Science.gov

Sample records for induces local inflammatory

  1. Local inflammatory events induced by Bothrops atrox snake venom and the release of distinct classes of inflammatory mediators.

    PubMed

    Moreira, Vanessa; Dos-Santos, Maria Cristina; Nascimento, Neide Galvão; Borges da Silva, Henrique; Fernandes, Cristina Maria; D'Império Lima, Maria Regina; Teixeira, Catarina

    2012-07-01

    Bothrops atrox is responsible for most accidents involving snakes in the Brazilian Amazon and its venom induces serious systemic and local effects. The local effects are not neutralized effectively by commercial antivenoms, resulting in serious sequelae in individuals bitten by this species. This study investigates the local inflammatory events induced in mice by B. atrox venom (BaV), such as vascular permeability, leukocyte influx and the release of important inflammatory mediators such as cytokines, eicosanoids and the chemokine CCL-2, at the injection site. The effect of BaV on cyclooxygenase (COX-1 and COX-2) expression was also investigated. The results showed that intraperitoneal (i.p.) injection of BaV promoted a rapid and significant increase in vascular permeability, which reached a peak 1 h after venom administration. Furthermore, BaV caused leukocyte infiltration into the peritoneal cavity between 1 and 8 h after i.p. injection, with mononuclear leukocytes (MNs) predominating in the first 4 h, and polymorphonuclear leukocytes (PMNs) in the last 4 h. Increased protein expression of COX-2, but not of COX-1, was detected in leukocytes recruited in the first and fourth hours after injection of BaV. The venom caused the release of eicosanoids PGD₂, PGE₂, TXA₂ and LTB₄, cytokines TNF-α, IL-6, IL-10 and IL-12p70, but not IFN-γ, and chemokine CCL-2 at different times. The results show that BaV is able to induce an early increase in vascular permeability and a leukocyte influx to the injection site consisting mainly of MNs initially and PMNs during the later stages. These phenomena are associated with the production of cytokines, the chemokine CCL-2 and eicosanoids derived from COX-1 and COX-2. PMID:22465491

  2. Local inflammatory reaction induced by Scolopendra viridicornis centipede venom in mice.

    PubMed

    Kimura, Louise Faggionato; Prezotto-Neto, José Pedro; Távora, Bianca de Carvalho Lins Fernandes; Antoniazzi, Marta Maria; Knysak, Irene; Gióia Guizze, Samuel Paulo; Santoro, Marcelo Larami; Barbaro, Katia Cristina

    2013-12-15

    Centipede envenomation is generally mild, and human victims usually manifest burning pain, erythema and edema. Despite the abundance and ubiquity of these animals, centipede venom has been poorly characterized in literature. For this reason, the aim of this work was to investigate local inflammatory features induced by Scolopendra viridicornis centipede envenomation in mice, evaluating edema formation, leukocyte infiltration, production of inflammatory mediators, and also performing histological analysis. The highest edematogenic activity induced by the venom, determined by plethysmometry, was noticed 0.5 h after injection in mice footpad. At 24 h, edema was still detected in animals that received 15 and 60 μg of venom, and at 48 h, only in animals injected with 60 μg of venom. In relation to leukocyte count, S. viridicornis venom induced cell recruitment, mainly neutrophils and monocytes/macrophages, in all doses and time periods analyzed in comparison with PBS-injected mice. An increase in lymphocytes was detected especially between 1 and 24 h at 60 μg dose. Besides, eosinophil recruitment was observed mainly for 15 and 60 μg doses in early time periods. Edema formation and cell recruitment were also confirmed by histological analysis. Moreover, S. viridicornis venom stimulated the release of IL-6, MCP-1, KC, and IL-1β. Conversely, S. viridicornis venom did not induce the release of detectable levels of TNF-α. We demonstrated that the edematogenic activity induced by S. viridicornis venom was of rapid onset, and the venom stimulated secretion of pro-inflammatory mediators which contribute to the inflammatory reaction induced by S. viridicornis venom in an experimental model.

  3. Local inflammatory reaction induced by Scolopendra viridicornis centipede venom in mice.

    PubMed

    Kimura, Louise Faggionato; Prezotto-Neto, José Pedro; Távora, Bianca de Carvalho Lins Fernandes; Antoniazzi, Marta Maria; Knysak, Irene; Gióia Guizze, Samuel Paulo; Santoro, Marcelo Larami; Barbaro, Katia Cristina

    2013-12-15

    Centipede envenomation is generally mild, and human victims usually manifest burning pain, erythema and edema. Despite the abundance and ubiquity of these animals, centipede venom has been poorly characterized in literature. For this reason, the aim of this work was to investigate local inflammatory features induced by Scolopendra viridicornis centipede envenomation in mice, evaluating edema formation, leukocyte infiltration, production of inflammatory mediators, and also performing histological analysis. The highest edematogenic activity induced by the venom, determined by plethysmometry, was noticed 0.5 h after injection in mice footpad. At 24 h, edema was still detected in animals that received 15 and 60 μg of venom, and at 48 h, only in animals injected with 60 μg of venom. In relation to leukocyte count, S. viridicornis venom induced cell recruitment, mainly neutrophils and monocytes/macrophages, in all doses and time periods analyzed in comparison with PBS-injected mice. An increase in lymphocytes was detected especially between 1 and 24 h at 60 μg dose. Besides, eosinophil recruitment was observed mainly for 15 and 60 μg doses in early time periods. Edema formation and cell recruitment were also confirmed by histological analysis. Moreover, S. viridicornis venom stimulated the release of IL-6, MCP-1, KC, and IL-1β. Conversely, S. viridicornis venom did not induce the release of detectable levels of TNF-α. We demonstrated that the edematogenic activity induced by S. viridicornis venom was of rapid onset, and the venom stimulated secretion of pro-inflammatory mediators which contribute to the inflammatory reaction induced by S. viridicornis venom in an experimental model. PMID:24140924

  4. Fat-water MRI is sensitive to local adipose tissue inflammatory changes in a diet-induced obesity mouse model at 15T

    NASA Astrophysics Data System (ADS)

    Ong, Henry H.; Webb, Corey D.; Gruen, Marnie L.; Hasty, Alyssa H.; Gore, John C.; Welch, E. B.

    2015-03-01

    In obesity, fat-water MRI (FWMRI) methods provide valuable information about adipose tissue (AT) distribution. AT is known to undergo complex metabolic and endocrine changes in association with chronic inflammation including iron overloading. Here, we investigate the potential for FWMRI parameters (fat signal fraction (FSF), local magnetic field offset, and T2*) to be sensitive to AT inflammatory changes in an established diet-induced obesity mouse model. Male C57BL/6J mice were placed on a low fat (LFD) or a high fat diet (HFD). 3D multi- gradient-echo MRI at 15.2T was performed at baseline, 4, 8, 12, and 16 weeks after diet onset. A 3D fat-water separation algorithm and additional processing was used to generate FSF, local field offset, and T2* maps. We examined these parameters in perirenal AT ROIs from HFD and LFD mice. Results: The data suggest that FSF, local field offset, and T2* can differentiate time course behavior between inflamed and control AT (increasing FSF, decreasing local field offset, increasing followed by decreasing T2*). The biophysical mechanisms of these observed changes are not well understood and require further study. To the best of our knowledge, we report the first evidence that FWMRI can provide biomarkers sensitive to AT inflammation, and that FWMRI has the potential for longitudinal non-invasive assessment of AT inflammation in obesity.

  5. Local Anesthetic-Induced Neurotoxicity

    PubMed Central

    Verlinde, Mark; Hollmann, Markus W.; Stevens, Markus F.; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-01-01

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor. PMID:26959012

  6. Inhibition of titanium-particle-induced inflammatory osteolysis after local administration of dopamine and suppression of osteoclastogenesis via D2-like receptor signaling pathway.

    PubMed

    Yang, Huilin; Xu, Yaozeng; Zhu, Mo; Gu, Ye; Zhang, Wen; Shao, Hongguo; Wang, Yijun; Ping, Zichuan; Hu, Xuanyang; Wang, Liangliang; Geng, Dechun

    2016-02-01

    Chronic inflammation and extensive osteoclast formation play critical roles in wear-debris-induced peri-implant osteolysis. We investigated the potential impact of dopamine on titanium-particle-induced inflammatory osteolysis in vivo and in vitro. Twenty-eight C57BL/6J mice were randomly assigned to four groups: sham control (PBS treatment), titanium (titanium/PBS treatment), low- (titanium/2 μg kg(-1) day(-1) dopamine) and high-dopamine (titanium/10 μg kg(-1) day(-1) dopamine). After 2 weeks, mouse calvariae were collected for micro-computed tomography (micro-CT) and histomorphometry analysis. Bone-marrow-derived macrophages (BMMs) were isolated to assess osteoclast differentiation. Dopamine significantly reduced titanium-particle-induced osteolysis compared with the titanium group as confirmed by micro-CT and histomorphometric data. Osteoclast numbers were 34.9% and 59.7% (both p < 0.01) lower in the low- and high-dopamine-treatment groups, respectively, than in the titanium group. Additionally, low RANKL, tumor necrosis factor-α, interleukin-1β and interleukin-6 immunochemistry staining were noted in dopamine-treatment groups. Dopamine markedly inhibited osteoclast formation, osteoclastogenesis-related gene expression and pro-inflammatory cytokine expression in BMMs in a dose-dependent manner. Moreover, the resorption area was decreased with 10(-9) M and 10(-8) M dopamine to 40.0% and 14.5% (both p < 0.01), respectively. Furthermore, the inhibitory effect of dopamine was reversed by the D2-like-receptor antagonist haloperidol but not by the D1-like-receptor antagonist SCH23390. These results suggest that dopamine therapy could be developed into an effective and safe method for osteolysis-related disease caused by chronic inflammation and excessive osteoclast formation.

  7. [Effect of local anesthetics on the postoperative inflammatory response].

    PubMed

    Beloeil, H; Mazoit, J-X

    2009-03-01

    Current knowledge suggests that peripheral inflammation following surgery activates and sensitizes both peripheral and central nervous system. These phenomena involved in the maintenance of the inflammatory response lead to hypersensibility, hyperalgesia and allodynia. Hyperalgesia participates in the general experience of postoperative pain and ALo in the development of chronic pain. A correlation between the ability of treatments to reduce areas of hypersensitivity surrounding the wound after surgery and their ability to reduce the incidence of chronic pain has been shown. For a long time, local anaesthetics have been used for their capacity to block nociceptive input. They can ALo modulate the inflammatory response following a surgical trauma. By inhibiting the nervous conductivity at the site of the trauma, local anesthetics attenuate the sensitization of the nervous system and therefore the inflammatory phenomena. They ALo exert intrinsic anti-inflammatory properties by modulating the local and systemic liberation of inflammatory mediators. The mechanisms involved are not clearly elucidated. Local, systemic, and spinal inflammatory mechanisms may be influenced by local anesthetics through multiple different mechanisms. The therapeutic implications of effects of local anesthetics on local, systemic, and spinal inflammatory responses merit further study. PMID:19297121

  8. Ac2-26 Mimetic Peptide of Annexin A1 Inhibits Local and Systemic Inflammatory Processes Induced by Bothrops moojeni Venom and the Lys-49 Phospholipase A2 in a Rat Model

    PubMed Central

    Carlos, Carla Patrícia; Ullah, Anwar; Arni, Raghuvir Krishnaswamy; Gil, Cristiane Damas; Oliani, Sonia Maria

    2015-01-01

    Annexin A1 (AnxA1) is an endogenous glucocorticoid regulated protein that modulates anti-inflammatory process and its therapeutic potential has recently been recognized in a range of systemic inflammatory disorders. The effect of the N-terminal peptide Ac2-26 of AnxA1 on the toxic activities of Bothrops moojeni crude venom (CV) and its myotoxin II (MjTX-II) were evaluated using a peritonitis rat model. Peritonitis was induced by the intraperitoneal injection of either CV or MjTX-II, a Lys-49 phospholipase A2. Fifteen minutes after the injection, the rats were treated with either Ac2-26 or PBS. Four hours later, the CV and MjTX-II-induced peritonitis were characterized by neutrophilia (in the peritoneal exudate, blood and mesentery) and increased number of mesenteric degranulated mast cells and macrophages. At 24 hours post-injection, the local inflammatory response was attenuated in the CV-induced peritonitis while the MjTX-II group exhibited neutrophilia (peritoneal exudates and blood). Ac2-26 treatment prevented the influx of neutrophils in MjTX-II–induced peritonitis and diminished the proportion of mesenteric degranulated mast cells and macrophages in CV-induced peritonitis. Additionally, CV and MjTX-II promoted increased levels of IL-1β and IL-6 in the peritoneal exudates which were significantly reduced after Ac2-26 treatment. At 4 and 24 hours, the endogenous expression of AnxA1 was upregulated in the mesenteric neutrophils (CV and MjTX-II groups) and mast cells (CV group). In the kidneys, CV and MjTX-II administrations were associated with an increased number of macrophages and morphological alterations in the juxtamedullary nephrons in proximal and distal tubules. Ac2-26 promoted significant recovery of the juxtamedullary structures, decreased the number of macrophages and diminished the AnxA1 in epithelial cells from distal tubules and renal capsules. Our results show that Ac2-26 treatment significantly attenuates local and systemic inflammatory

  9. BH3-only protein Bim is associated with the degree of Helicobacter pylori-induced gastritis and is localized to the mitochondria of inflammatory cells in the gastric mucosa.

    PubMed

    Akazawa, Yuko; Matsuda, Katsuya; Isomoto, Hajime; Matsushima, Kayoko; Kido, Yoko; Urabe, Shigetoshi; Yamaghchi, Naoyuki; Ohnita, Ken; Takeshima, Fuminao; Kondo, Hisayoshi; Tsugawa, Hitoshi; Suzuki, Hidekazu; Moss, Joel; Nakao, Kazuhiko; Nakashima, Masahiro

    2015-09-01

    BH3-only protein, Bim, is a pro-apoptotic protein that mediates mitochondria-dependent cell death. However, the role of Bim in Helicobacter pylori-associated gastritis remains unclear. This study aimed to assess the cellular localization of Bim and its possible role in H. pylori-induced gastritis. The study was conducted on biopsy specimens obtained from 80 patients who underwent upper gastrointestinal endoscopy (H. pylori-negative: n=30, positive: n=50). Association between Bim mRNA expression and severity of gastritis was evaluated and the localization of Bim was examined by immunofluorescence. Bim mRNA expression was positively correlated with the degree of gastritis, as defined by the Sydney system. Immunohistochemical analysis confirmed increased Bim expression in H. pylori-infected gastric mucosa compared with uninfected mucosa in both humans and mice. Bim localized in myeloperoxidase- and CD138-positive cells of H. pylori-infected lamina propria and submucosa of the gastric tract, indicating that this protein is predominantly expressed in neutrophils and plasma cells. In contrast, Bim did not localize in CD20-, CD3-, or CD68-positive cells. Bim was expressed in the mitochondria, where it was partially co-localized with activated Bax and cleaved-PARP. In conclusion, Bim is expressed in neutrophils and plasma cells in H. pylori-associated gastritis, where it may participate in the termination of inflammatory response by causing mitochondria-mediated apoptosis in specific leucocytes.

  10. Influence of local anaesthetics on inflammatory activity postburn.

    PubMed

    Yregård, Liselotte; Cassuto, Jean; Tarnow, Peter; Nilsson, Ulf

    2003-06-01

    Most studies investigating the pathophysiological processes taking place inside an experimental burn wound use in vitro techniques, which only allow for fragmented measurements of the actual and complex processes occurring inside a burn wound in vivo. In the present study, which used a recently developed in vivo technique in the rat, a full-thickness burn was induced and resulted in the formation of a subcutaneous gelatinous edema with distinct borders to the surrounding connective tissue and free communication with the systemic circulation allowing it to be easily separated for further analysis. In the present study, we investigated the effects of topical local anaesthetics (EMLA) on the inflammatory cascade of a burn wound in vivo. Results showed significantly higher myeloperoxidase (MPO) levels in EMLA-treated burned animals (P<0.01) versus placebo-treated burned controls. EMLA treatment induced a significant inhibition of the synthesis of leukotrien B(4) (LTB(4)) (P<0.001), prostaglandin E(1) (PGE(1)) (P<0.001), prostaglandin E(2) (PGE(2)) (P<0.001) and thromboxane B(2) (TXB(2)) (P<0.001) versus control, while free radical formation did not differ significantly between EMLA-treated and control animals. In conclusion, topical local anaesthetics significantly inhibit the release of several mediators known to take important part in the pathophysiological events ensuing a burn injury, such as activation of pain mechanisms (PGE), oedema formation (LTB), and postburn ischemia (TXB). The increased numbers of leukocytes (MPO) in the burn wound induced by topical local anaesthetic treatment could suggest increased influx and/or increased viability of leukocytes postburn.

  11. Local inflammatory response in colorectal cancer.

    PubMed

    Łaskowski, P; Klim, B; Ostrowski, K; Szkudlarek, M; Litwiejko-Pietryńczak, E; Kitlas, K; Nienartowicz, S; Dzięcioł, J

    2016-06-01

    Type and intensity of tumor-infiltrating lymphocytes (TILs) in close proximity to the primary tumor are prognostically significant in postoperative patients. High intensity of TILs is considered to be a prognostically beneficial factor. The research included 66 postoperative colorectal cancer patients. The control group comprised 20 colon segments. Monoclonal antibodies LCA, CD3, CD4, CD5, CD8, CD20, CD23 and CD138 were used to differentiate between T and B lymphocytes. Types of cells in the infiltrate were defined. We found greater numbers of T and B lymphocytes located in close proximity to the cancerous tissue when compared to the control group. T lymphocyte intensity in the inflammatory infiltrations was directly correlated with the size of resected tumors, presence of regional lymphatic node metastases and histological grade of malignancy. Lymphocytic infiltrations of greater intensity located in close proximity to the primary tumor were found in subjects with less advanced colorectal cancer. The research presented here proves direct dependence between the immune system and colorectal cancer. The presence of lymphocytes in the inflammatory infiltrations located in close proximity to the cancerous tissue has been proved to be prognostically beneficial. The obtained results support the application of immunotherapy in colorectal cancer treatment. PMID:27543872

  12. Local anti-inflammatory activity and systemic side effects of NM-135, a new prodrug glucocorticoid, in an experimental inflammatory rat model.

    PubMed

    Ishii, T; Kibushi, N; Nakajima, T; Kakuta, T; Tanaka, N; Sato, C; Sugai, K; Kijima-Suda, I; Kai, H; Miyata, T

    1998-12-01

    The local anti-inflammatory activity and systemic side effects of NM-135 (6alpha,9-difluoro-11beta-hydroxy-16alpha-methyl-21[[2 ,3,4,6-tetrakis-O-(4-methylbenzoyl)-beta-D-glucopyranosyl]oxy]-pregna-1, 4-diene-3,20-dione) in croton oil-induced granuloma pouches and ear edema in rats were studied. The local anti-inflammatory activity of NM-135 was stronger than that of betamethasone 17-valerate (BV). As to systemic side effects, BV and diflucortolon valerate (DFV) caused thymolysis at the doses required for the anti-inflammatory activity. In contrast, no clear systemic side effect was observed in rats administered NM-135 at the dose producing the anti-inflammatory activity. These results suggest that NM-135 is a drug exhibiting a high degree of dissociation between the local anti-inflammatory activity and systemic side effects. PMID:9920209

  13. Local and Systemic Pathogenesis and Consequences of Regimen-Induced Inflammatory Responses in Patients with Head and Neck Cancer Receiving Chemoradiation

    PubMed Central

    Russi, Elvio G.; Raber-Durlacher, Judith E.; Sonis, Stephen T.

    2014-01-01

    Treatment-related toxicities are common among patients with head and neck cancer, leading to poor clinical outcomes, reduced quality of life, and increased use of healthcare resources. Over the last decade, much has been learned about the pathogenesis of cancer regimen-related toxicities. Historically, toxicities were separated into those associated with tissue injury and those with behavioural or systemic changes. However, it is now clear that tissue-specific damage such as mucositis, dermatitis, or fibrosis is no longer the sole consequence of direct clonogenic cell death, and a relationship between toxicities that results in their presentation as symptom clusters has been documented and attributed to a common underlying pathobiology. In addition, the finding that patients commonly develop toxicities representing tissue injury outside radiation fields and side effects such as fatigue or cognitive dysfunction suggests the generation of systemic as well as local mediators. As a consequence, it might be appropriate to consider toxicity syndromes, rather than the traditional approach, in which each side effect was considered as an autonomous entity. In this paper, we propose a biologically based explanation which forms the basis for the diverse constellation of toxicities seen in response to current regimens used to treat cancers of the head and neck. PMID:24757285

  14. Thiol redox barrier; local and systemic surveillance against stress and inflammatory diseases.

    PubMed

    Yodoi, Junji; Tian, Hai; Masutani, Hiroshi; Nakamura, Hajime

    2016-04-01

    A 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-, human thioredoxin 1 (TRX) has demonstrated an excellent anti-inflammatory effect in various animal models. TRX is induced by various oxidative stress factors, including ultraviolet rays, radiation, oxidation, viral infections, ischemia reperfusion and anticancer agents, and are involved in the pathogenesis and progression of various diseases. We have demonstrated that systemic administration and transgenic overexpression of TRX is effective in a wide variety of in vivo inflammatory disease models, such as viral pneumonia, acute lung injury, chronic obstructive pulmonary disease, indomethacin-induced gastric injury, and dermatitis. Our recent studies indicate that topically applied TRX prevents skin inflammation via the inhibition of local formation of inflammatory cytokines and chemokines. These indicate that the activation of inflammasome in skin and mucosa may be regulated by TRX. These suggest that application of TRX may be useful for the treatment of various skin and mucosal inflammatory disorders. Based on these results, we are conducting clinical studies to develop human recombinant thioredoxin 1 (rhTRX) pharmaceuticals. We have also developed substances that increase the expression of TRX in the body (TRX-inducing substances) in vegetables and other plant ingredients, and we are also developing skin-care products and functional foods that take advantage of the anti-inflammation and anti-allergic action of TRX. PMID:27095222

  15. Treg inducing adjuvants for therapeutic vaccination against chronic inflammatory diseases.

    PubMed

    Keijzer, Chantal; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2013-01-01

    Many existing therapies in autoimmune diseases are based on systemic suppression of inflammation and the observed side effects of these therapies illustrate the pressing need for more specific interventions. Regulatory T-cells (Treg) are pivotal controllers of (auto-aggressive) immune responses and inflammation, and decreased Treg numbers and/or functioning have been associated with autoimmune disease. Therefore, Treg became frequently studied targets for more specific immunotherapy. Especially antigen-specific targeting of Treg would enable local and tailor made interventions, while obviating the negative side effect of general immuno-suppression. Self-antigens that participate in inflammation, irrespective of the etiology of the different autoimmune diseases, are held to be candidate antigens for antigen-specific interventions. Rather than tolerance induction to disease inciting self-antigens, which are frequently unknown, general self-antigens expressed at sites of inflammation would allow targeting of disease independent, but inflammatory-site specific, regulatory mechanisms. Preferably, such self-antigens should be abundantly expressed and up-regulated at the inflammatory-site. In this perspective heat shock proteins (Hsp) have several characteristics that make them highly attractive targets for antigen-specific Treg inducing therapy. The development of an antigen-specific Treg inducing vaccine is a major novel goal in the field of immunotherapy in autoimmune diseases. However, progress is hampered not only by the lack of effective antigens, but also by the fact that other factors such as dose, route, and the presence or absence of an adjuvant, turned out to be critical unknowns, with respect to the effective induction of Treg. In addition, the use of a Treg inducing adjuvant might be required to achieve an effective regulatory response, in the case of ongoing inflammation. Future goals in clinical trials will be the optimization of natural Treg expansion (or

  16. Local brain heavy ion irradiation induced Immunosuppression

    NASA Astrophysics Data System (ADS)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  17. Dietary supplementation with ethyl ester concentrates of fish oil (n-3) and borage oil (n-6) polyunsaturated fatty acids induces epidermal generation of local putative anti-inflammatory metabolites.

    PubMed

    Miller, C C; Tang, W; Ziboh, V A; Fletcher, M P

    1991-01-01

    Clinical reports have attributed the amelioration of chronic inflammatory skin disorders to the presence of certain polyunsaturated fatty acids (PUFA) in dietary oils. To test the hypothesis of a local modulatory effect of these PUFA in the epidermis, the basal diet of normal guinea pigs was supplemented with ethyl esters of either fish oil [rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] or borage oil [rich in gamma-linolenic acid (GLA)]. Our data demonstrated that dietary oils influence the distribution of PUFA in epidermal phospholipids and the epidermal levels of PUFA-derived hydroxy fatty acids. Specifically, animals supplemented with ethyl esters of fish oil markedly incorporated EPA and DHA into epidermal phospholipids, which paralleled the epidermal accumulation of 15-hydroxyeicosapentaenoic acid (15-HEPE) and 17-hydroxydocosahexaenoic acid (17-HDoHE). Similarly, animals supplemented with esters of borage oil preferentially incorporated dihomogammalinolenic acid (DGLA), the epidermal elongase product of GLA, into the epidermal phospholipids, which also was accompanied by epidermal accumulation of 15-hydroxyeicosatrienoic acid (15-HETrE). By factoring the epidermal levels of the 15-lipoxygenase products and their relative inhibitory potencies, we evolved a measure of the overall potential of dietary oils to exert local anti-inflammatory effect. For example, the leukotriene inhibition potentials (LIP) of both fish oil and borage oil were greatly enhanced when compared to controls. Thus, the altered profiles of epidermal 15-lipoxygenase products generated from particular dietary oils may be responsible, at least in part, for reported ameliorative effects of oils on chronic inflammatory skin disorders.

  18. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under physiological conditions the gut-associated lymphoid tissues not only prevent the induction of a local inflammatory immune response, but also induce systemic tolerance to fed antigens. A notable exception is coeliac disease, where genetically susceptible individuals expressing human leukocyte...

  19. Local production of inflammatory mediators during childhood parainfluenza virus infection

    PubMed Central

    El Feghaly, Rana E.; McGann, Lindsay; Bonville, Cynthia A.; Branigan, Patrick J.; Suryadevera, Manika; Rosenberg, Helene F.; Domachowske, Joseph B.

    2012-01-01

    Objective To describe the clinical manifestations of PIV infection and to characterize biochemical markers of PIV disease severity. Patients and Methods We reviewed the medical records of 165 children who had a nasal wash culture positive for PIV at our institution between 1998 and 2008. Nasal wash samples were assayed for 26 inflammatory mediators using Luminex bead proteomics. Results 153 patients, ages 2 weeks to 12 years, with single virus infection were included in our final analysis. 52 patients were infected with PIV1, 19 with PIV2, 74 with PIV3, and 8 with PIV4. LRTI was diagnosed in 67 (44%) patients, 21 (14%) had LTB, and 49 (32%) had a URI other than LTB. LRTI was diagnosed in 54% of patients infected with PIV3, 35% of those infected with PIV1, 26% of those with PIV2 and 50% of those with PIV4. Compared to uninfected control patients, PIV-infected patients had higher nasal wash concentrations of interleukin (IL)-6, CXCL8 (IL-8), CCL3 (macrophage inflammatory protein (MIP)-1α), CCL4 (MIP-1β), CXCL9 (monokine induced by interferon gamma (MIG) and CCL5 (regulated upon activation, normal T cell expressed and secreted (RANTES). Patients with LRTI, moderate or severe illness, and respirovirus infection (PIV 1 or 3) had higher nasal wash concentrations of CXCL8 when compared to patients with URI, mild illness, or rubulavirus infection (PIV 2 and 4) (p<0.05). Conclusions PIV infection causes a spectrum of illnesses associated with the expression and release of several proinflammatory mediators. Of note, elevated levels of CXCL8 in nasal wash samples are associated with more severe forms of PIV disease. PMID:20182399

  20. Transport induced inflammatory responses in horses.

    PubMed

    Wessely-Szponder, J; Bełkot, Z; Bobowiec, R; Kosior-Korzecka, U; Wójcik, M

    2015-01-01

    Deleterious response to road transport is an important problem in equine practice. It determines different physiological, immunological and metabolic changes which lead to increased susceptibility to several disorders such as pneumonia, diarrhea, colics, laminitis, injuries and rhabdomyolisis. The aim of our study was to look for possible relationships between transportation of female young and older horses over a long and short distance and an inflammatory state reflected by an increase of acute phase protein concentration, oxidative stress and muscle injury. The study was conducted on 24 cold-blooded female horses divided into four groups. Six fillies aged 6-18 months and six mares aged 10-12 years were transported over the distance of about 550 km, six fillies aged 6-18 months and six mares aged 10-12 years were transported over the distance of about 50 km. Plasma and serum were obtained from blood samples taken before transportation (T0), immediately after transportation (T1) and at an abattoir during slaughter (T2). In these samples fibrinogen, MDA, AST and CK were assessed. Fibrinogen increased in all studied groups especially in fillies after long distance transportation, where it reached 205±7.07 mg/dl before transportation, 625±35.35 mg/dl after transportation, and 790±14.14 mg/dl during slaughter. MDA concentrations rose after transportation and reached the maximal level during slaughter. CK activity was more elevated after short transportation in younger horses, whereas initial activity of AST was higher in older horses. We estimated that intensified responses from acute phase, oxidative stress and muscle injury parameters indicated an inflammatory state. PMID:26172192

  1. Inflammatory mechanisms of pulmonary injury induced by mustards.

    PubMed

    Malaviya, Rama; Sunil, Vasanthi R; Venosa, Alessandro; Vayas, Kinal N; Heck, Diane E; Laskin, Jeffrey D; Laskin, Debra L

    2016-02-26

    Exposure of humans and animals to vesicants, including sulfur mustard (SM) and nitrogen mustard (NM), causes severe and debilitating damage to the respiratory tract. Both acute and long term pathological consequences are observed in the lung following a single exposure to these vesicants. Evidence from our laboratories and others suggest that macrophages and the inflammatory mediators they release play an important role in mustard-induced lung injury. In this paper, the pathogenic effects of SM and NM on the lung are reviewed, along with the potential role of inflammatory macrophages and mediators they release in mustard-induced pulmonary toxicity. PMID:26478570

  2. Methods of inducing inflammatory bowel disease in mice.

    PubMed

    Maxwell, Joseph R; Brown, William A; Smith, Carole L; Byrne, Fergus R; Viney, Joanne L

    2009-12-01

    Animal models of experimentally induced inflammatory bowel disease (IBD) are useful for understanding more about the mechanistic basis of disease, identifying new targets for therapeutic intervention, and testing novel therapeutic agents. This unit provides detailed protocols for four of the most commonly used mouse models of experimentally induced intestinal inflammation: chemical induction of colitis by dextran sodium sulfate (DSS), hapten-induced colitis via 2,4,6-trinitrobenzene sulfonic acid (TNBS), Helicobacter-induced colitis in mdr1a(-/-) mice, and the CD4(+) CD45RB(hi) SCID transfer colitis model.

  3. Theophylline improves lipopolysaccharide-induced alveolarization arrest through inflammatory regulation.

    PubMed

    He, Hua; Chen, Fei; Ni, Wensi; Li, Jianhui; Zhang, Yongjun

    2014-07-01

    Bronchopulmonary dysplasia (BPD) is characterized by alveolar simplification with decreased numbers of alveoli and increased airspace. BPD, frequently suffered by very low birth weight infants, has been closely associated with intrauterine infection. However, the underlying mechanisms of BPD remain unclear. In the present study, it was identified that administration of intra-amniotic lipopolysaccharide (LPS) to pregnant rats on embryonal day 16.5 (E16.5) induced significant alveolarization arrest similar to that of BPD in neonatal pups, and theophylline injected subcutaneously into the newborns improved the pathological changes. To further investigate the underlying mechanism of the morphogenesis amelioration of theophylline, cytokine antibody arrays were performed with the lung lysates of neonatal rats. The results indicated that LPS upregulated a series of pro-inflammatory cytokines and theophylline significantly attenuated the expression levels of pro-inflammatory cytokines tumor necrosis factor‑α, macrophage inflammatory protein (MIP)-1α and MIP-2, and markedly elevated the production of tumor growth factor (TGF)-β family members TGF-β1, TGF-β2 and TGF-β3, which are anti‑inflammatory cytokines. Accordingly, it was hypothesized that theophylline may protect against BPD and improve chorioamnionitis‑induced alveolar arrest by regulating the balance between pro‑and anti-inflammatory cytokine expression.

  4. Biomaterial-Mediated Modification of the Local Inflammatory Environment

    PubMed Central

    Browne, Shane; Pandit, Abhay

    2015-01-01

    Inflammation plays a major role in the rejection of biomaterial implants. In addition, despite playing an important role in the early stages of wound healing, dysregulated inflammation has a negative impact on the wound healing processes. Thus, strategies to modulate excessive inflammation are needed. Through the use of biomaterials to control the release of anti-inflammatory therapeutics, increased control over inflammation is possible in a range of pathological conditions. However, the choice of biomaterial (natural or synthetic), and the form it takes (solid, hydrogel, or micro/nanoparticle) is dependent on both the cause and tissue location of inflammation. These considerations also influence the nature of the anti-inflammatory therapeutic that is incorporated into the biomaterial to be delivered. In this report, the range of biomaterials and anti-inflammatory therapeutics that have been combined will be discussed, as well as the functional benefit observed. Furthermore, we point toward future strategies in the field that will bring more efficacious anti-inflammatory therapeutics closer to realization. PMID:26029692

  5. Resolvin D1 and Resolvin D2 Govern Local Inflammatory Tone in Obese Fat1

    PubMed Central

    Clària, Joan; Dalli, Jesmond; Yacoubian, Stephanie; Gao, Fei; Serhan, Charles N.

    2012-01-01

    The unprecedented rise in the prevalence of obesity and obesity-related disorders is causally linked to a chronic state of low-grade inflammation in adipose tissue. Timely resolution of inflammation and return of this tissue to homeostasis are key to reducing obesity-induced metabolic dysfunctions. Here, with inflamed adipose, we investigated the biosynthesis, conversion and actions of Resolvin (Rv) D1 and RvD2, potent anti-inflammatory and pro-resolving lipid mediators (LM), and their ability to regulate monocyte interactions with adipocytes. LM-metabololipidomics identified RvD1 and RvD2 from endogenous sources in human and mouse adipose tissues. We also identified pro-resolving receptors (i.e. ALX/FPR2, ChemR23 and GPR32) in these tissues. Compared to lean tissue, obese adipose showed a deficit of these endogenous anti-inflammatory signals. With inflamed obese adipose tissue, RvD1 and RvD2 each rescued impaired expression and secretion of adiponectin in a time- and concentration-dependent manner while decreasing pro-inflammatory adipokine production including leptin, TNFα, IL-6 and IL-1β. RvD1 and RvD2 each reduced MCP-1 and leukotriene B4-stimulated monocyte adhesion to adipocytes and their transadipose migration. Adipose tissue rapidly converted both resolvins to novel oxo-resolvins. RvD2 was enzymatically converted to 7-oxo-RvD2 as its major metabolic route that retained adipose-directed RvD2 actions. These results indicate, in adipose, D-series resolvins (RvD1 and RvD2) are potent pro-resolving mediators that counteract both local adipokine production and monocyte accumulation in obesity-induced adipose inflammation. PMID:22844113

  6. Induced inflammatory process in Peripatus acacioi Marcus et Marcus (Onychophora).

    PubMed

    Silva, J R; Coelho, M P; Nogueira, M I

    2000-01-01

    The inflammatory response induced by the implant of a suture thread in Peripatus acacioi muscle was characterized under light and transmission electron microscopy (TEM). After 24 and 48 h granulocytes were observed migrating through the connective tissue toward the suture thread. These cells contain cytoplasmic eosinophilic granules as well as free granules near to the thread. There were few spherule cells with eccentric smooth kidney-shaped acidophilic nuclei and basophilic granules. Cells with intermediary characteristics as well as cells with a central basophilic nucleus with scarce acidophilic cytoplasm devoid of granules were also found. Under TEM, the granulocytic coelomocytes show small and homogeneous electron dense granules, while the spherule cells possess spherules that can be heterogeneous, granular, or with myelin figures. An acute induced inflammatory process is described for the first time in Onychophora and contributes to the scarce available literature on the function of the coelomocytes within this group.

  7. Characterization of inflammatory response induced by Potamotrygon motoro stingray venom in mice.

    PubMed

    Kimura, Louise F; Prezotto-Neto, José P; Antoniazzi, Marta M; Jared, Simone Gs; Santoro, Marcelo L; Barbaro, Katia C

    2014-05-01

    Freshwater stingray accidents cause intense pain followed by edema, erythema, and necrosis formation. Treatment for stingray envenomation is based on administration of analgesic, antipyretic, and anti-inflammatory drugs. This report evaluated the local inflammatory reaction-including edema formation, leukocyte recruitment, release of inflammatory mediators, and histopathological changes-after the intraplantar injection of Potamotrygon motoro stingray venom in mice. Edema was observed as soon as 15 min after venom injection, peaking at 30 min, and lasted up to 48 h. In addition, P. motoro venom increased neutrophil counts in the site of injection, at all time periods and venom doses analyzed. Increased eosinophil and lymphocyte counts were detected mainly at 24 h. Moreover, monocytes/macrophages were observed in large amounts at 24 and 48 h. Microscopically, the venom induced leukocyte migration to the injured tissue, edema, mast cell degranulation, angiogenesis, and epidermal damage. Inflammatory mediator release (IL-6, MCP-1 and KC) was detected as soon as 1 h after venom injection, and it increased significantly at 4 h. At 24 h, the venom induced only the production of MCP-1. These results show that this stingray venom evokes a complex inflammatory reaction, with rapid and persistent edema formation, leukocyte recruitment, and release of cytokines and chemokines. PMID:24668554

  8. BET Inhibition Attenuates Helicobacter pylori-Induced Inflammatory Response by Suppressing Inflammatory Gene Transcription and Enhancer Activation.

    PubMed

    Chen, Jinjing; Wang, Zhen; Hu, Xiangming; Chen, Ruichuan; Romero-Gallo, Judith; Peek, Richard M; Chen, Lin-Feng

    2016-05-15

    Helicobacter pylori infection causes chronic gastritis and peptic ulceration. H. pylori-initiated chronic gastritis is characterized by enhanced expression of many NF-κB-regulated inflammatory cytokines. Brd4 has emerged as an important NF-κB regulator and regulates the expression of many NF-κB-dependent inflammatory genes. In this study, we demonstrated that Brd4 was not only actively involved in H. pylori-induced inflammatory gene mRNA transcription but also H. pylori-induced inflammatory gene enhancer RNA (eRNA) synthesis. Suppression of H. pylori-induced eRNA synthesis impaired H. pylori-induced mRNA synthesis. Furthermore, H. pylori stimulated NF-κB-dependent recruitment of Brd4 to the promoters and enhancers of inflammatory genes to facilitate the RNA polymerase II-mediated eRNA and mRNA synthesis. Inhibition of Brd4 by JQ1 attenuated H. pylori-induced eRNA and mRNA synthesis for a subset of NF-κB-dependent inflammatory genes. JQ1 also inhibited H. pylori-induced interaction between Brd4 and RelA and the recruitment of Brd4 and RNA polymerase II to the promoters and enhancers of inflammatory genes. Finally, we demonstrated that JQ1 suppressed inflammatory gene expression, inflammation, and cell proliferation in H. pylori-infected mice. These studies highlight the importance of Brd4 in H. pylori-induced inflammatory gene expression and suggest that Brd4 could be a potential therapeutic target for the treatment of H. pylori-triggered inflammatory diseases and cancer. PMID:27084101

  9. Acute stress regulates nociception and inflammatory response induced by bee venom in rats: possible mechanisms.

    PubMed

    Chen, Hui-Sheng; Li, Feng-Peng; Li, Xiao-Qiu; Liu, Bao-Jun; Qu, Fang; Wen, Wei-Wei; Wang, Yang; Lin, Qing

    2013-09-01

    Restraint stress modulates pain and inflammation. The present study was designed to evaluate the effect of acute restraint stress on inflammatory pain induced by subcutaneous injection of bee venom (BV). First, we investigated the effect of 1 h restraint on the spontaneous paw-flinching reflex (SPFR), decrease in paw withdrawal mechanical threshold (PWMT) and increase in paw volume (PV) of the injected paw induced by BV. SPFR was measured immediately after BV injection, and PWMT and PV were measured 2 h before BV and 2-8 h after BV. The results showed that acute restraint inhibited significantly the SPFR but failed to affect mechanical hyperalgesia. In contrast, stress enhanced significantly inflammatory swelling of the injected paw. In a second series of experiments, the effects of pretreatment with capsaicin locally applied to the sciatic nerve, systemic 6-hydroxydopamine (6-OHDA), and systemic naloxone were examined on the antinociception and proinflammation produced by acute restraint stress. Local capsaicin pretreatment inhibited BV-induced nociception and inflammatory edema, and had additive effects with stress on nociception but reduced stress enhancement of edema. Systemic 6-OHDA treatment attenuated the proinflammatory effect of stress, but did not affect the antinociceptive effect. Systemic naloxone pretreatment eliminated the antinociceptive effect of stress, but did not affect proinflammation. Taken together, our data indicate that acute restraint stress contributes to antinociception via activating an endogenous opioid system, while sympathetic postganglionic fibers may contribute to enhanced inflammation in the BV pain model.

  10. New molecular insights into inflammatory bowel disease-induced diarrhea

    PubMed Central

    Tang, Yueming; Forsyth, Christopher B; Keshavarzian, Ali

    2011-01-01

    Diarrhea is one of the common symptoms that significantly affects quality of life in patients with inflammatory bowel disease (IBD). The clinical manifestation of diarrhea is mainly dependant on the type of IBD and the location, extent and severity of intestinal inflammation. Understanding the pathophysiologic mechanisms of diarrhea in patients with IBD will be beneficial to developing effective treatments for IBD-associated diarrhea. In recent years, modern molecular techniques have been used intensively to dissect the role of the intestinal microbiota, epithelial barrier and the host immune system in the mechanisms of IBD-induced diarrhea. These studies have significantly advanced our knowledge of the mechanisms of IBD-induced diarrhea. In this article, we focus on the new and critical molecular insights into the contributions of the intestinal microbiota, epithelial tight junctions, proinflammatory cytokines and microRNA as potential mechanisms underlying to IBD-induced diarrhea. PMID:21910579

  11. New molecular insights into inflammatory bowel disease-induced diarrhea.

    PubMed

    Tang, Yueming; Forsyth, Christopher B; Keshavarzian, Ali

    2011-10-01

    Diarrhea is one of the common symptoms that significantly affects quality of life in patients with inflammatory bowel disease (IBD). The clinical manifestation of diarrhea is mainly dependant on the type of IBD and the location, extent and severity of intestinal inflammation. Understanding the pathophysiologic mechanisms of diarrhea in patients with IBD will be beneficial to developing effective treatments for IBD-associated diarrhea. In recent years, modern molecular techniques have been used intensively to dissect the role of the intestinal microbiota, epithelial barrier and the host immune system in the mechanisms of IBD-induced diarrhea. These studies have significantly advanced our knowledge of the mechanisms of IBD-induced diarrhea. In this article, we focus on the new and critical molecular insights into the contributions of the intestinal microbiota, epithelial tight junctions, proinflammatory cytokines and microRNA as potential mechanisms underlying to IBD-induced diarrhea. PMID:21910579

  12. Lung inflammatory responses and hyperinflation induced by an intratracheal exposure to lipopolysaccharide in rats.

    PubMed

    Jansson, Anne-Helene; Eriksson, Christina; Wang, Xiangdong

    2004-01-01

    Exposure of the respiratory tract to lipopolysaccharide (LPS) induces acute local inflammation and tissue injury associated with the various deliveries of LPS. To determine potential association of local inflammatory responses with respiratory tract dysfunction, infiltration of inflammatory cells, production of inflammatory mediators, lung hyperinflation and edema were measured in Wister rats 2, 4, and 24 h after an intratracheal administration of LPS at different doses (5, 50, 500 and 5000 microg/ml/kg). Lung hyperinflation determined by an increased excised lung gas volume was significantly increased 2 and 4 h after LPS instillation and lung edema occurred from 2 h onward. Peak BAL levels of TNFalpha appeared at 2 h, MCP-1 at 4 h, and IL-6 at 2 and 4 h, while BAL levels of IL-1beta were increased during 24 h after the intratracheal instillation of LPS. Neutrophilia in BAL fluid was noted from 2 h post-challenge. Our results demonstrate a clear dose-related change in the lung weight at 4 and 24 h, in the BAL levels of MCP-1 at 4 h, and IL-6 and IL-1beta at 2 and 4 h. It seems important to understand polymorphisms of LPS-induced lung hyperinflation and inflammation. Lung hyperinflation and inflammation may be independent during the development of acute lung injury.

  13. The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom.

    PubMed

    Moreira, Vanessa; Teixeira, Catarina; Borges da Silva, Henrique; D'Império Lima, Maria Regina; Dos-Santos, Maria Cristina

    2016-08-01

    Envenomation by snakes of the species Bothrops atrox induces local and systemic effects. Local effects include drastic tissue damage and a marked inflammatory response as a result of the synthesis and release of a variety of protein and lipid mediators. Toll-like receptor (TLR) signaling pathways can play an important role in this response, leading to synthesis of these inflammatory mediators. This study investigated the influence of TLR2 on the acute inflammatory response induced by Bothrops atrox venom. Wild-type C57BL/6 mice (WT) and TLR2 gene knockout mice (TLR2(-/-)) were injected with Bothrops atrox venom (BaV), and the following responses to the venom were assessed in peritoneal exudate: leukocyte accumulation; release of mediators, including CCL-2, IL-10, IL-1β, IL-6 and LTB4; protein expression of COX-1 and COX-2; and quantification of their products PGE2 and TXA2. After injection with BaV, the TLR2(-/-) mice (TLR2(-/-)BaV) had higher levels of IL-6 and CCL-2 than WT animals kept under the same conditions (WTBaV), together with an accumulation of polymorphonuclear leukocytes (PMNs), inhibition of IL-1β and LTB4 and reduced mononuclear leukocyte influx. However, no significant differences in COX-2 protein expression or PGE2, TXA2 and IL-10 production between the TLR2(-/-)BaV and WTBav animals were observed. Together, these results indicate that the signaling pathway activated by TLR2 acts by modulating the induced inflammatory response to BaV through the direct action of venom-associated molecular patterns (VAMPs) or indirectly by forming damage-associated molecular patterns (DAMPs) and that this may have important therapeutic implications. PMID:27109323

  14. The inflammatory basis of exercise-induced bronchoconstriction.

    PubMed

    Brannan, John D; Turton, James A

    2010-12-01

    Exercise-induced bronchoconstriction (EIB) is common in individuals with asthma, and may be observed even in the absence of a clinical diagnosis of asthma. Exercise-induced bronchoconstriction can be diagnosed via standardized exercise protocols, and anti-inflammatory therapy with inhaled corticosteroids (ICS) is often warranted. Exercise-related symptoms are commonly reported in primary care; however, access to standardized exercise protocols to assess EIB are often restricted because of the need for specialized equipment, as well as time constraints. Symptoms and lung function remain the most accessible indicators of EIB, yet these are poor predictors of its presence and severity. Evidence suggests that exercise causes the airways to narrow as a result of the osmotic and thermal consequences of respiratory water loss. The increase in airway osmolarity leads to the release of bronchoconstricting mediators (eg, histamine, prostaglandins, leukotrienes) from inflammatory cells (eg, mast cells and eosinophils). The objective assessment of EIB suggests the presence of airway inflammation, which is sensitive to ICS in association with a responsive airway smooth muscle. Surrogate tests for EIB, such as eucapnic voluntary hyperpnea or the osmotic challenge tests, cause airway narrowing via a similar mechanism, and a response indicates likely benefit from ICS therapy. The complete inhibition of EIB with ICS therapy in individuals with asthma may be a useful marker of control of airway pathology. Furthermore, inhibition of EIB provides additional, useful information regarding the identification of clinical control based on symptoms and lung function. This article explores the inflammatory basis of EIB in asthma as well as the effect of ICS on the pathophysiology of EIB.

  15. Thiopurine-induced pancreatitis in inflammatory bowel diseases.

    PubMed

    Ledder, Oren; Lemberg, Daniel A; Day, Andrew S

    2015-04-01

    Crohn's disease and ulcerative colitis are chronic inflammatory conditions affecting the gut and can present at any age with increased numbers of diagnoses seen in many countries in recent years. The thiopurine drugs, azathioprine and 6-mercaptopurine, are commonly used to maintain remission in Crohn's disease and ulcerative colitis; however, the use of these drugs may be limited by the development of pancreatitis in some individuals. Recent data indicate a genetic risk factor and provides a potential immune-mediated mechanism for thiopurine-induced pancreatitis. Management of thiopurine-induced pancreatitis requires exclusion of the triggering drug, which leads to prompt resolution of symptoms. This thiopurine side-effect may limit therapeutic options for future management of patients.

  16. Granzymes A and B Regulate the Local Inflammatory Response during Klebsiella pneumoniae Pneumonia.

    PubMed

    García-Laorden, M Isabel; Stroo, Ingrid; Blok, Dana C; Florquin, Sandrine; Medema, Jan Paul; de Vos, Alex F; van der Poll, Tom

    2016-01-01

    Klebsiella pneumoniae is a common cause of hospital-acquired pneumonia. Granzymes (gzms), mainly found in cytotoxic lymphocytes, have been implicated as mediators of infection and inflammation. We here sought to investigate the role of gzmA and gzmB in the host response to K. pneumoniae-induced airway infection and sepsis. For this purpose, pneumonia was induced in wild-type (WT) and gzmA-deficient (gzmA-/-), gzmB-/- and gzmAxB-/- mice by intranasal infection with K. pneumoniae. In WT mice, gzmA and gzmB were mainly expressed by natural killer cells. Pneumonia was associated with reduced intracellular gzmA and increased intracellular gzmB levels. Gzm deficiency had little impact on antibacterial defence: gzmA-/- and gzmAxB-/- mice transiently showed modestly higher bacterial loads in the lungs but not in distant organs. GzmB-/- and, to a larger extent, gzmAxB-/- mice displayed transiently increased lung inflammation, reflected in the semi-quantitative histology scores and levels of pro-inflammatory cytokines and chemokines. Most differences between gzm-deficient and WT mice had disappeared during late-stage pneumonia. Gzm deficiency did not impact on distant organ injury or survival. These results suggest that gzmA and gzmB partly regulate local inflammation during early pneumonia but eventually play an insignificant role during pneumosepsis by the common human pathogen K. pneumoniae.

  17. Biopsy-induced inflammatory conditions improve endometrial receptivity: the mechanism of action.

    PubMed

    Gnainsky, Y; Granot, I; Aldo, P; Barash, A; Or, Y; Mor, G; Dekel, N

    2015-01-01

    A decade ago, we first reported that endometrial biopsy significantly improves the success of pregnancy in IVF patients with recurrent implantation failure, an observation that was later confirmed by others. Recently, we have demonstrated that this treatment elevated the levels of endometrial pro-inflammatory cytokines and increased the abundance of macrophages (Mac) and dendritic cells (DCs). We therefore hypothesised that the biopsy-related successful pregnancy is secondary to an inflammatory response, and aimed at deciphering its mechanism of action. Supporting our hypothesis, we found that the pro-inflammatory TNFα stimulated primary endometrial stromal cells to express cytokines that attracted monocytes and induced their differentiation into DCs. These monocyte-derived DCs stimulated endometrial epithelial cells to express the adhesive molecule SPP1 (osteopontin (OPN)) and its receptors ITGB3 and CD44, whereas MUC16, which interferes with adhesion, was downregulated. Other implantation-associated genes, such as CHST2, CCL4 (MIP1B) and GROA, were upregulated by monocyte-derived Mac. These findings suggest that uterine receptivity is mediated by the expression of molecules associated with inflammation. Such an inflammatory milieu is not generated in some IVF patients with recurrent implantation failure in the absence of local injury provoked by the biopsy treatment. PMID:25349438

  18. Regulatory T Cell Numbers in Inflamed Skin Are Controlled by Local Inflammatory Cues That Upregulate CD25 and Facilitate Antigen-Driven Local Proliferation.

    PubMed

    Billroth-MacLurg, Alison C; Ford, Jill; Rosenberg, Alexander; Miller, Jim; Fowell, Deborah J

    2016-09-15

    CD4(+)Foxp3(+) regulatory T cells (Tregs) are key immune suppressors that regulate immunity in diverse tissues. The tissue and/or inflammatory signals that influence the magnitude of the Treg response remain unclear. To define signals that promote Treg accumulation, we developed a simple system of skin inflammation using defined Ags and adjuvants that induce distinct cytokine milieus: OVA protein in CFA, aluminum salts (Alum), and Schistosoma mansoni eggs (Sm Egg). Polyclonal and Ag-specific Treg accumulation in the skin differed significantly between adjuvants. CFA and Alum led to robust Treg accumulation, with >50% of all skin CD4(+) T cells being Foxp3(+) In contrast, Tregs accumulated poorly in the Sm Egg-inflamed skin. Surprisingly, we found no evidence of inflammation-specific changes to the Treg gene program between adjuvant-inflamed skin types, suggesting a lack of selective recruitment or adaptation to the inflammatory milieu. Instead, Treg accumulation patterns were linked to differences in CD80/CD86 expression by APC and the regulation of CD25 expression, specifically in the inflamed skin. Inflammatory cues alone, without cognate Ag, differentially supported CD25 upregulation (CFA and Alum > Sm Egg). Only in inflammatory milieus that upregulated CD25 did the provision of Ag enhance local Treg proliferation. Reduced IL-33 in the Sm Egg-inflamed environment was shown to contribute to the failure to upregulate CD25. Thus, the magnitude of the Treg response in inflamed tissues is controlled at two interdependent levels: inflammatory signals that support the upregulation of the important Treg survival factor CD25 and Ag signals that drive local expansion. PMID:27511734

  19. Lipopolysaccharide-induced inflammatory liver injury in mice.

    PubMed

    Hamesch, K; Borkham-Kamphorst, E; Strnad, P; Weiskirchen, R

    2015-04-01

    The intraperitoneal application of lipopolysaccharide (LPS) alone or in combination with other hepatotoxins is an experimental model for inducing systemic and hepatic inflammation in rodents applied worldwide. The endotoxin is recognized by the LPS-binding protein. This complex binds together with the lymphocyte antigen 96 (MD2) and the pattern-recognition receptor CD14 to members of the toll-like receptor family. The activated receptor complex in turn transduces signals to well characterized intracellular cascades that result in a multifaceted network of intracellular responses ending in inflammation. The most prominent among these is the activation of the NF-κB pathway and the production of a multitude of inflammatory cytokines. Although the application of LPS is in general easy to perform, unintended variations in preparation of the injection solution or in handling of the animals might affect the reproducibility or the outcome of a specific experiment. Here, we present a well-standardized protocol that allows for an induction of highly reproducible acute hepatic inflammation in mice. Furthermore, examples of appropriate readouts for the resulting inflammatory response are given. PMID:25835737

  20. Lipopolysaccharide-induced inflammatory liver injury in mice.

    PubMed

    Hamesch, K; Borkham-Kamphorst, E; Strnad, P; Weiskirchen, R

    2015-04-01

    The intraperitoneal application of lipopolysaccharide (LPS) alone or in combination with other hepatotoxins is an experimental model for inducing systemic and hepatic inflammation in rodents applied worldwide. The endotoxin is recognized by the LPS-binding protein. This complex binds together with the lymphocyte antigen 96 (MD2) and the pattern-recognition receptor CD14 to members of the toll-like receptor family. The activated receptor complex in turn transduces signals to well characterized intracellular cascades that result in a multifaceted network of intracellular responses ending in inflammation. The most prominent among these is the activation of the NF-κB pathway and the production of a multitude of inflammatory cytokines. Although the application of LPS is in general easy to perform, unintended variations in preparation of the injection solution or in handling of the animals might affect the reproducibility or the outcome of a specific experiment. Here, we present a well-standardized protocol that allows for an induction of highly reproducible acute hepatic inflammation in mice. Furthermore, examples of appropriate readouts for the resulting inflammatory response are given.

  1. 'ASIA' - autoimmune/inflammatory syndrome induced by adjuvants.

    PubMed

    Shoenfeld, Yehuda; Agmon-Levin, Nancy

    2011-02-01

    The role of various environmental factors in the pathogenesis of immune mediated diseases is well established. Of which, factors entailing an immune adjuvant activity such as infectious agents, silicone, aluminium salts and others were associated with defined and non-defined immune mediated diseases both in animal models and in humans. In recent years, four conditions: siliconosis, the Gulf war syndrome (GWS), the macrophagic myofasciitis syndrome (MMF) and post-vaccination phenomena were linked with previous exposure to an adjuvant. Furthermore, these four diseases share a similar complex of signs and symptoms which further support a common denominator.Thus, we review herein the current data regarding the role of adjuvants in the pathogenesis of immune mediated diseases as well as the amassed data regarding each of these four conditions. Relating to the current knowledge we would like to suggest to include these comparable conditions under a common syndrome entitled ASIA, "Autoimmune (Auto-inflammatory) Syndrome Induced by Adjuvants". PMID:20708902

  2. Sirt2 suppresses inflammatory responses in collagen-induced arthritis

    SciTech Connect

    Lin, Jiangtao; Sun, Bing; Jiang, Chuanqiang; Hong, Huanyu; Zheng, Yanping

    2013-11-29

    Highlights: •Sirt2 expression decreases in collagen-induced arthritis (CIA). •Sirt2 knockout aggravates severity of arthritis in mice with CIA. •Sirt2 knockout increases levels of pro-inflammatory factors in the serum. •Sirt2 deacetylates p65 and inhibits pro-inflammatory factors expression. •Sirt2 rescue abates severity of arthritis in mice with CIA. -- Abstract: Arthritis is a common autoimmune disease that is associated with progressive disability, systemic complications and early death. However, the underling mechanisms of arthritis are still unclear. Sirtuins are a NAD{sup +}-dependent class III deacetylase family, and regulate cellular stress, inflammation, genomic stability, carcinogenesis, and energy metabolism. Among the sirtuin family members, Sirt1 and Sirt6 are critically involved in the development of arthritis. It remains unknown whether other sirtuin family members participate in arthritis. Here in this study, we demonstrate that Sirt2 inhibits collagen-induced arthritis (CIA) using in vivo and in vitro evidence. The protein and mRNA levels of Sirt2 significantly decreased in joint tissues of mice with CIA. When immunized with collagen, Sirt2-KO mice showed aggravated severity of arthritis based on clinical scores, hind paw thickness, and radiological and molecular findings. Mechanically, Sirt2 deacetylated p65 subunit of nuclear factor-kappa B (NF-κB) at lysine 310, resulting in reduced expression of NF-κB-dependent genes, including interleukin 1β (IL-1β), IL-6, monocyte chemoattractant protein 1(MCP-1), RANTES, matrix metalloproteinase 9 (MMP-9) and MMP-13. Importantly, our rescue experiment showed that Sirt2 re-expression abated the severity of arthritis in Sirt2-KO mice. Those findings strongly indicate Sirt2 as a considerably inhibitor of the development of arthritis.

  3. Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia.

    PubMed

    Liu, Jiao; Du, Junxie; Yang, Yanrui; Wang, Yun

    2015-11-01

    Cyclin-dependent kinase 5 (Cdk5) is an important serine/threonine kinase that plays critical roles in many physiological processes. Recently, Cdk5 has been reported to phosphorylate TRPV1 at threonine 407 (Thr-407) in humans (Thr-406 in rats), which enhances the function of TRPV1 channel and promotes thermal hyperalgesia in the complete Freund's adjuvant (CFA)-induced inflammatory pain rats. However, the underlying mechanisms are still unknown. Here, we demonstrate that Cdk5 phosphorylates TRPV1 at Threonine 406 and promotes the surface localization of TRPV1, leading to inflammatory thermal hyperalgesia. The mutation of Thr-406 of TRPV1 to alanine reduced the interaction of TRPV1 with the cytoskeletal elements and decreased the binding of TRPV1 with the motor protein KIF13B, which led to reduced surface distribution of TRPV1. Disrupting the phosphorylation of TRPV1 at Thr-406 dramatically reduced the surface level of TRPV1 in HEK 293 cells after transient expression and the channel function in cultured dorsal root ganglion (DRG) neurons. Notably, intrathecal administration of the interfering peptide against the phosphorylation of Thr-406 alleviated heat hyperalgesia and reduced the surface level of TRPV1 in inflammatory pain rats. Together, these results demonstrate that Cdk5-mediated phosphorylation of TRPV1 at Thr-406 increases the surface level and the function of TRPV1, while the TAT-T406 peptide can effectively attenuate thermal hyperalgesia. Our studies provide a potential therapy for inflammatory pain.

  4. Epigallocatechin-3-gallate attenuates lipopolysaccharide-induced mastitis in rats via suppressing MAPK mediated inflammatory responses and oxidative stress.

    PubMed

    Chen, Jinglou; Xu, Jun; Li, Jingjing; Du, Lifen; Chen, Tao; Liu, Ping; Peng, Sisi; Wang, Mingwei; Song, Hongping

    2015-05-01

    Green tea (Camellia sinensis) is an extremely popular beverage worldwide. Epigallocatechin-3-gallate (EGCG) is one of the major catechins isolated from green tea and contributes to its beneficial therapeutic functions including antioxidant, anti-inflammatory and anti-cancer effects. However, the effect of EGCG on mastitis is not yet known. This study was to investigate the protective potential of EGCG against mastitis in rats. The rat mastitis model was induced by injecting lipopolysaccharide (LPS) into the duct of mammary gland. The mammary gland was collected after the experimental period. The levels of mammary oxidative stress and inflammatory responses were assessed by measuring the local activities of antioxidant enzymes and the levels of inflammatory cytokines. The mammary expressions of mitogen-activated protein kinases (MAPKs), nuclear factor κB-p65 (NFκB-p65) and hypoxia-inducible factor-1α (HIF-1α) were evaluated by western blot analysis. It was found that EGCG obviously normalized LPS-induced low activities of antioxidant enzymes as well as decreased the high levels of inflammatory cytokines. Additionally, EGCG inhibited the mammary over-expression of MAPKs, NFκB-p65 and HIF-1α. These results indicated that EGCG was able to attenuate LPS-induced mastitis in rats by suppressing MAPK related oxidative stress and inflammatory responses.

  5. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat.

    PubMed

    Clària, Joan; Dalli, Jesmond; Yacoubian, Stephanie; Gao, Fei; Serhan, Charles N

    2012-09-01

    The unprecedented increase in the prevalence of obesity and obesity-related disorders is causally linked to a chronic state of low-grade inflammation in adipose tissue. Timely resolution of inflammation and return of this tissue to homeostasis are key to reducing obesity-induced metabolic dysfunctions. In this study, with inflamed adipose, we investigated the biosynthesis, conversion, and actions of Resolvins D1 (RvD1, 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid) and D2 (RvD2, 7S,16R,17S-trihydroxy-4Z,8E,10Z,12E,14E,19Z-docosahexaenoic acid), potent anti-inflammatory and proresolving lipid mediators (LMs), and their ability to regulate monocyte interactions with adipocytes. Lipid mediator-metabololipidomics identified RvD1 and RvD2 from endogenous sources in human and mouse adipose tissues. We also identified proresolving receptors (i.e., ALX/FPR2, ChemR23, and GPR32) in these tissues. Compared with lean tissue, obese adipose showed a deficit of these endogenous anti-inflammatory signals. With inflamed obese adipose tissue, RvD1 and RvD2 each rescued impaired expression and secretion of adiponectin in a time- and concentration-dependent manner as well as decreasing proinflammatory adipokine production including leptin, TNF-α, IL-6, and IL-1β. RvD1 and RvD2 each reduced MCP-1 and leukotriene B₄-stimulated monocyte adhesion to adipocytes and their transadipose migration. Adipose tissue rapidly converted both resolvins (Rvs) to novel oxo-Rvs. RvD2 was enzymatically converted to 7-oxo-RvD2 as its major metabolic route that retained adipose-directed RvD2 actions. These results indicate, in adipose, D-series Rvs (RvD1 and RvD2) are potent proresolving mediators that counteract both local adipokine production and monocyte accumulation in obesity-induced adipose inflammation.

  6. Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response

    SciTech Connect

    Hong, Hyun Sook; Son, Youngsook

    2014-10-10

    Highlights: • SP can increase IL-10 levels and reduce TNF-α and IL-17 levels in RA. • SP causes the increase in T{sub reg}, M2 macrophage, and MSCs in RA. • SP-induced immune suppression leads to the blockade of RA progression. • SP can be used as the therapeutics for autoimmune-related inflammatory diseases. - Abstract: Current rheumatoid arthritis (RA) therapies such as biologics inhibiting pathogenic cytokines substantially delay RA progression. However, patient responses to these agents are not always complete and long lasting. This study explored whether substance P (SP), an 11 amino acids long endogenous neuropeptide with the novel ability to mobilize mesenchymal stem cells (MSC) and modulate injury-mediated inflammation, can inhibit RA progression. SP efficacy was evaluated by paw swelling, clinical arthritis scoring, radiological analysis, histological analysis of cartilage destruction, and blood levels of tumor necrosis factor-alpha (TNF-α) interleukin (IL)-10, and IL-17 in vivo. SP treatment significantly reduced local inflammatory signs, mean arthritis scores, degradation of joint cartilage, and invasion of inflammatory cells into the synovial tissues. Moreover, the SP treatment markedly reduced the size of spleens enlarged by excessive inflammation in CIA, increased IL-10 levels, and decreased TNF-α and IL-17 levels. Mobilization of stem cells and induction of T{sub reg} and M2 type macrophages in the circulation were also increased by the SP treatment. These effect of SP might be associated with the suppression of inflammatory responses in RA and, furthermore, blockade of RA progression. Our results propose SP as a potential therapeutic for autoimmune-related inflammatory diseases.

  7. Reduction of the systemic inflammatory induced by acute cerebral infarction through ultra-early thrombolytic therapy

    PubMed Central

    YE, LICHAO; CAI, RUOWEI; YANG, MEILI; QIAN, JIAQIANG; HONG, ZHILIN

    2015-01-01

    Acute ischemic stroke induces systemic inflammation, exhibited as changes in body temperature, white blood cell counts and C-reactive protein (CRP) levels. The aim of the present study was to observe the effects of intravenous thrombolytic therapy on inflammatory indices in order to investigate the hypothesis that post-stroke systemic inflammatory response occurs in response to the necrosis of brain tissues. In this study, 62 patients with acute cerebral infarction and indications for intravenous thrombolysis were divided into three groups on the basis of their treatment and response: Successful thrombolysis (n=36), failed thrombolysis (n=12) and control (n=14) groups. The body temperature, white blood cell counts and high-sensitivity (hs)-CRP levels were recorded pre-treatment and on post-stroke days 1, 3, 5 and 7. Spearman's correlation analysis showed that the pre-treatment National Institutes of Health Stroke Scale (NIHSS) score positively correlated with body temperature, white blood cell count and hs-CRP levels. On day 3 of effective intravenous thrombolysis, the body temperature and white blood cell were decreased and on days 3 and 5, the serum levels of hs-CRP were reduced compared with those in the failed thrombolysis and control groups. The results indicate that the systemic inflammatory response following acute cerebral infarction was mainly caused by ischemic injury of local brain tissue; the more serious the stroke, the stronger the inflammatory response. Ultra-early thrombolytic therapy may inhibit the necrosis of brain tissue and thereby reduce the inflammatory response. PMID:26622513

  8. Anti-Inflammatory Property of Plantago major Leaf Extract Reduces the Inflammatory Reaction in Experimental Acetaminophen-Induced Liver Injury.

    PubMed

    Hussan, Farida; Mansor, Adila Sofea; Hassan, Siti Nazihahasma; Tengku Nor Effendy Kamaruddin, Tg Nurul Tasnim; Budin, Siti Balkis; Othman, Faizah

    2015-01-01

    Hepatic injury induces inflammatory process and cell necrosis. Plantago major is traditionally used for various diseases. This study aimed to determine the anti-inflammatory property of P. major leaf extracts on inflammatory reaction following acetaminophen (APAP) hepatotoxicity. Thirty male Sprague-Dawley rats were divided into 5 groups, namely, normal control (C), APAP, aqueous (APAP + AQ), methanol (APAP + MT), and ethanol (APAP + ET) extract treated groups. All APAP groups received oral APAP (2 g/kg) at day 0. Then, 1000 mg/kg dose of P. major extracts was given for six days. The levels of liver transaminases were measured at day 1 and day 7 after APAP induction. At day 7, the blood and liver tissue were collected to determine plasma cytokines and tissue 11β-HSD type 1 enzyme. The in vitro anti-inflammatory activities of methanol, ethanol, and aqueous extracts were 26.74 ± 1.6%, 21.69 ± 2.81%, and 12.23 ± 3.15%, respectively. The ALT and AST levels were significantly higher in the APAP groups at day 1 whereas the enzyme levels of all groups showed no significant difference at day 7. The extracts treatment significantly reduced the proinflammatory cytokine levels and significantly increased the 11β-HSD type 1 enzyme activity (p < 0.05). In conclusion, the P. major extracts attenuate the inflammatory reaction following APAP-induced liver injury. PMID:26300946

  9. Anti-Inflammatory Property of Plantago major Leaf Extract Reduces the Inflammatory Reaction in Experimental Acetaminophen-Induced Liver Injury.

    PubMed

    Hussan, Farida; Mansor, Adila Sofea; Hassan, Siti Nazihahasma; Tengku Nor Effendy Kamaruddin, Tg Nurul Tasnim; Budin, Siti Balkis; Othman, Faizah

    2015-01-01

    Hepatic injury induces inflammatory process and cell necrosis. Plantago major is traditionally used for various diseases. This study aimed to determine the anti-inflammatory property of P. major leaf extracts on inflammatory reaction following acetaminophen (APAP) hepatotoxicity. Thirty male Sprague-Dawley rats were divided into 5 groups, namely, normal control (C), APAP, aqueous (APAP + AQ), methanol (APAP + MT), and ethanol (APAP + ET) extract treated groups. All APAP groups received oral APAP (2 g/kg) at day 0. Then, 1000 mg/kg dose of P. major extracts was given for six days. The levels of liver transaminases were measured at day 1 and day 7 after APAP induction. At day 7, the blood and liver tissue were collected to determine plasma cytokines and tissue 11β-HSD type 1 enzyme. The in vitro anti-inflammatory activities of methanol, ethanol, and aqueous extracts were 26.74 ± 1.6%, 21.69 ± 2.81%, and 12.23 ± 3.15%, respectively. The ALT and AST levels were significantly higher in the APAP groups at day 1 whereas the enzyme levels of all groups showed no significant difference at day 7. The extracts treatment significantly reduced the proinflammatory cytokine levels and significantly increased the 11β-HSD type 1 enzyme activity (p < 0.05). In conclusion, the P. major extracts attenuate the inflammatory reaction following APAP-induced liver injury.

  10. Anti-Inflammatory Property of Plantago major Leaf Extract Reduces the Inflammatory Reaction in Experimental Acetaminophen-Induced Liver Injury

    PubMed Central

    Hussan, Farida; Mansor, Adila Sofea; Hassan, Siti Nazihahasma; Tengku Nor Effendy Kamaruddin, Tg. Nurul Tasnim; Budin, Siti Balkis; Othman, Faizah

    2015-01-01

    Hepatic injury induces inflammatory process and cell necrosis. Plantago major is traditionally used for various diseases. This study aimed to determine the anti-inflammatory property of P. major leaf extracts on inflammatory reaction following acetaminophen (APAP) hepatotoxicity. Thirty male Sprague-Dawley rats were divided into 5 groups, namely, normal control (C), APAP, aqueous (APAP + AQ), methanol (APAP + MT), and ethanol (APAP + ET) extract treated groups. All APAP groups received oral APAP (2 g/kg) at day 0. Then, 1000 mg/kg dose of P. major extracts was given for six days. The levels of liver transaminases were measured at day 1 and day 7 after APAP induction. At day 7, the blood and liver tissue were collected to determine plasma cytokines and tissue 11β-HSD type 1 enzyme. The in vitro anti-inflammatory activities of methanol, ethanol, and aqueous extracts were 26.74 ± 1.6%, 21.69 ± 2.81%, and 12.23 ± 3.15%, respectively. The ALT and AST levels were significantly higher in the APAP groups at day 1 whereas the enzyme levels of all groups showed no significant difference at day 7. The extracts treatment significantly reduced the proinflammatory cytokine levels and significantly increased the 11β-HSD type 1 enzyme activity (p < 0.05). In conclusion, the P. major extracts attenuate the inflammatory reaction following APAP-induced liver injury. PMID:26300946

  11. The effect of anti-inflammatory properties of ferritin light chain on lipopolysaccharide-induced inflammatory response in murine macrophages.

    PubMed

    Fan, Yumei; Zhang, Jie; Cai, Linlin; Wang, Shengnan; Liu, Caizhi; Zhang, Yongze; You, Linhao; Fu, Yujian; Shi, Zhenhua; Yin, Zhimin; Luo, Lan; Chang, Yanzhong; Duan, Xianglin

    2014-11-01

    Ferritin light chain (FTL) reduces the free iron concentration by forming ferritin complexes with ferritin heavy chain (FTH). Thus, FTL competes with the Fenton reaction by acting as an antioxidant. In the present study, we determined that FTL influences the lipopolysaccharide (LPS)-induced inflammatory response. FTL protein expression was regulated by LPS stimulation in RAW264.7 cells. To investigate the role of FTL in LPS-activated murine macrophages, we established stable FTL-expressing cells and used shRNA to silence FTL expression in RAW264.7 cells. Overexpression of FTL significantly decreased the LPS-induced production of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, overexpression of FTL decreased the LPS-induced increase of the intracellular labile iron pool (LIP) and reactive oxygen species (ROS). Moreover, FTL overexpression suppressed the LPS-induced activation of MAPKs and nuclear factor-κB (NF-κB). In contrast, knockdown of FTL by shRNA showed the reverse effects. Therefore, our results indicate that FTL plays an anti-inflammatory role in response to LPS in murine macrophages and may have therapeutic potential for treating inflammatory diseases.

  12. Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses.

    PubMed

    Frank, Matthew G; Thompson, Brittany M; Watkins, Linda R; Maier, Steven F

    2012-02-01

    Acute and chronic stress sensitizes or "primes" the neuroinflammatory response to a subsequent pro-inflammatory challenge. While prior evidence shows that glucocorticoids (GCs) play a pivotal role in stress-induced potentiation of neuroinflammatory responses, it remains unclear whether stress-induced GCs sensitize the response of key CNS immune substrates (i.e. microglia) to pro-inflammatory stimuli. An ex vivo approach was used to address this question. Here, stress-induced GC signaling was manipulated in vivo and hippocampal microglia challenged with the pro-inflammatory stimulus LPS ex vivo. Male Sprague-Dawley rats were either pretreated in vivo with the GC receptor antagonist RU486 or adrenalectomized (ADX). Animals were then exposed to an acute stressor (inescapable tailshock; IS) and 24 h later hippocampal microglia were isolated and challenged with LPS to probe for stress-induced sensitization of pro-inflammatory responses. Prior exposure to IS resulted in a potentiated pro-inflammatory cytokine response (e.g. IL-1β gene expression) to LPS in isolated microglia. Treatment in vivo with RU486 and ADX inhibited or completely blocked this IS-induced sensitization of the microglial pro-inflammatory response. The present results suggest that stress-induced GCs function to sensitize the microglial pro-inflammatory response (IL-1β, IL-6, NFκBIα) to immunologic challenges.

  13. DECREASED HEART RATE IS ASSOCIATED WITH CARBAMATE-INDUCED ACTIVATION OF PRO-INFLAMMATORY SERUM PROTEINS.

    EPA Science Inventory

    Previously we reported that chlorpyrifos (CHP), an irreversible cholinesterase (ChE) inhibitor, induces hypertension in rats. Concomitant with hypertension, we found an increase in C-reactive protein, macrophage inflammatory protein-2 , monocyte chemotactic protein-5 and interfer...

  14. Contribution of Lung Macrophages to the Inflammatory Responses Induced by Exposure to Air Pollutants

    PubMed Central

    van Eeden, Stephan F.

    2013-01-01

    Large population cohort studies have indicated an association between exposure to particulate matter and cardiopulmonary morbidity and mortality. The inhalation of toxic environmental particles and gases impacts the innate and adaptive defense systems of the lung. Lung macrophages play a critically important role in the recognition and processing of any inhaled foreign material such as pathogens or particulate matter. Alveolar macrophages and lung epithelial cells are the predominant cells that process and remove inhaled particulate matter from the lung. Cooperatively, they produce proinflammatory mediators when exposed to atmospheric particles. These mediators produce integrated local (lung, controlled predominantly by epithelial cells) and systemic (bone marrow and vascular system, controlled predominantly by macrophages) inflammatory responses. The systemic response results in an increase in the release of leukocytes from the bone marrow and an increased production of acute phase proteins from the liver, with both factors impacting blood vessels and leading to destabilization of existing atherosclerotic plaques. This review focuses on lung macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants. PMID:24058272

  15. Burn injury induces skeletal muscle degeneration, inflammatory host response, and oxidative stress in wistar rats.

    PubMed

    da Silva, Nathalia Trasmonte; Quintana, Hananiah Tardivo; Bortolin, Jeferson André; Ribeiro, Daniel Araki; de Oliveira, Flavia

    2015-01-01

    Burn injuries (BIs) result in both local and systemic responses distant from the site of thermal injury, such as skeletal muscle. The purpose of this study was to investigate the expression of cyclooxygenase-2 (COX-2) and hydroxy-2'-deoxyguanosine (8-OHdG) as a result of inflammation and reactive oxygen species production, respectively. A total of 16 male rats were distributed into two groups: control (C) and submitted to BI. The medial part of gastrocnemius muscle formed the specimens, which were stained with hematoxylin and eosin and were evaluated. COX-2 and 8-OHdG expressions were assessed by immunohistochemistry, and cell profile area and density of muscle fibers (number of fibers per square millimeter) were evaluated by morphometric methods. The results revealed inflammatory infiltrate associated with COX-2 immunoexpression in BI-gastrocnemius muscle. Furthermore, a substantial decrease in the muscle cell profile area of BI group was noticed when compared with the control group, whereas the density of muscle fibers was higher in the BI group. 8-OHdG expression in numerous skeletal muscle nuclei was detected in the BI group. In conclusion, the BI group is able to induce skeletal muscle degeneration as a result of systemic host response closely related to reactive oxygen species production and inflammatory process.

  16. Biolistic expression of the macrophage colony stimulating factor receptor in organotypic cultures induces an inflammatory response.

    PubMed

    Mitrasinovic, Olivera M; Robinson, Christopher C; Tenen, Daniel G; Lee, Yuen Ling; Poon, Clara; Murphy, Greer M

    2004-08-01

    The receptor for macrophage colony-stimulating factor (M-CSFR; c-fms) is expressed at increased levels by microglia in Alzheimer's disease (AD) and in mouse models for AD. Increased expression of M-CSFR on cultured microglia results in a strong proinflammatory response, but the relevance of this cell culture finding to intact brain is unknown. To determine the effects of increased microglial expression of M-CSFR in a complex organotypic environment, we developed a system for biolistic transfection of microglia in hippocampal slice cultures. The promoter for the Mac-1 integrin alpha subunit CD11b is active in cells of myeloid origin. In the brain, CD11b expression is restricted to microglia. Constructs consisting of the promoter for CD11b and a c-fms cDNA or an enhanced green fluorescent protein (EGFP) cDNA were introduced into monotypic cultures of microglia, neurons, and astrocytes. Strong CD11b promoter activity was observed in microglia, whereas little activity was observed in other cell types. Biolistic transfection of organotypic hippocampal cultures with the CD11b/c-fms construct resulted in expression of the c-fms mRNA and protein that was localized to microglia. Furthermore, biolistic overexpression of M-CSFR on microglia resulted in significantly increased production by the hippocampal cultures of the proinflammatory cytokines interleukin (IL)-1alpha macrophage inflammatory protein (MIP-1alpha), and trends toward increased production of IL-6 and M-CSF. These findings demonstrate that microglial overexpression of M-CSFR in an organotypic environment induces an inflammatory response, and suggest that increased microglial expression of M-CSFR could contribute to the inflammatory response observed in AD brain.

  17. Osteoimmunology: Major and Costimulatory Pathway Expression Associated with Chronic Inflammatory Induced Bone Loss

    PubMed Central

    Crotti, Tania N.; Dharmapatni, Anak A. S. S. K.; Alias, Ekram; Haynes, David R.

    2015-01-01

    The field of osteoimmunology has emerged in response to the range of evidences demonstrating the close interrelationship between the immune system and bone metabolism. This is pertinent to immune-mediated diseases, such as rheumatoid arthritis and periodontal disease, where there are chronic inflammation and local bone erosion. Periprosthetic osteolysis is another example of chronic inflammation with associated osteolysis. This may also involve immune mediation when occurring in a patient with rheumatoid arthritis (RA). Similarities in the regulation and mechanisms of bone loss are likely to be related to the inflammatory cytokines expressed in these diseases. This review highlights the role of immune-related factors influencing bone loss particularly in diseases of chronic inflammation where there is associated localized bone loss. The importance of the balance of the RANKL-RANK-OPG axis is discussed as well as the more recently appreciated role that receptors and adaptor proteins involved in the immunoreceptor tyrosine-based activation motif (ITAM) signaling pathway play. Although animal models are briefly discussed, the focus of this review is on the expression of ITAM associated molecules in relation to inflammation induced localized bone loss in RA, chronic periodontitis, and periprosthetic osteolysis, with an emphasis on the soluble and membrane bound factor osteoclast-associated receptor (OSCAR). PMID:26064999

  18. Methotrexate Locally Released from Poly(e-Caprolactone) Implants: Inhibition of the Inflammatory Angiogenesis Response in a Murine Sponge Model and the Absence of Systemic Toxicity.

    PubMed

    De Oliveira, Leandro Gonzaga; Figueiredo, Letîcia Aparecida; Fernandes-Cunha, Gabriella Maria; Marina Barcelos, De Miranda; Machado, Laser Antonio; Dasilva, Gisele Rodrigues; Sandra Aparecida Lima, De Moura

    2015-11-01

    In this study, the methotrexate (MTX) was incorporated into the poly(e-caprolactone) (PCL) to design implants (MTX PCL implants) aiming the local treatment of inflammatory angiogenesis diseases without causing systemic side effects. Sponges were inserted into the subcutaneous tissue of mice as a framework for fibrovascular tissue growth. After 4days, MTX PCL implants were also introduced, and anti-inflammatory, antiangiogenic, and antifibrogenic activities of the MTX were determined. MTX reduced the vascularization (hemoglobin content), the neutrophil, and monocyte/macrophage infiltration (MPO and NAG activities, respectively), and the collagen deposition in sponges. MTX reduced tumor necrosis factor-a and IL-6 levels, demonstrating its local antiangiogenic and anti-inflammatory effects. Furthermore, hepatotoxicity, nephrotoxicity, and myelotoxicity, which could be induced by the drug, were evaluated. However, MTX did not promote toxicity to these organs, as the levels of AST and ALT (hepatic markers) and creatinine and urea (renal markers) were not increased, and the complete blood count was not decreased. In conclusion, MTX PCL implants demonstrated to be effective in regulating the components of the inflammatory angiogenesis locally established, and presented an acceptable safety profile. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3731-3742, 2015. PMID:27524686

  19. Staphylococcal LTA-Induced miR-143 Inhibits Propionibacterium acnes-Mediated Inflammatory Response in Skin.

    PubMed

    Xia, Xiaoli; Li, Zhiheng; Liu, Kewei; Wu, Yelin; Jiang, Deming; Lai, Yuping

    2016-03-01

    Staphylococcus epidermidis (S. epidermidis) plays a critical role in modulating cutaneous inflammatory responses in skin. Although S. epidermidis has been shown to co-colonize with Propionibacterium acnes (P. acnes) in acne lesions, it is unclear whether S. epidermidis is involved in the regulation of P. acnes-induced inflammatory responses. In this study, we demonstrated that S. epidermidis inhibited P. acnes-induced inflammation in skin. P. acnes induced the expression of interleukin-6 and tumor necrosis factor-α via the activation of toll-like receptor (TLR) 2 in both keratinocytes and mouse ears. Staphylococcal lipoteichoic acid activated TLR2 to induce miR-143 in keratinocytes, and miR-143, in turn, directly targeted 3' UTR of TLR2 to decrease the stability of TLR2 mRNA and then decreased TLR2 protein, thus inhibiting P. acnes-induced proinflammatory cytokines. The inhibitory effect of miR-143 was further confirmed in vivo as the administration of miR-143 antagomir into mouse ears abrogated the inhibitory effect of lipoteichoic acid on P. acnes-induced inflammation in skin. Taken together, these observations demonstrate that staphylococcal lipoteichoic acid inhibits P. acnes-induced inflammation via the induction of miR-143, and suggest that local modulation of inflammatory responses by S. epidermidis at the site of acne vulgaris might be a beneficial therapeutic strategy for management of P. acnes-induced inflammation.

  20. Staphylococcal LTA-Induced miR-143 Inhibits Propionibacterium acnes-Mediated Inflammatory Response in Skin.

    PubMed

    Xia, Xiaoli; Li, Zhiheng; Liu, Kewei; Wu, Yelin; Jiang, Deming; Lai, Yuping

    2016-03-01

    Staphylococcus epidermidis (S. epidermidis) plays a critical role in modulating cutaneous inflammatory responses in skin. Although S. epidermidis has been shown to co-colonize with Propionibacterium acnes (P. acnes) in acne lesions, it is unclear whether S. epidermidis is involved in the regulation of P. acnes-induced inflammatory responses. In this study, we demonstrated that S. epidermidis inhibited P. acnes-induced inflammation in skin. P. acnes induced the expression of interleukin-6 and tumor necrosis factor-α via the activation of toll-like receptor (TLR) 2 in both keratinocytes and mouse ears. Staphylococcal lipoteichoic acid activated TLR2 to induce miR-143 in keratinocytes, and miR-143, in turn, directly targeted 3' UTR of TLR2 to decrease the stability of TLR2 mRNA and then decreased TLR2 protein, thus inhibiting P. acnes-induced proinflammatory cytokines. The inhibitory effect of miR-143 was further confirmed in vivo as the administration of miR-143 antagomir into mouse ears abrogated the inhibitory effect of lipoteichoic acid on P. acnes-induced inflammation in skin. Taken together, these observations demonstrate that staphylococcal lipoteichoic acid inhibits P. acnes-induced inflammation via the induction of miR-143, and suggest that local modulation of inflammatory responses by S. epidermidis at the site of acne vulgaris might be a beneficial therapeutic strategy for management of P. acnes-induced inflammation. PMID:26739093

  1. Colchicine Acutely Suppresses Local Cardiac Production of Inflammatory Cytokines in Patients With an Acute Coronary Syndrome

    PubMed Central

    Martínez, Gonzalo J; Robertson, Stacy; Barraclough, Jennifer; Xia, Qiong; Mallat, Ziad; Bursill, Christina; Celermajer, David S; Patel, Sanjay

    2015-01-01

    Background Interleukin (IL)-1β, IL-18, and downstream IL-6 are key inflammatory cytokines in the pathogenesis of coronary artery disease. Colchicine is believed to block the NLRP3 inflammasome, a cytosolic complex responsible for the production of IL-1β and IL-18. In vivo effects of colchicine on cardiac cytokine release have not been previously studied. This study aimed to (1) assess the local cardiac production of inflammatory cytokines in patients with acute coronary syndromes (ACS), stable coronary artery disease and in controls; and (2) determine whether acute administration of colchicine inhibits their production. Methods and Results Forty ACS patients, 33 with stable coronary artery disease, and 10 controls, were included. ACS and stable coronary artery disease patients were randomized to oral colchicine treatment (1 mg followed by 0.5 mg 1 hour later) or no colchicine, 6 to 24 hours prior to cardiac catheterization. Blood samples from the coronary sinus, aortic root (arterial), and lower right atrium (venous) were collected and tested for IL-1β, IL-18, and IL-6 using ELISA. In ACS patients, coronary sinus levels of IL-1β, IL-18, and IL-6 were significantly higher than arterial and venous levels (P=0.017, <0.001 and <0.001, respectively). Transcoronary (coronary sinus-arterial) gradients for IL-1β, IL-18, and IL-6 were highest in ACS patients and lowest in controls (P=0.077, 0.033, and 0.014, respectively). Colchicine administration significantly reduced transcoronary gradients of all 3 cytokines in ACS patients by 40% to 88% (P=0.028, 0.032, and 0.032, for IL-1β, IL-18, and IL-6, respectively). Conclusions ACS patients exhibit increased local cardiac production of inflammatory cytokines. Short-term colchicine administration rapidly and significantly reduces levels of these cytokines. PMID:26304941

  2. Recombinant thrombomodulin inhibits lipopolysaccharide-induced inflammatory response by blocking the functions of CD14.

    PubMed

    Ma, Chih-Yuan; Chang, Wei-En; Shi, Guey-Yueh; Chang, Bi-Ying; Cheng, Sheng-En; Shih, Yun-Tai; Wu, Hua-Lin

    2015-02-15

    CD14, a multiligand pattern-recognition receptor, is involved in the activation of many TLRs. Thrombomodulin (TM), a type I transmembrane glycoprotein, originally was identified as an anticoagulant factor that activates protein C. Previously, we showed that the recombinant TM lectin-like domain binds to LPS and inhibits LPS-induced inflammation, but the function of the recombinant epidermal growth factor-like domain plus serine/threonine-rich domain of TM (rTMD23) in LPS-induced inflammation remains unknown. In the current study, we found that rTMD23 markedly suppressed the activation of intracellular signaling pathways and the production of inflammatory cytokines induced by LPS. The anti-inflammatory activity of rTMD23 was independent of activated protein C. We also found that rTMD23 interacted with the soluble and membrane forms of CD14 and inhibited the CD14-mediated inflammatory response. Knockdown of CD14 in macrophages suppressed the production of inflammatory cytokines induced by LPS, and rTMD23 inhibited LPS-induced IL-6 production in CD14-knockdown macrophages. rTMD23 suppressed the binding of LPS to macrophages by blocking the association between monocytic membrane-bound TM and CD14. The administration of rTMD23 in mice, both pretreatment and posttreatment, significantly increased the survival rate and reduced the inflammatory response to LPS. Notably, the serine/threonine-rich domain is essential for the anti-inflammatory activity of rTMD23. To summarize, we show that rTMD23 suppresses the LPS-induced inflammatory response in mice by targeting CD14 and that the serine/threonine-rich domain is crucial for the inhibitory effect of rTMD23 on LPS-induced inflammation. PMID:25609841

  3. Suppression of LPS-induced inflammatory responses by inflexanin B in BV2 microglial cells.

    PubMed

    Lim, Ji-Youn; Sul, Donggeun; Hwang, Bang Yeon; Hwang, Kwang Woo; Yoo, Ki-Yeol; Park, So-Young

    2013-02-01

    Microglia are a type of resident macrophage that functions as an inflammation modulator in the central nervous system. Over-activation of microglia by a range of stimuli disrupts the physiological homeostasis of the brain, and induces inflammatory response and degenerative processes, such as those implicated in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Therefore, we investigated the possible anti-inflammatory mechanisms of inflexanin B in murine microglial BV2 cells. Lipopolysaccharide (LPS) activated BV2 cells and induced the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and cytokines (interleukins-1β and -6, and tumour necrosis factor α). The LPS-induced production of pro-inflammatory mediators was associated with the enhancement of nuclear factor-kappaB (NF-κB) nuclear translocation and the activation of mitogen-activated protein kinase (MAPK) including ERK1/2 and JNK. Conversely, pretreatment of cells with inflexanin B (10 and 20 μg/mL) significantly reduced the production of pro-inflammatory mediators. This was accompanied with the reduced nuclear translocation of NF-κB and reduced activation of MAPKs. These results suggest that inflexanin B attenuated the LPS-induced inflammatory process by inhibiting the activation of NF-κB and MAPKs. PMID:23458198

  4. Local and systemic inflammatory and immunologic reactions to cyathostomin larvicidal therapy in horses.

    PubMed

    Nielsen, M K; Loynachan, A T; Jacobsen, S; Stewart, J C; Reinemeyer, C R; Horohov, D W

    2015-12-15

    Encysted cyathostomin larvae are ubiquitous in grazing horses. Arrested development occurs in this population and can lead to an accumulation of encysted larvae. Large numbers of tissue larvae place the horse at risk for developing larval cyathostominosis. This disease complex is caused by mass emergence of these larvae and is characterized by a generalized acute typhlocolitis and manifests itself as a profuse protein-losing watery diarrhea with a reported case-fatality rate of about 50%. Two anthelmintic formulations have a label claim for larvicidal therapy of these encysted stages; moxidectin and a five-day regimen of fenbendazole. There is limited knowledge about inflammatory and immunologic reactions to larvicidal therapy. This study was designed to evaluate blood acute phase reactants as well as gene expression of pro-inflammatory cytokines, both locally in the large intestinal walls and systemically. Further, mucosal tissue samples were evaluated histopathologically as well as analyzed for gene expression of pro- and anti-inflammatory cytokines, cluster of differentiation (CD) cell surface proteins, and select transcription factors. Eighteen juvenile horses with naturally acquired cyathostomin infections were randomly assigned to three treatment groups; one group served as untreated controls (Group 1), one received a five-day regimen of fenbendazole (10mg/kg) (Group 2), and one group received moxidectin (0.4mg/kg) (Group 3). Horses were treated on day 0 and euthanatized on days 18-20. Serum and whole blood samples were collected on days 0, 5, and 18. All horses underwent necropsy with collection of tissue samples from the ventral colon and cecum. Acute phase reactants measured included serum amyloid A, iron and fibrinogen, and the cytokines evaluated included interferon γ, tumor necrosis factor α, transforming growth factor (TGF)-β, and interleukins 1β, 4, 5, 6, and 10. Transcription factors evaluated were FoxP3, GATA3 and tBet, and CD markers included

  5. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases. PMID:26276128

  6. Contribution of metalloproteases, serine proteases and phospholipases A2 to the inflammatory reaction induced by Bothrops jararaca crude venom in mice.

    PubMed

    Zychar, Bianca Cestari; Dale, Camila Squazoni; Demarchi, Denise Soares; Gonçalves, Luis Roberto C

    2010-01-01

    Various toxins isolated from Bothrops snake venoms induce inflammatory reactions and have been claimed to contribute to the severity of local symptoms present in this envenomation. Notwithstanding, the relative participation of serine proteases, metalloproteases and phospholipases A(2) in the inflammatory reaction produced by crude Bothrops venoms is poorly understood. Herein, crude Bothrops jararaca venom was treated with phenylmethanesulfonyl fluoride (PMSF), 1,10-phenanthroline (oPhe), or p-bromophenacyl-bromide (p-BPB) to inhibit those classes of enzymes, respectively, and inflammatory parameters were evaluated and compared to those induced by the control crude venom. The intensity of edema and hyperalgesia/allodynia was remarkably reduced in animals administered with oPhe-treated venom. Leukocyte-endothelium interactions (LEI), such as adhesion and migration of leukocytes, were also modified at 2h and 24h. Edema and LEI parameters induced by p-BPB-treated venom were similar to those observed with the control venom, but hyperalgesia/allodynia was significantly lower. Inflammatory parameters induced by PMSF-treated venom were similar to those induced by the crude venom, except for a mild reduction in edema intensity. Our results indicate that metalloproteases have a pivotal role in the inflammatory reactions induced by B. jararaca venom, and phospholipases A(2) and serine proteases have a minor role.

  7. Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes.

    PubMed

    Sanchez-Villamil, Javier; Navarro-Garcia, Fernando

    2015-01-01

    Pathogens are able to breach the intestinal barrier, and different bacterial species can display different abilities to colonize hosts and induce inflammation. Inflammatory response studies induced by enteropathogens as Escherichia coli are interesting since it has acquired diverse genetic mobile elements, leading to different E. coli pathotypes. Diarrheagenic E. coli secrete toxins, effectors and virulence factors that exploit the host cell functions to facilitate the bacterial colonization. Many bacterial proteins are delivered to the host cell for subverting the inflammatory response. Hereby, we have highlighted the specific processes used by E. coli pathotypes, by that subvert the inflammatory pathways. These mechanisms include an arrangement of pro- and anti-inflammatory responses to favor the appropriate environmental niche for the bacterial survival and growth. PMID:26059623

  8. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts.

    PubMed

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. PMID:27515000

  9. Regulation of virus-induced inflammatory response by Dunaliella salina alga extract in macrophages.

    PubMed

    Lin, Hui-Wen; Chen, Yi-Chen; Liu, Cheng-Wei; Yang, Deng-Jye; Chen, Shih-Yin; Chang, Tien-Jye; Chang, Yuan-Yen

    2014-09-01

    Previous reports have suggested that many constituents within various algal samples are able to attenuate LPS-induced inflammatory effects. To date no report has been published on the regulation of virus-induced inflammatory response of Dunaliella salina carotenoid extract. In the present study, the anti-inflammatory effect of D. salina carotenoid extract on pseudorabies virus (PRV)-infected RAW 264.7 macrophages was investigated. We evaluated the anti-inflammatory effect of D. salina carotenoid extract on PRV-infected RAW 264.7 cells by measuring cell viability, cytotoxicity, production of inflammatory mediators such as NO, iNOS, COX-2, pro-inflammatory cytokines and anti-virus replication by plaque assay. We found down-regulation of the expression of the iNOS, COX-2 and pro-inflammatory genes IL-1β, IL-6, TNF-α, and MCP-1 in a dose-dependent manner. Although there was no effect on viral replication, there were tendencies toward lower virus titer and tendencies toward higher cell survival. Most importantly, we found that inhibition of TLR9, PI3K and Akt phosphorylation plays a crucial role in the extract-mediated NF-κB regulation by modulating IKK-IκB signaling in PRV-infected RAW264.7 cells. These results indicate that D. salina carotenoid extracts inhibited inflammation by inhibition of NF-κB activation by TLR9 dependent via PI3K/Akt inactivation.

  10. Anti-inflammatory and protective properties of daphnetin in endotoxin-induced lung injury.

    PubMed

    Yu, Wen-wen; Lu, Zhe; Zhang, Hang; Kang, Yan-hua; Mao, Yun; Wang, Huan-huan; Ge, Wei-hong; Shi, Li-yun

    2014-12-24

    Uncontrolled inflammatory responses cause tissue injury and severe immunopathology. Pharmacological interference of intracellular pro-inflammatory signaling may confer a therapeutic benefit under these conditions. Daphnetin, a natural coumarin derivative, has been used to treat inflammatory diseases including bronchitis. However, the protective effect of daphnetin in inflammatory airway disorders has yet to be determined, and the molecular basis for its anti-inflammatory properties is unknown. This paper shows that daphnetin treatment conferred substantial protection from endotoxin-induced acute lung injury (ALI), in parallel with reductions in the production of inflammatory mediators, symptoms of airway response, and infiltration of inflammatory cells. Further studies indicate that activation of macrophage and human alveolar epithelial cells in response to lipopolysaccharide (LPS) was remarkably suppressed by daphnetin, which was related to the down-regulation of NF-κB-dependent signaling events. Importantly, this study demonstrates that TNF-α-induced protein 3 (TNFAIP3), also known as A20, was significantly induced by daphnetin, which appeared to be largely responsible for the down-regulation of NF-κB activity through modulation of nondegradative TRAF6 ubiquitination. Accordingly, the deletion of TNFAIP3 in primary macrophages reversed daphnetin-elicited inhibition of immune response, and the beneficial effect of daphnetin in the pathogenesis of ALI was, partially at least, abrogated by TNFAIP3 knockdown. These findings demonstrate the anti-inflammatory and protective functions of daphnetin in endotoxin-induced lung inflammation and injury and also reveal the key mechanism underlying its action in vitro as well as in vivo.

  11. Anti-inflammatory effect of thalidomide in paraquat-induced pulmonary injury in mice.

    PubMed

    Amirshahrokhi, Keyvan

    2013-10-01

    Thalidomide has been used in inflammatory and autoimmune disorders due to its anti-inflammatory activity. Paraquat (PQ) poisoning causes severe lung injury. PQ-induced pulmonary inflammation and fibrosis are due to its ability to induce oxidative stress, inflammatory and fibrotic reactions. This study was designed to evaluate the anti-inflammatory and anti-fibrotic effect of thalidomide on PQ-induced lung damage in a mouse model. Mice were injected with a single dose of PQ (20mg/kg, i.p.), and treated with thalidomide (25 and 50mg/kg/day, i.p.) for six days. Lung tissues were dissected six days after PQ injection. The results showed that thalidomide ameliorated the biochemical and histological lung alterations induced by PQ. Thalidomide decreased production of inflammatory and fibrogenic cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β1. In addition thalidomide reduced myeloperoxidase (MPO), nitric oxide (NO), and hydroxyproline content in lung tissue. Taken together, the results of this study suggest that thalidomide might be a valuable therapeutic drug in preventing the progression of PQ-induced pulmonary injury.

  12. Tristetraprolin mediates anti-inflammatory effects of carbon monoxide on lipopolysaccharide-induced acute lung injury.

    PubMed

    Joe, Yeonsoo; Kim, Seul-Ki; Chen, Yingqing; Yang, Jung Wook; Lee, Jeong-Hee; Cho, Gyeong Jae; Park, Jeong Woo; Chung, Hun Taeg

    2015-11-01

    Low-dose inhaled carbon monoxide is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the precise mechanism by which carbon monoxide confers protection against ALI is not clear. Tristetraprolin (TTP; official name ZFP36) exerts anti-inflammatory effects by enhancing decay of proinflammatory cytokine mRNAs. With the use of TTP knockout mice, we demonstrate here that the protection by carbon monoxide against LPS-induced ALI is mediated by TTP. Inhalation of carbon monoxide substantially increased the pulmonary expression of TTP. carbon monoxide markedly enhanced the decay of mRNA-encoding inflammatory cytokines, blocked the expression of inflammatory cytokines, and decreased tissue damage in LPS-treated lung tissue. Moreover, knockout of TTP abrogated the anti-inflammatory and tissue-protective effects of carbon monoxide in LPS-induced ALI. These results suggest that carbon monoxide-induced TTP mediates the protective effect of carbon monoxide against LPS-induced ALI by enhancing the decay of mRNA encoding proinflammatory cytokines.

  13. Abarema cochliacarpos Extract Decreases the Inflammatory Process and Skeletal Muscle Injury Induced by Bothrops leucurus Venom

    PubMed Central

    Saturnino-Oliveira, Jeison; Santos, Daiana Do Carmo; Guimarães, Adriana Gibara; Santos Dias, Antônio; Tomaz, Marcelo Amorim; Monteiro-Machado, Marcos; Estevam, Charles Santos; Lucca Júnior, Waldecy De; Maria, Durvanei Augusto; Melo, Paulo A.; Araújo, Adriano Antunes de Souza; Santos, Márcio Roberto Viana; Almeida, Jackson Roberto Guedes da Silva; Oliveira, Rita de Cássia Meneses; Pereira de Oliveira, Aldeidia; Quintans Júnior, Lucindo José

    2014-01-01

    Snakebites are a public health problem, especially in tropical countries. However, treatment with antivenom has limited effectiveness against venoms' local effects. Here, we investigated the ability of Abarema cochliacarpos hydroethanolic extract (EAc) to protect mice against injection of Bothrops leucurus venom. Swiss mice received perimuscular venom injection and were subsequently treated orally with EAc in different doses. Treatment with EAc 100, 200, and 400 mg/kg reduced the edema induced by B. leucurus in 1%, 13%, and 39%, respectively. Although lower doses showed no antihypernociceptive effect in the Von Frey test, the higher dose significantly reduced hyperalgesia induced by the venom. Antimyotoxic activity of EAc was also observed by microscopy assessment, with treated muscles presenting preserved structures, decreased edema, and inflammatory infiltrate as compared to untreated ones. Finally, on the rotarod test, the treated mice showed better motor function, once muscle fibers were preserved and there were less edema and pain. Treated mice could stand four times more time on the rotating rod than untreated ones. Our results have shown that EAc presented relevant activities against injection of B. leucurus venom in mice, suggesting that it can be considered as an adjuvant in the treatment of envenomation. PMID:25136627

  14. Abarema cochliacarpos extract decreases the inflammatory process and skeletal muscle injury induced by Bothrops leucurus venom.

    PubMed

    Saturnino-Oliveira, Jeison; Santos, Daiana Do Carmo; Guimarães, Adriana Gibara; Santos Dias, Antônio; Tomaz, Marcelo Amorim; Monteiro-Machado, Marcos; Estevam, Charles Santos; De Lucca Júnior, Waldecy; Maria, Durvanei Augusto; Melo, Paulo A; Araújo, Adriano Antunes de Souza; Santos, Márcio Roberto Viana; Almeida, Jackson Roberto Guedes da Silva; Oliveira, Rita de Cássia Meneses; Pereira de Oliveira, Aldeidia; Quintans Júnior, Lucindo José

    2014-01-01

    Snakebites are a public health problem, especially in tropical countries. However, treatment with antivenom has limited effectiveness against venoms' local effects. Here, we investigated the ability of Abarema cochliacarpos hydroethanolic extract (EAc) to protect mice against injection of Bothrops leucurus venom. Swiss mice received perimuscular venom injection and were subsequently treated orally with EAc in different doses. Treatment with EAc 100, 200, and 400 mg/kg reduced the edema induced by B. leucurus in 1%, 13%, and 39%, respectively. Although lower doses showed no antihypernociceptive effect in the Von Frey test, the higher dose significantly reduced hyperalgesia induced by the venom. Antimyotoxic activity of EAc was also observed by microscopy assessment, with treated muscles presenting preserved structures, decreased edema, and inflammatory infiltrate as compared to untreated ones. Finally, on the rotarod test, the treated mice showed better motor function, once muscle fibers were preserved and there were less edema and pain. Treated mice could stand four times more time on the rotating rod than untreated ones. Our results have shown that EAc presented relevant activities against injection of B. leucurus venom in mice, suggesting that it can be considered as an adjuvant in the treatment of envenomation. PMID:25136627

  15. Inflammatory Stress Sensitizes the Liver to Atorvastatin-Induced Injury in ApoE-/- Mice

    PubMed Central

    Wu, Wei; Zhao, Lei; Yang, Ping; Zhou, Wei; Li, Beibei; Moorhead, John F.; Varghese, Zac; Ruan, Xiong Z.; Chen, Yaxi

    2016-01-01

    Statins, which are revolutionized cholesterol-lowing agents, have been reported to have unfavorable effects on the liver. Inflammatory stress is a susceptibility factor for drug-induced liver injury. This study investigated whether inflammatory stress sensitized the liver to statin-induced toxicity in mice and explored the underlying mechanisms. We used casein injection in ApoE-/- mice to induce inflammatory stress. Half of the mice were orally administered atorvastatin (10mg/kg/d) for 8 weeks. The results showed that casein injection increased the levels of serum pro-inflammatory cytokines (IL-6 and TNFα). Atorvastatin treatment increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in casein injection mice. Moreover, atorvastatin treatment exacerbated hepatic steatosis, inflammation and fibrosis, as well as increased hepatic reactive oxygen species (ROS) and malondialdehyde in casein injection mice. However, above changes were not observed in atorvastatin treated alone mice. The protein expression of liver nuclear factor erythroid 2-related factor 2 (Nrf2) and the mRNA expressions of Nrf2 target genes were increased, together with the enhancement of activities of hepatic catalase and superoxide dismutase in atorvastatin treated alone mice, but these antioxidant responses were lost in mice treated with atorvastatin under inflammatory stress. This study demonstrates that atorvastatin exacerbates the liver injury under inflammatory stress, which may be associated with the loss of adaptive antioxidant response mediated by Nrf2. PMID:27428373

  16. Inflammatory Stress Sensitizes the Liver to Atorvastatin-Induced Injury in ApoE-/- Mice.

    PubMed

    Wu, Wei; Zhao, Lei; Yang, Ping; Zhou, Wei; Li, Beibei; Moorhead, John F; Varghese, Zac; Ruan, Xiong Z; Chen, Yaxi

    2016-01-01

    Statins, which are revolutionized cholesterol-lowing agents, have been reported to have unfavorable effects on the liver. Inflammatory stress is a susceptibility factor for drug-induced liver injury. This study investigated whether inflammatory stress sensitized the liver to statin-induced toxicity in mice and explored the underlying mechanisms. We used casein injection in ApoE-/- mice to induce inflammatory stress. Half of the mice were orally administered atorvastatin (10mg/kg/d) for 8 weeks. The results showed that casein injection increased the levels of serum pro-inflammatory cytokines (IL-6 and TNFα). Atorvastatin treatment increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in casein injection mice. Moreover, atorvastatin treatment exacerbated hepatic steatosis, inflammation and fibrosis, as well as increased hepatic reactive oxygen species (ROS) and malondialdehyde in casein injection mice. However, above changes were not observed in atorvastatin treated alone mice. The protein expression of liver nuclear factor erythroid 2-related factor 2 (Nrf2) and the mRNA expressions of Nrf2 target genes were increased, together with the enhancement of activities of hepatic catalase and superoxide dismutase in atorvastatin treated alone mice, but these antioxidant responses were lost in mice treated with atorvastatin under inflammatory stress. This study demonstrates that atorvastatin exacerbates the liver injury under inflammatory stress, which may be associated with the loss of adaptive antioxidant response mediated by Nrf2. PMID:27428373

  17. Silencing MR-1 attenuates inflammatory damage in mice heart induced by AngII

    SciTech Connect

    Dai, Wenjian; Chen, Haiyang; Jiang, Jiandong; Kong, Weijia; Wang, Yiguang

    2010-01-15

    Myofibrillogenesis regulator-1(MR-1) can aggravate cardiac hypertrophy induced by angiotensin(Ang) II in mice through activation of NF-{kappa}B signaling pathway, and nuclear transcription factor (NF)-{kappa}B and activator protein-1(AP-1) regulate inflammatory and immune responses by increasing the expression of specific inflammatory genes in various tissues including heart. Whether inhibition of MR-1 expression will attenuate AngII-induced inflammatory injury in mice heart has not been explored. Herein, we monitored the activation of NF-{kappa}B and AP-1, together with expression of pro-inflammatory of interleukin(IL)-6, tumor necrosis factor(TNF)-{alpha}, vascular-cell adhesion molecule (VCAM)-1, platelet endothelial cell adhesion molecule (PECAM), and inflammatory cell infiltration in heart of mice which are induced firstly by AngII (PBS),then received MR-1-siRNA or control-siRNA injecting. We found that the activation of NF-{kappa}B and AP-1 was inhibited significantly, together with the decreased expression of IL-6, TNF-{alpha}, VCAM-1, and PECAM in AngII-induced mice myocardium in MR-1-siRNA injection groups compared with control-siRNA injecting groups. However, the expression level of MR-1 was not an apparent change in PBS-infused groups than in unoperation groups, and MR-1-siRNA do not affect the expression of MR-1 in PBS-infused mice. Our findings suggest that silencing MR-1 protected mice myocardium against inflammatory injury induced by AngII by suppression of pro-inflammatory transcription factors NF-{kappa}B and AP-1 signaling pathway.

  18. Immunocytochemical localization of inflammatory cytokines and vascular adhesion receptors in radicular cysts.

    PubMed

    Bando, Y; Henderson, B; Meghji, S; Poole, S; Harris, M

    1993-05-01

    Odontogenic cysts are one of the commonest bone destroying lesions of the maxillofacial skeleton, with the inflammatory radicular cyst being the commonest jaw cyst. Explants of radicular cysts produce an interleukin-1-like activity which could explain the osteolysis seen with these tumours though the cellular source of this osteolytic activity is unknown. In the present study, cytokines with known inflammatory and osteolytic activity: interleukin-1 (IL-1), tumour necrosis factor (TNF), interleukin-6 (IL-6), and the chemotactic cytokine interleukin-8 (IL-8) have been localized immunocytochemically in radicular cysts. The cellular adhesion receptors ICAM-1 and ELAM-1 have also been immunolocalized. All specimens showed positive staining for IL-1 (alpha and beta) and IL-6, with these cytokines being located in epithelial and vascular endothelial cells. Only two specimens demonstrated TNF and IL-8 staining, which was located in macrophages. All specimens demonstrated ELAM-1 staining in endothelium and ICAM-1 staining in epithelium, endothelium and mononuclear cells. These findings show that radicular cysts contain two bone-modulating cytokines, IL-1 and IL-6, and that these appear to be synthesized mainly by the epithelial cells. Cysts also contain a proportion of activated blood vessels whose endothelial cells express the cellular adhesion receptors ICAM-1 and ELAM-1.

  19. Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy

    PubMed Central

    Bouchlaka, Myriam N.; Sckisel, Gail D.; Chen, Mingyi; Mirsoian, Annie; Zamora, Anthony E.; Maverakis, Emanual; Wilkins, Danice E.C.; Alderson, Kory L.; Hsiao, Hui-Hua; Weiss, Jonathan M.; Monjazeb, Arta M.; Hesdorffer, Charles; Ferrucci, Luigi; Longo, Dan L.; Blazar, Bruce R.; Wiltrout, Robert H.; Redelman, Doug; Taub, Dennis D.

    2013-01-01

    Cancer commonly occurs in the elderly and immunotherapy (IT) is being increasingly applied to this population. However, the majority of preclinical mouse tumor models assessing potential efficacy and toxicities of therapeutics use young mice. We assessed the impact of age on responses to systemic immune stimulation. In contrast to young mice, systemic cancer IT regimens or LPS given to aged mice resulted in rapid and lethal toxicities affecting multiple organs correlating with heightened proinflammatory cytokines systemically and within the parenchymal tissues. This inflammatory response and increased morbidity with age was independent of T cells or NK cells. However, prior in vivo depletion of macrophages in aged mice resulted in lesser cytokine levels, increased survival, and decreased liver histopathology. Furthermore, macrophages from aged mice and normal human elderly volunteers displayed heightened TNF and IL-6 production upon in vitro stimulation. Treatment of both TNF knockout mice and in vivo TNF blockade in aged mice resulted in significant increases in survival and lessened pathology. Importantly, TNF blockade in tumor-bearing, aged mice receiving IT displayed significant anti-tumor effects. These data demonstrate the critical role of macrophages in the age-associated hyper-inflammatory cytokine responses to systemic immunostimulation and underscore the importance of performing preclinical assessments in aged mice. PMID:24081947

  20. Immunoscintigraphic localization of inflammatory lesions: concept, radiolabelling and in vitro testing of a granulocyte specific antibody.

    PubMed

    Andres, R Y; Schubiger, P A; Tiefenauer, L; Seybold, K; Locher, J T; Mach, J P; Buchegger, F

    1988-01-01

    Current nuclear medicine techniques for the localization of inflammatory processes are based on injection of 111In labelled autologous granulocytes which need to be isolated and radiolabelled in vitro before reinjection. A new technique is presented here that obviates the need for cell isolation by the direct intravenous injection of a granulocyte specific 123I labelled monoclonal antibody. In this publication the basic parameters of the antibody granulocyte interaction are described. Antibody binding does not inhibit vital functions of the granulocytes, such as chemotaxis and superoxide generation. Scatchard analysis of binding data reveals an apparent affinity of the antibody for granulocytes of 6.8 X 10(9) l/mol and approximately 7.1 X 10(4) binding sites per cell. Due to the high specificity of the antibody, the only expected interference is from CEA producing tumors.

  1. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα.

    PubMed

    Tang, Jing; Luo, Kang; Li, Yan; Chen, Quan; Tang, Dan; Wang, Deming; Xiao, Ji

    2015-09-01

    Here, we investigated the role of LXRα in capsaicin mediated anti-inflammatory effects. Results revealed that capsaicin inhibits LPS-induced IL-1β, IL-6 and TNF-α production in a time- and dose-dependent manner. Moreover, capsaicin increases LXRα expression through PPARγ pathway. Inhibition of LXRα activation by siRNA diminished the inhibitory action of capsaicin on LPS-induced IL-1β, IL-6 and TNF-α production. Additionally, LXRα siRNA abrogated the inhibitory action of capsaicin on p65 NF-κB protein expression. Thus, we propose that the anti-inflammatory effects of capsaicin are LXRα dependent, and LXRα may potentially link the capsaicin mediated PPARγ activation and NF-κB inhibition in LPS-induced inflammatory response.

  2. Inflammatory events induced by brown spider venom and its recombinant dermonecrotic toxin: a pharmacological investigation.

    PubMed

    Paludo, Katia Sabrina; Biscaia, Stellee Marcela Petris; Chaim, Olga Meiri; Otuki, Michel Fleith; Naliwaiko, Katya; Dombrowski, Patrícia Andréia; Franco, Célia Regina Cavichiolo; Veiga, Silvio Sanches

    2009-04-01

    Accidents involving Brown spider (Loxosceles sp.) venom produce a massive inflammatory response in injured region. This venom has a complex mixture of different toxins, and the dermonecrotic toxin is the major contributor to toxic effects. The ability of Loxosceles intermedia venom and a recombinant isoform of dermonecrotic toxin to induce edema and increase in vascular permeability was investigated. These toxins were injected into hind paws and caused a marked dose and time-dependent edema and increase in vascular permeability in mice. Furthermore, the enzymatic activity of venom toxins may be primal for these effects. A mutated recombinant isoform of dermonecrotic toxin, that has only residual enzymatic activity, was not able to induce these inflammatory events. Besides the previous heating of toxins markedly reduced the paw edema and vascular permeability showing that thermolabile constituents can trigger these effects. In addition, the ability of these venom toxins to evoke inflammatory events was partially reduced in compound 48/80-pretreated animals, suggesting that mast cells may be involved in these responses. Pretreating mice with histamine (prometazine and cetirizine) and serotonin (methysergide) receptor antagonists significantly attenuated toxins induced edema and vascular permeability. Moreover, HPLC analysis of whole venom showed the presence of histamine sufficient to induce inflammatory responses. In conclusion, these inflammatory events may result from the activation of mast cells, which in turn release bioamines and may be related to intrinsic histamine content of venom.

  3. Diosgenin inhibits IL-1β-induced expression of inflammatory mediators in human osteoarthritis chondrocytes.

    PubMed

    Wang, Leisheng; Ma, Tian; Zheng, Yanpin; Lv, Shiqiao; Li, Yu; Liu, Shaoxian

    2015-01-01

    It is well known that the inflammatory cytokines play important roles in osteoarthritis (OA). Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species and possesses diverse biological activities including anti-inflammatory properties. However, the role of diosgenin in inflammatory responses in OA chondrocytes is still unclear. Therefore, in this study, we investigated the anti-inflammatory properties of diosgenin in human OA chondrocytes. We found that diosgenin inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) induced by interleukin-1-beta (IL-1β). Diosgenin significantly inhibited the IL-1β-stimulated expression of metalloproteinase-3 (MMP-3), MMP-13, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in human OA chondrocytes. In addition, diosgenin suppressed the degradation of IκB-α in IL-1β-induced human OA chondrocytes. Taken together, this study showed that diosgenin can effectively inhibit the IL-1β-induced expression of inflammatory mediators, suggesting that diosgenin may be a potential agent in the treatment of OA. PMID:26191174

  4. Light-emitting diodes at 940nm attenuate colitis-induced inflammatory process in mice.

    PubMed

    Belém, Mônica O; de Andrade, Giovana M M; Carlos, Thalita M; Guazelli, Carla F S; Fattori, Victor; Toginho Filho, Dari O; Dias, Ivan F L; Verri, Waldiceu A; Araújo, Eduardo J A

    2016-09-01

    Inflammatory bowel disease (IBD) presents intense inflammatory infiltrate, crypt abscesses, ulceration and even loss of function. Despite the clinical relevance of IBD, its current therapy remains poorly effective. Infrared wavelength phototherapy shows therapeutic potential on inflammation. Our goal was to evaluate whether light-emitting diodes (LED) at 940nm are capable of mitigating the colitis-induced inflammatory process in mice. Forty male Swiss mice were assigned into five groups: control; control treated with LED therapy; colitis without treatment; colitis treated with LED therapy; colitis treated with Prednisolone. Experimental colitis was induced by acetic acid 7.5% (pH2.5) rectal administration. LED therapy was performed with light characterized by wavelength of 940nm, 45nm bandwidth, intensity of 4.05J/cm(2), total power of 270mW and total dose of 64.8J for 4min in a single application. Colitis-induced intestinal transit delay was inhibited by LED therapy. Colitis caused an increase of colon dimensions (length, diameter, total area) and colon weight (edema), which were inhibited by LED therapy. LED therapy also decreased colitis-induced tissue gross lesion, myeloperoxidase activity, microscopic tissue damage score and the presence of inflammatory infiltrate in all intestinal layers. Furthermore, LED therapy inhibited colitis-induced IL-1β, TNF-α, and IL-6 production. We conclude LED therapy at 940nm inhibited experimental colitis-induced colon inflammation in mice, therefore, rendering it a promising therapeutic approach that deserves further investigation.

  5. HSPA12B inhibits lipopolysaccharide-induced inflammatory response in human umbilical vein endothelial cells

    PubMed Central

    Wu, Jun; Li, Xuehan; Huang, Lei; Jiang, Surong; Tu, Fei; Zhang, Xiaojin; Ma, He; Li, Rongrong; Li, Chuanfu; Li, Yuehua; Ding, Zhengnian; Liu, Li

    2015-01-01

    Heat shock protein A12B (HSPA12B) is a newly discovered member of the HSP70 protein family. This study investigated the effects of HSPA12B on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms involved. A HUVECs inflammatory model was induced by LPS. Overexpression of HSPA12B in HUVECs was achieved by infection with recombinant adenoviruses encoding green fluorescence protein-HSPA12B. Knockdown of HSPA12B was achieved by siRNA technique. Twenty four hours after virus infection or siRNA transfection, HUVECs were stimulated with 1 μg/ml LPS for 4 hrs. Endothelial cell permeability ability was determined by transwell permeability assay. The binding rate of human neutrophilic polymorphonuclear leucocytes (PMN) with HUVECs was examined using myeloperoxidase assay. Cell migrating ability was determined by the wound-healing assay. The mRNA and protein expression levels of interested genes were analyzed by RT-qPCR and Western blot, respectively. The release of cytokines interleukin-6 and tumour necrosis factor-α was measured by ELISA. HSPA12B suppressed LPS-induced HUVEC permeability and reduced PMN adhesion to HUVECs. HSPA12B also inhibited LPS-induced up-regulation of adhesion molecules and inflammatory cytokine expression. By contrast, knockdown of HSPA12B enhanced LPS-induced increases in the expression of adhesion molecules and inflammatory cytokines. Moreover, HSPA12B activated PI3K/Akt signalling pathway and pharmacological inhibition of this pathway by Wortmannin completely abrogated the protection of HSPA12B against inflammatory response in HUVECs. Our results suggest that HSPA12B attenuates LPS-induced inflammatory responses in HUVECs via activation of PI3K/Akt signalling pathway. PMID:25545050

  6. Cytoplasmic localization and redox cysteine residue of APE1/Ref-1 are associated with its anti-inflammatory activity in cultured endothelial cells.

    PubMed

    Park, Myoung Soo; Kim, Cuk-Seong; Joo, Hee Kyoung; Lee, Yu Ran; Kang, Gun; Kim, Soo Jin; Choi, Sunga; Lee, Sang Do; Park, Jin Bong; Jeon, Byeong Hwa

    2013-11-01

    Apurinic/apyrimidinic endonuclease1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in base excision DNA repair and transcriptional regulation of gene expression. APE1/Ref-1 is mainly localized in the nucleus, but cytoplasmic localization has also been reported. However, the functional role of cytoplasmic APE1/Ref-1 and its redox cysteine residue are still unknown. We investigated the role of cytoplasmic APE1/Ref-1 on tumor necrosis factor-α (TNF-α)-induced vascular cell adhesion molecule-1 (VCAM-1) expressions in endothelial cells. Endogenous APE1/Ref-1 was mainly observed in the nucleus, however, cytoplasmic APE1/Ref-1 was increased by TNF-α. Cytoplasmic APE1/Ref-1 expression was not blunted by cycloheximide, a protein synthesis inhibitor, suggesting cytoplasmic translocation of APE1/Ref-1. Transfection of an N-terminus deletion mutant APE1/Ref-1(29-318) inhibited TNF-α-induced VCAM-1 expression, indicating an anti-inflammatory role for APE1/Ref-1 in the cytoplasm. In contrast, redox mutant of APE1/Ref-1 (C65A/C93A) transfection led to increased TNF-α-induced VCAM-1 expression. Our findings suggest cytoplasmic APE1/Ref-1 localization and redox cysteine residues of APE1/Ref-1 are associated with its anti-inflammatory activity in endothelial cells.

  7. The crucial role of the MyD88 adaptor protein in the inflammatory response induced by Bothrops atrox venom.

    PubMed

    Moreira, Vanessa; Teixeira, Catarina; Borges da Silva, Henrique; D'Império Lima, Maria Regina; Dos-Santos, Maria Cristina

    2013-06-01

    Most snake accidents in North Brazil are attributed to Bothrops atrox, a snake species of the Viperidae family whose venom simultaneously induces local and systemic effects in the victims. The former are clinically more important than the latter, as they cause severe tissue lesions associated with strong inflammatory responses. Although several studies have shown that inflammatory mediators are produced in response to B. atrox venom (BaV), there is little information concerning the molecular pathways involved in innate immune system signaling. Myeloid differentiation factor 88 (MyD88) is an adaptor molecule responsible for transmitting intracellular signals from most toll-like receptors (TLRs) after they interact with pathogen-associated molecular patterns (PAMPs) or other stimuli such as endogenous damage-associated molecular patterns (DAMPs). The MyD88-dependent pathway leads to activation of transcription factors, which in turn induce synthesis of inflammatory mediators such as eicosanoids, cytokines and chemokines. The aim of this study was to investigate the involvement of MyD88 on the acute inflammatory response induced by BaV. Wild-type (WT) C57BL/6 mice and MyD88 knockout (MyD88(-/-)) mice were intraperitoneally injected with BaV. Compared to WT mice, MyD88(-/-) animals showed an impaired inflammatory response to BaV, with lower influx of polymorphonuclear and mononuclear cells to the peritoneal cavity. Furthermore, peritoneal leukocytes from BaV-injected MyD88(-/-) mice did not induce COX-2 or LTB4 protein expression and released low concentrations of PGE2. These mice also failed to produce Th1 and Th17 cytokines and CCL-2, but IL-10 levels were similar to those of BaV-injected WT mice. Our results indicate that MyD88 signaling is required for activation of the inflammatory response elicited by BaV, raising the possibility of developing new therapeutic targets to treat Bothrops sp. poisoning. PMID:23474268

  8. Leptin does not induce an inflammatory response in the murine placenta.

    PubMed

    Appel, S; Turnwald, E-M; Alejandre-Alcazar, M A; Ankerne, J; Rother, E; Janoschek, R; Wohlfarth, M; Vohlen, C; Schnare, M; Meißner, U; Dötsch, J

    2014-06-01

    Leptin is described as a pro-inflammatory signal in fat tissue, which is released from adipocytes and in turn activates immune cells. Also, leptin levels are known to be increased in pregnancies complicated with enhanced inflammatory processes in the placenta. Hence, we assumed that increased leptin amounts might contribute to inducing an inflammatory response in the placenta. To test this hypothesis, pregnant mice were continuously infused with recombinant murine leptin s. c. from day g13 to g16, resulting in a 3-fold increase of maternal circulating serum leptin levels. Dissected placentas were examined for the expression of pro-inflammatory cytokines IL-6 and TNF-alpha and the anti-inflammatory cytokine IL-10 using qPCR analysis. No changes were found except for TNF-alpha, which was slightly elevated upon leptin stimulation. However, TNF-alpha protein levels were not significantly higher in placentas from leptin treated mice. Also, leukocyte infiltration in the labyrinth section of placentas was not increased. In summary, our data demonstrate for the first time that elevated leptin levels alone do not induce an inflammatory response in the placenta.

  9. Preventive and therapeutic anti-inflammatory effects of systemic and topical thalidomide on endotoxin-induced uveitis in rats.

    PubMed

    Rodrigues, Gustavo Büchele; Passos, Giselle Fazzioni; Di Giunta, Gabriella; Figueiredo, Cláudia Pinto; Rodrigues, Eduardo Büchele; Grumman, Astor; Medeiros, Rodrigo; Calixto, João B

    2007-03-01

    The present study examined the outcomes of systemic or topical treatment with thalidomide, a compound that possesses anti-inflammatory, immunomodulatory and anti-angiogenic properties, in rats subjected to endotoxin-induced uveitis (EIU). The effects of thalidomide were evaluated on endotoxin-induced leucocyte and protein infiltration and also on the production of interleukin (IL)-1beta and tumour necrosis factor (TNF)-alpha in rat aqueous humour (AqH). Moreover, the actions of thalidomide were assessed on the cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) protein expression in retinal tissue. EIU was produced by a hindpaw injection of lipopolysaccharide (LPS), in male Wistar rats. Thalidomide (5, 25 and 50 mg/kg) was administered orally 1 h before LPS injection. In another set of experiments, to evaluate the therapeutic efficacy, 5% thalidomide was applied topically to both eyes at 6, 12 and 18 h after LPS administration. The oral pre-treatment with thalidomide decreased, in a dose-dependent manner, the number of inflammatory cells, the protein concentration, and the levels of IL-1beta and TNF-alpha in the AqH. Similar results were found in the AqH of rats that received a topical application of thalidomide. Furthermore, oral (50 mg/kg) and local (5%) thalidomide treatment also reduced expression of the pro-inflammatory proteins COX-2 and iNOS in the posterior segment of the eye. Thalidomide exhibited marked preventive and curative ocular effects in EIU in rats, a property that might be associated with its ability to inhibit the production of inflammatory cytokines and the expression of COX-2 and iNOS. This assembly of data provides additional molecular and functional insights into beneficial effects of thalidomide as an agent for the management of ocular inflammation.

  10. Liver failure induces a systemic inflammatory response. Prevention by recombinant N-terminal bactericidal/permeability-increasing protein.

    PubMed

    Boermeester, M A; Houdijk, A P; Meyer, S; Cuesta, M A; Appelmelk, B J; Wesdorp, R I; Hack, C E; Van Leeuwen, P A

    1995-11-01

    The observed increased susceptibility of patients with fulminant hepatic failure for local and systemic infections has been hypothesized to be due to a failure for the hepatic clearance function and subsequent leaking of endogenous endotoxins into the systemic circulation. However, experimental evidence for such a systemic inflammation during liver failure due to endogenous endotoxemia is lacking. Therefore, we designed a study to clarify whether circulating endotoxins due to liver failure could lead to the development of systemic inflammations. In a rat model for liver failure induced by a two-thirds partial hepatectomy, we evaluated the course of circulating tumor necrosis factor and interleukin-6, changes in blood chemistry and hemodynamics, and histopathological changes in the lungs. Partially hepatectomized animals, but not sham-operated animals, demonstrated cardiac failure, increased levels of creatinin and urea, metabolic acidosis, high plasma levels of tumor necrosis factor and interleukin-6, and an influx of PMNs in the lungs-together indicating the development of a systemic inflammatory response. Continuous infusion of recombinant N-terminal bactericidal/permeability-increasing protein (rBPI23), a well described endotoxin-neutralizing protein, prevented these inflammatory reactions. Ex vivo experiments with rat plasma samples confirmed the presence of circulating endotoxins in partially hepatectomized rats as opposed to those treated with rBPI23. Thus, our results indicate that the early phase of liver failure induces a systemic inflammatory response triggered by circulating endotoxins, which can be prevented by perioperative infusion of rBPI23.

  11. Calcitriol inhibits bleomycin-induced early pulmonary inflammatory response and epithelial-mesenchymal transition in mice.

    PubMed

    Tan, Zhu-Xia; Chen, Yuan-Hua; Xu, Shen; Qin, Hou-Ying; Zhang, Cheng; Zhao, Hui; Xu, De-Xiang

    2016-01-01

    Early pulmonary inflammation and epithelial-mesenchymal transition (EMT) play important roles during lung fibrosis. Increasing evidence demonstrates that calcitriol, the active form of vitamin D3, has anti-inflammatory activities. The aim of this study was to investigate the effects of calcitriol on bleomycin (BLM)-induced early pulmonary inflammation and subsequent EMT. Mice were intratracheally injected with BLM (3.0mg/kg). In three calcitriol+BLM groups, mice were intraperitoneal (i.p.) injected with different doses of calcitriol (0.2, 1.0 or 5.0 μg/kg) daily, beginning at 48 h before BLM injection. Twenty-four hours, seven and fourteen days after BLM injection, pulmonary inflammation and EMT were evaluated. As expected, BLM-induced infiltration of inflammatory cells in the lungs was attenuated by calcitriol. BLM-induced pulmonary inflammatory cytokines were repressed by calcitriol. Moreover, BLM-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 was blocked by calcitriol. In addition, BLM-induced phosphorylation of pulmonary p38 MAPK and protein kinase B (Akt) was inhibited by calcitriol. Further analysis showed that BLM-induced α-smooth muscle actin (α-SMA), a marker for EMT in the lungs, was significantly attenuated by calcitriol. BLM-induced transforming growth factor-beta 1 (TGF-β1) up-regulation and Smad phosphorylation were attenuated by calcitriol. In conclusion, calcitriol inhibits BLM-induced early pulmonary inflammation and subsequent EMT. PMID:26520185

  12. Design of a chimeric promoter induced by pro-inflammatory mediators in articular chondrocytes.

    PubMed

    Meynier de Salinelles, Véronique; Berenbaum, Francis; Jacques, Claire; Salvat, Colette; Olivier, Jean-Luc; Béréziat, Gilbert; Raymondjean, Michel; Massaad, Charbel

    2002-05-01

    We have designed a chimeric promoter that can be stimulated by various pro-inflammatory mediators and so drive the expression of therapeutic genes under inflammatory conditions. The promoter has two parts, the [-247/+20] fragment of the human type IIA secreted phospholipase A2 gene promoter, which is stimulated by the pro-inflammatory cytokine interleukin-1beta (IL-1beta), and a double peroxisome proliferator-activated receptor response element that is activated by some eicosanoids and by non-steroidal anti-inflammatory drugs (NSAIDs). Transfection experiments using rabbit articular chondrocytes in primary culture showed that this chimeric promoter produced a low basal activity and was induced by NSAIDs, WY-14643, IL-1beta, and 15-deoxy Delta12,14 prostaglandin J2. The latter two compounds stimulated the promoter synergistically.

  13. Phytoncide Extracted from Pinecone Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    PubMed

    Kang, Sukyung; Lee, Jae Sung; Lee, Hai Chon; Petriello, Michael C; Kim, Bae Yong; Do, Jeong Tae; Lim, Dae-Seog; Lee, Hong Gu; Han, Sung Gu

    2016-03-01

    Mastitis is a prevalent inflammatory disease that remains one of the main causes of poor quality of milk. Phytoncides are naturally occurring anti-inflammatory compounds derived from plants and trees. To determine if treatment with phytoncide could decrease the severity of lipopolysaccharide (LPS)-induced inflammatory responses, mammary alveolar epithelial cells (MAC-T) were pretreated with phytoncide (0.02% and 0.04% (v/v)) followed by LPS treatment (1 and 25 μg/ml). The results demonstrated that phytoncide downregulated LPS-induced pro-inflammatory cyclooxygenase-2 (COX-2) expression. Additionally, LPS-induced activation of ERK1/2, p38, and Akt was attenuated by phytoncide. Treatment of cells with known pharmacological inhibitors of ERK1/2 (PD98059), p38 (SB203580), and Akt (LY294002) confirmed the association of these signaling pathways with the observed alterations in COX-2 expression. Moreover, phytoncide attenuated LPS-induced NF-κB activation and superoxide production, and, finally, treatment with phytoncide increased Nrf2 activation. Results suggest that phytoncide can decrease LPS-induced inflammation in MAC-T cells.

  14. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  15. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation. PMID:26852703

  16. Regulation of Inflammatory Phenotype in Macrophages by a Diabetes-Induced Long Noncoding RNA

    PubMed Central

    Chen, Zhuo; Park, Jung Tak; Wang, Mei; Lanting, Linda; Zhang, Qiang; Bhatt, Kirti; Leung, Amy; Wu, Xiwei; Putta, Sumanth; Sætrom, Pål; Devaraj, Sridevi

    2014-01-01

    The mechanisms by which macrophages mediate the enhanced inflammation associated with diabetes complications are not completely understood. We used RNA sequencing to profile the transcriptome of bone marrow macrophages isolated from diabetic db/db mice and identified 1,648 differentially expressed genes compared with control db/+ mice. Data analyses revealed that diabetes promoted a proinflammatory, profibrotic, and dysfunctional alternatively activated macrophage phenotype possibly via transcription factors involved in macrophage function. Notably, diabetes altered levels of several long noncoding RNAs (lncRNAs). Because the role of lncRNAs in diabetes complications is unknown, we further characterized the function of lncRNA E330013P06, which was upregulated in macrophages from db/db and diet-induced insulin-resistant type 2 diabetic (T2D) mice, but not from type 1 diabetic mice. It was also upregulated in monocytes from T2D patients. E330013P06 was also increased along with inflammatory genes in mouse macrophages treated with high glucose and palmitic acid. E330013P06 overexpression in macrophages induced inflammatory genes, enhanced responses to inflammatory signals, and increased foam cell formation. In contrast, small interfering RNA–mediated E330013P06 gene silencing inhibited inflammatory genes induced by the diabetic stimuli. These results define the diabetic macrophage transcriptome and novel functional roles for lncRNAs in macrophages that could lead to lncRNA-based therapies for inflammatory diabetes complications. PMID:25008173

  17. Alterations in stress-associated behaviors and neurochemical markers in adult rats after neonatal short-lasting local inflammatory insult.

    PubMed

    Anseloni, V C Z; He, F; Novikova, S I; Turnbach Robbins, M; Lidow, I A; Ennis, M; Lidow, M S

    2005-01-01

    Recently, there has been a growing interest in long-term consequences of neonatal pain because modern neonatal intensive care units routinely employ procedures that cause considerable pain and may be followed by local inflammation and hyperalgesia lasting for several hours or even days. To address this question, we developed a rat model of short lasting (<2 days) early local inflammatory insult produced by a single injection of 0.25% carrageenan (CAR) into the plantar surface of a hindpaw. Previously, we demonstrated that rats receiving this treatment within the first week after birth grow into adults with a global reduction in responsiveness to acute pain. Here, we report that these animals also manifest a low anxiety trait associated with reduced emotional responsiveness to stress. This conclusion is based in the following observations: (a) rats in our model display reduced anxiety on an elevated plus-maze; (b) in the forced swim test, these rats exhibit behavioral characteristics associated with stronger ability for stress coping; and (c) these animals have reduced basal and stress-induced plasma levels of such stress-related neuroendocrine markers as corticotropin-releasing factor, vasopressin, and adrenocorticotrophic hormone. In addition, we used DNA microarray and real-time reverse-transcriptase polymerase chain reaction to profile long-term changes in gene expression in the midbrain periaqueductal gray (PAG; a region involved in both stress and pain modulation) in our animal model. Among the affected genes, serotonergic receptors were particularly well represented. Specifically, we detected increase in the expression of 5-HT1A, 5-HT1D, 5-HT2A, 5-HT2C and 5-HT4 receptors. Several of these receptors are known to be involved in the anxiolytic and analgesic activity of the PAG. Finally, to determine whether neonatal inflammatory insult induces elevation in maternal care, which may play a role in generating long-term behavioral alterations seen in our model, we

  18. The Regulatory Role of Rolipram on Inflammatory Mediators and Cholinergic/Adrenergic Stimulation-Induced Signals in Isolated Primary Mouse Submandibular Gland Cells

    PubMed Central

    Lee, Dong Un; Shin, Dong Min; Hong, Jeong Hee

    2016-01-01

    Exposure to bacterial lipopolysaccharides (LPS) induces inflammatory signals in salivary glands. We investigated the regulatory role of phosphodiesterase 4 (PDE4) inhibitor rolipram on inflammatory mediators and cholinergic/adrenergic stimulation-induced intracellular Ca2+ signaling in salivary acinar and ductal cells. Submandibular gland (SMG) expressed PDE4A through 4D mRNA and PDE4 was localized in the luminal membrane of SMG. LPS induced Ca2+ signaling and ROS production in SMG. Treatment with rolipram blocked LPS-induced Ca2+ increase and ROS production. The application of histamine evoked Ca2+ signals and ROS production, which were attenuated by rolipram in SMG cells. Moreover, LPS-induced NLRP3 inflammasome and cleaved caspase-1 were inhibited by rolipram. The inhibitory role of rolipram in ROS-induced Ca2+ signaling was mainly observed in acinar cells and not in ductal cells. Rolipram also protected SMG acinar but not ductal cells from LPS-induced cell membrane damage. In the case of cholinergic/adrenergic stimulation, carbachol/isoproterenol-induced Ca2+ signals were upregulated by the treatment of rolipram in SMG. In the case of cAMP-dependent ductal bicarbonate secretion by rolipram, no effect was observed on the modulation of ductal chloride/bicarbonate exchange activity. Rolipram could suppress the inflammatory signals and could be a potential therapeutic strategy against LPS-induced inflammation to protect the salivary gland cells. PMID:27143817

  19. Pneumococcal hydrogen peroxide-induced stress signaling regulates inflammatory genes.

    PubMed

    Loose, Maria; Hudel, Martina; Zimmer, Klaus-Peter; Garcia, Ernesto; Hammerschmidt, Sven; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2015-01-15

    Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria. PMID:25183769

  20. Glia maturation factor modulates β-amyloid-induced glial activation, inflammatory cytokine/chemokine production and neuronal damage

    PubMed Central

    Zaheer, Asgar; Zaheer, Smita; Thangavel, Ramasamy; Wu, Yanghong; Sahu, Shailendra K.; Yang, Baoli

    2008-01-01

    Glia maturation factor (GMF), discovered and characterized in our laboratory, is a highly conserved protein primarily localized in mammalian central nervous system. Previously we demonstrated that GMF is required in the induced production of proinflammatory cytokines and chemokines in brain cells. We now report that ventricular infusion of human amyloid beta peptide1-42 (Aβ1-42) in mouse brain caused glial activation and large increases in the levels of GMF as well as induction of inflammatory cytokine/chemokine known for launching the neuro inflammatory cascade in Alzheimer’s disease (AD). To test the hypothesis that GMF is involved in the pathogenesis of AD, we infused Aβ1-42 in the brain of GMF-deficient (GMF-KO) mice, recently prepared in our laboratory. GMF-deficient mice showed reduced glial activation and significantly suppressed proinflammatory cytokine/chemokine production following Aβ infusion compared to wild type (Wt) mice. The decrease in glial activation in the GMF-KO mice is also associated with significant reduction in Aβ induced loss of pre-synaptic marker, synaptophysin, and post-synaptic density protein-95 (PSD 95). We also examined the potential relationship between GMF or lack of it with learning and memory using the T-maze, Y-maze, and water maze, hippocampal-dependent spatial memory tasks. Our results show that memory retention was improved in GMF-KO mice compared to Wt controls following Aβ infusion. Diminution of these Aβ1-42 effects in primary cultures of GMF-KO astrocyte and microglia were reversed by reconstituted expression of GMF. Taken together, our results indicate a novel mediatory role of GMF in neuro-inflammatory pathway of Aβ and its pro-inflammatory functions. PMID:18395194

  1. Absinthin attenuates LPS-induced ALI through MIP-1α-mediated inflammatory cell infiltration.

    PubMed

    Guo, Nailiang; Xu, Yinghua; Cao, Zhongqiang

    2015-01-01

    Acute lung injury (ALI) is characterized by severe lung inflammation, and anti-inflammatory treatment is proposed to be a pertinent therapeutic strategy for the disease. Absinthin is a triterpene, extracted from a Chinese herb, with anti-inflammatory properties. The aim of this study was to evaluate whether absinthin can attenuate ALI in a mouse model of lung injury. Mice were treated with various concentrations (20 mg/kg, 40 mg/kg, and 80mg/kg) of absinthin, and lipopolysaccharide (LPS) to induce ALI. We found that the administration of absinthin relieved LPS-induced acute lung injury, as suggested by reduced histological scores, wet-to-dry ratio, myeloperoxidase activity, and accumulation of inflammatory cells in lung bronchoalveolar lavage fluid. Moreover, we demonstrated that absinthin significantly enhanced the expression of matrix metalloproteinase-8 (MMP-8); this effect could inhibit the accumulation of inflammatory cells in lung tissues through a mechanism dependent on MMP-8-mediated inactivation of macrophage inflammatory protein-1α. Therefore, we propose that absinthin is a promising novel therapeutic candidate for the treatment of ALI.

  2. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    PubMed

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment.

  3. Fasciola hepatica Kunitz Type Molecule Decreases Dendritic Cell Activation and Their Ability to Induce Inflammatory Responses

    PubMed Central

    Falcón, Cristian R.; Masih, Diana; Gatti, Gerardo; Sanchez, María Cecilia; Motrán, Claudia C.; Cervi, Laura

    2014-01-01

    The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh) has not yet been fully described. Here, we demonstrated that Fh total extract (TE) reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa) was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L) induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM), present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite. PMID:25486609

  4. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    PubMed

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment. PMID:26679677

  5. Digibind attenuates cytokine TNFα-induced endothelial inflammatory response: potential benefit role of Digibind in preeclampsia

    PubMed Central

    Wang, Y; Lewis, DF; Adair, CD; Gu, Y; Mason, L; Kipikasa, JH

    2011-01-01

    Objective Exaggerated inflammatory response occurs in preeclampsia. Preeclampsia is also associated with elevated endogenous digoxin-like factors (EDLFs). Clinical data suggest that Digibind (a polyclonal sheep digoxin binding Fab fragment) binds to EDLF and may have the potential to attenuate vasoconstriction and other clinical symptoms of preeclampsia. This study was undertaken to determine if Digibind could attenuate increased endothelial inflammatory response induced by tumor necrosis factor-α (TNFα). Study Design Confluent endothelial cells were treated with TNFα at different concentrations with or without Digibind in culture. Endothelial adhesion molecule ICAM, VCAM and E-selectin expressions were determined by an immunoassay directly detected on the endothelial surface. Effects of Digibind on TNFα-induced extracellular signal-regulated kinase and Na+/K+-ATPase expressions were also examined. Result (1) TNFα induced dose-dependent increases in ICAM, VCAM and E-selectin expressions in endothelial cells; (2) Digibind could attenuate and reduce TNFα-induced upregulation of endothelial E-selectin, ICAM and VCAM expressions. The blocking effect was in a concentration dependent manner; (3) Digibind had no effects on TNFα-induced upregulation of extracellular signal-regulated kinase phosphorylation, but could block TNFα-induced downregulation of Na+/K+-ATPase β1 expression. Conclusion Digibind may exert beneficial effects by preserving cell membrane Na+/K+-ATPase function and consequently to offset increased inflammatory response in endothelial cells. PMID:19148111

  6. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells

    PubMed Central

    Cohen, Evan N.; Gao, Hui; Anfossi, Simone; Mego, Michal; Reddy, Neelima G.; Debeb, Bisrat; Giordano, Antonio; Tin, Sanda; Wu, Qiong; Garza, Raul J.; Cristofanilli, Massimo; Mani, Sendurai A.; Croix, Denise A.; Ueno, Naoto T.; Woodward, Wendy A.; Luthra, Raja; Krishnamurthy, Savitri; Reuben, James M.

    2015-01-01

    Inflammatory breast cancer (IBC) is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT) in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1), a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction. PMID:26207636

  7. Aluminum induces inflammatory and proteolytic alterations in human monocytic cell line.

    PubMed

    Ligi, D; Santi, M; Croce, L; Mannello, F

    2015-11-01

    The increasing exposure to aluminum has been linked with the development of different human pathologies (e.g., breast cancer, myofasciitis, neurodegenerative diseases), probably due to the consistent presence of aluminum salts in widely diffused cosmetic products and vaccines. However, the mechanisms underlying immunologic and proliferative alterations still remain unknown. In the present study we investigated the ability of different aluminum compounds (i.e., aluminum chloride vs Imject® Alum, a mixture of aluminum and magnesium hydroxide) to trigger both inflammatory and proteolytic responses in U-937 human monocytic cell line. We demonstrated, by multiplex immunoassay analyses, that monocytic cells treated with both Imject Alum and aluminum chloride showed different and peculiar expression profiles of 27 inflammatory mediators and 5 matrix metalloproteinases, with respect to untreated control cells. In particular, we found dose-dependent significantly increased levels of pro-inflammatory cytokines, growth factors, and chemoattractant chemokines; whereas among metalloproteinases, only collagenolytic protease showed a significant dose-dependent increase in Imject-treated cells with respect to controls and Al-chloride treated cells. Noteworthy, we found only in Imject Alum-treated cells the significant positive correlations among collagenolytic metalloproteinase and increased expression of pro-inflammatory chemokines, suggesting a possible involvement of aluminum in regulating the acute inflammatory responses. In agreement to emerging evidences, for the first time we demonstrated that the treatment of monocyte cells with aluminum-based adjuvant is able to induce an inflammatory status and a proteolytic cascade activation. In fact, the cell treatment with Imject Alum induced increased levels of several cytokines and proteinases, suggesting these monocyte mediators as possible biomarkers for aluminum-linked diseases. The identification of the biochemical pathways

  8. The clinically approved drugs dasatinib and bosutinib induce anti-inflammatory macrophages by inhibiting the salt-inducible kinases

    PubMed Central

    Ozanne, James; Prescott, Alan R.; Clark, Kristopher

    2014-01-01

    Macrophages switch to an anti-inflammatory, ‘regulatory’-like phenotype characterized by the production of high levels of interleukin (IL)-10 and low levels of pro-inflammatory cytokines to promote the resolution of inflammation. A potential therapeutic strategy for the treatment of chronic inflammatory diseases would be to administer drugs that could induce the formation of ‘regulatory’-like macrophages at sites of inflammation. In the present study, we demonstrate that the clinically approved cancer drugs bosutinib and dasatinib induce several hallmark features of ‘regulatory’-like macrophages. Treatment of macrophages with bosutinib or dasatinib elevates the production of IL-10 while suppressing the production of IL-6, IL-12p40 and tumour necrosis factor α (TNFα) in response to Toll-like receptor (TLR) stimulation. Moreover, macrophages treated with bosutinib or dasatinib express higher levels of markers of ‘regulatory’-like macrophages including LIGHT, SPHK1 and arginase 1. Bosutinib and dasatinib were originally developed as inhibitors of the protein tyrosine kinases Bcr-Abl and Src but we show that, surprisingly, the effects of bosutinib and dasatinib on macrophage polarization are the result of the inhibition of the salt-inducible kinases. Consistent with the present finding, bosutinib and dasatinib induce the dephosphorylation of CREB-regulated transcription co-activator 3 (CRTC3) and its nuclear translocation where it induces a cAMP-response-element-binding protein (CREB)-dependent gene transcription programme including that of IL-10. Importantly, these effects of bosutinib and dasatinib on IL-10 gene expression are lost in macrophages expressing a drug-resistant mutant of salt-inducible kinase 2 (SIK2). In conclusion, our study identifies the salt-inducible kinases as major targets of bosutinib and dasatinib that mediate the effects of these drugs on the innate immune system and provides novel mechanistic insights into the anti-inflammatory

  9. Evaluation of Anti-Inflammatory Potential of the New Ganghwaljetongyeum on Adjuvant-Induced Inflammatory Arthritis in Rats

    PubMed Central

    Kim, Wangin; Park, Sangbin; Kim, Youg Ran; Shin, Wook; Lee, Yumi; Choi, Donghee; Kim, Mirae; Lee, Hyunju; Kim, Seonjong; Na, Changsu

    2016-01-01

    Ganghwaljetongyeum (GHJTY) has been used as a standard treatment for arthritis for approximately 15 years at the Korean Medicine Hospital of Dongshin University. GHJTY is composed of 18 medicinal herbs, of which five primary herbs were selected and named new Ganghwaljetongyeum (N-GHJTY). The purpose of the present study was to observe the effect of N-GHJTY on arthritis and to determine its mechanism of action. After confirming arthritis induction using complete Freund's adjuvant (CFA) in rats, N-GHJTY (62.5, 125, and 250 mg/kg/day) was administered once a day for 10 days. In order to determine pathological changes, edema of the paws and weight were measured before and for 10 days after N-GHJTY administration. Cytokine (TNF-α, IL-1β, and IL-6) levels and histopathological lesions in the knee joint were also examined. Edema in the paw and knee joint of N-GHJTY-treated rats was significantly decreased at 6, 8, and 10 days after administration, compared to that in the CFA-control group, while weight consistently increased. Rats in N-GHJTY-treated groups also recovered from the CFA-induced pathological changes and showed a significant decline in cytokine levels. Taken together, our results showed that N-GHJTY administration was effective in inhibiting CFA-induced arthritis via anti-inflammatory effects while promoting cartilage recovery by controlling cytokine levels. PMID:27382402

  10. Neutrophil Extracellular Traps Enhance Early Inflammatory Response in Sendai Virus-Induced Asthma Phenotype.

    PubMed

    Akk, Antonina; Springer, Luke E; Pham, Christine T N

    2016-01-01

    Paramyxoviral infection in childhood has been linked to a significant increased rate of asthma development. In mice, paramyxoviral infection with the mouse parainfluenza virus type I, Sendai virus (Sev), causes a limited bronchiolitis followed by persistent asthma traits. We have previously shown that the absence of cysteine protease dipeptidyl peptidase I (DPPI) dampened the acute lung inflammatory response and the subsequent asthma phenotype induced by Sev. Adoptive transfer of wild-type neutrophils into DPPI-deficient mice restored leukocyte influx, the acute cytokine response, and the subsequent mucous cell metaplasia that accompanied Sev-induced asthma phenotype. However, the exact mechanism by which DPPI-sufficient neutrophils promote asthma development following Sev infection is still unknown. We hypothesize that neutrophils recruited to the alveolar space following Sev infection elaborate neutrophil extracellular traps (NETs) that propagate the inflammatory cascade, culminating in the eventual asthma phenotype. Indeed, we found that Sev infection was associated with NET formation in the lung and release of cell-free DNA complexed to myeloperoxidase in the alveolar space and plasma that peaked on day 2 post infection. Absence of DPPI significantly attenuated Sev-induced NET formation in vivo and in vitro. Furthermore, concomitant administration of DNase 1, which dismantled NETs, or inhibition of peptidylarginine deiminase 4 (PAD4), an essential mediator of NET formation, suppressed the early inflammatory responses to Sev infection. Lastly, NETs primed bone marrow-derived cells to release cytokines that can amplify the inflammatory cascade. PMID:27617014

  11. Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides.

    PubMed Central

    Sakurai, H; Kohsaka, H; Liu, M F; Higashiyama, H; Hirata, Y; Kanno, K; Saito, I; Miyasaka, N

    1995-01-01

    In this study, we have identified the source of nitric oxide (NO) produced in the human inflammatory joints by analyzing expression of inducible NO synthase. In ex vivo organ cultures, both inflammatory synovium and cartilage from patients with rheumatoid arthritis produced NO. The NO production was suppressed by NG-monomethyl-L-arginine, an inhibitor of NO synthase. The amount of NO produced by the synovium correlated with the proportion of CD14+ cells in the corresponding tissue (r = 0.8, P < 0.05). Immunohistochemical analysis as well as in situ hybridization showed that inducible NO synthase was predominantly expressed in synovial lining cells, endothelial cells, chondrocytes, and to a lesser extent, in infiltrating mononuclear cells and synovial fibroblasts. The synovial lining cells and the infiltrating cells expressing inducible NO synthase were identified where CD14+ cells were located. Together with morphological features, this suggests that they are type A synoviocytes. NO production from freshly isolated synoviocytes and chondrocytes was up-regulated by in vitro stimulation with a combination of IL-TNF-beta, TNF-alpha, and LPS. In summary, the present results suggest that NO is produced primarily by CD14+ synoviocytes, chondrocytes, and endothelial cells in inflammatory joints of arthritides. NO production can be upregulated by cytokines present in inflamed joints. The increased NO production may thus contribute to the pathological features in inflammatory arthritides. Images PMID:7593623

  12. Deer Bone Oil Extract Suppresses Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Cells.

    PubMed

    Choi, Hyeon-Son; Im, Suji; Park, Yooheon; Hong, Ki-Bae; Suh, Hyung Joo

    2016-01-01

    The aim of this study was to investigate the effect of deer bone oil extract (DBOE) on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells. DBOE was fractionated by liquid-liquid extraction to obtain two fractions: methanol fraction (DBO-M) and hexane fraction (DBO-H). TLC showed that DBO-M had relatively more hydrophilic lipid complexes, including unsaturated fatty acids, than DBOE and DBO-H. The relative compositions of tetradecenoyl carnitine, α-linoleic acid, and palmitoleic acid increased in the DBO-M fraction by 61, 38, and 32%, respectively, compared with DBOE. The concentration of sugar moieties was 3-fold higher in the DBO-M fraction than DBOE and DBO-H. DBO-M significantly decreased LPS-induced nitric oxide (NO) production in RAW264.7 cells in a dose-dependent manner. This DBO-M-mediated decrease in NO production was due to downregulation of mRNA and protein levels of inducible nitric oxide synthase (iNOS). In addition, mRNA expression of pro-inflammatory mediators, such as cyclooxygenase (COX-2), interleukin (IL)-1β, and IL-12β, was suppressed by DBO-M. Our data showed that DBO-M, which has relatively higher sugar content than DBOE and DBO-H, could play an important role in suppressing inflammatory responses by controlling pro-inflammatory cytokines and mediators.

  13. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  14. Neutrophil Extracellular Traps Enhance Early Inflammatory Response in Sendai Virus-Induced Asthma Phenotype

    PubMed Central

    Akk, Antonina; Springer, Luke E.; Pham, Christine T. N.

    2016-01-01

    Paramyxoviral infection in childhood has been linked to a significant increased rate of asthma development. In mice, paramyxoviral infection with the mouse parainfluenza virus type I, Sendai virus (Sev), causes a limited bronchiolitis followed by persistent asthma traits. We have previously shown that the absence of cysteine protease dipeptidyl peptidase I (DPPI) dampened the acute lung inflammatory response and the subsequent asthma phenotype induced by Sev. Adoptive transfer of wild-type neutrophils into DPPI-deficient mice restored leukocyte influx, the acute cytokine response, and the subsequent mucous cell metaplasia that accompanied Sev-induced asthma phenotype. However, the exact mechanism by which DPPI-sufficient neutrophils promote asthma development following Sev infection is still unknown. We hypothesize that neutrophils recruited to the alveolar space following Sev infection elaborate neutrophil extracellular traps (NETs) that propagate the inflammatory cascade, culminating in the eventual asthma phenotype. Indeed, we found that Sev infection was associated with NET formation in the lung and release of cell-free DNA complexed to myeloperoxidase in the alveolar space and plasma that peaked on day 2 post infection. Absence of DPPI significantly attenuated Sev-induced NET formation in vivo and in vitro. Furthermore, concomitant administration of DNase 1, which dismantled NETs, or inhibition of peptidylarginine deiminase 4 (PAD4), an essential mediator of NET formation, suppressed the early inflammatory responses to Sev infection. Lastly, NETs primed bone marrow-derived cells to release cytokines that can amplify the inflammatory cascade.

  15. Apolipoprotein E knockout induced inflammatory responses related to microglia in neonatal mice brain via astrocytes

    PubMed Central

    Liu, Yimei; Xu, Xiaohua; Dou, Hongbo; Hua, Ying; Xu, Jinwen; Hui, Xu

    2015-01-01

    More and more evidences suggestted that ApoE plays an important role in modulating the systemic and central nervous inflammatory responses. However, there is a lack of exacted mechanism of ApoE. In this study, we aimed to investigate whether apolipoprotein E (ApoE) induced inflammatory responses and apoptosis in neonatal mice brain from ApoE deficient (ApoE-/-) and wildtype (WT). Compared to control group, the microglia cell from ApoE-/- mice showed more severe inflammation and cell death such as iNOS and IL-1β. Furthermore, anti-inflammatory such as TGF-β, IL-10 from microglia and astrocytes in ApoE-/- mice were decreased. On the other way, TGF-β from astrocytes can inhibit inflammation factors secretion from microglia. Our findings suggested that the anti- inflammation factor such as IL-10 mainly from microglia and TGF-β mainly from astrocyte is significant decreased after Loss of ApoE function in ApoE-/- mice which induced severe inflammation. Furthrtmore, anti- inflammation factor such as IL-10 and TGF-β Therefore, we conclude that apolipoprotein E knockout induced inflammatory responses related to microglia in neonatal mice brain via astrocytes. PMID:25785051

  16. Anti-inflammatory activity of lactobacillus on carrageenan-induced paw edema in male wistar rats.

    PubMed

    Amdekar, Sarika; Roy, Purabi; Singh, Vinod; Kumar, Avnish; Singh, Rambir; Sharma, Poonam

    2012-01-01

    Introduction. Lactobacillus casei and Lactobacillus acidophilus were used to assess the anti-inflammatory properties in carrageenan induced acute inflammatory model. Materials and Methods. Diclofenac sodium was used as standard drug at concentration of 150 mg/kg of body weight. Culture of Lactobacillus  2 × 10(7) CFU/ml was given orally. Edema was induced with 1% carrageenan to all the groups after one hour of the oral treatments. Paw thickness was checked at t = 1, 2, 3, 4, 5, and 24 hours. Stair climbing score and motility score were assessed at t = 24 hours. Cytokines assay for IL-6, IL-10, and TNF-α was performed on serum samples. Results. Lactobacillus showed a statistically significant decrease in paw thickness at P < 0.001. L. acidophilus and L. casei decreased by 32% and 28% in paw thickness. They both significantly increased the stair climbing and motility score. Lactobacillus treatment significantly downregulated IL-6 and TNF-α while upregulated IL-10 at P < 0.0001. Conclusion. L. casei and L. acidophilus significantly decreased the inflammatory reactions induced by carrageenan. This study has also proposed that Lactobacillus ameliorated the inflammatory reaction by downregulating the proinflammatory cytokines pathway.

  17. Neutrophil Extracellular Traps Enhance Early Inflammatory Response in Sendai Virus-Induced Asthma Phenotype

    PubMed Central

    Akk, Antonina; Springer, Luke E.; Pham, Christine T. N.

    2016-01-01

    Paramyxoviral infection in childhood has been linked to a significant increased rate of asthma development. In mice, paramyxoviral infection with the mouse parainfluenza virus type I, Sendai virus (Sev), causes a limited bronchiolitis followed by persistent asthma traits. We have previously shown that the absence of cysteine protease dipeptidyl peptidase I (DPPI) dampened the acute lung inflammatory response and the subsequent asthma phenotype induced by Sev. Adoptive transfer of wild-type neutrophils into DPPI-deficient mice restored leukocyte influx, the acute cytokine response, and the subsequent mucous cell metaplasia that accompanied Sev-induced asthma phenotype. However, the exact mechanism by which DPPI-sufficient neutrophils promote asthma development following Sev infection is still unknown. We hypothesize that neutrophils recruited to the alveolar space following Sev infection elaborate neutrophil extracellular traps (NETs) that propagate the inflammatory cascade, culminating in the eventual asthma phenotype. Indeed, we found that Sev infection was associated with NET formation in the lung and release of cell-free DNA complexed to myeloperoxidase in the alveolar space and plasma that peaked on day 2 post infection. Absence of DPPI significantly attenuated Sev-induced NET formation in vivo and in vitro. Furthermore, concomitant administration of DNase 1, which dismantled NETs, or inhibition of peptidylarginine deiminase 4 (PAD4), an essential mediator of NET formation, suppressed the early inflammatory responses to Sev infection. Lastly, NETs primed bone marrow-derived cells to release cytokines that can amplify the inflammatory cascade. PMID:27617014

  18. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease

    PubMed Central

    Kiesslich, R; Duckworth, C A; Moussata, D; Gloeckner, A; Lim, L G; Goetz, M; Pritchard, D M; Galle, P R; Neurath, M F

    2011-01-01

    Objectives Loss of intestinal barrier function plays an important role in the pathogenesis of inflammatory bowel disease (IBD). Shedding of intestinal epithelial cells is a potential cause of barrier loss during inflammation. The objectives of the study were (1) to determine whether cell shedding and barrier loss in humans can be detected by confocal endomicroscopy and (2) whether these parameters predict relapse of IBD. Methods Confocal endomicroscopy was performed in IBD and control patients using intravenous fluorescein to determine the relationship between cell shedding and local barrier dysfunction. A grading system based on appearances at confocal endomicroscopy in humans was devised and used to predict relapse in a prospective pilot study of 47 patients with ulcerative colitis and 11 patients with Crohn's disease. Results Confocal endomicroscopy in humans detected shedding epithelial cells and local barrier defects as plumes of fluorescein effluxing through the epithelium. Mouse experiments demonstrated inward flow through some leakage-associated shedding events, which was increased when luminal osmolarity was decreased. In IBD patients in clinical remission, increased cell shedding with fluorescein leakage was associated with subsequent relapse within 12 months after endomicroscopic examination (p<0.001). The sensitivity, specificity and accuracy for the grading system to predict a flare were 62.5% (95% CI 40.8% to 80.4%), 91.2% (95% CI 75.2 to 97.7) and 79% (95% CI 57.7 to 95.5), respectively. Conclusions Cell shedding and barrier loss detected by confocal endomicroscopy predicts relapse of IBD and has potential as a diagnostic tool for the management of the disease. PMID:22115910

  19. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication

    PubMed Central

    Jiang, Zhiwu; Gu, Liming; Chen, Yanxia

    2016-01-01

    Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i.) but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy. PMID:27525278

  20. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication.

    PubMed

    Wang, Gefei; Li, Rui; Jiang, Zhiwu; Gu, Liming; Chen, Yanxia; Dai, Jianping; Li, Kangsheng

    2016-01-01

    Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i.) but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy. PMID:27525278

  1. Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages.

    PubMed

    Snodgrass, Ryan G; Boß, Marcel; Zezina, Ekaterina; Weigert, Andreas; Dehne, Nathalie; Fleming, Ingrid; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Pro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited. We examined the effects of hypoxia (1% O2) on the pro-inflammatory responses of human monocyte-derived macrophages to the saturated fatty acid palmitate. Compared with normoxia, hypoxia significantly increased palmitate-induced mRNA expression and protein secretion of IL-6 and IL-1β. Although palmitate-induced endoplasmic reticulum stress and nuclear factor κB pathway activation were not enhanced by hypoxia, hypoxia increased the activation of JNK and p38 mitogen-activated protein kinase signaling in palmitate-treated cells. Inhibition of JNK blocked the hypoxic induction of pro-inflammatory cytokine expression, whereas knockdown of hypoxia-induced transcription factors HIF-1α and HIF-2α alone or in combination failed to reduce IL-6 and only modestly reduced IL-1β gene expression in palmitate-treated hypoxic macrophages. Enhanced pro-inflammatory cytokine production and JNK activity under hypoxia were prevented by inhibiting reactive oxygen species generation. In addition, silencing of dual-specificity phosphatase 16 increased normoxic levels of IL-6 and IL-1β and reduced the hypoxic potentiation in palmitate-treated macrophages. The secretome of hypoxic palmitate-treated macrophages promoted IL-6 and macrophage chemoattractant protein 1 expression in primary human adipocytes, which was sensitive to macrophage JNK inhibition. Our results reveal that the coexistence of hypoxia along with free fatty acids exacerbates macrophage-mediated inflammation. PMID:26578520

  2. Low-intensity infrared laser effects on zymosan-induced articular inflammatory response

    NASA Astrophysics Data System (ADS)

    Januária dos Anjos, Lúcia Mara; da Fonseca, Adenilson d. S.; Gameiro, Jacy; de Paoli, Flávia

    2015-03-01

    Low-level therapy laser is a phototherapy treatment that involves the application of low power light in the red or infrared wavelengths in various diseases such as arthritis. In this work, we investigated whether low-intensity infrared laser therapy could cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosaninduced articular inflammatory process. Inflammatory process was induced in C57BL/6 mouse by intra-articular injection of zymosan into rear tibio-tarsal joints. Thirty animals were divided in five groups: (I) control, (II) laser, (III) zymosan-induced, (IV) zymosan-induced + laser and (V). Laser exposure was performed after zymosan administration with low-intensity infrared laser (830 nm), power 10 mW, fluence 3.0 J/cm2 at continuous mode emission, in five doses. Twenty-four hours after last irradiation, the animals were sacrificed and the right joints fixed and demineralized. Morphological analysis was observed by hematoxylin and eosin stain, pro-apoptotic (caspase-6) was analyzed by immunocytochemistry and DNA fragmentation was performed by TUNEL assay in articular cartilage cells. Inflammatory process was observed in connective tissue near to articular cartilage, in IV and V groups, indicating zymosan effect. This process was decreased in both groups after laser treatment and dexamethasone. Although groups III and IV presented higher caspase-6 and DNA fragmentation percentages, statistical differences were not observed when compared to groups I and II. Our results suggest that therapies based on low-intensity infrared lasers could reduce inflammatory process and could not cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosan-induced articular inflammatory process.

  3. Light-emitting diodes at 940nm attenuate colitis-induced inflammatory process in mice.

    PubMed

    Belém, Mônica O; de Andrade, Giovana M M; Carlos, Thalita M; Guazelli, Carla F S; Fattori, Victor; Toginho Filho, Dari O; Dias, Ivan F L; Verri, Waldiceu A; Araújo, Eduardo J A

    2016-09-01

    Inflammatory bowel disease (IBD) presents intense inflammatory infiltrate, crypt abscesses, ulceration and even loss of function. Despite the clinical relevance of IBD, its current therapy remains poorly effective. Infrared wavelength phototherapy shows therapeutic potential on inflammation. Our goal was to evaluate whether light-emitting diodes (LED) at 940nm are capable of mitigating the colitis-induced inflammatory process in mice. Forty male Swiss mice were assigned into five groups: control; control treated with LED therapy; colitis without treatment; colitis treated with LED therapy; colitis treated with Prednisolone. Experimental colitis was induced by acetic acid 7.5% (pH2.5) rectal administration. LED therapy was performed with light characterized by wavelength of 940nm, 45nm bandwidth, intensity of 4.05J/cm(2), total power of 270mW and total dose of 64.8J for 4min in a single application. Colitis-induced intestinal transit delay was inhibited by LED therapy. Colitis caused an increase of colon dimensions (length, diameter, total area) and colon weight (edema), which were inhibited by LED therapy. LED therapy also decreased colitis-induced tissue gross lesion, myeloperoxidase activity, microscopic tissue damage score and the presence of inflammatory infiltrate in all intestinal layers. Furthermore, LED therapy inhibited colitis-induced IL-1β, TNF-α, and IL-6 production. We conclude LED therapy at 940nm inhibited experimental colitis-induced colon inflammation in mice, therefore, rendering it a promising therapeutic approach that deserves further investigation. PMID:27424097

  4. Therapeutic anti-inflammatory effects of luteolin on endotoxin-induced uveitis in Lewis rats

    PubMed Central

    KANAI, Kazutaka; NAGATA, Sho; HATTA, Takuya; SUGIURA, Yuichi; SATO, Kazuaki; YAMASHITA, Yohei; KIMURA, Yuya; ITOH, Naoyuki

    2016-01-01

    The present study aimed to investigate the therapeutic efficacy of post-inflammatory treatment with luteolin on endotoxin-induced uveitis (EIU) in rats. Intraperitoneal injection of 10 mg/kg luteolin or 1 mg/kg prednisolone (Pred) at 4 hr post-lipopolysaccharide (LPS) injection (200 µg) was associated at 24 hr post-LPS injection with decreased clinical severity scores, number of inflammatory cells, protein levels and levels of tumor necrosis factor (TNF)-α, nitric oxide (NO) and prostaglandin (PG) E2 in the aqueous humor (AqH) and degrees of histological ocular tissue injury. The anti-inflammatory potency of luteolin was comparable to that of Pred. Luteolin exhibited robust efficacy in the treatment of EIU in rats, indicating its potential clinical utility in treating uveitis. PMID:27170432

  5. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  6. Anti-inflammatory effects of linezolid on carrageenan-induced paw edema in rats.

    PubMed

    Matsumoto, Kazuaki; Obara, Shigeaki; Kuroda, Yuko; Kizu, Junko

    2015-12-01

    The immunomodulatory activity of linezolid has recently been reported using in vitro experimental models. However, the anti-inflammatory activity of linezolid has not yet been demonstrated using in vivo experimental models. Therefore, the aim of the present study was to demonstrate the anti-inflammatory activity of linezolid and other anti-MRSA agents using the carrageenan-induced rat paw edema model. The pretreatment with 50 mg/kg linezolid significantly suppressed edema rates, compared with control (5% glucose), with edema rates at 0.5 and 3 h after the administration of carrageenan being 17.3 ± 3.5 and 30.8 ± 3.0%, respectively. On the other hand, edema rates were not suppressed by the pretreatments with 50 mg/kg vancomycin, teicoplanin, arbekacin, and daptomycin. Furthermore, we demonstrated that linezolid exhibited anti-inflammatory activity in a concentration-dependent manner. These effects were observed at linezolid concentrations that are achievable in human serum with conventional dosing. In conclusion, the results of the present study suggest that the anti-inflammatory activities of linezolid, in addition to its antimicrobial effects, have a protective effect against destructive inflammatory responses in areas of inflammation.

  7. Heat-killed Propionibacterium acnes is capable of inducing inflammatory responses in skin.

    PubMed

    Lyte, Peter; Sur, Runa; Nigam, Anu; Southall, Michael D

    2009-12-01

    The etiology of acne is a complex process, and acne is one of the most common skin disorders affecting millions of people. The pathogenesis of acne is closely associated with the bacterium, Propionibacterium acnes which was previously known as Corynebacterium parvum. Both viable and non-viable P. acnes/C. parvum have been shown to induce an immunostimulatory effect in vivo, suggesting that even dead bacteria continue to activate an inflammatory response. Acne treatments with lasers or devices, induce a bactericidal effect through heat generation which may not address the immunogenic activity of P. acnes and the resulting acne inflammation. Therefore, we sought to determine whether killed P. acnes is capable of inducing an inflammatory response and therefore could be a contributing factor in acne. Direct heat treatment of P. acnes cultures with temperatures ranging from 50 degrees C to 80 degrees C reduced P. acnes viability. Both viable and heat-killed P. acnes activated the p38 MAP kinase and its downstream substrate Hsp27. Stimulating keratinocytes with normal and heat-inactivated P. acnes resulted in an induction of proinflammatory nitric oxide and IL-8 production. Thus killed P. acnes is capable of inducing inflammation in skin suggesting that therapies that have both bactericidal and anti-inflammatory effects may result in a more effective treatment of patients with acne than treatments that are bactericidal alone. PMID:19624731

  8. Identification of Pharmacological Modulators of HMGB1-Induced Inflammatory Response by Cell-Based Screening

    PubMed Central

    Gerö, Domokos; Szoleczky, Petra; Módis, Katalin; Pribis, John P.; Al-Abed, Yousef; Yang, Huan; Chevan, Sangeeta; Billiar, Timothy R.; Tracey, Kevin J.; Szabo, Csaba

    2013-01-01

    High mobility group box 1 (HMGB1), a highly conserved, ubiquitous protein, is released into the circulation during sterile inflammation (e.g. arthritis, trauma) and circulatory shock. It participates in the pathogenesis of delayed inflammatory responses and organ dysfunction. While several molecules have been identified that modulate the release of HMGB1, less attention has been paid to identify pharmacological inhibitors of the downstream inflammatory processes elicited by HMGB1 (C23-C45 disulfide C106 thiol form). In the current study, a cell-based medium-throughput screening of a 5000+ compound focused library of clinical drugs and drug-like compounds was performed in murine RAW264.7 macrophages, in order to identify modulators of HMGB1-induced tumor-necrosis factor alpha (TNFα) production. Clinically used drugs that suppressed HMGB1-induced TNFα production included glucocorticoids, beta agonists, and the anti-HIV compound indinavir. A re-screen of the NIH clinical compound library identified beta-agonists and various intracellular cAMP enhancers as compounds that potentiate the inhibitory effect of glucocorticoids on HMGB1-induced TNFα production. The molecular pathways involved in this synergistic anti-inflammatory effect are related, at least in part, to inhibition of TNFα mRNA synthesis via a synergistic suppression of ERK/IκB activation. Inhibition of TNFα production by prednisolone+salbutamol pretreatment was also confirmed in vivo in mice subjected to HMGB1 injection; this effect was more pronounced than the effect of either of the agents administered separately. The current study unveils several drug-like modulators of HMGB1-mediated inflammatory responses and offers pharmacological directions for the therapeutic suppression of inflammatory responses in HMGB1-dependent diseases. PMID:23799067

  9. Heparanase induces inflammatory cell recruitment in vivo by promoting adhesion to vascular endothelium.

    PubMed

    Lever, Rebecca; Rose, Mark J; McKenzie, Edward A; Page, Clive P

    2014-06-15

    Heparanase (HPSE1) is known to be involved in mechanisms of metastatic tumor cell migration. This enzyme selectively cleaves heparan sulfate proteoglycans (HSPG), which are ubiquitously expressed in mammals and are known to be involved in regulating the activity of an array of inflammatory mediators. In the present study, we have investigated the effects of human recombinant heparanase, the inactive precursor of this enzyme (proheparanase) and enzymatically inactivated heparanase, on inflammatory cell recruitment in the rat and on human leukocyte-endothelial adhesion in vitro. Intraperitoneal injection of heparanase (500 μg) induced a significant inflammatory cell infiltrate in the rat, as assessed by peritoneal lavage 4 h later. Intravital microscopy of the mesenteric microcirculation of anesthetized rats showed an increase in rolling and adherent cells in postcapillary venules that was sensitive to heparin, a nonselective inhibitor of heparanase activity. In vitro, heparanase augmented the adhesion of human neutrophils and mononuclear cells to human umbilical vein endothelial cells in a concentration-dependent manner. Proheparanase had similar effects to the active enzyme both with respect to leukocyte accumulation in the peritoneal cavity and adhesion in vitro. However, heat-inactivated heparanase induced cell adhesion in vitro but was without effect in vivo. Together, these data indicate a role for heparanase in inflammatory cell trafficking in vivo that appears to require enzymatic activity.

  10. Progressive loss of nigrostriatal dopaminergic neurons induced by inflammatory responses to fipronil.

    PubMed

    Park, Jae Hyeon; Park, Youn Sun; Koh, Hyun Chul

    2016-09-01

    Inflammatory responses are involved in mechanisms of neuronal cell damage in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). We investigated the mechanisms whereby inflammatory responses contribute to loss of dopaminergic neurons in fipronil (FPN)-treated rats. After stereotaxic injection of FPN in the substantia nigra (SN), the number of tyrosine hydroxylase (TH)-positive neurons and the levels of TH expression in the SN decreased at 7days, and a significant decrease was observed at 14days with a subsequent reduction in striatal TH expression. Decreases in dopamine (DA) levels, however, began at 3days post-injection, preceding the changes in TH expression. In contrast, glial fibrillary acidic protein (GFAP) expression was significantly increased at 3days and persisted for up to 14days post-lesion; these changes in GFAP expression appeared to be inversely correlated with TH expression. Furthermore, we found that FPN administration induced an inflammatory response characterized by increased levels of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α), which was mediated by activated microglia following infusion of FPN unilaterally into the SN. Intranigral injection of FPN underwent an inflammatory response with a resultant ongoing loss of dopaminergic neurons, indicating that pesticides may have important implication for the study of PD.

  11. Laparotomy in mice induces blood cell expression of inflammatory and stress genes.

    PubMed

    Ko, Fred; Isoda, Fumiko; Mobbs, Charles

    2015-04-01

    Surgical trauma induces immune and stress responses although its effects on postsurgical inflammatory and stress gene expression remain poorly characterized. This study sought to improve current scientific knowledge by investigating the effects of laparotomy on mouse blood cell inflammatory and stress gene expression. Three-month-old male C57BL/6J mice were subjected to 2% isoflurane or 2% isoflurane with laparotomy and sacrificed 4 h postintervention. Blood was collected and blood cell expression of 158 genes central to inflammatory and stress responses was assayed using quantitative polymerase chain reaction arrays. Mice subjected to isoflurane with laparotomy, compared with mice receiving isoflurane alone, had >2-fold upregulation of genes in inflammation (Osm, IL1rn, IL1b, and Csf1), oxidative stress (Hmox1), heat shock (Hspa1b), growth arrest (Cdkn1a), and DNA repair (Ugt1a2). These genes demonstrated similar expression patterns by Pearson correlation and cluster analysis. Thus, laparotomy induces coordinated, postsurgical blood cell expression of unique inflammatory and stress genes whose roles in influencing surgical outcomes need further investigation.

  12. Laparotomy in Mice Induces Blood Cell Expression of Inflammatory and Stress Genes

    PubMed Central

    Isoda, Fumiko; Mobbs, Charles

    2015-01-01

    Surgical trauma induces immune and stress responses although its effects on postsurgical inflammatory and stress gene expression remain poorly characterized. This study sought to improve current scientific knowledge by investigating the effects of laparotomy on mouse blood cell inflammatory and stress gene expression. Three-month-old male C57BL/6J mice were subjected to 2% isoflurane or 2% isoflurane with laparotomy and sacrificed 4 h postintervention. Blood was collected and blood cell expression of 158 genes central to inflammatory and stress responses was assayed using quantitative polymerase chain reaction arrays. Mice subjected to isoflurane with laparotomy, compared with mice receiving isoflurane alone, had >2-fold upregulation of genes in inflammation (Osm, IL1rn, IL1b, and Csf1), oxidative stress (Hmox1), heat shock (Hspa1b), growth arrest (Cdkn1a), and DNA repair (Ugt1a2). These genes demonstrated similar expression patterns by Pearson correlation and cluster analysis. Thus, laparotomy induces coordinated, postsurgical blood cell expression of unique inflammatory and stress genes whose roles in influencing surgical outcomes need further investigation. PMID:25406893

  13. Micheliolide inhibits LPS-induced inflammatory response and protects mice from LPS challenge

    PubMed Central

    Qin, Xiangyang; Jiang, Xinru; Jiang, Xin; Wang, Yuli; Miao, Zhulei; He, Weigang; Yang, Guizhen; Lv, Zhenhui; Yu, Yizhi; Zheng, Yuejuan

    2016-01-01

    Sepsis is the principal cause of fatality in the intensive care units worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Micheliolide (MCL), a sesquiterpene lactone, was reported to inhibit dextran sodium sulphate (DSS)-induced inflammatory intestinal disease, colitis-associated cancer and rheumatic arthritis. Nevertheless, the role of MCL in microbial infection and sepsis is unclear. We demonstrated that MCL decreased lipopolysaccharide (LPS, the main cell wall component of Gram-negative bacteria)-mediated production of cytokines (IL-6, TNF-α, MCP-1, etc) in Raw264.7 cells, primary macrophages, dendritic cells and human monocytes. MCL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB and PI3K/Akt/p70S6K pathways. It has negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. In the acute peritonitis mouse model, MCL reduced the secretion of IL-6, TNF-α, IL-1β, MCP-1, IFN-β and IL-10 in sera, and ameliorated lung and liver damage. MCL down-regulated the high mortality rate caused by lethal LPS challenge. Collectively, our data illustrated that MCL enabled maintenance of immune equilibrium may represent a potentially new anti-inflammatory and immunosuppressive drug candidate in the treatment of sepsis and septic shock. PMID:26984741

  14. Induced Treg Cells Augment the Th17-Mediated Intestinal Inflammatory Response in a CTLA4-Dependent Manner

    PubMed Central

    Watanabe, Nobumasa; Kaminuma, Osamu; Kitamura, Noriko; Hiroi, Takachika

    2016-01-01

    Th17 cells and Foxp3+ regulatory T cells (Tregs) are thought to promote and suppress inflammatory responses, respectively. However, whether they counteract each other or synergize in regulating immune reactions remains controversial. To determine their interactions, we describe the results of experiments employing mouse models of intestinal inflammation by transferring antigen-specific Th cells (Th1, Th2, and Th17) differentiated in vitro followed by the administration of the cognate antigen via enema. We show that cotransfer of induced Tregs (iTregs) suppressed Th1- and Th2-mediated colon inflammation. In contrast, colon inflammation induced by transfer of Th17 cells, was augmented by the cotransfer of iTregs. Furthermore, oral delivery of antigen potentiated Th17-mediated colon inflammation. Administration of a blocking antibody against cytotoxic T lymphocyte-associated antigen 4 (CTLA4) abrogated the effects of cotransfer of iTregs, while the injection of a soluble recombinant immunoglobulin (Ig) fusion protein, CTLA4-Ig substituted for the cotransfer of iTregs. These results suggest that antigen-specific activation of iTregs in a local environment stimulates the Th17-mediated inflammatory response in a CTLA4-dependent manner. PMID:26950218

  15. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain.

    PubMed

    Liu, Boyi; Fan, Lu; Balakrishna, Shrilatha; Sui, Aiwei; Morris, John B; Jordt, Sven-Eric

    2013-10-01

    Menthol, the cooling natural product of peppermint, is widely used in medicinal preparations for the relief of acute and inflammatory pain in sports injuries, arthritis, and other painful conditions. Menthol induces the sensation of cooling by activating TRPM8, an ion channel in cold-sensitive peripheral sensory neurons. Recent studies identified additional targets of menthol, including the irritant receptor, TRPA1, voltage-gated ion channels and neurotransmitter receptors. It remains unclear which of these targets contribute to menthol-induced analgesia, or to the irritating side effects associated with menthol therapy. Here, we use genetic and pharmacological approaches in mice to probe the role of TRPM8 in analgesia induced by L-menthol, the predominant analgesic menthol isomer in medicinal preparations. L-menthol effectively diminished pain behavior elicited by chemical stimuli (capsaicin, acrolein, acetic acid), noxious heat, and inflammation (complete Freund's adjuvant). Genetic deletion of TRPM8 completely abolished analgesia by L-menthol in all these models, although other analgesics (acetaminophen) remained effective. Loss of L-menthol-induced analgesia was recapitulated in mice treated with a selective TRPM8 inhibitor, AMG2850. Selective activation of TRPM8 with WS-12, a menthol derivative that we characterized as a specific TRPM8 agonist in cultured sensory neurons and in vivo, also induced TRPM8-dependent analgesia of acute and inflammatory pain. L-menthol- and WS-12-induced analgesia was blocked by naloxone, suggesting activation of endogenous opioid-dependent analgesic pathways. Our data show that TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. In contrast to menthol, selective TRPM8 agonists may produce analgesia more effectively, with diminished side effects. PMID:23820004

  16. TRPM8 is the Principal Mediator of Menthol-induced Analgesia of Acute and Inflammatory Pain

    PubMed Central

    Liu, Boyi; Fan, Lu; Balakrishna, Shrilatha; Sui, Aiwei; Morris, John B.; Jordt, Sven-Eric

    2013-01-01

    Menthol, the cooling natural product of peppermint, is widely used in medicinal preparations for the relief of acute and inflammatory pain in sports injuries, arthritis and other painful conditions. Menthol induces the sensation of cooling by activating TRPM8, an ion channel in cold-sensitive peripheral sensory neurons. Recent studies identified additional targets of menthol, including the irritant receptor, TRPA1, voltage-gated ion channels and neurotransmitter receptors. It remains unclear which of these targets contribute to menthol-induced analgesia, or to the irritating side effects associated with menthol therapy. Here, we use genetic and pharmacological approaches in mice to probe the role of TRPM8 in analgesia induced by L-menthol, the predominant analgesic menthol isomer in medicinal preparations. L-menthol effectively diminished pain behavior elicited by chemical stimuli (capsaicin, acrolein, acetic acid), noxious heat and inflammation (complete Freund's adjuvant). Genetic deletion of TRPM8 completely abolished analgesia by L-menthol in all these models, while other analgesics (acetaminophen) remained effective. Loss of L-menthol-induced analgesia was recapitulated in mice treated with a selective TRPM8 inhibitor, AMG2850. Selective activation of TRPM8 with WS-12, a menthol derivative we characterized as a specific TRPM8 agonist in cultured sensory neurons and in vivo, also induced TRPM8-dependent analgesia of acute and inflammatory pain. L-menthol and WS-12 induced analgesia was blocked by naloxone, suggesting activation of endogenous opioid-dependent analgesic pathways. Our data show that TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. In contrast to menthol, selective TRPM8 agonists may produce analgesia more effectively with diminished side effects. PMID:23820004

  17. Effects of Nitric Oxide on Notexin-Induced Muscle Inflammatory Responses

    PubMed Central

    Liu, XingHui; Wu, Gang; Shi, DanDan; Zhu, Rong; Zeng, HuiJun; Cao, Biao; Huang, MeiXian; Liao, Hua

    2015-01-01

    Excessive inflammatory response may delay the regeneration and damage the normal muscle fibers upon myoinjury. It would be important to be able to attenuate the inflammatory response and decrease inflammatory cells infiltration in order to improve muscle regeneration formation, resulting in better muscle functional recovery after myoinjury. This study was undertaken to explore the role of Nitric oxide (NO) during skeletal muscle inflammatory process, using a mouse model of Notexin induced myoinjury. Intramuscular injection (tibialis anterior, TA) of Notexin was performed for preparing mice myoinjury. NO synthase inhibitor (L-NAME) or NO donor (SNP) was intraperitoneally injected into model mice. On day 4 and 7 post-injury, expression of muscle-autoantigens and toll-like receptors (TLRs) was evaluated from muscle tissue by qRT-PCR and Western Blot; the intramuscular infiltration of monocytes/macrophage (CD11b+ or F4/80+ cells), CD8+ T cell (CD3ε+CD8α+), apoptotic cell (CD11b+caspase3+), and MHC-I molecule H-2Kb-expressing myofibers in damaged muscle were assessed by imunoflourecence analysis; the mRNAs expression of cytokines and chemokines associated with the preferential biological role during the muscle damage-induced inflammation response, were assessed by qRT-PCR. We detected the reduced monocytes/macrophages infiltration, and increased apoptotic cells in the damaged muscle treated with SNP comparing to untreatment. As well, SNP treatment down-regulated mRNA and protein levels of muscle autoantigens, TLR3, and mRNA levels of TNF-α, IL-6, MCP-1, MCP-3, and MIP-1α in damaged muscle. On the contrary, L-NAME induced more severe intramuscular infiltration of inflammatory cells, and mRNA level elevation of the above inflammatory mediators. Notably, we observed an increased number of MHC-I (H2-Kb) positive new myofibers, and of the infiltrated CD8+ T cells in damaged muscle at the day 7 after L-NAME treatment. The result herein shows that, NO can act as an

  18. CBCT fine preoperative evaluation of inflammatory radicular cysts and postoperative local integration appreciation of alloplastic grafts materials.

    PubMed

    Nica, Diana; Ianes, Emilia; Brad, S

    2014-01-01

    The purpose of this paper is to point out the value of CBCT exam in pre and postoperative diagnosis assessment of inflammatory radicular cysts together with full appreciation of local integration of alloplastic graft materials used to repair the osseous defects. There were statistically retrospective evaluated the pre and postoperative results of CBCT and x-ray examinations of 34 patients with inflammatory radicular cysts clinically, biologically and histopathologically assessed at Oral and Maxilo-Facial Surgery Clinic from Timisoara. In all cases we proceeded to surgical radicular cysts removement, extraction of the associated non-vital tooth together with alloplastic graft materials repairement of the osseous defects. The CBCT preoperative scans clearly showed the extent, the morphological characteristics and the topoanatomic reports, in all 34 cases of inflammatory radicular cysts together with regional endodontic status. The CBCT postoperative scans revealed the very local integration of alloplastic graft materials used to repair the osseous defects and, in some cases, the dental rehabilitation by metallic implants. CBCT scan is the imaging method of choice in pre and postoperative diagnosis assessment of inflammatory radicular cysts together with alloplastic graft materials repairement of the osseous defects and dental rehabilitation by metallic implants, due to high specific abilities in bone tissue 3D evaluation. PMID:25341308

  19. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    SciTech Connect

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  20. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    SciTech Connect

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, K. Monica; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  1. Preventive Effects of Multi-Lamellar Emulsion on Low Potency Topical Steroid Induced Local Adverse Effect

    PubMed Central

    Sul, Geun Dong; Park, Hyun Jung; Bae, Jong Hwan; Hong, Keum Duck; Park, Byeong Deog; Chun, Jaesun; Jeong, Se Kyoo; Lee, Seung Hun; Ahn, Sung Ku

    2013-01-01

    Background Topical steroid treatment induces diverse local Wand systemic adverse effects. Several approaches have been tried to reduce the steroid-induced adverse effects. Simultaneous application of physiological lipid mixture is also suggested. Objective Novel vehicles for topical glucocorticoids formulation were evaluated for the efficacy of reducing side-effects and the drug delivery properties of desonide, a low potency topical steroid. Methods Transcutaneous permeation and skin residual amount of desonide were measured using Franz diffusion cells. The in vivo anti-inflammatory activity was evaluated using murine model. Results Topical steroids formulation containing desonide, in either cream or lotion form, were prepared using multi-lamellar emulsion (MLE), and conventional desonide formulations were employed for comparison. MLE formulations did not affect the anti-inflammatory activity of the desonide in phobol ester-induced skin inflammation model, compared with conventional formulations. While the penetrated amounts of desonide were similar for all the tested formulations at 24 hours after application, the increased lag time was observed for the MLE formulations. Interestingly, residual amount of desonide in epidermis was significantly higher in lotion type MLE formulation. Steroid-induced adverse effects, including permeability barrier function impairment, were partially prevented by MLE formulation. Conclusion Topical desonide formulation using MLE as a vehicle showed a better drug delivery with increased epidermal retention. MLE also partially prevented the steroid-induced side effects, such as skin barrier impairment. PMID:23467730

  2. Telmisartan treatment targets inflammatory cytokines to suppress the pathogenesis of acute colitis induced by dextran sulphate sodium.

    PubMed

    Arumugam, Somasundaram; Sreedhar, Remya; Thandavarayan, Rajarajan A; Giridharan, Vijayasree V; Karuppagounder, Vengadeshprabhu; Pitchaimani, Vigneshwaran; Afrin, Mst Rejina; Miyashita, Shizuka; Nomoto, Mayumi; Harima, Meilei; Suzuki, Hiroshi; Nakamura, Takashi; Nakamura, Masahiko; Suzuki, Kenji; Watanabe, Kenichi

    2015-08-01

    The renin angiotensin system (RAS) is essential for the regulation of cardiovascular and renal functions to maintain the fluid and electrolyte homeostasis. Recent studies have demonstrated a locally expressed RAS in various tissues of mammals, which is having pathophysiological roles in those organ system. Interestingly, local RAS has important role during the inflammatory bowel disease pathogenesis. Further to delineate its role and also to identify the potential effects of telmisartan, an angiotensin receptor blocker, we have used a mouse model of acute colitis induced by dextran sulphate sodium. We have used 0.01 and 5mg/kg body weight doses of telmisartan and administered as enema to facilitate the on-site action and to reduce the systemic adverse effects. Telmisartan high dose treatment significantly reduced the disease activity index score when compared with the colitis control mice. In addition, oxidative stress and endoplasmic reticulum stress markers expression were also significantly reduced when compared with the colitis control mice. Subsequent experiments were carried out to investigate some of the mechanisms underlying its anti-inflammatory effects and identified that the mRNA levels of pro-inflammatory cytokines such as tumour necrosis factor α, interleukin 1β, interleukin 6 and monocyte chemoattractant protein 1 as well as cellular DNA damage were significantly suppressed when compared with the colitis control mice. Similarly the apoptosis marker proteins such as cleaved caspase 3 and 7 levels were down-regulated and anti-apoptotic protein Bcl2 level was significantly upregulated by telmisartan treatment. These results indicate that blockade of RAS by telmisartan can be an effective therapeutic option against acute colitis.

  3. Deciphering PDT-induced inflammatory responses using real-time FDG-PET in a mouse tumour model.

    PubMed

    Cauchon, Nicole; Hasséssian, Haroutioun M; Turcotte, Eric; Lecomte, Roger; van Lier, Johan E

    2014-10-01

    Dynamic positron emission tomography (PET), combined with constant infusion of 2-deoxy-2-[(18)F]fluoro-d-glucose (FDG), enables real-time monitoring of transient metabolic changes in vivo, which can serve to understand the underlying physiology. Here we investigated characteristic changes in the tumour FDG-uptake profiles in relation to acute localized inflammatory responses induced by photodynamic therapy (PDT). Dynamic PET imaging with constant FDG infusion was used with EMT-6 tumour bearing mice. FDG time-activity uptake curves were measured simultaneously, in treated and reference tumours, for 3 hours, before, during and after PDT light treatment. Inflammation was studied when evoked, either by PDT using a trisulfonated porphyrazine photosensitizer, or lipopolysaccharide (LPS), and inhibited using indomethacin. The distinct transient patterns, characterized by drops and subsequent recovery of tumour FDG uptake rates, were also analysed using immunohistochemical markers for apoptosis, necrosis, and inflammation. Typical profiles for tumour FDG-uptake, consisted of a drop during PDT, followed by a gradual recovery period. Tumours treated with LPS, but not with light, showed a continuous increase in FDG-uptake during the 3 h experimental period. Treatment with indomethacin, inhibited the rise in FDG-uptake observed with either LPS or PDT. Tumour FDG-uptake profiles correlated with necrosis markers during PDT, and inflammatory response markers post-PDT, but not with an apoptosis marker at any time during or after PDT. Dynamic FDG-PET imaging combined with indomethacin reveals that, the drop in the tumour FDG-uptake rate during the PDT illumination phase reflects vascular collapse and necrosis, while the increased tumour FDG-uptake rate immediately post-illumination involves an acute localized inflammatory response. Dynamic FDG infusion and PET imaging, combined with the use of selective inhibitors, provides unique insight for deciphering the complex underlying

  4. Schistosoma japonicum egg specific protein SjE16.7 recruits neutrophils and induces inflammatory hepatic granuloma initiation.

    PubMed

    Wu, Chenyun; Chen, Qing; Fang, Yan; Wu, Jianhua; Han, Yanyan; Wang, Ying; Yang, Yang; Chu, Min; Feng, Yan; Tan, Linping; Guo, Xiaokui; Hu, Wei; Wang, Zhaojun

    2014-02-01

    Neutrophils are known to play a major role in the egg granulomatous lesions caused by Schistosoma japonicum, but the precise mechanism by which eggs recruit or active neutrophil is unknown. Here we report S. japonicum egg specific EF-hand protein-SjE16.7 is a potent neutrophil recruiter and initiates the egg associated inflammatory granuloma in schistosomiasis. We show that the expression of SjE16.7 at level of both mRNA and protein is restricted to the egg stage. It locates in the miracidium and subshell area of the egg and can be secreted by the egg. The antigenic properties of SjE16.7 strongly suggest a role for SjE16.7 as an egg-derived molecule involved in host-parasite interactions. To study SjE16.7 functions in vivo, we challenged murine air pouch with recombinant SjE16.7. The results showed SjE16.7 trigged more inflammatory cell infiltration than vehicle or control protein. Using peritoneal exudate neutrophils from mice, we found that SjE16.7 significantly induced neutrophil chemotaxis in vitro, and the observed phenotypes were associated with enhanced Rac GTPase activation in SjE16.7 treated cells. Finally, in vivo hepatic granuloma formation model showed SjE16.7 coupled beads recruited more inflammatory cell infiltration than control beads. Our findings suggest SjE16.7 is an important pathogenic factor derived from egg. By recruiting neutrophils and inducing local inflammation, SjE16.7 facilitates eggs to be excreted through gut tissues and also initiates pathology in the liver; therefore SjE16.7 is a possible target for the prevention and treatment of schistosomiasis. PMID:24551263

  5. The local anti-inflammatory action of dexamethasone in the rat carrageenin oedema model is reversed by an antiserum to lipocortin 1.

    PubMed Central

    Duncan, G. S.; Peers, S. H.; Carey, F.; Forder, R.; Flower, R. J.

    1993-01-01

    1. A local pre-injection of 1 micrograms dexamethasone sodium phosphate strongly inhibited (> 60% inhibition at 3 h; P < 0.001 at all time points) the development of carrageenin-induced paw oedema in the rat induced by a subplantar injection of 0.1 ml, 2% carrageenin. 2. Coinjection of a polyclonal rabbit antiserum raised against human 1-188 recombinant lipocortin 1, which also recognised the rat protein, reversed the inhibitory action of dexamethasone (P < 0.05 at 4 h and 5 h). At the highest volume used (40 microliters) control antisera were without any effect. 3. These data further support the concept that lipocortin 1 is involved in the anti-inflammatory mechanism of action of the glucocorticoids. Images Figure 3 PMID:8428215

  6. Anti-Inflammatory Effects of Adrenomedullin on Acute Lung Injury Induced by Carrageenan in Mice

    PubMed Central

    Elena, Talero; Rosanna, Di Paola; Emanuela, Mazzon; Esposito, Emanuela; Virginia, Motilva; Salvatore, Cuzzocrea

    2012-01-01

    Adrenomedullin (AM) is a 52 amino acid peptide that has shown predominant anti-inflammatory activities. In the present study, we evaluated the possible therapeutic effect of this peptide in an experimental model of acute inflammation, the carrageenan- (CAR-) induced pleurisy. Pleurisy was induced by injection of CAR into the pleural cavity of mice. AM (200 ng/kg) was administered by intraperitoneal route 1 h after CAR, and the animals were sacrificed 4 h after that. AM treatment attenuated the recruitment of leucocytes in the lung tissue and the generation and/or the expression of the proinflammatory cytokines as well as the expression of the intercellular cell adhesion molecules. Moreover, AM inhibited the induction of inducible nitric oxide synthase (iNOS), thereby abating the generation of nitric oxide (NO) and prevented the oxidative and nitroxidative lung tissue injury, as shown by the reduction of nitrotyrosine, malondialdehyde (MDA), and poly (ADP-ribose) polymerase (PARP) levels. Finally, we demonstrated that these anti-inflammatory effects of AM were associated with the inhibition of nuclear factor-κB (NF-κB) activation. All these parameters were markedly increased by intrapleural CAR in the absence of any treatment. We report that treatment with AM significantly reduces the development of acute lung injury by downregulating a broad spectrum of inflammatory factors. PMID:22685374

  7. Antinociceptive effects of radon inhalation on formalin-induced inflammatory pain in mice.

    PubMed

    Yamato, Keiko; Kataoka, Takahiro; Nishiyama, Yuichi; Taguchi, Takehito; Yamaoka, Kiyonori

    2013-04-01

    Radon therapy is clinically useful for the treatment of inflammatory diseases. The mechanisms of pain relief remain to be fully elucidated. In this study, we investigated the antinociceptive effects of radon inhalation in a mouse model of formalin-induced inflammatory pain. Immediately, after radon inhalation at a concentration of background level (ca. 19 Bq/m(3)), 1,000 or 2,000 Bq/m(3) for 24 h, 1.35 % formalin (0.5 % formaldehyde in saline, 20 μl) was subcutaneously injected into the hind paw of mice, and we measured licking response time. Radon inhalation inhibited the second phase of response in formalin test. Formalin administration induced nociception and increased tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) levels in serum and leukocyte migration in paws. Concurrently, formalin injection decreased antioxidative functions. Radon inhalation produced antinociceptive effects, i.e., lowered serum TNF-α and NO levels, and restored antioxidative functions. The results showed that radon inhalation inhibited formalin-induced inflammatory pain.

  8. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis

    PubMed Central

    Fatani, Amal Jamil; Alrojayee, Fatima Salih; Parmar, Mihir Yogeshkumar; Abuohashish, Hatem Mustafa; Ahmed, Mohammed Mahboobuddin; Al-Rejaie, Salim Salih

    2016-01-01

    The pathogenesis of ulcerative colitis (UC) has been associated with a weakened antioxidant capacity and increased inflammatory processes. Myrrh is traditionally used for the treatment of inflammatory diseases due to its antioxidant and anti-inflammatory properties. The present study aimed to evaluate the effects of myrrh on an experimental rat model of UC. UC was induced in rats using acetic acid (AA) after pre-treatment with myrrh (125, 250 or 500 mg/kg/day) or mesalazine (MES; 300 mg/kg/day) for 7 days. The levels of various inflammatory cytokines, prostaglandin E2 (PGE2) and nitric oxide (NO) in the rat colon tissues were assessed. In addition, the colonic levels of thiobarbituric acid reactive substances (TBARS) and non-protein sulfhydryl groups (NP-SH), as well as the activities of superoxide dismutase (SOD) and catalase (CAT), were estimated. Furthermore, total protein (TP) contents and the levels of DNA and RNA were measured, and histopathological changes in colonic tissues were analyzed. The results indicated that the levels of pro-inflammatory cytokines, PGE2, NO and TBARS were markedly increased. By contrast, the levels of interleukin-10, NP-SH, TP and nucleic acids, and the enzymatic activities of SOD and CAT were significantly decreased in the AA model group. In addition, pretreatment with myrrh and MES was able to attenuate the impaired oxidative stress response and upregulation of inflammatory biomarkers. Furthermore, the enzymatic activities of SOD and CAT were near to normal in the myrrh and MES pretreated groups. The ability of myrrh to protect against UC was further confirmed by histopathological analysis, and the high dose of myrrh exerted an effect comparable to MES. In conclusion, the results of the present study suggested that myrrh has potent therapeutic value in the amelioration of experimental colitis in laboratory animals by downregulating the expression of proinflammatory mediators and improving endogenous antioxidative activities. PMID

  9. Synthesis of Lipid Mediators during UVB-Induced Inflammatory Hyperalgesia in Rats and Mice

    PubMed Central

    Sisignano, Marco; Angioni, Carlo; Ferreiros, Nerea; Schuh, Claus-Dieter; Suo, Jing; Schreiber, Yannick; Dawes, John M.; Antunes-Martins, Ana; Bennett, David L. H.; McMahon, Stephen B.; Geisslinger, Gerd; Scholich, Klaus

    2013-01-01

    Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs). However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs) as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP) genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18∶1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18∶1, 9-and 13-HODE and HETEs. PMID:24349046

  10. microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease

    PubMed Central

    Thome, Aaron D.; Harms, Ashley S.; Volpicelli-Daley, Laura A.

    2016-01-01

    Increasing evidence points to inflammation as a chief mediator of Parkinson's disease (PD), a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein α-synuclein (α-syn). Recently, microRNAs, small, noncoding RNAs involved in regulating gene expression at the posttranscriptional level, have been recognized as important regulators of the inflammatory environment. Using an array approach, we found significant upregulation of microRNA-155 (miR-155) in an in vivo model of PD produced by adeno-associated-virus-mediated expression of α-syn. Using a mouse with a complete deletion of miR-155, we found that loss of miR-155 reduced proinflammatory responses to α-syn and blocked α-syn-induced neurodegeneration. In primary microglia from miR-155−/− mice, we observed a markedly reduced inflammatory response to α-syn fibrils, with attenuation of major histocompatibility complex class II (MHCII) and proinflammatory inducible nitric oxide synthase expression. Treatment of these microglia with a synthetic mimic of miR-155 restored the inflammatory response to α-syn fibrils. Our results suggest that miR-155 has a central role in the inflammatory response to α-syn in the brain and in α-syn-related neurodegeneration. These effects are at least in part due to a direct role of miR-155 on the microglial response to α-syn. These data implicate miR-155 as a potential therapeutic target for regulating the inflammatory response in PD. SIGNIFICANCE STATEMENT The main feature associated with Parkinson's disease (PD) is the accumulation of α-synuclein in the brain accompanied by signs of inflammation and immune activation. Our studies suggest that microRNA-155 is a key inflammation-initiating molecule that could be a viable target for PD therapeutics. PMID:26911687

  11. microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease.

    PubMed

    Thome, Aaron D; Harms, Ashley S; Volpicelli-Daley, Laura A; Standaert, David G

    2016-02-24

    Increasing evidence points to inflammation as a chief mediator of Parkinson's disease (PD), a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein α-synuclein (α-syn). Recently, microRNAs, small, noncoding RNAs involved in regulating gene expression at the posttranscriptional level, have been recognized as important regulators of the inflammatory environment. Using an array approach, we found significant upregulation of microRNA-155 (miR-155) in an in vivo model of PD produced by adeno-associated-virus-mediated expression of α-syn. Using a mouse with a complete deletion of miR-155, we found that loss of miR-155 reduced proinflammatory responses to α-syn and blocked α-syn-induced neurodegeneration. In primary microglia from miR-155(-/-) mice, we observed a markedly reduced inflammatory response to α-syn fibrils, with attenuation of major histocompatibility complex class II (MHCII) and proinflammatory inducible nitric oxide synthase expression. Treatment of these microglia with a synthetic mimic of miR-155 restored the inflammatory response to α-syn fibrils. Our results suggest that miR-155 has a central role in the inflammatory response to α-syn in the brain and in α-syn-related neurodegeneration. These effects are at least in part due to a direct role of miR-155 on the microglial response to α-syn. These data implicate miR-155 as a potential therapeutic target for regulating the inflammatory response in PD.

  12. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Zhang, Zhi-Hui; Wang, Hua; Zhao, Hui; Yu, De-Xin; Xu, De-Xiang

    2015-01-01

    Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury. PMID:26691774

  13. Effect of cytokine antibodies in the immunomodulation of inflammatory response and metabolic disorders induced by scorpion venom.

    PubMed

    Taibi-Djennah, Zahida; Laraba-Djebari, Fatima

    2015-07-01

    Androctonus australis hector (Aah) venom and its neurotoxins may affect the neuro-endocrine immunological axis due to their binding to ionic channels of axonal membranes. This binding leads to the release of neurotransmitters and immunological mediators accompanied by pathophysiological effects. Although the hyperglycemia induced by scorpion venom is clearly established, the involved mediators in these deregulations are unknown. The strong relationship between inflammation and the wide variety of physiological processes can suggest that the activation of the inflammatory response and the massive release of IL-6 and TNF-α release induced by the venom may induce hyperglycemia and various biological disorders. We therefore investigated in this study the contribution of IL-6 and TNF-α in the modulation of inflammatory response and metabolic disorder induced by Aah venom. Obtained results revealed that Aah venom induced inflammatory response characterized by significant increase of inflammatory cells in sera and tissues homogenates accompanied by hyperglycemia and hyperinsulinemia, suggesting that the venom induced insulin resistance. It also induced severe alterations in hepatic parenchyma associated to metabolic disorders and imbalanced redox status. Cytokine antagonists injected 30 min prior to Aah venom allowed a significant reduction of inflammatory biomarker and plasma glucose levels, they also prevented metabolic disorders, oxidative stress and hepatic tissue damage induced by Aah venom. In conclusion, IL-6 and TNF-α appear to play a crucial role in the inflammatory response, hyperglycemia and associated complications to glucose metabolism disorders (carbohydrate and fat metabolism disorders, oxidative stress and hepatic damage) observed following scorpion envenoming.

  14. The Anti-Inflammatory Activity of a Novel Fused-Cyclopentenone Phosphonate and Its Potential in the Local Treatment of Experimental Colitis

    PubMed Central

    Shifrin, Helena; Harel, Efrat; Nadler-Milbauer, Mirela; Weinstock, Marta; Srebnik, Morris

    2015-01-01

    A novel fused-cyclopentenone phosphonate compound, namely, diethyl 3-nonyl-5-oxo-3,5,6,6a-tetrahydro-1H-cyclopenta[c]furan-4-ylphosphonate (P-5), was prepared and tested in vitro (LPS-activated macrophages) for its cytotoxicity and anti-inflammatory activity and in vivo (DNBS induced rat model) for its potential to ameliorate induced colitis. Specifically, the competence of P-5 to reduce TNFα, IL-6, INFγ, MCP-1, IL-1α, MIP-1α, and RANTES in LPS-activated macrophages was measured. Experimental colitis was quantified in the rat model, macroscopically and by measuring the activity of tissue MPO and iNOS and levels of TNFα and IL-1β. It was found that P-5 decreased the levels of TNFα and the tested proinflammatory cytokines and chemokines in LPS-activated macrophages. In the colitis-induced rat model, P-5 was effective locally in reducing mucosal inflammation. This activity was equal to the activity of local treatment with 5-aminosalicylic acid. It is speculated that P-5 may be used for the local treatment of IBD (e.g., with the aid of colon-specific drug platforms). Its mode of action involves inhibition of the phosphorylation of MAPK ERK but not of p38 and had no effect on IκBα. PMID:25949237

  15. Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response.

    PubMed

    Hong, Hyun Sook; Son, Youngsook

    2014-10-10

    Current rheumatoid arthritis (RA) therapies such as biologics inhibiting pathogenic cytokines substantially delay RA progression. However, patient responses to these agents are not always complete and long lasting. This study explored whether substance P (SP), an 11 amino acids long endogenous neuropeptide with the novel ability to mobilize mesenchymal stem cells (MSC) and modulate injury-mediated inflammation, can inhibit RA progression. SP efficacy was evaluated by paw swelling, clinical arthritis scoring, radiological analysis, histological analysis of cartilage destruction, and blood levels of tumor necrosis factor-alpha (TNF-α) interleukin (IL)-10, and IL-17 in vivo. SP treatment significantly reduced local inflammatory signs, mean arthritis scores, degradation of joint cartilage, and invasion of inflammatory cells into the synovial tissues. Moreover, the SP treatment markedly reduced the size of spleens enlarged by excessive inflammation in CIA, increased IL-10 levels, and decreased TNF-α and IL-17 levels. Mobilization of stem cells and induction of T(reg) and M2 type macrophages in the circulation were also increased by the SP treatment. These effect of SP might be associated with the suppression of inflammatory responses in RA and, furthermore, blockade of RA progression. Our results propose SP as a potential therapeutic for autoimmune-related inflammatory diseases. PMID:25264193

  16. The Anti-Inflammatory Effects and Mechanisms of Eupafolin in Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Macrophages

    PubMed Central

    Chen, Chin-Chaun; Lin, Ming-Wei; Liang, Chan-Jung; Wang, Shu-Huei

    2016-01-01

    Eupafolin is a flavone isolated from Artemisia princeps Pampanini (family Asteraceae). The aim of this study was to examine the anti-inflammatory effects of eupafolin in lipopolysaccharide (LPS)-treated RAW264.7 macrophages and LPS-induced mouse skin and lung inflammation models and to identify the mechanism underlying these effects. Eupafolin decreased the LPS-induced release of inflammatory mediators (iNOS, COX-2 and NO) and proinflammatory cytokines (IL-6 and TNF-α) from the RAW264.7 macrophages. Eupafolin inhibited the LPS-induced phosphorylation of p38 MAPK, ERK1/2, JNK, AKT and p65 and the nuclear translocation of p65 and c-fos. These effects were mainly mediated by the inhibition of JNK. In the mouse paw and lung models, eupafolin effectively suppressed the LPS-induced edema formation and down-regulated iNOS and COX-2 expression. These results demonstrated that eupafolin exhibits anti-inflammatory properties and suggested that eupafolin can be developed as an anti-inflammatory agent. PMID:27414646

  17. The Anti-Inflammatory Effects and Mechanisms of Eupafolin in Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Macrophages.

    PubMed

    Chen, Chin-Chaun; Lin, Ming-Wei; Liang, Chan-Jung; Wang, Shu-Huei

    2016-01-01

    Eupafolin is a flavone isolated from Artemisia princeps Pampanini (family Asteraceae). The aim of this study was to examine the anti-inflammatory effects of eupafolin in lipopolysaccharide (LPS)-treated RAW264.7 macrophages and LPS-induced mouse skin and lung inflammation models and to identify the mechanism underlying these effects. Eupafolin decreased the LPS-induced release of inflammatory mediators (iNOS, COX-2 and NO) and proinflammatory cytokines (IL-6 and TNF-α) from the RAW264.7 macrophages. Eupafolin inhibited the LPS-induced phosphorylation of p38 MAPK, ERK1/2, JNK, AKT and p65 and the nuclear translocation of p65 and c-fos. These effects were mainly mediated by the inhibition of JNK. In the mouse paw and lung models, eupafolin effectively suppressed the LPS-induced edema formation and down-regulated iNOS and COX-2 expression. These results demonstrated that eupafolin exhibits anti-inflammatory properties and suggested that eupafolin can be developed as an anti-inflammatory agent. PMID:27414646

  18. Inflammatory cytokine-mediated evasion of virus-induced tumors from NK cell control

    PubMed Central

    Mishra, Rabinarayan; Polic, Bojan; Welsh, Raymond M.; Szomolanyi-Tsuda, Eva

    2013-01-01

    Infections with DNA tumor viruses, including members of the polyomavirus family, often result in tumor formation in immune-deficient hosts. The complex control involved in antiviral and antitumor immune responses during these infections can be studied in murine polyomavirus (PyV)-infected mice as a model. We found that NK cells efficiently kill cells derived from PyV-induced salivary gland tumors in vitro in an NKG2D (effector cell) -RAE-1 (target cell) - dependent manner, but in T cell-deficient mice NK cells only delay but do not prevent the development of PyV-induced tumors. Here we show that the PyV-induced tumors have infiltrating functional NK cells. The freshly removed tumors, however, lack surface RAE-1 expression, and the tumor tissues produce soluble factors that down-regulate RAE-1. These factors include the pro-inflammatory cytokines IL-1α, IL-1β, IL-33, and TNF. Each of these cytokines down-regulate RAE-1 expression and susceptibility to NK cell mediated cytotoxicity. CD11b+F4/80+ macrophages infiltrating the PyV-induced tumors produce high amounts of IL-1β and TNF. Thus, our data suggest a new mechanism whereby inflammatory cytokines generated in the tumor environment lead to evasion of NK cell-mediated control of virus-induced tumors. PMID:23772039

  19. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    PubMed

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis. PMID:26832322

  20. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    PubMed

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis.

  1. Fluoxetine inhibits inflammatory response and bone loss in a rat model of ligature-induced periodontitis

    PubMed Central

    Branco-de-Almeida, Luciana S.; Franco, Gilson C. N.; Castro, Myrella L.; dos Santos, Juliana G.; Anbinder, Ana Lia; Cortelli, Sheila C.; Kajiya, Mikihito; Kawai, Toshihisa; Rosalen, Pedro L.

    2012-01-01

    Background Fluoxetine, a selective serotonin reuptake inhibitor, has recently been found to possess anti-inflammatory properties. The present study investigated the effects of fluoxetine on inflammatory tissue destruction in a rat model of ligature-induced periodontitis (PD). Methods Male Wistar rats were randomly assigned into three groups (n=10 animals/group): 1) Control rats (without ligature); 2) rats with ligature + placebo (saline; oral gavage); 3) rats with ligature + fluoxetine (20 mg/kg/day in saline; oral gavage). Histological analyses were performed on the furcation region and mesial of mandibular first molars of rats sacrificed at 15 days after ligature-induced PD. Reverse transcriptase-polymerase chain reaction (RT-PCR) and zymography were performed to analyze the mRNA expression of interleukin (IL)-1β, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9 and inducible nitric oxide synthase (iNOS), and the MMP-9 activity, respectively, in gingival tissues samples. Results Compared to the ligature + placebo group, alveolar bone loss was reduced in the fluoxetine group (P < 0.05), and the integrity of collagen fibers in the gingival tissue was maintained. Moreover, in gingival tissue sampled 3 days after ligature attachment, fluoxetine administration reduced IL-1β and COX-2 mRNA expression. Fluoxetine down-regulated MMP-9 activity, without affecting MMP-9 mRNA expression induced by ligature, compared to the ligature + placebo group (P < 0.05). These data suggested that fluoxetine suppressed proinflammatory responses, as well as proteolytic enzyme activity, induced by ligature. Conclusions In the present study, fluoxetine suppressed the inflammatory response and protected against periodontal bone resorption and destruction of collagen fibers, suggesting that fluoxetine can constitute a promising therapeutic approach for periodontal diseases. PMID:21966942

  2. Modulation of ConA-induced inflammatory ascites by histamine - short communication.

    PubMed

    Baintner, Károly

    2015-03-01

    The early phase of the ConA-induced inflammatory ascites was studied, with special reference to histamine. Concanavalin A (ConA), a cell-surface binding lectin was injected i.p. (25 mg/kg bw) to mice. After 1 h the animals were killed, the ascitic fluid collected and measured. Other agents were injected s.c., 10 min before the ConA-challenge. Exogenous histamine markedly inhibited the ConA-induced ascites. Release of endogenous vasoactive agents from the mast cells by Compound 48/80 had a similar, but slight effect. Cromolyn, a mast cell stabilizing agent, and chloropyramine, a histamine H1 receptor antagonist was ineffective. Although histamine increases endothelial permeability, it did not enhance the formation of ascitic fluid, on the contrary, it inhibited the ConA-induced ascites, presumably due to its known hypotonic effect. It is concluded that ConA-induced ascites is not mediated by mast cell histamine.

  3. Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells

    PubMed Central

    Qvist, Rajes; Mohd Yusof, Kamaruddin; Ismail, Ikram Shah

    2016-01-01

    Purpose. Type 2 diabetes consists of progressive hyperglycemia and insulin resistance, which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study we investigated the effect of Gelam honey and quercetin on the oxidative stress-induced inflammatory pathways and the proinflammatory cytokines. Methods. HIT-T15 cells were cultured and preincubated with the extract of Gelam honey (20, 40, 60, and 80 μg/mL), as well as quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM glucose. Results. HIT-T15 cells cultured under hyperglycemic condition showed a significant increase in the inflammatory pathways by phosphorylating JNK, IKK-β, and IRS-1 at Ser307 (p < 0.05). There was a significant decrease in the phosphorylation of Akt at Ser473 (p < 0.05). Pretreatment with Gelam honey and quercetin reduced the expression of phosphorylated JNK, IKK-β, and IRS-1, thereby significantly reducing the expression of proinflammatory cytokines like TNF-α, IL-6, and IL-1β (p < 0.05). At the same time there was a significant increase in the phosphorylated Akt showing the protective effects against inflammation and insulin resistance (p < 0.05). In conclusion, our data suggest the potential use of the extract from Gelam honey and quercetin in modulating the inflammation induced insulin signaling pathways. PMID:27034691

  4. Inflammatory Cytokines and Antipsychotic-Induced Weight Gain: Review and Clinical Implications.

    PubMed

    Fonseka, Trehani M; Müller, Daniel J; Kennedy, Sidney H

    2016-05-01

    Antipsychotic medications (APs), particularly second-generation APs, are associated with significant weight gain in schizophrenia patients. Recent evidence suggests that the immune system may contribute to antipsychotic-induced weight gain (AIWG) via AP-mediated alterations of cytokine levels. Antipsychotics with a high propensity for weight gain, such as clozapine and olanzapine, influence the expression of immune genes, and induce changes in serum cytokine levels to ultimately down-regulate neuroinflammation. Since inflammatory cytokines are normally involved in anorexigenic responses, reduced inflammation has been independently shown to mediate changes in feeding behaviours and other metabolic parameters, resulting in obesity. Genetic variation in pro-inflammatory cytokines is also associated with both general obesity and weight change during AP treatment, and thus, may be implicated in the pharmacogenetics of AIWG. At this time, preliminary data support a cytokine-mediated model of AIWG which may have clinical utility in developing more effective metabolic monitoring guidelines and prevention measures. However, further research is still needed to clearly elucidate the validity of this immune model. This article reviews the evidence implicating inflammatory cytokines in AIWG and its potential clinical relevance. PMID:27606316

  5. Corosolic acid suppresses the expression of inflammatory marker genes in CCL4-induced-hepatotoxic rats.

    PubMed

    Balakrishnan, Aristatile; Al-Assaf, Abdullah Hassan

    2016-07-01

    The aim of the study was to asses the anti-inflammatory effects of corosolic acid on the carbon tetrachloride (CCL4) toxicity in rats. Liver toxicity was induced by administered CCL4 (single dose (1:1 in liquid paraffin) orally at 1.25 ml/kg. Rats were pretreated with CRA for 7 days before made CCL(4) toxicity at 20 mg/kg BW. The mRNA levels of TNF-α, IL-6, iNOS, COX-2 and NF-kB were assayed by reverse transcriptase PCR analysis. The mRNA levels of proinflammatory cytokines such as TNF-α, IL-6, and the inflammatory markers such as iNOS, COX-2 and NF-kB were significantly up regulated in CCl(4) induced rats and treatment with corosolic acid significantly reduced the expression of the above indicators. Our results suggest that the inhibition of TNF-α, IL-6, iNOS, COX-2 and NF-κB by corosolic acid, a potential candidate could possess anti-inflammatory activity besides its hepatoprotective effect in CCl4 liver toxicity in rats. PMID:27393448

  6. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  7. Gender Difference in Bacteria Endotoxin-Induced Inflammatory and Anorexic Responses.

    PubMed

    Kuo, Shiu-Ming

    2016-01-01

    Inflammation-related anorexic response has been observed in systemic diseases as well as in localized infection and is an important issue in patient care. We tested the hypothesis that upon the same endotoxin exposure, males have more severe inflammatory responses and thus suffer from more negative effect on appetite. Ten-week old male and female mice were compared in their plasma levels of pro-inflammatory cytokines after a body weight-based i.p. injection of bacterial endotoxin lipopolysaccharide. Male mice consistently showed significantly higher levels of IL6 and TNFα than female mice. The difference was observed starting at 3 hours after the systemic endotoxin exposure. It was independent of the level of endotoxin dosage and of the genotype of the anti-inflammatory cytokine, IL10. Interestingly, endotoxin-injected male mice also had significantly higher plasma IL10 levels compared to the female mice. Pre-puberty young mice showed no gender differences in the plasma levels of IL6, TNFα and IL10. Their cytokine levels were mostly between that of the adult males and females. Consistent with the higher inflammatory response in male mice, the endotoxin exposure also led to significantly more appetite loss in male mice at a range of doses in two strains of mice. Saline injection in the absence of endotoxin affected neither the cytokine levels nor the appetite. Although a direct mechanistic link between inflammation parameters and appetite was not addressed here, the results support that male gender could be a risk factor for higher pro-inflammatory cytokines and anorexic response after the endotoxin exposure. PMID:27631979

  8. Gender Difference in Bacteria Endotoxin-Induced Inflammatory and Anorexic Responses

    PubMed Central

    2016-01-01

    Inflammation-related anorexic response has been observed in systemic diseases as well as in localized infection and is an important issue in patient care. We tested the hypothesis that upon the same endotoxin exposure, males have more severe inflammatory responses and thus suffer from more negative effect on appetite. Ten-week old male and female mice were compared in their plasma levels of pro-inflammatory cytokines after a body weight-based i.p. injection of bacterial endotoxin lipopolysaccharide. Male mice consistently showed significantly higher levels of IL6 and TNFα than female mice. The difference was observed starting at 3 hours after the systemic endotoxin exposure. It was independent of the level of endotoxin dosage and of the genotype of the anti-inflammatory cytokine, IL10. Interestingly, endotoxin-injected male mice also had significantly higher plasma IL10 levels compared to the female mice. Pre-puberty young mice showed no gender differences in the plasma levels of IL6, TNFα and IL10. Their cytokine levels were mostly between that of the adult males and females. Consistent with the higher inflammatory response in male mice, the endotoxin exposure also led to significantly more appetite loss in male mice at a range of doses in two strains of mice. Saline injection in the absence of endotoxin affected neither the cytokine levels nor the appetite. Although a direct mechanistic link between inflammation parameters and appetite was not addressed here, the results support that male gender could be a risk factor for higher pro-inflammatory cytokines and anorexic response after the endotoxin exposure. PMID:27631979

  9. Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo.

    PubMed

    Wei, Hao; Frei, Balz; Beckman, Joseph S; Zhang, Wei-Jian

    2011-09-01

    Redox-active transition metal ions, such as iron and copper, may play an important role in vascular inflammation, which is an etiologic factor in atherosclerotic vascular diseases. In this study, we investigated whether tetrathiomolybdate (TTM), a highly specific copper chelator, can act as an anti-inflammatory agent, preventing lipopolysaccharide (LPS)-induced inflammatory responses in vivo. Female C57BL/6N mice were daily gavaged with TTM (30 mg/kg body wt) or vehicle control. After 3 wk, animals were injected intraperitoneally with 50 μg LPS or saline buffer and killed 3 h later. Treatment with TTM reduced serum ceruloplasmin activity by 43%, a surrogate marker of bioavailable copper, in the absence of detectable hepatotoxicity. The concentrations of both copper and molybdenum increased in various tissues, whereas the copper-to-molybdenum ratio decreased, consistent with reduced copper bioavailability. TTM treatment did not have a significant effect on superoxide dismutase activity in heart and liver. Furthermore, TTM significantly inhibited LPS-induced inflammatory gene transcription in aorta and heart, including vascular and intercellular adhesion molecule-1 (VCAM-1 and ICAM-1, respectively), monocyte chemotactic protein-1 (MCP-1), interleukin-6, and tumor necrosis factor (TNF)-α (ANOVA, P < 0.05); consistently, protein levels of VCAM-1, ICAM-1, and MCP-1 in heart were also significantly lower in TTM-treated animals. Similar inhibitory effects of TTM were observed on activation of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) in heart and lungs. Finally, TTM significantly inhibited LPS-induced increases of serum levels of soluble ICAM-1, MCP-1, and TNF-α (ANOVA, P < 0.05). These data indicate that copper chelation with TTM inhibits LPS-induced inflammatory responses in aorta and other tissues of mice, most likely by inhibiting activation of the redox-sensitive transcription factors, NF-κB and AP-1. Therefore, copper appears to play an

  10. IL-37 inhibits the production of pro-inflammatory cytokines in MSU crystal-induced inflammatory response.

    PubMed

    Zeng, Mei; Dang, Wantai; Chen, Baofeng; Qing, Yufeng; Xie, Wenguang; Zhao, Mingcai; Zhou, Jingguo

    2016-09-01

    Acute gouty arthritis (AGA) is an auto-inflammatory disease characterized by resolving spontaneously, which suggests that negative feedback loops control inflammatory and immunological responses to monosodium urate (MSU) crystals. By now, the molecular mechanism for spontaneous resolution of acute GA remains unclear; this study was undertaken to evaluate whether IL-37 is involved in spontaneous resolution of AGA. A total of 45 acute GA (AGA),29 non-acute GA (NAGA) male patients and 82 male health control (HC) were involved in this study, we measured IL-7 expression in the peripheral blood mononuclear cells (PBMCs), together with levels of IL-1β, IL-6, IL-10, TNF-α and TGF-β1 in the serum. Further, we either inhibited IL-37 expression in human PBMCs with siRNA or over-expressed the cytokine in human macrophages. Pro-inflammatory cytokine IL-1β, IL-6, and TNF-α expressions were significantly higher in the AGA group than in the NAGA or HC group (P < 0.05, respectively). However, anti-inflammatory IL-37, TGF-β1, and IL-10 were greater in the NAGA group than in the AGA and HC groups (P < 0.05, respectively). Expression of IL-37 in MSU crystal-treated macrophages inhibited the expression of pro-inflammatory cytokines, whereas the abundance of these cytokines increased with silencing of endogenous IL-37 in human blood cells. However, anti-inflammatory TGF-β1 and IL-10 expressions in these supernatants were unaffected by over-expression or knockdown of IL-37. Our study indicates that IL-37 is an important anti-inflammatory cytokine in AGA by suppressing the production of pro-inflammatory cytokines. Thus, IL-37 may provide a novel research target for the pathogenesis and therapy of GA.

  11. Neuroprotective Peptide humanin inhibits inflammatory response in astrocytes induced by lipopolysaccharide.

    PubMed

    Zhao, Shen-Ting; Zhao, Li; Li, Jian-Hua

    2013-03-01

    Humanin (HN) has been proved to be an extensive neuroprotective peptide against AD-related and unrelated insults, but little is know about the effect of HN in inflammation response. Current studies indicated the receptors of HN have a close relationship with immune system, which led us to hypothesize HN might have a role in inflammatory response. In this study, we used lipopolysaccharide (LPS) to induce astrocyte inflammation response. This model in vitro allowed us to study the effect of HN on the pure response of astrocyte without the exogenous influence between cells in vivo. Our results showed that 1.0 μg/ml LPS induced a significant activation of astrocyte, shown as the marked increase in the glial fibrillary acidic protein (GFAP) expression, the cell viability and the number of 5-bromo-2'-deoxyuridine (BrdU)-positive living cells. Pretreatment with HN (5, 10, 20 μM) led to a significant inhibition in astrocyte overactivation in a concentration dependent manner. We also found pretreatment with HN decreased the level of proinflammatory cytokines, interleukin (IL)-6, IL-1β and tumor necrosis factor α (TNFα) induced by LPS. Furthermore, we noticed HN couldn't completely reverse the above inflammatory injury. Our findings imply that HN partly antagonizes inflammation injury induced by LPS and the protective effect of HN on astrocyte is concentration-dependent.

  12. Systemic administration of minocycline inhibits formalin-induced inflammatory pain in rat.

    PubMed

    Cho, Ik-Hyun; Chung, Young Min; Park, Chul-Kyu; Park, Seong-Hae; Lee, Haeyeong; Li, Hai Ying; Kim, Donghoon; Piao, Zheng Gen; Choi, Se-Young; Lee, Sung Joong; Park, Kyungpyo; Kim, Joong Soo; Jung, Sung Jun; Oh, Seog Bae

    2006-02-01

    It has been demonstrated that spinal microglial activation is involved in formalin-induced pain and that minocycline, an inhibitor of microglial activation, attenuate behavioral hypersensitivity in neuropathic pain models. We investigated whether minocycline could have any anti-nociceptive effect on inflammatory pain, after intraperitonial administration of minocycline, 1 h before formalin (5%, 50 microl) injection into the plantar surface of rat hindpaw. Minocycline (15, 30, and 45 mg/kg) significantly decreased formalin-induced nociceptive behavior during phase II, but not during phase I. The enhancement in the number of c-Fos-positive cells in the L4-5 spinal dorsal horn (DH) and the magnitude of paw edema induced by formalin injection during phase II were significantly reduced by minocycline. Minocycline inhibited synaptic currents of substantia gelatinosa (SG) neurons in the spinal DH, whereas membrane electrical properties of dorsal root ganglion neurons were not affected by minocycline. Analysis with OX-42 antibody revealed the inhibitory effect of minocycline on microglial activation 3 days after formalin injection. These results demonstrate the anti-nociceptive effect of minocycline on formalin-induced inflammatory pain. In addition to the well-known inhibitory action of minocycline on microglial activation, the anti-edematous action in peripheral tissue, as well as the inhibition of synaptic transmission in SG neurons, is likely to be associated with the anti-nociceptive effect of minocycline.

  13. Antinociceptive and Anti-Inflammatory Effects of Zerumbone against Mono-Iodoacetate-Induced Arthritis.

    PubMed

    Chien, Ting-Yi; Huang, Steven Kuan-Hua; Lee, Chia-Jung; Tsai, Po-Wei; Wang, Ching-Chiung

    2016-01-01

    The fresh rhizome of Zingiber zerumbet Smith (Zingiberaceae) is used as a food flavoring and also serves as a folk medicine as an antipyretic and for analgesics in Taiwan. Zerumbone, a monocyclic sesquiterpene was isolated from the rhizome of Z. zerumbet and is the major active compound. In this study, the anti-inflammatory and antinociceptive effects of zerumbone on arthritis were explored using in vitro and in vivo models. Results showed that zerumbone inhibited inducible nitric oxide (NO) synthase (iNOS), cyclooxygenase (COX)-2 expressions, and NO and prostaglandin E₂ (PGE₂) production, but induced heme oxygenase (HO)-1 expression in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. When zerumbone was co-treated with an HO-1 inhibitor (tin protoporphyrin (SnPP)), the NO inhibitory effects of zerumbone were recovered. The above results suggest that zerumbone inhibited iNOS and COX-2 through induction of the HO-1 pathway. Moreover, matrix metalloproteinase (MMP)-13 and COX-2 expressions of interleukin (IL)-1β-stimulated primary rat chondrocytes were inhibited by zerumbone. In an in vivo assay, an acetic acid-induced writhing response in mice was significantly reduced by treatment with zerumbone. Furthermore, zerumbone reduced paw edema and the pain response in a mono-iodoacetate (MIA)-induced rat osteoarthritis model. Therefore, we suggest that zerumbone possesses anti-inflammatory and antinociceptive effects which indicate zerumbone could be a potential candidate for osteoarthritis treatment. PMID:26901193

  14. IκBζ Regulates Human Monocyte Pro-Inflammatory Responses Induced by Streptococcus pneumoniae

    PubMed Central

    Sundaram, Kruthika; Rahman, Mohd. Akhlakur; Mitra, Srabani; Knoell, Daren L.; Woodiga, Shireen A.; King, Samantha J.

    2016-01-01

    Pneumococcal lung infections represent a major cause of death worldwide. Single nucleotide polymorphisms (SNPs) in the NFKBIZ gene, encoding the transcription factor IκBζ, are associated with increased susceptibility to invasive pneumococcal disease. We hence analyzed how IκBζ might regulate inflammatory responses to pneumococcal infection. We first demonstrate that IκBζ is expressed in human blood monocytes but not in bronchial epithelial cells, in response to wild type pneumococcal strain D39. D39 transiently induced IκBζ in a dose dependent manner, with subsequent induction of downstream molecules involved in host defense. Of these molecules, IκBζ knockdown reduced the expression of IL-6 and GMCSF. Furthermore, IκBζ overexpression increased the activity of IL-6 and GMCSF promoters, supporting the knockdown findings. Pneumococci lacking either pneumolysin or capsule still induced IκBζ. While inhibition of TLR1/TLR2 blocked D39 induced IκBζ expression, TLR4 inhibition did not. Blockade of p38 MAP kinase and NFκB suppressed D39 induced IκBζ. Overall, our data demonstrates that IκBζ regulates monocyte inflammatory responses to Streptococcus pneumoniae by promoting the production of IL-6 and GMCSF. PMID:27597997

  15. Modulation of Inflammatory Response in a Cirrhotic Rat Model with Induced Bacterial Peritonitis

    PubMed Central

    Sánchez, Elisabet; Francés, Rubén; Soriano, Germán; Mirelis, Beatriz; Sancho, Francesc J.; González-Navajas, José Manuel; Muñoz, Carlos; Song, Xiao-yu

    2013-01-01

    Bacterial peritonitis is a severe complication in patients with cirrhosis and ascites and despite antibiotic treatment, the inflammatory response to infection may induce renal dysfunction leading to death. This investigation evaluated the effect of TNF-α blockade on the inflammatory response and mortality in cirrhotic rats with induced bacterial peritonitis treated or not with antibiotics. Sprague-Dawley rats with carbon-tetrachloride-induced cirrhosis were treated with an intraperitoneal injection of 109 CFU of Escherichia coli diluted in 20 mL of sterile water to induce bacterial peritonitis and randomized to receive subcutaneously-administered placebo, ceftriaxone, anti-TNF-α mAb and ceftriaxone, or anti-TNF-α mAb alone. No differences were observed between groups at baseline in respect to renal function, liver hepatic tests, serum levels of nitrite/nitrate and TNF-α. Treatment with ceftriaxone reduced mortality (73.3%) but differences did not reach statistical significance as compared to placebo. Mortality in rats treated with ceftriaxone and anti-TNF-α mAb was significantly lower than in animals receiving placebo (53% vs. 100%, p<0.01). Serum TNF-α decreased significantly in surviving rats treated with ceftriaxone plus anti-TNF-α mAb but not in treated with antibiotics alone. Additional studies including more animals are required to assess if the association of antibiotic therapy and TNF-α blockade might be a possible approach to reduce mortality in cirrhotic patients with bacterial peritonitis. PMID:23527251

  16. IκBζ Regulates Human Monocyte Pro-Inflammatory Responses Induced by Streptococcus pneumoniae.

    PubMed

    Sundaram, Kruthika; Rahman, Mohd Akhlakur; Mitra, Srabani; Knoell, Daren L; Woodiga, Shireen A; King, Samantha J; Wewers, Mark D

    2016-01-01

    Pneumococcal lung infections represent a major cause of death worldwide. Single nucleotide polymorphisms (SNPs) in the NFKBIZ gene, encoding the transcription factor IκBζ, are associated with increased susceptibility to invasive pneumococcal disease. We hence analyzed how IκBζ might regulate inflammatory responses to pneumococcal infection. We first demonstrate that IκBζ is expressed in human blood monocytes but not in bronchial epithelial cells, in response to wild type pneumococcal strain D39. D39 transiently induced IκBζ in a dose dependent manner, with subsequent induction of downstream molecules involved in host defense. Of these molecules, IκBζ knockdown reduced the expression of IL-6 and GMCSF. Furthermore, IκBζ overexpression increased the activity of IL-6 and GMCSF promoters, supporting the knockdown findings. Pneumococci lacking either pneumolysin or capsule still induced IκBζ. While inhibition of TLR1/TLR2 blocked D39 induced IκBζ expression, TLR4 inhibition did not. Blockade of p38 MAP kinase and NFκB suppressed D39 induced IκBζ. Overall, our data demonstrates that IκBζ regulates monocyte inflammatory responses to Streptococcus pneumoniae by promoting the production of IL-6 and GMCSF. PMID:27597997

  17. Protective effects of radon inhalation on carrageenan-induced inflammatory paw edema in mice.

    PubMed

    Kataoka, Takahiro; Teraoka, Junichi; Sakoda, Akihiro; Nishiyama, Yuichi; Yamato, Keiko; Monden, Mayuko; Ishimori, Yuu; Nomura, Takaharu; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-04-01

    We assessed whether radon inhalation inhibited carrageenan-induced inflammation in mice. Carrageenan (1% v/v) was injected subcutaneously into paws of mice that had or had not inhaled approximately 2,000 Bq/m(3) of radon for 24 h. Radon inhalation significantly increased superoxide dismutase (SOD) and catalase activities and significantly decreased lipid peroxide levels in mouse paws, indicating that radon inhalation activates antioxidative functions. Carrageenan administration induced paw edema and significantly increased tumor necrosis factor-alpha (TNF-α) and nitric oxide in serum. However, radon inhalation significantly reduced carrageenan-induced paw edema. Serum TNF-α levels were lower in the radon-treated mice than in sham-treated mice. In addition, SOD and catalase activities in paws were significantly higher in the radon-treated mice than in the sham-treated mice. These findings indicated that radon inhalation had anti-inflammatory effects and inhibited carrageenan-induced inflammatory paw edema.

  18. A fatal cytokine-induced systemic inflammatory response reveals a critical role for NK cells.

    PubMed

    Carson, W E; Yu, H; Dierksheide, J; Pfeffer, K; Bouchard, P; Clark, R; Durbin, J; Baldwin, A S; Peschon, J; Johnson, P R; Ku, G; Baumann, H; Caligiuri, M A

    1999-04-15

    The mechanism of cytokine-induced shock remains poorly understood. The combination of IL-2 and IL-12 has synergistic antitumor activity in vivo, yet has been associated with significant toxicity. We examined the effects of IL-2 plus IL-12 in a murine model and found that the daily, simultaneous administration of IL-2 and IL-12 resulted in shock and 100% mortality within 4 to 12 days depending on the strain employed. Mice treated with IL-2 plus IL-12 exhibited NK cell apoptosis, pulmonary edema, degenerative lesions of the gastrointestinal tract, and elevated serum levels of proinflammatory cytokines and acute phase reactants. The actions of TNF-alpha, IFN-gamma, macrophage-inflammatory protein-1alpha, IL-1, IL-1-converting enzyme, Fas, perforin, inducible nitric oxide synthase, and STAT1 did not contribute to the observed toxicity, nor did B or T cells. However, toxicity and death from treatment with IL-2 plus IL-12 could be completely abrogated by elimination of NK cells. These results suggest that the fatal systemic inflammatory response induced by this cytokine treatment is critically dependent upon NK cells, but does not appear to be mediated by the known effector molecules of this cellular compartment. These data may provide insight into the pathogenesis of cytokine-induced shock in humans.

  19. Leptospira interrogans induces uterine inflammatory responses and abnormal expression of extracellular matrix proteins in dogs.

    PubMed

    Wang, Wei; Gao, Xuejiao; Guo, Mengyao; Zhang, Wenlong; Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Leptospira interrogans (L. interrogans), a worldwide zoonosis, infect humans and animals. In dogs, four syndromes caused by leptospirosis have been identified: icteric, hemorrhagic, uremic (Stuttgart disease) and reproductive (abortion and premature or weak pups), and also it caused inflammation. Extracellular matrix (ECM) is a complex mixture of matrix molecules that is crucial to the reproduction. Both inflammatory response and ECM are closed relative to reproductive. The aim of this study was to clarify how L. interrogans affected the uterus of dogs, by focusing on the inflammatory responses, and ECM expression in dogs uterine tissue infected by L. interrogans. In the present study, 27 dogs were divided into 3 groups, intrauterine infusion with L. interrogans, to make uterine infection, sterile EMJH, and normal saline as a control, respectively. The uteruses were removed by surgical operation in 10, 20, and 30 days, respectively. The methods of histopathological analysis, ELISA, Western blot and qPCR were used. The results showed that L. interrogans induced significantly inflammatory responses, which were characterized by inflammatory cellular infiltration and high expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in uterine tissue of these dogs. Furthermore, L. interrogans strongly down-regulated the expression of ECM (collagens (CL) IV, fibronectins (FN) and laminins (LN)) in mRNA and protein levels. These data indicated that strongly inflammatory responses, and abnormal regulation of ECM might contribute to the proliferation of dogs infected by L. interrogans. PMID:25153777

  20. Leptospira interrogans induces uterine inflammatory responses and abnormal expression of extracellular matrix proteins in dogs.

    PubMed

    Wang, Wei; Gao, Xuejiao; Guo, Mengyao; Zhang, Wenlong; Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Leptospira interrogans (L. interrogans), a worldwide zoonosis, infect humans and animals. In dogs, four syndromes caused by leptospirosis have been identified: icteric, hemorrhagic, uremic (Stuttgart disease) and reproductive (abortion and premature or weak pups), and also it caused inflammation. Extracellular matrix (ECM) is a complex mixture of matrix molecules that is crucial to the reproduction. Both inflammatory response and ECM are closed relative to reproductive. The aim of this study was to clarify how L. interrogans affected the uterus of dogs, by focusing on the inflammatory responses, and ECM expression in dogs uterine tissue infected by L. interrogans. In the present study, 27 dogs were divided into 3 groups, intrauterine infusion with L. interrogans, to make uterine infection, sterile EMJH, and normal saline as a control, respectively. The uteruses were removed by surgical operation in 10, 20, and 30 days, respectively. The methods of histopathological analysis, ELISA, Western blot and qPCR were used. The results showed that L. interrogans induced significantly inflammatory responses, which were characterized by inflammatory cellular infiltration and high expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in uterine tissue of these dogs. Furthermore, L. interrogans strongly down-regulated the expression of ECM (collagens (CL) IV, fibronectins (FN) and laminins (LN)) in mRNA and protein levels. These data indicated that strongly inflammatory responses, and abnormal regulation of ECM might contribute to the proliferation of dogs infected by L. interrogans.

  1. Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide.

    PubMed

    Thimmulappa, Rajesh K; Scollick, Catherine; Traore, Kassim; Yates, Melinda; Trush, Michael A; Liby, Karen T; Sporn, Michael B; Yamamoto, Masayuki; Kensler, Thomas W; Biswal, Shyam

    2006-12-29

    Sepsis induced lethality is characterized by amplified host innate immune response. Nrf2, a bZIP transcription factor, regulates a battery of cellular antioxidative genes and maintains cellular redox homeostasis. This study demonstrates that increasing Nrf2 activity by a potent small molecule activator, CDDO-Im (1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole), protects from deregulation of lipopolysaccharide (LPS) induced innate immune response. In response to LPS stimuli, nrf2-deficient (nrf2 -/-) peritoneal neutrophils showed increased NADPH oxidase-dependent ROS generation, proinflammatory cytokines (Tnf-alpha and Il-6) and chemokines (Mip2 and Mcp-1) relative to wild-type (nrf2 +/+) cells. Pretreatment of peritoneal neutrophils with CDDO-Im induced antioxidative genes (Ho-1, Gclc, Gclm, and Nqo1) and attenuated LPS induced ROS generation as well as expression of proinflammatory cytokines exclusively in nrf2 +/+ neutrophils but not in nrf2 -/- cells. In corroboration with in vitro studies, pretreatment with CDDO-Im induced Nrf2-dependent antioxidative genes, attenuated LPS induced proinflammatory cytokine expression, and decreased mortality specifically in the nrf2 +/+ mice. In conclusion, the results suggest that Nrf2 is associated with oxidative regulation of LPS induced innate immune response in neutrophils. Activation of Nrf2-dependent compensatory antioxidative pathways by CDDO-Im protects from LPS induced inflammatory response and mortality.

  2. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses.

    PubMed

    Aho, Vilma; Ollila, Hanna M; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S A; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja

    2016-01-01

    Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases. PMID:27102866

  3. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses

    PubMed Central

    Aho, Vilma; Ollila, Hanna M.; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J.; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S.A.; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M.; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T.; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja

    2016-01-01

    Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases. PMID:27102866

  4. Lithothamnion muelleri Treatment Ameliorates Inflammatory and Hypernociceptive Responses in Antigen-Induced Arthritis in Mice

    PubMed Central

    Costa, Vivian V.; Amaral, Flavio A.; Coelho, Fernanda M.; Queiroz-Junior, Celso M.; Malagoli, Bruna G.; Gomes, Jose Hugo S.; Lopes, Fernando; Silveira, Kátia D.; Sachs, Daniela; Fagundes, Caio T.; Tavares, Lívia D.; Pinho, Vanessa; Silva, Tarcilia A.; Teixeira, Mauro M.; Braga, Fernão C.; Souza, Danielle G.

    2015-01-01

    Rheumatoid Arthritis (RA) is a chronic disease characterized by persistent inflammation and pain. Alternative therapies to reduce these symptoms are needed. Marine algae are valuable sources of diverse bioactive compounds. Lithothamnion muelleri (Hapalidiaceae) is a marine algae with anti-inflammatory, antitumor, and immunomodulatory properties. Here, we investigated the potential anti-inflammatory and analgesic activities of L. muelleri in a murine model of antigen-induced arthritis (AIA) in mice. Our results demonstrate that treatment with L. muelleri prevented inflammation and hypernociception in arthritic mice. Mechanistically, the crude extract and the polysaccharide-rich fractions of L. muelleri may act impairing the production of the chemokines CXCL1 and CXCL2, and consequently inhibit neutrophil influx to the knee joint by dampening the adhesion step of leukocyte recruitment in the knee microvessels. Altogether our results suggest that treatment with L.muelleri has a potential therapeutic application in arthritis treatment. PMID:25793994

  5. Lithothamnion muelleri treatment ameliorates inflammatory and hypernociceptive responses in antigen-induced arthritis in mice.

    PubMed

    Costa, Vivian V; Amaral, Flavio A; Coelho, Fernanda M; Queiroz-Junior, Celso M; Malagoli, Bruna G; Gomes, Jose Hugo S; Lopes, Fernando; Silveira, Kátia D; Sachs, Daniela; Fagundes, Caio T; Tavares, Lívia D; Pinho, Vanessa; Silva, Tarcilia A; Teixeira, Mauro M; Braga, Fernão C; Souza, Danielle G

    2015-01-01

    Rheumatoid Arthritis (RA) is a chronic disease characterized by persistent inflammation and pain. Alternative therapies to reduce these symptoms are needed. Marine algae are valuable sources of diverse bioactive compounds. Lithothamnion muelleri (Hapalidiaceae) is a marine algae with anti-inflammatory, antitumor, and immunomodulatory properties. Here, we investigated the potential anti-inflammatory and analgesic activities of L. muelleri in a murine model of antigen-induced arthritis (AIA) in mice. Our results demonstrate that treatment with L. muelleri prevented inflammation and hypernociception in arthritic mice. Mechanistically, the crude extract and the polysaccharide-rich fractions of L. muelleri may act impairing the production of the chemokines CXCL1 and CXCL2, and consequently inhibit neutrophil influx to the knee joint by dampening the adhesion step of leukocyte recruitment in the knee microvessels. Altogether our results suggest that treatment with L.muelleri has a potential therapeutic application in arthritis treatment.

  6. The anti-inflammatory effect of diclofenac is considerably augmented by topical capsaicinoids-containing patch in carrageenan-induced paw oedema of rat.

    PubMed

    Ercan, Nilufer; Uludag, Mecit Orhan; Agis, Erol Rauf; Demirel-Yilmaz, Emine

    2013-12-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most used drugs in musculoskeletal disorders, but their systemic adverse effects limit their therapeutic benefit in local inflammation. On the other hand, topical preparations of capsaicinoids are widely used for musculoskeletal disorders as a complementary therapy. In this study, the effects of both topical capsaicinoids-containing patch and local subcutaneous capsaicin application on the anti-inflammatory action of NSAID were examined. Carrageenan-induced paw oedema of rats was used as the inflammation model. The volume and weight of the paw oedema and plasma extravasation in the paw were determined after carrageenan injection. The systemic application of diclofenac (3 mg/kg), which is an NSAID, significantly decreased the volume and weight of the paw oedema. Topical capsaicinoids-containing patch application or local capsaicin injection (2, 10, 20 μg/paw) alone did not cause any effect on oedema volume and weight. However, the combination of diclofenac with topical capsaicinoids-containing patch significantly increased the effectiveness of diclofenac on inflammation. Evans blue content of the paws that represents plasma extravasation was decreased by capsaicinoids-containing patch with and without diclofenac and diclofenac combination with the lowest dose of capsaicin injection. The results of this study indicate that topical application of capsaicinoids-containing patch enhances the anti-inflammatory effect of diclofenac and its beneficial effect may not purely relate to its capsaicin content. In the treatment of local inflammatory disorders, the combination of NSAID with topical capsaicinoids-containing patch could increase the anti-inflammatory efficiency of drug without systemic side effects.

  7. Wear particles generated from studded tires and pavement induces inflammatory reactions in mouse macrophage cells.

    PubMed

    Lindbom, John; Gustafsson, Mats; Blomqvist, Göran; Dahl, Andreas; Gudmundsson, Anders; Swietlicki, Erik; Ljungman, Anders G

    2007-06-01

    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. These health risks are of increasing concern in society, and to protect public health, a clarification of the toxic properties of particles from different sources is of importance. Lately, wear particles generated from traffic have been recognized as a major contributing source to the overall particle load, especially in the Nordic countries where studded tires are used. The aim of this study was to further investigate and compare the ability to induce inflammatory mediators of different traffic-related wear particles collected from an urban street, a subway station, and studded tire-pavement wear. Inflammatory effects were measured as induction of nitric oxide (NO), IL-6, TNF-alpha, arachidonic acid (AA), and lipid peroxidation after exposure of the murine macrophage like cell line RAW 264.7. In addition, the redox potential of the particles was measured in a cell-free system. The results show that all particles tested induce IL-6, TNF-alpha, and NO, and those from the urban street were the most potent ones. In contrast, particles collected from a subway station were most potent to induce lipid peroxidation, AA release, and formation of ROS. Particles from studded tire-pavement wear, generated using a road simulator, were able to induce inflammatory cytokines, NO, lipid peroxidation, and ROS formation. Interestingly, particles generated from pavement containing granite as the main stone material were more potent than those generated from pavement containing quartzite as the main stone material.

  8. Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage

    PubMed Central

    2011-01-01

    Background Tenascin-C (TN-C) is an extracellular matrix glycoprotein that is involved in tissue injury and repair processes. We analyzed TN-C expression in normal and osteoarthritic (OA) human cartilage, and evaluated its capacity to induce inflammatory and catabolic mediators in chondrocytes in vitro. The effect of TN-C on proteoglycan loss from articular cartilage in culture was also assessed. Methods TN-C in culture media, cartilage extracts, and synovial fluid of human and animal joints was quantified using a sandwich ELISA and/or analyzed by Western immunoblotting. mRNA expression of TN-C and aggrecanases were analyzed by Taqman assays. Human and bovine primary chondrocytes and/or explant culture systems were utilized to study TN-C induced inflammatory or catabolic mediators and proteoglycan loss. Total proteoglycan and aggrecanase -generated ARG-aggrecan fragments were quantified in human and rat synovial fluids by ELISA. Results TN-C protein and mRNA expression were significantly upregulated in OA cartilage with a concomitant elevation of TN-C levels in the synovial fluid of OA patients. IL-1 enhanced TN-C expression in articular cartilage. Addition of TN-C induced IL-6, PGE2, and nitrate release and upregulated ADAMTS4 mRNA in cultured primary human and bovine chondrocytes. TN-C treatment resulted in an increased loss of proteoglycan from cartilage explants in culture. A correlation was observed between TN-C and aggrecanase generated ARG-aggrecan fragment levels in the synovial fluid of human OA joints and in the lavage of rat joints that underwent surgical induction of OA. Conclusions TN-C expression in the knee cartilage and TN-C levels measured in the synovial fluid are significantly enhanced in OA patients. Our findings suggest that the elevated levels of TN-C could induce inflammatory mediators and promote matrix degradation in OA joints. PMID:21762512

  9. Wear particles generated from studded tires and pavement induces inflammatory reactions in mouse macrophage cells.

    PubMed

    Lindbom, John; Gustafsson, Mats; Blomqvist, Göran; Dahl, Andreas; Gudmundsson, Anders; Swietlicki, Erik; Ljungman, Anders G

    2007-06-01

    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. These health risks are of increasing concern in society, and to protect public health, a clarification of the toxic properties of particles from different sources is of importance. Lately, wear particles generated from traffic have been recognized as a major contributing source to the overall particle load, especially in the Nordic countries where studded tires are used. The aim of this study was to further investigate and compare the ability to induce inflammatory mediators of different traffic-related wear particles collected from an urban street, a subway station, and studded tire-pavement wear. Inflammatory effects were measured as induction of nitric oxide (NO), IL-6, TNF-alpha, arachidonic acid (AA), and lipid peroxidation after exposure of the murine macrophage like cell line RAW 264.7. In addition, the redox potential of the particles was measured in a cell-free system. The results show that all particles tested induce IL-6, TNF-alpha, and NO, and those from the urban street were the most potent ones. In contrast, particles collected from a subway station were most potent to induce lipid peroxidation, AA release, and formation of ROS. Particles from studded tire-pavement wear, generated using a road simulator, were able to induce inflammatory cytokines, NO, lipid peroxidation, and ROS formation. Interestingly, particles generated from pavement containing granite as the main stone material were more potent than those generated from pavement containing quartzite as the main stone material. PMID:17516662

  10. Prevention of trauma-induced cochlear fibrosis using intracochlear application of anti-inflammatory and antiproliferative drugs.

    PubMed

    Jia, H; François, F; Bourien, J; Eybalin, M; Lloyd, R V; Van De Water, T R; Puel, J-L; Venail, F

    2016-03-01

    Cochlear fibrosis is a common finding following cochlear implantation. Evidence suggests that cochlear fibrosis could be triggered by inflammation and epithelial-to-mesenchymal cell transition (EMT). In this study, we investigate the mechanisms of cochlear fibrosis and the risk/benefit ratio of local administration of the anti-inflammatory drug dexamethasone (DEX) and antimitotic drug aracytine (Ara-C). Cochlear fibrosis was evaluated in cochlear fibrosis models of rat cochlear slices in vitro and in KLH-induced immune labyrinthitis and platinum wire cochlear implantation-induced fibrosis in vivo. Cochleae were invaded with tissue containing fibroblastic cells expressing α-SMA (alpha smooth muscle actin), which along with collagen I, fibronectin, and laminin in the extracellular matrix, suggests the involvement of a fibrotic process triggered by EMT in vitro and in vivo. After perilymphatic injection of an adenoviral vector expressing GFP in vivo, we demonstrated that the fibroblastic cells derived from the mesothelial cells of the scalae tympani and vestibuli. Activation of inflammatory and EMT pathways was further assessed by ELISA analysis of the expression of IL-1β and TGF-β1. Both markers were elevated in vitro and in vivo, and DEX and Ara-C were able to reduce IL-1β and TGF-β1 production. After 5days of culture in vitro, quantification of calcein-positive cells revealed that Ara-C was 30-fold more efficient in preventing fibrosis, and provoked less sensory hair cell loss, than DEX. In KLH-induced immune labyrinthitis and platinum wire-implanted models, Ara-C was more efficient in preventing proliferation of fibrosis with less side effects on hair cells and neurons than DEX. In conclusion, DEX and Ara-C both prevent fibrosis in the cochlea. Analysis of the risk/benefit ratio favors the use of Ara-C for preventing cochlear fibrosis.

  11. Inducible Expression of Inflammatory Chemokines in Respiratory Syncytial Virus-Infected Mice: Role of MIP-1α in Lung Pathology

    PubMed Central

    Haeberle, Helene A.; Kuziel, William A.; Dieterich, Hans-Juergen; Casola, Antonella; Gatalica, Zoran; Garofalo, Roberto P.

    2001-01-01

    Lower respiratory tract disease caused by respiratory syncytial virus (RSV) is characterized by profound airway mucosa inflammation, both in infants with naturally acquired infection and in experimentally inoculated animal models. Chemokines are central regulatory molecules in inflammatory, immune, and infectious processes of the lung. In this study, we demonstrate that intranasal infection of BALB/c mice with RSV A results in inducible expression of lung chemokines belonging to the CXC (MIP-2 and IP-10), CC (RANTES, eotaxin, MIP-1β, MIP-1α, MCP-1, TCA-3) and C (lymphotactin) families. Chemokine mRNA expression occurred as early as 24 h following inoculation and persisted for at least 5 days in mice inoculated with the highest dose of virus (107 PFU). In general, levels of chemokine mRNA and protein were dependent on the dose of RSV inoculum and paralleled the intensity of lung cellular inflammation. Immunohisthochemical studies indicated that RSV-induced expression of MIP-1α, one of the most abundantly expressed chemokines, was primarily localized in epithelial cells of the alveoli and bronchioles, as well as in adjoining capillary endothelium. Genetically altered mice with a selective deletion of the MIP-1α gene (−/− mice) demonstrated a significant reduction in lung inflammation following RSV infection, compared to control littermates (+/+ mice). Despite the paucity of infiltrating cells, the peak RSV titer in the lung of −/− mice was not significantly different from that observed in +/+ mice. These results provide the first direct evidence that RSV infection may induce lung inflammation via the early production of inflammatory chemokines. PMID:11134301

  12. Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte.

    PubMed

    Ying, Xiaozhou; Chen, Xiaowei; Cheng, Shaowen; Shen, Yue; Peng, Lei; Xu, Hua Zi

    2013-10-01

    Black pepper (Piper nigrum) is a common remedy in Traditional Chinese Medicine and possesses diverse biological activities including anti-inflammatory properties. Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. The present study aimed to assess the effects of piperine, the active phenolic component in black pepper extract, on human OA chondrocytes. In this study, human OA chondrocytes were pretreated with piperine at 10, 50 or 100μg/ml and subsequently stimulated with IL-1β (5ng/ml) for 24h. Production of PGE2 and NO was evaluated by the Griess reaction and an ELISA. Gene expression of MMP-3, MMP-13, iNOS and COX-2 was measured by real-time PCR. MMP-3 and MMP-13 proteins in culture medium were determined using cytokine-specific ELISA. Western immunoblotting was used to analyze the iNOS and COX-2 protein production in the culture medium. The regulation of NF-kB activity and the degradation of IkB were explored using luciferase and Western immunoblotting, respectively. We found that piperine inhibited the production of PGE2 and NO induced by IL-1β. Piperine significantly decreased the IL-1β-stimulated gene expression and production of MMP-3, MMP-13, iNOS and COX-2 in human OA chondrocytes. Piperine inhibited the IL-1β-mediated activation of NF-κB by suppressing the degradation of its inhibitory protein IκBα in the cytoplasm. The present report is first to demonstrate the anti-inflammatory activity of piperine in human OA chondrocytes. Piperine can effectively abrogate the IL-1β-induced over-expression of inflammatory mediators; suggesting that piperine may be a potential agent in the treatment of OA.

  13. Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD

    PubMed Central

    2011-01-01

    Background Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was to study macrophage heterogeneity using the M2-marker CD163 and selected pro- and anti-inflammatory mediators in bronchoalveolar lavage (BAL) fluid and induced sputum from current smokers and ex-smokers with COPD. Methods 114 COPD patients (72 current smokers; 42 ex-smokers, median smoking cessation 3.5 years) were studied cross-sectionally and underwent sputum induction (M/F 99/15, age 62 ± 8 [mean ± SD] years, 42 (31-55) [median (range)] packyears, post-bronchodilator FEV1 63 ± 9% predicted, no steroids past 6 months). BAL was collected from 71 patients. CD163+ macrophages were quantified in BAL and sputum cytospins. Pro- and anti-inflammatory mediators were measured in BAL and sputum supernatants. Results Ex-smokers with COPD had a higher percentage, but lower number of CD163+ macrophages in BAL than current smokers (83.5% and 68.0%, p = 0.04; 5.6 and 20.1 ×104/ml, p = 0.001 respectively). The percentage CD163+ M2 macrophages was higher in BAL compared to sputum (74.0% and 30.3%, p < 0.001). BAL M-CSF levels were higher in smokers than ex-smokers (571 pg/ml and 150 pg/ml, p = 0.001) and correlated with the number of CD163+ BAL macrophages (Rs = 0.38, p = 0.003). No significant differences were found between smokers and ex-smokers in the levels of pro-inflammatory (IL-6 and IL-8), and anti-inflammatory (elafin, and Secretory Leukocyte Protease Inhibitor [SLPI]) mediators in BAL and sputum. Conclusions Our data suggest that smoking cessation partially changes the macrophage polarization in vivo in the periphery of the lung towards an anti-inflammatory phenotype, which is not accompanied by a decrease in inflammatory parameters. PMID:21426578

  14. Anti-inflammatory effect of spilanthol from Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators.

    PubMed

    Wu, Li-Chen; Fan, Nien-Chu; Lin, Ming-Hui; Chu, Inn-Ray; Huang, Shu-Jung; Hu, Ching-Yuan; Han, Shang-Yu

    2008-04-01

    Spilanthes acmella (Paracress), a common spice, has been administered as a traditional folk medicine for years to cure toothaches, stammering, and stomatitis. Previous studies have demonstrated its diuretic, antibacterial, and anti-inflammatory activities. However, the active compounds contributing to the anti-inflammatory effect have seldom been addressed. This study isolates the active compound, spilanthol, by a bioactivity-guided approach and indicates significant anti-inflammatory activity on lipopolysaccharide-activated murine macrophage model, RAW 264.7. The anti-inflammatory mechanism of paracress is also investigated. Extracts of S. acmella are obtained by extraction with 85% ethanol, followed by liquid partition against hexane, chloroform, ethyl acetate, and butanol. The ethyl acetate extract exhibits a stronger free radical scavenging capacity than other fractions do, as determined by DPPH and ABTS radical scavenging assays. The chloroform extract significantly inhibits nitric oxide production ( p < 0.01) and is selected for further fractionation to yield the active compound, spilanthol. The diminished levels of LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) mRNA and protein expression support the postulation that spilanthol inhibits proinflammatory mediator production at the transcriptional and translational levels. Additionally, the LPS-stimulated IL-1beta, IL-6, and TNF-alpha productions are dose-dependently reduced by spilanthol. The LPS-induced phosphorylation of cytoplasmic inhibitor-kappaB and the nuclear NF-kappaB DNA binding activity are both restrained by spilanthol. Results of this study suggest that spilanthol, isolated from S. acmella, attenuates the LPS-induced inflammatory responses in murine RAW 264.7 macrophages partly due to the inactivation of NF-kappaB, which negatively regulates the production of proinflammatory mediators. PMID:18321049

  15. Anti-inflammatory effects of oleanolic acid on LPS-induced inflammation in vitro and in vivo.

    PubMed

    Lee, Wonhwa; Yang, Eun-Ju; Ku, Sae-Kwang; Song, Kyung-Sik; Bae, Jong-Sup

    2013-02-01

    Oleanolic acid (OA) is a triterpenoid known for its anti-inflammatory and anti-cancer properties; however, the anti-inflammatory effects of OA on lipopolysaccharide (LPS)-mediated pro-inflammatory responses have not been studied. Here, we first investigated the possible anti-inflammatory effects of OA against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) induced by LPS and the associated signaling pathways. We found that OA inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of monocytes to HUVECs. OA also suppressed acetic acid-induced hyperpermeability and carboxymethylcellulose-induced leukocyte migration in vivo. Further studies revealed that OA suppressed the production of tumor necrosis factor-α and activation of nuclear factor-κB by LPS. Collectively, these results suggest that OA has anti-inflammatory effects by inhibiting hyperpermeability, the expression of CAMs, and the adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapeutic agent for vascular inflammatory diseases.

  16. An in vitro alveolar macrophage assay for the assessment of inflammatory cytokine expression induced by atmospheric particulate matter.

    PubMed

    Sijan, Zana; Antkiewicz, Dagmara S; Heo, Jongbae; Kado, Norman Y; Schauer, James J; Sioutas, Constantinos; Shafer, Martin M

    2015-07-01

    Exposures to air pollution in the form of particulate matter (PM) can result in excess production of reactive oxygen species (ROS) in the respiratory system, potentially causing both localized cellular injury and triggering a systemic inflammatory response. PM-induced inflammation in the lung is modulated in large part by alveolar macrophages and their biochemical signaling, including production of inflammatory cytokines, the primary mechanism via which inflammation is initiated and sustained. We developed a robust, relevant, and flexible method employing a rat alveolar macrophage cell line (NR8383) which can be applied to routine samples of PM from air quality monitoring sites to gain insight into the drivers of PM toxicity that lead to oxidative stress and inflammation. Method performance was characterized using extracts of ambient and vehicular engine exhaust PM samples. Our results indicate that the reproducibility and the sensitivity of the method are satisfactory and comparisons between PM samples can be made with good precision. The average relative percent difference for all genes detected during 10 different exposures was 17.1%. Our analysis demonstrated that 71% of genes had an average signal to noise ratio (SNR) ≥ 3. Our time course study suggests that 4 h may be an optimal in vitro exposure time for observing short-term effects of PM and capturing the initial steps of inflammatory signaling. The 4 h exposure resulted in the detection of 57 genes (out of 84 total), of which 86% had altered expression. Similarities and conserved gene signaling regulation among the PM samples were demonstrated through hierarchical clustering and other analyses. Overlying the core congruent patterns were differentially regulated genes that resulted in distinct sample-specific gene expression "fingerprints." Consistent upregulation of Il1f5 and downregulation of Ccr7 was observed across all samples, while TNFα was upregulated in half of the samples and downregulated in

  17. BIM-EL localization: The key to understanding anoikis resistance in inflammatory breast cancer cells.

    PubMed

    Buchheit, Cassandra L; Schafer, Zachary T

    2016-01-01

    Inflammatory breast cancer (IBC) is a highly metastatic and rare type of breast cancer, accounting for 2-6% of newly diagnosed breast cancer cases each year. The highly metastatic nature of IBC cells remains poorly understood. Here we describe our recent data regarding the ability of IBC cells to overcome anoikis. PMID:27308529

  18. Crucial role of Toll-like receptors in the zinc/nickel-induced inflammatory response in vascular endothelial cells

    SciTech Connect

    Tsou, Tsui-Chun; Liou, Saou-Hsing; Yeh, Szu-Ching; Tsai, Feng-Yuan; Chao, How-Ran

    2013-12-15

    Our previous studies indicated that zinc induced inflammatory response in both vascular endothelial cells and promonocytes. Here, we asked if other metals could cause the similar effect on vascular endothelial cells and tried to determine its underlying mechanism. Following screening of fifteen metals, zinc and nickel were identified with a marked proinflammatory effect, as determined by ICAM-1 and IL-8 induction, on human umbilical vein endothelial cells (HUVECs). Inhibiting protein expression of myeloid differentiation primary response protein-88 (MyD88), a Toll-like receptor (TLR) adaptor acting as a TLR-signaling transducer, significantly attenuated the zinc/nickel-induced inflammatory response, suggesting the critical roles of TLRs in the inflammatory response. Blockage of TLR-4 signaling by CLI-095, a TLR-4 inhibitor, completely inhibited the nickel-induced ICAM-1 and IL-8 expression and NFκB activation. The same CLI-095 treatment significantly blocked the zinc-induced IL-8 expression, however with no significant effect on the ICAM-1 expression and a minor inhibitory effect on the NFκB activation. The finding demonstrated the differential role of TLR-4 in regulation of the zinc/nickel-induced inflammatory response, where TLR-4 played a dominant role in NFκB activation by nickel, but not by zinc. Moreover, inhibition of NFκB by adenovirus-mediated IκBα expression and Bay 11-7025, an inhibitor of cytokine-induced IκB-α phosphorylation, significantly attenuated the zinc/nickel-induced inflammatory responses, indicating the critical of NFκB in the process. The study demonstrates the crucial role of TLRs in the zinc/nickel-induced inflammatory response in vascular endothelial cells and herein deciphers a potential important difference in NFκB activation via TLRs. The study provides a molecular basis for linkage between zinc/nickel exposure and pathogenesis of the metal-related inflammatory vascular disease. - Highlights: • Both zinc and nickel cause

  19. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling

    PubMed Central

    Zhao, Yun-peng; Wei, Jian-lu; Tian, Qing-yun; Liu, Alexander Tianxing; Yi, Young-Su; Einhorn, Thomas A.; Liu, Chuan-ju

    2016-01-01

    Aseptic loosening is a major complication of prosthetic joint surgery, characterized by chronic inflammation, pain, and osteolysis surrounding the bone-implant interface. Progranulin (PGRN) is known to have anti-inflammatory action by binding to Tumor Necrosis Factor (TNF) receptors and antagonizing TNFα. Here we report that titanium particles significantly induced PGRN expression in RAW264.7 cells and also in a mouse air-pouch model of inflammation. PGRN-deficiency enhanced, whereas administration of recombinant PGRN effectively inhibited, titanium particle-induced inflammation in an air pouch model. In addition, PGRN also significantly inhibited titanium particle-induced osteoclastogenesis and calvarial osteolysis in vitro, ex vivo and in vivo. Mechanistic studies demonstrated that the inhibition of PGRN on titanium particle induced-inflammation is primarily via neutralizing the titanium particle-activated TNFα/NF-κB signaling pathway and this is evidenced by the suppression of particle-induced IκB phosphorylation, NF-κB p65 nuclear translocation, and activity of the NF-κB-specific reporter gene. Collectively, these findings not only demonstrate that PGRN plays an important role in inhibiting titanium particle-induced inflammation, but also provide a potential therapeutic agent for the prevention of wear debris-induced inflammation and osteolysis. PMID:26864916

  20. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling.

    PubMed

    Zhao, Yun-peng; Wei, Jian-lu; Tian, Qing-yun; Liu, Alexander Tianxing; Yi, Young-su; Einhorn, Thomas A; Liu, Chuan-ju

    2016-01-01

    Aseptic loosening is a major complication of prosthetic joint surgery, characterized by chronic inflammation, pain, and osteolysis surrounding the bone-implant interface. Progranulin (PGRN) is known to have anti-inflammatory action by binding to Tumor Necrosis Factor (TNF) receptors and antagonizing TNFα. Here we report that titanium particles significantly induced PGRN expression in RAW264.7 cells and also in a mouse air-pouch model of inflammation. PGRN-deficiency enhanced, whereas administration of recombinant PGRN effectively inhibited, titanium particle-induced inflammation in an air pouch model. In addition, PGRN also significantly inhibited titanium particle-induced osteoclastogenesis and calvarial osteolysis in vitro, ex vivo and in vivo. Mechanistic studies demonstrated that the inhibition of PGRN on titanium particle induced-inflammation is primarily via neutralizing the titanium particle-activated TNFα/NF-κB signaling pathway and this is evidenced by the suppression of particle-induced IκB phosphorylation, NF-κB p65 nuclear translocation, and activity of the NF-κB-specific reporter gene. Collectively, these findings not only demonstrate that PGRN plays an important role in inhibiting titanium particle-induced inflammation, but also provide a potential therapeutic agent for the prevention of wear debris-induced inflammation and osteolysis. PMID:26864916

  1. The avian head induces cues for sound localization in elevation.

    PubMed

    Schnyder, Hans A; Vanderelst, Dieter; Bartenstein, Sophia; Firzlaff, Uwe; Luksch, Harald

    2014-01-01

    Accurate sound source localization in three-dimensional space is essential for an animal's orientation and survival. While the horizontal position can be determined by interaural time and intensity differences, localization in elevation was thought to require external structures that modify sound before it reaches the tympanum. Here we show that in birds even without external structures like pinnae or feather ruffs, the simple shape of their head induces sound modifications that depend on the elevation of the source. Based on a model of localization errors, we show that these cues are sufficient to locate sounds in the vertical plane. These results suggest that the head of all birds induces acoustic cues for sound localization in the vertical plane, even in the absence of external ears.

  2. Effects of histidine and N-acetylcysteine on diclofenac-induced anti-inflammatory response in acute inflammation in rats.

    PubMed

    Farshid, Amir Abbas; Tamaddonfard, Esmaeal; Yahyaee, Fatere

    2010-11-01

    The intra-plantar injection of carrageenan elicited an inflammatory response characterized by increase of the paw thickness and infiltration of neutrophils in paw tissues. Histidine, n-acetylcysteine and diclofenac decreased paw thickness, and neutrophil infiltration in the paw tissues. The anti-inflammatory effect induced by co-administration of histidine and n-acetylcysteine with diclofenac, was more than that obtained from histidine and n-acetylcysteine administered alone. The results suggested that histidine, n-acetylcysteine and diclofenac produced anti-inflammatory activities by reducing paw edema and neutrophil infiltrationin induced by carrageenan. Inhibition of cyclooxygenase products such as prostaglandins may be involved in the anti-inflammatory effects induced by histidine and n-acetylcysteine.

  3. Inflammatory bowel disease: A descriptive study of 716 local Chilean patients

    PubMed Central

    Simian, Daniela; Fluxá, Daniela; Flores, Lilian; Lubascher, Jaime; Ibáñez, Patricio; Figueroa, Carolina; Kronberg, Udo; Acuña, Raúl; Moreno, Mauricio; Quera, Rodrigo

    2016-01-01

    AIM: To demographically and clinically characterize inflammatory bowel disease (IBD) from the local registry and update data previously published by our group. METHODS: A descriptive study of a cohort based on a registry of patients aged 15 years or older who were diagnosed with IBD and attended the IBD program at Clínica Las Condes in Santiago, Chile. The registry was created in April 2012 and includes patients registered up to October 2015. The information was anonymously downloaded in a monthly report, and the information on patients with more than one visit was updated. The registry includes demographic, clinical and disease characteristics, including the Montreal Classification, medical treatment, surgeries and hospitalizations for crisis. Data regarding infection with Clostridium difficile (C. difficile) were incorporated in the registry in 2014. Data for patients who received consultations as second opinions and continued treatment at this institution were also analyzed. RESULTS: The study included 716 patients with IBD: 508 patients (71%) were diagnosed with ulcerative colitis (UC), 196 patients (27%) were diagnosed with Crohn’s disease (CD) and 12 patients (2%) were diagnosed with unclassifiable IBD. The UC/CD ratio was 2.6/1. The median age was 36 years (range 16-88), and 58% of the patients were female, with a median age at diagnosis of 29 years (range 5-76). In the past 15 years, a sustained increase in the number of patients diagnosed with IBD was observed, where 87% of the patients were diagnosed between the years 2001 and 2015. In the cohort examined in the present study, extensive colitis (50%) and colonic involvement (44%) predominated in the patients with UC and CD, respectively. In CD patients, non-stricturing/non-penetrating behavior was more frequent (80%), and perianal disease was observed in 28% of the patients. There were significant differences in treatment between UC and CD, with a higher use of corticosteroids, and immunosuppressive

  4. HSF-1 is involved in attenuating the release of inflammatory cytokines induced by LPS through regulating autophagy.

    PubMed

    Tong, Zhongyi; Jiang, Bimei; Zhang, Lingli; Liu, Yanjuan; Gao, Min; Jiang, Yu; Li, Yuanbin; Lu, Qinglan; Yao, Yongming; Xiao, Xianzhong

    2014-05-01

    Autophagy plays a protective role in endotoxemic mice. Heat shock factor 1 (HSF-1) also plays a crucial protective role in endotoxemic mice by decreasing inflammatory cytokines. The purpose of this study was to determine whether HSF-1 is involved in attenuating the release of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated mice and peritoneal macrophages (PMs) through regulating autophagy activity. Autophagosome formation in HSF-1(+/+) and HSF-1(-/-) mice and PMs stimulated by LPS was examined by Western blotting and immunofluorescence. Lipopolysaccharide-induced autophagy and inflammatory cytokines were examined in HSF-1(+/+) and HSF-1(-/-) PMs treated with 3-methyladenine (3-MA) or rapamycin. Results showed that LPS-induced autophagy was elevated transiently at 12 h but declined at 24 h in the livers and lungs of mice. Higher levels of inflammatory cytokines and lower autophagy activity were detected in HSF-1(-/-) mice and PMs compared with HSF-1(+/+) mice and PMs. Interestingly, LPS-induced release of inflammatory cytokines did not further increase in HSF-1(-/-) PMs treated with 3-MA but aggravated in HSF-1(+/+) PMs. Lipopolysaccharide-induced autophagy did not decrease in HSF-1(-/-) PMs treated with 3-MA but decreased in HSF-1 PMs(+/+). Taken together, our results suggested that HSF-1 attenuated the release of inflammatory cytokines induced by LPS by regulating autophagy activity.

  5. Chronic fluoride exposure-induced testicular toxicity is associated with inflammatory response in mice.

    PubMed

    Wei, Ruifen; Luo, Guangying; Sun, Zilong; Wang, Shaolin; Wang, Jundong

    2016-06-01

    Previous studies have indicated that fluoride (F) can affect testicular toxicity in humans and rodents. However, the mechanism underlying F-induced testicular toxicity is not well understood. This study was conducted to evaluate the sperm quality, testicular histomorphology and inflammatory response in mice followed F exposure. Healthy male mice were randomly divided into four groups with sodium fluoride (NaF) at 0, 25, 50, 100 mg/L in the drinking water for 180 days. At the end of the exposure, significantly increased percentage of spermatozoa abnormality was found in mice exposed to 50 and 100 mg/L NaF. Disorganized spermatogenic cells, vacuoles in seminiferous tubules and loss and shedding of sperm cells were also observed in the NaF treated group. In addition, chronic F exposure increased testicular interleukin-17(IL-17), interleukin-17 receptor C (IL-17RC), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in transcriptional levels, as well as IL-17 and TNF-α levels in translational levels. Interestingly, we observed that F treated group elevated testicular inducible nitric oxide synthase (iNOS) mRNA level and nitric oxide (NO) concentration. Taken together, these results indicated that testicular inflammatory response could contribute to chronic F exposure induced testicular toxicity in mice.

  6. Interleukin-12 induces sustained activation of multiple host inflammatory mediator systems in chimpanzees.

    PubMed

    Lauw, F N; Dekkers, P E; te Velde, A A; Speelman, P; Levi, M; Kurimoto, M; Hack, C E; van Deventer, S J; van der Poll, T

    1999-03-01

    To determine in vivo effects of interleukin (IL)-12 on host inflammatory mediator systems, 4 healthy chimpanzees received recombinant human IL-12 (1 microg/kg) by intravenous injection. IL-12 induced increases in plasma concentrations of IL-15, IL-18, and interferon-gamma (IFN-gamma), plus a marked antiinflammatory cytokine response (IL-10, soluble tumor necrosis factor [TNF] receptors, IL-1 receptor antagonist) and secretion of alpha-chemokines (IL-8, IFN-gamma-inducible protein 10) and beta-chemokines (monocyte chemoattractant protein-1, macrophage inflammatory protein-1beta). In addition, IL-12 elicited neutrophilic leukocytosis, neutrophil degranulation (elastase-alpha1-antitrypsin complexes), coagulation activation (F1 + 2 prothrombin fragment, thrombin-antithrombin III complexes), and fibrinolytic activation (tissue-type plasminogen activator, plasmin-alpha2-antiplasmin complexes). IL-12-induced activation of multiple host mediator systems was found only after 8-24 h, remained detectable until the end of the 48-h observation period, and occurred in the absence of detectable TNF and IL-1beta. These data may contribute to understanding the role of IL-12 in the pathogenesis of sepsis syndrome and the toxicity found after repeated injections of IL-12.

  7. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc

    PubMed Central

    Mao, Lu; Han, Xiuguo; Zhang, Kai; Zhao, Changqing

    2016-01-01

    Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future. PMID:27190710

  8. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc.

    PubMed

    Li, Yan; Li, Kang; Mao, Lu; Han, Xiuguo; Zhang, Kai; Zhao, Changqing; Zhao, Jie

    2016-01-01

    Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future. PMID:27190710

  9. Inhibition of biomaterial-induced complement activation attenuates the inflammatory host response to implantation

    PubMed Central

    Kourtzelis, Ioannis; Rafail, Stavros; DeAngelis, Robert A.; Foukas, Periklis G.; Ricklin, Daniel; Lambris, John D.

    2013-01-01

    Although complement is a known contributor to biomaterial-induced complications, pathological implications and therapeutic options remain to be explored. Here we investigated the involvement of complement in the inflammatory response to polypropylene meshes commonly used for hernia repair. In vitro assays revealed deposition of complement activation fragments on the mesh after incubation in plasma. Moreover, significant mesh-induced complement and granulocyte activation was observed in plasma and leukocyte preparations, respectively. Pretreatment of plasma with the complement inhibitor compstatin reduced opsonization >2-fold, and compstatin and a C5a receptor antagonist (C5aRa) impaired granulocyte activation by 50 and 67%, respectively. We established a clinically relevant mouse model of implantation and could confirm deposition of C3 activation fragments on mesh implants in vivo using immunofluorescence. In meshes extracted after subcutaneous or peritoneal implantation, the amount of immune cell infiltrate in mice deficient in key complement components (C3, C5aR), or treated with C5aRa, was approximately half of that observed in wild-type littermates or mice treated with inactive C5aRa, respectively. Our data suggest that implantation of a widely used surgical mesh triggers the formation of an inflammatory cell microenvironment at the implant site through complement activation, and indicates a path for the therapeutic modulation of implant-related complications.—Kourtzelis, I., Rafail, S., DeAngelis, R. A., Foukas, P. G., Ricklin, D., Lambris, J. D. Inhibition of biomaterial-induced complement activation attenuates the inflammatory host response to implantation. PMID:23558338

  10. Strontium ranelate inhibits titanium-particle-induced osteolysis by restraining inflammatory osteoclastogenesis in vivo.

    PubMed

    Liu, Xing; Zhu, Shijun; Cui, Jingfu; Shao, Hongguo; Zhang, Wen; Yang, Huilin; Xu, Yaozeng; Geng, Dechun; Yu, Long

    2014-11-01

    Wear-particle-induced osteolysis is considered to be the main reason for revision after arthroplasty. Although the exact mechanism remains unclear, inflammatory osteoclastogenesis plays an important role in this process. Strontium ranelate (SR) was found to have a therapeutic effect on osteoporosis in postmenopausal women. Based on prior studies, the present authors hypothesized that SR prevents wear-particle-induced osteolysis through restraining inflammatory osteoclastogenesis. The present study used 80 male C57BL/J6 mice to test this hypothesis in a murine osteolysis model. All experimental animals were randomly divided into four groups: a control group; a SR group; a titanium group; and a titanium+SR group. Once titanium particles had been implanted in mice, the mice were administered SR (900 mg kg(-1) day(-1)) by gavage for 14 days. After 14 days, the calvaria were collected for micro-computed tomography (μCT), histological and molecular analysis. The results of μCT and histomorphometric analysis demonstrated that SR markedly inhibited bone resorption and the generation of tartrate-resistant acid-phosphatase-positive cells in vivo, compared with titanium-stimulated calvaria. Reverse transcription polymerase chain reaction and ELISAs showed that SR stimulated the mRNA and protein expression of osteoprotegerin, and inhibited gene and protein expression of receptor activators of nuclear factor-kappa B ligand in titanium-particle-charged calvaria. In addition, SR obviously reduced the secretion of tumor necrosis factor-α and interleukin-1β in the calvaria of the titanium group. It was concluded that SR inhibits titanium-induced osteolysis by restraining inflammatory osteoclastogenesis, and that it could be developed as a new drug to prevent and treat aseptic loosening. PMID:25078426

  11. The Role of PPARγ in Advanced Glycation End Products-Induced Inflammatory Response in Human Chondrocytes

    PubMed Central

    Li, Yu-qing; Chen, Cheng; Cai, Wei; Zeng, Yue-lin

    2015-01-01

    Objective Advances made in the past ten years highlight the notion that peroxisome proliferator-activated receptors gamma (PPARγ) has protective properties in the pathophysiology of osteoarthritis (OA). The aim of this study was to define the roles of PPARγ in AGEs-induced inflammatory response in human chondrocytes. Methods Primary human chondrocytes were stimulated with AGEs in the presence or absence of neutralizing antibody against RAGE (anti-RAGE), MAPK specific inhibitors and PPARγ agonist pioglitazone. The expression of IL-1, MMP-13, TNF-α, PPARγ, nuclear NF-κB p65 and cytosol IκBα was determined by western blotting and real-time PCR. Results AGEs could enhance the expression of IL-1, TNF-α, and MMP-13, but the level of PPARγ was decreased in a time- and dose-dependent manner, which was inhibited by anti-RAGE, SB203580 (P38 MAPK specific inhibitor) and SP600125 (a selective inhibitor of JNK). PPARγ agonist pioglitazone could inhibit the effects of AGEs-induced inflammatory response and PPARγ down-regulation. In human chondrocytes, AGEs could induce cytosol IκBα degradation and increase the level of nuclear NF-κB p65, which was inhibited by PPARγ agonist pioglitazone. Conclusions In primary human chondrocytes, AGEs could down-regulate PPARγ expression and increase the inflammatory mediators, which could be reversed by PPARγ agonist pioglitazone. Activation of RAGE by AGEs triggers a cascade of downstream signaling, including MAPK JNK/ p38, PPARγ and NF-κB. Taken together, PPARγ could be a potential target for pharmacologic intervention in the treatment of OA. PMID:26024533

  12. Joint immobilization induced hypoxic and inflammatory conditions in rat knee joints.

    PubMed

    Yabe, Yutaka; Hagiwara, Yoshihiro; Suda, Hideaki; Ando, Akira; Onoda, Yoshito; Tsuchiya, Masahiro; Hatori, Kouki; Itoi, Eiji

    2013-01-01

    The purpose of this study was to examine the hypoxic and inflammatory conditions after immobilization in the joint capsule of rat knees. The unilateral knee joints of adult male rats were immobilized with an internal fixator (Im group) for 1 day, 3 days, and 1, 2, 4, 8, and 16 weeks. Sham-operated animals had holes drilled in the femur and tibia and screws inserted without a plate (control group). The number of cells and blood vessels in the capsule were histologically examined. The hypoxic condition in the capsule was histologically examined with a Hypoxyprobe™-1. The gene expressions related to the hypoxic (hypoxia inducible factor-1α, vascular endothelial growth factor, and fibroblast growth factor 2) and inflammatory conditions [interleukin-6 (IL-6), IL-1α, IL-1β, tumor necrosis factor-α, and tumor necrosis factor-β] were evaluated by quantitative reverse transcription polymerase chain reaction. The number of cells was unchanged at 1 day in the two groups; however, the number significantly increased at 3 days in the Im group. The number of blood vessels in the Im group gradually decreased. Strong immunostaining of Hypoxyprobe™-1 around the blood vessels was observed in the Im group. The gene expressions of hypoxia inducible factor-1α and fibroblast growth factor 2 were significantly higher in the Im group compared with those in the control group. The gene expressions of IL-6, IL-1α, IL-1β, and tumor necrosis factor-β were significantly higher in the Im group compared with those in the control group. These data indicated that joint immobilization induced hypoxic and inflammatory conditions in the joint capsule, which might be an initiating factor for joint contracture.

  13. Halofuginone reduces the inflammatory responses of DSS-induced colitis through metabolic reprogramming.

    PubMed

    Liu, Jing; Xiao, Hai-Tao; Wang, Hong-Sheng; Mu, Huai-Xue; Zhao, Ling; Du, Jun; Yang, Depo; Wang, Dongmei; Bian, Zhao-Xiang; Lin, Shu-Hai

    2016-06-21

    Hypoxia and inflammation have been identified as the hallmarks of colitis, intertwined with metabolism. Here, we report that halofuginone (HF), an antiparasitic drug, attenuates dextran sulfate sodium (DSS)-induced colitis in mice, as represented by attenuating the disease activity index, inhibiting colonic shortening, ameliorating colonic lesions and histological signs of damage, reducing colonic myeloperoxidase activity, and suppressing the production of pro-inflammatory cytokines in colon tissue. Intriguingly, the hypoxia-inducible factor 1alpha (HIF-1α) and tumor necrosis factor alpha were also suppressed by HF treatment in colon tissues, exhibiting a tissue-specific effect. To further reveal the metabolic signatures upon HF treatment, mass spectrometry-based metabolomic analysis of the small molecular metabolites in liver, spleen and colon tissues was performed. As a result, we found that HF treatment counteracted the levels of acylcarnitines, including palmitoyl-l-carnitine, isobutyrylcarnitine, vaccenylcarnitine, and myristoylcarnitine, in colon tissues with DSS induction, but no significant change in the levels of acylcarnitines was observed in liver or spleen tissues. The metabolic signatures may indicate that incomplete fatty acid oxidation (FAO) in the colon could be restored upon HF treatment as the tissue-specific metabolic characterization. Taken together, our findings uncovered that the HF potentiated anti-inflammatory effect in DSS-induced colitis in mice and its underlying mechanisms could be associated with the inhibition of HIF-1α and reduced levels of acylcarnitines, suggesting that both the inhibition of HIF-1α and the counteraction of incomplete FAO might be useful in the prevention and treatment of inflammatory bowel disease.

  14. Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in IκBα/MAPK/ERK signaling pathways

    PubMed Central

    Chen, Haixia; Sohn, Johann; Zhang, Likang; Tian, Jingge; Chen, Shuhan; Bjeldanes, Leonard F.

    2014-01-01

    Schisandra chinensis Baill is a Chinese traditional medicine with multiple pharmacological activities. In this study, chicanine, one of the major lignan compounds of Schiandra chinesis, was investigated for suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages (RAW 264.7 cells). Chicanine was found to have anti-infammatory properties with the inhibition of nitric oxide (NO) and Prostaglandin E (2) (PGE2) production and nuclear factor-κB (NF-κB) signaling in LPS-stimulated RAW 264.7 cells with no cytotoxic effects. Treatment of RAW 264.7 cells with chicanine down-regulated LPS-induced expression of pro-inflammatory cytokines including TNFα, IL-1β, MCP-1, G-CSF, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). These inhibitory effects were found with the blockage of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases 1 and 2 (ERK 1/2), and also IκB-α phosphorylation. These results indicated that anti-inflammatory actions of chicanine in macrophages involved inhibition of LPS-induced TLR4-IκBα/MAPK/ERK signaling pathways. PMID:24361309

  15. Anti-inflammatory effect and low ulcerogenic activity of etodolac, a cyclooxygenase-2 selective non-steroidal anti-inflammatory drug, on adjuvant-induced arthritis in rats.

    PubMed

    Tachibana, Masaki; Inoue, Naoki; Yoshida, Eri; Matsui, Masami; Ukai, Yojiro; Yano, Junichi

    2003-06-01

    Adjuvant arthritic rats are known to be more susceptible to gastric damage induced by non-steroidal anti-inflammatory drugs (NSAIDs) than are normal rats. We compared the relative gastric safety profile of etodolac with those of meloxicam, diclofenac sodium and indometacin in adjuvant arthritic rats and normal rats or mice. As a measure of the safety profiles of NSAIDs, we used the safety index, the ratio of the dose that elicits gastric mucosal lesions to the effective dose as an anti-inflammatory or analgesic compound. The anti-inflammatory or analgesic effects of NSAIDs were assessed by paw swelling in adjuvant arthritic rats, and either carrageenin-induced paw edema or brewer's yeast-induced hyperalgesia, as well as acetic acid-induced writhing, in normal rats or mice. In addition, we also investigated the effects of these NSAIDs on human COX-1 and COX-2 activity. Etodolac and other NSAIDs inhibited paw swelling and caused gastric mucosal lesions in adjuvant arthritic rats in a dose-dependent manner. Etodolac showed the highest UD(50) value and safety index among these NSAIDs in arthritic rats. In normal rats, etodolac also showed the highest UD(50) value and safety index, except when its effects were assessed by acetic acid-induced writhing. Etodolac and meloxicam showed selectivity for human COX-2 over COX-1. In contrast, diclofenac sodium and indometacin were selective for COX-1. These results suggest that etodolac, a COX-2 selective NSAID, has anti-inflammatory effects with a better safety profile for the stomach than do non-selective NSAIDs, including diclofenac sodium and indometacin, in adjuvant arthritic as well as normal rats.

  16. Rap1 induces cytokine production in pro-inflammatory macrophages through NFκB signaling and is highly expressed in human atherosclerotic lesions

    PubMed Central

    Cai, Yin; Sukhova, Galina K; Wong, Hoi Kin; Xu, Aimin; Tergaonkar, Vinay; Vanhoutte, Paul M; Tang, Eva Hoi Ching

    2015-01-01

    Repressor activator protein 1 (Rap1) is essential for maintaining telomere length and structural integrity, but it also exerts other non-telomeric functions. The present study tested the hypothesis that Rap1 is released into the cytoplasm and induces production of pro-inflammatory cytokines via nuclear factor kappa B (NFκB) signaling in macrophages, a cell type involved in the development and progression of atherosclerotic lesions. Western blotting analysis confirmed that Rap1 was present in the cytoplasm of differentiated human monocytic leukemia cells (THP-1, a macrophage-like cell line). Co-immunoprecipitation assay revealed a direct interaction between Rap1 and I kappa B kinase (IKK). Knockdown of Rap1 suppressed lipopolysaccharide-mediated activation of NFκB, and phosphorylation of inhibitor of kappa B α (IκBα) and p65 in THP-1 macrophages. The reduction of NFκB activity was paralleled by a decreased production of NFκB-dependent pro-inflammatory cytokines and an increased expression of IκBα (native NFκB inhibitor) in various macrophage models with pro-inflammatory phenotype, including THP-1, mouse peritoneal macrophages and bone marrow-derived M1 macrophages. These changes were observed selectively in pro-inflammatory macrophages but not in bone marrow-derived M2 macrophages (with an anti-inflammatory phenotype), mouse lung endothelial cells, human umbilical vein endothelial cells or human aortic smooth muscle cells. Immunostaining revealed that Rap1 was localized mainly in macrophage-rich areas in human atherosclerotic plaques and that the presence of Rap1 was positively correlated with the advancement of the disease process. In pro-inflammatory macrophages, Rap1 promotes cytokine production via NFκB activation favoring a pro-inflammatory environment which may contribute to the development and progression of atherosclerosis. PMID:26505215

  17. Rapamycin protects neurons from brain contusion-induced inflammatory reaction via modulation of microglial activation

    PubMed Central

    SONG, QI; XIE, DUJIANG; PAN, SHIYONG; XU, WEIJUN

    2015-01-01

    The inflammatory reaction is important in secondary injury following traumatic brain injury (TBI). Rapamycin has been demonstrated as a neuroprotective agent in a mouse model of TBI, however, there is a lack of data regarding the effects of rapamycin on the inflammatory reaction following TBI. Therefore, the present study was designed to assess the effects of treatment with rapamycin on inflammatory reactions and examine the possible involvement of microglial activation following TBI. Male imprinting control region mice were randomly divided into four groups: Sham group (n=23), TBI group (n=23), TBI + dimethyl sulfoxide (DMSO) group (n=31) and TBI + rapamycin group (n=31). Rapamycin was dissolved in DMSO (50 mg/ml) and injected 30 min after TBI (2 mg/Kg; intraperitoneally). A weight-drop model of TBI was induced, and the brain tissues were harvested 24 h after TBI. The findings indicated that the administration of rapamycin following TBI was associated with decreased levels of activated microglia and neuron degeneration at the peri-injury site, reduced levels of proinflammatory cytokines and increased neurobehavioral function, possibly mediated by inactivation of the mammalian target of rapamycin pathway. The results of the present study offer novel insight into the mechanisms responsible for the anti-neuroinflammatory effects of rapamycin, possibly involving the modulation of microglial activation. PMID:26458361

  18. Vitamin E prevents ethanol-induced inflammatory, hormonal, and cytotoxic changes in reproductive tissues.

    PubMed

    Zhu, Qianlong; Emanuele, Mary Ann; LaPaglia, Nancy; Kovacs, Elizabeth J; Emanuele, Nicholas V

    2007-08-01

    Ethanol causes decreased function of the hypothalamic-pituitary-gonadal (HPG) axis. Ethanol resulted in inflammatory changes in HPG manifested by increased concentrations of pro-inflammatory cytokines. Since, such cytokines have deleterious effects on functions of HPG, it seemed possible that ethanol's suppressive action could be due, at least in part, to this inflammation. Since oxidative stress can cause inflammation, we have used the antioxidant vitamin E to test, whether reducing inflammation might protect reproductive functions from ethanol. Rats were fed an ethanol diet or pair fed identically without ethanol for a 3-week period. For the last 10 days, animals were given 30 IU/kg or 90 IU/kg or vehicle. Ethanol significantly increased hypothalamic, pituitary and testicular TNF-alpha and IL-6, all changes prevented by the higher dose of vitamin E. Also, ethanol induced changes in LHRH, LH, testosterone, and testicular germ cell apoptosis were similarly prevented by vitamin E. These data strikingly show that vitamin E protects the HPG from deleterious effects of ethanol and suggests that the mechanism of this protection might be both anti-inflammatory and antioxidant.

  19. CETP Lowers TLR4 Expression Which Attenuates the Inflammatory Response Induced by LPS and Polymicrobial Sepsis

    PubMed Central

    Castoldi, Angela; Amano, Mariane Tami; Nunes, Valeria Sutti; Quintao, Eder Carlos Rocha; Cazita, Patrícia Miralda

    2016-01-01

    Sepsis is a systemic inflammatory response to infection eliciting high mortality rate which is a serious health problem. Despite numerous studies seeking for therapeutic alternatives, the mechanisms involved in this disease remain elusive. In this study we evaluated the influence of cholesteryl ester transfer protein (CETP), a glycoprotein that promotes the transfer of lipids between lipoproteins, on the inflammatory response in mice. Human CETP transgenic mice were compared to control mice (wild type, WT) after polymicrobial sepsis induced by cecal ligation and puncture (CLP), aiming at investigating their survival rate and inflammatory profiles. Macrophages from the peritoneal cavity were stimulated with LPS in the presence or absence of recombinant CETP for phenotypic and functional studies. In comparison to WT mice, CETP mice showed higher survival rate, lower IL-6 plasma concentration, and decreased liver toll-like receptor 4 (TLR4) and acyloxyacyl hydrolase (AOAH) protein. Moreover, macrophages from WT mice to which recombinant human CETP was added decreased LPS uptake, TLR4 expression, NF-κB activation and IL-6 secretion. This raises the possibility for new therapeutic tools in sepsis while suggesting that lowering CETP by pharmacological inhibitors should be inconvenient in the context of sepsis and infectious diseases. PMID:27293313

  20. Palmitoleate induces hepatic steatosis but suppresses liver inflammatory response in mice.

    PubMed

    Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Ong, Kuok Teong; Woo, Shih-Lung; Walzem, Rosemary L; Mashek, Douglas G; Dong, Hui; Lu, Fuer; Wei, Lai; Huo, Yuqing; Wu, Chaodong

    2012-01-01

    The interaction between fat deposition and inflammation during obesity contributes to the development of non-alcoholic fatty liver disease (NAFLD). The present study examined the effects of palmitoleate, a monounsaturated fatty acid (16:1n7), on liver metabolic and inflammatory responses, and investigated the mechanisms by which palmitoleate increases hepatocyte fatty acid synthase (FAS) expression. Male wild-type C57BL/6J mice were supplemented with palmitoleate and subjected to the assays to analyze hepatic steatosis and liver inflammatory response. Additionally, mouse primary hepatocytes were treated with palmitoleate and used to analyze fat deposition, the inflammatory response, and sterol regulatory element-binding protein 1c (SREBP1c) activation. Compared with controls, palmitoleate supplementation increased the circulating levels of palmitoleate and improved systemic insulin sensitivity. Locally, hepatic fat deposition and SREBP1c and FAS expression were significantly increased in palmitoleate-supplemented mice. These pro-lipogenic events were accompanied by improvement of liver insulin signaling. In addition, palmitoleate supplementation reduced the numbers of macrophages/Kupffer cells in livers of the treated mice. Consistently, supplementation of palmitoleate decreased the phosphorylation of nuclear factor kappa B (NF-κB, p65) and the expression of proinflammatory cytokines. These results were recapitulated in primary mouse hepatocytes. In terms of regulating FAS expression, treatment of palmitoleate increased the transcription activity of SREBP1c and enhanced the binding of SREBP1c to FAS promoter. Palmitoleate also decreased the phosphorylation of NF-κB p65 and the expression of proinflammatory cytokines in cultured macrophages. Together, these results suggest that palmitoleate acts through dissociating liver inflammatory response from hepatic steatosis to play a unique role in NAFLD.

  1. Sensory and inflammatory colonic changes induced by vincristine in distinct rat models of colitis.

    PubMed

    Viana-Cardoso, K V; Silva, M T B; Peixoto-Junior, A A; Marinho, L S; Matias, N S; Soares, P M G; Santos, A A; Brito, G A C; Rola, F H; Gondim, F de A A

    2015-04-01

    Preclinical and clinical studies show that gastrointestinal (GI) inflammation can evoke sensory changes occasionally far from the original inflammatory site. Animal models of colitis with either trinitrobenzenesulphonic acid (TNBS) or mustard oil (MO) produce distinct patterns of somatic and visceral sensory changes. We evaluated the effects of four doses of i.v. vincristine 150 μg kg(-1) (total of 600 μg kg(-1) ) treatment on the somatic (thermal nociceptive threshold) and colonic (morphological) changes induced by TNBS or MO in rats. TNBS and MO groups were further submitted to vincristine or saline pretreatments. TNBS induced somatic hypersensitivity, while MO induced somatic hyposensitivity (P < 0.05) when compared to the saline and ethanol control groups. Vincristine per se induced somatic hypersensitivity (P < 0.05). This effect was enhanced by TNBS and reversed by MO treatments. Although vincristine increased the colitis area (colonic weight length(-1) ratio) and the Morris' score in TNBS-treated rats, it did not alter the colitis area and even lowered the Morris' score in MO-treated rats. Compared to the saline (control) group, vincristine did not alter the colonic microscopic pattern. However, such lesions scores are higher (P < 0.05) in colitis groups induced by TNBS and MO, pretreated or not with vincristine. In conclusion, the somatic changes induced by different models of experimental colitis are diverse and modulated differently by vincristine.

  2. β-Cryptoxanthin Alleviates Diet-Induced Nonalcoholic Steatohepatitis by Suppressing Inflammatory Gene Expression in Mice

    PubMed Central

    Kobori, Masuko; Ni, Yinhua; Takahashi, Yumiko; Watanabe, Natsumi; Sugiura, Minoru; Ogawa, Kazunori; Nagashimada, Mayumi; Kaneko, Shuichi; Naito, Shigehiro; Ota, Tsuguhito

    2014-01-01

    Recent nutritional epidemiological surveys showed that serum β-cryptoxanthin inversely associates with the risks for insulin resistance and liver dysfunction. Consumption of β-cryptoxanthin possibly prevents nonalcoholic steatohepatitis (NASH), which is suggested to be caused by insulin resistance and oxidative stress from nonalcoholic fatty liver disease. To evaluate the effect of β-cryptoxanthin on diet-induced NASH, we fed a high-cholesterol and high-fat diet (CL diet) with or without 0.003% β-cryptoxanthin to C56BL/6J mice for 12 weeks. After feeding, β-cryptoxanthin attenuated fat accumulation, increases in Kupffer and activated stellate cells, and fibrosis in CL diet-induced NASH in the mice. Comprehensive gene expression analysis showed that although β-cryptoxanthin histochemically reduced steatosis, it was more effective in inhibiting inflammatory gene expression change in NASH. β-Cryptoxanthin reduced the alteration of expression of genes associated with cell death, inflammatory responses, infiltration and activation of macrophages and other leukocytes, quantity of T cells, and free radical scavenging. However, it showed little effect on the expression of genes related to cholesterol and other lipid metabolism. The expression of markers of M1 and M2 macrophages, T helper cells, and cytotoxic T cells was significantly induced in NASH and reduced by β-cryptoxanthin. β-Cryptoxanthin suppressed the expression of lipopolysaccharide (LPS)-inducible and/or TNFα-inducible genes in NASH. Increased levels of the oxidative stress marker thiobarbituric acid reactive substances (TBARS) were reduced by β-cryptoxanthin in NASH. Thus, β-cryptoxanthin suppresses inflammation and the resulting fibrosis probably by primarily suppressing the increase and activation of macrophages and other immune cells. Reducing oxidative stress is likely to be a major mechanism of inflammation and injury suppression in the livers of mice with NASH. PMID:24858832

  3. Antioxidant and anti-inflammatory role of zingerone in ethanol-induced hepatotoxicity.

    PubMed

    Mani, Vijay; Arivalagan, Sivaranjani; Siddique, Aktarul Islam; Namasivayam, Nalini

    2016-10-01

    Alcoholic liver disease is a direct result of alcohol-induced hepatotoxicity coupled with impaired hepatic regenerative activity. Our aim of the study was to investigate the beneficial effect of zingerone on hepatic oxidative stress and inflammation induced by ethanol in experimental rats. Male albino Wistar rats were divided into four groups. Rats of groups 1 and 2 received isocaloric glucose and dimethyl sulfoxide (2 % DMSO). Hepatotoxicity was induced in groups 3 and 4 by supplementing 30 % ethanol post orally for 60 days. Rats of groups 2 and 4 received zingerone (20 mg/kg body weight in 2 % DMSO p.o) daily during the final 30 days of the experimental period. Ethanol alone administered rats showed significant increase in the plasma and tissue lipid peroxidation markers such as thiobarbituric acid reactive substances, lipid hydroperoxides, conjugated dienes, and a significant decrease in the activities of plasma and tissue enzymic and non-enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, reduced glutathione, vitamin C, and vitamin E. Moreover, the presence of mast cells and increase in the expressions of inflammatory markers such as NF-κB, COX-2, TNF-α, and IL-6 and decrease in the expression of Nrf2 in the liver was observed in ethanol-fed rats. Supplementation with zingerone to ethanol-fed rats reversed the changes induced by ethanol in the experimental rats. Thus, zingerone, through its antioxidant and anti-inflammatory effects, may represent a therapeutic option to protect against ethanol-induced hepatotoxicity. PMID:27544404

  4. Shock wave induces biological renal damage by activating excessive inflammatory responses in rat model.

    PubMed

    Li, Xiang; Long, Qingzhi; Cheng, Xinfa; He, Dalin

    2014-08-01

    The study was aimed to investigate the potential mechanism of inflammatory renal damage induced by shock wave. A total of 48 rats, with the right kidney cut, are randomly assigned into control group, ESWL group and ESWL + PDTC group. Rats were treated with shock wave at the left kidney. At post-shock wave 3 and 105 days, all the animals were sacrificed for detecting the expression of tumor necrosis factor (TNF)-α, intercellular adhesion molecule (ICAM)-1, and monocyte chemoattractant protein (MCP)-1. The inflammatory responses were evaluated by detecting the level of myeloperoxidase (MPO) and ED-1. The histological renal injury was also examined. Before the animals were sacrificed, the urine samples were collected for measuring the values of malondialdehyde (MDA), β2-microglobulin, interleukin (IL)-6, and IL-18. At post-shock wave 3 days, the higher expression of ICAM-1 and TNF-α were observed in shock wave-treated kidneys. The level of urine TNF-α, IL-6, and IL-18 were also increased significantly. Using PDTC obviously decreased the expression of ICAM-1 and TNF-α. It also effectively inhibited the degree of oxidative stress and neutrophil infiltration. At post-shock wave 105 days, the expression of MCP-1 and the level of urine β2-microglobulin and IL-18 were increased significantly. The histological analysis also indicated more ED-1-positive cells and serious fibrosis in shock wave-treated kidneys. PDTC significantly suppressed MCP-1 and IL-18 expression, decreased monocyte infiltration, and alleviate the degree of interstitium fibrosis. Shock wave triggered excessive inflammatory responses and aggravated renal biological damage. Several inflammatory factors including ICAM-1, MCP-1, and TNF-α were considered to play important role in this type of renal damage.

  5. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status.

    PubMed

    Huang, Xianfeng; Liu, Yuanyuan; Lu, Yingxun; Ma, Chunhua

    2015-05-01

    Acute lung injury (ALI) represents a clinical syndrome that results from complex responses of the lung to a multitude of direct and indirect insults. This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of eugenol (EUL) on lipopolysaccharide (LPS)-induced inflammatory reaction in ALI. ALI was induced in mice by intratracheal instillation of LPS (0.5 mg/kg), and EUL (5, and 10 mg/kg) was injected intraperitoneally 1h prior to LPS administration. After 6h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The findings suggest that the protective mechanism of EUL may be attributed partly to decreased production of proinflammatory cytokines through the regulating inflammation and redox status. The results support that use of EUL is beneficial in the treatment of ALI.

  6. Immune/Inflammatory Response and Hypocontractility of Rabbit Colonic Smooth Muscle After TNBS-Induced Colitis

    PubMed Central

    Zhang, Yonggang; Li, Fang; Wang, Hong; Yin, Chaoran; Huang, JieAn; Mahavadi, Sunila; Murthy, Karnam S.

    2016-01-01

    Background The contractility of colonic smooth muscle is dysregulated due to immune/inflammatory responses in inflammatory bowel diseases. Inflammation in vitro induces up-regulation of regulator of G-protein signaling 4 (RGS4) expression in colonic smooth muscle cells. Aims To characterize the immune/inflammatory responses and RGS4 expression pattern in colonic smooth muscle after induction of colitis. Methods Colitis was induced in rabbits by intrarectal instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Innate/adaptive immune response RT-qPCR array was performed using colonic circular muscle strips. At 1–9 weeks after colonic intramuscular microinjection of lentivirus, the distal and proximal colons were collected, and muscle strips and dispersed muscle cells were prepared from circular muscle layer. Expression levels of RGS4 and NFκB signaling components were determined by Western blot analysis. The biological consequences of RGS4 knockdown were assessed by measurement of muscle contraction and phospholipase C (PLC)-β activity in response to acetylcholine (ACh). Results Contraction in response to ACh was significantly inhibited in the inflamed colonic circular smooth muscle cells. RGS4, IL-1, IL-6, IL-8, CCL3, CD1D, and ITGB2 were significantly up-regulated, while IL-18, CXCR4, CD86, and C3 were significantly down-regulated in the inflamed muscle strips. RGS4 protein expression in the inflamed smooth muscles was dramatically increased. RGS4 stable knockdown in vivo augmented ACh-stimulated PLC-β activity and contraction in colonic smooth muscle cells. Conclusion Inflamed smooth muscle exhibits up-regulation of IL-1-related signaling components, Th1 cytokines and RGS4, and inhibition of contraction. Stable knockdown of endogenous RGS4 in colonic smooth muscle increases PLC-β activity and contractile responses. PMID:26879904

  7. Croton antisyphiliticus Mart. attenuates the inflammatory response to carrageenan-induced pleurisy in mice.

    PubMed

    Dos Reis, Gustavo Oliveira; Vicente, Geison; de Carvalho, Francieli Kanumfre; Heller, Melina; Micke, Gustavo Amadeu; Pizzolatti, Moacir Geraldo; Fröde, Tânia Silvia

    2014-04-01

    The aim of this study was to investigate the anti-inflammatory effect of the crude hydroalcoholic extract (CHE) from the aerial parts of Croton antisyphiliticus, its fractions and isolated compounds derived from it on the mouse model of pleurisy induced by carrageenan. The aerial parts of C. antisyphiliticus were dried, macerated and extracted with ethanol to obtain the CHE, which was fractionated by liquid-liquid extraction using solvents with increasing polarity to obtain hexane (Hex), ethyl acetate (EA) and aqueous (Aq) fractions. Vitexin and quinic acid were isolated from Aq fraction. Capillary electrophoresis analysis, physical characteristics and spectral data produced by infrared (IR), nuclear magnetic resonance ((1)H and (13)C NMR) and mass spectrometry analyses were used to identify and elucidate the structure of the isolated compounds. The experimental model of pleurisy was induced in mice by a single intrapleural injection of carrageenan (1 %). Leukocytes, exudate concentrations, myeloperoxidase (MPO) and adenosine-deaminase (ADA) activities and nitrate/nitrite (NOx), tumor necrosis factor-α (TNF-α) and interleukin-17 (IL-17) levels were determined in the pleural fluid leakage at 4 h after pleurisy induction. Animals pre-treated with CHE, Hex, EA, Aq, vitexin and quinic acid exhibited decreases in leukocytes, exudate concentrations, MPO and ADA activities and NOx levels (p < 0.05). Also CHE, Hex, EA and vitexin but not quinic acid inhibited TNF-α and IL-17 levels (p < 0.05). C. antisyphiliticus caused anti-inflammatory effect by inhibiting the activated leukocytes, exudate concentrations, NOx, TNF-α, and IL-17 levels. The compounds vitexin and quinic acid may be responsible for this anti-inflammatory action.

  8. Calcitriol inhibits TNF-alpha-induced inflammatory cytokines in human trophoblasts.

    PubMed

    Díaz, Lorenza; Noyola-Martínez, Nancy; Barrera, David; Hernández, Guillermo; Avila, Euclides; Halhali, Ali; Larrea, Fernando

    2009-07-01

    Elevated placental proinflammatory cytokine release is associated with miscarriage, preterm labor and preeclampsia. Specifically, tumor necrosis factor-alpha (TNF-alpha)-induced cytokines may threaten pregnancy outcome. Since trophoblasts produce calcitriol, a hormone with strong immunosuppressive properties, we assessed the effects of this secosteroid on inflammatory cytokines induced in trophoblasts by challenge with TNF-alpha. The effects of calcitriol on synthesis of mRNAs encoding interleukin-6 (IL-6), interferon-gamma (IFN-gamma), and TNF-alpha were measured by real time RT-PCR. Secreted cytokines were quantified by ELISA. The effects of TNF-alpha on CYP24A1, chorionic gonadotropin (hCG), 3beta-hydroxysteroid dehydrogenase (HSD3B1) and P(450)-aromatase (CYP19) mRNA expression were also studied. TNF-alpha stimulated IL-6, IFN-gamma and its own expression more than 3-fold over controls (P<0.05). Calcitriol inhibited the expression profile of inflammatory cytokine genes in a dose-response manner (P<0.05). This effect was prevented by addition of the vitamin D receptor antagonist TEI-9647. TNF-alpha also significantly inhibited expression of hCG, HSD3B1 and CYP19 genes, and stimulated CYP24A1 gene expression. These data show that calcitriol prevents TNF-alpha induction of inflammatory cytokines through a process likely to be mediated by the vitamin D receptor. We conclude that TNF-alpha inhibits placental hormone synthesis and stimulates calcitriol catabolism by regulating enzymes involved in these processes.

  9. In vivo anti-inflammatory action of eugenol on lipopolysaccharide-induced lung injury.

    PubMed

    Magalhães, Clarissa B; Riva, Douglas R; DePaula, Leonardo J; Brando-Lima, Aline; Koatz, Vera Lúcia G; Leal-Cardoso, José Henrique; Zin, Walter A; Faffe, Débora S

    2010-04-01

    Eugenol, a methoxyphenol component of clove oil, suppresses cyclooxygenase-2 expression, while eugenol dimers prevent nuclear factor-kappaB (NF-kappaB) activation and inflammatory cytokine expression in lipopolysaccharide-stimulated macrophages. Our aim was to examine the in vivo anti-inflammatory effects of eugenol. BALB/c mice were divided into four groups. Mice received saline [0.05 ml intratracheally (it), control (Ctrl) and eugenol (Eug) groups] or Escherichia coli LPS (10 microg it, LPS and LPSEug groups). After 6 h, mice received saline (0.2 ml ip, Ctrl and LPS groups) or eugenol (160 mg/kg ip, Eug and LPSEug groups). Twenty-four hours after LPS injection, pulmonary resistive (DeltaP1) and viscoelastic (DeltaP2) pressures, static elastance (E(st)), and viscoelastic component of elastance (DeltaE) were measured. Lungs were prepared for histology. In parallel mice, bronchoalveolar lavage fluid was collected 24 h after LPS injection. TNF-alpha was determined by ELISA. Lung tissue expression of NF-kappaB was determined by EMSA. DeltaP1, DeltaP2, E(st), and DeltaE were significantly higher in the LPS group than in the other groups. LPS mice also showed significantly more alveolar collapse, collagen fibers, and neutrophil influx and higher TNF-alpha levels and NF-kappaB expression than the other groups. Eugenol treatment reduced LPS-induced lung inflammation, improving lung function. Our results suggest that eugenol exhibits in vivo anti-inflammatory action in LPS-induced lung injury.

  10. Two-dimensional atom localization induced by a squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Xu, Jun

    2016-10-01

    A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148).

  11. Taraxasterol inhibits IL-1β-induced inflammatory response in human osteoarthritic chondrocytes.

    PubMed

    Piao, Taikui; Ma, Zhiqiang; Li, Xin; Liu, Jianyu

    2015-06-01

    Osteoarthritis (OA), a chronic degenerative joint disease, is a leading cause of disability among elderly patients. Taraxasterol, a pentacyclic-triterpene isolated from Taraxacum officinale, has been shown to have anti-inflammatory effects. However, the protective effect of taraxasterol on OA remains unclear. In order to provide a scientific basis for the applicability of taraxasterol in OA, the anti-inflammatory effects of taraxasterol on IL-1β-stimulated osteoarthritic chondrocytes were investigated. Chondrocytes were pretreated with taraxasterol 1h before IL-1β treatment. The productions of MMP-1, MMP3, MMP13, PGE2 and NO were measured by ELISA and Griess reaction. The expression of COX-2, iNOS, and NF-κB was detected by western blot analysis. Our results demonstrated that taraxasterol dose-dependently suppressed MMP-1, MMP3, MMP13, PGE2 and NO production induced by IL-1β. The expression of COX-2 and iNOS was also inhibited by taraxasterol. Western blot analysis showed that taraxasterol suppressed IL-1β-induced NF-κB activation in a dose-dependent manner. Taken together, we found that taraxasterol protected human chondrocytes by inhibiting MMPs, NO and PGE2 production. Taraxasterol may be a useful agent for prevention and treatment of OA. PMID:25797286

  12. Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity.

    PubMed

    Mannion, R J; Costigan, M; Decosterd, I; Amaya, F; Ma, Q P; Holstege, J C; Ji, R R; Acheson, A; Lindsay, R M; Wilkinson, G A; Woolf, C J

    1999-08-01

    Brain-derived neurotrophic factor (BDNF) is expressed in nociceptive sensory neurons and transported anterogradely to the dorsal horn of the spinal cord where it is located in dense core vesicles in C-fiber terminals. Peripheral inflammation substantially up-regulates BDNF mRNA and protein in the dorsal root ganglion (DRG) in a nerve growth factor-dependent fashion and results in novel expression of BDNF by DRG neurons with myelinated axons. C-fiber electrical activity also increases BDNF expression in the DRG, and both inflammation and activity increase full-length TrkB receptor levels in the dorsal horn. Sequestration of endogenous BDNF/neurotrophin 4 by intraspinal TrkB-Fc fusion protein administration does not, in noninflamed animals, change basal pain sensitivity nor the mechanical hypersensitivity induced by peripheral capsaicin administration, a measure of C fiber-mediated central sensitization. TrkB-Fc administration also does not modify basal inflammatory pain hypersensitivity, but does block the progressive hypersensitivity elicited by low-intensity tactile stimulation of inflamed tissue. BDNF, by virtue of its nerve growth factor regulation in sensory neurons including novel expression in A fibers, has a role as a central modulator of tactile stimulus-induced inflammatory pain hypersensitivity.

  13. The oxidative damage and inflammatory response induced by lead sulfide nanoparticles in rat lung.

    PubMed

    Li, Qingzhao; Hu, Xiaoli; Bai, Yuping; Alattar, Mohamed; Ma, Dong; Cao, Yanhua; Hao, Yulan; Wang, Lihua; Jiang, Chunyang

    2013-10-01

    Lead sulfide nanoparticles (PbS NPs) are one important nanoparticle materials which is widely used in photoelectric production, but its potential health hazard to respiratory system is not clear. This study aimed to explore the possible mechanism of lung injury induced by PbS NPs. Male SD rats were treated with nanoparticles of 60 nm and 30 nm lead sulfide. The main methods were detecting the vigor of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) and the content of malondialdehyde (MDA) in both blood and lung tissues and observing the pathological changes in lung tissue. PbS NPs suppressed the activity of SOD and T-AOC, and increased serum MDA content (P<0.05); both effects were observed together in lung tissues of 30-nm group (P<0.05) accompanied by an obviously inflammatory response. PbS NPs induced oxidative damage and inflammatory response in lung tissue, which may be an underlying mechanism for its pulmonary toxicity. Additionally, the toxicity of PbS NPs was closely related with the size of nanoparticles.

  14. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses.

    PubMed

    Kim, S B; Bozeman, R G; Kaisani, A; Kim, W; Zhang, L; Richardson, J A; Wright, W E; Shay, J W

    2016-06-30

    Proton radiotherapy is becoming more common as protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared with conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole-body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIRs), which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence-associated gene (P19Arf), are markedly increased. Following these changes, loss of Casein kinase Iα and induction of chronic DNA damage and TP53 mutations are increased compared with X-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid-ethyl amide (CDDO-EA), reduces proton irradiation-associated SIR and tumorigenesis. Thus exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA.

  15. Radiation Promotes Colorectal Cancer Initiation and Progression by Inducing Senescence-Associated Inflammatory Responses

    PubMed Central

    Kim, Sang Bum; Bozeman, Ronald; Kaisani, Aadil; Kim, Wanil; Zhang, Lu; Richardson, James A.; Wright, Woodring E.; Shay, Jerry W.

    2015-01-01

    Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  16. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations

    PubMed Central

    Hurtado-Alvarado, Gabriela; Castillo-García, Stephanie Ariadne; Hernández, María Eugenia; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier; Gómez-González, Beatriz

    2013-01-01

    A reduction in the amount of time spent sleeping occurs chronically in modern society. Clinical and experimental studies in humans and animal models have shown that immune function is impaired when sleep loss is experienced. Sleep loss exerts a strong regulatory influence on peripheral levels of inflammatory mediators of the immune response. An increasing number of research projects support the existence of reciprocal regulation between sleep and low-intensity inflammatory response. Recent studies show that sleep deficient humans and rodents exhibit a proinflammatory component; therefore, sleep loss is considered as a risk factor for developing cardiovascular, metabolic, and neurodegenerative diseases (e.g., diabetes, Alzheimer's disease, and multiple sclerosis). Circulating levels of proinflammatory mediators depend on the intensity and duration of the method employed to induce sleep loss. Recognizing the fact that the concentration of proinflammatory mediators is different between acute and chronic sleep-loss may expand the understanding of the relationship between sleep and the immune response. The aim of this review is to integrate data from recent published reports (2002–2013) on the effects of sleep loss on the immune response. This review may allow readers to have an integrated view of the mechanisms involved in central and peripheral deficits induced by sleep loss. PMID:24367384

  17. Astaxanthin Inhibits Expression of Retinal Oxidative Stress and Inflammatory Mediators in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Yeh, Po-Ting; Huang, Hsin-Wei; Yang, Chung-May; Yang, Wei-Shiung; Yang, Chang-Hao

    2016-01-01

    Purpose We evaluated whether orally administered astaxanthin (AST) protects against oxidative damage in the ocular tissues of streptozotocin (STZ)-induced diabetic rats. Methods and Results Fifty 6-week-old female Wistar rats were randomly assigned to receive an injection of STZ to induce diabetes (n = 40) or to remain uninduced (n = 10). The diabetic rats were randomly selected into four groups and they were separately administered normal saline, 0.6 mg/kg AST, 3 mg/kg AST, or 0.5 mg/kg lutein daily for eight weeks. Retinal functions of each group were evaluated by electroretinography. The expression of oxidative stress and inflammatory mediators in the ocular tissues was then assessed by immunohistochemistry, western blot analysis, ELISA, RT-PCR, and electrophoretic mobility shift assay (EMSA). Retinal functions were preserved by AST and lutein in different levels. Ocular tissues from AST- and lutein-treated rats had significantly reduced levels of oxidative stress mediators (8-hydroxy-2'-deoxyguanosine, nitrotyrosine, and acrolein) and inflammatory mediators (intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and fractalkine), increased levels of antioxidant enzymes (heme oxygenase-1 and peroxiredoxin), and reduced activity of the transcription factor nuclear factor-kappaB (NF-κB). Conclusion The xanthophyll carotenoids AST and lutein have neuroprotective effects and reduce ocular oxidative stress, and inflammation in the STZ diabetic rat model, which may be mediated by downregulation of NF-κB activity. PMID:26765843

  18. Suppression of KSHV-induced angiopoietin-2 inhibits angiogenesis, infiltration of inflammatory cells, and tumor growth.

    PubMed

    Yu, Xiaolan; Sha, Jingfeng; Xiang, Shao; Qin, Sanhai; Conrad, Patricia; Ghosh, Santosh K; Weinberg, Aaron; Ye, Fengchun

    2016-08-01

    Kaposi's sarcoma (KS) is a highly angiogenic and inflammatory neoplasia. The angiogenic and inflammatory cytokine angiopoietin-2 (Ang-2) is strongly expressed in KS due to Kaposi's sarcoma-associated herpesvirus (KSHV) infection. In the present study, we determined how Ang-2 contributes to development of KS by using telomerase-immortalized human umbilical vein endothelial cells (TIVE) as a model, which become malignantly transformed and express increased levels of Ang-2 following KSHV infection. Ang-2 released from TIVE-KSHV cells induces tyrosine phosphorylation of Tie-2 receptor from both human and mouse endothelial cells and promotes angiogenesis in nude mice. Functional inhibition or expressional "knock-down" of Ang-2 in these cells blocks angiogenesis and inhibits tumor growth. Ang-2 suppression also reduces the numbers of infiltrating monocytes/macrophages in tumors. In transwell-based cell migration assays, Ang-2 indeed enhances migration of human monocytes in a dose-dependent manner. These results underscore a pivotal role of KSHV-induced Ang-2 in KS tumor development by promoting both angiogenesis and inflammation. Our data also suggest that selective drug targeting of Ang-2 may be used for treatment of KS. PMID:27294705

  19. Anti-metastatic Potential of Amide-linked Local Anesthetics: Inhibition of Lung Adenocarcinoma Cell Migration and Inflammatory Src Signaling Independent of Sodium Channel Blockade

    PubMed Central

    Piegeler, Tobias; Votta-Velis, E. Gina; Liu, Guoquan; Place, Aaron T.; Schwartz, David E.; Beck-Schimmer, Beatrice; Minshall, Richard D.; Borgeat, Alain

    2012-01-01

    Background Retrospective analysis of patients undergoing cancer surgery suggests the use of regional anesthesia may reduce cancer recurrence and improve survival. Amide-linked local anesthetics have anti-inflammatory properties, although the mechanism of action in this regard is unclear. As inflammatory processes involving Src tyrosine protein kinase and intercellular adhesion molecule-1 are important in tumor growth and metastasis, we hypothesized that amide-linked local anesthetics may inhibit inflammatory Src-signaling involved in migration of adenocarcinoma cells. Methods NCI-H838 lung cancer cells were incubated with Tumor Necrosis Factor-α in absence/presence of ropivacaine, lidocaine, or chloroprocaine (1nM-100μM). Cell migration and total cell lysate Src-activation and Intercellular Adhesion Molecule-1 phosphorylation were assessed. The role of voltage-gated sodium-channels in the mechanism of local anesthetic effects was also evaluated. Results Ropivacaine treatment (100μM) of H838 cells for 20 minutes decreased basal Src activity by 62% (p=0.003), and both ropivacaine and lidocaine co-administered with Tumor Necrosis Factor-α statistically significantly decreased Src-activation and Intercellular Adhesion Molecule-1 phosphorylation, whereas chloroprocaine had no such effect. Migration of these cells at 4 hours was inhibited by 26% (p=0.005) in presence of 1μM ropivacaine and 21% by 1μM lidocaine (p=0.004). These effects of ropivacaine and lidocaine were independent of voltage-gated sodium-channel inhibition. Conclusions This study indicates that amide-, but not ester-linked local anesthetics may provide beneficial anti-metastatic effects. The observed inhibition of NCI-H838 cell migration by lidocaine and ropivacaine was associated with the inhibition of Tumor Necrosis Factor-α-induced Src-activation and Intercellular Adhesion Molecule-1 phosphorylation, providing the first evidence of a molecular mechanism which appears to be independent of their

  20. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury.

    PubMed

    Silveira, Paulo Cesar Lock; Scheffer, Debora da Luz; Glaser, Viviane; Remor, Aline Pertile; Pinho, Ricardo Aurino; Aguiar Junior, Aderbal Silva; Latini, Alexandra

    2016-01-01

    The purpose of this work was to investigate the effect of early and long-term low-level laser therapy (LLLT) on oxidative stress and inflammatory biomarkers after acute-traumatic muscle injury in Wistar rats. Animals were randomly divided into the following four groups: control group (CG), muscle injury group (IG), CG + LLLT, and IG + LLLT: laser treatment with doses of 3 and 5 J/cm(2). Muscle traumatic injury was induced by a single-impact blunt trauma in the rat gastrocnemius. Irradiation for 3 or 5 J/cm(2) was initiated 2, 12, and 24 h after muscle trauma induction, and the treatment was continued for five consecutive days. All the oxidant markers investigated. namely thiobarbituric acid-reactive substance, carbonyl, superoxide dismutase, glutathione peroxidase, and catalase, were increased as soon as 2 h after muscle injury and remained increased up to 24 h. These alterations were prevented by LLLT at a 3 J/cm(2) dose given 2 h after the trauma. Similarly, LLLT prevented the trauma-induced proinflammatory state characterized by IL-6 and IL-10. In parallel, trauma-induced reduction in BDNF and VEGF, vascular remodeling and fiber-proliferating markers, was prevented by laser irradiation. In order to test whether the preventive effect of LLLT was also reflected in muscle functionality, we tested the locomotor activity, by measuring distance traveled and the number of rearings in the open field test. LLLT was effective in recovering the normal locomotion, indicating that the irradiation induced biostimulatory effects that accelerated or resolved the acute inflammatory response as well as the oxidant state elicited by the muscle trauma. PMID:26983894

  1. Effect of different doses of Manuka honey in experimentally induced inflammatory bowel disease in rats.

    PubMed

    Prakash, A; Medhi, B; Avti, P K; Saikia, U N; Pandhi, P; Khanduja, K L

    2008-11-01

    To evaluate the effect of different doses of Manuka honey in experimentally induced inflammatory bowel disease in rats. Adult Wistar rats of either sex were used (n = 30). Colitis was induced by a single intracolonic administration of TNBS dissolved in 35% ethanol. The rats (n = 30) were divided into five groups (n = 6) and were treated with vehicle (ethanol), TNBS, Manuka honey (5 g/kg, p.o.), Manuka honey (10 g/kg, p.o.) or sulfasalazine (360 mg/kg, p.o.) body weight for 14 days. After completion of treatment, the animals were killed and the following parameters were assessed: morphological score, histological score and different antioxidant parameters.Manuka honey at different doses provided protection against TNBS-induced colonic damage. There was significant protection with Manuka honey 5 g/kg as well as with 10 g/kg body weight compared with the control (p < 0.001). All the treated groups showed reduced colonic inflammation and all the biochemical parameters were significantly reduced compared with the control in the Manuka honey treated groups (p < 0.001). Manuka honey at different doses restored lipid peroxidation as well as improved antioxidant parameters. Morphological and histological scores were significantly reduced in the low dose Manuka honey treated group (p < 0.001). In the inflammatory model of colitis, oral administration of Manuka honey 5 g/kg and Manuka honey 10 g/kg body weight significantly reduced the colonic inflammation. The present study indicates that Manuka honey is efficacious in the TNBS-induced rat colitis model, but these results require further confirmation in human studies.

  2. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    SciTech Connect

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  3. Short Chain Fatty Acids Induce Pro-Inflammatory Cytokine Production Alone And In Combination With Toll-like Receptor Ligands

    PubMed Central

    Mirmonsef, Paria; Zariffard, M Reza; Gilbert, Douglas; Makinde, Hadijat; Landay, Alan L.; Spear, Greg T.

    2011-01-01

    Problem Short chain fatty acids (SCFAs), produced at relatively high levels by anaerobic bacteria in bacterial vaginosis (BV), are believed to be anti-inflammatory. BV, a common alteration of the genital microbiota associated with increased susceptibility to HIV infection, is characterized by increased levels of both pro-inflammatory cytokines and SCFAs. We investigated how SCFAs alone or together with TLR-ligands affected pro-inflammatory cytokine secretion. Method of study Cytokines were measured by ELISA. Flow was used for phenotyping and reactive oxygen species (ROS) measurement. Results SCFAs, at 20mM, induced IL-8, IL-6, and IL-1β release while lower levels (0.02–2mM) did not induce cytokine secretion. Levels >20mM were toxic to cells. Interestingly, lower levels of SCFAs significantly enhanced TLR2 ligand- and TLR7 ligand-induced production of IL-8 and TNFα in a time- and dose-dependent manner, but had little effect on LPS-induced cytokine release. SCFAs mediated their effects on pro-inflammatory cytokine production at least in part by inducing generation of reactive oxygen species. Conclusions Our data suggest that SCFAs, especially when combined with specific TLR ligands, contribute to a pro-inflammatory milieu in the lower genital tract and help further our understanding of how BV affects susceptibility to microbial infections. PMID:22059850

  4. Local quantification of numerically-induced mixing and dissipation

    NASA Astrophysics Data System (ADS)

    Klingbeil, Knut; Mohammadi-Aragh, Mahdi; Gräwe, Ulf; Burchard, Hans

    2016-04-01

    The discretisation of the advection terms in transport equations introduces truncation errors in numerical models. These errors are usually associated with spurious diffusion, i.e. numerically-induced mixing of the advected quantities or dissipation of kinetic energy associated with the advection of momentum. Especially the numerically-induced diapycnal mixing part is very problematic for realistic model simulations. Since any diapycnal mixing of temperature and salinity increases the reference potential energy (RPE), numerically-induced mixing is often quantified in terms of RPE. However, this global bulk measure does not provide any information about the local amount of numerically-induced mixing of a single advected quantity. In this talk we will present a recently developed analysis method that quantifies the numerically-induced mixing of a single advected quantity locally (Klingbeil et al., 2014***). The method is based on the local tracer variance decay in terms of variance fluxes associated with the corresponding advective tracer fluxes. Because of its physically sound definition, this analysis method provides a reliable diagnostic tool, e.g., to assess the performance of advection schemes and to identify hotspots of numerically-induced mixing. At these identified positions the model could be adapted in terms of resolution or the applied numerical schemes. In this context we will demonstrate how numerically-induced mixing of temperature and salinity can be substantially reduced by vertical meshes adapting towards stratification. *** Klingbeil, K., M. Mohammadi-Aragh, U. Gräwe, H. Burchard (2014) . Quantification of spurious dissipation and mixing -- Discrete Variance Decay in a Finite-Volume framework. Ocean Modelling. doi:10.1016/j.ocemod.2014.06.001.

  5. Anti-inflammatory drug incorporation into polymeric nano-hybrids for local controlled release.

    PubMed

    Sammartino, G; Marenzi, G; Tammaro, L; Bolognese, A; Calignano, A; Costantino, U; Califano, L; Mastrangelo, F; Tetè, S; Vittoria, V

    2005-01-01

    In this paper we present the formulation, preparation and characterization of new polymeric composite materials containing a nano-hybrid to be used for the controlled molecular delivery of an anti-inflammatory molecule, Diclofenac. The nano-hybrid consists of a layer of double hydroxide of an Mg-Al hydrotalcite type, in which we replaced the chloride anions present in the host galleries with Diclofenac anions by a simple ion-exchange reaction. Different amounts of the hybrid material were incorporated in polycaprolactone and processed as films of 0.15 mm thickness. The composite materials were analyzed by X-ray diffractometry, thermogravimetry and for their mechanical properties, and showed properties even better than those for the pristine polymer. The release process of the anti-inflammatory molecules was very interesting and promising for tuneable drug delivery. It consists of two stages: a first stage, very rapid as a burst in which a small fraction of the drug is released, and of a second stage that is much slower, extending for longer and longer periods. The parameters influencing the drug release were individuated and discussed.

  6. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease.

    PubMed

    Zhang, Sufeng; Ermann, Joerg; Succi, Marc D; Zhou, Allen; Hamilton, Matthew J; Cao, Bonnie; Korzenik, Joshua R; Glickman, Jonathan N; Vemula, Praveen K; Glimcher, Laurie H; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M

    2015-08-12

    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD.

  7. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease

    PubMed Central

    Zhang, Sufeng; Ermann, Joerg; Succi, Marc D.; Zhou, Allen; Hamilton, Matthew J.; Cao, Bonnie; Korzenik, Joshua R.; Glickman, Jonathan N.; Vemula, Praveen K.; Glimcher, Laurie H.; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M.

    2016-01-01

    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD. PMID:26268315

  8. Inflammatory changes after extradural anaesthesia may affect the spread of local anaesthetic within the extradural space.

    PubMed

    Igarashi, T; Hirabayashi, Y; Shimizu, R; Mitsuhata, H; Saitoh, K; Fukuda, H; Konishi, A; Asahara, H

    1996-09-01

    We have assessed cephalad spread of analgesia in 491 patients undergoing extradural anaesthesia at the L2-3 or L3-4 interspace. Patients were classified into one of three groups based on the number of previous lumbar extradural anaesthesia procedures: none (group I, n = 339), one (group II, n = 82), and two or more (group III, n = 70). Cephalad spread of analgesia was greater in group I than in groups II and III, regardless of the puncture site. In addition, we examined the extradural space using a flexible extraduroscope in 32 patients who were excluded from the analysis of spread. Extraduroscopy showed the extradural space to be patent in patients with no history of prior lumbar extradural anesthesia, but it was not clearly identified in patients who had received extradural anaesthesia one or more times because of aseptic inflammatory changes, including proliferation of connective tissue, adhesions between the dura mater and the ligamentum flavum, granulation and changes in the ligamentum flavum. Extradural anaesthesia may cause aseptic inflammatory changes in the extradural space which may reduce the spread of analgesia. PMID:8949808

  9. Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response.

    PubMed

    Cui, Bei; Sun, Jin-Hua; Xiang, Fen-Fen; Liu, Lin; Li, Wen-Jie

    2012-05-01

    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Diabetes is known to alter the amount of retinal expression of the water-selective channels aquaporin 4 (AQP4). However, the function and impact of AQP4 in diabetic retinopathy is not well understood. In the present work, diabetes was induced by intraperitoneal injection of streptozotocin in Sprague-Dawley rats. Two weeks later, AQP4 shRNA (r) lentiviral particles or negative lentiviral particles were delivered by intravitreal injection to the eyes. Gene delivery was confirmed by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blotting analysis. Eight weeks later, BRB breakdown was measured using Evans blue dye. Images of retinal sections were obtained and the thicknesses of the retinas were determined. Retinal leukostasis measurement was performed using acridine orange leukocyte fluorography. The mRNA levels of IL-1β, IL-6, intercellular adhesion molecule 1 (ICAM-1), glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) were determined using qRT-PCR method. AQP4 shRNA (r) lentiviral particles or negative lentiviral particles were transfected into rMC-1 cells to investigate its effect on inflammation induced by high glucose. Incubation with IL-1β or IL-6 was performed to test their effect on AQP4 expression in rMC-1 cells. In the current work, it was found that AQP4 expression was enhanced in the retina of diabetic rats. AQP4 knockdown led to exacerbation of retinopathy including enhancing retinal vascular permeability, retinal thickness, pro-inflammatory factors expression, and VEGF and GFAP expression in retinas of diabetic rats. AQP4 knockdown enhanced the expression of pro-inflammatory cytokines induced by high glucose in rMC-1 cells. In addition, AQP4 knockdown enhanced the release of IL-6 and VEGF from rMC-1 cells into the medium. Moreover, it was found that incubation with IL-1β or IL-6 suppressed AQP4

  10. Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer's disease brain, induces tau phosphorylation in neurons.

    PubMed

    Padmanabhan, Jaya; Levy, Monique; Dickson, Dennis W; Potter, Huntington

    2006-11-01

    Amyloid plaques and neurofibrillary tangles are key pathological features of Alzheimer's disease. Alzheimer's disease pathology is also characterized by neuroinflammation and neuronal degeneration, with the proteins associated with inflammatory responses being found in tight association with the plaques. One such protein is the serine protease inhibitor alpha-1-antichymotrypsin (ACT). ACT has been shown to promote Abeta polymerization in vitro and in vivo, and levels of ACT protein in plasma and cerebrospinal fluid from Alzheimer's patients have been found to correlate with progression of dementia. Here we investigated the possible involvement of ACT in tau phosphorylation and tangle formation. As was previously found for Alzheimer's disease, brains from patients with non-Alzheimer's tauopathies exhibited an enhanced expression of ACT, which correlated with the level of tau hyperphosphorylation. Transgenic mice expressing human ACT alone or ACT along with mutant human amyloid precursor protein (APP) showed a significant increase in tau phosphorylation, suggesting that this inflammatory protein can induce tau hyperphosphorylation. The increase in phosphorylation was observed at PHF-1 (P-Ser396/P-Thr404), P-Ser202 and P-Thr231 sites on tau, the P-tau epitopes that are associated with tangles in the patients. This result was further confirmed by the finding that addition of purified ACT induced the same Alzheimer's disease-related tau hyperphosphorylation in cortical neurons cultured in vitro. This correlated with an increase in extracellular signal regulated kinase (ERK) and glycogen synthase kinase-3 activation, indicating their involvement in ACT-induced tau phosphorylation. The ACT-treated neurons showed neurite loss and subsequently underwent apoptosis. Approximately 40-50% of neurons were TUNEL positive by 6 and at 24 h >70% of the neurons showed staining suggesting that ACT was inducing apoptosis in these neurons. These findings indicate that inappropriate

  11. Co-stimulation-induced release of pro-inflammatory cytokine interleukin-8 by allergen-specific T cells.

    PubMed

    Spinozzi, F; Agea, E; Piattoni, S; Bistoni, O; Grignani, F; Bertotto, A

    1996-07-01

    Chemokines, which include interleukin (IL)-8, are a family of pro-inflammatory molecules with potent chemoattractant activity on neutrophils, as well as other cell types. IL-8 can be recovered from many inflammatory sites. To test the hypothesis that Th2-type allergen-specific T cells, known to be the main cell type governing the allergic inflammation, are a source of IL-8 and to investigate whether IL-8 release is influenced by the nature of the in vitro mitogenic or co-mitogenic stimulation, cypress-specific T-cell clones (TCC) were generated from five allergic subjects during in vitro seasonal exposure to the allergen. Purified cypress extract was produced directly from freshly collected pollen and used for in vitro stimulation of PBMC bulk cultures. After 5 days priming and a further 7 day period of IL-2-driven cell expansion, monoclonal antibodies to CD3, CD2 and CD28 were adopted for in vitro restimulation of allergen-specific cell lines or, subsequently, secondary established TCC. The induction of apoptosis was detected by propidium iodide (PI) cytofluorimetric assay. Basal and co-stimulation-induced IL-8 production was measured by an ELISA method. Both cypress-specific T-cell lines and TCC secreted appreciable amounts of IL-8. By cross-linking T-cell lines or Th2 CD4+ TCC with CD3, CD2 or CD28 MoAbs, the authors observed a great stimulation-induced IL-8 secretion, preferentially after CD2 or combined CD2/CD28 stimulation. In addition, CD4+ clones released large amounts of IL-8 into culture supernatants after CD2 stimulation while undergoing programmed cell death (30-40% hypodiploid DNA profile of PI-stained cells). In contrast, CD3 crosslinking was unable to determine the release of IL-8 or the induction of apoptosis. Taken together, these results suggest that incomplete TcR engagement by allergen may lead to the secretion of pro-inflammatory cytokines with a contemporary induction of apoptosis in a significant number of target cells. This phenomenon may

  12. Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury

    PubMed Central

    Yang, Y.; Yang, H.; Wang, Z.; Varadaraj, K.; Kumari, S.S.; Mergler, S.; Okada, Y.; Saika, S.; Kingsley, P.J.; Marnett, L.J.; Reinach, P.S.

    2013-01-01

    Cannabinoid receptor type 1 (CB1)-induced suppression of transient receptor potential vanilloid type 1 (TRPV1) activation provides a therapeutic option to reduce inflammation and pain in different animal disease models through mechanisms involving dampening of TRPV1 activation and signaling events. As we found in both mouse corneal epithelium and human corneal epithelial cells (HCEC) that there is CB1 and TRPV1 expression colocalization based on overlap of coimmunostaining, we determined in mouse corneal wound healing models and in human corneal epithelial cells (HCEC) if they interact with one another to reduce TRPV1-induced inflammatory and scarring responses. Corneal epithelial debridement elicited in vivo a more rapid wound healing response in wildtype (WT) than in CB1−/− mice suggesting functional interaction between CB1 and TRPV1. CB1 activation by injury is tenable based on the identification in mouse corneas of 2-arachidonylglycerol (2-AG) with tandem LC–MS/MS, a selective endocannabinoid CB1 ligand. Suppression of corneal TRPV1 activation by CB1 is indicated since following alkali burning, CB1 activation with WIN55,212-2 (WIN) reduced immune cell stromal infiltration and scarring. Western blot analysis of coimmunoprecipitates identified protein–protein interaction between CB1 and TRPV1. Other immunocomplexes were also identified containing transforming growth factor kinase 1 (TAK1), TRPV1 and CB1. CB1 siRNA gene silencing prevented suppression by WIN of TRPV1-induced TAK1–JNK1 signaling. WIN reduced TRPV1-induced Ca2+ transients in fura2-loaded HCEC whereas pertussis toxin (PTX) preincubation obviated suppression by WIN of such rises caused by capsaicin (CAP). Whole cell patch clamp analysis of HCEC showed that WIN blocked subsequent CAP-induced increases in nonselective outward currents. Taken together, CB1 activation by injury-induced release of endocannabinoids such as 2-AG downregulates TRPV1 mediated inflammation and corneal opacification

  13. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    PubMed Central

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  14. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-04-07

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  15. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  16. Doxorubicin Induces Inflammatory Modulation and Metabolic Dysregulation in Diabetic Skeletal Muscle.

    PubMed

    Supriya, Rashmi; Tam, Bjorn T; Pei, Xiao M; Lai, Christopher W; Chan, Lawrence W; Yung, Benjamin Y; Siu, Parco M

    2016-01-01

    Anti-cancer agent doxorubicin (DOX) has been demonstrated to worsen insulin signaling, engender muscle atrophy, trigger pro-inflammation, and induce a shift to anaerobic glycolytic metabolism in skeletal muscle. The myotoxicity of DOX in diabetic skeletal muscle remains largely unclear. This study examined the effects of DOX on insulin signaling, muscle atrophy, pro-/anti-inflammatory microenvironment, and glycolysis metabolic regulation in skeletal muscle of db/db diabetic and db/+ non-diabetic mice. Non-diabetic db/+ mice and diabetic db/db mice were randomly assigned to the following groups: db/+CON, db/+DOX, db/dbCON, and db/dbDOX. Mice in db/+DOX and db/dbDOX groups were intraperitoneally injected with DOX at a dose of 15 mg per kg body weight whereas mice in db/+CON and db/dbCON groups were injected with the same volume of saline instead of DOX. Gastrocnemius was immediately harvested, weighed, washed with cold phosphate buffered saline, frozen in liquid nitrogen, and stored at -80°C for later analysis. The effects of DOX on diabetic muscle were neither seen in insulin signaling markers (Glut4, pIRS1Ser(636∕639), and pAktSer(473)) nor muscle atrophy markers (muscle mass, MuRF1 and MAFbx). However, DOX exposure resulted in enhancement of pro-inflammatory favoring microenvironment (as indicated by TNF-α, HIFα and pNFκBp65) accompanied by diminution of anti-inflammatory favoring microenvironment (as indicated by IL15, PGC1α and pAMPKβ1Ser108). Metabolism of diabetic muscle was shifted to anaerobic glycolysis after DOX exposure as demonstrated by our analyses of PDK4, LDH and pACCSer(79). Our results demonstrated that there might be a link between inflammatory modulation and the dysregulation of aerobic glycolytic metabolism in DOX-injured diabetic skeletal muscle. These findings help to understand the pathogenesis of DOX-induced myotoxicity in diabetic muscle. PMID:27512375

  17. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    PubMed

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (p<0.05). Whereas, levels of reduced glutathione (GSH) and superoxide dismutase (SOD) were found significantly decreased in microwave exposed groups (p<0.05). A significant increase in levels of pro-inflammatory cytokines (IL-2, IL-6, TNF-α, and IFN-γ) was observed in microwave exposed animal (p<0.05). Furthermore, significant DNA damage was also observed in microwave exposed groups as compared to their corresponding values in sham exposed group (p<0.05). In conclusion, the present study suggests that low intensity microwave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect

  18. Doxorubicin Induces Inflammatory Modulation and Metabolic Dysregulation in Diabetic Skeletal Muscle

    PubMed Central

    Supriya, Rashmi; Tam, Bjorn T.; Pei, Xiao M.; Lai, Christopher W.; Chan, Lawrence W.; Yung, Benjamin Y.; Siu, Parco M.

    2016-01-01

    Anti-cancer agent doxorubicin (DOX) has been demonstrated to worsen insulin signaling, engender muscle atrophy, trigger pro-inflammation, and induce a shift to anaerobic glycolytic metabolism in skeletal muscle. The myotoxicity of DOX in diabetic skeletal muscle remains largely unclear. This study examined the effects of DOX on insulin signaling, muscle atrophy, pro-/anti-inflammatory microenvironment, and glycolysis metabolic regulation in skeletal muscle of db/db diabetic and db/+ non-diabetic mice. Non-diabetic db/+ mice and diabetic db/db mice were randomly assigned to the following groups: db/+CON, db/+DOX, db/dbCON, and db/dbDOX. Mice in db/+DOX and db/dbDOX groups were intraperitoneally injected with DOX at a dose of 15 mg per kg body weight whereas mice in db/+CON and db/dbCON groups were injected with the same volume of saline instead of DOX. Gastrocnemius was immediately harvested, weighed, washed with cold phosphate buffered saline, frozen in liquid nitrogen, and stored at −80°C for later analysis. The effects of DOX on diabetic muscle were neither seen in insulin signaling markers (Glut4, pIRS1Ser636∕639, and pAktSer473) nor muscle atrophy markers (muscle mass, MuRF1 and MAFbx). However, DOX exposure resulted in enhancement of pro-inflammatory favoring microenvironment (as indicated by TNF-α, HIFα and pNFκBp65) accompanied by diminution of anti-inflammatory favoring microenvironment (as indicated by IL15, PGC1α and pAMPKβ1Ser108). Metabolism of diabetic muscle was shifted to anaerobic glycolysis after DOX exposure as demonstrated by our analyses of PDK4, LDH and pACCSer79. Our results demonstrated that there might be a link between inflammatory modulation and the dysregulation of aerobic glycolytic metabolism in DOX-injured diabetic skeletal muscle. These findings help to understand the pathogenesis of DOX-induced myotoxicity in diabetic muscle. PMID:27512375

  19. Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Tan, Zhu-Xia; Chen, Yuan-Hua; Xu, Shen; Qin, Hou-Ying; Wang, Hua; Zhang, Cheng; Xu, De-Xiang; Zhao, Hui

    2016-08-01

    Acute lung injury is a common complication of sepsis in intensive care unit patients with an extremely high mortality. The present study investigated the effects of calcitriol, the active form of vitamin D, on tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) in sepsis-induced acute lung injury. Mice were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS, 1.0mg/kg) to establish the animal model of sepsis-induced acute lung injury. Some mice were i.p. injected with calcitriol (1.0μg/kg) before LPS injection. An obvious infiltration of inflammatory cells in the lungs was observed beginning at 1h after LPS injection. Correspondingly, TNF-α and MIP-2 in sera and lung homogenates were markedly elevated in LPS-treated mice. Interestingly, calcitriol obviously alleviated LPS-induced infiltration of inflammatory cells in the lungs. Moreover, calcitriol markedly attenuated LPS-induced elevation of TNF-α and MIP-2 in sera and lung homogenates. Further analysis showed that calcitriol repressed LPS-induced p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) phosphorylation. In addition, calcitriol blocked LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 and p50 subunit in the lungs. Taken together, these results suggest that calcitriol inhibits inflammatory cytokines production in LPS-induced acute lung injury.

  20. Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Tan, Zhu-Xia; Chen, Yuan-Hua; Xu, Shen; Qin, Hou-Ying; Wang, Hua; Zhang, Cheng; Xu, De-Xiang; Zhao, Hui

    2016-08-01

    Acute lung injury is a common complication of sepsis in intensive care unit patients with an extremely high mortality. The present study investigated the effects of calcitriol, the active form of vitamin D, on tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) in sepsis-induced acute lung injury. Mice were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS, 1.0mg/kg) to establish the animal model of sepsis-induced acute lung injury. Some mice were i.p. injected with calcitriol (1.0μg/kg) before LPS injection. An obvious infiltration of inflammatory cells in the lungs was observed beginning at 1h after LPS injection. Correspondingly, TNF-α and MIP-2 in sera and lung homogenates were markedly elevated in LPS-treated mice. Interestingly, calcitriol obviously alleviated LPS-induced infiltration of inflammatory cells in the lungs. Moreover, calcitriol markedly attenuated LPS-induced elevation of TNF-α and MIP-2 in sera and lung homogenates. Further analysis showed that calcitriol repressed LPS-induced p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) phosphorylation. In addition, calcitriol blocked LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 and p50 subunit in the lungs. Taken together, these results suggest that calcitriol inhibits inflammatory cytokines production in LPS-induced acute lung injury. PMID:27216047

  1. Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations.

    PubMed

    Boullu-Ciocca, S; Tassistro, V; Dutour, A; Grino, M

    2015-12-01

    Immediate postnatal overfeeding in rats, obtained by reducing the litter size, results in early-onset obesity. Such experimental paradigm programs overweight, insulin resistance, dyslipidemia, increased adipose glucocorticoid metabolism [up-regulation of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)], and overexpression of proinflammatory cytokines in mesenteric adipose tissue (MAT) in adulthood. We studied the effects of pioglitazone, a PPARγ agonist, treatment on the above-mentioned overfeeding-induced alterations. Nine-month-old rats normofed or overfed during the immediate postnatal period were given pioglitazone (3 mg/kg/day) for 6 weeks. Pioglitazone stimulated weight gain and induced a redistribution of adipose tissue toward epididymal location with enhanced plasma adiponectin. Treatment normalized postnatal overfeeding-induced metabolic alterations (increased fasting insulinemia and free fatty acids) and mesenteric overexpression of GR, 11β-HSD11, CD 68, and proinflammatory cytokines mRNAs, including plasminogen-activator inhibitor type 1. Mesenteric GR mRNA levels correlated positively with mesenteric proinflammatory cytokines mRNA concentrations. In vitro incubation of MAT obtained from overfed rats demonstrated that pioglitazone induced a down-regulation of GR gene expression and normalized glucocorticoid-induced stimulation of 11β-HSD1 and plasminogen-activator inhibitor type 1 mRNAs. Our data show for the first time that the metabolic, endocrine, and inflammatory alterations induced by early-onset postnatal obesity can be reversed by pioglitazone at the adulthood. They demonstrate that pioglitazone, in addition to its well-established effect on adipose tissue redistribution and adiponectin secretion, reverses programing-induced adipose GR, 11β-HSD1, and proinflammatory cytokines overexpression, possibly through a GR-dependent mechanism. PMID:26084260

  2. Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells

    SciTech Connect

    Askari, Ara A.; Thomson, Scott; Edin, Matthew L.; Lih, Fred B.; Zeldin, Darryl C.; Bishop-Bailey, David

    2014-04-04

    Highlights: • We examined epoxygenase product formation and regulation in endothelial cells. • The epoxygenase CYP2J2 is an LPS (TLR-4) inducible enzyme in endothelial cells. • The endothelial cell line EA.Hy926 synthesises epoxygenase products. • Inhibition of endothelial epoxygenases increases TNFα secretion. • Soluble epoxide hydrolase inhibitors reduce inflammation-induced TNFα and NFκB. - Abstract: The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.

  3. Tryptamine-Gallic Acid Hybrid Prevents Non-steroidal Anti-inflammatory Drug-induced Gastropathy

    PubMed Central

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd. Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-01

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O2˙̄) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled (99mTc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy. PMID:22157011

  4. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    SciTech Connect

    Luo, Ying; Li, Shu-Jun; Yang, Jian; Qiu, Yuan-Zhen; Chen, Fang-Ping

    2013-09-06

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulum stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.

  5. The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-kappaB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection.

    PubMed

    Wessler, Silja; Muenzner, Petra; Meyer, Thomas F; Naumann, Michael

    2005-05-01

    Neisseria gonorrhoeae (Ngo) is a Gram-negative pathogenic bacterium responsible for an array of diseases ranging from urethritis to disseminated gonococcal infections. Early events in the establishment of infection involve interactions between Ngo and the mucosal epithelium, which induce a local inflammatory response. Here we analyzed the molecular mechanism involved in the Ngo-induced induction of the proinflammatory cytokines tumor necrosis factor alpha (TNFalpha), interleukin-6 (IL-6), and IL-8. We identified the immediate early response transcription factor nuclear factor kappaB (NF-kappaB) as a key molecule for the induction of cytokine release. Ngo-induced activation of direct upstream signaling molecules was demonstrated for IkappaB kinase alpha and beta (IKKalpha and IKKbeta) by phosphorylation of IkappaBalpha as a substrate and IKK autophosphorylation. Using dominant negative cDNAs encoding kinase-dead IKKalpha, IKKbeta, and NF-kappaB-inducing kinase (NIK), Ngo-induced NF-kappaB activity was significantly inhibited. Curcumin, the yellow pigment derived from Curcuma longa, inhibited IKKalpha, IKKbeta and NIK, indicating its strong potential to block NF-kappaB-mediated cytokine release and the innate immune response. In addition to the inhibition of Ngo-induced signaling, curcumin treatment of cells completely abolished the adherence of bacteria to cells in late infection, underlining the high potential of curcumin as an anti-microbial compound without cytotoxic side effects. PMID:15927892

  6. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor

    PubMed Central

    Zhang, Xianxie; Wang, Yuguang; Ma, Zengchun; Liang, Qiande; Tang, Xianglin; Hu, Donghua; Tan, Hongling; Xiao, Chengrong; Gao, Yue

    2015-01-01

    Tanshinone IIA (Tan IIA) (C19H18O3) is one of the major active lipophilic components in a conventional Chinese medicine called danshen, and it has long been used in the People’s Republic of China and other neighboring countries to treat patients suffering from inflammatory bowel disease (IBD). Previous experiments by many teams determined which mechanism of Tan IIA is relevant to the treatment of IBD associated with inflammation and the pregnane X receptor (PXR). The current study demonstrated that Tan IIA is an efficacious PXR agonist and its ability to induce CYP3A4 mRNA and protein expression was mediated by the transactivation of PXR, a known target of abrogating inflammation in IBD. Clinical symptoms in mice and histological assessment data suggested that administration of Tan IIA in mice demonstrated significant protection and showed that in DSS-induced IBD it acts in a concentration-dependent manner. PXR-silenced mice treated with Tan IIA demonstrated low protection against DSS-induced mouse IBD and exacerbated the severity of IBD compared with wild-type mice; PXR-silenced mice demonstrated the necessity for PXR in Tan IIA-mediated upregulation of xenobiotic metabolism genes. The IBD treatment effects of Tan IIA are partially due to PXR-mediated upregulation of xenobiotic metabolism and downregulation of inflammatory mediators. The novel findings reported here may contribute to the effective utilization of Tan IIA and its derivatives as a PXR ligand in the treatment of human IBD. This suggests that Tan IIA may have considerable clinical utility. PMID:26674743

  7. Dequalinium blocks macrophage-induced metastasis following local radiation.

    PubMed

    Timaner, Michael; Bril, Rotem; Kaidar-Person, Orit; Rachman-Tzemah, Chen; Alishekevitz, Dror; Kotsofruk, Ruslana; Miller, Valeria; Nevelsky, Alexander; Daniel, Shahar; Raviv, Ziv; Rotenberg, Susan A; Shaked, Yuval

    2015-09-29

    A major therapeutic obstacle in clinical oncology is intrinsic or acquired resistance to therapy, leading to subsequent relapse. We have previously shown that systemic administration of different cytotoxic drugs can induce a host response that contributes to tumor angiogenesis, regrowth and metastasis. Here we characterize the host response to a single dose of local radiation, and its contribution to tumor progression and metastasis. We show that plasma from locally irradiated mice increases the migratory and invasive properties of colon carcinoma cells. Furthermore, locally irradiated mice intravenously injected with CT26 colon carcinoma cells succumb to pulmonary metastasis earlier than their respective controls. Consequently, orthotopically implanted SW480 human colon carcinoma cells in mice that underwent radiation, exhibited increased metastasis to the lungs and liver compared to their control tumors. The irradiated tumors exhibited an increase in the colonization of macrophages compared to their respective controls; and macrophage depletion in irradiated tumor-bearing mice reduces the number of metastatic lesions. Finally, the anti-tumor agent, dequalinium-14, in addition to its anti-tumor effect, reduces macrophage motility, inhibits macrophage infiltration of irradiated tumors and reduces the extent of metastasis in locally irradiated mice. Overall, this study demonstrates the adverse effects of local radiation on the host that result in macrophage-induced metastasis. PMID:26348470

  8. Dequalinium blocks macrophage-induced metastasis following local radiation

    PubMed Central

    Kaidar-Person, Orit; Rachman-Tzemah, Chen; Alishekevitz, Dror; Kotsofruk, Ruslana; Miller, Valeria; Nevelsky, Alexander; Daniel, Shahar; Raviv, Ziv; Rotenberg, Susan A.; Shaked, Yuval

    2015-01-01

    A major therapeutic obstacle in clinical oncology is intrinsic or acquired resistance to therapy, leading to subsequent relapse. We have previously shown that systemic administration of different cytotoxic drugs can induce a host response that contributes to tumor angiogenesis, regrowth and metastasis. Here we characterize the host response to a single dose of local radiation, and its contribution to tumor progression and metastasis. We show that plasma from locally irradiated mice increases the migratory and invasive properties of colon carcinoma cells. Furthermore, locally irradiated mice intravenously injected with CT26 colon carcinoma cells succumb to pulmonary metastasis earlier than their respective controls. Consequently, orthotopically implanted SW480 human colon carcinoma cells in mice that underwent radiation, exhibited increased metastasis to the lungs and liver compared to their control tumors. The irradiated tumors exhibited an increase in the colonization of macrophages compared to their respective controls; and macrophage depletion in irradiated tumor-bearing mice reduces the number of metastatic lesions. Finally, the anti-tumor agent, dequalinium-14, in addition to its anti-tumor effect, reduces macrophage motility, inhibits macrophage infiltration of irradiated tumors and reduces the extent of metastasis in locally irradiated mice. Overall, this study demonstrates the adverse effects of local radiation on the host that result in macrophage-induced metastasis. PMID:26348470

  9. Anti-inflammatory drug (BW755C) inhibits airway hyperresponsiveness induced by ozone in dogs

    SciTech Connect

    Fabbri, L.M.; Aizawa, H.; O'Byrne, P.M.; Bethel, R.A.; Walters, E.H.; Holtzman, M.J.; Nadel, J.A.

    1985-08-01

    To follow up a previous observation that airway hyperresponsiveness induced by ozone is linked to airway inflammation, the authors investigated the effect of BW755C, an anti-inflammatory drug, on ozone-induced hyperresponsiveness in dogs. Airway responsiveness was assessed with dose-response curves of acetylcholine aerosol versus pulmonary resistance in two sets of experiments. In one set (placebo treatment), five dogs were given only saline solution treatment and were studied before treatment or ozone exposure and then after treatment both before and after ozone (3.0 ppm, 2 hours); in another set (BW755C treatment), the same dogs were studied before BW755C treatment or ozone and then after treatment (10 mg/kg intravenously) both before and after ozone. When the dogs were given no BW755C treatment, ozone induced a marked increase in airway responsiveness to acetylcholine. When the dogs were given BW755C, responsiveness was no different during treatment than before treatment but, more importantly, responsiveness did not increase significantly after ozone. The authors conclude that BW755C markedly inhibits ozone-induced airway hyperresponsiveness in dogs, probably by inhibiting the formation of oxygenation products of arachidonic acid.

  10. Role of kinin B2 receptors in opioid-induced hyperalgesia in inflammatory pain in mice.

    PubMed

    Grastilleur, Sébastien; Mouledous, Lionel; Bedel, Jerome; Etcheverry, Jonathan; Bader, Michael; Girolami, Jean-Pierre; Fourcade, Olivier; Frances, Bernard; Minville, Vincent

    2013-03-01

    Postoperative pain management is a clinical challenge that can be complicated by opioid-induced hyperalgesia (OIH). Kinin receptors could mediate both the acute and chronic phases of inflammation and pain. A few recent studies suggest that dynorphin A could maintain neuropathic pain by activating the bradykinin (BK) receptor. Thus, the effect of a single administration of sufentanil (a μ-opioid receptor agonist) was investigated in a model of carrageenan-induced inflammatory pain using three strains of mice, i.e., knockout mice for one kinin receptor, B1R or B2R (B1KO, B2KO), and wild-type C57/BL6J mice (WT) treated with either a B1R (R954) or a B2R antagonist (HOE140) or a KKS inhibitor (aprotinin). Pain was assessed and compared between the different groups using two behavioral tests exploring mechanical (von Frey filaments) and thermal (Hargreaves test) sensitivity. Pretreatment with sufentanil induced a sustained increase in pain sensitivity with a delayed return to baseline values characterizing an OIH in carrageenan-injected mice only. Sufentanil-induced OIH was not observed in B2KO but persisted in B1KO and was blunted by aprotinin and the B2R antagonist only. Collectively, our data indicate that the B2R receptor and BK synthesis or availability are essential peripheral steps in the mechanism leading to OIH in a pain context.

  11. Role of kinin B2 receptors in opioid-induced hyperalgesia in inflammatory pain in mice.

    PubMed

    Grastilleur, Sébastien; Mouledous, Lionel; Bedel, Jerome; Etcheverry, Jonathan; Bader, Michael; Girolami, Jean-Pierre; Fourcade, Olivier; Frances, Bernard; Minville, Vincent

    2013-03-01

    Postoperative pain management is a clinical challenge that can be complicated by opioid-induced hyperalgesia (OIH). Kinin receptors could mediate both the acute and chronic phases of inflammation and pain. A few recent studies suggest that dynorphin A could maintain neuropathic pain by activating the bradykinin (BK) receptor. Thus, the effect of a single administration of sufentanil (a μ-opioid receptor agonist) was investigated in a model of carrageenan-induced inflammatory pain using three strains of mice, i.e., knockout mice for one kinin receptor, B1R or B2R (B1KO, B2KO), and wild-type C57/BL6J mice (WT) treated with either a B1R (R954) or a B2R antagonist (HOE140) or a KKS inhibitor (aprotinin). Pain was assessed and compared between the different groups using two behavioral tests exploring mechanical (von Frey filaments) and thermal (Hargreaves test) sensitivity. Pretreatment with sufentanil induced a sustained increase in pain sensitivity with a delayed return to baseline values characterizing an OIH in carrageenan-injected mice only. Sufentanil-induced OIH was not observed in B2KO but persisted in B1KO and was blunted by aprotinin and the B2R antagonist only. Collectively, our data indicate that the B2R receptor and BK synthesis or availability are essential peripheral steps in the mechanism leading to OIH in a pain context. PMID:23324378

  12. Anti-Inflammatory and Analgesic Effects of Pyeongwisan on LPS-Stimulated Murine Macrophages and Mouse Models of Acetic Acid-Induced Writhing Response and Xylene-Induced Ear Edema

    PubMed Central

    Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Ha, Jeong-Ho; Gu, Min Jung; Ma, Jin Yeul

    2015-01-01

    Pyeongwisan (PW) is an herbal medication used in traditional East Asian medicine to treat anorexia, abdominal distension, borborygmus and diarrhea caused by gastric catarrh, atony and dilatation. However, its effects on inflammation-related diseases are unknown. In this study, we investigated the biological effects of PW on lipopolysaccharide (LPS)-mediated inflammation in macrophages and on local inflammation in vivo. We investigated the biological effects of PW on the production of inflammatory mediators, pro-inflammatory cytokines and related products as well as the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated macrophages. Additionally, we evaluated the analgesic effect on the acetic acid-induced writhing response and the inhibitory activity on xylene-induced ear edema in mice. PW showed anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and interleukin-1β (IL-1β). In addition, PW strongly suppressed inducible nitric oxide synthase (iNOS), a NO synthesis enzyme, induced heme oxygenase-1 (HO-1) expression and inhibited NF-κB activation and MAPK phosphorylation. Also, PW suppressed TNF-α, IL-6 and IL-1β cytokine production in LPS-stimulated peritoneal macrophage cells. Furthermore, PW showed an analgesic effect on the writhing response and an inhibitory effect on mice ear edema. We demonstrated the anti-inflammatory effects and inhibitory mechanism in macrophages as well as inhibitory activity of PW in vivo for the first time. Our results suggest the potential value of PW as an inflammatory therapeutic agent developed from a natural substance. PMID:25569097

  13. Protective Role of Curcumin and Flunixin Against Acetic Acid-Induced Inflammatory Bowel Disease via Modulating Inflammatory Mediators and Cytokine Profile in Rats.

    PubMed

    Gopu, Boobalan; Dileep, Rasakatla; Rani, Matukumalli Usha; Kumar, C S V Satish; Kumar, Matham Vijay; Reddy, Alla Gopala

    2015-01-01

    Ulcerative colitis is a chronically recurrent inflammatory bowel disease of unknown origin. The present study is to evaluate the effect of flunixin and curcumin in experimentally induced ulcerative colitis in rats. Animals were randomly divided into four groups, each consisting of 12 animals: normal control group, acetic acid group, curcumin-treated group, and flunixin-treated group. Induction of colitis by intracolonic administration of 4% acetic acid produced severe macroscopic inflammation in the colon, 14 days after acetic acid administration as assessed by the colonic damage score. Microscopically, colonic tissues showed ulceration, edema, and inflammatory cells infiltration. Biochemical studies revealed increased serum levels of lactate dehydrogenase (LDH), colonic alkaline phosphatase (ALP), and myeloperoxidase (MPO). Oxidative stress was indicated by elevated lipid peroxide formation and depleted reduced glutathione concentrations in colonic tissues. After induction of colitis, treatment with curcumin (50 mg/kg daily, p.o.) and flunixin (2.5 mg/kg daily, s.c.) decreased serum LDH, ALP, interleukin (IL)-1β, and tumor necrosis factor-α levels, as well as colonic MPO and lipid peroxide levels, whereas increased colonic prostaglandin E2 and IL-10 concentrations were observed. Moreover, effective doses of curcumin and flunixin were effective in restoring the histopathological changes induced by acetic acid administration. The findings of the present study provide evidence that flunixin may be beneficial in patients with inflammatory bowel disease. PMID:26756424

  14. Inflammatory Animal Model for Parkinson's Disease: The Intranigral Injection of LPS Induced the Inflammatory Process along with the Selective Degeneration of Nigrostriatal Dopaminergic Neurons

    PubMed Central

    Machado, A.; Herrera, A. J.; Venero, J. L.; Santiago, M.; de Pablos, R. M.; Villarán, R. F.; Espinosa-Oliva, A. M.; Argüelles, S.; Sarmiento, M.; Delgado-Cortés, M. J.; Mauriño, R.; Cano, J.

    2011-01-01

    We have developed an animal model of degeneration of the nigrostriatal dopaminergic neurons, the neuronal system involved in Parkinson's disease (PD). The implication of neuroinflammation on this disease was originally established in 1988, when the presence of activated microglia in the substantia nigra (SN) of parkinsonians was reported by McGeer et al. Neuroinflammation could be involved in the progression of the disease or even has more direct implications. We injected 2 μg of the potent proinflammatory compound lipopolysaccharide (LPS) in different areas of the CNS, finding that SN displayed the highest inflammatory response and that dopaminergic (body) neurons showed a special and specific sensitivity to this process with the induction of selective dopaminergic degeneration. Neurodegeneration is induced by inflammation since it is prevented by anti-inflammatory compounds. The special sensitivity of dopaminergic neurons seems to be related to the endogenous dopaminergic content, since it is overcome by dopamine depletion. Compounds that activate microglia or induce inflammation have similar effects to LPS. This model suggest that inflammation is an important component of the degeneration of the nigrostriatal dopaminergic system, probably also in PD. Anti-inflammatory treatments could be useful to prevent or slow down the rate of dopaminergic degeneration in this disease. PMID:22389821

  15. Pseudomonas-derived ceramidase induces production of inflammatory mediators from human keratinocytes via sphingosine-1-phosphate.

    PubMed

    Oizumi, Ami; Nakayama, Hitoshi; Okino, Nozomu; Iwahara, Chihiro; Kina, Katsunari; Matsumoto, Ryo; Ogawa, Hideoki; Takamori, Kenji; Ito, Makoto; Suga, Yasushi; Iwabuchi, Kazuhisa

    2014-01-01

    Ceramide is important for water retention and permeability barrier functions in the stratum corneum, and plays a key role in the pathogenesis of atopic dermatitis (AD). A Pseudomonas aeruginosa-derived neutral ceramidase (PaCDase) isolated from a patient with AD was shown to effectively degrade ceramide in the presence of Staphylococcus aureus-derived lipids or neutral detergents. However, the effect of ceramide metabolites on the functions of differentiating keratinocytes is poorly understood. We found that the ceramide metabolite sphingosine-1-phosphate (S1P) stimulated the production of inflammatory mediators such as TNF-α and IL-8 from three-dimensionally cultured human primary keratinocytes (termed "3D keratinocytes"), which form a stratum corneum. PaCDase alone did not affect TNF-α gene expression in 3D keratinocytes. In the presence of the detergent Triton X-100, which damages stratum corneum structure, PaCDase, but not heat-inactivated PaCDase or PaCDase-inactive mutant, induced the production of TNF-α, endothelin-1, and IL-8, indicating that this production was dependent on ceramidase activity. Among various ceramide metabolites, sphingosine and S1P enhanced the gene expression of TNF-α, endothelin-1, and IL-8. The PaCDase-enhanced expression of these genes was inhibited by a sphingosine kinase inhibitor and by an S1P receptor antagonist VPC 23019. The TNF-α-binding antibody infliximab suppressed the PaCDase-induced upregulation of IL-8, but not TNF-α, mRNA. PaCDase induced NF-κB p65 phosphorylation. The NF-κB inhibitor curcumin significantly inhibited PaCDase-induced expression of IL-8 and endothelin-1. VPC 23019 and infliximab inhibited PaCDase-induced NF-κB p65 phosphorylation and reduction in the protein level of the NF-κB inhibitor IκBα. Collectively, these findings suggest that (i) 3D keratinocytes produce S1P from sphingosine, which is produced through the hydrolysis of ceramide by PaCDase, (ii) S1P induces the production of TNF-α via S

  16. Down-Regulation of CXCL12/CXCR4 Expression Alleviates Ischemia-Reperfusion-Induced Inflammatory Pain via Inhibiting Glial TLR4 Activation in the Spinal Cord

    PubMed Central

    Li, Xiao-Qian; Zhang, Zai-Li; Tan, Wen-Fei; Sun, Xi-Jia; Ma, Hong

    2016-01-01

    Toll-like receptor 4 (TLR4) is important for the pathogenesis of inflammatory reactions and the promotion of pain processing after ischemia/reperfusion (IR) in spinal cord. Recently, C-X-C chemokine ligand 12 (CXCL12) and its receptor, C-X-C chemokine receptor 4 (CXCR4), were demonstrated to be simultaneously critical for inflammatory reactions, thereby facilitating glial activation. However, whether CXCL12/CXCR4 expression can contribute to IR-induced inflammatory pain via spinal TLR4 remained unclear. A rat model was established by 8 min of aortic arch occlusion. The effects of CXCL12/CXCR4 expression and TLR4 activation on inflammatory hyperalgesia were investigated by pretreatments with CXCL12-neutralizing antibody, CXCR4 antagonist (AMD3100) and TLR4 antagonist (TAK-242) for 5 consecutive days before surgery. The results indicated that IR induced significant and sustained inflammatory pain, observed as decreases in paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), throughout the post-injury period. The increased levels of TLR4 and proinflammatory chemokine CXCL12, as well as its receptor, CXCR4, were closely correlated with the PWT and PWL trends. Double immunostaining further suggested that TLR4, which is mainly expressed on astrocytes and microglia, was closely co-localized with CXCL12 and CXCR4 in spinal dorsal horn. As expected, intrathecal pretreatment with the TLR4 antagonist, TAK-242 markedly ameliorated pain by inhibiting astrocytic and microglial activation, as shown by decreases in TLR4 immunoreactivity and the percentage of double-labeled cells. These protective effects were likely due in part to the reduced production of the downstream cytokines IL-1β and TNF-α, as well as for the recruitment of CXCL12 and CXCR4. Additionally, intrathecal pretreatment with CXCL12-neutralizing antibody and AMD3100 resulted in similar analgesic and anti-inflammatory effects as those receiving TAK-242 pretreatment. These results suggest that

  17. Local delivery of mutant CCL2 protein-reduced orthopaedic implant wear particle-induced osteolysis and inflammation in vivo.

    PubMed

    Jiang, Xinyi; Sato, Taishi; Yao, Zhenyu; Keeney, Michael; Pajarinen, Jukka; Lin, Tzu-Hua; Loi, Florence; Egashira, Kensuke; Goodman, Stuart; Yang, Fan

    2016-01-01

    Total joint replacement (TJR) has been widely used as a standard treatment for late-stage arthritis. One challenge for long-term efficacy of TJR is the generation of ultra-high molecular weight polyethylene wear particles from the implant surface that activates an inflammatory cascade which may lead to bone loss, prosthetic loosening and eventual failure of the procedure. Here, we investigate the efficacy of local administration of mutant CCL2 proteins, such as 7ND, on reducing wear particle-induced inflammation and osteolysis in vivo using a mouse calvarial model. Mice were treated with local injection of 7ND or phosphate buffered saline (PBS) every other day for up to 14 days. Wear particle-induced osteolysis and the effects of 7ND treatment were evaluated using micro-CT, histology, and immunofluorescence staining. Compared with the PBS control, 7ND treatment significantly decreased wear particle-induced osteolysis, which led to a higher bone volume fraction and bone mineral density. Furthermore, immunofluorescence staining showed 7ND treatment decreased the number of recruited inflammatory cells and osteoclasts. Together, our results support the feasibility of local delivery of 7ND for mitigating wear particle-induced inflammation and osteolysis, which may offer a promising strategy for extending the life time of TJRs. PMID:26174978

  18. Localization of Chlamydia trachomatis infection by direct immunofluorescence and culture in pelvic inflammatory disease.

    PubMed

    Kiviat, N B; Wølner-Hanssen, P; Peterson, M; Wasserheit, J; Stamm, W E; Eschenbach, D A; Paavonen, J; Lingenfelter, J; Bell, T; Zabriskie, V

    1986-04-01

    Fifty-five women with suspected pelvic inflammatory disease underwent diagnostic laparoscopy and endometrial and tubal biopsy, with specimens for isolation of Chlamydia trachomatis and for staining with a species-specific monoclonal fluorescein-conjugated antibody to C. trachomatis were obtained from the urethra, rectum, endocervix, endometrium, tubes, and cul-de-sac. C. trachomatis was isolated from 21 patients (38%), including 10 (18%) who had positive endometrial or tubal cultures. The fluorescein-conjugated antibody stain was positive for 43 (86%) of 50 culture-positive specimens, for 14 (18%) of 78 culture-negative specimens from 21 patients who had positive cultures from other sites, and for one (0.5%) of 192 specimens from 34 patients who had negative cultures at all sites. Thus the sensitivity of direct fluorescein-conjugated antibody for culture-positive specimens was 86% and the specificity for specimens from culture-negative patients was 99%. Twelve upper genital tract specimens were positive by fluorescein-conjugated antibody only. Fluorescein-conjugated antibody staining of 50 paraffin-embedded endometrial aspirates showed extracellular or intracellular elementary bodies and or cytoplasmic inclusions in all of seven culture-positive specimens, in four of six culture-negative specimens from patients who had positive cultures at other sites, and in none of 34 specimens from patients with negative cultures. Thus fluorescein-conjugated antibody staining is useful for confirming the role of C. trachomatis in endometritis and salpingitis. It is more sensitive than culture for detection of chlamydia in endometrial or tubal specimens and is able to confirm that the organism is actually present in endometrial tissue (rather than simply reflecting contamination from the cervix) in women with clinical evidence of pelvic inflammatory disease.

  19. Localization of Chlamydia trachomatis infection by direct immunofluorescence and culture in pelvic inflammatory disease.

    PubMed

    Kiviat, N B; Wølner-Hanssen, P; Peterson, M; Wasserheit, J; Stamm, W E; Eschenbach, D A; Paavonen, J; Lingenfelter, J; Bell, T; Zabriskie, V

    1986-04-01

    Fifty-five women with suspected pelvic inflammatory disease underwent diagnostic laparoscopy and endometrial and tubal biopsy, with specimens for isolation of Chlamydia trachomatis and for staining with a species-specific monoclonal fluorescein-conjugated antibody to C. trachomatis were obtained from the urethra, rectum, endocervix, endometrium, tubes, and cul-de-sac. C. trachomatis was isolated from 21 patients (38%), including 10 (18%) who had positive endometrial or tubal cultures. The fluorescein-conjugated antibody stain was positive for 43 (86%) of 50 culture-positive specimens, for 14 (18%) of 78 culture-negative specimens from 21 patients who had positive cultures from other sites, and for one (0.5%) of 192 specimens from 34 patients who had negative cultures at all sites. Thus the sensitivity of direct fluorescein-conjugated antibody for culture-positive specimens was 86% and the specificity for specimens from culture-negative patients was 99%. Twelve upper genital tract specimens were positive by fluorescein-conjugated antibody only. Fluorescein-conjugated antibody staining of 50 paraffin-embedded endometrial aspirates showed extracellular or intracellular elementary bodies and or cytoplasmic inclusions in all of seven culture-positive specimens, in four of six culture-negative specimens from patients who had positive cultures at other sites, and in none of 34 specimens from patients with negative cultures. Thus fluorescein-conjugated antibody staining is useful for confirming the role of C. trachomatis in endometritis and salpingitis. It is more sensitive than culture for detection of chlamydia in endometrial or tubal specimens and is able to confirm that the organism is actually present in endometrial tissue (rather than simply reflecting contamination from the cervix) in women with clinical evidence of pelvic inflammatory disease. PMID:3515947

  20. MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes.

    PubMed

    Meisgen, Florian; Xu Landén, Ning; Wang, Aoxue; Réthi, Bence; Bouez, Charbel; Zuccolo, Michela; Gueniche, Audrey; Ståhle, Mona; Sonkoly, Enikö; Breton, Lionel; Pivarcsi, Andor

    2014-07-01

    Keratinocytes represent the first line of defense against pathogens in the skin and have important roles in initiating and regulating inflammation during infection and autoimmunity. Here we investigated the role of miR-146a in the regulation of the innate immune response of keratinocytes. Toll-like receptor 2 (TLR2) stimulation of primary human keratinocytes resulted in an NF-κB- and mitogen-activated protein kinase-dependent upregulation of miR-146a expression, which was surprisingly long lasting, contrasting with the rapid and transient induction of inflammatory mediators. Overexpression of miR-146a significantly suppressed the production of IL-8, CCL20, and tumor necrosis factor-α, which functionally suppressed the chemotactic attraction of neutrophils by keratinocytes. Inhibition of endogenous miR-146a induced the production of inflammatory mediators even in nonstimulated keratinocytes, and potentiated the effect of TLR2 stimulation. Transcriptomic profiling revealed that miR-146a suppresses the expression of a large number of immune-related genes in keratinocytes. MiR-146a downregulated interleukin-1 receptor-associated kinase 1 and TNF receptor-associated factor 6, two key adapter molecules downstream of TLR signaling, and suppressed NF-κB promoter-binding activity as shown by promoter luciferase experiments. Together, these data identify miR-146a as a regulatory element in keratinocyte innate immunity, which prevents the production of inflammatory mediators under homeostatic conditions and serves as a potent negative feedback regulator after TLR2 stimulation. PMID:24670381

  1. Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model.

    PubMed

    Lever, Amanda R; Park, Hyoungshin; Mulhern, Thomas J; Jackson, George R; Comolli, James C; Borenstein, Jeffrey T; Hayden, Patrick J; Prantil-Baun, Rachelle

    2015-04-01

    Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner.

  2. Letrozole vs estradiol valerate induced PCOS in rats: glycemic, oxidative and inflammatory status assessment.

    PubMed

    Dăneasă, Alexandra; Cucolaş, Cristina; Lenghel, Lavinia Manuela; Olteanu, Diana; Orăsan, Remus; Filip, Gabriela A

    2016-04-01

    The objective of our study was to investigate glycemic, oxidative/antioxidative and inflammatory status in letrozole and estradiol valerate induced polycystic ovarian syndrome (PCOS) models. Sixty adult female Wistar rats were divided into four groups: L (0.2 mg letrozole/0.5 ml carboxymethyl cellulose (CMC), daily for 30 days), the control group CL, EV (one i.m. injection of 5 mg EV/0.5 ml sesame oil) and its corresponding control group CEV. After 30 days, ovarian morphology was assessed through ultrasound, serum free testosterone was determined, and an oral glucose tolerance test was performed. Blood, muscle, liver and periovarian adipose tissue (POAT) were collected for oxidative/antioxidative and inflammatory status evaluation. Free testosterone was increased only in the L group, while fasting glycemia was higher in the EV group. Both L and EV led to a significantly decreased level of muscle malondialehyde (MDA) and liver glutathione peroxidase (GPx) activity, while in POAT, MDA level diminished and GPx activity increased. The only difference between the two protocols was in muscle, where after L administration, GPx activity was significantly lower. Implementation of both protocols resulted in an increased expression of pNFKB in muscle, liver and POAT. The expression of monocyte chemoattractant protein 1 (MCP1) increased in liver and POAT after L administration, while in the EV group, MCP1 and STAT3 decreased in POAT. Our study shows that both protocols are characterized by an inflammatory environment in the usually insulin resistant tissues of human PCOS, without generating oxidative stress. In addition, EV has mild metabolic effects and unexpected interference with MCP1 expression in POAT, which require further investigation. PMID:26792865

  3. Sulfated Astragalus polysaccharide can regulate the inflammatory reaction induced by LPS in Caco2 cells.

    PubMed

    Wang, Xiaofei; Wang, Siyu; Li, Yulong; Wang, Fei; Yang, Xiaojun; Yao, Junhu

    2013-09-01

    This study evaluates the effect of sulfated Astragalus polysaccharide (SAPS) on inflammatory reaction induced by LPS in Caco2 cells. Sulfated modification was conducted using the chlorosulfonic acid-pyridine method. Caco2 cells were cultured with 25, 50 and 100 μg/mL SAPS or 100 μg/mL Astragalus polysaccharide (APS) for 24 h. Then, 1 μg/mL LPS was added for the next 24 h to trigger an inflammatory response. DMEM culture medium was used as a blank control. In present study, LPS stimulation significantly increased the mRNA expression of TNF-α, IL-1β, IL-8 and TLR4, and reduced the expression of ZO-1 and occludin. Compared with the LPS control group, APS (100 μg/mL) or SAPS (100 μg/mL) administration decreased the expression of TNF-α, IL-1β and IL-8. Moreover, 25 μg/mL and 50 μg/mL SAPS down-regulated TNF-α and IL-1β expression. APS administration (100 μg/mL) up-regulated occludin expression, but did not affect ZO-1 expression. However, the expression of ZO-1 and occludin was up-regulated by lower dose SAPS administration (25 μg/mL and 50 μg/mL). Compared with the other groups, the expression of TLR4 was lower in the SAPS group at all concentrations of SAPS. These results suggest that SAPS was to be a more effective anti-inflammatory agent than APS in vitro.

  4. Influence of thyroid states on the local effects induced by Bothrops envenoming.

    PubMed

    Saraiva, Raquel Moreira; Caldas, Adriele Souza; Rodriguez, Tania Tavares; Casais-e-Silva, Luciana Lyra

    2015-08-01

    Bothrops leucurus venom causes significant local effects, such as necrosis, pain, hemorrhage and edema. These effects are important because of their high frequency and severity. The treatment of these local effects is not simple because of their quick triggering and a variety of components that induce these effects. Myonecrosis, dermonecrosis and edema are primarily caused by the action of hemorrhagins and myotoxins. A number of investigators have demonstrated the influence of thyroid hormones on inflammatory processes, particularly on wound healing. We investigated the edematogenic, hemorrhagic and necrotic activity of the B. leucurus venom in the hypothyroid, hyperthyroid and euthyroid of rats. The CK (creatine kinase) plasma level decreased in the animals in a hypothyroid state. The hypothyroid condition also significantly reduced the hemorrhagic and dermonecrotic area compared to the euthyroidism and hyperthyroidism states. It also mitigated the rat paw edema compared to that found in the euthyroid and hyperthyroid animals. The hyperthyroid animals showed no significant differences in the three treatments compared to the euthyroid animals. Our results suggest that the triggering of local effects induced by envenomation by B. leucurus is attenuated in hypothyroid animals, possibly by the effect of hypothyroidism on the immune system and blood flow. PMID:26003795

  5. Viscum album Exerts Anti-Inflammatory Effect by Selectively Inhibiting Cytokine-Induced Expression of Cyclooxygenase-2

    PubMed Central

    Hegde, Pushpa; Maddur, Mohan S.; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srini V.

    2011-01-01

    Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2. PMID:22028854

  6. The "genomic storm" induced by bacterial endotoxin is calmed by a nuclear transport modifier that attenuates localized and systemic inflammation.

    PubMed

    DiGiandomenico, Antonio; Veach, Ruth Ann; Zienkiewicz, Jozef; Moore, Daniel J; Wylezinski, Lukasz S; Hutchens, Martha A; Hawiger, Jacek

    2014-01-01

    Lipopolysaccharide (LPS) is a potent microbial virulence factor that can trigger production of proinflammatory mediators involved in the pathogenesis of localized and systemic inflammation. Importantly, the role of nuclear transport of stress responsive transcription factors in this LPS-generated "genomic storm" remains largely undefined. We developed a new nuclear transport modifier (NTM) peptide, cell-penetrating cSN50.1, which targets nuclear transport shuttles importin α5 and importin β1, to analyze its effect in LPS-induced localized (acute lung injury) and systemic (lethal endotoxic shock) murine inflammation models. We analyzed a human genome database to match 46 genes that encode cytokines, chemokines and their receptors with transcription factors whose nuclear transport is known to be modulated by NTM. We then tested the effect of cSN50.1 peptide on proinflammatory gene expression in murine bone marrow-derived macrophages stimulated with LPS. This NTM suppressed a proinflammatory transcriptome of 37 out of 84 genes analyzed, without altering expression of housekeeping genes or being cytotoxic. Consistent with gene expression analysis in primary macrophages, plasma levels of 23 out of 26 LPS-induced proinflammatory cytokines, chemokines, and growth factors were significantly attenuated in a murine model of LPS-induced systemic inflammation (lethal endotoxic shock) while the anti-inflammatory cytokine, interleukin 10, was enhanced. This anti-inflammatory reprogramming of the endotoxin-induced genomic response was accompanied by complete protection against lethal endotoxic shock with prophylactic NTM treatment, and 75% protection when NTM was first administered after LPS exposure. In a murine model of localized lung inflammation caused by direct airway exposure to LPS, expression of cytokines and chemokines in the bronchoalveolar space was suppressed with a concomitant reduction of neutrophil trafficking. Thus, calming the LPS-triggered "genomic storm" by

  7. Oral administration of dextran sodium sulphate induces a caecum-localized colitis in rabbits.

    PubMed

    Leonardi, Irina; Nicholls, Flora; Atrott, Kirstin; Cee, Alexandra; Tewes, Bernhard; Greinwald, Roland; Rogler, Gerhard; Frey-Wagner, Isabelle

    2015-06-01

    Trichuris suis ova (TSO) have shown promising results in the treatment of inflammatory bowel disease (IBD) but the mechanisms which underlies this therapeutic effect cannot be studied in mice and rats as T. suis fails to colonize the rodent intestine, whilst hatching in humans and rabbits. As a suitable rabbit IBD model is currently not available, we developed a rabbit colitis model by administration of dextran sodium sulphate (DSS). White Himalayan rabbits (n = 12) received 0.1% DSS in the daily water supply for five days. Clinical symptoms were monitored daily, and rabbits were sacrificed at different time points. A genomewide expression analysis was performed with RNA isolated from caecal lamina propria mononuclear cells (LPMC) and intestinal epithelial cells (IEC). The disease activity index of DSS rabbits increased up to 2.1 ± 0.4 (n = 6) at day 10 (controls <0.5). DSS induced a caecum-localized pathology with crypt architectural distortion, stunted villous surface and inflammatory infiltrate in the lamina propria. The histopathology score reached a peak of 14.2 ± 4.9 (n = 4) at day 10 (controls 7.7 ± 0.9, n = 5). Expression profiling revealed an enrichment of IBD-related genes in both LPMC and IEC. Innate inflammatory response, Th17 signalling and chemotaxis were among the pathways affected significantly. We describe a reproducible and reliable rabbit model of DSS colitis. Localization of the inflammation in the caecum and its similarities to IBD make this model particularly suitable to study TSO therapy in vivo.

  8. Sodium channel γENaC mediates IL-17 synergized high salt induced inflammatory stress in breast cancer cells.

    PubMed

    Amara, Suneetha; Ivy, Michael T; Myles, Elbert L; Tiriveedhi, Venkataswarup

    2016-04-01

    Chronic inflammation is known to play a critical role in the development of cancer. Recent evidence suggests that high salt in the tissue microenvironment induces chronic inflammatory milieu. In this report, using three breast cancer-related cell lines, we determined the molecular basis of the potential synergistic inflammatory effect of sodium chloride (NaCl) with interleukin-17 (IL-17). Combined treatment of high NaCl (0.15M) with sub-effective IL-17 (0.1 nM) induced enhanced growth in breast cancer cells along with activation of reactive nitrogen and oxygen (RNS/ROS) species known to promote cancer. Similar effect was not observed with equi-molar mannitol. This enhanced of ROS/RNS activity correlates with upregulation of γENaC an inflammatory sodium channel. The similar culture conditions have also induced expression of pro-inflammatory cytokines such as IL-6, TNFα etc. Taken together, these data suggest that high NaCl in the cellular microenvironment induces a γENaC mediated chronic inflammatory response with a potential pro-carcinogenic effect.

  9. Effects of helium on inflammatory and oxidative stress-induced endothelial cell damage.

    PubMed

    Smit, Kirsten F; Kerindongo, Raphaela P; Böing, Anita; Nieuwland, Rienk; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2015-09-10

    Helium induces preconditioning in human endothelium protecting against postischemic endothelial dysfunction. Circulating endothelial microparticles are markers of endothelial dysfunction derived in response to injury. Another noble gas, xenon, protected human umbilical vein endothelial cells (HUVEC) against inflammatory stress in vitro. We hypothesised that helium protects the endothelium in vitro against inflammatory and oxidative stress. HUVEC were isolated from fresh umbilical cords and grown upon confluence. Cells were subjected to starving medium for 12h before the experiment and treated for either 3 × 5 min or 1 × 30 min with helium (5% CO2, 25% O2, 70% He) or control gas (5% CO2, 25% O2, 70% N2) in a specialised gas chamber. Subsequently, cells were stimulated with TNF-α (40 ng/ml for 24h or 10 ng/ml for 2h) or H2O2 (500 μM for 2h) or left untreated. Adhesion molecule expression was analysed using real-time quantitative polymerase chain reaction. Caspase-3 expression and viability of the cells was measured by flowcytometry. Microparticles were investigated by nanoparticle tracking analysis. Helium had no effect on adhesion molecule expression after TNF-α stimulation but in combination with oxidative stress decreased cell viability (68.9 ± 1.3% and 58 ± 1.9%) compared to control. Helium further increased TNF-α induced release of caspase-3 containing particles compared to TNF-α alone (6.4 × 10(6) ± 1.1 × 10(6) and 2.9 × 10(6) ± 0.7 × 10(6), respectively). Prolonged exposure of helium increased microparticle formation (2.4 × 10(9) ± 0.5 × 10(9)) compared to control (1.7 × 10(9) ± 0.2 × 10(9)). Summarized, helium increases inflammatory and oxidative stress-induced endothelial damage and is thus not biologically inert. A possible noxious effects on the cellular level causing alterations in microparticle formation both in number and content should be acknowledged.

  10. Effects of helium on inflammatory and oxidative stress-induced endothelial cell damage.

    PubMed

    Smit, Kirsten F; Kerindongo, Raphaela P; Böing, Anita; Nieuwland, Rienk; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2015-09-10

    Helium induces preconditioning in human endothelium protecting against postischemic endothelial dysfunction. Circulating endothelial microparticles are markers of endothelial dysfunction derived in response to injury. Another noble gas, xenon, protected human umbilical vein endothelial cells (HUVEC) against inflammatory stress in vitro. We hypothesised that helium protects the endothelium in vitro against inflammatory and oxidative stress. HUVEC were isolated from fresh umbilical cords and grown upon confluence. Cells were subjected to starving medium for 12h before the experiment and treated for either 3 × 5 min or 1 × 30 min with helium (5% CO2, 25% O2, 70% He) or control gas (5% CO2, 25% O2, 70% N2) in a specialised gas chamber. Subsequently, cells were stimulated with TNF-α (40 ng/ml for 24h or 10 ng/ml for 2h) or H2O2 (500 μM for 2h) or left untreated. Adhesion molecule expression was analysed using real-time quantitative polymerase chain reaction. Caspase-3 expression and viability of the cells was measured by flowcytometry. Microparticles were investigated by nanoparticle tracking analysis. Helium had no effect on adhesion molecule expression after TNF-α stimulation but in combination with oxidative stress decreased cell viability (68.9 ± 1.3% and 58 ± 1.9%) compared to control. Helium further increased TNF-α induced release of caspase-3 containing particles compared to TNF-α alone (6.4 × 10(6) ± 1.1 × 10(6) and 2.9 × 10(6) ± 0.7 × 10(6), respectively). Prolonged exposure of helium increased microparticle formation (2.4 × 10(9) ± 0.5 × 10(9)) compared to control (1.7 × 10(9) ± 0.2 × 10(9)). Summarized, helium increases inflammatory and oxidative stress-induced endothelial damage and is thus not biologically inert. A possible noxious effects on the cellular level causing alterations in microparticle formation both in number and content should be acknowledged. PMID:26096659

  11. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages.

    PubMed

    Banerjee, Somenath; Bose, Dipayan; Chatterjee, Nabanita; Das, Subhadip; Chakraborty, Sreeparna; Das, Tanya; Saha, Krishna Das

    2016-01-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain pre-exposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in future. PMID:26928472

  12. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages

    PubMed Central

    Banerjee, Somenath; Bose, Dipayan; Chatterjee, Nabanita; Das, Subhadip; Chakraborty, Sreeparna; Das, Tanya; Saha, Krishna Das

    2016-01-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain pre-exposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in future. PMID:26928472

  13. Danaparoid sodium reduces ischemia/reperfusion-induced liver injury in rats by attenuating inflammatory responses.

    PubMed

    Harada, Naoaki; Okajima, Kenji; Kohmura, Hidefumi; Uchiba, Mitsuhiro; Tomita, Tsutomu

    2007-01-01

    This study was undertaken to examine the mechanism by which danaparoid sodium (DS), a heparinoid that contains mainly heparan sulfate, prevents reperfusion-induced hepatic damage in a rat model of ischemia/reperfusion (I/R)-induced liver injury. Administration of DS significantly reduced liver injury and inhibited the decrease in hepatic tissue blood flow in rats. DS attenuated hepatic I/R-induced increases in hepatic tissue levels of tumor necrosis factor (TNF) and myeloperoxidase (MPO) in vivo. In contrast, neither monocytic TNF production nor neutrophil activation was inhibited by DS in vitro. DS enhanced I/R-induced increases in levels of calcitonin-gene related peptide (CGRP), a neuropeptide released from sensory neurons, and of 6-ketoprostaglandin (PG) F (1a) , a stable metabolite of PGI (2) , in liver tissues. The therapeutic effects of DS were not seen in animals pretreated with capsazepine, an inhibitor of sensory neuron activation. The distribution of heparan sulfate in the perivascular area was significantly increased by DS administration in this rat model. DS significantly increased CGRP release from isolated rat dorsal root ganglion neurons (DRG) in vitro, while DX-9065a, a selective inhibitor of activated factor X, did not. DS enhanced anandamide-induced CGRP release from DRG in vitro. These observations strongly suggested that DS might reduce I/R-induced liver injury in rats by attenuating inflammatory responses. These therapeutic effects of DS might be at least partly explained by its enhancement of sensory neuron activation, leading to the increase the endothelial production of PGI (2) . PMID:17200774

  14. Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines: Lactobacillus casei: COX-2 inhibitor.

    PubMed

    Amdekar, Sarika; Singh, Vinod; Singh, Rambir; Sharma, Poonam; Keshav, Poonam; Kumar, Avnish

    2011-04-01

    This study evaluated the therapeutic efficacy of Lactobacillus casei in treating rheumatoid arthritis using collagen-induced arthritis (CIA) animal model. Healthy female Wistar rats (weight-180-200 g) were included in this study. Oral administration of L. casei was started on the same day. Indomethacin was used as standard reference drug. Serum level of IL-6, α-TNF, and IL-10 were observed. Four-point arthritis indexes were also assessed at the end of week for 28th day. L. casei-treated rats had shown normal histopathology without any synovial infiltration, pannus formation, cartilage, and bone destruction. Arthritis score was also lower for the group treated with L. casei. Oral administration of L. casei significantly decreased the pro-inflammatory cytokines. Present study suggests that L. casei has potent antiarthritic effect in CIA model. Inhibition of COX-2 via inhibiting the pro-inflammatory cytokines is an understanding of the complex interactions involved in these pathways.

  15. Pleural mesothelial cells mediate inflammatory and profibrotic responses in talc-induced pleurodesis.

    PubMed

    Acencio, Milena Marques P; Vargas, Francisco S; Marchi, Evaldo; Carnevale, Gabriela G; Teixeira, Lisete R; Antonangelo, Leila; Broaddus, V Courtney

    2007-12-01

    Intrapleural talc is used to produce pleurodesis in malignant pleural effusions. Prior in vivo studies have documented an acute inflammatory response to talc in the pleural space but the cellular source of cytokines has not been identified. The aim of this study was to investigate the acute response of rabbit pleural mesothelial cells challenged with talc used for pleurodesis and compare it to prior studies of the response to talc in the rabbit pleural space. Cultured rabbit pleural mesothelial cells (PMC) were exposed to talc (25 mug/cm(2)) for 6, 24, or 48 h and assessed for viability, necrosis, and apoptosis by flow cytometry, Trypan Blue exclusion, and immunocytochemistry, and for the production of interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and transforming growth factor-beta(1) (TGF-beta(1)) by ELISA. More than 50% of the PMC remained viable 48 h after talc stimulation. The PMC that were nonviable were identified as either apoptotic or necrotic, with roughly 20% in each category over the 48 h. At 6 h, the IL-8, VEGF, and TGF-beta(1) levels produced by talc-exposed PMC increased significantly and remained elevated for up to 48 h. These cytokine levels rose at similar times and at the same or higher levels than have been measured in the rabbit pleural space in prior studies. We report that viable, talc-exposed, pleural mesothelial cells may actively mediate the primary inflammatory pleural response in talc-induced pleurodesis.

  16. Anti-Inflammatory Effects of Ellagic Acid on Acute Lung Injury Induced by Acid in Mice

    PubMed Central

    Cornélio Favarin, Daniely; Martins Teixeira, Maxelle; Lemos de Andrade, Ednéia; de Freitas Alves, Claudiney; Lazo Chica, Javier Emilio; Artério Sorgi, Carlos; Paula Rogerio, Alexandre

    2013-01-01

    Acute lung injury (ALI) is characterized by alveolar edema and uncontrolled neutrophil migration to the lung, and no specific therapy is still available. Ellagic acid, a compound present in several fruits and medicinal plants, has shown anti-inflammatory activity in several experimental disease models. We used the nonlethal acid aspiration model of ALI in mice to determine whether preventive or therapeutic administration of ellagic acid (10 mg/kg; oral route) could interfere with the development or establishment of ALI inflammation. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. In both preventive and therapeutic treatments, ellagic acid reduced the vascular permeability changes and neutrophil recruitment to the bronchoalveolar lavage fluid (BALF) and to lung compared to the vehicle. In addition, the ellagic acid accelerated the resolution for lung neutrophilia. Moreover, ellagic acid reduced the COX-2-induced exacerbation of inflammation. These results were similar to the dexamethasone. However, while the anti-inflammatory effects of dexamethasone treatment were due to the reduced activation of NF-κB and AP-1, the ellagic acid treatment led to reduced BALF levels of IL-6 and increased levels of IL-10. In addition, dexamethasone treatment reduced IL-1β. Together, these findings identify ellagic acid as a potential therapeutic agent for ALI-associated inflammation. PMID:23533300

  17. Solid lipid nanoparticles induced hematological changes and inflammatory response in mice.

    PubMed

    Silva, Adny Henrique; Locatelli, Claudriana; Filippin-Monteiro, Fabíola Branco; Zanetti-Ramos, Betina G; Conte, Aline; Creczynski-Pasa, Tânia Beatriz

    2014-03-01

    Solid lipid nanoparticles (SLNs) are an alternative drug delivery system compared to emulsions, liposomes and polymeric nanoparticles. Due to their unique sizes and properties, SLNs offer possibility to develop new therapeutic approaches. The ability to incorporate drugs into nanocarriers offers a new prototype in drug delivery that could be used for drug targeting. However, toxicity of these new formulations has not been investigated thus far. In this study, we carried out an in vivo toxicity study. For that mice were divided into three groups and treated intraperitoneally with triestearin-based SLNs (TN), natural wax-based SLNs (VN) or vehicle for 10 days. After that, necropsies, histopathological and hematological analysis, as well as hepatic and renal functions were performed. Our results indicated that both TN and VN were absorbed post-exposure and induced an inflammatory response in adipose tissue. However, histopathological analysis demonstrated the absence of toxicity in both treated groups. In addition, the body weights were similar among the groups and low toxicity was also indicated by the unchanged serum biochemical parameters. This study provides a preliminary data for toxicological studies of two different SLNs in long-term in vivo exposure. However, further studies should be conducted in order to investigate the inflammatory response in order to establish the safety of these SLNs. PMID:23451884

  18. Solid lipid nanoparticles induced hematological changes and inflammatory response in mice.

    PubMed

    Silva, Adny Henrique; Locatelli, Claudriana; Filippin-Monteiro, Fabíola Branco; Zanetti-Ramos, Betina G; Conte, Aline; Creczynski-Pasa, Tânia Beatriz

    2014-03-01

    Solid lipid nanoparticles (SLNs) are an alternative drug delivery system compared to emulsions, liposomes and polymeric nanoparticles. Due to their unique sizes and properties, SLNs offer possibility to develop new therapeutic approaches. The ability to incorporate drugs into nanocarriers offers a new prototype in drug delivery that could be used for drug targeting. However, toxicity of these new formulations has not been investigated thus far. In this study, we carried out an in vivo toxicity study. For that mice were divided into three groups and treated intraperitoneally with triestearin-based SLNs (TN), natural wax-based SLNs (VN) or vehicle for 10 days. After that, necropsies, histopathological and hematological analysis, as well as hepatic and renal functions were performed. Our results indicated that both TN and VN were absorbed post-exposure and induced an inflammatory response in adipose tissue. However, histopathological analysis demonstrated the absence of toxicity in both treated groups. In addition, the body weights were similar among the groups and low toxicity was also indicated by the unchanged serum biochemical parameters. This study provides a preliminary data for toxicological studies of two different SLNs in long-term in vivo exposure. However, further studies should be conducted in order to investigate the inflammatory response in order to establish the safety of these SLNs.

  19. [Neriproct: its anti-inflammatory effect on an experimentally induced hemorrhoid model in the rat].

    PubMed

    Nishiki, K; Kudoh, D; Nishinaga, K; Iwai, K; Nakagawa, H

    1988-10-01

    Several glucocorticoids as a cream formulation were applied to the recto-anus of the croton-oil-induced hemorrhoid rat. Among the steroids tested, i.e. diflucortolone valerate (DFV), prednisolone (PS), hydrocortisone caproate (HC), and hydrocortisone (H), DFV was found to suppress inflammation most effectively. The effect of DFV was not affected by combination with lidocaine. In this model, the analgesic effect of lidocaine was apparently prolonged by an increase of the threshold for pain by the anti-inflammatory effect of DFV. This additive effect is regarded as a merit of the combination in Neriproct. Therapeutic effects of Neriproct and several anti-hemorrhoid drugs were also examined by using a hemorrhoid model with abrasive irritation compared to those obtained by the croton-oil model. In both models, efficacy of Neriproct was superior to that of the other drugs such as Scheriproct, Proctosedyl, Posterisan forte, Borraginol N, Posterisan and Borraza G. Microscopic observation showed that destruction of the mucus epithelium, necrosis of the mucus layer, infiltration of inflammatory cells and vasodilatation in the croton-oil model were also suppressed markedly by Neriproct application. No difference was observed in the efficacy between the cream and suppository formulation of Neriproct. Suppression of wound healing was found with a dosage of DFV lower than those of PS, HC and H. However, the efficacy ratio of the wound-healing suppression and anti-inflammation of DFV was the largest among the steroids tested. PMID:3243509

  20. Transcriptional expression of inflammatory mediators in various somatosensory relay centers in the brain of rat models of peripheral mononeuropathy and local inflammation.

    PubMed

    Chamaa, Farah; Chebaro, Maya; Safieh-Garabedian, Bared; Saadeh, Ryan; Jabbur, Suhayl J; Saadé, Nayef E

    2016-08-15

    Contradictory results have been reported regarding the role of inflammatory mediators in the central nervous system in mediating neuropathic pain and inflammatory hyperalgesia following peripheral nerve injury or localized inflammation. The present study aims to correlate between the mRNA expression and protein secretion of proinflammatory cytokines and nerve growth factor (NGF), in the dorsal root ganglia (DRGs), spinal cord, brainstem and thalamus, and pain-related behavior in animal models of peripheral mononeuropathy and localized inflammation. Different groups of rats (n=8, each) were subjected to either lesion of the nerves of their hindpaws to induce mononeuropathy or intraplantar injection of endotoxin (ET) and were sacrificed at various time intervals. TNF-α, IL-1β and NGF mRNA expression and protein levels in the various centers involved in processing nociceptive information were determined, by RT-PCR and ELISA. Control groups were either subjected to sham surgery or to saline injection. Mononeuropathy and ET injection produced significant and sustained increases in the mRNA expression and protein levels of TNF-α, IL-1β and NGF in the ipsilateral and contralateral DRGs, spinal cord, and brainstem. No significant and consistent changes in the mRNA expression of cytokines were noticed in the thalamus, while a downregulation of the NGF-mRNA level was observed. The temporal and spatial patterns of the observed changes in mRNA expression of cytokines and NGF are not closely in phase with the observed allodynia and hyperalgesia in the different models, suggesting that the role of these mediators may not be reduced exclusively to the production and maintenance of pain. PMID:27397080

  1. Trauma-Induced Coagulopathy Is Associated with a Complex Inflammatory Response in the Rat.

    PubMed

    Darlington, Daniel N; Gonzales, Mary D; Craig, Teresa; Dubick, Michael A; Cap, Andrew P; Schwacha, Martin G

    2015-08-01

    Severe trauma can lead to a coagulopathy in patients, which is associated with increased mortality. We developed a rat polytrauma model that demonstrates a similar progression of coagulopathy. Because coagulation is influenced by changes in inflammation, and this interrelationship is poorly understood, we have studied the progression of inflammation, and its correlation with coagulation, in this rat model of severe polytrauma. Sprague-Dawley rats were anesthetized with isoflurane. Polytrauma was induced by damaging 10 cm of small intestines, right and medial liver lobes, right leg skeletal muscle, femur fracture, and hemorrhaging 40% of blood volume. No resuscitation was given. Polytrauma and hemorrhage resulted in a significant decrease in the number of lymphocytes and an increase in monocytes and granulocytes. There was an increase in plasma proinflammatory cytokines: tumor necrosis factor α (40×), interleukin (IL)-6 (20×), IL-1β (16×), IL-17 (15×), interferon γ (10×), IL-1α (8×) and IL-12p70 (5×); anti-inflammatory cytokines: IL-10 (100×), IL-13 (16×), and IL-4 (5×); chemokines: growth-regulated protein/keratinocyte chemoattractant (30×), macrophage inflammatory protein 3α (10×), regulated and normal T-cell expressed and secreted (3×); and growth factors: vascular endothelial growth factor (5×), granulocyte macrophage colony-stimulating factor (6×), macrophage colony-stimulating factor (3×), granulocyte colony-stimulating factor (2×), and IL-5 (3×). There was a strong and significant correlation between prothrombin time, activated partial thromboplastin time, fibrinogen, and fibrin monomer concentration, and many cytokines. Polytrauma with hemorrhage is associated with a coagulopathy and a complex inflammatory response consisting of a concurrent rise in both proinflammatory and anti-inflammatory cytokines. The rise in plasma concentrations of chemokines and growth factors likely contribute to the mobilization of monocytes and granulocytes

  2. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages.

    PubMed

    Limagne, Emeric; Lançon, Allan; Delmas, Dominique; Cherkaoui-Malki, Mustapha; Latruffe, Norbert

    2016-01-01

    State of the art. Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation and osteophyte formation. OA physiopathology is multifactorial and involves mechanical and hereditary factors. So far, there is neither preventive medicine to delay cartilage breakdown nor curative treatment. Objectives. To investigate pro-inflammatory paracrine interactions between human primary chondrocytes and macrophages following interleukin-1-β (IL-1β) treatment; to evaluate the molecular mechanism responsible for the inhibitory effect of resveratrol. Results. The activation of NF-κB in chondrocytes by IL-1β induced IL-6 secretion. The latter will then activate STAT3 protein in macrophages. Moreover, STAT3 was able to positively regulate IL-6 secretion, as confirmed by the doubling level of IL-6 in the coculture compared to macrophage monoculture. These experiments confirm the usefulness of the coculture model in the inflammatory arthritis-linked process as a closer biological situation to the synovial joint than separated chondrocytes and macrophages. Il also demonstrated the presence of an inflammatory amplification loop induced by IL-1β. Resveratrol showed a strong inhibitory effect on the pro-inflammatory marker secretion. The decrease of IL-6 secretion is dependent on the NFκB inhibition in the chondrocytes. Such reduction of the IL-6 level can limit STAT3 activation in the macrophages, leading to the interruption of the inflammatory amplification loop. Conclusion. These results increase our understanding of the anti-inflammatory actions of resveratrol and open new potential approaches to prevent and treat osteoarthritis. PMID:27187448

  3. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages

    PubMed Central

    Limagne, Emeric; Lançon, Allan; Delmas, Dominique; Cherkaoui-Malki, Mustapha; Latruffe, Norbert

    2016-01-01

    State of the art. Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation and osteophyte formation. OA physiopathology is multifactorial and involves mechanical and hereditary factors. So far, there is neither preventive medicine to delay cartilage breakdown nor curative treatment. Objectives. To investigate pro-inflammatory paracrine interactions between human primary chondrocytes and macrophages following interleukin-1-β (IL-1β) treatment; to evaluate the molecular mechanism responsible for the inhibitory effect of resveratrol. Results. The activation of NF-κB in chondrocytes by IL-1β induced IL-6 secretion. The latter will then activate STAT3 protein in macrophages. Moreover, STAT3 was able to positively regulate IL-6 secretion, as confirmed by the doubling level of IL-6 in the coculture compared to macrophage monoculture. These experiments confirm the usefulness of the coculture model in the inflammatory arthritis-linked process as a closer biological situation to the synovial joint than separated chondrocytes and macrophages. Il also demonstrated the presence of an inflammatory amplification loop induced by IL-1β. Resveratrol showed a strong inhibitory effect on the pro-inflammatory marker secretion. The decrease of IL-6 secretion is dependent on the NFκB inhibition in the chondrocytes. Such reduction of the IL-6 level can limit STAT3 activation in the macrophages, leading to the interruption of the inflammatory amplification loop. Conclusion. These results increase our understanding of the anti-inflammatory actions of resveratrol and open new potential approaches to prevent and treat osteoarthritis. PMID:27187448

  4. Human oral isolate Lactobacillus fermentum AGR1487 induces a pro-inflammatory response in germ-free rat colons

    PubMed Central

    Anderson, Rachel C.; Ulluwishewa, Dulantha; Young, Wayne; Ryan, Leigh J.; Henderson, Gemma; Meijerink, Marjolein; Maier, Eva; Wells, Jerry M.; Roy, Nicole C.

    2016-01-01

    Lactobacilli are thought to be beneficial for human health, with lactobacilli-associated infections being confined to immune-compromised individuals. However, Lactobacillus fermentum AGR1487 negatively affects barrier integrity in vitro so we hypothesized that it caused a pro-inflammatory response in the host. We compared germ-free rats inoculated with AGR1487 to those inoculated with another L. fermentum strain, AGR1485, which does not affect in vitro barrier integrity. We showed that rats inoculated with AGR1487 had more inflammatory cells in their colon, higher levels of inflammatory biomarkers, and increased colonic gene expression of pro-inflammatory pathways. In addition, our in vitro studies showed that AGR1487 had a greater capacity to activate TLR signaling and induce pro-inflammatory cytokines in immune cells. This study indicates the potential of strains of the same species to differentially elicit inflammatory responses in the host and highlights the importance of strain characterization in probiotic approaches to treat inflammatory disorders. PMID:26843130

  5. MRTF-A mediates LPS-induced pro-inflammatory transcription by interacting with the COMPASS complex.

    PubMed

    Yu, Liming; Weng, Xinyu; Liang, Peng; Dai, Xin; Wu, Xiaoyan; Xu, Huihui; Fang, Mingming; Fang, Fei; Xu, Yong

    2014-11-01

    Chronic inflammation underscores the pathogenesis of a range of human diseases. Lipopolysaccharide (LPS) elicits strong pro-inflammatory responses in macrophages through the transcription factor NF-κB. The epigenetic mechanism underlying LPS-induced pro-inflammatory transcription is not fully understood. Herein, we describe a role for myocardin-related transcription factor A (MRTF-A, also known as MKL1) in this process. MRTF-A overexpression enhanced NF-κB-dependent pro-inflammatory transcription, whereas MRTF-A silencing inhibited this process. MRTF-A deficiency also reduced the synthesis of pro-inflammatory mediators in a mouse model of colitis. LPS promoted the recruitment of MRTF-A to the promoters of pro-inflammatory genes in an NF-κB-dependent manner. Reciprocally, MRTF-A influenced the nuclear enrichment and target binding of NF-κB. Mechanistically, MRTF-A was necessary for the accumulation of active histone modifications on NF-κB target promoters by communicating with the histone H3K4 methyltransferase complex (COMPASS). Silencing of individual members of COMPASS, including ASH2, WDR5 and SET1 (also known as SETD1A), downregulated the production of pro-inflammatory mediators and impaired the NF-κB kinetics. In summary, our work has uncovered a previously unknown function for MRTF-A and provided insights into the rationalized development of anti-inflammatory therapeutic strategies. PMID:25189621

  6. Targeted overexpression of inducible 6-phosphofructo-2-kinase in adipose tissue increases fat deposition but protects against diet-induced insulin resistance and inflammatory responses.

    PubMed

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S; Mashek, Douglas G; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-06-15

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues.

  7. Inhibition of Zymosan-Induced Inflammatory Factors Expression by ATRA Nanostructured Lipid Carriers

    PubMed Central

    Zhou, Hongyan; Zhang, Wensong; Gao, Xunyi; Zhang, Hongguang; Kong, Ning

    2016-01-01

    Purpose. The study aimed to evaluate the effect of all-trans retinoic acid-loaded nanostructured lipid carriers (ATRA-NLCs) on the zymosan-induced expression of the cytokines IL-4, IL-10, and IFN-γ and the matrix metalloproteinases/tissue inhibitor of metalloproteinases (MMPs/TIMPs) and TLR2 in rabbit corneal fibroblasts (RCFs). Methods. ATRA-NLCs were prepared by emulsification. RCFs were isolated and harvested after four to seven passages in monolayer culture. Cytokine release (IL-4, IL-10, and IFN-γ) induced by zymosan was analyzed by cytokine release assay, reverse transcription, and real-time polymerase chain reaction (RT-PCR) analysis detection. MMP-1, MMP-3, and MMP-13, TIMP-1 and TIMP-2, and TLR2 expression were analyzed by immunoblotting. Results. ATRA-NLCs were resistant to light and physically stable, and the average size of the ATRA-NLCs was 200 nm. ATRA-NLCs increased the zymosan-induced release of IL-4 and IL-10 and decreased the release of IFN-γ by RCFs. ATRA-NLCs decreased the levels of TLR2 and MMPs/TIMPs above. Conclusions. ATRA may be a potent anti-inflammatory agent for the therapy of fungal keratitis (FK). PMID:27340562

  8. Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils.

    PubMed

    Jin, Jun-O; Yu, Qing

    2015-02-01

    Although some immune modulatory effects of fucoidan have been elucidated, the effects of fucoidan on the apoptosis and activation of human neutrophils have not been investigated. In this study, we demonstrated that fucoidan purified from the brown seaweed Undaria pinnatifilda delays spontaneous apoptosis of human neutrophils and induces their activation. Fucoidan treatment inhibited apoptotic nuclei changes and phosphatidyl serine (PS) exposure on neutrophils cultured in vitro for 24h. The delay in neutrophil apoptosis mediated by fucoidan was associated with increased levels of the anti-apoptotic protein Mcl-1 and decreased levels of activated caspase-3. Screening of the signaling pathways by specific inhibitors indicated that fucoidan-induced delay in neutrophil apoptosis was dependent on the activation of PI3K/AKT signaling pathway, whereas MAPK signaling pathway was not critical. In addition, fucoidan enhanced the production of IL-6, IL-8 and TNF-α from neutrophils in an AKT-dependent manner. Taken together, these results demonstrated that fucoidan delays human neutrophil apoptosis and induces their production of pro-inflammatory cytokines. This knowledge could facilitate the development of novel therapeutic strategies for infectious diseases and neutropenia by controlling neutrophil homeostasis and function with fucoidan.

  9. Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology.

    PubMed

    Frautschy, S A; Hu, W; Kim, P; Miller, S A; Chu, T; Harris-White, M E; Cole, G M

    2001-01-01

    Both oxidative damage and inflammation have been implicated in age-related neurodegenerative diseases including Alzheimer's Disease (AD). The yellow curry spice, curcumin, has both antioxidant and anti-inflammatory activities which confer significant protection against neurotoxic and genotoxic agents. We used 22 month Sprague-Dawley (SD) rats to compare the effects of the conventional NSAID, ibuprofen, and curcumin for their ability to protect against amyloid beta-protein (Abeta)-induced damage. Lipoprotein carrier-mediated, intracerebroventricular infusion of Abeta peptides induced oxidative damage, synaptophysin loss, a microglial response and widespread Abeta deposits. Dietary curcumin (2000 ppm), but not ibuprofen, suppressed oxidative damage (isoprostane levels) and synaptophysin loss. Both ibuprofen and curcumin reduced microgliosis in cortical layers, but curcumin increased microglial labeling within and adjacent to Abeta-ir deposits. In a second group of middle-aged female SD rats, 500 ppm dietary curcumin prevented Abeta-infusion induced spatial memory deficits in the Morris Water Maze and post-synaptic density (PSD)-95 loss and reduced Abeta deposits. Because of its low side-effect profile and long history of safe use, curcumin may find clinical application for AD prevention.

  10. Establishment of hydrochloric acid/lipopolysaccharide-induced pelvic inflammatory disease model

    PubMed Central

    Oh, Yeonsu; Lee, Jaehun; Kim, Hyeon-Cheol; Hahn, Tae-Wook; Yoon, Byung-Il; Han, Jeong-Hee; Kwon, Yong-Soo; Park, Joung Jun; Koo, Deog-Bon; Rhee, Ki-Jong

    2016-01-01

    Pelvic inflammatory disease (PID), which is one of the most problematic complications experienced by women with sexually transmitted diseases, frequently causes secondary infections after reproductive abnormalities in veterinary animals. Although the uterus is self-protective, it becomes fragile during periods or pregnancy. To investigate PID, bacteria or lipopolysaccharide (LPS) extracted from gram negative bacteria has been used to induce the disease in several animal models. However, when LPS is applied to the peritoneum, it often causes systemic sepsis leading to death and the PID was not consistently demonstrated. Hydrochloric acid (HCl) has been used to induce inflammation in the lungs and stomach but not tested for reproductive organs. In this study, we developed a PID model in mice by HCl and LPS sequential intracervical (i.c.) administration. The proinflammatory cytokines, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α, were detected in the mouse uterus by western blot analysis and cytokine enzyme-linked immunosorbent assay after HCl (25 mg/kg) administration i.c. followed by four LPS (50 mg/kg) treatments. Moreover, mice exhibited increased infiltration of neutrophils in the endometrium and epithelial layer. These results suggest that ic co-administration of HCl and LPS induces PID in mice. This new model may provide a consistent and reproducible PID model for future research. PMID:26726020

  11. Artificial stone dust-induced functional and inflammatory abnormalities in exposed workers monitored quantitatively by biometrics

    PubMed Central

    Ophir, Noa; Shai, Amir Bar; Alkalay, Yifat; Israeli, Shani; Korenstein, Rafi; Kramer, Mordechai R.

    2016-01-01

    The manufacture of kitchen and bath countertops in Israel is based mainly on artificial stone that contains 93% silica as natural quartz, and ∼3500 workers are involved in cutting and processing it. Artificial stone produces high concentrations of silica dust. Exposure to crystalline silica may cause silicosis, an irreversible lung disease. Our aim was to screen exposed workers by quantitative biometric monitoring of functional and inflammatory parameters. 68 exposed artificial stone workers were compared to 48 nonexposed individuals (controls). Exposed workers filled in questionnaires, and all participants underwent pulmonary function tests and induced sputum analyses. Silica was quantitated by a Niton XL3 X-ray fluorescence spectrometer. Pulmonary function test results of exposed workers were significantly lower and induced sputa showed significantly higher neutrophilic inflammation compared to controls; both processes were slowed down by the use of protective measures in the workplace. Particle size distribution in induced sputum samples of exposed workers was similar to that of artificial stone dust, which contained aluminium, zirconium and titanium in addition to silica. In conclusion, the quantitation of biometric parameters is useful for monitoring workers exposed to artificial stone in order to avoid deterioration over time. PMID:27730180

  12. Oxidized low-density lipoproteins induced inflammatory process during atherogenesis with aging

    NASA Astrophysics Data System (ADS)

    Larbi, Anis; Khalil, Abdelouahed; Douziech, Nadine; Guérard, Karl-Philippe; Fülöp, Tamàs

    2005-02-01

    Atherosclerosis is a chronic disease developing through decades with two life-threatening complications: myocardial infarction and stroke. Oxidized low-density lipoproteins (oxLDL) produced by oxidative modifications of LDL in the subendothelial space have been demonstrated to be critically involved in atherogenesis through their intensive pro-inflammatory activity. Recently, it was shown that oxLDL have an apoptosis-inducing effect in T cells depending on time and degree of oxidation. The goal of the current study is to elucidate the molecular mechanisms underlying the apoptotic-inducing effects of oxLDL on T lymphocytes. T cells of young and elderly subjects were incubated for various periods of time with LDL oxidized to various degrees. The proliferation, the apoptosis, the MAPK ERK1/2 activation and the expression of the Bcl-2 protein family members were measured upon different LDL treatments. Thus, more the LDL are oxidized more they induce apoptosis and this effect is highly accentuated with aging. The oxLDL decrease the activation of the surviving molecule ERK1/2 and modulate the ratio of Bax/Bcl-2 towards a pro-apoptotic profile, which is also accentuated with aging. These results partly explain why atherosclerosis is increasing with aging concomitantly to its complications.

  13. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors.

    PubMed

    Lyons, D N; Kniffin, T C; Zhang, L P; Danaher, R J; Miller, C S; Bocanegra, J L; Carlson, C R; Westlund, K N

    2015-06-01

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. PMID:25818051

  14. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice.

    PubMed

    Park, Eun-Jung; Kim, Hero; Kim, Younghun; Yi, Jongheop; Choi, Kyunghee; Park, Kwangsik

    2010-04-15

    Fullerenes (C60s) occur in the environment due to natural and anthropogenic sources such as volcanic eruptions, forest fires, and the combustion of carbon-based materials. Recently, production and application of engineered C60s have also rapidly increased in diverse industrial fields and biomedicine due to C60' unique physico-chemical properties, so toxicity assessment on environmental and human health is being evaluated as a valuable work. However, data related to the toxicity of C60s have not been abundant up to now. In this study, we studied the immunotoxic mechanism and change of gene expression caused by the instillation of C60s. As a result, C60s induced an increase in sub G1 and G1 arrest in BAL cells, an increase in pro-inflammatory cytokines such as IL-1, TNF-alpha, and IL-6, and an increase of Th1 cytokines such as IL-12 and IFN-r in BAL fluid. In addition, IgE reached the maximum at 1 day after treatment in both BAL fluid and the blood, and decreased in a time-dependent manner. Gene expression of the MHC class II (H2-Eb1) molecule was stronger than that of the MHC class I (H2-T23), and an increase in T cell distribution was also observed during the experiment period. Furthermore, cell infiltration and expression of tissue damage related genes in lung tissue were constantly observed during the experiment period. Based on this, C60s may induce inflammatory responses in the lung of mice.

  15. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice

    SciTech Connect

    Park, Eun-Jung; Kim, Hero; Kim, Younghun; Yi, Jongheop; Choi, Kyunghee; Park, Kwangsik

    2010-04-15

    Fullerenes (C60s) occur in the environment due to natural and anthropogenic sources such as volcanic eruptions, forest fires, and the combustion of carbon-based materials. Recently, production and application of engineered C60s have also rapidly increased in diverse industrial fields and biomedicine due to C60' unique physico-chemical properties, so toxicity assessment on environmental and human health is being evaluated as a valuable work. However, data related to the toxicity of C60s have not been abundant up to now. In this study, we studied the immunotoxic mechanism and change of gene expression caused by the instillation of C60s. As a result, C60s induced an increase in sub G1 and G1 arrest in BAL cells, an increase in pro-inflammatory cytokines such as IL-1, TNF-alpha, and IL-6, and an increase of Th1 cytokines such as IL-12 and IFN-r in BAL fluid. In addition, IgE reached the maximum at 1 day after treatment in both BAL fluid and the blood, and decreased in a time-dependent manner. Gene expression of the MHC class II (H2-Eb1) molecule was stronger than that of the MHC class I (H2-T23), and an increase in T cell distribution was also observed during the experiment period. Furthermore, cell infiltration and expression of tissue damage related genes in lung tissue were constantly observed during the experiment period. Based on this, C60s may induce inflammatory responses in the lung of mice.

  16. Trigeminal Inflammatory Compression (TIC) Injury Induces Chronic Facial Pain and Susceptibility to Anxiety-Related Behaviors

    PubMed Central

    Lyons, Danielle N.; Kniffin, Tracey C.; Zhang, Liping; Danaher, Robert J.; Miller, Craig S.; Bocanegra, Jose L.; Carlson, Charles R.; Westlund, Karin N.

    2015-01-01

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week 8 post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury which resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model’s chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. PMID:25818051

  17. Effect of vitamin E succinate on inflammatory cytokines induced by high-intensity interval training

    PubMed Central

    Sarir, Hadi; Emdadifard, Ghodsieh; Farhangfar, Homayoun; TaheriChadorneshin, Hossein

    2015-01-01

    Aim and Scope: The anti-inflammatory effect of vitamin E under moderate exercises has been evaluated. However, the effect of vitamin E succinate, which has more potent anti-inflammatory effect than other isomers of vitamin E has not been evaluated. Therefore, the aim of the present study was to evaluate the effects of vitamin E succinate on tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) production induced by high-intensity interval training (HIIT). Materials and Methods: In the present study, 24 rats were randomly divided into control (C), supplementation (S), HIIT, and HIIT + supplementation (HIIT+S) groups. HIIT training protocol on a treadmill (at a speed of 40–54 m/min) and vitamin E succinate supplementation (60 mg/kg/day) was conducted for 6 weeks. Results: Serum IL-6 in the HIIT group significantly increased compared with the C group (350.42 ± 123.31 pg/mL vs 158.60 ± 41.96 pg/mL; P = 0.002). Also, serum TNF-α concentrations significantly enhanced (718.15 ± 133.42 pg/mL vs 350.87 ± 64.93 pg/mL; P = 0.001) in the HIIT group compared with the C group. Treatment of the training group with vitamin E numerically reduced IL-6 and TNF-α when compared with the HIIT group (217.31 ± 29.21 and 510.23 ± 217.88, respectively, P > 0.05). However, no significant changes were observed in serum TNF-α (P = 0.31) and IL-6 (P = 0.52) concentrations in the HIIT + S group compared with the C group. Conclusion: HIIT-induced IL-6 and TNF-α decreased by administration of Vitamin E succinate. PMID:26958053

  18. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors.

    PubMed

    Lyons, D N; Kniffin, T C; Zhang, L P; Danaher, R J; Miller, C S; Bocanegra, J L; Carlson, C R; Westlund, K N

    2015-06-01

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model.

  19. Anti-inflammatory effects of intravenous methotrexate associated with lipid nanoemulsions on antigen-induced arthritis

    PubMed Central

    Mello, Suzana B V; Tavares, Elaine R; Guido, Maria Carolina; Bonfá, Eloisa; Maranhão, Raul C

    2016-01-01

    OBJECTIVE: To test the hypothesis that intravenous use of methotrexate associated with lipid nanoemulsions can achieve superior anti-inflammatory effects in the joints of rabbits with antigen-induced arthritis compared with commercial methotrexate. METHODS: Arthritis was induced in New Zealand rabbits sensitized with methylated bovine serum albumin and subsequently intra-articularly injected with the antigen. A nanoemulsion of methotrexate labeled with 3H-cholesteryl ether (4 mg/kg methotrexate) was then intravenously injected into four rabbits to determine the plasma decaying curves and the biodistribution of the methotrexate nanoemulsion by radioactive counting. Additionally, the pharmacokinetics of the methotrexate nanoemulsion were determined by high-pressure liquid chromatography. Twenty-four hours after arthritis induction, the animals were allocated into three groups, with intravenous injection with saline solution (n=9), methotrexate nanoemulsion (0.5 µmol/kg methotrexate, n=7), or commercial methotrexate (0.5 µmol/kg, n=4). The rabbits were sacrificed 24 h afterward. Synovial fluid was then collected for protein leakage and cell content analyses and synovial membranes were collected for histopathological analysis. RESULTS: The methotrexate nanoemulsion was taken up mainly by the liver and the uptake by arthritic joints was two-fold greater than that by control joints. The methotrexate nanoemulsion treatment reduced leukocyte influx into the synovial fluid by nearly 65%; in particular, mononuclear and polymorphonuclear cells were reduced by 47 and 72%, respectively. In contrast, cell influx was unaffected following treatment with commercial methotrexate. Protein leakage into the arthritic knees of the rabbits was also more limited following methotrexate nanoemulsion treatment than following commercial methotrexate treatment. CONCLUSIONS: The intravenous methotrexate nanoemulsion showed anti-inflammatory effects on the synovia of arthritic joints that were

  20. Betahistine attenuates murine collagen-induced arthritis by suppressing both inflammatory and Th17 cell responses.

    PubMed

    Tang, Kuo-Tung; Chao, Ya-Hsuan; Chen, Der-Yuan; Lim, Yun-Ping; Chen, Yi-Ming; Li, Yi-Rong; Yang, Deng-Ho; Lin, Chi-Chen

    2016-10-01

    The objective of this study was to evaluate the potential therapeutic effects of betahistine dihydrochloride (betahistine) in a collagen-induced arthritis (CIA) mouse model. CIA was induced in DBA/1 male mice by primary immunization with 100μl of emulsion containing 2mg/ml chicken type II collagen (CII) mixed with complete Freund's adjuvant (CFA) in an 1:1 ratio, and booster immunization with 100μl of emulsion containing 2mg/ml CII mixed with incomplete Freund's adjuvant (IFA) in an 1:1 ratio. Immunization was performed subcutaneously at the base of the tail. After being boosted on day 21, betahistine (1 and 5mg/kg) was orally administered daily for 2weeks. The severity of CIA was determined by arthritic scores and assessment of histopathological joint destruction. Expression of cytokines in the paw and anti-CII antibodies in the serum was evaluated by ELISA. The proliferative response against CII in the lymph node cells was measured by (3)H-thymidine incorporation assay. The frequencies of different CII specific CD4(+) T cell subsets in the lymph node were determined by flow-cytometric analysis. Betahistine treatment attenuated the severity of arthritis and reduced the levels of pro-inflammatory cytokines, including TNF-α, IL-6, IL-23 and IL-17A, in the paw tissues of CIA mice. Lymph node cells from betahistine-treated mice showed a decrease in proliferation, as well as a lower frequency of Th17 cells. In vitro, betahistine suppressed CD4(+) T cell differentiation into Th17 cells. These results indicate that betahistine is effective in suppressing both inflammatory and Th17 responses in mouse CIA and that it may have therapeutic value as an adjunct treatment for rheumatoid arthritis. PMID:27494687

  1. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    SciTech Connect

    Xu, Demei; Hu, Lihua; Su, Chuanyang; Xia, Xiaomin; Zhang, Pu; Fu, Juanli; Wang, Wenchao; Xu, Duo; Du, Hong; Hu, Qiuling; Song, Erqun; Song, Yang

    2014-10-15

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent of apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably.

  2. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis

    PubMed Central

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Otegui, Marisa S; Grotewold, Erich

    2015-01-01

    Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress. PMID:26179363

  3. Removal of Inflammatory Ascites is Associated with Dynamic Modification of Local and Systemic Inflammation along with Prevention of Acute Lung Injury: In Vivo and In Silico Studies

    PubMed Central

    Emr, Bryanna; Sadowsky, David; Azhar, Nabil; Gatto, Louis A.; An, Gary; Nieman, Gary; Vodovotz, Yoram

    2014-01-01

    Background Sepsis-induced inflammation in the gut/peritoneal compartment occurs early in sepsis, and can lead to acute lung injury (ALI). We have suggested that inflammatory ascites drives the pathogenesis of ALI, and that removal of ascites with an abdominal wound vacuum prevents ALI. We hypothesized that the time- and compartment-dependent changes in inflammation that determine this process can be discerned using Principal Component Analysis (PCA) and Dynamic Bayesian Network (DBN) inference. Methods To test this hypothesis, data from a previous study were analyzed using PCA and DBN. In that study, two groups of anesthetized, ventilated pigs were subjected to experimental sepsis via intestinal ischemia/reperfusion and placement of a peritoneal fecal clot. The Control Group (n=6) had the abdomen opened at 12 hrs post injury (T12) with attachment of a passive drain. The Peritoneal Suction Treatment (PST) Group (n=6) was treated in an identical fashion except that a vacuum was applied to the peritoneal cavity at T12 to remove ascites and maintained until T48. Multiple inflammatory mediators were measured in ascites and plasma and related to lung function (PaO2/FiO2 ratio [PF] and Oxygen Index [OI]) using PCA and DBN. Results PST prevented ALI based on lung histopathology, whereas Control animals developed ALI. Principal Component Analysis revealed that local to the insult (i.e. ascites), primary pro-inflammatory cytokines play a decreased role in the overall response in the treatment group as compared to control. In both groups, multiple, nested positive feedback loops were inferred from DBN, which included interrelated roles for bacterial endotoxin, interleukin-6, transforming growth factor-β1, C-reactive protein, PF, and OI. Von Willebrand Factor was an output in Control, but not PST, ascites. Conclusions These combined in vivo and in silico studies suggest that in this clinically realistic paradigm of sepsis, endotoxin drives the inflammatory response in the

  4. Perilla frutescens extract ameliorates DSS-induced colitis by suppressing proinflammatory cytokines and inducing anti-inflammatory cytokines.

    PubMed

    Urushima, Hayato; Nishimura, Junichi; Mizushima, Tsunekazu; Hayashi, Noriyuki; Maeda, Kazuhisa; Ito, Toshinori

    2015-01-01

    Anti-inflammatory effects have been reported in Perilla frutescens leaf extract (PE), which is a plant of the genus belonging to the Lamiaceae family. We examined the effect of PE on dextran sulfate sodium (DSS)-induced colitis. Preliminarily, PE was safely administered for 7 wk without any adverse effects. In the preventive protocol, mice were fed 1.5% DSS solution dissolved in distilled water (control group) or 0.54% PE solution (PE group) ad libitum for 7 days. In the therapeutic protocol, distilled water or 0.54% PE solution was given for 10 days just after administration of 1.5% DSS for 5 days. PE intake significantly improved body weight loss. The serum cytokine profile demonstrated that TNF-α, IL-17A, and IL-10 were significantly lower in the PE group than in the control group. In the therapeutic protocol, mice in the PE group showed significantly higher body weight and lower histological colitis scores compared with mice in the control group on day 15. The serum cytokine profile demonstrated that TGF-β was significantly higher in the PE group than in the control group. In distal colon mRNA expression, TNF-α, and IL-17A were significantly downregulated. In vitro analyses of biologically active ingredients, such as luteolin, apigenin, and rosmarinic acid, in PE were performed. Luteolin suppressed production of proinflammatory cytokines, such as TNF-α, IL-1β, IL-6, and IL-17A. Apigenin also suppressed secretion of IL-17A and increased the anti-inflammatory cytokine IL-10. Rosmarinic acid increased the regulatory T cell population. We conclude that PE might be useful in treatment and prevention of DSS-induced colitis.

  5. The effect of thalidomide on ethanol-induced gastric mucosal damage in mice: involvement of inflammatory cytokines and nitric oxide.

    PubMed

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-01-01

    Excessive ethanol ingestion causes gastric mucosal damage through the inflammatory and oxidative processes. The present study was aimed to evaluate the protective effect of thalidomide on ethanol-induced gastric mucosal damage in mice. The animals were pretreated with vehicle or thalidomide (30 or 60 mg/kg, orally), and one hour later, the gastric mucosal injury was induced by oral administration of acidified ethanol. The animals were euthanized one hour after ethanol ingestion, and gastric tissues were collected to biochemical analyzes. The gastric mucosal lesions were assessed by macroscopic and histopathological examinations. The results showed that treatment of mice with thalidomide prior to the administration of ethanol dose-dependently reduced the gastric ulcer index. Thalidomide pretreatment significantly reduced the levels of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6], malondialdehyde (MDA) and myeloperoxidase (MPO) activity. In addition, thalidomide significantly inhibited ethanol-induced nitric oxide (NO) overproduction in gastric tissue. Histological observations showed that ethanol-induced gastric mucosal damage was attenuated by thalidomide pretreatment. It seems that thalidomide as an anti-inflammatory agent may have a protective effect against alcohol-induced mucosal damage by inhibition of neutrophil infiltration and reducing the production of nitric oxide and inflammatory cytokines in gastric tissue.

  6. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    SciTech Connect

    Jiang, Shao-Yun; Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan; Deng, Jia-Yin

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  7. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    SciTech Connect

    Pan, Hong; Wu, Xinyi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  8. Potential role of 8-oxoguanine DNA glycosylase 1 as a STAT1 coactivator in endotoxin-induced inflammatory response.

    PubMed

    Kim, Hong Sook; Kim, Byung-Hak; Jung, Joo Eun; Lee, Chang Seok; Lee, Hyun Gyu; Lee, Jung Weon; Lee, Kun Ho; You, Ho Jin; Chung, Myung-Hee; Ye, Sang-Kyu

    2016-04-01

    Human 8-oxoguanine DNA glycosylase 1 (OGG1) is the major DNA repair enzyme that plays a key role in excision of oxidative damaged DNA bases such as 8-oxoguainine (8-oxoG). Recent studies suggest another function of OGG1, namely that it may be involved in the endotoxin- or oxidative stress-induced inflammatory response. In this study, we investigated the role of OGG1 in the inflammatory response. OGG1 expression is increased in the organs of endotoxin-induced or myelin oligodendrocyte glycoprotein (MOG)-immunized mice and immune cells, resulting in induction of the expression of pro-inflammatory mediators at the transcriptional levels. Biochemical studies showed that signal transducer and activator of transcription 1 (STAT1) plays a key role in endotoxin-induced OGG1 expression and inflammatory response. STAT1 regulates the transcriptional activity of OGG1 through recruiting and binding to the gamma-interferon activation site (GAS) motif of the OGG1 promoter region, and chromatin remodeling by acetylation and dimethylation of lysine-14 and -4 residues of histone H3. In addition, OGG1 acts as a STAT1 coactivator and has transcriptional activity in the presence of endotoxin. The data presented here identifies a novel mechanism, and may provide new therapeutic strategies for the treatment of endotoxin-mediated inflammatory diseases. PMID:26496208

  9. Sargachromenol from Sargassum micracanthum Inhibits the Lipopolysaccharide-Induced Production of Inflammatory Mediators in RAW 264.7 Macrophages

    PubMed Central

    Yang, Eun-Jin; Ham, Young Min; Yang, Kyong-Wol; Lee, Nam Ho

    2013-01-01

    During our ongoing screening program designed to determine the anti-inflammatory potential of natural compounds, we isolated sargachromenol from Sargassum micracanthum. In the present study, we investigated the anti-inflammatory effects of sargachromenol on lipopolysaccharide (LPS)-induced inflammation in murine RAW 264.7 macrophage cells and the underlying mechanisms. Sargachromenol significantly inhibited the LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in a dose-dependent manner. It also significantly inhibited the protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner in LPS-stimulated macrophage cells. Further analyses showed that sargachromenol decreased the cytoplasmic loss of inhibitor κBα (IκBα) protein. These results suggest that sargachromenol may exert its anti-inflammatory effects on LPS-stimulated macrophage cells by inhibiting the activation of the NF-κB signaling pathway. In conclusion, to our knowledge, this is the first study to show that sargachromenol isolated from S. micracanthum has an effective anti-inflammatory activity. Therefore, sargachromenol might be useful for cosmetic, food, or medical applications requiring anti-inflammatory properties. PMID:24194688

  10. Anti-inflammatory effect of Heliotropium indicum Linn on lipopolysaccharide-induced uveitis in New Zealand white rabbits

    PubMed Central

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Ameyaw, Elvis Ofori; Asiamah, Emmanuel Akomanin

    2016-01-01

    AIM To investigate the anti-inflammatory effect of an aqueous whole plant extract of Heliotropium indicum (HIE) on endotoxin-induced uveitis in New Zealand white rabbits. METHODS Clinical signs of uveitis including flares, iris hyperemia and miosis, were sought for and scored in 1.0 mg/kg lipopolysaccharide (LPS) -induced uveitic rabbits treated orally with HIE (30-300 mg/kg), prednisolone (30 mg/kg), or normal saline (10 mL/kg). The number of polymorphonuclear neutrophils infiltrating, the protein concentration, as well as levels of tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), and monocyte chemmoattrant protein-1 (MCP-1) in the aqueous humor after the various treatments were also determined. A histopathological study of the anterior uveal was performed. RESULTS The extract and prednisolone-treatment significantly reduced (P≤0.001) both the clinical scores of inflammation (1.0-1.8 compared to 4.40±0.40 in the normal saline-treated rabbits) and inflammatory cells infiltration. The level of protein, and the concentrations of TNF-α, PGE2 and MCP-1 in the aqueous humor were also significantly reduced (P≤0.001). Histopathological studies showed normal uveal morphology in the HIE and prednisolone-treated rabbits while normal saline-treated rabbits showed marked infiltration of inflammatory cells. CONCLUSION The HIE exhibits anti-inflammatory effect on LPS-induced uveitis possibly by reducing the production of pro-inflammatory mediators. PMID:27162723

  11. Minocycline attenuates Aβ oligomers-induced pro-inflammatory phenotype in primary microglia while enhancing Aβ fibrils phagocytosis.

    PubMed

    El-Shimy, Ismail Amr; Heikal, Ola Ahmed; Hamdi, Nabila

    2015-11-16

    Microglia, the brain innate immune cells, are activated in response to amyloid beta (Aβ) resulting in neuroinflammation in AD brains. Recently, two phenotypes have been described for microglia: the pro-inflammatory classical and the anti-inflammatory alternative. Changes in microglia phenotype that control their phagocytic function are yet to be determined. The highly neurotoxic Aβ oligomers (oAβ) formed at an early disease stage induce pro-inflammatory microglia activation releasing neurotoxic mediators and contributing to neurodegeneration. A novel strategy for AD treatment is to attenuate microglia-induced inflammation while maintaining efficient Aβ clearance. Minocycline effectively crosses the blood-brain barrier and has widely reported neuroprotective effects. Yet, its exact mechanism of neuroprotection and its effects on microglia are still unknown. The aim of this study is to investigate the effect of minocycline on the phagocytic uptake of fAβ by primary microglia in relation to their activation state in an inflammatory milieu generated by oAβ or LPS. The study shows that minocycline is able to attenuate oAβ-induced neuroinflammatory response of microglia by inhibiting their pro-inflammatory phenotype activation. In addition, a significant enhancement of fAβ phagocytosis by minocycline- treated microglia is reported for the first time, providing novel insight into its neuroprotective role in AD.

  12. Prevention of Chlamydia-induced infertility by inhibition of local caspase activity.

    PubMed

    Igietseme, Joseph U; Omosun, Yusuf; Partin, James; Goldstein, Jason; He, Qing; Joseph, Kahaliah; Ellerson, Debra; Ansari, Uzma; Eko, Francis O; Bandea, Claudiu; Zhong, Guangming; Black, Carolyn M

    2013-04-01

    Tubal factor infertility (TFI) represents 36% of female infertility and genital infection by Chlamydia trachomatis (C. trachomatis) is a major cause. Although TFI is associated with host inflammatory responses to bacterial components, the molecular pathogenesis of Chlamydia-induced infertility remains poorly understood. We investigated the hypothesis that activation of specific cysteine proteases, the caspases, during C. trachomatis genital infection causes the disruption of key fertility-promoting molecules required for embryo development and implantation. We analyzed the effect of caspase inhibition on infertility and the integrity of Dicer, a caspase-sensitive, fertility-promoting ribonuclease III enzyme, and key micro-RNAs in the reproductive system. Genital infection with the inflammation- and caspase-inducing, wild-type C. trachomatis serovar L2 led to infertility, but the noninflammation-inducing, plasmid-free strain did not. We confirmed that caspase-mediated apoptotic tissue destruction may contribute to chlamydial pathogenesis. Caspase-1 or -3 deficiency, or local administration of the pan caspase inhibitor, Z-VAD-FMK into normal mice protected against Chlamydia-induced infertility. Finally, the oviducts of infected infertile mice showed evidence of caspase-mediated cleavage inactivation of Dicer and alteration in critical miRNAs that regulate growth, differentiation, and development, including mir-21. These results provide new insight into the molecular pathogenesis of TFI with significant implications for new strategies for treatment and prevention of chlamydial complications.

  13. Small bowel intussusception by local recurrence of an inflammatory myofibroblastic tumor: report of a case and review of the literature.

    PubMed

    Zuccarello, C; Arena, F; Fazzari, C; Arena, S; Nicòtina, P A

    2006-10-01

    Inflammatory myofibroblastic tumor (IMT) of the ileum is a rare, usually solitary lesion, that frequently presents small-intestinal intussusception and obstruction. We describe an IMT of the ileum in a 4.5-year old child who presented a small bowel intussusception. During laparotomy, an annular mass around the ileum was resected, and the IMT was histologically diagnosed. Three months after the operation, the patients were hospitalized with the symptoms of intestinal obstruction. Laparotomy showed a ileal intussusception. Along the previous suture line of anastomosis, a smooth polypoid tumor was evident. Segmental resection of the ileum, including the tumor mass, was performed. The IMT was immunohistochemically diagnosed. The patient was asymptomatic at 3 year follow-up. A review of the literature for this rare entity emphasizes the importance of immunohistochemical confirmation of its benign nature. Because of the risk of local recurrence, IMT cases should have a long-term follow-up.

  14. Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress.

    PubMed

    Su, Zu-Qing; Mo, Zhi-Zhun; Liao, Jin-Bin; Feng, Xue-Xuan; Liang, Yong-Zhuo; Zhang, Xie; Liu, Yu-Hong; Chen, Xiao-Ying; Chen, Zhi-Wei; Su, Zi-Ren; Lai, Xiao-Ping

    2014-10-01

    Usnic acid is a dibenzofuran derivative found in several lichen species, which has been shown to possess several activities, including antiviral, antibiotic, antitumoral, antipyretic, analgesic, antioxidative and anti-inflammatory activities. However, there were few reports on the effects of usnic acid on LPS-induced acute lung injury (ALI). The aim of our study was to explore the effect and possible mechanism of usnic acid on LPS-induced lung injury. In the present study, we found that pretreatment with usnic acid significantly improved survival rate, pulmonary edema. In the meantime, protein content and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) significantly decreased, and the levels of MPO, MDA, and H2O2 in lung tissue were markedly suppressed after treatment with usnic acid. Meanwhile, the activities of SOD and GSH in lung tissue significantly increased after treatment with usnic acid. Additionally, to evaluate the anti-inflammatory activity of usnic acid, the expression of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and anti-inflammatory cytokine IL-10, and chemokines interleukin-8 (IL-8) and macrophage inflammatory protein-2 (MIP-2) in BALF were studied. The results in the present study indicated that usnic acid attenuated the expression of TNF-α, IL-6, IL-8 and MIP-2. Meanwhile, the improved level of IL-10 in BALF was observed. In conclusion, these data showed that the protective effect of usnic acid on LPS-induced ALI in mice might relate to the suppression of excessive inflammatory responses and oxidative stress in lung tissue. Thus, it was suggested that usnic acid might be a potential therapeutic agent for ALI.

  15. The circadian clock regulates inflammatory arthritis

    PubMed Central

    Hand, Laura E.; Hopwood, Thomas W.; Dickson, Suzanna H.; Walker, Amy L.; Loudon, Andrew S. I.; Ray, David W.; Bechtold, David A.; Gibbs, Julie E.

    2016-01-01

    There is strong diurnal variation in the symptoms and severity of chronic inflammatory diseases, such as rheumatoid arthritis. In addition, disruption of the circadian clock is an aggravating factor associated with a range of human inflammatory diseases. To investigate mechanistic links between the biological clock and pathways underlying inflammatory arthritis, mice were administered collagen (or saline as a control) to induce arthritis. The treatment provoked an inflammatory response within the limbs, which showed robust daily variation in paw swelling and inflammatory cytokine expression. Inflammatory markers were significantly repressed during the dark phase. Further work demonstrated an active molecular clock within the inflamed limbs and highlighted the resident inflammatory cells, fibroblast-like synoviocytes (FLSs), as a potential source of the rhythmic inflammatory signal. Exposure of mice to constant light disrupted the clock in peripheral tissues, causing loss of the nighttime repression of local inflammation. Finally, the results show that the core clock proteins cryptochrome (CRY) 1 and 2 repressed inflammation within the FLSs, and provide novel evidence that a CRY activator has anti-inflammatory properties in human cells. We conclude that under chronic inflammatory conditions, the clock actively represses inflammatory pathways during the dark phase. This interaction has exciting potential as a therapeutic avenue for treatment of inflammatory disease.—Hand, L. E., Hopwood, T. W., Dickson, S. H., Walker, A. L., Loudon, A. S. I., Ray, D. W., Bechtold, D. A., Gibbs, J. E. The circadian clock regulates inflammatory arthritis. PMID:27488122

  16. Immune regulation and anti-inflammatory effects of isogarcinol extracted from Garcinia mangostana L. against collagen-induced arthritis.

    PubMed

    Fu, Yanxia; Zhou, Hailing; Wang, Mengqi; Cen, Juren; Wei, Qun

    2014-05-01

    Isogarcinol is a natural compound that we extracted from Garcinia mangostana L., and we were the first to report that it is a new immunosuppressant. In the present study, we investigated the immune regulation and anti-inflammatory effects of isogarcinol on collagen-induced arthritis (CIA) and explored its potential mechanism in the treatment of rheumatoid arthritis. The oral administration of isogarcinol significantly reduced clinical scores, alleviated cartilage and bone erosion, and reduced the levels of serum inflammatory cytokines in CIA mice. Isogarcinol inhibited xylene-induced mouse ear edema in vivo. In vitro, isogarcinol decreased iNOS and COX-2 mRNA expression and NO content by inhibiting NF-κB expression. Furthermore, isogarcinol decreased the activity of NFAT and inhibited IL-2 expression. The mechanism of action of isogarcinol is associated with down-regulation of both autoimmune and inflammatory reactions.

  17. Coenzyme Q10 Suppresses TNF-α-Induced Inflammatory Reaction In Vitro and Attenuates Severity of Dermatitis in Mice.

    PubMed

    Li, Weiwei; Wu, Xiaojuan; Xu, Xiangling; Wang, Wenhan; Song, Sijia; Liang, Ke; Yang, Min; Guo, Linlin; Zhao, Yunpeng; Li, Ruifeng

    2016-02-01

    Anti-oxidant coenzyme Q10 (Co-Q10) is commonly used in clinic. Recently, Co-Q10 was reported to antagonize TNF-α-induced inflammation and play a protective role in various inflammatory conditions. However, its role in dermatitis is unknown. Herein, RAW264.7 macrophage cell line was cultured with stimulation of TNF-α, and administration of Co-Q10 alleviated TNF-α-mediated inflammatory reaction in vitro. Furthermore, oxazolone-induced dermatitis mice model was established, and treatment of Co-Q10 markedly attenuated dermatitis phenotype in this mice model. Moreover, the protective role of Co-Q10 in vitro and in dermatitis was probably due to its repression on NF-κB signaling. Collectively, Co-Q10 may represent a potential molecular target for prevention and treatment of inflammatory skin diseases.

  18. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    PubMed

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p < 0.03) versus control (no intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p < 0.03) and increased expression of α-smooth muscle actin in HLE B-3 after six days, although only poly(2-hydroxyethyl methacrylate) induced a significant difference versus control (p < 0.01). Our results imply that-contrary to prior uveal biocompatibility understanding-macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal

  19. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    PubMed

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p < 0.03) versus control (no intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p < 0.03) and increased expression of α-smooth muscle actin in HLE B-3 after six days, although only poly(2-hydroxyethyl methacrylate) induced a significant difference versus control (p < 0.01). Our results imply that-contrary to prior uveal biocompatibility understanding-macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal

  20. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    SciTech Connect

    Kocbach, Anette Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-10-15

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 {mu}g/cm{sup 2} of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-{alpha}, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-{alpha}, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-{alpha} and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent.

  1. Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles.

    PubMed

    Alabastri, Alessandro; Yang, Xiao; Manjavacas, Alejandro; Everitt, Henry O; Nordlander, Peter

    2016-04-26

    The intense local field induced near metallic nanostructures provides strong enhancements for surface-enhanced spectroscopies, a major focus of plasmonics research over the past decade. Here we consider that plasmonic nanoparticles can also induce remarkably large electromagnetic field gradients near their surfaces. Sizeable field gradients can excite dipole-forbidden transitions in nearby atoms or molecules and provide unique spectroscopic fingerprinting for chemical and bimolecular sensing. Specifically, we investigate how the local field gradients near metallic nanostructures depend on geometry, polarization, and wavelength. We introduce the concept of the local angular momentum (LAM) vector as a useful figure of merit for the design of nanostructures that provide large field gradients. This quantity, based on integrated fields rather than field gradients, is particularly well-suited for optimization using numerical grid-based full wave electromagnetic simulations. The LAM vector has a more compact structure than the gradient matrix and can be straightforwardly associated with the angular momentum of the electromagnetic field incident on the plasmonic structures.

  2. Eicosapentaenoic acid reduces high-fat diet-induced insulin resistance by altering adipose tissue glycolytic and inflammatory function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported Eicosapentaenoic Acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation. In this study, we dissected mechanisms mediating anti-inflammatory and anti-lipogenic actions of EPA, using histology/ immunohistochemistry, transcriptomi...

  3. Inflammatory mediators involved in the paw edema and hyperalgesia induced by Batroxase, a metalloproteinase isolated from Bothrops atrox snake venom.

    PubMed

    De Toni, Lanuze G B; Menaldo, Danilo L; Cintra, Adélia C O; Figueiredo, Maria J; de Souza, Anderson R; Maximiano, William M A; Jamur, Maria C; Souza, Glória E P; Sampaio, Suely V

    2015-09-01

    Snake venom metalloproteinases have been described as responsible for several inflammatory effects. In this study, we investigated the edema and hyperalgesia induced in rats by Batroxase, a P-I metalloproteinase from Bothrops atrox venom, along with possible inflammatory mediators involved in these responses. Batroxase or sterile saline was injected into rat paws and the edema and hyperalgesic effects were evaluated for 6h by using a plethysmometer and a Von Frey system, respectively. Batroxase induced significant edematogenic and hyperalgesic peak responses in the first hours after administration. The inflammatory mediators involved in these responses were assayed by pretreatment of animals with synthesis inhibitors or receptor antagonists. Peak responses were significantly reduced by administration of the glucocorticoid dexamethasone, the H1 receptor antagonist diphenhydramine and the FLAP inhibitor MK-886. Rat paws injected with compound 48/80, a mast cell degranulating agent, followed by Batroxase injection resulted in significant reduction of the edema and hyperalgesia. However, Batroxase itself induced minor degranulation of RBL-2H3 mast cells in vitro. Additionally, the inflammatory responses did not seem to be related to prostaglandins, bradykinin or nitric oxide. Our results indicate a major involvement of histamine and leukotrienes in the edema and hyperalgesia induced by Batroxase, which could be related, at least in part, to mast cell degranulation. PMID:26072684

  4. Efficient Inhibition of wear debris-induced inflammation by locally delivered siRNA

    SciTech Connect

    Peng Xiaochun; Tao Kun; Cheng Tao; Zhu Junfeng; Zhang Xianlong

    2008-12-12

    Aseptic loosening is the most common long-term complication of total joint replacement, which is associated with the generation of wear debris. The purpose of this study was to investigate the inhibitory effect of small interfering RNA (siRNA) targeting tumor necrosis factor-{alpha} (TNF-{alpha}) on wear debris-induced inflammation. A local delivery of lentivirus-mediated TNF-{alpha} siRNA into the modified murine air pouch, which was stimulated by polymethylmethacrylate (PMMA) particles, resulted in significant blockage of TNF-{alpha} both in mRNA and protein levels for up to 4 weeks. In addition, significant down-regulation of interleukin-1 (IL-1) and interleukin-6 (IL-6) was observed in TNF-{alpha} siRNA-treated pouches. The safety profile of gene therapy was proven by Bioluminescent assay and quantitative fluorescent flux. Histological analysis revealed less inflammatory responses (thinner pouch membrane and decreased cellular infiltration) in TNF-{alpha} siRNA-treated pouches. These findings suggest that local delivery of TNF-{alpha} siRNA might be an excellent therapeutic candidate to inhibit particle-induced inflammation.

  5. C/EBPβ regulates multiple IL-1β-induced human astrocyte inflammatory genes

    PubMed Central

    2012-01-01

    Background CCAAT enhancer-binding protein (C/EBP)β regulates gene expression in multiple organ systems and cell types, including astrocytes in the central nervous system (CNS). Inflammatory stimuli, interleukin (IL)-1β, tumor necrosis factor-α, human immunodeficiency virus (HIV)-1 and lipopolysaccharide induce astrocyte C/EBPβ expression. C/EBPβ is detectable in brains of Alzheimer’s disease (AD), Parkinson’s disease (PD) and HIV-1-associated dementia (HAD) patients, yet little is known about how C/EBPβ contributes to astrocyte gene regulation during neuroinflammation. Methods The expression of 92 human inflammation genes was compared between IL-1β-treated primary human astrocytes and astrocytes transfected with C/EBPβ-specific small interfering (si)RNA prior to IL-1β treatment for 12 h. Transcripts altered by > two-fold compared to control were subjected to one-way analysis of variance and Newman-Keuls post-test for multiple comparisons. Expression of two genes, cyclooxygenase-2 (COX-2) and bradykinin receptor B2 (BDKRB2) was further confirmed in additional human astrocyte donors. Astrocytes were treated with mitogen-activated protein kinase-selective inhibitors, then with IL-1β for 12 or 24 h followed by COX-2 and BDKRB2, expression analyses. Results IL-1β altered expression of 29 of 92 human inflammation genes by at least two-fold in primary human astrocytes in 12 h. C/EBPβ knockdown affected expression of 17 out of 29 IL-1β-regulated genes by > 25%. Two genes relevant to neuroinflammation, COX-2 and BDKRB2, were robustly decreased and increased, respectively, in response to C/EBPβ knockdown, and expression was confirmed in two additional donors. COX-2 and BDKRB2 mRNA remained altered in siRNA-transfected astrocytes at 12, 24 or 72 h. Inhibiting p38 kinase (p38K) activation blocked IL-1β-induced astrocyte COX-2 mRNA and protein expression, but not IL-1β-induced astrocyte BDKRB2 expression. Inhibiting extracellular

  6. Pharmacological effect of a new idebenone formulation in a model of carrageenan-induced inflammatory pain.

    PubMed

    Lauro, Filomena; Ilari, Sara; Giancotti, Luigino Antonio; Ventura, Cinzia Anna; Morabito, Chiara; Gliozzi, Micaela; Malafoglia, Valentina; Palma, Ernesto; Paolino, Donatella; Mollace, Vincenzo; Muscoli, Carolina

    2016-09-01

    Considerable evidence demonstrated that the central role of reactive oxygen species and reactive nitrogen species (ROS and RNS) in the development of thermal hyperalgesia is associated to acute and chronic inflammation. Idebenone (IDE), a synthetic analogue of the endogenous cellular antioxidant coenzyme Q10 (CoQ10), is an active drug in the central nervous system which shows a protection in a variety of neurological disorders. Since it is lipophilic, poorly water soluble and highly bound to plasma proteins, different technological approaches have been explored to increase its solubility and new pharmaceutical properties. Therefore, it has been complexed with HP-β-cyclodextrins (HP) and its efficacy has been assessed in an animal model of carrageenan-induced thermal hyperalgesia. All male rats used for this study received a subplantar injection of carrageenan into the right hindpaw in the presence or absence of IDE alone and IDE/HP complex. We observed that IDE poorly reduced painful carrageenan effects whereas IDE/HP complex was able to prevent carrageenan-induced hyperalgesia and edema in a dose-dependent manner, reducing spinal MDA levels and protein nitration. Hence, our results demonstrated that when complexed with HP, idebenone exerts a potent analgesic and anti-inflammatory efficacy. PMID:27480201

  7. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes

    PubMed Central

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-01-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation. PMID:26906404

  8. Polymethoxy flavonoids, nobiletin and tangeretin, prevent lipopolysaccharide-induced inflammatory bone loss in an experimental model for periodontitis.

    PubMed

    Tominari, Tsukasa; Hirata, Michiko; Matsumoto, Chiho; Inada, Masaki; Miyaura, Chisato

    2012-01-01

    Nobiletin, a polymethoxy flavonoid (PMF), inhibits systemic bone resorption and maintains bone mass in estrogen-deficient ovariectomized mice. This study examined the anti-inflammatory effects of PMFs, nobiletin, and tangeretin on lipopolysaccharide (LPS)-induced bone resorption. Nobiletin and tangeretin suppressed LPS-induced osteoclast formation and bone resorption and suppressed the receptor activator of NFκB ligand-induced osteoclastogenesis in RAW264.7 macrophages. Nobiletin clearly restored the alveolar bone mass in a mouse experimental model for periodontitis by inhibiting LPS-induced bone resorption. PMFs may therefore provide a new therapeutic approach for periodontal bone loss.

  9. Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum.

    PubMed

    Chen, Hsiao-Jou Cortina; Spiers, Jereme G; Sernia, Conrad; Lavidis, Nickolas A

    2016-01-01

    Chronic mild stress has been shown to cause hippocampal neuronal nitric oxide synthase (NOS) overexpression and the resultant nitric oxide (NO) production has been implicated in the etiology of depression. However, the extent of nitrosative changes including NOS enzymatic activity and the overall output of NO production in regions of the brain like the hippocampus and striatum following acute stress has not been characterized. In this study, outbred male Wistar rats aged 6-7 weeks were randomly allocated into 0 (control), 60, 120, or 240 min stress groups and neural regions were cryodissected for measurement of constitutive and inducible NOS enzymatic activity, nitrosative status, and relative gene expression of neuronal and inducible NOS. Hippocampal constitutive NOS activity increased initially but was superseded by the inducible isoform as stress duration was prolonged. Interestingly, hippocampal neuronal NOS and interleukin-1β mRNA expression was downregulated, while the inducible NOS isoform was upregulated in conjunction with other inflammatory markers. This pro-inflammatory phenotype within the hippocampus was further confirmed with an increase in the glucocorticoid-antagonizing macrophage migration inhibitory factor, Mif, and the glial surveillance marker, Ciita. This indicates that despite high levels of glucocorticoids, acute stress sensitizes a neuroinflammatory response within the hippocampus involving both pro-inflammatory cytokines and inducible NOS while concurrently modulating the immunophenotype of glia. Furthermore, there was a delayed increase in striatal inducible NOS expression while no change was found in other pro-inflammatory mediators. This suggests that short term stress induces a generalized increase in inducible NOS signaling that coincides with regionally specific increased markers of adaptive immunity and inflammation within the brain.

  10. Local transcutaneous electrical stimulation (TENS) effects in experimental inflammatory edema and pain.

    PubMed

    Resende, Marcos A; Sabino, George G; Cândido, Claudia R M; Pereira, Leani S M; Francischi, Janetti N

    2004-11-19

    Few studies in the literature associated transcutaneous electrical stimulation (TENS) use with an antiinflammatory activity. The purpose of this study was to investigate the effects of low (10 Hz)- and high (130 Hz)-frequency TENS on hyperalgesia and edema that occur after injection of carrageenan in rat paw. After induction of inflammation, either low- or high-frequency TENS was applied in the rat paw for 20 min, and the effect of TENS treatment on escape or paw withdrawal and edema was measured. Both low- and high-frequency TENS inhibited by 100% the hyperalgesia but not the edema response. However, low-frequency TENS presented longer lasting effect as compared with high-frequency TENS. Naltrexone-treated animals showed a complete reversion of the analgesic effect induced by low- but not high-frequency TENS. Thus, our data demonstrated absence of an antiinflammatory effect associated to TENS use and confirmed the participation of endogenous opioids on low TENS-induced analgesia.

  11. Kupffer cell blockade improves the endotoxin-induced microcirculatory inflammatory response in obstructive jaundice.

    PubMed

    Abrahám, Szabolcs; Szabó, Andrea; Kaszaki, József; Varga, Renáta; Eder, Katalin; Duda, Erno; Lázár, György; Tiszlavicz, László; Boros, Mihály; Lázár, György

    2008-07-01

    Cholestasis predisposes to hypersensitivity to LPS, leading to potential septic complications. We set out to characterize the involvement of Kupffer cell (KC) activation in the hepatic microcirculatory and structural consequences of obstructive jaundice in the presence and absence of acute endotoxemia. The hepatic microcirculatory consequences of 3-day extrahepatic bile duct ligation (BDL) were assessed in rats. The contributions of changes in hepatic perfusion, leukocyte influx, and proinflammatory cytokine release to the development of hepatic structural damage were also determined. Furthermore, the corresponding consequences of BDL in combination with acute (2-h) endotoxemia (1 mg kg(-1) LPS, i.v.) were compared with those observed after LPS alone. In a second series, the same protocols were applied in identical groups of rats where the KC function was inhibited with 24-h gadolinium chloride pretreatment (10 mg kg(-1), i.v.). Bile duct ligation induced minor inflammatory reactions but caused a marked reduction in hepatic sinusoidal perfusion and severe histological damage. LPS treatment, however, elicited an approximately 5-fold increase in leukocyte adherence in the central venules and pronounced IL-6 and TNF-alpha release, but without significant structural damage. The combination of BDL with LPS enhanced the perfusion failure, leukocyte sticking/deposition, and proinflammatory cytokine release; most of these changes can be effectively ameliorated by gadolinium chloride. In conclusion, when obstructive jaundice is followed by a second hit of LPS, perfusion failure, liver inflammation, and structural damage are enhanced, the KCs playing a decisive role in this scenario. Therapeutic strategies aimed at KC blockade can potentially reduce the risk of inflammatory complications in cholestasis. PMID:18562926

  12. Anti-inflammatory effect of diosmectite in hapten-induced colitis in the rat.

    PubMed

    González, Raquel; de Medina, Fermin Sánchez; Martínez-Augustin, Olga; Nieto, Ana; Gálvez, Julio; Risco, Severiano; Zarzuelo, Antonio

    2004-03-01

    1. Diosmectite is a natural silicate effectively used in the treatment of infectious diarrhoea. Its antidiarrhoeal properties involve adsorption of toxins and bacteria and modifications of the rheological characteristics of gastrointestinal mucus. Hence, the aim of this study was to test the intestinal anti-inflammatory activity of diosmectite. 2. Diosmectite (500 mg x kg(-1) day(-1), p.o.) was administered as a post-treatment to rats with chronic trinitrobenzene sulphonic acid colitis. Colonic status was checked 1 and 2 weeks after colitis induction by macroscopic, histological and biochemical examination. 3. Diosmectite post-treatment resulted in amelioration of the morphological signs (intestinal weight, macroscopic damage, necrosed area, histology) and biochemical markers (myeloperoxidase activity, glutathione levels, MUC2 expression, inducible nitric oxide synthase and interleukin-1beta (IL-1beta) and leukotriene B(4) synthesis), as well as in the reduction of the severity of diarrhoea. The effect of the clay was comparable to that of sulphasalazine (50 mg x kg(-1) day(-1)). 4. 5. Diosmectite exhibited a dose-dependent capacity to adsorb proteins in vitro as well as a dose-dependent inhibitory effect on the basolateral secretion of IL-8 by lipopolysaccharide (LPS)-stimulated HT29 cells. Diosmectite had a dose-dependent inhibitory effect on IL-1beta production by LPS-stimulated THP-1 cells. 6. The effect of diosmectite on MUC2 was post-transcriptional, since mRNA levels were unaffected. However, diosmectite is able to upregulate MUC2 mRNA levels in HT29-MTX cells. 7. Diosmectite has anti-inflammatory activity administered as a post-treatment. Possible mechanisms include adsorption of luminal antigens, increase of colonic mucin levels and possibly a direct modulatory action of cytokine production by mucosal cells.

  13. Permittivity disorder induced Anderson localization in magnetophotonic crystals

    NASA Astrophysics Data System (ADS)

    Abdi-Ghaleh, R.; Namdar, A.

    2016-11-01

    This theoretical study was carried out to investigate the permittivity disorder induced Anderson localization of light in one-dimensional magnetophotonic crystals. It was shown that the disorder create the resonant transmittance modes associated with enhanced Faraday rotations inside the photonic band gap. The average localization length of the right- and left-handed circular polarizations (RCP and LCP), the total transmittance together with the ensemble average of the RCP and LCP phases, and the Faraday rotation of the structure were also investigated. For this purpose, the off-diagonal elements of the permittivity tensor were varied for various wavelengths of incident light. The obtained results revealed the nonreciprocal property of circular eigen modes. This study can potentially open up a new aspect for utilizing the disorder magnetophotonic structures in nonreciprocal systems such as isolators and circulators.

  14. Interaction-induced localization of mobile impurities in ultracold systems

    PubMed Central

    Li, Jian; An, Jin; Ting, C. S.

    2013-01-01

    The impurities, introduced intentionally or accidentally into certain materials, can significantly modify their characteristics or reveal their intrinsic physical properties, and thus play an important role in solid-state physics. Different from those static impurities in a solid, the impurities realized in cold atomic systems are naturally mobile. Here we propose an effective theory for treating some unique behaviors exhibited by ultracold mobile impurities. Our theory reveals the interaction-induced transition between the extended and localized impurity states, and also explains the essential features obtained from several previous models in a unified way. Based on our theory, we predict many intriguing phenomena in ultracold systems associated with the extended and localized impurities, including the formation of the impurity-molecules and impurity-lattices. We hope this investigation can open up a new avenue for the future studies on ultracold mobile impurities. PMID:24192986

  15. Interaction-induced localization of mobile impurities in ultracold systems

    NASA Astrophysics Data System (ADS)

    Li, Jian; An, Jin; Ting, C. S.

    2013-11-01

    The impurities, introduced intentionally or accidentally into certain materials, can significantly modify their characteristics or reveal their intrinsic physical properties, and thus play an important role in solid-state physics. Different from those static impurities in a solid, the impurities realized in cold atomic systems are naturally mobile. Here we propose an effective theory for treating some unique behaviors exhibited by ultracold mobile impurities. Our theory reveals the interaction-induced transition between the extended and localized impurity states, and also explains the essential features obtained from several previous models in a unified way. Based on our theory, we predict many intriguing phenomena in ultracold systems associated with the extended and localized impurities, including the formation of the impurity-molecules and impurity-lattices. We hope this investigation can open up a new avenue for the future studies on ultracold mobile impurities.

  16. The effects of local rotation on roll vection induced by globally rotating visual inducer

    PubMed Central

    Nakamura, Shinji

    2015-01-01

    A visual stimulus rotating globally along an observer's line of sight can induce the illusory perception of self-rotation in the opposite direction (roll vection). Psychophysical experiments were conducted to examine the effects of local rotations of visual elements of the stimulus that were manipulated independently of the global rotation. The results indicated that the addition of local rotations inconsistent with the global rotation (assumed to be the primary inducer of roll vection), generally decreased the strength of perceived self-rotation. The uniformity of orientation of the elements composing the global visual pattern and the visual polarities assigned to each visual element, i.e., intrinsic directionality concerning up and down, were observed to function as modulators of the effects of the local rotation. These results suggested that local motion signals arising from independent rotations assigned to each element of a visual object cannot be ignored in the perceptual mechanism underlying roll vection. PMID:26074848

  17. The effects of local rotation on roll vection induced by globally rotating visual inducer.

    PubMed

    Nakamura, Shinji

    2015-01-01

    A visual stimulus rotating globally along an observer's line of sight can induce the illusory perception of self-rotation in the opposite direction (roll vection). Psychophysical experiments were conducted to examine the effects of local rotations of visual elements of the stimulus that were manipulated independently of the global rotation. The results indicated that the addition of local rotations inconsistent with the global rotation (assumed to be the primary inducer of roll vection), generally decreased the strength of perceived self-rotation. The uniformity of orientation of the elements composing the global visual pattern and the visual polarities assigned to each visual element, i.e., intrinsic directionality concerning up and down, were observed to function as modulators of the effects of the local rotation. These results suggested that local motion signals arising from independent rotations assigned to each element of a visual object cannot be ignored in the perceptual mechanism underlying roll vection.

  18. Human Mesenchymal Stem Cells Suppress the Stretch–Induced Inflammatory miR-155 and Cytokines in Bronchial Epithelial Cells

    PubMed Central

    Kuo, Yi-Chun; Li, Yi-Shuan Julie; Zhou, Jing; Shih, Yu-Ru Vernon; Miller, Marina; Broide, David; Lee, Oscar Kuang-Sheng; Chien, Shu

    2013-01-01

    Current research in pulmonary pathology has focused on inflammatory reactions initiated by immunological responses to allergens and irritants. In addition to these biochemical stimuli, physical forces also play an important role in regulating the structure, function, and metabolism of the lung. Hyperstretch of lung tissues can contribute to the inflammatory responses in asthma, but the mechanisms of mechanically induced inflammation in the lung remain unclear. Our results demonstrate that excessive stretch increased the secretion of inflammatory cytokines by human bronchial epithelial cells (hBECs), including IL-8. This increase of IL-8 secretion was due to an elevated microRNA-155 (miR-155) expression, which caused the suppression of Src homology 2 domain–containing inositol 5-phosphatase 1 (SHIP1) production and the subsequent activation of JNK signaling. In vivo studies in our asthmatic mouse model also showed such changes in miR-155, IL-8, and SHIP1 expressions that reflect inflammatory responses. Co-culture with human mesenchymal stem cells (hMSCs) reversed the stretch-induced hBEC inflammatory responses as a result of IL-10 secretion by hMSCs to down-regulate miR-155 expression in hBECs. In summary, we have demonstrated that mechanical stretch modulates the homeostasis of the hBEC secretome involving miR-155 and that hMSCs can be used as a potential therapeutic approach to reverse bronchial epithelial inflammation in asthma. PMID:23967196

  19. Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy.

    PubMed

    Li, Haiying; Miao, Weiguo; Ma, Jingfen; Xv, Zhen; Bo, Hai; Li, Jianyu; Zhang, Yong; Ji, Li Li

    2016-01-01

    Increasing evidence has indicated that acute strenuous exercise can induce a range of adverse reactions including oxidative stress and tissue inflammation. However, little is currently known regarding the mechanisms that underlie the regulation of the inflammatory response in the myocardium during acute heavy exercise. This study evaluated the mitochondrial function, NLRP3 inflammasome activation, and mitochondrial autophagy-related proteins to investigate the regulation and mechanism of mitochondrial stress regarding the inflammatory response of the rat myocardium during acute heavy exercise. The results indicated that the mitochondrial function of the myocardium was adaptively regulated to meet the challenge of stress during acute exercise. The exercise-induced mitochondrial stress also enhanced ROS generation and triggered an inflammatory reaction via the NLRP3 inflammasome activation. Moreover, the mitochondrial autophagy-related proteins including Beclin1, LC3, and Bnip3 were all significantly upregulated during acute exercise, which suggests that mitophagy was stimulated in response to the oxidative stress and inflammatory response in the myocardium. Taken together, our data suggest that, during acute exercise, mitochondrial stress triggers the rat myocardial inflammatory response via NLRP3 inflammasome activation and activates mitophagy to minimize myocardial injury.

  20. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice.

    PubMed

    Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun

    2016-01-01

    Cold exposure or β₃-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β₃-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1-5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation. PMID:27223282

  1. Anti-inflammatory activity of Dasyphyllum brasiliensis (Asteraceae) on acute peritonitis induced by beta-glucan from Histoplasma capsulatum.

    PubMed

    Castelucci, Simone; de Paula Rogerio, Alexandre; Ambrosio, Sérgio Ricardo; Arakawa, Nilton Syogo; de Lira, Simone Possedente; Faccioli, Lúcia Helena; Da Costa, Fernando Batista

    2007-05-30

    The tea prepared from leaves and thorns of Dasyphyllum brasiliensis (Asteraceae) is used in the traditional medicine in Brazil for the treatment of oral and oropharyngeal diseases. In this study, we investigated the anti-inflammatory activity of this plant. The aqueous crude extract (ACE), the methanol-water (MeOH-H(2)O) fraction obtained by solvent partition and its fractionation products were evaluated for their anti-inflammatory activities on acute peritonitis induced by beta-glucan from the cell walls of Histoplasma capsulatum. The antiedematogenic activity was also tested using the carrageenan-induced paw edema assay in mice. Oral administration of 100 and 300mg/kg of the ACE in mice caused a significant reduction of neutrophil and eosinophil recruitment in the acute peritonitis assay. In addition, ACE at 300mg/kg inhibited the number of mononuclear cells recruitment. The MeOH-H(2)O fraction and its fractionation products (all at 100mg/kg) also presented anti-inflammatory activities, confirmed by the inhibition of cells recruited to the peritoneal cavity. ACE at 100mg/kg did not show any significant reduction of the edema in the mice paw injected with carrageenan. These data together suggest that Dasyphyllum brasiliensis presents significant anti-inflammatory activity, thus supporting the popular use of the tea in the treatment of inflammatory diseases.

  2. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice

    PubMed Central

    Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun

    2016-01-01

    Cold exposure or β3-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β3-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1–5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation. PMID:27223282

  3. Polymethoxyflavone Apigenin-Trimethylether Suppresses LPS-Induced Inflammatory Response in Nontransformed Porcine Intestinal Cell Line IPEC-J2

    PubMed Central

    Farkas, Orsolya; Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2015-01-01

    The in vitro anti-inflammatory effect of apigenin and its trimethylated analogue (apigenin-trimethylether) has been investigated in order to evaluate whether these flavonoids could attenuate LPS-induced inflammation in IPEC-J2 non-transformed intestinal epithelial cells. Levels of IL-6, IL-8, TNF-α, and COX-2 mRNA were measured as a marker of inflammatory response. The extracellular H2O2 level in IPEC-J2 cells was also monitored by Amplex Red assay. Our data revealed that both compounds had significant lowering effect on the inflammatory response. Apigenin (at 25 μM) significantly decreased gene expression of IL-6 in LPS-treated cells, while apigenin-trimethylether in the same concentration did not influence IL-6 mRNA level. Both apigenin and apigenin-trimethylether reduced IL-8 gene expression significantly. TNF-α mRNA level was decreased by apigenin-trimethylether, which was not influenced by apigenin. Treatment with both flavonoids caused significant reduction in the mRNA level of COX-2, but the anti-inflammatory effect of the methylated analogue was more effective than the unmethylated one. Furthermore, both flavonoids reduced significantly the level of extracellular H2O2 compared to the control cells. In conclusion, the methylated apigenin analogue could avoid LPS-induced intestinal inflammation and it could be applied in the future as an effective anti-inflammatory compound. PMID:26180592

  4. Ampelopsis japonica Makino Extract Inhibits the Inflammatory Reaction Induced by Pathogen-Associated Molecular Patterns in Epidermal Keratinocytes

    PubMed Central

    Choi, Mi-Ra; Choi, Dae-Kyoung; Kim, Ki-Duck; Kim, Sue Jeong; Kim, Dong-Il; Im, Myung; Lee, Young; Seo, Young-Joon; Kim, Chang Deok

    2016-01-01

    Background Keratinocytes are the major cells in epidermis, providing barrier components such as cornified cells through the sophisticated differentiation process. In addition, keratinocytes exerts their role as the defense cells via activation of innate immunity. It has been known that pathogen-associated molecular patterns (PAMPs) including double-strand RNA and nucleotides can provoke inflammatory reaction in keratinocytes. Objective The aim of this study is to evaluate the effect of Ampelopsis japonica Makino extract (AE) on PAMPs-induced inflammatory reaction of keratinocytes. Methods The effects of AE were determined using poly (I:C)-induced inflammation and imiquimod-induced psoriasiform dermatitis models. Results In cultured keratinocytes, AE significantly inhibited poly(I:C)-induced expression of inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α. AE significantly inhibited poly(I:C)-induced release of caspase-1 active form (p20), and down-regulated nuclear factor-κB signaling pathway. In imiquimod-induced psoriasiform dermatitis model, topical application of AE resulted in significant reduction of epidermal hyperplasia. Conclusion These results suggest that AE may be a potential candidate for the treatment of skin inflammation. PMID:27274634

  5. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    SciTech Connect

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  6. Genistein Alleviates β-Amyloid-Induced Inflammatory Damage Through Regulating Toll-Like Receptor 4/Nuclear Factor κB

    PubMed Central

    Ma, Weiwei; Ding, Bingjie; Yu, Huanling; Yuan, Linhong; Xi, Yuandi

    2015-01-01

    Abstract Genistein (GEN), a major soybean isoflavone (SIF), might possess neuroprotective properties through its anti-inflammatory activity. We hypothesized that GEN could prevent the inflammatory damage detected in C6 cells induced by β-amyloid peptides 25-35 (Aβ25-35). Accordingly, we evaluated the inflammatory damage induced by Aβ25-35 and the protective effect of GEN against Aβ25-35 in C6 cells. In our study, the C6 glial cells (rats glioma cell lines) were preincubated with or without GEN for 2 h following incubation with Aβ25-35 for another 24 h. Then, methylthiazolyl tetrazolium (MTT) assay was used to assess the cell viability. Immunofluorescence staining was used to identify the C6 cells. Inflammatory factors tumor necrosis factor (TNF)-α and interleukin (IL)-1β were analyzed by using enzyme-linked immunosorbent assay (ELISA). Western blot analysis and reverse transcription-polymerase chain reaction analysis were performed to assess the expression of Toll-like receptors 4 (TLR4), inhibitor of kappaB-alpha (IκB-α). The current results showed that GEN could alleviate Aβ25-35-induced cell apoptosis and prevent Aβ25-35-induced TNF-α and IL-1β release from C6 cells. In addition, GEN prevented Aβ25-35-induced upregulation of the gene and protein expression of TLR4, and GEN significantly upregulated the expression of IκB-α in C6 cells damaged by Aβ25-35. These results suggest that GEN can alleviate the inflammatory stress caused by Aβ25-35 treatment, which might be associated with the neuroprotective effect of GEN regulating the TLR4/NFκB signaling pathway. PMID:25384233

  7. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    SciTech Connect

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  8. Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Ramesh, Govindarajan T; Chidananda Sharma, S

    2015-05-01

    Acute and chronic alveolar or bronchial inflammation is thought to be central to the pathogenesis of many respiratory disorders. Cytokines and granulocyte macrophage colony-stimulating factors (GM-CSF) play an important role in chronic inflammation. Activator protein-1 (AP-1) the superfamily of transcription factors is involved in proliferation, differentiation, apoptosis, and transformation including inflammation. Understanding the function and regulation of proinflammatory factors involved in inflammation may provide the novel therapeutic strategies in the treatment of inflammatory diseases. Our aim of the present study is to investigate the pro-inflammatory cytokines and pattern of AP-1 factors expressed during activation of lung adenocarcinoma A549 cells by Phorbol-12-myristate-13-acetate (PMA) and to understand the anti-inflammatory effect of apigenin. A549 cells were treated with and without PMA or apigenin, and the cell viability was assessed by MTT assay. Expressions of inflammatory mediators and different AP-1 factors were analyzed by semi-quantitative RT-PCR. IL-6 protein secreted was analyzed by ELISA, and expressions of IL-1β, c-Jun, and c-Fos proteins were analyzed by Western blotting. Activation of A549 cells by PMA, induced the expression of pro-inflammatory cytokine (IL-1β, IL-2, IL-6, IL-8, and TNF-α) mRNAs and secretion of IL-6 and the expression of specific AP-1 factors (c-Jun, c-Fos, and Fra-1). Treatment of cells with apigenin, significantly inhibited PMA-stimulated mRNA expression of above pro-inflammatory cytokines, AP-1 factors, cyclooxygenase-2, and secretion of IL-6 protein. Results suggested that the AP-1 factors may be involved in inflammation and apigenin has anti-inflammatory effect, which may be useful for therapeutic management of lung inflammatory diseases. PMID:25666088

  9. Resveratrol improves hepatic insulin signaling and reduces the inflammatory response in streptozotocin-induced diabetes.

    PubMed

    Sadi, Gökhan; Pektaş, Mehmet Bilgehan; Koca, Halit Bugra; Tosun, Murat; Koca, Tulay

    2015-10-10

    Diabetes mellitus is a heterogeneous metabolic disorder essentially characterized by deficiency of insulin secretion, insulin receptor or post-receptor events. This study aims to investigate the effects of resveratrol administration on the metabolic characteristics, hepatic functions, histopathological features and insulin signaling pathway components in streptozotocin induced diabetes. Male Wistar rats were randomly divided into four groups: (1) control/vehicle; (2) control/20mg/kg resveratrol; (3) diabetic/vehicle; and (4) diabetic/20mg/kg resveratrol. Histopathological examinations were carried out to reveal hepatic tissue damage and inflammation. In addition to hepatic glucose, lipid, insulin, ALT, AST, resistin and XOD contents, gene and protein expressions of insulin signaling pathway components such as insulin Rβ, IRS-1, IRS-2, eNOS, PI3K, Akt, and FOXO3a were analyzed by qRT-PCR and Western blot. The rats in the diabetes group had significantly lower terminal body weight and hepatic insulin level, but significantly higher hepatic glucose, total cholesterol, triglyceride and resistin concentrations. Diabetes triggered the inflammatory process in the liver tissues that was evidenced by histopathological deformations and increase in the hepatic ALT and AST levels. Hepatic inflammation was considerably associated with insulin signaling pathway ever since a significant down-regulation of insulin signaling components; IRS-1, IRS-2, PI3K, Akt and mTOR have been identified in the diabetic group. To some extent, resveratrol treatment reversed the diabetes-induced changes in the liver tissues. Taken together, resveratrol partly improved hepatic dysfunction induced by diabetes. This may be due to the healing activity of resveratrol on insulin signaling pathway, resistin levels and hepatic glucose-lipid contents.

  10. Resolvin D1 Attenuates Poly(I:C)-Induced Inflammatory Signaling in Human Airway Epithelial Cells via TAK1

    PubMed Central

    Hsiao, Hsi-Min; Thatcher, Thomas H.; Levy, Elizabeth P.; Fulton, Robert A.; Owens, Kristina M.; Phipps, Richard P.; Sime, Patricia J.

    2014-01-01

    The respiratory epithelium are lung sentinel cells and are the first to contact inhaled inflammatory insults including air pollutants, smoke and microorganisms. To avoid damaging exuberant or chronic inflammation, the inflammatory process must be tightly controlled and terminated once the insult is mitigated. Inflammation-resolution is now known to be an active process involving a new genus of lipid mediators called “specialized pro-resolving lipid mediators” (SPMs) that includes resolvin D1 (RvD1). We and others have reported that RvD1 counteracts pro-inflammatory signaling and promotes resolution. A knowledge gap is that the specific cellular targets and mechanisms of action for RvD1 remain largely unknown. Here, we identified the mechanism whereby RvD1 disrupts inflammatory mediator production induced by the viral mimic poly(I:C) in primary human lung epithelial cells. RvD1 strongly suppressed the viral mimic poly(I:C)-induced IL-6 and IL-8 production and pro-inflammatory signaling involving MAP kinases and NF-κB. Most importantly, we found that RvD1 inhibited the phosphorylation of TAK1, a key upstream regulatory kinase common to both the MAP kinase and NF-κB pathways, by inhibiting the formation of a poly(I:C)-induced signaling complex composed of TAK1, TAB1 and TRAF6. We confirmed that ALX/FPR2 and GPR32, two RvD1 receptors, were expressed on hSAEC. Furthermore, blocking these receptors abrogated the inhibitory action of RvD1. Herein, we present the idea that RvD1 has the potential to be used as an anti-inflammatory and pro-resolving agent, possibly in the context of exuberant host responses to damaging respirable agents such as viruses. PMID:25320283

  11. The effect of local deep microwave hyperthermia on experimental zymosan-induced arthritis in rabbits.

    PubMed

    Weinberger, A; Abramonvici, A; Fadila, R; Levy, A; Giler, S; Lev, A

    1990-10-01

    The effect of local deep microwave hyperthermia (LDMWH) on normal and Zymosan-induced arthritis has been evaluated in 12 rabbits (24 joints). LDMWH, four treatments to each joint (twice weekly for a period of 2 wk), was generated by an antenna operating at 915 MHz for 60 min, reaching an intraarticular temperature of 42.5 +/- 0.5 degrees C. A surface cooling system was used with the microwave apparatus. Two weeks after the last treatment, all animals were sacrificed. The application of LDMWH on normal joints induced a limited proliferation of the synovial lining cells with a minimal perivascular infiltration of mononuclear and neutrophil cells. However, no histologic damage to the skin, muscles, bone, cartilage or bone marrow adjacent to the heated joints could be noted. Induction of Zymosan arthritis (2 wk before LDMWH) was characterized by pannus formation and granulomatous reaction accompanied by fibrinoid deposits and disseminated necrotic foci in the synovial intima. The LDMWH treatment on the examined arthritic joints brought about a reduction in the degree of granulomatous reaction concomitant with the appearance of some fibrocytes and fine collagen fibrils. These findings suggest that LDMWH can be safely applied, even repeatedly, without morphologic evidence of damage to any normal mesenchymal tissue. Moreover, it reduces the inflammatory process in experimentally induced synovitis.

  12. Aminoguanidine treatment ameliorates inflammatory responses and memory impairment induced by amyloid-beta 25-35 injection in rats.

    PubMed

    Díaz, Alfonso; Rojas, Karla; Espinosa, Blanca; Chávez, Raúl; Zenteno, Edgar; Limón, Daniel; Guevara, Jorge

    2014-06-01

    Alzheimer disease (AD) is a neurodegenerative disorder caused by accumulation of the amyloid-beta peptide (Aβ) in neuritic plaques. Its neurotoxic mechanisms are associated with inflammatory responses and nitrosative stress generation that promote expression of inducible nitric oxide synthase (iNOS) and increased nitric oxide causing neuronal death and memory impairment. Studies suggest that treatment with anti-inflammatory and anti-oxidant agents decreases the risk of developing AD. Aminoguanidine (AG) is an iNOS inhibitor with anti-inflammatory and anti-oxidant effects. In this study, we evaluated the effects of systemic administration of AG (100 mg/kg/day for 4 days) on spatial memory and inflammatory responses induced by an injection of Aβ(25-35) [100 μM] into the temporal cortex (TCx) of rats. A significant improvement of spatial memory was evident in the Aβ(25-35)-treated group at day 30 post-injection subjected to AG treatment; this effect was correlated with decreases in reactive gliosis, IL-1β, TNF-α, and nitrite levels, as well as a reduction in neurodegeneration in the TCx and hippocampus (Hp). These results suggest that AG treatment inhibited glia activation and cytokine release, which may help to counteract neurodegenerative events induced by the toxicity of Aβ.

  13. Aqueous and Methanolic Extracts of Caulerpa mexicana Suppress Cell Migration and Ear Edema Induced by Inflammatory Agents

    PubMed Central

    Bitencourt, Mariana Angelica Oliveira; Dantas, Gracielle Rodrigues; Lira, Daysianne Pereira; Barbosa-Filho, Jose Maria; de Miranda, George Emmanuel Cavalcanti; de Oliveira Santos, Barbara Viviana; Souto, Janeusa Trindade

    2011-01-01

    The regulation of the inflammatory response is essential to maintaining homeostasis. Several studies have investigated new drugs that may contribute to avoiding or minimizing excessive inflammatory process. The aim of this study was to evaluate the effect of extracts of green algae Caulerpa mexicana on models inflammation. In mice, the inflammatory peritonitis model is induced by zymosan. Previous treatment of mice with aqueous and methanolic extracts of C. mexicana was able to suppress the cell migration to the peritoneal cavity, in a time-dependent but not in a dose-dependent manner. The treatment of mice with C. mexicana extracts also decreased the xylene-induced ear edema, exerting strong inhibitory leukocyte migration elicited by zymosan into the air pouch. We concluded that administration of the extracts resulted in a reduction of cell migration to different sites as well as a decrease in edema formation induced by chemical irritants. This study demonstrates for the first time the anti-inflammatory effect of aqueous and methanolic extracts from the green marine algae Caulerpa mexicana. PMID:21892348

  14. Polyphenolics isolated from virgin coconut oil inhibits adjuvant induced arthritis in rats through antioxidant and anti-inflammatory action.

    PubMed

    Vysakh, A; Ratheesh, M; Rajmohanan, T P; Pramod, C; Premlal, S; Girish kumar, B; Sibi, P I

    2014-05-01

    We evaluated the protective efficacy of the polyphenolic fraction from virgin coconut oil (PV) against adjuvant induced arthritic rats. Arthritis was induced by intradermal injection of complete Freund's adjuvant. The activities of inflammatory, antioxidant enzymes and lipid peroxidation were estimated. PV showed high percentage of edema inhibition at a dose of 80mg/kg on 21st day of adjuvant arthritis and is non toxic. The expression of inflammatory genes such as COX-2, iNOS, TNF-α and IL-6 and the concentration of thiobarbituric acid reactive substance were decreased by treatment with PV. Antioxidant enzymes were increased and on treatment with PV. The increased level of total WBC count and C-reactive protein in the arthritic animals was reduced in PV treated rats. Synovial cytology showed that inflammatory cells and reactive mesothelial cells were suppressed by PV. Histopathology of paw tissue showed less edema formation and cellular infiltration on supplementation with PV. Thus the results demonstrated the potential beneficiary effect of PV on adjuvant induced arthritis in rats and the mechanism behind this action is due to its antioxidant and anti-inflammatory effects.

  15. The Myeloid LSECtin Is a DAP12-Coupled Receptor That Is Crucial for Inflammatory Response Induced by Ebola Virus Glycoprotein

    PubMed Central

    Zhao, Dianyuan; Han, Xintao; Zheng, Xuexing; Wang, Hualei; Yang, Zaopeng; Liu, Di; Han, Ke; Liu, Jing; Wang, Xiaowen; Yang, Wenting; Dong, Qingyang; Yang, Songtao; Xia, Xianzhu; Tang, Li; He, Fuchu

    2016-01-01

    Fatal Ebola virus infection is characterized by a systemic inflammatory response similar to septic shock. Ebola glycoprotein (GP) is involved in this process through activating dendritic cells (DCs) and macrophages. However, the mechanism is unclear. Here, we showed that LSECtin (also known as CLEC4G) plays an important role in GP-mediated inflammatory responses in human DCs. Anti-LSECtin mAb engagement induced TNF-α and IL-6 production in DCs, whereas silencing of LSECtin abrogated this effect. Intriguingly, as a pathogen-derived ligand, Ebola GP could trigger TNF-α and IL-6 release by DCs through LSECtin. Mechanistic investigations revealed that LSECtin initiated signaling via association with a 12-kDa DNAX-activating protein (DAP12) and induced Syk activation. Mutation of key tyrosines in the DAP12 immunoreceptor tyrosine-based activation motif abrogated LSECtin-mediated signaling. Furthermore, Syk inhibitors significantly reduced the GP-triggered cytokine production in DCs. Therefore, our results demonstrate that LSECtin is required for the GP-induced inflammatory response, providing new insights into the EBOV-mediated inflammatory response. PMID:26943817

  16. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes.

    PubMed

    Hasegawa, Tatsuya; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-08-26

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE2. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. PMID:27343554

  17. Helicobacter pylori Promotes the Production of Thymic Stromal Lymphopoietin by Gastric Epithelial Cells and Induces Dendritic Cell-Mediated Inflammatory Th2 Responses▿

    PubMed Central

    Kido, Masahiro; Tanaka, Junya; Aoki, Nobuhiro; Iwamoto, Satoru; Nishiura, Hisayo; Chiba, Tsutomu; Watanabe, Norihiko

    2010-01-01

    Helicobacter pylori colonizes the stomach and induces strong, specific local and systemic humoral and cell-mediated immunity, resulting in the development of chronic gastritis in humans. Although H. pylori-induced chronic atrophic gastritis is characterized by marked infiltration of T helper type 1 (Th1) cytokine-producing CD4+ T cells, almost all of the inflamed gastric mucosae also contain focal lymphoid aggregates with germinal centers. In addition, typical H. pylori-induced chronic gastritis in children, called follicular gastritis, is characterized by B-cell follicle formation in the gastric mucosa. The aim of this study was to examine whether thymic stromal lymphopoietin (TSLP), an epithelial-cell-derived cytokine inducing a dendritic cell (DC)-mediated inflammatory Th2 response, is involved in Th2 responses triggering B-cell activation in H. pylori-induced gastritis. Here, we show that H. pylori triggered human gastric epithelial cells to produce TSLP, together with the DC-attracting chemokine MIP-3α and the B-cell-activating factor BAFF. After DCs were incubated with supernatants from H. pylori-infected epithelial cells, the conditioned cells expressed high levels of costimulatory molecules, such as CD80, and triggered naïve CD4+ T cells to produce high levels of the Th2 cytokines interleukin-4 and interleukin-13 and of the inflammatory cytokines tumor necrosis factor alpha and gamma interferon. In contrast, after incubation of the supernatants with the neutralizing antibodies to TSLP, the conditioned DCs did not prime T cells to produce high levels of Th2 cytokines. These results, together with the finding that TSLP was expressed by the epithelial cells of human follicular gastritis, suggest that H. pylori can directly trigger epithelial cells to produce TSLP. It also suggests that TSLP-mediated DC activation may be involved in Th2 responses triggering B-cell activation in H. pylori-induced gastritis. PMID:19841072

  18. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    SciTech Connect

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  19. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    PubMed

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.

  20. Dual effect of nitric oxide in articular inflammatory pain in zymosan-induced arthritis in rats.

    PubMed

    da S Rocha, José C; Peixoto, Magno E B; Jancar, Sônia; de Q Cunha, Fernando; de A Ribeiro, Ronaldo; da Rocha, Francisco A C

    2002-06-01

    The contribution of nitric oxide (NO) to articular pain in arthritis induced by zymosan (1 mg, intra articular) in rats was assessed by measuring articular incapacitation (AI). Systemic treatment with the non-selective NO synthase (NOS) inhibitor L-NAME (10 - 100 mg kg(-1) i.p.) or with the selective iNOS inhibitors aminoguanidine (AG; 10 - 100 mg kg(-1) i.p.) or 1400W (0.5 - 1 mg kg(-1) s.c.) inhibited the AI induced by injection of zymosan 30 min later. Local (intra articular) treatment with the NOS inhibitors (L-NAME or AG, 0.1 - 1 micromol; 1400W, 0.01 (micromol) 30 min before zymosan also inhibited the AI. Systemic or local treatment with the NOS inhibitors (L-NAME; AG, 100 mg kg(-1) i.p. or 0.1 micromol joint(-1); 1400W, 1 mg kg(-1) s.c. or 0.01 micromol joint(-1)), 2 h after zymosan did not affect the subsequent AI. Local treatment with the NO donors SNP or SIN-1, 2 h after zymosan did inhibit AI. L-NAME and AG, given i.p. inhibited nitrite but not prostaglandin E(2) (PGE(2)) levels in the joints. L-NAME (100 mg kg(-1)) but not AG (100 mg kg(-1)) increased mean arterial blood pressure. Neither L-NAME, AG nor the NO donor SIN-1 altered articular oedema induced by zymosan. In conclusion, inhibitors of iNOS decrease pain in zymosan arthritis only when given before the zymosan. This was not due to inhibition of articular PGE(2) release or oedema. NO donors also promoted antinociception in zymosan arthritis without affecting oedema.

  1. Local light-induced magnetization using nanodots and chiral molecules.

    PubMed

    Dor, Oren Ben; Morali, Noam; Yochelis, Shira; Baczewski, Lech Tomasz; Paltiel, Yossi

    2014-11-12

    With the increasing demand for miniaturization, nanostructures are likely to become the primary components of future integrated circuits. Different approaches are being pursued toward achieving efficient electronics, among which are spin electronics devices (spintronics). In principle, the application of spintronics should result in reducing the power consumption of electronic devices. Recently a new, promising, effective approach for spintronics has emerged, using spin selectivity in electron transport through chiral molecules. In this work, using chiral molecules and nanocrystals, we achieve local spin-based magnetization generated optically at ambient temperatures. Through the chiral layer, a spin torque can be transferred without permanent charge transfer from the nanocrystals to a thin ferromagnetic layer, creating local perpendicular magnetization. We used Hall sensor configuration and atomic force microscopy (AFM) to measure the induced local magnetization. At low temperatures, anomalous spin Hall effects were measured using a thin Ni layer. The results may lead to optically controlled spintronics logic devices that will enable low power consumption, high density, and cheap fabrication.

  2. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles.

    PubMed

    Yakunin, Alexander N; Avetisyan, Yuri A; Tuchin, Valery V

    2015-05-01

    This paper discusses one of the key problems of laser-induced tissue/cell hyperthermia mediated by gold nanoparticles, namely, quantifying and precise prediction of the light exposure to provide a controllable local heating impact on living organisms. The distributions of such parameters as an efficiency factor of absorption, differential and integral absorbing power of a nanoparticle, temperature increment, and Arrhenius damage integral were used to quantify nanoparticle effectiveness in the two-dimensional coordinate space “laser wavelength (λ) × radius of gold nanoparticles (R).” It was found that the fulfillment of required spatial and temporal characteristics of temperature fields in the vicinity of nanoparticle determines the optimal λ and R. As a result, the area in the space (λ × R) with a minimal criticality to alterations of the local hyperthermia may be significantly displaced from the position of the plasmonic resonance. The aspects of generalization of the proposed methodology for the analysis of local hyperthermia using nanoparticles of different shapes (nanoshells, nanorods, nanostars) and short pulse laser radiation are discussed.

  3. Indomethacin can downregulate the levels of inflammatory mediators in the hippocampus of rats submitted to pilocarpine-induced status epilepticus

    PubMed Central

    Vieira, Michele Juliane; Perosa, Sandra Regina; Argañaraz, Gustavo Adolfo; Silva, José Antônio; Cavalheiro, Esper Abrão; da Graça Naffah-Mazzacoratti, Maria

    2014-01-01

    OBJECTIVE: Refractory status epilepticus is one of the most life-threatening neurological emergencies and is characterized by high morbidity and mortality. Additionally, the use of anti-inflammatory drugs during this period is very controversial. Thus, this study has been designed to analyze the effect of a low dose of indomethacin (a COX inhibitor) on the expression of inflammatory molecules. METHOD: The hippocampus of rats submitted to pilocarpine-induced long-lasting status epilepticus was analyzed to determine the expression of inflammatory molecules with RT-PCR and immunohistochemistry. RESULTS: Compared with controls, reduced levels of the kinin B2 receptors IL1β and TNFα were found in the hippocampus of rats submitted to long-lasting status epilepticus and treated with indomethacin. CONCLUSIONS: These data show that low doses of indomethacin could be employed to minimize inflammation during long-lasting status epilepticus. PMID:25318094

  4. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice.

    PubMed

    Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki

    2015-01-01

    Epigallocatechin gallate (EGCG), a major polyphenol in green tea, possesses antioxidant properties and regulates various cell functions. Here, we examined the function of EGCG in inflammatory bone resorption. In calvarial organ cultures, lipopolysaccharide (LPS)-induced bone resorption was clearly suppressed by EGCG. In osteoblasts, EGCG suppressed the LPS-induced expression of COX-2 and mPGES-1 mRNAs, as well as prostaglandin E2 production, and also suppressed RANKL expression, which is essential for osteoclast differentiation. LPS-induced bone resorption of mandibular alveolar bones was attenuated by EGCG in vitro, and the loss of mouse alveolar bone mass was inhibited by the catechin in vivo.

  5. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice

    PubMed Central

    Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M.W.; Miyaura, Chisato; Inada, Masaki

    2015-01-01

    Epigallocatechin gallate (EGCG), a major polyphenol in green tea, possesses antioxidant properties and regulates various cell functions. Here, we examined the function of EGCG in inflammatory bone resorption. In calvarial organ cultures, lipopolysaccharide (LPS)-induced bone resorption was clearly suppressed by EGCG. In osteoblasts, EGCG suppressed the LPS-induced expression of COX-2 and mPGES-1 mRNAs, as well as prostaglandin E2 production, and also suppressed RANKL expression, which is essential for osteoclast differentiation. LPS-induced bone resorption of mandibular alveolar bones was attenuated by EGCG in vitro, and the loss of mouse alveolar bone mass was inhibited by the catechin in vivo. PMID:26155460

  6. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    SciTech Connect

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo; Endo, Yuko; Dang, Nam H.

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  7. Exosomal Hsp70 Induces a Pro-Inflammatory Response to Foreign Particles Including Mycobacteria

    PubMed Central

    Anand, Paras K.; Anand, Ellis; Bleck, Christopher K. E.; Anes, Elsa; Griffiths, Gareth

    2010-01-01

    Background Exosomes are endosome-derived vesicles that are released when multi-vesicular bodies (MVBs) fuse with the plasma membrane. Exosomes released from mycobacteria-infected cells have recently been shown to be pro-inflammatory. A prominent host molecule that is found within these exosomes is Hsp70, a member of the heat-shock family of proteins. Methodology/Principal Findings We first characterized the exosomes purified from control and mycobacteria-infected cells. We found that relative to uninfected cells, macrophages infected with M. smegmatis and M. avium release more exosomes and the exosomes they released had more Hsp70 on their surface. Both exosomes and exogenous Hsp70 treatment of macrophages led to NF-κB activation and TNFα release in uninfected macrophages; Hsp70 levels were elevated in mycobacteria-infected cells. Macrophage treatment with Hsp70 also led to increase in the phagocytosis and maturation of latex-bead phagosomes. Finally, Hsp70 pre-incubation of M. smegmatis- and M. avium-infected cells led to increased phago-lysosome fusion, as well as more killing of mycobacteria within macrophages. Conclusions/Significance Our results fit into an emerging concept whereby exosomes-containing Hsp70 are effective inducers of inflammation, also in response to mycobacterial infection. PMID:20405033

  8. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy.

    PubMed

    Zhang, Ning; Yang, Zheng; Xiang, Shi-Zhao; Jin, Ya-Ge; Wei, Wen-Ying; Bian, Zhou-Yan; Deng, Wei; Tang, Qi-Zhu

    2016-06-01

    Diabetic cardiomyopathy, characterized by the presence of diastolic and/or systolic myocardial dysfunction, is one of the major causes of heart failure. Nobiletin, which is extracted from the fruit peel of citrus, is reported to possess anti-inflammatory, anti-oxidative, and hypolipidemic properties. The purpose of this study was to investigate whether nobiletin exerts the therapeutic effect on streptozotocin-induced diabetic cardiomyopathy (DCM) in mice. 80 experimental male C57BL mice were randomly assigned into four groups: sham + vehicle (VEH/SH), sham + nobiletin (NOB/SH), DCM + vehicle (VEH/DM), and DCM + nobiletin (NOB/DM). Nobiletin treatment ameliorated cardiac dysfunction in the DCM group, as shown by the result of echocardiography and hemodynamic measurements. Nobiletin treatment also blunted the mRNA expression of NADPH oxidase isoforms p67(phox), p22(phox), and p91(phox), and abated oxidative stress. Although administration of diabetic mice with nobiletin did not significantly effect the level of blood glucose, it decreased the TGF-β1, CTGF, fibronectin, and collagen Iα expressions and blunted cardiac fibrosis. In addition, nobiletin inhibited the activation of c-Jun NH2-terminal kinase (JNK), P38, and NF-κB in the cardiac tissue of diabetic mice. Collectively, our study indicates that treatment with nobiletin mitigates cardiac dysfunction and interstitial fibrosis, and these beneficial of nobiletin may belong to the suppression of JNK, P38, and NF-κB signaling pathways.

  9. Murine Norovirus: An Intercurrent Variable in a Mouse Model of Bacteria-Induced Inflammatory Bowel Disease

    PubMed Central

    Lencioni, Karen Chase; Seamons, Audrey; Treuting, Piper M; Maggio-Price, Lillian; Brabb, Thea

    2008-01-01

    Murine norovirus (MNV) has recently been recognized as a widely prevalent viral pathogen in mouse colonies and causes disease and mortality in mice with impaired innate immunity. We tested the hypothesis that MNV infection would alter disease course and immune responses in mice with inflammatory bowel disease (IBD). FVB.129P2-Abcb1atm1Bor N7 (Mdr1a−/−) mice develop spontaneous IBD that is accelerated by infection with Helicobacter bilis. As compared with controls, Mdr1a−/− mice coinfected with MNV4 and H. bilis showed greater weight loss and IBD scores indicative of severe colitis, demonstrating that MNV4 can modulate the progression of IBD. Compared with controls, mice inoculated with MNV4 alone had altered levels of serum biomarkers, and flow cytometric analysis of immune cells from MNV4-infected mice showed changes in both dendritic cell (CD11c+) and other nonT cell (CD4− CD8−) populations. Dendritic cells isolated from MNV4-infected mice induced higher IFNγ production by polyclonal T cells in vitro at 2 d after infection but not at later time points, indicating that MNV4 infection enhances antigen presentation by dendritic cells early after acute infection. These findings indicate that acute infection with MNV4 is immunomodulatory and alters disease progression in a mouse model of IBD. PMID:19149409

  10. Anthrapyrazolone analogues intercept inflammatory JNK signals to moderate endotoxin induced septic shock

    NASA Astrophysics Data System (ADS)

    Prasad, Karothu Durga; Trinath, Jamma; Biswas, Ansuman; Sekar, Kanagaraj; Balaji, Kithiganahalli N.; Guru Row, Tayur N.

    2014-11-01

    Severe sepsis or septic shock is one of the rising causes for mortality worldwide representing nearly 10% of intensive care unit admissions. Susceptibility to sepsis is identified to be mediated by innate pattern recognition receptors and responsive signaling pathways of the host. The c-Jun N-terminal Kinase (JNK)-mediated signaling events play critical role in bacterial infection triggered multi-organ failure, cardiac dysfunction and mortality. In the context of kinase specificities, an extensive library of anthrapyrazolone analogues has been investigated for the selective inhibition of c-JNK and thereby to gain control over the inflammation associated risks. In our comprehensive biochemical characterization, it is observed that alkyl and halogen substitution on the periphery of anthrapyrazolone increases the binding potency of the inhibitors specifically towards JNK. Further, it is demonstrated that hydrophobic and hydrophilic interactions generated by these small molecules effectively block endotoxin-induced inflammatory genes expression in in vitro and septic shock in vivo, in a mouse model, with remarkable efficacies. Altogether, the obtained results rationalize the significance of the diversity oriented synthesis of small molecules for selective inhibition of JNK and their potential in the treatment of severe sepsis.

  11. The mycotoxin alternariol induces DNA damage and modify macrophage phenotype and inflammatory responses.

    PubMed

    Solhaug, A; Wisbech, C; Christoffersen, T E; Hult, L O; Lea, T; Eriksen, G S; Holme, J A

    2015-11-19

    Alternariol (AOH), a mycotoxin produced by Alternaria fungi, is frequently found as a contaminant in fruit and grain products. Here we examined if AOH could modify macrophage phenotype and inflammatory responses. In RAW 264.7 mouse macrophages AOH changed the cell morphology of from round to star-shaped cells, with increased levels of CD83, CD86, CD11b, MHCII and endocytic activity. TNFα and IL-6 were enhanced at mRNA-level, but only TNFα showed increased secretion. No changes were found in IL-10 or IL-12p40 expression. Primary human macrophages changed the cell morphology from round into elongated shapes with dendrite-like protrusions in response to AOH. The levels of CD83 and CD86 were increased, HLA-DR and CD68 were down-regulated and CD80, CD200R and CD163 remained unchanged. Increased secretion of TNFα and IL-6 were found after AOH exposure, while IL-8, IL-10 and IL-12p70 were not changed. Furthermore, AOH reduced macrophage endocytic activity and autophagosomes. AOH was also found to induce DNA damage, which is suggested to be linked to the morphological and phenotypical changes. Thus, AOH was found to change the morphology and phenotype of the two cell models, but either of them could be characterized as typical M1/M2 macrophages or as dendritic cells (DC).

  12. Applications of induced pluripotent stem cells in the modeling of human inflammatory bowel diseases.

    PubMed

    Liu, Jingquan; Shi, Bin; Shi, Kai; Zhang, Hongze

    2015-01-01

    Inflammatory bowel diseases (IBDs) are chronic and involve the gastrointestinal tract; the two primary IBDs are ulcerative colitis and Crohn's disease. Existing treatments for IBD include control of active inflammation and regulation of immune disorders, and commonly used drugs include salicylates, corticosteroids, and immunosuppressants. At the same time, an in-depth study of IBD pathogenesis promoted the acceptance of bioimmunotherapy by increasing numbers of people. However, long-term use of these drugs can cause adverse reactions that are difficult for patients to overcome, with limited efficacy for critically ill patients. Recent studies have found that stem cell transplantation is a new and effective therapy and IBD treatment, particularly for refractory cases. Stem cells, especially induced pluripotent stem cells (iPSCs), can differentiate into functional intestinal epithelia and their use avoids ethical issues arising from embryonic stem cells, providing a new kind of seed cell for alternative treatments for IBD. This paper reviews iPSCs as a potential new treatment for IBDs in order to provide an experimental and clinical reference.

  13. Hantaviruses Induce Antiviral and Pro-Inflammatory Innate Immune Responses in Astrocytic Cells and the Brain

    PubMed Central

    Shin, Ok Sarah; Song, Gabriella Shinyoung; Kumar, Mukesh; Yanagihara, Richard; Lee, Ho-Wang

    2014-01-01

    Abstract Although hantaviruses are not generally considered neurotropic, neurological complications have been reported occasionally in patients with hemorrhagic fever renal syndrome (HFRS). In this study, we analyzed innate immune responses to hantavirus infection in vitro in human astrocytic cells (A172) and in vivo in suckling ICR mice. Infection of A172 cells with pathogenic Hantaan virus (HTNV) or a novel shrew-borne hantavirus, known as Imjin virus (MJNV), induced activation of antiviral genes and pro-inflammatory cytokines/chemokines. MicroRNA expression profiles of HTNV- and MJNV-infected A172 cells showed distinct changes in a set of miRNAs. Following intraperitoneal inoculation with HTNV or MJNV, suckling ICR mice developed rapidly progressive, fatal central nervous system-associated disease. Immunohistochemical staining of virus-infected mouse brains confirmed the detection of viral antigens within astrocytes. Taken together, these findings suggest that the neurological findings in HFRS patients may be associated with hantavirus-directed modulation of innate immune responses in the brain. PMID:24937036

  14. Bee venom suppresses testosterone-induced benign prostatic hyperplasia by regulating the inflammatory response and apoptosis

    PubMed Central

    Chung, Kyung-Sook; An, Hyo-Jin; Cheon, Se-Yun; Kwon, Ki-Rok

    2015-01-01

    Benign prostatic hyperplasia (BPH), which is a common disorder in aging men, involves inflammation that is associated with an imbalance between cell proliferation and cell death. Because current BPH drug treatments have undesirable side effects, the development of well-tolerated and effective alternative medicines to treat BPH is of interest. Bee venom (BV) has been used in traditional medicine to treat conditions, such as arthritis and rheumatism, and pain. Although inflammation has been associated with BPH and BV has strong anti-inflammatory effects, the effects of BV on BPH are not fully understood. Therefore, in this study, we evaluated the efficacy of BV against testosterone-induced BPH in rats. BV decreased prostate weight compared to the untreated group. In addition, BV suppressed serum dihydrotestosterone concentration levels and the levels of proliferating cell nuclear antigen in the histological analysis. Furthermore, BV significantly decreased the levels of the apoptotic suppressors, Bcl-2 and Bcl-xL, and increased the levels of the proapoptotic factors, Bax and caspase-3 activation. These results suggested that BV suppressed the development of BPH and has good potential as a treatment for BPH. PMID:26085572

  15. Hantaviruses induce antiviral and pro-inflammatory innate immune responses in astrocytic cells and the brain.

    PubMed

    Shin, Ok Sarah; Song, Gabriella Shinyoung; Kumar, Mukesh; Yanagihara, Richard; Lee, Ho-Wang; Song, Jin-Won

    2014-08-01

    Although hantaviruses are not generally considered neurotropic, neurological complications have been reported occasionally in patients with hemorrhagic fever renal syndrome (HFRS). In this study, we analyzed innate immune responses to hantavirus infection in vitro in human astrocytic cells (A172) and in vivo in suckling ICR mice. Infection of A172 cells with pathogenic Hantaan virus (HTNV) or a novel shrew-borne hantavirus, known as Imjin virus (MJNV), induced activation of antiviral genes and pro-inflammatory cytokines/chemokines. MicroRNA expression profiles of HTNV- and MJNV-infected A172 cells showed distinct changes in a set of miRNAs. Following intraperitoneal inoculation with HTNV or MJNV, suckling ICR mice developed rapidly progressive, fatal central nervous system-associated disease. Immunohistochemical staining of virus-infected mouse brains confirmed the detection of viral antigens within astrocytes. Taken together, these findings suggest that the neurological findings in HFRS patients may be associated with hantavirus-directed modulation of innate immune responses in the brain.

  16. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  17. The mycotoxin alternariol induces DNA damage and modify macrophage phenotype and inflammatory responses.

    PubMed

    Solhaug, A; Wisbech, C; Christoffersen, T E; Hult, L O; Lea, T; Eriksen, G S; Holme, J A

    2015-11-19

    Alternariol (AOH), a mycotoxin produced by Alternaria fungi, is frequently found as a contaminant in fruit and grain products. Here we examined if AOH could modify macrophage phenotype and inflammatory responses. In RAW 264.7 mouse macrophages AOH changed the cell morphology of from round to star-shaped cells, with increased levels of CD83, CD86, CD11b, MHCII and endocytic activity. TNFα and IL-6 were enhanced at mRNA-level, but only TNFα showed increased secretion. No changes were found in IL-10 or IL-12p40 expression. Primary human macrophages changed the cell morphology from round into elongated shapes with dendrite-like protrusions in response to AOH. The levels of CD83 and CD86 were increased, HLA-DR and CD68 were down-regulated and CD80, CD200R and CD163 remained unchanged. Increased secretion of TNFα and IL-6 were found after AOH exposure, while IL-8, IL-10 and IL-12p70 were not changed. Furthermore, AOH reduced macrophage endocytic activity and autophagosomes. AOH was also found to induce DNA damage, which is suggested to be linked to the morphological and phenotypical changes. Thus, AOH was found to change the morphology and phenotype of the two cell models, but either of them could be characterized as typical M1/M2 macrophages or as dendritic cells (DC). PMID:26341179

  18. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages

    SciTech Connect

    Gammelsrud, A.; Solhaug, A.; Dendelé, B.; Sandberg, W.J.; Ivanova, L.; Kocbach Bølling, A.; Lagadic-Gossmann, D.; Refsnes, M.; Becher, R.; Eriksen, G.; Holme, J.A.

    2012-05-15

    The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte–macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B. -- Highlights: ► The mycotoxin EnnB induced cell cycle arrest, cell death and inflammation. ► The G0/G1-arrest was linked to a reduced ability to internalize receptors. ► EnnB caused lysosomal damage, leakage of cathepsin B and caspase-1 cleavage. ► Caspase-1 was partly involved in both apoptosis and release of IL-1

  19. Effect of nonsteroidal anti-inflammatory drugs on colorectal distension-induced visceral pain

    PubMed Central

    Baskın, Veysel; Bilge, S. Sırrı; Bozkurt, Ayhan; Akyüz, Bahar; Ağrı, Arzu Erdal; Güzel, Hasan; İlkaya, Fatih

    2016-01-01

    Objectives: To investigate nonsteroidal anti-inflammatory drugs effectiveness in colorectal distension (CRD)-induced visceral pain model. Materials and Methods: Male Sprague–Dawley (250–300 g) rats were anesthetized with ketamine (50 mg/kg, intraperitoneally [i.p.]) and chlorpromazine (25 mg/kg, i.p.). Two bipolar Teflon-coated Ni/Cr wire electrodes (80-M diameter) were placed in the abdominal external oblique muscle for the recording of electromyography. Jugular vein catheter was placed for the administration of drugs. CRD method was applied to evaluate of visceral pain. All drugs (paracetamol, meloxicam, metamizole, and dexketoprofen) administered intravenously. Results: Paracetamol 200, 400, and 600 mg/kg did not change the visceromotor response (VMR) when compare with the control group. Meloxicam 2 and 4 mg/kg showed no effect but at doses of 6 mg/kg meloxicam significantly ([51.9 ± 6.4%] [P < 0.001]) decreased VMR compared with the control group. Metamizole 200 mg/kg did not change responses but dose of 400 and 600 mg/kg metamizole reduced VMR. Dexketoprofen 2 and 4 mg/kg did not cause a change in VMR but 6 mg/kg dose significantly reduced response compared with the control group ([43.9 ± 3.9%, 36.8 ± 2.8%, 34.8 ± 2.5%, 42.1 ± 4.8%, 40.7 ± 3.5%, 36.4 ± 2.7%, and 26.1 ± 2.2%]; from 10 min to 70 min, respectively, [P < 0.05]). Conclusion: Metamizole, dexketoprofen and meloxicam show antinociceptive effect with different duration of action on CRD-induced visceral pain model. This condition can be explained due to different chemical structures and different mechanisms which play a role in modulation of pain. PMID:27114637

  20. The role of the ventral striatum in inflammatory-induced approach toward support figures

    PubMed Central

    Inagaki, Tristen K.; Muscatell, Keely A.; Irwin, Michael R.; Moieni, Mona; Dutcher, Janine M.; Jevtic, Ivana; Breen, Elizabeth C.; Eisenberger, Naomi I.

    2014-01-01

    Although considerable research has shown that inflammation leads to social withdrawal more generally, it is also possible that inflammation leads to social approach when it comes to close others. Whereas it may be adaptive to withdraw from strangers when sick, it may be beneficial to seek out close others for assistance, protection, or care when sick. However, this possibility has never been explored in humans nor have the neural substrates of these behavioral changes. Based on the role of the ventral striatum (VS) in responding to: (1) the anticipation of and motivation to approach rewarding outcomes and (2) viewing social support figures, the VS may also be involved in sickness-induced approach toward support figures. Thus, the goal of the present study was to examine whether inflammation leads to a greater desire to approach support figures and greater VS activity to viewing support figures. To examine this, 63 participants received either placebo or low-dose endotoxin, which safely triggers an inflammatory response. Participants reported how much they desired to be around a self-identified support figure, and viewed pictures of that support figure while undergoing an fMRI scan to assess reward-related neural activity. In line with hypotheses, endotoxin (vs. placebo) led participants to report a greater desire to be around their support figure. In addition, endotoxin (vs. placebo) led to greater VS activity to images of support figures (vs. strangers) and greater increases in inflammation (IL-6 levels) were associated with greater increases in VS activity. Together, these results reveal a possible neural mechanism important for sickness-induced social approach and highlight the need for a more nuanced view of changes in social behavior during sickness. PMID:25459101

  1. Direct In Vivo Inflammatory Cell-Induced Corrosion of CoCrMo Alloy Orthopedic Implant Surfaces

    PubMed Central

    Gilbert, Jeremy L.; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi; Arnholt, Christina; Kurtz, Steven M.

    2014-01-01

    Cobalt-chromium-molybdenum alloy, used for over four decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40 to 100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and HCl to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. PMID:24619511

  2. SIRT1 Is a Regulator in High Glucose-Induced Inflammatory Response in RAW264.7 Cells

    PubMed Central

    Cai, Weixia; Jia, Wenbin; Yang, Longlong; Dong, Maolong; Zhu, Xiongxiang; Su, Linlin; Hu, Dahai

    2015-01-01

    Sepsis is defined as a systemic inflammatory response syndrome that disorders the functions of host immune system, including the imbalance between pro- and anti-inflammatory responses mediated by immune macrophages. Sepsis could also induce acute hyperglycemia. Studies have shown that the silent mating type information regulation 2 homolog 1 (SIRT1), an NAD+-dependent deacetylase, mediates NF-κb deacetylation and inhibits its function. Therefore, SIRT1 is likely to play an important role in high glucose-mediated inflammatory signalings. Here we demonstrate that high glucose significantly downregulates both the mRNA and protein levels of SIRT1 and upregulates the mRNA level and the release of two pro-inflammatory cytokines, IL-1β and TNF-α, in RAW264.7 macrophages. Interestingly, the reduced level of SIRT1 by high glucose is remarkably upregulated by SIRT1 activator SRT1720, while the level and the release of IL-1β and TNF-α significantly decrease with the use of SRT1720. However, when the function of SIRT1 is inhibited by EX527 or its expression is suppressed by RNAi, the upregulated level and release of IL-1β and TNF-α by high glucose are further increased. Taken together, these findings collectively suggest that SIRT1 is an important regulator in many high glucose-related inflammatory diseases such as sepsis. PMID:25793995

  3. Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces.

    PubMed

    Gilbert, Jeremy L; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi B; Arnholt, Christina M; Kurtz, Steven M

    2015-01-01

    Cobalt-chromium-molybdenum (CoCrMo) alloy, used for over five decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40-100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and hydrochloric acid to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play.

  4. Effects of tylosin, tilmicosin and tulathromycin on inflammatory mediators in bronchoalveolar lavage fluid of lipopolysaccharide-induced lung injury.

    PubMed

    Er, Ayse; Yazar, Enver

    2012-12-01

    The aim of this study was to determine the anti-inflammatory effects of macrolides through kinetic parameters in bronchoalveolar lavage fluid (BALF) of lipopolysaccharide-induced lung injury. Rats were divided into four groups: lipopolysaccharide (LPS), LPS + tylosin, LPS + tilmicosin and LPS + tulathromycin. BALF samples were collected at sampling times. TNF, IL-1β, IL-6, IL-10 and 13,14-dihydro-15-keto-prostaglandin F2α (PGM) and C-reactive protein (CRP) were analysed. Area under the curve (AUC) and maximum plasma concentration (Cmax) values of inflammatory mediators were determined by a pharmacokinetic computer programme. When inflammatory mediator concentrations were compared between the LPS group and other groups for each sampling time, the three macrolides had no pronounced depressor effect on cytokine levels, but they depressed PGM and CRP levels. In addition, tylosin and tilmicosin decreased the AUC0-24 level of TNF, while tilmicosin decreased the AUC0-24 level of IL-10. Tylosin and tulathromycin decreased the AUC0-24 of PGM, and all three macrolides decreased the AUC0-24 of CRP. Especially tylosin and tulathromycin may have more expressed anti-inflammatory effects than tilmicosin, via depressing the production of inflammatory mediators in the lung. The AUC may be used for determining the effects of drugs on inflammation. In this study, the antiinflammatory effects of these antibiotics were evaluated with kinetic parameters as a new and different approach.

  5. Rutoside decreases human macrophage-derived inflammatory mediators and improves clinical signs in adjuvant-induced arthritis

    PubMed Central

    Kauss, Tina; Moynet, Daniel; Rambert, Jérôme; Al-Kharrat, Abir; Brajot, Stephane; Thiolat, Denis; Ennemany, Rachid; Fawaz, Fawaz; Mossalayi, M Djavad

    2008-01-01

    Background Dietary flavonols may play an important role in the adjunct therapy of chronic inflammation. The availability of therapeutic formulations of pentahydroxyflavone glycoside, rutoside (RU), led us to investigate the ability of this molecule to modulate the release of various proinflammatory mediators from human activated macrophages in vitro and to ameliorate arthritic markers in a rat model. Methods RU was added simultaneously to human macrophages during their activation. Cells were then analyzed for inflammation-related gene expression using a specific array, and cell supernatants were collected to measure inflammatory mediators. RU was also injected into adjuvant-induced arthritic rats, and disease progression and body weight were evaluated until 50 days after injection. Sera and peritoneal macrophages were also collected to quantify the RU effect on various inflammatory markers. Results RU inhibited inflammation-related gene expression in activated human macrophages and the release of nitric oxide, tumor necrosis factor-alpha, interleukin (IL)-1, and IL-6 from these cells. In a rat model, RU inhibited clinical signs of chronic arthritis, correlating with decreased levels of inflammatory cytokines detected in rat sera and macrophage supernatants. Conclusion Thus, RU may have clinical value in reducing inflammatory manifestations in human arthritis and other inflammatory diseases. PMID:18252009

  6. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    PubMed

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease.

  7. Arginine Relieves the Inflammatory Response and Enhances the Casein Expression in Bovine Mammary Epithelial Cells Induced by Lipopolysaccharide

    PubMed Central

    Wu, Tianyou; Wang, Chao; Ding, Luoyang; Shen, Yizhao; Cui, Huihui; Wang, Mengzhi; Wang, Hongrong

    2016-01-01

    As one of functional active amino acids, L-arginine holds a key position in immunity. However, the mechanism that arginine modulates cow mammary inflammatory response in ruminant is unclear. Therefore, this study was conducted to investigate the effects of L-arginine on inflammatory response and casein expression after challenging the bovine mammary epithelial cells (BMECs) with lipopolysaccharide (LPS). The cells were divided into four groups, stimulated with or without LPS (10 μg/mL) and treated with or without arginine (100 μg/mL) for 12 h. The concentration of proinflammatory cytokines, inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and Toll-like receptor 4 (TLR4) signaling pathways as well as the casein was determined. The results showed that arginine reduced the LPS-induced production like IL-1β, IL-6, TNF-α, and iNOS. Though the expression of NF-κB was attenuated and the mTOR signaling pathway was upregulated, arginine had no effect on TLR4 expression. In addition, our results show that the content of β-casein and the total casein were enhanced after arginine was supplemented in LPS-induced BMECs. In conclusion, arginine could relieve the inflammatory reaction induced by LPS and enhance the concentration of β-casein and the total casein in bovine mammary epithelial cells. PMID:27110069

  8. Ferulic acid ethyl ester diminished Complete Freund's Adjuvant-induced incapacitation through antioxidant and anti-inflammatory activity.

    PubMed

    Cunha, Francisco Valmor Macedo; Gomes, Bruno de Sousa; Neto, Benedito de Sousa; Ferreira, Alana Rodrigues; de Sousa, Damião Pergentino; de Carvalho e Martins, Maria do Carmo; Oliveira, Francisco de Assis

    2016-01-01

    Ferulic acid ethyl ester (FAEE) is a derivate from ferulic acid which reportedly has antioxidant effect; however, its role on inflammation was unknown. In this study, we investigated the orally administered FAEE anti-inflammatory activity on experimental inflammation models and Complete Freund's Adjuvant (CFA)-induced arthritis in rats. CFA-induced arthritis has been evaluated by incapacitation model and radiographic knee joint records at different observation time. FAEE (po) reduced carrageenan-induced paw edema (p < 0.001) within the 1st to 5th hours at 50 and 100 mg/kg doses. FAEE 50 and 100 mg/kg, po inhibited leukocyte migration into air pouch model (p < 0.001), and myeloperoxidase, superoxide dismutase, and catalase activities (p < 0.001) increased total thiol concentration and decreased the TNF-α and IL-1β concentrations, NO, and thiobarbituric acid reactive species. In the CFA-induced arthritis, FAEE 50 and 100 mg/kg significantly reduced the edema and the elevation paw time, a joint disability parameter, since second hour after arthritis induction (p < 0.001). FAEE presented rat joint protective activity in radiographic records (p < 0.001). The data suggest that the FAEE exerts anti-inflammatory activity by inhibiting leukocyte migration, oxidative stress reduction, and pro-inflammatory cytokines.

  9. Oxidized low density lipoprotein suppresses lipopolysaccharide-induced inflammatory responses in microglia: Oxidative stress acts through control of inflammation

    SciTech Connect

    Kim, Ohn Soon; Lee, Chang Seok; Joe, Eun-hye; Jou, Ilo . E-mail: jouilo@ajou.ac.kr

    2006-03-31

    Low density lipoprotein (LDL) is readily oxidized under certain conditions, resulting in the formation of oxidized LDL (oxLDL). Despite numerous in vitro reports that reveal the pathogenic role of oxidative stress, anti-oxidative strategies have underperformed in the clinic. In this study, we examine the role of oxLDL in brain inflammatory responses using cultured rat brain microglia. We demonstrate that oxLDL inhibits lipopolysaccharide (LPS)-induced inflammatory responses in these cells. It also decreases LPS-induced expression of inducible nitric oxide synthase and production of nitric oxide, and reduces LPS-induced secretion of tumor necrosis factor-{alpha} and monocyte chemoattractant protein-1. Oxysterols, known components of oxLDL and endogenous agonists of liver X receptor, can simulate the inhibitory effects of oxLDL in LPS-activated microglia. In addition, their inhibitory effects were mimicked by liver X receptor (LXR) agonists and potentiated by a retinoid X receptor agonist, suggesting these molecules heterodimerize to function as oxysterol receptors. Taken together, our results demonstrate that oxLDL inhibits LPS-induced inflammatory responses in brain microglia and that these inhibitory effects are mediated by oxysterols and, at least in part, by the nuclear receptor LXR. Our results suggest an additional mechanism of action for oxidative stress that acts indirectly via modulation of inflammatory responses. Although further studies are needed, these results answer in part the question of why anti-oxidative strategies have not been successful in clinical situations. Moreover, as brain inflammation participates in the initiation and progression of several neurodegenerative disorders, the present data provide information that should prove a useful guide for designing therapeutic strategies to combat oxidative brain diseases.

  10. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models

    SciTech Connect

    Lee, Wonhwa; Kim, Tae Hoon; Ku, Sae-Kwang; Min, Kyoung-jin; Lee, Hyun-Shik; Kwon, Taeg Kyu; Bae, Jong-Sup

    2012-07-01

    Withaferin A (WFA), an active compound from Withania somnifera, is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. In this study, we first investigated the possible barrier protective effects of WFA against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice induced by high mobility group box 1 protein (HMGB1) and the associated signaling pathways. The barrier protective activities of WFA were determined by measuring permeability, leukocytes adhesion and migration, and activation of pro-inflammatory proteins in HMGB1-activated HUVECs. We found that WFA inhibited lipopolysaccharide (LPS)-induced HMGB1 release and HMGB1-mediated barrier disruption, expression of cell adhesion molecules (CAMs) and adhesion/transendothelial migration of leukocytes to human endothelial cells. WFA also suppressed acetic acid-induced hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Further studies revealed that WFA suppressed the production of interleukin 6, tumor necrosis factor-α (TNF-α) and activation of nuclear factor-κB (NF-κB) by HMGB1. Collectively, these results suggest that WFA protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. -- Highlights: ► Withaferin A inhibited LPS induced HMGB1 release. ► Withaferin A reduced HMGB1-mediated hyperpermeability. ► Withaferin A inhibited HMGB1-mediated adhesion and migration of leukocytes. ► Withaferin A inhibited HMGB1-mediated activation of NF-κB, IL-6 and TNF-α.

  11. Oxidized low density lipoprotein suppresses lipopolysaccharide-induced inflammatory responses in microglia: oxidative stress acts through control of inflammation.

    PubMed

    Kim, Ohn Soon; Lee, Chang Seok; Joe, Eun-hye; Jou, Ilo

    2006-03-31

    Low density lipoprotein (LDL) is readily oxidized under certain conditions, resulting in the formation of oxidized LDL (oxLDL). Despite numerous in vitro reports that reveal the pathogenic role of oxidative stress, anti-oxidative strategies have underperformed in the clinic. In this study, we examine the role of oxLDL in brain inflammatory responses using cultured rat brain microglia. We demonstrate that oxLDL inhibits lipopolysaccharide (LPS)-induced inflammatory responses in these cells. It also decreases LPS-induced expression of inducible nitric oxide synthase and production of nitric oxide, and reduces LPS-induced secretion of tumor necrosis factor-alpha and monocyte chemoattractant protein-1. Oxysterols, known components of oxLDL and endogenous agonists of liver X receptor, can simulate the inhibitory effects of oxLDL in LPS-activated microglia. In addition, their inhibitory effects were mimicked by liver X receptor (LXR) agonists and potentiated by a retinoid X receptor agonist, suggesting these molecules heterodimerize to function as oxysterol receptors. Taken together, our results demonstrate that oxLDL inhibits LPS-induced inflammatory responses in brain microglia and that these inhibitory effects are mediated by oxysterols and, at least in part, by the nuclear receptor LXR. Our results suggest an additional mechanism of action for oxidative stress that acts indirectly via modulation of inflammatory responses. Although further studies are needed, these results answer in part the question of why anti-oxidative strategies have not been successful in clinical situations. Moreover, as brain inflammation participates in the initiation and progression of several neurodegenerative disorders, the present data provide information that should prove a useful guide for designing therapeutic strategies to combat oxidative brain diseases.

  12. Anti-inflammatory, Antithrombotic and Cardiac Remodeling Preventive Effects of Eugenol in Isoproterenol-Induced Myocardial Infarction in Wistar Rat.

    PubMed

    Mnafgui, Kais; Hajji, Raouf; Derbali, Fatma; Gammoudi, Anis; Khabbabi, Gaddour; Ellefi, Hedi; Allouche, Noureddine; Kadri, Adel; Gharsallah, Neji

    2016-10-01

    This study aimed to evaluate the antithrombotic, anti-inflammatory and anti-cardiac remodeling properties of eugenol in isoproterenol-induced myocardial infarction in rats. Male Wistar rats were randomly divided into four groups, control, iso [100 mg/kg body weight was injected subcutaneously into rats at an interval of 24 h for 2 days (6th and 7th day) to induce MI] and pretreated animals with clopidogrel (0.2 mg/kg) and eugenol (50 mg/kg) orally for 7 days and intoxicated with isoproterenol (Iso + Clop) and (Iso + EG) groups. Isoproterenol-induced myocardial infarcted rats showed notable changes in the ECG pattern, increase in heart weight index, deterioration in the hemodynamic function and rise in plasma level of troponin-T, CK-MB and LDH and ALT by 316, 74, 172 and 45 %, respectively, with histological myocardium necrosis and cells inflammatory infiltration. In addition, significant increases in plasma levels of inflammatory biomarkers such as fibrinogen, α1, α2, β1, β2 and γ globulins with decrease level of albumin were observed in infarcted rats as compared to normal ones. Else, the angiotensin-converting enzyme (ACE) activity in plasma, kidney and heart of the isoproterenol-induced rats was significantly increased by 34, 47 and 93 %, respectively, as compared to normal group. However, the administration of eugenol induced a clear improvement in cardiac biomarkers injury, reduced inflammatory mediators proteins, increased heart activities of superoxide dismutase and glutathione peroxidase with reduce in thiobarbituric acid-reactive substances content and inhibition of ventricular remodeling process through inhibition of ACE activity. Overall, eugenol evidences high preventive effects from cardiac remodeling process.

  13. SOCS1 hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced inflammatory cytokines in macrophages.

    PubMed

    Cheng, Chang; Huang, Cheng; Ma, Tao-Tao; Bian, Er-Bao; He, Yong; Zhang, Lei; Li, Jun

    2014-03-21

    Macrophages activation which releases the pro-inflammatory cytokines is an essential event in the process of inflammation. SOCS1 has been shown to act as a negative regulator of cytokine signals and plays a key role in the suppression of tissue injury and inflammatory diseases. DNA methylation mediated by specific DNA methyltransferases1 (DNMT1) which contributes to the epigenetic silencing of multiple genes. SOCS1 promoter hypermethylation is by far the best categorized epigenetic change in tumors. Our study with a view to investigate whether the loss of SOCS1 due to SOCS1 promoter methylation was involved in the course of inflammatory cytokines released from lipopolysaccharide (LPS)-stimulated macrophages. Here, we found that treatment of LPS-induced RAW264.7 macrophage cells with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-azadC) reduced aberrant promoter hypermethylation of SOCS1 and prevented the loss of the expression of SOCS1 in macrophages which secret inflammatory cytokines. Knockdown of DNMT1 gene not only attenuated the SOCS1 gene promoter methylation but also up-regulated the expression of SOCS1 in activated RAW264.7 cells. Furthermore, silencing of DNMT1 prevented the activation of JAK2/STAT3 pathway in LPS-induced RAW264.7 cells. These studies demonstrated that DNMT1-mediated SOCS1 hypermethylation caused the loss of SOCS1 expression results in negative regulation of activation of the JAK2/STAT3 pathway, and enhanced the release of LPS-induced pro-inflammatory cytokines such as TNF-α and IL-6 in macrophages. PMID:24440346

  14. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice

    PubMed Central

    Oh, Ji-Hyun; Kim, Jaehoon

    2016-01-01

    BACKGROUND/OBJECTIVES Seaweeds have been reported to have various health beneficial effects. In this study, we investigated the potential anti-obesity and anti-inflammatory effects of four types of domestic brown seaweeds in a high-fat diet-induced obese mouse model and bone marrow-derived macrophages (BMDM). MATERIALS/METHODS Male C57BL/6N mice were fed low-fat diet (LFD), high-fat diet (HFD) or HFD containing Undaria Pinnatifida, HFD containing Laminaria Japonica (LJ), HFD containing Sargassum Fulvellum, or HFD containing Hizikia Fusiforme (HF) for 16 weeks. RESULTS Brown seaweed supplementation did not affect long-term HFD-associated changes in body weight or adiposity, although mice fed HFD + LJ or HFD + HF gained slightly less body weight compared with those fed HFD at the beginning of feeding. Despite being obese, mice fed HFD + LJ appeared to show improved insulin sensitivity compared to mice fed HFD. Consistently, we observed significantly reduced blood glucose concentrations in mice fed HFD + LJ compared with those of mice fed HFD. Although no significant differences in adipocyte size were detected among the HFD-fed groups, consumption of seaweeds decreased formation of HFD-induced crown-like structures in gonadal adipose tissue as well as plasma inflammatory cytokines. BMDM from mice fed HFDs with seaweeds showed differential regulation of pro-inflammatory cytokines such as IL-1β and IL-6 compared with BMDM from mice fed HFD by LPS stimulation. CONCLUSION Although seaweed consumption did not prevent long-term HFD-induced obesity in C57BL/6N mice, it reduced insulin resistance (IR) and circulation of pro-inflammatory cytokines. Therefore, seaweeds may ameliorate systemic inflammation and IR in obesity partially due to inhibition of inflammatory signaling in adipose tissue cells as well as bone marrow-derived immune cells. PMID:26865915

  15. Preventative oral methylthioadenosine is anti-inflammatory and reduces DSS-induced colitis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylthioadenosine (MTA) is a precursor of the methionine salvage pathway and has been shown to have anti-inflammatory properties in various models of acute and chronic inflammation. However, the anti-inflammatory properties of MTA in models of intestinal inflammation are not defined. We hypothesiz...

  16. Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells.

    PubMed

    Kim, Mina; Choi, Sang-Yoon; Lee, Pyeongjae; Hur, Jinyoung

    2015-09-01

    Microglia is the resident innate immune cells that sense pathogens and tissue injury in the central nervous system. Microglia becomes activated in response to injury, infection, and other stimuli that threaten neuronal survival. Microglia activation plays an important role in neurodegenerative diseases. Neochlorogenic acid (NCA) is a natural polyphenolic compound found in dried fruits and other plants. Although previous studies have shown that phenolic acids including NCA have outstanding antioxidant, antibacterial, antiviral, and antipyretic activities, there has not yet been investigated for anti-inflammatory effects. Therefore, for the first time we have examined the potential of NCA to inhibit microglial activation and pro-inflammatory responses in the brain. We found that lipopolysaccharide-induced inducible nitric oxide synthase, and cyclooxygenase-2 expression, and nitric oxide formation was suppressed by NCA in a dose-dependent manner in BV2 microglia. NCA also inhibited the production of pro-inflammatory mediators, tumor necrosis factor-α and interleukin-1 beta. Furthermore, phosphorylated nuclear factor-kappa B p65 and p38 mitogen-activated protein kinase activation were blocked by NCA. Taken together, these results suggest that NCA exerts neuroprotective effects through the inhibition of pro-inflammatory pathways in activated microglia.

  17. Anti-septic effects of pellitorine in HMGB1-induced inflammatory responses in vitro and in vivo.

    PubMed

    Ku, Sae-Kwang; Lee, In-Chul; Kim, Jeong Ah; Bae, Jong-Sup

    2014-04-01

    High mobility group box 1 (HMGB1) acts as a late mediator of vascular inflammatory conditions. Pellitorine (PT), an active amide compound from Asarum sieboldii, is known to possess antibacterial and anticancer properties. In this study, we investigated the anti-septic effects of PT against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) induced by HMGB1 and the associated signaling pathways. According to our findings, treatment with PT resulted in inhibited release of HMGB1, down-regulation of HMGB1-dependent inflammatory responses in HUVECs, and inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with PT resulted in reduced cecal ligation and puncture (CLP)-induced release of HMGB1 and sepsis-related mortality. PT suppressed the production of tumor necrosis factor-α and interleukin 6 and the activation of nuclear factor-κB and extracellular regulated kinases 1/2 by HMGB1. Collectively, these results indicate the potential of PT as a candidate therapeutic agent for treatment of various severe vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.

  18. Analysis of local chronic inflammatory cell infiltrate combined with systemic inflammation improves prognostication in stage II colon cancer independent of standard clinicopathologic criteria.

    PubMed

    Turner, Natalie; Wong, Hui-Li; Templeton, Arnoud; Tripathy, Sagarika; Whiti Rogers, Te; Croxford, Matthew; Jones, Ian; Sinnathamby, Mathuranthakan; Desai, Jayesh; Tie, Jeanne; Bae, Susie; Christie, Michael; Gibbs, Peter; Tran, Ben

    2016-02-01

    In Stage II colon cancer, multiple independent studies have shown that a dense intratumoural immune infiltrate (local inflammation) is associated with improved outcomes, while systemic inflammation, measured by various markers, has been associated with poorer outcomes. However, previous studies have not considered the interaction between local and systemic inflammation, nor have they assessed the type of inflammatory response compared with standard clinicopathologic criteria. In order to evaluate the potential clinical utility of inflammatory markers in Stage II colon cancer, we examined local and systemic inflammation in a consecutive series of patients with resected Stage II colon cancer between 2000 and 2010 who were identified from a prospective clinical database. Increased intratumoural chronic inflammatory cell (CIC) density, as assessed by pathologist review of hematoxylin and eosin stained slides, was used to represent local inflammation. Neutrophil-to-lymphocyte ratio (NLR) >5, as calculated from pre-operative full blood counts, was used to represent systemic inflammation. In 396 eligible patients identified, there was a non-significant inverse relationship between local and systemic inflammation. Increased CIC density was significantly associated with improved overall (HR 0.45, p = 0.001) and recurrence-free survival (HR 0.37, p = 0.003). High NLR was significantly associated with poorer overall survival (HR 2.56, p < 0.001). The combination of these markers further stratified prognosis independent of standard high-risk criteria, with a dominant systemic inflammatory response (low CIC/high NLR) associated with the worst outcome (5-year overall survival 55.8%). With further validation this simple, inexpensive combined inflammatory biomarker might assist in patient selection for adjuvant chemotherapy in Stage II colon cancer.

  19. Analgesic and Anti-Inflammatory Properties of Gelsolin in Acetic Acid Induced Writhing, Tail Immersion and Carrageenan Induced Paw Edema in Mice

    PubMed Central

    Gupta, Ashok Kumar; Parasar, Devraj; Sagar, Amin; Choudhary, Vikas; Chopra, Bhupinder Singh; Garg, Renu; Ashish; Khatri, Neeraj

    2015-01-01

    Plasma gelsolin levels significantly decline in several disease conditions, since gelsolin gets scavenged when it depolymerizes and caps filamentous actin released in the circulation following tissue injury. It is well established that our body require/implement inflammatory and analgesic responses to protect against cell damage and injury to the tissue. This study was envisaged to examine analgesic and anti-inflammatory activity of exogenous gelsolin (8 mg/mouse) in mice models of pain and acute inflammation. Administration of gelsolin in acetic acid-induced writhing and tail immersion tests not only demonstrated a significant reduction in the number of acetic acid-induced writhing effects, but also exhibited an analgesic activity in tail immersion test in mice as compared to placebo treated mice. Additionally, anti-inflammatory function of gelsolin (8 mg/mouse) compared with anti-inflammatory drug diclofenac sodium (10 mg/kg)] was confirmed in the carrageenan injection induced paw edema where latter was measured by vernier caliper and fluorescent tomography imaging. Interestingly, results showed that plasma gelsolin was capable of reducing severity of inflammation in mice comparable to diclofenac sodium. Analysis of cytokines and histo-pathological examinations of tissue revealed administration of gelsolin and diclofenac sodium significantly reduced production of pro-inflammatory cytokines, TNF-α and IL-6. Additionally, carrageenan groups pretreated with diclofenac sodium or gelsolin showed a marked decrease in edema and infiltration of inflammatory cells in paw tissue. Our study provides evidence that administration of gelsolin can effectively reduce the pain and inflammation in mice model. PMID:26426535

  20. Radiation-induced inflammatory markers of brain injury are modulated by PPARdelta activation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Schnegg, Caroline Isabel

    As a result of improvements in cancer therapy and health care, the population of long-term cancer survivors is growing. For these approximately 12 million long-term cancer survivors, brain metastases are a significant risk. Fractionated partial or whole-brain irradiation (fWBI) is often required to treat both primary and metastatic brain cancer. Radiation-induced normal tissue injury, including progressive cognitive impairment, however, can significantly affect the well-being of the approximately 200,000 patients who receive these treatments each year. Recent reports indicate that radiation-induced brain injury is associated with chronic inflammatory and oxidative stress responses, as well as increased microglial activation in the brain. Anti-inflammatory drugs may, therefore, be a beneficial therapy to mitigate radiation-induced brain injury. We hypothesized that activation of peroxisomal proliferator activated receptor delta (PPARō) would prevent or ameliorate radiation-induced brain injury, including cognitive impairment, in part, by alleviating inflammatory responses in microglia. For our in vitro studies, we hypothesized that PPARō activation would prevent the radiation-induced inflammatory response in microglia following irradiation. Incubating BV-2 murine microglial cells with the (PPAR)ō agonist, L-165041, prevented the radiation-induced increase in: i) intracellular ROS generation, ii) Cox-2 and MCP-1 expression, and iii) IL-1β and TNF-α message levels. This occured, in part, through PPARō-mediated modulation of stress activated kinases and proinflammatory transcription factors. PPARō inhibited NF-κB via transrepression by physically interacting with the p65 subunit, and prevented activation of the PKCα/MEK1/2/ERK1/2/AP-1 pathway by inhibiting the radiation-induced increase in intracellular ROS generation. These data support the hypothesis that PPARō activation can modulate the radiation-induced oxidative stress and inflammatory

  1. Laser-induced microbubble poration of localized single cells.

    PubMed

    Fan, Qihui; Hu, Wenqi; Ohta, Aaron T

    2014-05-01

    Laser-induced microbubbles were used to porate the cell membranes of localized single NIH/3T3 fibroblasts. Microsecond laser pulses were focused on an optically absorbent substrate, creating a vapour microbubble that oscillated in size at the laser focal point in a fluidic chamber. The shear stress accompanying the bubble size oscillation was able to porate nearby cells. Cell poration was demonstrated with the delivery of FITC-dextran dye with various molecular weights. Under optimal poration conditions, the cell poration efficiency was up to 95.2 ± 4.8%, while maintaining 97.6 ± 2.4% cell viability. The poration system is able to target a single cell without disturbing surrounding cells. PMID:24632785

  2. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  3. Unified entropic measures of quantum correlations induced by local measurements

    NASA Astrophysics Data System (ADS)

    Bosyk, G. M.; Bellomo, G.; Zozor, S.; Portesi, M.; Lamberti, P. W.

    2016-11-01

    We introduce quantum correlation measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of nonadditive entropies. In this way, we overcome the issue of the artificial increasing of the value of quantum correlation measures based on nonadditive entropies when an uncorrelated ancilla is appended to the system, without changing the computability of our entropic correlation measures with respect to the previous ones. Moreover, we recover as limiting cases the quantum correlation measures based on von Neumann and Rényi entropies (i.e., additive entropies), for which the adjustment factor becomes trivial. In addition, we distinguish between total and semiquantum correlations and obtain some inequalities between them. Finally, we obtain analytical expressions of the entropic correlation measures for typical quantum bipartite systems.

  4. Reaction-induced strain localization: Torsion experiments on dolomite

    NASA Astrophysics Data System (ADS)

    Delle Piane, Claudio; Burlini, Luigi; Grobety, Bernard

    2007-04-01

    We investigated the mechanical behaviour and microstructural evolution of a dolomite marble from Mt. Frerone (Adamello, N-Italy) during decarbonation to calcite and periclase in torsion experiments. Tests were performed in a Paterson gas-medium apparatus on cylindrical samples of 10 mm diameter and 10 mm length. Experiments were conducted at 800 °C, 300 MPa confining pressure under both vented and non-vented conditions, up to a maximum bulk shear strain of about γ = 1.8, at different strain rates (3 × 10 - 5 s - 1 up to 3 × 10 - 4 s - 1 ). Under hydrostatic conditions the nominal equilibrium P(CO 2) should be around 100 MPa, but in the vented experiments the CO 2 was free to escape, causing the breakdown of dolomite. During the decomposition, deformation was systematically localized at the ends of the specimens, near the porous spacers into a fine-grained mixture of calcite and periclase. Due to the low permeability of the marble, pore fluid could not escape from the central part of the sample building up CO 2 pressure which suppressed the decarbonation reaction. The fluid pressure embrittled the material and caused the development of en-echelon tension fractures, inclined opposite to the sense of shear. We conclude that decarbonation produced a weak polyphase matrix composed of submicron sized reaction products. Such a small grain size induced strain localization which was probably promoted by a switch from grain-size insensitive to grain-size sensitive deformation mechanism.

  5. Localizing evoked and induced responses to faces using magnetoencephalography.

    PubMed

    Perry, Gavin; Singh, Krish D

    2014-05-01

    A rich pattern of responses in frequency, time and space are known to be generated in the visual cortex in response to faces. Recently, a number of studies have used magnetoencephalography (MEG) to try to record these responses non-invasively - in many cases using source analysis techniques based on the beamforming method. Here we sought both to characterize best practice for measuring face-specific responses using MEG beamforming, and to determine whether the results produced by the beamformer match evidence from other modalities. We measured activity to visual presentation of face stimuli and phase-scrambled control stimuli, and performed source analyses of both induced and evoked responses using Synthetic Aperture Magnetometry. We localized the gamma-band response to bilateral lateral occipital cortex, and both the gamma-band response and the M170-evoked response to the right fusiform gyrus. Differences in the gamma-band response between faces and scrambled stimuli were confined to the frequency range 50-90 Hz; gamma-band activity at higher frequencies did not differ between the two stimulus categories. We additionally identified a component of the M220-evoked response - localized to the parieto-occipital sulcus - which was enhanced for scrambled vs. unscrambled faces. These findings help to establish that MEG beamforming can localize face-specific responses in time, frequency and space with good accuracy (when validated against established findings from functional magnetic resonance imaging and intracranial recordings), as well as contributing to the establishment of best methodological practice for the use of the beamformer method to measure face-specific responses.

  6. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum.

    PubMed

    Li, Jian-Ming; Cai, Yan; Liu, Fei; Yang, La; Hu, Xia; Patrylo, Peter R; Cai, Huaibin; Luo, Xue-Gang; Xiao, Dong; Yan, Xiao-Xin

    2015-05-10

    Microbleeds are a common finding in aged human brains. In Alzheimer's disease (AD), neuritic plaques composed of β-amyloid (Aβ) deposits and dystrophic neurites occur frequently around cerebral vasculature, raising a compelling question as to whether, and if so, how, microvascular abnormality and amyloid/neuritic pathology might be causally related. Here we used a guinea pig model of cerebral microembolism to explore a potential inductive effect of vascular injury on neuritic and amyloid pathogenesis. Brains were examined 7-30 days after experimental microvascular embolization occupying ~0.5% of total cortical area. Compared to sham-operated controls, glial fibrillary acidic protein immunoreactivity was increased in the embolized cerebrum, evidently around intracortical vasculature. Swollen/sprouting neurites exhibiting increased reactivity of nicotinamide adenine dinucleotide phosphate diaphorase, parvalbumin, vesicular glutamate transporter 1 and choline acetyltransferase appeared locally in the embolized brains in proximity to intracortical vasculature. The embolization-induced swollen/sprouting neurites were also robustly immunoreactive for β-amyloid precursor protein and β-secretase-1, the substrate and initiating enzyme for Aβ genesis. These experimental data suggest that microvascular injury can induce multisystem neuritic pathology associated with an enhanced amyloidogenic potential in wild-type mammalian brain.

  7. Local auxin metabolism regulates environment-induced hypocotyl elongation.

    PubMed

    Zheng, Zuyu; Guo, Yongxia; Novák, Ondřej; Chen, William; Ljung, Karin; Noel, Joseph P; Chory, Joanne

    2016-01-01

    A hallmark of plants is their adaptability of size and form in response to widely fluctuating environments. The metabolism and redistribution of the phytohormone auxin play pivotal roles in establishing active auxin gradients and resulting cellular differentiation. In Arabidopsis thaliana, cotyledons and leaves synthesize indole-3-acetic acid (IAA) from tryptophan through indole-3-pyruvic acid (3-IPA) in response to vegetational shade. This newly synthesized auxin moves to the hypocotyl where it induces elongation of hypocotyl cells. Here we show that loss of function of VAS2 (IAA-amido synthetase Gretchen Hagen 3 (GH3).17) leads to increases in free IAA at the expense of IAA-Glu (IAA-glutamate) in the hypocotyl epidermis. This active IAA elicits shade- and high temperature-induced hypocotyl elongation largely independently of 3-IPA-mediated IAA biosynthesis in cotyledons. Our results reveal an unexpected capacity of local auxin metabolism to modulate the homeostasis and spatial distribution of free auxin in specialized organs such as hypocotyls in response to shade and high temperature. PMID:27249562

  8. Local auxin metabolism regulates environment-induced hypocotyl elongation

    PubMed Central

    Zheng, Zuyu; Guo, Yongxia; Novák, Ondřej; Chen, William; Ljung, Karin; Noel, Joseph P.; Chory, Joanne

    2016-01-01

    A hallmark of plants is their adaptability of size and form in response to widely fluctuating environments. The metabolism and redistribution of the phytohormone auxin play pivotal roles in establishing active auxin gradients and resulting cellular differentiation. In Arabidopsis thaliana, cotyledons and leaves synthesize indole-3-acetic acid (IAA) from tryptophan through indole-3-pyruvic acid (3-IPA) in response to vegetational shade. This newly synthesized auxin moves to the hypocotyl where it induces elongation of hypocotyl cells. Here we show that loss of function of VAS2 (IAA-amido synthetase Gretchen Hagen 3 (GH3).17) leads to increases in free IAA at the expense of IAA-Glu (IAA-glutamate) in the hypocotyl epidermis. This active IAA elicits shade- and high temperature-induced hypocotyl elongation largely independently of 3-IPA-mediated IAA biosynthesis in cotyledons. Our results reveal an unexpected capacity of local auxin metabolism to modulate the homeostasis and spatial distribution of free auxin in specialized organs such as hypocotyls in response to shade and high temperature. PMID:27249562

  9. Locally induced laminar convection in liquid nitrogen and silicone oils.

    PubMed

    Dubois, C; Duchesne, A; Vanderheyden, B; Vanderbemden, P; Caps, H

    2016-08-01

    We present an experimental study of a laminar convective phenomenon induced by a centimetric heater totally immersed in a liquid pool (Rayleigh number ranging from 10(4) to 10(7)). This local heating is observed to induce a laminar convection that differs from the classical Rayleigh-Bénard cells created by heating the whole bottom of the fluid: the convection pattern is no more periodic. In order to obtain a complete map of the velocity field, we use Particle Image Velocimetry technique. The vertical velocity between the counter-rotating convective cells is used as the relevant physical parameter to describe the phenomenon. The potential cooling applications of this problem lead us to choose liquid nitrogen as an experimental fluid. We thus compare the results obtained for various temperature gradients in liquid nitrogen with experiments performed at room temperature with silicone oils of various viscosities. The theoretical law for the maximal vertical velocity from classical Rayleigh-Bénard experiments is adapted to the specific geometry investigated by using a new definition for the characteristic wavelength. This length is studied and appears to be dependent on the liquid properties. We finally obtain a remarkable agreement between theory and experimental data.

  10. Locally induced laminar convection in liquid nitrogen and silicone oils.

    PubMed

    Dubois, C; Duchesne, A; Vanderheyden, B; Vanderbemden, P; Caps, H

    2016-08-01

    We present an experimental study of a laminar convective phenomenon induced by a centimetric heater totally immersed in a liquid pool (Rayleigh number ranging from 10(4) to 10(7)). This local heating is observed to induce a laminar convection that differs from the classical Rayleigh-Bénard cells created by heating the whole bottom of the fluid: the convection pattern is no more periodic. In order to obtain a complete map of the velocity field, we use Particle Image Velocimetry technique. The vertical velocity between the counter-rotating convective cells is used as the relevant physical parameter to describe the phenomenon. The potential cooling applications of this problem lead us to choose liquid nitrogen as an experimental fluid. We thus compare the results obtained for various temperature gradients in liquid nitrogen with experiments performed at room temperature with silicone oils of various viscosities. The theoretical law for the maximal vertical velocity from classical Rayleigh-Bénard experiments is adapted to the specific geometry investigated by using a new definition for the characteristic wavelength. This length is studied and appears to be dependent on the liquid properties. We finally obtain a remarkable agreement between theory and experimental data. PMID:27562830

  11. Disruption of inducible 6-phosphofructo-2-kinase impairs the suppressive effect of PPARγ activation on diet-induced intestine inflammatory response.

    PubMed

    Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Thomas, Laura N; Woo, Shih-Lung; Huo, Yuqing; Chen, Y Eugene; Sturino, Joseph M; Wu, Chaodong

    2013-05-01

    PFKFB3 is a target gene of peroxisome proliferator-activated receptor gamma (PPARγ) and encodes for inducible 6-phosphofructo-2-kinase (iPFK2). As a key regulatory enzyme that stimulates glycolysis, PFKFB3/iPFK2 links adipocyte metabolic and inflammatory responses. Additionally, PFKFB3/iPFK2 is involved in the effect of active PPARγ on suppressing overnutrition-induced adipose tissue inflammatory response, which accounts for the insulin-sensitizing and antidiabetic effects of PPARγ activation. Using PFKFB3/iPFK2-disrupted mice, the present study investigated the role of PFKFB3/iPFK2 in regulating overnutrition-associated intestine inflammatory response and in mediating the effects of PPARγ activation. In wild-type mice, intestine PFKFB3/iPFK2 was increased in response to high-fat diet (HFD) feeding compared with that in mice fed a low-fat diet. However, intestine PFKFB3/iPFK2 was decreased in PFKFB3/iPFK2-disrupted mice and did not respond to HFD feeding. Furthermore, on an HFD, PFKFB3/iPFK2-disrupted mice displayed a significant increase in major intestine proinflammatory indicators such as toll-like receptor 4 expression, c-Jun N-terminal kinase 1 and nuclear factor kappa B phosphorylation, and proinflammatory cytokine expression compared with wild-type littermates. Upon treatment with rosiglitazone, an agonist of PPARγ, intestine proinflammatory indicators were markedly decreased in wild-type mice, but to a much lesser degree in PFKFB3/iPFK2-disrupted mice. Overall, the status of HFD-induced intestine inflammatory response in all treated mice correlated inversely with systemic insulin sensitivity, indicated by the homeostasis model assessment of insulin resistance data. Together, these results suggest that PFKFB3/iPFK2 is critically involved in the effect of PPARγ activation on suppressing diet-induced intestine inflammatory response.

  12. Anti-Inflammatory