRV measures were determined continuously every 5 min using continuous individualized multi-organ variability analysis (CIMVA). CIMVA creates an fHRV measures matrix across five signal-analytical domains, thus describing complementary properties of fHRV. Using principal component analysis (PCA), a widely used technique for dimensionality reduction, we derived and quantitatively compared the CIMVA fHRV PCA signatures of inflammatory response in LPS and control groups. In the LPS group, IL-6 peaked at 3 h. In parallel, PCA-derived fHRV composite measures revealed a significant difference between LPS and control group at different time points. For the LPS group, a sharp increase compared to baseline levels was observed between 3 h and 6 h, and then abating to baseline levels, thus tracking closely the IL-6 inflammatory profile. This pattern was not observed in the control group. We also show that a preselection of fHRV measures prior to the PCA can potentially increase the difference between LPS and control groups, as early as 1 h post LPS injection. We propose a fHRV composite measure that correlates well with levels of inflammation and tracks well its temporal profile. Our results highlight the potential role of HRV to study and monitor the

  8. Supradural inflammatory soup in awake and freely moving rats induces facial allodynia that is blocked by putative immune modulators.

    PubMed

    Wieseler, Julie; Ellis, Amanda; McFadden, Andrew; Stone, Kendra; Brown, Kimberley; Cady, Sara; Bastos, Leandro F; Sprunger, David; Rezvani, Niloofar; Johnson, Kirk; Rice, Kenner C; Maier, Steven F; Watkins, Linda R

    2017-03-16

    Facial allodynia is a migraine symptom that is generally considered to represent a pivotal point in migraine progression. Treatment before development of facial allodynia tends to be more successful than treatment afterwards. As such, understanding the underlying mechanisms of facial allodynia may lead to a better understanding of the mechanisms underlying migraine. Migraine facial allodynia is modeled by applying inflammatory soup (histamine, bradykinin, serotonin, prostaglandin E2) over the dura. Whether glial and/or immune activation contributes to such pain is unknown. Here we tested if trigeminal nucleus caudalis (Sp5C) glial and/or immune cells are activated following supradural inflammatory soup, and if putative glial/immune inhibitors suppress the consequent facial allodynia. Inflammatory soup was administered via bilateral indwelling supradural catheters in freely moving rats, inducing robust and reliable facial allodynia. Gene expression for microglial/macrophage activation markers, interleukin-1β, and tumor necrosis factor-α increased following inflammatory soup along with robust expression of facial allodynia. This provided the basis for pursuing studies of the behavioral effects of 3 diverse immunomodulatory drugs on facial allodynia. Pretreatment with either of two compounds broadly used as putative glial/immune inhibitors (minocycline, ibudilast) prevented the development of facial allodynia, as did treatment after supradural inflammatory soup but prior to the expression of facial allodynia. Lastly, the toll-like receptor 4 (TLR4) antagonist (+)-naltrexone likewise blocked development of facial allodynia after supradural inflammatory soup. Taken together, these exploratory data support that activated glia and/or immune cells may drive the development of facial allodynia in response to supradural inflammatory soup in unanesthetized male rats.

  9. Cardiac RNA induces inflammatory responses in cardiomyocytes and immune cells via Toll-like receptor 7 signaling.

    PubMed

    Feng, Yan; Chen, Hongliang; Cai, Jiayan; Zou, Lin; Yan, Dan; Xu, Ganqiong; Li, Dan; Chao, Wei

    2015-10-30

    We have recently reported that extracellular RNA (exRNA) released from necrotic cells induces cytokine production in cardiomyocytes and immune cells and contributes to myocardial ischemia/reperfusion injury. However, the signaling mechanism by which exRNA exhibits its pro-inflammatory effect is unknown. Here we hypothesize that exRNA directly induces inflammation through specific Toll-like receptors (TLRs). To test the hypothesis, we treated rat neonatal cardiomyocytes, mouse bone marrow-derived macrophages (BMDM), or mouse neutrophils with RNA (2.5-10 μg/ml) isolated from rat cardiomyocytes or the hearts from mouse, rat, and human. We found that cellular RNA induced production of several cytokines such as macrophage inflammatory protein-2 (MIP-2), ILs, TNFα, and the effect was completely diminished by RNase, but not DNase. The RNA-induced cytokine production was partially inhibited in cells treated with TLR7 antagonist or genetically deficient in TLR7. Deletion of myeloid differentiation primary response protein 88 (MyD88), a downstream adapter of TLRs including TLR7, abolished the RNA-induced MIP-2 production. Surprisingly, genetic deletion of TLR3 had no impact on the RNA-induced MIP-2 response. Importantly, extracellular RNA released from damaged cardiomyocytes also induced cytokine production. Finally, mice treated with 50 μg of RNA intraperitoneal injection exhibited acute peritonitis as evidenced by marked neutrophil and monocyte migration into the peritoneal space. Together, these data demonstrate that exRNA of cardiac origin exhibits a potent pro-inflammatory property in vitro and in vivo and that exRNA induces cytokine production through TLR7-MyD88 signaling.

  10. Anti-inflammatory effects of oroxylin A on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid

    PubMed Central

    LEE, JI YOUNG; PARK, WANSU

    2016-01-01

    Oroxylin A (5,7-dihydroxy-6-methoxy-2-phenylchromen-4-one; Baicalein 6-methyl ether) is an active flavonoid compound originally isolated from Scutellaria radix, which has been used to treat pulmonary infection in Korea, China, and Japan. Oroxylin A is known to possess dopamine reuptake inhibitor activity. However, the effects of oroxylin A on virus-induced macrophages has not been fully elucidated. In the present study, the anti-inflammatory effects of oroxylin A on double-stranded RNA-induced macrophages were examined. Production of nitric oxide (NO), various cytokines, as well as calcium release and the mRNA expression of signal transducer and activator of transcription 1 (STAT1) in dsRNA polyinosinic-polycytidylic acid (PIC)-induced RAW 264.7 mouse macrophages were evaluated. Oroxylin A restored the cell viability in PIC-induced RAW 264.7 mouse macrophages at concentrations of up to 50 µM. Additionally, oroxylin A significantly inhibited the production of nitric oxide (NO), interleukin (IL)-1α, IL-1β, IL-6, IL-10, interferon gamma-induced protein 10, granulocyte-colony stimulating factor (CSF), granulocyte macrophage-CSF, leukemia inhibitory factor (IL-6 class cytokine), lipopolysaccharide-induced CXC chemokine (LIX), monocyte chemoattractant protein 1, macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, Regulated on Activation, Normal T Expressed and Secreted, tumor necrosis factor-α, and vascular endothelial growth factor as well as calcium release and the mRNA expression of STAT1 in PIC-induced RAW 264.7 cells (P<0.05). Thus, the present results suggest that oroxylin A has anti-inflammatory properties, associated with its inhibition of NO, cytokines, chemokines and growth factors in PIC-induced macrophages via the calcium-STAT pathway. PMID:27347031

  11. Effects of tylosin, tilmicosin and tulathromycin on inflammatory mediators in bronchoalveolar lavage fluid of lipopolysaccharide-induced lung injury.

    PubMed

    Er, Ayse; Yazar, Enver

    2012-12-01

    The aim of this study was to determine the anti-inflammatory effects of macrolides through kinetic parameters in bronchoalveolar lavage fluid (BALF) of lipopolysaccharide-induced lung injury. Rats were divided into four groups: lipopolysaccharide (LPS), LPS + tylosin, LPS + tilmicosin and LPS + tulathromycin. BALF samples were collected at sampling times. TNF, IL-1β, IL-6, IL-10 and 13,14-dihydro-15-keto-prostaglandin F2α (PGM) and C-reactive protein (CRP) were analysed. Area under the curve (AUC) and maximum plasma concentration (Cmax) values of inflammatory mediators were determined by a pharmacokinetic computer programme. When inflammatory mediator concentrations were compared between the LPS group and other groups for each sampling time, the three macrolides had no pronounced depressor effect on cytokine levels, but they depressed PGM and CRP levels. In addition, tylosin and tilmicosin decreased the AUC0-24 level of TNF, while tilmicosin decreased the AUC0-24 level of IL-10. Tylosin and tulathromycin decreased the AUC0-24 of PGM, and all three macrolides decreased the AUC0-24 of CRP. Especially tylosin and tulathromycin may have more expressed anti-inflammatory effects than tilmicosin, via depressing the production of inflammatory mediators in the lung. The AUC may be used for determining the effects of drugs on inflammation. In this study, the antiinflammatory effects of these antibiotics were evaluated with kinetic parameters as a new and different approach.

  12. Bovine milk RNases modulate pro-inflammatory responses induced by nucleic acids in cultured immune and epithelial cells.

    PubMed

    Gupta, Sandeep K; Haigh, Brendan J; Seyfert, Hans-Martin; Griffin, Frank J; Wheeler, Thomas T

    2017-03-01

    Activation of innate immune receptors by exogenous substances is crucial for the detection of microbial pathogens and a subsequent inflammatory response. The inflammatory response to microbial lipopolysaccharide via Toll-like receptor 4 (TLR4) is facilitated by soluble accessory proteins, but the role of such proteins in the activation of other pathogen recognition receptors for microbial nucleic acid is not well understood. Here we demonstrate that RNase4 and RNase5 purified from bovine milk bind to Salmonella typhimurium DNA and stimulate pro-inflammatory responses induced by nucleic acid mimetics and S. typhimurium DNA in an established mouse macrophage cell culture model, RAW264.7, as well as in primary bovine mammary epithelial cells. RNase4 and 5 also modulated pro-inflammatory signalling in response to nucleic acids in bovine peripheral blood mononuclear cells, although producing a distinct response. These results support a role for RNase4 and RNase5 in mediating inflammatory signals in both immune and epithelial cells, involving mechanisms that are cell-type specific.

  13. Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces.

    PubMed

    Gilbert, Jeremy L; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi B; Arnholt, Christina M; Kurtz, Steven M

    2015-01-01

    Cobalt-chromium-molybdenum (CoCrMo) alloy, used for over five decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40-100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and hydrochloric acid to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play.

  14. Direct In Vivo Inflammatory Cell-Induced Corrosion of CoCrMo Alloy Orthopedic Implant Surfaces

    PubMed Central

    Gilbert, Jeremy L.; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi; Arnholt, Christina; Kurtz, Steven M.

    2014-01-01

    Cobalt-chromium-molybdenum alloy, used for over four decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40 to 100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and HCl to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. PMID:24619511

  15. Rutoside decreases human macrophage-derived inflammatory mediators and improves clinical signs in adjuvant-induced arthritis

    PubMed Central

    Kauss, Tina; Moynet, Daniel; Rambert, Jérôme; Al-Kharrat, Abir; Brajot, Stephane; Thiolat, Denis; Ennemany, Rachid; Fawaz, Fawaz; Mossalayi, M Djavad

    2008-01-01

    Background Dietary flavonols may play an important role in the adjunct therapy of chronic inflammation. The availability of therapeutic formulations of pentahydroxyflavone glycoside, rutoside (RU), led us to investigate the ability of this molecule to modulate the release of various proinflammatory mediators from human activated macrophages in vitro and to ameliorate arthritic markers in a rat model. Methods RU was added simultaneously to human macrophages during their activation. Cells were then analyzed for inflammation-related gene expression using a specific array, and cell supernatants were collected to measure inflammatory mediators. RU was also injected into adjuvant-induced arthritic rats, and disease progression and body weight were evaluated until 50 days after injection. Sera and peritoneal macrophages were also collected to quantify the RU effect on various inflammatory markers. Results RU inhibited inflammation-related gene expression in activated human macrophages and the release of nitric oxide, tumor necrosis factor-alpha, interleukin (IL)-1, and IL-6 from these cells. In a rat model, RU inhibited clinical signs of chronic arthritis, correlating with decreased levels of inflammatory cytokines detected in rat sera and macrophage supernatants. Conclusion Thus, RU may have clinical value in reducing inflammatory manifestations in human arthritis and other inflammatory diseases. PMID:18252009

  16. Arginine Relieves the Inflammatory Response and Enhances the Casein Expression in Bovine Mammary Epithelial Cells Induced by Lipopolysaccharide

    PubMed Central

    Wu, Tianyou; Wang, Chao; Ding, Luoyang; Shen, Yizhao; Cui, Huihui; Wang, Mengzhi; Wang, Hongrong

    2016-01-01

    As one of functional active amino acids, L-arginine holds a key position in immunity. However, the mechanism that arginine modulates cow mammary inflammatory response in ruminant is unclear. Therefore, this study was conducted to investigate the effects of L-arginine on inflammatory response and casein expression after challenging the bovine mammary epithelial cells (BMECs) with lipopolysaccharide (LPS). The cells were divided into four groups, stimulated with or without LPS (10 μg/mL) and treated with or without arginine (100 μg/mL) for 12 h. The concentration of proinflammatory cytokines, inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and Toll-like receptor 4 (TLR4) signaling pathways as well as the casein was determined. The results showed that arginine reduced the LPS-induced production like IL-1β, IL-6, TNF-α, and iNOS. Though the expression of NF-κB was attenuated and the mTOR signaling pathway was upregulated, arginine had no effect on TLR4 expression. In addition, our results show that the content of β-casein and the total casein were enhanced after arginine was supplemented in LPS-induced BMECs. In conclusion, arginine could relieve the inflammatory reaction induced by LPS and enhance the concentration of β-casein and the total casein in bovine mammary epithelial cells. PMID:27110069

  17. Ferulic acid ethyl ester diminished Complete Freund's Adjuvant-induced incapacitation through antioxidant and anti-inflammatory activity.

    PubMed

    Cunha, Francisco Valmor Macedo; Gomes, Bruno de Sousa; Neto, Benedito de Sousa; Ferreira, Alana Rodrigues; de Sousa, Damião Pergentino; de Carvalho e Martins, Maria do Carmo; Oliveira, Francisco de