Science.gov

Sample records for induces p53-dependent apoptosis

  1. Viral Single-Strand DNA Induces p53-Dependent Apoptosis in Human Embryonic Stem Cells

    PubMed Central

    Hirsch, Matthew L.; Fagan, B. Matthew; Dumitru, Raluca; Bower, Jacquelyn J.; Yadav, Swati; Porteus, Matthew H.; Pevny, Larysa H.; Samulski, R. Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication. PMID:22114676

  2. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.

    PubMed

    Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K

    2005-01-20

    Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.

  3. Radiation-Induced Salivary Gland Dysfunction Results From p53-Dependent Apoptosis

    SciTech Connect

    Avila, Jennifer L.; Grundmann, Oliver; Burd, Randy; Limesand, Kirsten H.

    2009-02-01

    Purpose: Radiotherapy for head-and-neck cancer causes adverse secondary side effects in the salivary glands and results in diminished quality of life for the patient. A previous in vivo study in parotid salivary glands demonstrated that targeted head-and-neck irradiation resulted in marked increases in phosphorylated p53 (serine{sup 18}) and apoptosis, which was suppressed in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Methods and Materials: Transgenic and knockout mouse models were exposed to irradiation, and p53-mediated transcription, apoptosis, and salivary gland dysfunction were analyzed. Results: The proapoptotic p53 target genes PUMA and Bax were induced in parotid salivary glands of mice at early time points after therapeutic radiation. This dose-dependent induction requires expression of p53 because no radiation-induced expression of PUMA and Bax was observed in p53-/- mice. Radiation also induced apoptosis in the parotid gland in a dose-dependent manner, which was p53 dependent. Furthermore, expression of p53 was required for the acute and chronic loss of salivary function after irradiation. In contrast, apoptosis was not induced in p53-/- mice, and their salivary function was preserved after radiation exposure. Conclusions: Apoptosis in the salivary glands after therapeutic head-and-neck irradiation is mediated by p53 and corresponds to salivary gland dysfunction in vivo.

  4. Cadmium induces p53-dependent apoptosis in human prostate epithelial cells.

    PubMed

    Aimola, Pierpaolo; Carmignani, Marco; Volpe, Anna Rita; Di Benedetto, Altomare; Claudio, Luigi; Waalkes, Michael P; van Bokhoven, Adrie; Tokar, Erik J; Claudio, Pier Paolo

    2012-01-01

    Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl(2) and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl(2) concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.

  5. Novel small molecule induces p53-dependent apoptosis in human colon cancer cells

    SciTech Connect

    Park, Sang Eun; Min, Yong Ki; Ha, Jae Du; Kim, Bum Tae; Lee, Woo Ghil . E-mail: bigguy@krict.re.kr

    2007-07-06

    Using high-throughput screening with small-molecule libraries, we identified a compound, KCG165 [(2-(3-(2-(pyrrolidin-1-yl)ethoxy)-1,10b-dihydro-[1,2,4]triazolo[1,5-c] quinazolin-5(6H)-one)], which strongly activated p53-mediated transcriptional activity. KCG165-induced phosphorylations of p53 at Ser{sup 6}, Ser{sup 15}, and Ser{sup 20}, which are all key residues involved in the activation and stabilization of p53. Consistent with these findings, KCG165 increased level of p53 protein and led to the accumulation of transcriptionally active p53 in the nucleus with the increased occupancy of p53 in the endogenous promoter region of its downstream target gene, p21{sup WAF1/CIP}. Notably, KCG165-induced p53-dependent apoptosis in cancer cells. Furthermore, we suggested topoisomerase II as the molecular target of KCG165. Together, these results indicate that KCG165 may have potential applications as an antitumor agent.

  6. 2-Hydroxyethyl methacrylate-induced apoptosis through the ATM- and p53-dependent intrinsic mitochondrial pathway.

    PubMed

    Schweikl, Helmut; Petzel, Christine; Bolay, Carola; Hiller, Karl-Anton; Buchalla, Wolfgang; Krifka, Stephanie

    2014-03-01

    Resin monomers of dental composites like 2-hydroxyethyl methacrylate (HEMA) disturb cell functions including responses of the innate immune system, mineralization and differentiation of dental pulp-derived cells, or induce cell death via apoptosis. The induction of apoptosis is related to the availability of the antioxidant glutathione, although a detailed understanding of the signaling pathways is still unknown. The present study provides insight into the causal relationship between oxidative stress, oxidative DNA damage, and the specific signaling pathway leading to HEMA-induced apoptosis in RAW264.7 mouse macrophages. The differential expression of the antioxidative enzymes superoxide dismutase, glutathione peroxidase, and catalase in HEMA-exposed cells indicated oxidative stress, which was associated with the cleavage of pro-caspase 3 as a critical apoptosis executioner. A 2-fold increase in the amount of mitochondrial superoxide anions after a 24 h exposure to HEMA (6-8 mM) was paralleled by a considerable decrease in the mitochondrial membrane potential (MMP). Additionally, expression of proteins critical for the signaling of apoptosis through the intrinsic mitochondrial pathway was detected. Transcription-dependent and transcription-independent mechanisms of p53-regulated apoptosis were activated, and p53 was translocated from the cytosol to mitochondria. HEMA-induced transcriptional activity of p53 was indicated by increased levels of PUMA localized to mitochondria as a potent inducer of apoptosis. The expression of Bcl-xL and Bax suggested that cells responded to stress caused by HEMA via the activation of a complicated and antagonistic machinery of pro- and anti-apoptotic Bcl-2 family members. A HEMA-induced and oxidative stress-sensitive delay of the cell cycle, indicating a DNA damage response, occurred independent of the influence of KU55399, a potent inhibitor of ATM (ataxia-telangiectasia mutated) activity. However, ATM, a protein kinase which

  7. Neuropeptide Y protects kidney against cisplatin-induced nephrotoxicity by regulating p53-dependent apoptosis pathway.

    PubMed

    Kim, Namoh; Min, Woo-Kie; Park, Min Hee; Lee, Jong Kil; Jin, Hee Kyung; Bae, Jae-Sung

    2016-05-01

    Cisplatin is a platinum-based chemotherapeutic drug for treating various types of cancers. However, the use of cisplatin is limited by its negative effect on normal tissues, particularly nephrotoxicity. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and apoptosis are involved in the adverse effect induced by cisplatin treatment. Several studies have suggested that neuropeptide Y (NPY) is involved in neuroprotection as well as restoration of bone marrow dysfunction from chemotherapy induced nerve injury. However, the role of NPY in chemotherapy- induced nephrotoxicity has not been studied. Here, we show that NPY rescues renal dysfunction by reducing the expression of pro-apoptotic proteins in cisplatin induced nephrotoxicity through Y1 receptor, suggesting that NPY can protect kidney against cisplatin nephrotoxicity as a possible useful agent to prevent and treat cisplatin-induced nephrotoxicity. [BMB Reports 2016; 49(5): 288-292].

  8. TEL/ETV6 induces apoptosis in 32D cells through p53-dependent pathways

    SciTech Connect

    Yamagata, Tetsuya; Maki, Kazuhiro; Waga, Kazuo; Mitani, Kinuko . E-mail: kinukom-tky@umin.ac.jp

    2006-08-25

    TEL is an ETS family transcription factor that is critical for maintaining hematopoietic stem cells in adult bone marrow. To investigate the roles of TEL in myeloid proliferation and differentiation, we introduced TEL cDNA into mouse myeloid 32Dcl3 cells. Overexpression of TEL repressed interleukin-3-dependent proliferation through blocking cell cycle progression. Also, the presence of TEL triggered apoptosis through the mitochondrial intrinsic pathway on exposure to granulocyte colony-stimulating factor. We found an increase in p53 protein and its DNA binding in the TEL-overexpressing cells. Forced expression of TEL stimulated transcription via the p53-responsive element and increased the expression of cellular target genes for p53 such as cell cycle regulator p21 and apoptosis inducer Puma. Consistently, induction of apoptosis was delayed by pifithrin-{alpha} treatment and completely blocked by increased expression of Bcl-2 in the TEL-overexpressing cells. These data collectively suggest that TEL exerts a tumor suppressive function through augmenting the p53 pathway and facilitates normal development of myelopoiesis.

  9. p53 dependent apoptosis and cell cycle delay induced by heteroleptic complexes in human cervical cancer cells.

    PubMed

    Sharma, Gunjan; Rana, Nishant Kumar; Singh, Priya; Dubey, Pradeep; Pandey, Daya Shankar; Koch, Biplob

    2017-04-01

    We previously reported synthesis of novel arene ruthenium (Ru) complexes and evaluated their antitumor activity in murine lymphoma (DL) cells. In this present study we further investigated the mechanism of action of two ruthenium complexes [complex 1 (η6-arene)RuCl(2-pcdpm)] and complex 2 (η6-arene)RuCl(4-mtdpm)] in cervical cancer cell line (HeLa). Our studies demonstrate that anticancer property of these two complexes was due to induction of apoptosis through p53 mediated pathway as well as arrest of cells in G2/M phase of cell cycle. It is worth to note that the complexes did not cause any substantial cytotoxic effect on normal cells. Further in comprehensive studies, apoptosis inducing property of both complexes were established in accordance with array of morphological changes ranging from membrane blebbing to formation of apoptotic bodies and followed by DNA fragmentation assay. Furthermore, Flow cytometry by Annexin V/PI staining delineate that complex 1 and 2 have strident impact to induce apoptosis in HeLa cells. The complex 1 and 2 treated cells show increased level of intracellular ROS generation which was preceded by p53 activation. Apoptosis induced by 1 and 2 was preceded by mitochondrial aggregations which were monitored by mitotracker. In addition flow cytometry analysis showed that both complexes also effectively arrest cells at G2/M phase of cell cycle. Western blot, RT-PCR as well as Real Time analysis were used to further confirm that the complexes induced apoptosis in p53 dependent pathway. Thus, our promising results can contribute to the rational design of novel potential anticancer agents.

  10. Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6.

    PubMed

    Hoeferlin, L Alexis; Fekry, Baharan; Ogretmen, Besim; Krupenko, Sergey A; Krupenko, Natalia I

    2013-05-03

    We have investigated the role of ceramide in the cellular adaptation to folate stress induced by Aldh1l1, the enzyme involved in the regulation of folate metabolism. Our previous studies demonstrated that Aldh1l1, similar to folate deficiency, evokes metabolic stress and causes apoptosis in cancer cells. Here we report that the expression of Aldh1l1 in A549 or HCT116 cells results in the elevation of C16-ceramide and a transient up-regulation of ceramide synthase 6 (CerS6) mRNA and protein. Pretreatment with ceramide synthesis inhibitors myriocin and fumonisin B1 or siRNA silencing of CerS6 prevented C16-ceramide accumulation and rescued cells supporting the role of CerS6/C16-ceramide as effectors of Aldh1l1-induced apoptosis. The CerS6 activation by Aldh1l1 and increased ceramide generation were p53-dependent; this effect was ablated in p53-null cells. Furthermore, the expression of wild type p53 but not transcriptionally inactive R175H p53 mutant strongly elevated CerS6. Also, this dominant negative mutant prevented accumulation of CerS6 in response to Aldh1l1, indicating that CerS6 is a transcriptional target of p53. In support of this mechanism, bioinformatics analysis revealed the p53 binding site 3 kb downstream of the CerS6 transcription start. Interestingly, ceramide elevation in response to Aldh1l1 was inhibited by silencing of PUMA, a proapoptotic downstream effector of p53 whereas the transient expression of CerS6 elevated PUMA in a p53-dependent manner indicating reciprocal relationships between ceramide and p53/PUMA pathways. Importantly, folate withdrawal also induced CerS6/C16-ceramide elevation accompanied by p53 accumulation. Overall, these novel findings link folate and de novo ceramide pathways in cellular stress response.

  11. p53-dependent NDRG1 expression induces inhibition of intestinal epithelial cell proliferation but not apoptosis after polyamine depletion.

    PubMed

    Zhang, Ai-Hong; Rao, Jaladanki N; Zou, Tongtong; Liu, Lan; Marasa, Bernard S; Xiao, Lan; Chen, Jie; Turner, Douglas J; Wang, Jian-Ying

    2007-07-01

    Normal intestinal mucosal growth requires polyamines that regulate expression of various genes involved in cell proliferation, growth arrest, and apoptosis. Our previous studies have shown that polyamine depletion stabilizes p53, resulting in inhibition of intestinal epithelial cell (IEC) proliferation, but the exact downstream targets of induced p53 are still unclear. The NDRG1 (N-myc downregulated gene-1) gene encodes a growth-related protein, and its transcription can be induced in response to stress. The current study tests the hypothesis that induced p53 inhibits IEC proliferation by upregulating NDRG1 expression following polyamine depletion. Depletion of cellular polyamines by inhibiting ornithine decarboxylase (ODC) with alpha-difluoromethylornithine not only induced p53 but also increased NDRG1 transcription as indicated by induction of the NDRG1 promoter activity and increased levels of NDRG1 mRNA and protein, all of which were prevented by using specific p53 siRNA and in cells with a targeted deletion of p53. In contrast, increased levels of cellular polyamines by ectopic expression of the ODC gene decreased p53 and repressed expression of NDRG1. Consistently, polyamine depletion-induced activation of the NDRG1-promoter was decreased when p53-binding sites within the NDRG1 proximal promoter region were deleted. Ectopic expression of the wild-type NDRG1 gene inhibited DNA synthesis and decreased final cell numbers regardless of the presence or absence of endogenous p53, whereas silencing NDRG1 promoted cell growth. However, overexpression of NDRG1 failed to directly induce cell death and to alter susceptibility to apoptosis induced by tumor necrosis factor-alpha/cycloheximide. These results indicate that NDRG1 is one of the direct mediators of induced p53 following polyamine depletion and that p53-dependent NDRG1 expression plays a critical role in the negative control of IEC proliferation.

  12. Calcarea carbonica induces apoptosis in cancer cells in p53-dependent manner via an immuno-modulatory circuit

    PubMed Central

    2013-01-01

    Background Complementary medicines, including homeopathy, are used by many patients with cancer, usually alongside with conventional treatment. However, the molecular mechanisms underneath the anti-cancer effect, if any, of these medicines have still remained unexplored. To this end we attempted to evaluate the efficacy of calcarea carbonica, a homeopathic medicine, as an anti-cancer agent and to delineate the detail molecular mechanism(s) underlying calcerea carbonica-induced tumor regression. Methods To investigate and delineate the underlying mechanisms of calcarea carbonica-induced tumor regression, Trypan blue dye-exclusion test, flow cytometric, Western blot and reverse transcriptase-PCR techniques were employed. Further, siRNA transfections and inhibitor studies were used to validate the involvement of p53 pathway in calcarea carbonica-induced apoptosis in cancer cells. Results Interestingly, although calcarea carbonica administration to Ehrlich’s ascites carcinoma (EAC)- and Sarcoma-180 (S-180)-bearing Swiss albino mice resulted in 30-35% tumor cell apoptosis, it failed to induce any significant cell death in ex vivo conditions. These results prompted us to examine whether calcarea carbonica employs the immuno-modulatory circuit in asserting its anti-tumor effects. Calcarea carbonica prevented tumor-induced loss of effector T cell repertoire, reversed type-2 cytokine bias and attenuated tumor-induced inhibition of T cell proliferation in tumor-bearing host. To confirm the role of immune system in calcarea carbonica-induced cancer cell death, a battery of cancer cells were co-cultured with calcarea carbonica-primed T cells. Our results indicated a "two-step" mechanism of the induction of apoptosis in tumor cells by calcarea carbonica i.e., (1) activation of the immune system of the host; and (2) induction of cancer cell apoptosis via immuno-modulatory circuit in p53-dependent manner by down-regulating Bcl-2:Bax ratio. Bax up-regulation resulted in

  13. Phenylhydroquinone induces loss of thymocytes through cell cycle arrest and apoptosis elevation in p53-dependent pathway.

    PubMed

    Nakata, Yuichiro; Nishi, Kosuke; Nishimoto, Sogo; Sugahara, Takuya

    2013-01-01

    ortho-Phenylphenol has been employed in post-harvest treatment of citrus fruits. Although o-phenylphenol has been reported to cause carcinomas in the urinary tract in rats, toxicity to the immune organs is still unknown. Herein, we report that administration of o-phenylphenol induces thymic atrophy and loss of thymocytes in female BALB/c mice. The influence seems to result from inhibition of the thymocyte development, because increased and decreased populations of the CD4⁻ CD8⁻ double-negative and CD4⁺ CD8⁺ double-positive thymocytes were observed in the o-phenylphenol-administered mice, respectively. ortho-Phenylphenol is metabolized to phenylhydroquinone by cytochrome P450 monooxygenases. Phenylhydroquinone made cell cycle of thymocytes to be arrested through reduced expression of the genes associated with G₂/M phase and through phosphorylation of p53 at Ser15. Phosphorylation of p53 at Ser15 was upregulated by activation of not only ATR but also Erk1/2 and p38, leading to increase of apoptosis. Gene expression of cytochrome P450 1A1 (CYP1A1) was promoted in thymocytes from the o-phenylphenol-administered mice. Overall, our results suggest that o-phenylphenol induces CYP1A1 expression and is metabolized into phenylhydroquinone by the expressed CYP1A1 in thymocytes. The produced phenylhydroquinone in turn induces inhibition of thymocyte development through cell cycle arrest and apoptosis in the p53-dependent pathway.

  14. Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549.

    PubMed

    Yamauchi, Rieko; Sasaki, Kaori; Yoshida, Kenichi

    2009-08-01

    The effects of green tea polyphenols on cultured cancer cells have been well characterized, especially the effects of epigallocatechin-3-gallate (EGCg), since EGCg suppresses oncogenic signaling pathways and induces cell cycle arrest or apoptosis by regulating cell cycle-associated proteins. In the present study, we attempted to identify signaling pathways or target molecules regulated by each of or a mixture of green tea polyphenols, including epicatechin (EC), epicatechin-3-gallate (ECg), epigallocatechin (EGC), and EGCg, in the human lung cancer cell line A549. ECg, EGC, and a catechin mixture, in addition to EGCg, significantly decreased cell viability. In contrast, caspase 3/7 activity, an apoptosis indicator, was specifically induced by EGCg. By conducting a series of luciferase-based reporter assays, we revealed that the catechin mixture only up-regulates the p53 reporter. EGCg was a more potent inducer of p53-dependent transcription, and this induction was further supported by the induced level of p53 protein. RNA interference (RNAi)-mediated p53 knockdown completely abolished EGCg-induced apoptosis. Finally, a proteome and western blot analysis using approximately 70 different antibodies failed to detect up-regulated proteins in catechin mixture-treated A549 cells. Taken together, these results indicate that EGCg, among several green tea polyphenols, is a potent apoptosis inducer that functions exclusively through a p53-dependent pathway in A549 cells.

  15. Aciculatin Induces p53-Dependent Apoptosis via MDM2 Depletion in Human Cancer Cells In Vitro and In Vivo

    PubMed Central

    Lai, Chin-Yu; Tsai, An-Chi; Chen, Mei-Chuan; Chang, Li-Hsun; Sun, Hui-Lung; Chang, Ya-Ling; Chen, Chien-Chih

    2012-01-01

    Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (−/−) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity. PMID:22912688

  16. Green Tea Polyphenols Induce p53-Dependent and p53-Independent Apoptosis in Prostate Cancer Cells through Two Distinct Mechanisms

    PubMed Central

    Gupta, Karishma; Thakur, Vijay S.; Bhaskaran, Natarajan; Nawab, Akbar; Babcook, Melissa A.; Jackson, Mark W.; Gupta, Sanjay

    2012-01-01

    Inactivation of the tumor suppressor gene p53 is commonly observed in human prostate cancer and is associated with therapeutic resistance. We have previously demonstrated that green tea polyphenols (GTP) induce apoptosis in prostate cancer cells irrespective of p53 status. However, the molecular mechanisms underlying these observations remain elusive. Here we investigated the mechanisms of GTP-induced apoptosis in human prostate cancer LNCaP cells stably-transfected with short hairpin-RNA against p53 (LNCaPshp53) and control vector (LNCaPshV). GTP treatment induced p53 stabilization and activation of downstream targets p21/waf1 and Bax in a dose-dependent manner specifically in LNCaPshV cells. However, GTP-induced FAS upregulation through activation of c-jun-N-terminal kinase resulted in FADD phosphorylation, caspase-8 activation and truncation of BID, leading to apoptosis in both LNCaPshV and LNCaPshp53 cells. In parallel, treatment of cells with GTP resulted in inhibition of survival pathway, mediated by Akt deactivation and loss of BAD phosphorylation more prominently in LNCaPshp53 cells. These distinct routes of cell death converged to a common pathway, leading to loss of mitochondrial transmembrane potential, cytochrome c release and activation of terminal caspases, resulting in PARP-cleavage. GTP-induced apoptosis was attenuated with JNK inhibitor, SP600125 in both cell lines; whereas PI3K-Akt inhibitor, LY294002 resulted in increased cell death prominently in LNCaPshp53 cells, establishing the role of two distinct pathways of GTP-mediated apoptosis. Furthermore, GTP exposure resulted in inhibition of class I HDAC protein, accumulation of acetylated histone-H3 in total cellular chromatin, resulting in increased accessibility of transcription factors to bind with the promoter sequences of p21/waf1 and Bax, regardless of the p53 status of cells, consistent with effects elicited by an HDAC inhibitor, trichostatin A. These results demonstrate that GTP induces

  17. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells.

    PubMed

    Choudhury, Sreetama; Ghosh, Sayan; Mukherjee, Sudeshna; Gupta, Payal; Bhattacharya, Saurav; Adhikary, Arghya; Chattopadhyay, Sreya

    2016-12-01

    Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols.

  18. Exogenous IL-1Ra attenuates intestinal mucositis induced by oxaliplatin and 5-fluorouracil through suppression of p53-dependent apoptosis.

    PubMed

    Wang, Xia; Gao, Jin; Qian, Lan; Gao, Jing; Zhu, Shunying; Wu, Mingyuan; Zhang, Yang; Guan, Wen; Ye, Hao; Yu, Yan; Han, Wei

    2015-01-01

    Chemotherapy-induced intestinal mucositis (CIM) is a major dose-limiting side effect of many chemoagents, resulting in weight loss, diarrhea, and even death. The current treatments for CIM are palliative and have limited benefit. Interleukin-1 receptor antagonist is a natural antagonist of interleukin-1. Our previous studies showed the protective effect of recombinant human interleukin-1 receptor antagonist (rhIL-1Ra) on the intestine in mice after 5-fluorouracil chemotherapy. In this study, we further evaluated rhIL-1Ra in the treatment of CIM induced by different chemoagents and their combination. Normal as well as tumor-bearing mice were administered oxaliplatin (L-OHP), 5-fluorouracil, or their combination to induce intestinal mucositis and mortality. rhIL-1Ra administered after the chemotherapy, but not after the onset of diarrhea, significantly improved mouse survival, attenuated body weight loss, and reduced the incidence, severity, and duration of diarrhea. Histological examination showed that rhIL-1Ra-treated mice had a relatively intact mucosa structure, more proliferating crypt cells, and higher acid mucin content than the vehicle-treated mice. rhIL-1Ra suppressed crypt apoptosis by reducing the levels of proapoptotic proteins in wild-type, but not in IL-1RI or p53 mice. In addition, rhIL-1Ra was as effective as octreotide acetate in the treatment of chemotherapy-induced diarrhea, but with the advantage of reducing the epithelial apoptosis, the major cause of CIM. Importantly, the tumor sensitivity to chemotherapy was not affected by rhIL-1Ra. Thus, our data strongly suggest that rhIL-1Ra may be useful for the treatment of intestinal mucositis and improving the quality of life for cancer patients on chemotherapy.

  19. Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model.

    PubMed

    Martínez-Morentin, Leticia; Martínez, Lidia; Piloto, Sarah; Yang, Hua; Schon, Eric A; Garesse, Rafael; Bodmer, Rolf; Ocorr, Karen; Cervera, Margarita; Arredondo, Juan J

    2015-07-01

    The heart is a muscle with high energy demands. Hence, most patients with mitochondrial disease produced by defects in the oxidative phosphorylation (OXPHOS) system are susceptible to cardiac involvement. The presentation of mitochondrial cardiomyopathy includes hypertrophic, dilated and left ventricular noncompaction, but the molecular mechanisms involved in cardiac impairment are unknown. One of the most frequent OXPHOS defects in humans frequently associated with cardiomyopathy is cytochrome c oxidase (COX) deficiency caused by mutations in COX assembly factors such as Sco1 and Sco2. To investigate the molecular mechanisms that underlie the cardiomyopathy associated with Sco deficiency, we have heart specifically interfered scox expression, the single Drosophila Sco orthologue. Cardiac-specific knockdown of scox reduces fly lifespan, and it severely compromises heart function and structure, producing dilated cardiomyopathy. Cardiomyocytes with low levels of scox have a significant reduction in COX activity and they undergo a metabolic switch from OXPHOS to glycolysis, mimicking the clinical features found in patients harbouring Sco mutations. The major cardiac defects observed are produced by a significant increase in apoptosis, which is dp53-dependent. Genetic and molecular evidence strongly suggest that dp53 is directly involved in the development of the cardiomyopathy induced by scox deficiency. Remarkably, apoptosis is enhanced in the muscle and liver of Sco2 knock-out mice, clearly suggesting that cell death is a key feature of the COX deficiencies produced by mutations in Sco genes in humans.

  20. Epothilones Suppress Neointimal Thickening in the Rat Carotid Balloon-Injury Model by Inducing Vascular Smooth Muscle Cell Apoptosis through p53-Dependent Signaling Pathway

    PubMed Central

    Son, Dong Ju; Jung, Jae Chul; Hong, Jin Tae

    2016-01-01

    Microtubule stabilizing agents (MTSA) are known to inhibit vascular smooth muscle cell (VSMC) proliferation and migration, and effectively reduce neointimal hyperplasia and restenosis. Epothilones (EPOs), non-taxane MTSA, have been found to be effective in the inhibition of VSMC proliferation and neointimal formation by cell cycle arrest. However, effect of EPOs on apoptosis in hyper-proliferated VSMCs as a possible way to reduce neointimal formation and its action mechanism related to VSMC viability has not been suited yet. Thus, the purposes of the present study was to investigate whether EPOs are able to inhibit neointimal formation by inducing apoptosis within the region of neointimal hyperplasia in balloon-injured rat carotid artery, as well as underlying action mechanism. Treatment of EPO-B and EPO-D significantly induced apoptotic cell death and mitotic catastrophe in hyper-proliferated VSMCs, resulting in cell growth inhibition. Further, EPOs significantly suppressed VSMC proliferation and induced apoptosis by activation of p53-dependent apoptotic signaling pathway, Bax/cytochrome c/caspase-3. We further demonstrated that the local treatment of carotid arteries with EPOs potently inhibited neointimal lesion formation by induction of apoptosis in rat carotid injury model. Our findings demonstrate a potent anti-neointimal hyperplasia property of EPOs by inducing p53-depedent apoptosis in hyper-proliferated VSMCs. PMID:27218463

  1. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    SciTech Connect

    Li, Lin; Yue, Grace G.L.; Lau, Clara B.S.; Sun, Handong; Fung, Kwok Pui; Leung, Ping Chung; Han, Quanbin; Leung, Po Sing

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  2. Chaetoglobosin K induces apoptosis and G2 cell cycle arrest through p53-dependent pathway in cisplatin-resistant ovarian cancer cells.

    PubMed

    Li, Bo; Gao, Ying; Rankin, Gary O; Rojanasakul, Yon; Cutler, Stephen J; Tu, Youying; Chen, Yi Charlie

    2015-01-28

    Adverse side effects and acquired resistance to conventional platinum based chemotherapy have become major impediments in ovarian cancer treatment, and drive the development of more selective anticancer drugs. Chaetoglobosin K (ChK) was shown to have a more potent growth inhibitory effect than cisplatin on two cisplatin-resistant ovarian cancer cell lines, OVCAR-3 and A2780/CP70, and was less cytotoxic to a normal ovarian cell line, IOSE-364, than to the cancer cell lines. Hoechst 33342 staining and Flow cytometry analysis indicated that ChK induced preferential apoptosis and G2 cell cycle arrest in both ovarian cancer cells with respect to the normal ovarian cells. ChK induced apoptosis through a p53-dependent caspase-8 activation extrinsic pathway, and caused G2 cell cycle arrest via cyclin B1 by increasing p53 expression and p38 phosphorylation in OVCAR-3 and A2780/CP70 cells. DR5 and p21 might play an important role in determining the sensitivity of normal and malignant ovarian cells to ChK. Based on these results, ChK would be a potential compound for treating platinum-resistant ovarian cancer.

  3. An anthraquinone derivative from Luffa acutangula induces apoptosis in human lung cancer cell line NCI-H460 through p53-dependent pathway.

    PubMed

    Vanajothi, Ramar; Srinivasan, Pappu

    2016-01-01

    The current study was designed to evaluate the in vitro antiproliferative activity of 1,8-dihydroxy-4-methylanthracene-9,10-dione (DHMA) isolated from the Luffa acutangula against human non-small cell lung cancer cell line (NCI-H460). Induction of apoptosis and reactive oxygen species (ROS) generation was determined through fluorescence microscopic technique. Quantitative real-time PCR and western blotting analysis was carried out to detect the expression of pro-apoptotic (p53, p21, caspase-3, Bax, GADD45A, and ATM) and anti-apoptotic (NF-κB) proteins in NCI-H460 cell line. In silico studies also performed to predict the binding mechanism of DHMA with MDM2-p53 protein. The DHMA inhibited the cell viability of NCI-H460 cells in a dose-dependent manner with an IC(50) of about 50 µg/ml. It significantly reduced cell viability correlated with induction of apoptosis, which was associated with ROS generation. The apoptotic cell death was further confirmed through dual staining and DNA fragmentation assay. DHMA significantly increased the expression of anti-apoptotic protein such as p53, p21, Bax, and caspase-3 but downregulated the expression of NF-κB in NCI-H460 cell line. In silico studies demonstrate that DHMA formed hydrogen bond interaction with key residues Trp26, Phe55 and Lys24 by which it disrupt the binding of p53 with MDM2 receptor. These findings suggested that DHMA induces apoptosis in NCI-H460 via a p53-dependent pathway. This the first study on cytotoxic and apoptosis inducing activity of DHMA from L. acutangula against NCI-H460 cell line. Therefore, DHMA has therapeutic potential for lung cancer treatment.

  4. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells.

    PubMed

    Zhang, Zhiyu; Wang, Chong-Zhi; Du, Guang-Jian; Qi, Lian-Wen; Calway, Tyler; He, Tong-Chuan; Du, Wei; Yuan, Chun-Su

    2013-07-01

    Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cyto-metry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45α as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer.

  5. BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner.

    PubMed

    Zhang, Wenwen; Luo, Jiayan; Chen, Fengxia; Yang, Fang; Song, Wei; Zhu, Aiyu; Guan, Xiaoxiang

    2015-04-10

    BRCA1 plays a key role in the regulation of p53-dependent target gene transcription activation. Meanwhile, the p53 inducible gene 3 (PIG3) is a downstream target of p53 and is involved in p53-initiated apoptosis. However, little is known about whether BRCA1 can regulate PIG3-mediated apoptosis. Using a tissue microarray containing 149 breast cancer patient samples, we found that BRCA1 and PIG3 expression status were significantly positively correlated (r = 0.678, P < 0.001) and identified a significant positive correlation between high expression of BRCA1 and/or PIG3 and overall survival (OS). Moreover, we reveal that overexpression of BRCA1 significantly increased expression of PIG3 in cells with intact p53, whereas no increase in PIG3 was observed in p53-null MDA-MB-157 cells and p53-depleted HCT116p53-/- cells. Meanwhile, ectopic expression of BRCA1 could not lead to an increase expression level of prohibitin (PHB), which we have previously identified to induce PIG3-mediated apoptosis. Finally, ChIP analysis revealed that PHB can bind to the PIG3 promoter and activate PIG3 transcription independent of p53, although p53 presence did enhance this process. Taken together, our findings suggest that BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner, and that PIG3 expression is associated with a better OS in breast cancer patients.

  6. Brahma-related gene 1 induces apoptosis in a p53-dependent manner in human rheumatoid fibroblast-like synoviocyte MH7A

    PubMed Central

    Hou, Hongli; Xing, Weipeng; Li, Wuyin

    2016-01-01

    Abstract Blocked apoptosis and aggressive inflammatory responses occur in fibroblast-like synoviocyte (FLS) of rheumatoid arthritis (RA) patients. Although Brahma-related gene 1 (BRG1) is considered as a tumor suppressor, few research covers its role in RA. This study aims to reveal effects and potential mechanisms of BRG1 in human FLS cell line MH7A. BRG1 expression in MH7A cells was altered by transfection of overexpression vectors or short hairpin RNAs (shRNAs). Cell viability and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry after transfection. Factors involved in inflammation and apoptosis were quantified by qPCR and Western blot. The interaction between BRG1 and p53 was assessed by immunoprecipitation (IP). Results showed that BRG1 overexpression significantly suppressed MH7A cell viability and induced apoptosis (P < 0.01), and its knockdown had opposite effects. BRG1 reduced mRNA levels of matrix metallopeptidase 3, TIMP metallopeptidase inhibitor 2, cyclooxygenase 2, and interleukin 6, implying its suppressive effects on inflammation. BRG1 interacted with and promoted p53 (P < 0.05). B-cell chronic lymphocytic leukemia/lymphoma 2 was suppressed (P < 0.05), while cytochrome c, caspase 3 (CASP3) and CASP9 were activated (P < 0.01) by BRG1. However, the regulation on these factors was abrogated by p53 knockdown (P < 0.01). These findings suggest that BRG1 may induce apoptosis and suppress inflammation in MH7A cells. Potential functional mechanisms involve the regulation of apoptotic factors by BRG1, which may depend on the recruitment and promotion of p53. This study provides the essential proof for applying BRG1 to the molecular therapy of RA. PMID:28002318

  7. Knockdown of FAM3B triggers cell apoptosis through p53-dependent pathway.

    PubMed

    Mou, Haiwei; Li, Zongmeng; Yao, Pengle; Zhuo, Shu; Luan, Wei; Deng, Bo; Qian, Lihua; Yang, Mengmei; Mei, Hong; Le, Yingying

    2013-03-01

    FAM3B, also named PANDER, is a cytokine-like protein identified in 2002. Previous studies showed that FAM3B regulates glucose and lipid metabolism through interaction with liver and endocrine pancreas. FAM3B is also expressed by other tissues but its basic function is unclear. In this study, we found that FAM3B was expressed in mouse colon, intestine, liver and lung tissues and multiple types of cell lines, including murine pancreatic β-cell (Min6), microglia (N9) and muscle cell (C2C12); human colon cancer cells (HCT8, HCT116, HT29), hepatocyte (HL-7702), hepatocellular carcinoma cell (SMMC-7721) and lung carcinoma cell (A549). Inhibition of FAM3B expression by RNA interference induced apoptotic cell death of HCT8, HCT116, A549, N9, C2C12 and Min6 cells and decreased cell viability of HL-7702 and murine primary hepatocytes. Further studies with HCT8 cells showed that knockdown of FAM3B increased the protein levels of membrane-bound Fas and Bax, reduced the expression of Bcl-2, promoted the cleavage of caspases-8, -3, -9 and PARP, and the nuclear translocation of cleaved PARP. These results suggest that FAM3B silencing activates both extrinsic and intrinsic apoptotic pathways. Mechanistic studies showed that neutralizing antibody against Fas or silencing Fas-associated death domain had no effect on, while caspase inhibitors could significantly reverse FAM3B knockdown induced apoptosis, suggesting Fas and death receptor mediated extrinsic apoptotic pathway is not involved in FAM3B silencing induced apoptosis. Further studies showed that p53 was significantly upregulated after FAM3B knockdown. Silencing p53 could almost completely reverse FAM3B knockdown induced upregulation of Bax, downregulation of Bcl-2, cleavage of caspases-8, -9, -3, and apoptotic cell death, suggesting p53-dependent pathway plays critical roles in FAM3B silencing induced apoptosis. Studies with HCT116 cells confirmed that inhibition of FAM3B expression induced apoptosis through p53-dependent

  8. p18(Hamlet) mediates different p53-dependent responses to DNA-damage inducing agents.

    PubMed

    Lafarga, Vanesa; Cuadrado, Ana; Nebreda, Angel R

    2007-10-01

    Cells organize appropriate responses to environmental cues by activating specific signaling networks. Two proteins that play key roles in coordinating stress responses are the kinase p38alpha (MAPK14) and the transcription factor p53 (TP53). Depending on the nature and the extent of the stress-induced damage, cells may respond by arresting the cell cycle or by undergoing cell death, and these responses are usually associated with the phosphorylation of particular substrates by p38alpha as well as the activation of specific target genes by p53. We recently characterized a new p38alpha substrate, named p18(Hamlet) (ZNHIT1), which mediates p53-dependent responses to different genotoxic stresses. Thus, cisplatin or UV light induce stabilization of the p18(Hamlet) protein, which then enhances the ability of p53 to bind to and activate the promoters of pro-apoptotic genes such as NOXA and PUMA leading to apoptosis induction. In a similar way, we report here that p18(Hamlet) can also mediate the cell cycle arrest induced in response to gamma-irradiation, by participating in the p53-dependent upregulation of the cell cycle inhibitor p21(Cip1) (CDKN1A).

  9. 2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism.

    PubMed

    Shahin, Saba; Banerjee, Somanshu; Singh, Surya Pal; Chaturvedi, Chandra Mohini

    2015-12-01

    A close association between microwave (MW) radiation exposure and neurobehavioral disorders has been postulated but the direct effects of MW radiation on central nervous system still remains contradictory. This study was performed to understand the effect of short (15 days) and long-term (30 and 60 days) low-level MW radiation exposure on hippocampus with special reference to spatial learning and memory and its underlying mechanism in Swiss strain male mice, Mus musculus. Twelve-weeks old mice were exposed to 2.45 GHz MW radiation (continuous-wave [CW] with overall average power density of 0.0248 mW/cm(2) and overall average whole body specific absorption rate value of 0.0146 W/Kg) for 2 h/day over a period of 15, 30, and 60 days). Spatial learning and memory was monitored by Morris Water Maze. We have checked the alterations in hippocampal oxidative/nitrosative stress, neuronal morphology, and expression of pro-apoptotic proteins (p53 and Bax), inactive executioner Caspase- (pro-Caspase-3), and uncleaved Poly (ADP-ribose) polymerase-1 in the hippocampal subfield neuronal and nonneuronal cells (DG, CA1, CA2, and CA3). We observed that, short-term as well as long-term 2.45 GHz MW radiation exposure increases the oxidative/nitrosative stress leading to enhanced apoptosis in hippocampal subfield neuronal and nonneuronal cells. Present findings also suggest that learning and spatial memory deficit which increases with the increased duration of MW exposure (15 < 30 < 60 days) is correlated with a decrease in hippocampal subfield neuronal arborization and dendritic spines. These findings led us to conclude that exposure to CW MW radiation leads to oxidative/nitrosative stress induced p53-dependent/independent activation of hippocampal neuronal and nonneuronal apoptosis associated with spatial memory loss.

  10. Low Dose Radiation Hypersensitivity is Caused by p53-dependent Apoptosis

    SciTech Connect

    Enns, L; Bogen, K; Wizniak, J; Murtha, A; Weinfeld, M

    2004-04-08

    Exposure to environmental radiation and the application of new clinical modalities, such as radioimmunotherapy, have heightened the need to understand cellular responses to low dose and low-dose rate ionizing radiation. Many tumor cell lines have been observed to exhibit a hypersensitivity to radiation doses below 50 cGy, which manifests as a significant deviation from the clonogenic survival response predicted by a linear-quadratic fit to higher doses. However, the underlying processes for this phenomenon remain unclear. Using a gel microdrop/flow cytometry assay to monitor single cell proliferation at early times post irradiation, we examined the response of human A549 lung carcinoma, T98G glioma and MCF7 breast carcinoma cell lines exposed to gamma radiation doses from 0 to 200 cGy delivered at 0.18 and 22 cGy/min. The A549 and T98G cells, but not MCF7 cells, showed the marked hypersensitivity at doses <50 cGy. To further characterize the low-dose hypersensitivity, we examined the influence of low-dose radiation on cell cycle status and apoptosis by assays for active caspase-3 and phosphatidylserine translocation (annexin-V binding). We observed that caspase-3 activation and annexin-V binding mirrored the proliferation curves for the cell lines. Furthermore, the low-dose hypersensitivity and annexin-V binding to irradiated A549 and T98G cells were eliminated by treating the cells with pifithrin, an inhibitor of p53. When p53-inactive cell lines (2800T skin fibroblasts and HCT116 colorectal carcinoma cells) were examined for similar patterns, we found that there was no HRS and apoptosis was not detectable by annexin-V or caspase-3 assays. Our data therefore suggest that low-dose hypersensitivity is associated with p53-dependent apoptosis.

  11. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    PubMed Central

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  12. MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes.

    PubMed

    Lagunas-Martínez, Alfredo; García-Villa, Enrique; Arellano-Gaytán, Magaly; Contreras-Ochoa, Carla O; Dimas-González, Jisela; López-Arellano, María E; Madrid-Marina, Vicente; Gariglio, Patricio

    2017-01-01

    The E6 oncoprotein can interfere with the ability of infected cells to undergo programmed cell death through the proteolytic degradation of proapoptotic proteins such as p53, employing the proteasome pathway. Therefore, inactivation of the proteasome through MG132 should restore the activity of several proapoptotic proteins. We investigated whether in HPV16 E6-expressing keratinocytes (KE6 cells), the restoration of p53 levels mediated by MG132 and/or activation of the CD95 pathway through apoptosis antigen-1 (APO-1) antibody are responsible for the induction of apoptosis. We found that KE6 cells underwent apoptosis mainly after incubation for 24 h with MG132 alone or APO-1 plus MG132. Both treatments activated the extrinsic and intrinsic apoptosis pathways. Autophagy was also activated, principally by APO-1 plus MG132. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in the elevation of p53 protein levels and its phosphorylation in Ser46 and Ser20; the p53 protein was localized mainly at nucleus after treatment with MG132 or APO-1 plus MG132. In addition, induction of its transcriptional target genes such as p21, Bax and TP53INP was observed 3 and 6 h after treatment. Also, LC3 mRNA was induced after 3 and 6 h, which correlates with lipidation of LC3B protein and induction of autophagy. Finally, using pifithrin alpha we observed a decrease in apoptosis induced by MG132, and by APO-1 plus MG132, suggesting that restoration of APO-1 sensitivity occurs in part through an increase in both the levels and the activity of p53. The use of small molecules to inhibit the proteasome pathway might permit the activation of cell death, providing new opportunities for CC treatment.

  13. FGF1 nuclear translocation is required for both its neurotrophic activity and its p53-dependent apoptosis protection.

    PubMed

    Rodriguez-Enfedaque, Aida; Bouleau, Sylvina; Laurent, Maryvonne; Courtois, Yves; Mignotte, Bernard; Vayssière, Jean-Luc; Renaud, Flore

    2009-11-01

    Fibroblast growth factor 1 (FGF1) is a differentiation and survival factor for neuronal cells both in vitro and in vivo. FGF1 activities can be mediated not only by paracrine and autocrine pathways involving FGF receptors but also by an intracrine pathway, which is an underestimated mode of action. Indeed, FGF1 lacks a secretion signal peptide and contains a nuclear localization sequence (NLS), which is consistent with its usual intracellular and nuclear localization. To progress in the comprehension of the FGF1 intracrine pathway in neuronal cells, we examined the role of the nuclear translocation of FGF1 for its neurotrophic activity as well as for its protective activity against p53-dependent apoptosis. Thus, we have transfected PC12 cells with different FGF1 expression vectors encoding wild type or mutant (Delta NLS) FGF1. This deletion inhibited both FGF1 nuclear translocation and FGF1 neurotrophic activity (including differentiation and serum-free cell survival). We also show that endogenous FGF1 protection of PC12 cells against p53-dependent cell death requires FGF1 nuclear translocation. Strikingly, wild type FGF1 is found interacting with p53, in contrast to the mutant FGF1 deleted of its NLS, suggesting the presence of direct and/or indirect interactions between FGF1 and p53 pathways. Thus, we present evidences that FGF1 may act by a nuclear pathway to induce neuronal differentiation and to protect the cells from apoptosis whether cell death is induced by serum depletion or p53 activation.

  14. Novel p53-dependent anticancer strategy by targeting iron signaling and BNIP3L-induced mitophagy

    PubMed Central

    Wilfinger, Nastasia; Austin, Shane; Scheiber-Mojdehkar, Barbara; Berger, Walter; Reipert, Siegfried; Praschberger, Monika; Paur, Jakob; Trondl, Robert; Keppler, Bernhard K.; Zielinski, Christoph C.; Nowikovsky, Karin

    2016-01-01

    This study identifies BNIP3L as the key regulator of p53-dependent cell death mechanism in colon cancer cells targeted by the novel gallium based anticancer drug, KP46. KP46 specifically accumulated into mitochondria where it caused p53-dependent morphological and functional damage impairing mitochondrial dynamics and bioenergetics. Furthermore, competing with iron for cellular uptake, KP46 lowered the intracellular labile iron pools and intracellular heme. Accordingly, p53 accumulated in the nucleus where it activated its transcriptional target BNIP3L, a BH3 only domain protein with functions in apoptosis and mitophagy. Upregulated BNIP3L sensitized the mitochondrial permeability transition and strongly induced PARKIN-mediated mitochondrial clearance and cellular vacuolization. Downregulation of BNIP3L entirely rescued cell viability caused by exposure of KP46 for 24 hours, confirming that early induced cell death was regulated by BNIP3L. Altogether, targeting BNIP3L in wild-type p53 colon cancer cells is a novel anticancer strategy activating iron depletion signaling and the mitophagy-related cell death pathway. PMID:26517689

  15. Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation

    PubMed Central

    Wang, Xinwei; Wei, Liang; Cramer, Julie M.; Leibowitz, Brian J.; Judge, Colleen; Epperly, Michael; Greenberger, Joel; Wang, Fengchao; Li, Linheng; Stelzner, Matthias G.; Dunn, James C. Y.; Martin, Martin G.; Lagasse, Eric; Zhang, Lin; Yu, Jian

    2015-01-01

    Exposure to high levels of ionizing radiation (IR) leads to debilitating and dose-limiting gastrointestinal (GI) toxicity. Using three-dimensional mouse crypt culture, we demonstrated that p53 target PUMA mediates radiation-induced apoptosis via a cell-intrinsic mechanism, and identified the GSK-3 inhibitor CHIR99021 as a potent radioprotector. CHIR99021 treatment improved Lgr5+ cell survival and crypt regeneration after radiation in culture and mice. CHIR99021 treatment specifically blocked apoptosis and PUMA induction and K120 acetylation of p53 mediated by acetyl-transferase Tip60, while it had no effect on p53 stabilization, phosphorylation or p21 induction. CHIR99021 also protected human intestinal cultures from radiation by PUMA but not p21 suppression. These results demonstrate that p53 posttranslational modifications play a key role in the pathological and apoptotic response of the intestinal stem cells to radiation and can be targeted pharmacologically. PMID:25858503

  16. Ubiquitin-specific protease 2 decreases p53-dependent apoptosis in cutaneous T-cell lymphoma.

    PubMed

    Wei, Tianling; Biskup, Edyta; Gjerdrum, Lise Mette Rahbek; Niazi, Omid; Ødum, Niels; Gniadecki, Robert

    2016-07-26

    Treatment of advanced cutaneous T-cell lymphomas (CTCL) is challenging because they are resistant to conventional chemotherapy. USP2 has been shown to promote resistance to chemotherapeutic agents in several cancer models.We show here USP2 is expressed in quiescent and activated T-cells and its expression is 50% lower in CTCL cell lines (MyLa2000, SeAx and Hut-78) than in normal T-cells. USP2 is expressed in neoplastic cells in early, plaque-stage mycosis fungoides (MF) and is downregulated in advanced tumor stages. Upon treatment with psoralen with UVA (PUVA) or a p53 activator, nutlin3a, USP2 expression is significantly increased in MyLa2000 (p53wt/wt), but not in SeAx (p53mut) or Hut-78 (p53-/-). USP2 knockdown decreases MyLa2000 cell viability after PUVA by 50% but not Hut-78, suggesting that the function of USP2 in CTCL cells is p53-dependent. Furthermore, USP2 knockdown results in a decreased Mdm2 expression and upregulation of p53. Taken together, our findings suggest that USP2 stabilizes Mdm2 which antagonizes pro-apoptotic activity of p53 and possibly contributes to therapeutic resistance in CTCL.

  17. Ubiquitin-specific protease 2 decreases p53-dependent apoptosis in cutaneous T-cell lymphoma

    PubMed Central

    Wei, Tianling; Biskup, Edyta; Rahbek Gjerdrum, Lise Mette; Niazi, Omid; Ødum, Niels; Gniadecki, Robert

    2016-01-01

    Treatment of advanced cutaneous T-cell lymphomas (CTCL) is challenging because they are resistant to conventional chemotherapy. USP2 has been shown to promote resistance to chemotherapeutic agents in several cancer models. We show here USP2 is expressed in quiescent and activated T-cells and its expression is 50% lower in CTCL cell lines (MyLa2000, SeAx and Hut-78) than in normal T-cells. USP2 is expressed in neoplastic cells in early, plaque-stage mycosis fungoides (MF) and is downregulated in advanced tumor stages. Upon treatment with psoralen with UVA (PUVA) or a p53 activator, nutlin3a, USP2 expression is significantly increased in MyLa2000 (p53wt/wt), but not in SeAx (p53mut) or Hut-78 (p53−/−). USP2 knockdown decreases MyLa2000 cell viability after PUVA by 50% but not Hut-78, suggesting that the function of USP2 in CTCL cells is p53-dependent. Furthermore, USP2 knockdown results in a decreased Mdm2 expression and upregulation of p53. Taken together, our findings suggest that USP2 stabilizes Mdm2 which antagonizes pro-apoptotic activity of p53 and possibly contributes to therapeutic resistance in CTCL. PMID:27351221

  18. Macrophage Migration Inhibitory Factor Activates Hypoxia-Inducible Factor in a p53-Dependent Manner

    PubMed Central

    Oda, Seiko; Oda, Tomoyuki; Nishi, Kenichiro; Takabuchi, Satoshi; Wakamatsu, Takuhiko; Tanaka, Tomoharu; Adachi, Takehiko; Fukuda, Kazuhiko; Semenza, Gregg L.; Hirota, Kiichi

    2008-01-01

    Background Macrophage migration inhibitory factor (MIF) is not only a cytokine which has a critical role in several inflammatory conditions but also has endocrine and enzymatic functions. MIF is identified as an intracellular signaling molecule and is implicated in the process of tumor progression, and also strongly enhances neovascularization. Overexpression of MIF has been observed in tumors from various organs. MIF is one of the genes induced by hypoxia in an hypoxia-inducible factor 1 (HIF-1)-dependent manner. Methods/Principal Findings The effect of MIF on HIF-1 activity was investigated in human breast cancer MCF-7 and MDA-MB-231 cells, and osteosarcoma Saos-2 cells. We demonstrate that intracellular overexpression or extracellular administration of MIF enhances activation of HIF-1 under hypoxic conditions in MCF-7 cells. Mutagenesis analysis of MIF and knockdown of 53 demonstrates that the activation is not dependent on redox activity of MIF but on wild-type p53. We also indicate that the MIF receptor CD74 is involved in HIF-1 activation by MIF at least when MIF is administrated extracellularly. Conclusion/Significance MIF regulates HIF-1 activity in a p53-dependent manner. In addition to MIF's potent effects on the immune system, MIF is linked to fundamental processes conferring cell proliferation, cell survival, angiogenesis, and tumor invasiveness. This functional interdependence between MIF and HIF-1α protein stabilization and transactivation activity provide a molecular mechanism for promotion of tumorigenesis by MIF. PMID:18493321

  19. Actvation of NF-kappaB by the API2/MALT1 fusions inhibits p53 dependant but not FAS induced apoptosis: a directional link between NF-kappaB and p53.

    PubMed

    Stoffel, Archontoula; Levine, Arnold J

    2004-08-01

    Interactions between survival pathways and apoptotic cascades play a determinant role in the maintenance of neoplastic clone proliferation and impaired response to apoptosis. Recently, we established a novel interplay between the NF-kappaB survival- and p53 death-pathways in a tumor model system that represents the most common extranodal lymphoid cell neoplasia, MALT (Mucosa Associated Lymphoid Tissue) lymphoma. MALTs are genetically characterized by the t(11;18)(q21;q21) chromosomal translocation that results in API2/MALT1 fusion products. It was shown that distinct API2/MALT1 chimeric proteins function as oncogenes that bilaterally confer a proliferative advantage to the neoplastic clone by activating the NF-kappaB signaling pathway and also inhibiting p53 mediated cell death. Here, we demonstrate that API2/MALT1 mediated inhibition of apoptosis is p53 specific, as distinct API2/MALT1 fusion proteins fail to protect cells from FAS induced cell death. Furthermore, we demonstrate that API2/MALT1 mediated NF-kappaB activation does not alter p53 protein levels or subcellular localization suggesting a post-translational or indirect mechanism of p53 deregulation.

  20. Amphipathic silica nanoparticles induce cytotoxicity through oxidative stress mediated and p53 dependent apoptosis pathway in human liver cell line HL-7702 and rat liver cell line BRL-3A.

    PubMed

    Zuo, Daiying; Duan, Zhenfang; Jia, Yuanyuan; Chu, Tianxue; He, Qiong; Yuan, Juan; Dai, Wei; Li, Zengqiang; Xing, Liguo; Wu, Yingliang

    2016-09-01

    The aim of this study was to evaluate the potential cytotoxicity and the underlying mechanism of amphipathic silica nanoparticles (SiO2 NPs) exposure to human normal liver HL-7702 cells and rat normal liver BRL-3A cells. Prior to the cellular studies, transmission electron microscopy (TEM), dynamic light scattering (DLS), and X ray diffraction (XRD) were used to characterize SiO2 NPs, which proved the amorphous nature of SiO2 NPs with TEM diameter of 19.8±2.7nm. Further studies proved that exposure to SiO2 NPs dose-dependently induced cytotoxicity as revealed by cell counting kit (CCK-8) and lactate dehydrogenase (LDH) assays, with more severe cytotoxicity in HL-7702 cells than BRL-3A cells. Reactive oxygen species (ROS) and glutathione (GSH) assays showed elevated oxidative stress in both cells. Morphological studies by microscopic observation, Hochest 33258 and AO/EB staining indicated significant apoptotic changes after the cells being exposed to SiO2 NPs. Further studies by western blot indicated that SiO2 NPs exposure to both cells up-regulated p53, Bax and cleaved caspase-3 expression and down-regulated Bcl-2 and caspase-3 levels. Activated caspase-3 activity detected by colorimetric assay kit and caspase-3/7 activity detected by fluorescent real-time detection kit were significantly increased by SiO2 NPs exposure. In addition, antioxidant vitamin C significantly attenuated SiO2 NPs-induced caspase-3 activation, which indicated that SiO2 NPs-induced oxidative stress was involved in the process of HL-7702 and BRL-3A cell apoptosis. Taken together, these results suggested that SiO2 NPs-induced cytotoxicity in HL-7702 and BRL-3A cells was through oxidative stress mediated and p53, caspase-3 and Bax/Bcl-2 dependent pathway and HL-7702 cells were more sensitive to SiO2 NPs-induced cytotoxicity than BRL-3A cells.

  1. Calcium and S100B Regulation of p53-Dependent Cell Growth Arrest and Apoptosis

    PubMed Central

    Scotto, Christian; Deloulme, Jean Christophe; Rousseau, Denis; Chambaz, Edmond; Baudier, Jacques

    1998-01-01

    In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5°C). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5°C, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5°C that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32°C). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis. PMID:9632811

  2. Bcl6a function is required during optic cup formation to prevent p53-dependent apoptosis and colobomata.

    PubMed

    Lee, Jiwoon; Lee, Bum-Kyu; Gross, Jeffrey M

    2013-09-01

    Mutations in BCOR (Bcl6 corepressor) are found in patients with oculo-facio-cardio-dental (OFCD) syndrome, a congenital disorder affecting visual system development, and loss-of-function studies in zebrafish and Xenopus demonstrate a role for Bcor during normal optic cup development in preventing colobomata. The mechanism whereby BCOR functions during eye development to prevent colobomata is not known, but in other contexts it serves as a transcriptional corepressor that potentiates transcriptional repression by B cell leukemia/lymphoma 6 (BCL6). Here, we have explored the function of the zebrafish ortholog of Bcl6, Bcl6a, during eye development, and our results demonstrate that Bcl6a, like Bcor, is required to prevent colobomata during optic cup formation. Our data demonstrate that Bcl6a acts downstream of Vax1 and Vax2, known regulators of ventral optic cup formation and choroid fissure closure, and that bcl6a is a direct target of Vax2. Together, this regulatory network functions to repress p53 expression and thereby suppress apoptosis in the developing optic cup. Furthermore, our data demonstrate that Bcl6a functions cooperatively with Bcor, Rnf2 and Hdac1 in a common gene regulatory network that acts to repress p53 and prevent colobomata. Together, these data support a model in which p53-dependent apoptosis needs to be tightly regulated for normal optic cup formation and that Bcl6a, Bcor, Rnf2 and Hdac1 activities mediate this regulation.

  3. Chemotherapy-induced Dkk-1 expression by primary human mesenchymal stem cells is p53 dependent.

    PubMed

    Hare, Ian; Evans, Rebecca; Fortney, James; Moses, Blake; Piktel, Debbie; Slone, William; Gibson, Laura F

    2016-10-01

    Mesenchymal stem cells (MSCs) are abundant throughout the body and regulate signaling within tumor microenvironments. Wnt signaling is an extrinsically regulated pathway that has been shown to regulate tumorigenesis in many types of cancer. After evaluating a panel of Wnt activating and inhibiting molecules, we show that primary human MSCs increase the expression of Dkk-1, an inhibitor of Wnt signaling, into the extracellular environment following chemotherapy exposure in a p53-dependent manner. Dkk-1 has been shown to promote tumor growth in several models of malignancy, suggesting that MSC-derived Dkk-1 could counteract the intent of cytotoxic chemotherapy, and that pharmacologic inhibition of Dkk-1 in patients receiving chemotherapy treatment for certain malignancies may be warranted.

  4. Mesothelin regulates growth and apoptosis in pancreatic cancer cells through p53-dependent and -independent signal pathway.

    PubMed

    Zheng, Chunning; Jia, Wei; Tang, Yong; Zhao, HuiLiang; Jiang, Yingsheng; Sun, Shaochuan

    2012-10-03

    of tumor growth under in vivo conditions. However, mesothelin-transfected cells exhibited a increased rate of tumor growth under in vivo conditions. Our data demonstrated that mesothelin promotes proliferation and inhibited apoptosis through p53-dependent pathway in pancreatic cancer cells with wt-p53, and p53-independent pathway in pancreatic cancer cells with mt-p53. Targeting mesothelin by shRNA is the important method for pancreatic cancer therapy.

  5. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest

    PubMed Central

    Shamseddine, A A; Clarke, C J; Carroll, B; Airola, M V; Mohammed, S; Rella, A; Obeid, L M; Hannun, Y A

    2015-01-01

    Neutral sphingomyelinase-2 (nSMase2) is a ceramide-generating enzyme that has been implicated in growth arrest, apoptosis and exosome secretion. Although previous studies have reported transcriptional upregulation of nSMase2 in response to daunorubicin, through Sp1 and Sp3 transcription factors, the role of the DNA damage pathway in regulating nSMase2 remains unclear. In this study, we show that doxorubicin induces a dose-dependent induction of nSMase2 mRNA and protein with concomitant increases in nSMase activity and ceramide levels. Upregulation of nSMase2 was dependent on ATR, Chk1 and p53, thus placing it downstream of the DNA damage pathway. Moreover, overexpression of p53 was sufficient to transcriptionally induce nSMase2, without the need for DNA damage. DNA-binding mutants as well as acetylation mutants of p53 were unable to induce nSMase2, suggesting a role of nSMase2 in growth arrest. Moreover, knockdown of nSMase2 prevented doxorubicin-induced growth arrest. Finally, p53-induced nSMase2 upregulation appears to occur via a novel transcription start site upstream of exon 3. These results identify nSMase2 as a novel p53 target gene, regulated by the DNA damage pathway to induce cell growth arrest. PMID:26512957

  6. Downregulation of Polo-like kinase 1 induces cellular senescence in human primary cells through a p53-dependent pathway.

    PubMed

    Kim, Hee-Jin; Cho, Jung Hee; Kim, Jae-Ryong

    2013-10-01

    Polo-like kinase 1 (PLK1) plays a key role in various stages of mitosis from entry into M phase to exit from mitosis. However, its role in cellular senescence remains to be determined. Therefore, the effects of PLK1 on cellular senescence in human primary cells were investigated. We found that expression of PLK1 decreased in human dermal fibroblasts and human umbilical vein endothelial cells under replicative senescence and premature senescence induced by adriamycin. PLK1 knockdown with PLK1 small interfering RNAs in young cells induced premature senescence. In contrast, upregulation of PLK1 in old cells partially reversed senescence phenotypes. Cellular senescence by PLK1 inhibition was observed in p16 knockdown cells but not in p53 knockdown cells. Our data suggest that PLK1 repression might result in cellular senescence in human primary cells via a p53-dependent pathway.

  7. p53 Dependent Apoptotic Cell Death Induces Embryonic Malformation in Carassius auratus under Chronic Hypoxia

    PubMed Central

    Dasgupta, Subrata; Sawant, Bhawesh T.; Chadha, Narinder K.; Pal, Asim K.

    2014-01-01

    Hypoxia is a global phenomenon affecting recruitment as well as the embryonic development of aquatic fauna. The present study depicts hypoxia induced disruption of the intrinsic pathway of programmed cell death (PCD), leading to embryonic malformation in the goldfish, Carrasius auratus. Constant hypoxia induced the early expression of pro-apoptotic/tumor suppressor p53 and concomitant expression of the cell death molecule, caspase-3, leading to high level of DNA damage and cell death in hypoxic embryos, as compared to normoxic ones. As a result, the former showed delayed 4 and 64 celled stages and a delay in appearance of epiboly stage. Expression of p53 efficiently switched off expression of the anti-apoptotic Bcl-2 during the initial 12 hours post fertilization (hpf) and caused embryonic cell death. However, after 12 hours, simultaneous downregulation of p53 and Caspase-3 and exponential increase of Bcl-2, caused uncontrolled cell proliferation and prevented essential programmed cell death (PCD), ultimately resulting in significant (p<0.05) embryonic malformation up to 144 hpf. Evidences suggest that uncontrolled cell proliferation after 12 hpf may have been due to downregulation of p53 abundance, which in turn has an influence on upregulation of anti-apoptotic Bcl-2. Therefore, we have been able to show for the first time and propose that hypoxia induced downregulation of p53 beyond 12 hpf, disrupts PCD and leads to failure in normal differentiation, causing malformation in gold fish embryos. PMID:25068954

  8. HZE particle radiation induces tissue-specific and p53-dependent mutagenesis in transgenic animals

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R.

    2001-01-01

    Transgenic animals, with the integrated target gene, provide a unique approach for measuring and characterizing mutations in any tissue of the animal. We are using the plasmid-based lacZ transgenic mice with different p53 genetic background to examine radiation-induced genetic damage resulting from exposure to heavy particle radiation. We measured lacZ mutation frequencies (MF) in the brain and spleen tissues at various times after exposing animals to an acute dose of 1 Gy of 1GeV/amu iron particles. MF in the spleen of p53+/+ animals increased up to 2.6-fold above spontaneous levels at 8 weeks post irradiation. In contrast, brain MF from the same animals increased 1.7-fold above controls in the same period. In the p53-/- animals, brain MF increased to 2.2-fold above spontaneous levels at 1 week after treatment, but returned to control levels thereafter. Radiation also induced alterations in the spectrum of mutants in both tissues, accompanied by changes in the frequency of mutants with deletions extending past the transgene into mouse genomic DNA. Our results indicate that the accumulation of transgene MF after radiation exposure is dependant on the tissue examined as well as the p53 genetic background of the animals.

  9. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner

    PubMed Central

    Nishizawa, Hitoshi; Iguchi, Genzo; Fukuoka, Hidenori; Takahashi, Michiko; Suda, Kentaro; Bando, Hironori; Matsumoto, Ryusaku; Yoshida, Kenichi; Odake, Yukiko; Ogawa, Wataru; Takahashi, Yutaka

    2016-01-01

    Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) and cirrhosis determines patient prognosis; however, effective treatment for fibrosis has not been established. Oxidative stress and inflammation activate hepatic stellate cells (HSCs) and promote fibrosis. In contrast, cellular senescence inhibits HSCs’ activity and limits fibrosis. The aim of this study was to explore the effect of IGF-I on NASH and cirrhotic models and to clarify the underlying mechanisms. We demonstrate that IGF-I significantly ameliorated steatosis, inflammation, and fibrosis in a NASH model, methionine-choline-deficient diet-fed db/db mice and ameliorated fibrosis in cirrhotic model, dimethylnitrosamine-treated mice. As the underlying mechanisms, IGF-I improved oxidative stress and mitochondrial function in the liver. In addition, IGF-I receptor was strongly expressed in HSCs and IGF-I induced cellular senescence in HSCs in vitro and in vivo. Furthermore, in mice lacking the key senescence regulator p53, IGF-I did not induce cellular senescence in HSCs or show any effects on fibrosis. Taken together, these results indicate that IGF-I induces senescence of HSCs, inactivates these cells and limits fibrosis in a p53-dependent manner and that IGF-I may be applied to treat NASH and cirrhosis. PMID:27721459

  10. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish

    PubMed Central

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    2016-01-01

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)-b-poly(ε-caprolactone) (PCL), namely PEG-b-PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG-b-PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG-b-PCL nano-micelle on cardiovascular development. The results showed that PEG-b-PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG-b-PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG-b-PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG-b-PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG-b-PCL nano-micelles, indicating that PEG-b-PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG-b-PCL nano-micelle could pose potential hazards

  11. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish.

    PubMed

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)-b-poly(ε-caprolactone) (PCL), namely PEG-b-PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG-b-PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG-b-PCL nano-micelle on cardiovascular development. The results showed that PEG-b-PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG-b-PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG-b-PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG-b-PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG-b-PCL nano-micelles, indicating that PEG-b-PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG-b-PCL nano-micelle could pose potential hazards

  12. Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons

    PubMed Central

    Alves da Costa, Cristine; Paitel, Erwan; Mattson, Mark P.; Amson, Robert; Telerman, Adam; Ancolio, Karine; Checler, Frédéric

    2002-01-01

    Presenilins 1 and 2 are two homologous proteins that, when mutated, account for most early onset Alzheimer's disease. Several lines of evidence suggest that, among various functions, presenilins could modulate cell apoptotic responses. Here we establish that the overexpression of presenilin 2 (PS2) and its mutated form Asn-141-Ile-PS2 alters the viability of human embryonic kidney (HEK)293 cells as established by combined trypan blue exclusion, sodium 3′-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate assay, and propidium iodide incorporation FACS analyses. The two parent proteins increase the acetyl-DEVD-al-sensitive caspase-3-like activity in both HEK293 cells and Telencephalon specific murine neurons, modulate Bax and bcl-2 expressions, and enhance cytochrome C translocation into the cytosol. We show that overexpression of both wild-type and mutated PS2 increases p53-like immunoreactivity and transcriptional activity. We also establish that wild-type- and mutated PS2-induced caspase activation is reduced by p53 antisense approach and by pifithrin-α, a chemical inhibitor of p53. Furthermore, mouse fibroblasts in which the PS2 gene has been knocked out exhibited strongly reduced p53-transcriptional activity. Finally, we establish that the overexpression of both wild-type and mutated PS2 is accompanied by a drastic reduction of endogenous presenilin 1 (PS1) expression. Interestingly, pifithrin-α diminished endogenous PS2 immunoreactivity, whereas the inhibitor increases PS1 expression. Altogether, our data demonstrate that wild-type and familial Alzheimer's disease-linked PS2 trigger apoptosis and down-regulate PS1 expression through p53-dependent mechanisms. PMID:11904448

  13. The p53-dependent radioadaptive response

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo

    We already reported that conditioning exposures at low doses, or at low dose-rates, lowered radiation-induced p53-dependent apoptosis in cultured cells in vitro and in the spleens of mice in vivo. In this study, the aim was to characterize the p53-dependent radioadaptive response at the molecular level. We used wild-type (wt) p53 and mutated (m) p53 containing cells derived from the human lung cancer H1299 cell line, which is p53-null. Cellular radiation sensitivities were determined with a colony-forming assay. The accumulation of p53, Hdm2, and iNOS was analyzed with Western blotting. The quantification of chromosomal aberrations was estimated by scoring dicentrics per cell. In wtp53 cells, it was demonstrated that the lack of p53 accumulation was coupled with the activation of Hdm2 after low dose irradiation (0.02 Gy). Although NO radicals were only minimally induced in wtp53 cells irradiated with a challenging irradiation (6 Gy) alone, NO radicals were seen to increase about 2-4 fold after challenging irradiation following a priming irradiation (0.02 Gy). Under similar irradiation conditions with a priming and challenging irradiation in wtp53 cells, induction of radioresistance and a depression of chromosomal aberrations were observed only in the absence of Pifithrin-α (a p53 inhibitor), RITA or Nutlin-3 (p53-Hdm2 interaction inhibitors), aminoguanidine (an iNOS inhibitor) and c-PTIO (an NO radical scavenger). On the other hand, in p53 dysfunctional cells, a radioadaptive response was not observed in the presence or absence of those inhibitors. Moreover, radioresistance developed when wtp53 cells were treated with ISDN (an NO generating agent) alone. These findings suggest that NO radicals are an initiator of the radioadaptive response acting through the activation of Hdm2 and the depression of p53 accumulations.

  14. Apoptosis of Sertoli cells after conditional ablation of murine double minute 2 (Mdm2) gene is p53-dependent and results in male sterility

    PubMed Central

    Fouchécourt, S; Livera, G; Messiaen, S; Fumel, B; Parent, A-S; Marine, J-C; Monget, P

    2016-01-01

    Beside its well-documented role in carcinogenesis, the function of p53 family has been more recently revealed in development and female reproduction, but it is still poorly documented in male reproduction. We specifically tested this possibility by ablating Mdm2, an E3 ligase that regulates p53 protein stability and transactivation function, specifically in Sertoli cells (SCs) using the AMH-Cre line and created the new SC-Mdm2−/− line. Heterozygous SC-Mdm2−/+ adult males were fertile, but SC-Mdm2−/− males were infertile and exhibited: a shorter ano-genital distance, an extra duct along the vas deferens that presents a uterus-like morphology, degenerated testes with no organized seminiferous tubules and a complete loss of differentiated germ cells. In adults, testosterone levels as well as StAR, P450c17 (Cyp17a1) and P450scc (Cyp11a1) mRNA levels decreased significantly, and both plasma LH and FSH levels increased. A detailed investigation of testicular development indicated that the phenotype arose during fetal life, with SC-Mdm2−/− testes being much smaller at birth. Interestingly, Leydig cells remained present until adulthood and fetal germ cells abnormally initiated meiosis. Inactivation of Mdm2 in SCs triggered p53 activation and apoptosis as early as 15.5 days post conception with significant increase in apoptotic SCs. Importantly, testis development occurred normally in SC-Mdm2−/− lacking p53 mice (SC-Mdm2−/−p53−/−) and accordingly, these mice were fertile indicating that the aforementioned phenotypes are entirely p53-dependent. These data not only highlight the importance of keeping p53 in check for proper testicular development and male fertility but also certify the critical role of SCs in the maintenance of meiotic repression. PMID:26470726

  15. Chemotherapy-mediated p53-dependent DNA damage response in clear cell renal cell carcinoma: role of the mTORC1/2 and hypoxia-inducible factor pathways

    PubMed Central

    Selvarajah, J; Nathawat, K; Moumen, A; Ashcroft, M; Carroll, V A

    2013-01-01

    The DNA-damaging agent camptothecin (CPT) and its analogs demonstrate clinical utility for the treatment of advanced solid tumors, and CPT-based nanopharmaceuticals are currently in clinical trials for advanced kidney cancer; however, little is known regarding the effects of CPT on hypoxia-inducible factor-2α (HIF-2α) accumulation and activity in clear cell renal cell carcinoma (ccRCC). Here we assessed the effects of CPT on the HIF/p53 pathway. CPT demonstrated striking inhibition of both HIF-1α and HIF-2α accumulation in von Hippel–Lindau (VHL)-defective ccRCC cells, but surprisingly failed to inhibit protein levels of HIF-2α-dependent target genes (VEGF, PAI-1, ET-1, cyclin D1). Instead, CPT induced DNA damage-dependent apoptosis that was augmented in the presence of pVHL. Further analysis revealed CPT regulated endothelin-1 (ET-1) in a p53-dependent manner: CPT increased ET-1 mRNA abundance in VHL-defective ccRCC cell lines that was significantly augmented in their VHL-expressing counterparts that displayed increased phosphorylation and accumulation of p53; p53 siRNA suppressed CPT-induced increase in ET-1 mRNA, as did an inhibitor of ataxia telangiectasia mutated (ATM) signaling, suggesting a role for ATM-dependent phosphorylation of p53 in the induction of ET-1. Finally, we demonstrate that p53 phosphorylation and accumulation is partially dependent on mTOR activity in ccRCC. Consistent with this result, pharmacological inhibition of mTORC1/2 kinase inhibited CPT-mediated ET-1 upregulation, and p53-dependent responses in ccRCC. Collectively, these data provide mechanistic insight into the action of CPT in ccRCC, identify ET-1 as a p53-regulated gene and demonstrate a requirement of mTOR for p53-mediated responses in this tumor type. PMID:24136229

  16. Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil.

    PubMed

    Gao, Jing; Gao, Jin; Qian, Lan; Wang, Xia; Wu, Mingyuan; Zhang, Yang; Ye, Hao; Zhu, Shunying; Yu, Yan; Han, Wei

    2014-08-01

    Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract.

  17. New orally active DNA minor groove binding small molecule CT-1 acts against breast cancer by targeting tumor DNA damage leading to p53-dependent apoptosis.

    PubMed

    Saini, Karan Singh; Hamidullah; Ashraf, Raghib; Mandalapu, Dhanaraju; Das, Sharmistha; Siddiqui, Mohd Quadir; Dwivedi, Sonam; Sarkar, Jayanta; Sharma, Vishnu Lal; Konwar, Rituraj

    2017-04-01

    Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc.

  18. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation

    SciTech Connect

    Morita, Akinori; Ariyasu, Shinya; Wang, Bing; Asanuma, Tetsuo; Onoda, Takayoshi; Sawa, Akiko; Tanaka, Kaoru; Takahashi, Ippei; Togami, Shotaro; Nenoi, Mitsuru; Inaba, Toshiya; Aoki, Shin

    2014-08-08

    Highlights: • A bidentate HQ derivative, AS-2, suppresses p53-dependent apoptosis by DNA damage. • AS-2 does not significantly affect nuclear p53 response. • UV-excited blue emission of AS-2 clearly showed its extranuclear localization. • AS-2 prevents mitochondrial dysfunction despite the increase of mitochondrial p53. • AS-2 protects mice from a radiation dose that causes lethal hematopoietic syndrome. - Abstract: In a previous study, we reported that some tetradentate zinc(II) chelators inhibit p53 through the denaturation of its zinc-requiring structure but a chelator, Bispicen, a potent inhibitor of in vitro apoptosis, failed to show any efficient radioprotective effect against irradiated mice because the toxicity of the chelator to mice. The unsuitability of using tetradentate chelators as radioprotectors prompted us to undertake a more extensive search for p53-inhibiting agents that are weaker zinc(II) chelators and therefore less toxic. Here, we show that an 8-hydroxyquinoline (8HQ) derivative, AS-2, suppresses p53-dependent apoptosis through a transcription-independent mechanism. A mechanistic study using cells with different p53 characteristics revealed that the suppressive effect of AS-2 on apoptosis is specifically mediated through p53. In addition, AS-2 was less effective in preventing p53-mediated transcription-dependent events than pifithrin-μ (PFTμ), an inhibitor of transcription-independent apoptosis by p53. Fluorescence visualization of the extranuclear distribution of AS-2 also supports that it is ineffective on the transcription-dependent pathway. Further investigations revealed that AS-2 suppressed mitochondrial apoptotic events, such as the mitochondrial release of intermembrane proteins and the loss of mitochondrial membrane potential, although AS-2 resulted in an increase in the mitochondrial translocation of p53 as opposed to the decrease of cytosolic p53, and did not affect the apoptotic interaction of p53 with Bcl-2. AS-2 also

  19. Activation of p53-dependent responses in tumor cells treated with a PARC-interacting peptide

    SciTech Connect

    Vitali, Roberta; Cesi, Vincenzo; Tanno, Barbara; Ferrari-Amorotti, Giovanna; Dominici, Carlo; Calabretta, Bruno; Raschella, Giuseppe

    2008-04-04

    We tested the activity of a p53 carboxy-terminal peptide containing the PARC-interacting region in cancer cells with wild type cytoplasmic p53. Peptide delivery was achieved by fusing it to the TAT transduction domain (TAT-p53-C-ter peptide). In a two-hybrid assay, the tetramerization domain (TD) of p53 was necessary and sufficient to bind PARC. The TAT-p53-C-ter peptide disrupted the PARC-p53 complex. Peptide treatment caused p53 nuclear relocation, p53-dependent changes in gene expression and enhancement of etoposide-induced apoptosis. These studies suggest that PARC-interacting peptides are promising candidates for the enhancement of p53-dependent apoptosis in tumors with wt cytoplasmic p53.

  20. Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells

    PubMed Central

    Guha, Gunjan; Liang, Xiaobo; Kulesz-Martin, Molly F.; Mahmud, Taifo; Indra, Arup Kumar; Ganguli-Indra, Gitali

    2015-01-01

    Pactamycin, although putatively touted as a potent antitumor agent, has never been used as an anticancer drug due to its high cytotoxicity. In this study, we characterized the effects of two novel biosynthetically engineered analogs of pactamycin, de-6MSA-7-demethyl-7-deoxypactamycin (TM-025) and 7-demethyl-7-deoxypactamycin (TM-026), in head and neck squamous cell carcinoma (HNSCC) cell lines SCC25 and SCC104. Both TM-025 and TM-026 exert growth inhibitory effects on HNSCC cells by inhibiting cell proliferation. Interestingly, unlike their parent compound pactamycin, the analogs do not inhibit synthesis of nascent protein in a cell-based assay. Furthermore, they do not induce apoptosis or autophagy in a dose- or a time-dependent manner, but induce mild senescence in the tested cell lines. Cell cycle analysis demonstrated that both analogs significantly induce cell cycle arrest of the HNSCC cells at S-phase resulting in reduced accumulation of G2/M-phase cells. The pactamycin analogs induce expression of cell cycle regulatory proteins including master regulator p53, its downstream target p21Cip1/WAF1, p27kip21, p19, cyclin E, total and phospho Cdc2 (Tyr15) and Cdc25C. Besides, the analogs mildly reduce cyclin D1 expression without affecting expression of cyclin B, Cdk2 and Cdk4. Specific inhibition of p53 by pifithrin-α reduces the percentage of cells accumulated in S-phase, suggesting contribution of p53 to S-phase increase. Altogether, our results demonstrate that Pactamycin analogs TM-025 and TM-026 induce senescence and inhibit proliferation of HNSCC cells via accumulation in S-phase through possible contribution of p53. The two PCT analogs can be widely used as research tools for cell cycle inhibition studies in proliferating cancer cells with specific mechanisms of action. PMID:25938491

  1. p53-dependent ceramide response to genotoxic stress.

    PubMed Central

    Dbaibo, G S; Pushkareva, M Y; Rachid, R A; Alter, N; Smyth, M J; Obeid, L M; Hannun, Y A

    1998-01-01

    Both p53 and ceramide have been implicated in the regulation of growth suppression. p53 has been proposed as the "guardian of the genome" and ceramide has been suggested as a "tumor suppressor lipid. " Both molecules appear to regulate cell cycle arrest, senescence, and apoptosis. In this study, we investigated the relationship between p53 and ceramide. We found that treatment of Molt-4 cells with low concentrations of actinomycin D or gamma-irradiation, which activate p53-dependent apoptosis, induces apoptosis only in cells expressing normal levels of p53. In these cells, p53 activation was followed by a dose- and time-dependent increase in endogenous ceramide levels which was not seen in cells lacking functional p53 and treated similarly. Similar results were seen in irradiated L929 cells whereby the p53-deficient clone was significantly more resistant to irradiation and exhibited no ceramide response. However, in p53-independent systems, such as growth suppression induced by TNF-alpha or serum deprivation, ceramide accumulated irrespective of the upregulation of p53, indicating that p53 regulates ceramide accumulation in only a subset of growth-suppressive pathways. Finally, ceramide did not increase p53 levels when used at growth-suppressive concentrations. Also, when cells lacking functional p53, either due to mutation or the expression of the E6 protein of human papilloma virus, were treated with exogenous ceramide, there was equal growth suppression, cell cycle arrest, and apoptosis as compared with cells expressing normal p53. These results indicate that p53 is unlikely to function "downstream" of ceramide. Instead, they suggest that, in situations where p53 performs a critical regulatory role, such as the response to genotoxic stress, it functions "upstream" of ceramide. These studies begin to define a relationship between these two pathways of growth inhibition. PMID:9664074

  2. A p53-dependent tumor suppressor network is induced by selective miR-125a-5p inhibition in multiple myeloma cells.

    PubMed

    Leotta, Marzia; Biamonte, Lavinia; Raimondi, Lavinia; Ronchetti, Domenica; Di Martino, Maria Teresa; Botta, Cirino; Leone, Emanuela; Pitari, Maria Rita; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco; Amodio, Nicola

    2014-12-01

    The analysis of deregulated microRNAs (miRNAs) is emerging as a novel approach to disclose the regulation of tumor suppressor or tumor promoting pathways in tumor cells. Targeting aberrantly expressed miRNAs is therefore a promising strategy for cancer treatment. By miRNA profiling of primary plasma cells from multiple myeloma (MM) patients, we previously reported increased miR-125a-5p levels associated to specific molecular subgroups. On these premises, we aimed at investigating the biological effects triggered by miR-125a-5p modulation in MM cells. Expression of p53 pathway-related genes was down-regulated in MM cells transfected with miR-125a-5p mimics. Luciferase reporter assays confirmed specific p53 targeting at 3'UTR level by miR-125a-5p mimics. Interestingly, bone marrow stromal cells (BMSCs) affected the miR-125a-5p/p53 axis, since adhesion of MM cells to BMSCs strongly up-regulated miR-125a-5p levels, while reduced p53 expression. Moreover, ectopic miR-125a-5p reduced, while miR-125-5p inhibitors promoted, the expression of tumor suppressor miR-192 and miR-194, transcriptionally regulated by p53. Lentiviral-mediated stable inhibition of miR-125a-5p expression in wild-type p53 MM cells dampened cell growth, increased apoptosis and reduced cell migration. Importantly, inhibition of in vitro MM cell proliferation and migration was also achieved by synthetic miR-125a-5p inhibitors and was potentiated by the co-expression of miR-192 or miR-194. Taken together, our data indicate that miR-125a-5p antagonism results in the activation of p53 pathway in MM cells, underlying the crucial role of this miRNA in the biopathology of MM and providing the molecular rationale for the combinatory use of miR-125a inhibitors and miR-192 or miR-194 mimics for MM treatment.

  3. Oxidative stress-induced inhibition of Sirt1 by caveolin-1 promotes p53-dependent premature senescence and stimulates the secretion of interleukin 6 (IL-6).

    PubMed

    Volonte, Daniela; Zou, Huafei; Bartholomew, Janine N; Liu, Zhongmin; Morel, Penelope A; Galbiati, Ferruccio

    2015-02-13

    Oxidative stress can induce premature cellular senescence. Senescent cells secrete various growth factors and cytokines, such as IL-6, that can signal to the tumor microenvironment and promote cancer cell growth. Sirtuin 1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including senescence. We found that caveolin-1, a structural protein component of caveolar membranes, is a direct binding partner of Sirt1, as shown by the binding of the scaffolding domain of caveolin-1 (amino acids 82-101) to the caveolin-binding domain of Sirt1 (amino acids 310-317). Our data show that oxidative stress promotes the sequestration of Sirt1 into caveolar membranes and the interaction of Sirt1 with caveolin-1, which lead to inhibition of Sirt1 activity. Reactive oxygen species stimulation promotes acetylation of p53 and premature senescence in wild-type but not caveolin-1 null mouse embryonic fibroblasts (MEFs). Either down-regulation of Sirt1 expression or re-expression of caveolin-1 in caveolin-1 null MEFs restores reactive oxygen species-induced acetylation of p53 and premature senescence. In addition, overexpression of caveolin-1 induces stress induced premature senescence in p53 wild-type but not p53 knockout MEFs. Phosphorylation of caveolin-1 on tyrosine 14 promotes the sequestration of Sirt1 into caveolar membranes and activates p53/senescence signaling. We also identified IL-6 as a caveolin-1-specific cytokine that is secreted by senescent fibroblasts following the caveolin-1-mediated inhibition of Sirt1. The caveolin-1-mediated secretion of IL-6 by senescent fibroblasts stimulates the growth of cancer cells. Therefore, by inhibiting Sirt1, caveolin-1 links free radicals to the activation of the p53/senescence pathway and the protumorigenic properties of IL-6.

  4. {sub p}53-Dependent Adaptive Responses in Human Cells Exposed to Space Radiations

    SciTech Connect

    Takahashi, Akihisa; Su Xiaoming; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki; Iwasaki, Toshiyasu; Ohnishi, Takeo

    2010-11-15

    Purpose: It has been reported that priming irradiation or conditioning irradiation with a low dose of X-rays in the range of 0.02-0.1 Gy induces a p53-dependent adaptive response in mammalian cells. The aim of the present study was to clarify the effect of space radiations on the adaptive response. Methods and Materials: Two human lymphoblastoid cell lines were used; one cell line bears a wild-type p53 (wtp53) gene, and another cell line bears a mutated p53 (mp53) gene. The cells were frozen during transportation on the space shuttle and while in orbit in the International Space Station freezer for 133 days between November 15, 2008 and March 29, 2009. After the frozen samples were returned to Earth, the cells were cultured for 6 h and then exposed to a challenging X-ray-irradiation (2 Gy). Cellular sensitivity, apoptosis, and chromosome aberrations were scored using dye-exclusion assays, Hoechst33342 staining assays, and chromosomal banding techniques, respectively. Results: In cells exposed to space radiations, adaptive responses such as the induction of radioresistance and the depression of radiation-induced apoptosis and chromosome aberrations were observed in wtp53 cells but not in mp53 cells. Conclusion: These results have confirmed the hypothesis that p53-dependent adaptive responses are apparently induced by space radiations within a specific range of low doses. The cells exhibited this effect owing to space radiations exposure, even though the doses in space were very low.

  5. The contrasting activity of iodido versus chlorido ruthenium and osmium arene azo- and imino-pyridine anticancer complexes: control of cell selectivity, cross-resistance, p53 dependence, and apoptosis pathway.

    PubMed

    Romero-Canelón, Isolda; Salassa, Luca; Sadler, Peter J

    2013-02-14

    Organometallic half-sandwich complexes [M(p-cymene)(azo/imino-pyridine)X](+) where M = Ru(II) or Os(II) and X ═ Cl or I, exhibit potent antiproliferative activity toward a range of cancer cells. Not only are the iodido complexes more potent than the chlorido analogues, but they are not cross-resistant with the clinical platinum drugs cisplatin and oxaliplatin. They are also more selective for cancer cells versus normal cells (fibroblasts) and show high accumulation in cell membranes. They arrest cell growth in G1 phase in contrast to cisplatin (S phase) with a high incidence of late-stage apoptosis. The iodido complexes retain potency in p53 mutant colon cells. All complexes activate caspase 3. In general, antiproliferative activity is greatly enhanced by low levels of the glutathione synthase inhibitor l-buthionine sulfoxime. The work illustrates how subtle changes to the design of low-spin d(6) metal complexes can lead to major changes in cellular metabolism and to potent complexes with novel mechanisms of anticancer activity.

  6. A Chromatin-Focused siRNA Screen for Regulators of p53-Dependent Transcription

    PubMed Central

    Sammons, Morgan A.; Zhu, Jiajun; Berger, Shelley L.

    2016-01-01

    The protein product of the Homo sapiens TP53 gene is a transcription factor (p53) that regulates the expression of genes critical for the response to DNA damage and tumor suppression, including genes involved in cell cycle arrest, apoptosis, DNA repair, metabolism, and a number of other tumorigenesis-related pathways. Differential transcriptional regulation of these genes is believed to alter the balance between two p53-dependent cell fates: cell cycle arrest or apoptosis. A number of previously identified p53 cofactors covalently modify and alter the function of both the p53 protein and histone proteins. Both gain- and loss-of-function mutations in chromatin modifiers have been strongly implicated in cancer development; thus, we sought to identify novel chromatin regulatory proteins that affect p53-dependent transcription and the balance between the expression of pro-cell cycle arrest and proapoptotic genes. We utilized an siRNA library designed against predicted chromatin regulatory proteins, and identified known and novel chromatin-related factors that affect both global p53-dependent transcription and gene-specific regulators of p53 transcriptional activation. The results from this screen will serve as a comprehensive resource for those interested in further characterizing chromatin and epigenetic factors that regulate p53 transcription. PMID:27334938

  7. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways.

    PubMed Central

    Nelson, W G; Kastan, M B

    1994-01-01

    The tumor suppressor protein p53 serves as a critical regulator of a G1 cell cycle checkpoint and of apoptosis following exposure of cells to DNA-damaging agents. The mechanism by which DNA-damaging agents elevate p53 protein levels to trigger G1/S arrest or cell death remains to be elucidated. In fact, whether damage to the DNA template itself participates in transducing the signal leading to p53 induction has not yet been demonstrated. We exposed human cell lines containing wild-type p53 alleles to several different DNA-damaging agents and found that agents which rapidly induce DNA strand breaks, such as ionizing radiation, bleomycin, and DNA topoisomerase-targeted drugs, rapidly triggered p53 protein elevations. In addition, we determined that camptothecin-stimulated trapping of topoisomerase I-DNA complexes was not sufficient to elevate p53 protein levels; rather, replication-associated DNA strand breaks were required. Furthermore, treatment of cells with the antimetabolite N(phosphonoacetyl)-L-aspartate (PALA) did not cause rapid p53 protein increases but resulted in delayed increases in p53 protein levels temporally correlated with the appearance of DNA strand breaks. Finally, we concluded that DNA strand breaks were sufficient for initiating p53-dependent signal transduction after finding that introduction of nucleases into cells by electroporation stimulated rapid p53 protein elevations. While DNA strand breaks appeared to be capable of triggering p53 induction, DNA lesions other than strand breaks did not. Exposure of normal cells and excision repair-deficient xeroderma pigmentosum cells to low doses of UV light, under conditions in which thymine dimers appear but DNA replication-associated strand breaks were prevented, resulted in p53 induction attributable to DNA strand breaks associated with excision repair. Our data indicate that DNA strand breaks are sufficient and probably necessary for p53 induction in cells with wild-type p53 alleles exposed to DNA

  8. p53-Dependent suppression of genome instability in germ cells.

    PubMed

    Otozai, Shinji; Ishikawa-Fujiwara, Tomoko; Oda, Shoji; Kamei, Yasuhiro; Ryo, Haruko; Sato, Ayuko; Nomura, Taisei; Mitani, Hiroshi; Tsujimura, Tohru; Inohara, Hidenori; Todo, Takeshi

    2014-02-01

    Radiation increases mutation frequencies at tandem repeat loci. Germline mutations in γ-ray-irradiated medaka fish (Oryzias latipes) were studied, focusing on the microsatellite loci. Mismatch-repair genes suppress microsatellite mutation by directly removing altered sequences at the nucleotide level, whereas the p53 gene suppresses genetic alterations by eliminating damaged cells. The contribution of these two defense mechanisms to radiation-induced microsatellite instability was addressed. The spontaneous mutation frequency was significantly higher in msh2(-/-) males than in wild-type fish, whereas there was no difference in the frequency of radiation-induced mutations between msh2(-/-) and wild-type fish. By contrast, irradiated p53(-/-) fish exhibited markedly increased mutation frequencies, whereas their spontaneous mutation frequency was the same as that of wild-type fish. In the spermatogonia of the testis, radiation induced a high level of apoptosis both in wild-type and msh2(-/-) fish, but negligible levels in p53(-/-) fish. The results demonstrate that the msh2 and p53 genes protect genome integrity against spontaneous and radiation-induced mutation by two different pathways: direct removal of mismatches and elimination of damaged cells.

  9. The influence of SV40 immortalization of human fibroblasts on p53-dependent radiation responses

    NASA Technical Reports Server (NTRS)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The simian virus 40 large tumor antigen (SV40 Tag) has been ascribed many functions critical to viral propagation, including binding to the mammalian tumor suppressor p53. Recent studies have demonstrated that SV40-transformed murine cells have functional p53. The status of p53 in SV40-immortalized human cells, however, has not been characterized. We have found that in response to ionizing radiation, p53-dependent p21 transactivation activity is present, albeit reduced, in SV40-immortalized cells and that this activity can be further reduced with either dominant negative p53 expression or higher SV40 Tag expression. Furthermore, overexpression of p53 in SV40-immortalized ataxia-telangiectasia (A-T) cells restores p53-dependent p21 induction to typical A-T levels. All SV40-immortalized cell lines exhibited an absence of G1 arrest. Moreover, all SV40-immortalized cell lines exhibited increased apoptosis relative to primary cells in response to ionizing radiation, suggesting that SV40 immortalization results in a unique phenotype with regard to DNA damage responses. Copyright 1999 Academic Press.

  10. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    PubMed

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  11. The absence of Ser389 phosphorylation in p53 affects the basal gene expression level of many p53-dependent genes and alters the biphasic response to UV exposure in mouse embryonic fibroblasts.

    PubMed

    Bruins, Wendy; Bruning, Oskar; Jonker, Martijs J; Zwart, Edwin; van der Hoeven, Tessa V; Pennings, Jeroen L A; Rauwerda, Han; de Vries, Annemieke; Breit, Timo M

    2008-03-01

    Phosphorylation is important in p53-mediated DNA damage responses. After UV irradiation, p53 is phosphorylated specifically at murine residue Ser389. Phosphorylation mutant p53.S389A cells and mice show reduced apoptosis and compromised tumor suppression after UV irradiation. We investigated the underlying cellular processes by time-series analysis of UV-induced gene expression responses in wild-type, p53.S389A, and p53(-/-) mouse embryonic fibroblasts. The absence of p53.S389 phosphorylation already causes small endogenous gene expression changes for 2,253, mostly p53-dependent, genes. These genes showed basal gene expression levels intermediate to the wild type and p53(-/-), possibly to readjust the p53 network. Overall, the p53.S389A mutation lifts p53-dependent gene repression to a level similar to that of p53(-/-) but has lesser effect on p53-dependently induced genes. In the wild type, the response of 6,058 genes to UV irradiation was strictly biphasic. The early stress response, from 0 to 3 h, results in the activation of processes to prevent the accumulation of DNA damage in cells, whereas the late response, from 12 to 24 h, relates more to reentering the cell cycle. Although the p53.S389A UV gene response was only subtly changed, many cellular processes were significantly affected. The early response was affected the most, and many cellular processes were phase-specifically lost, gained, or altered, e.g., induction of apoptosis, cell division, and DNA repair, respectively. Altogether, p53.S389 phosphorylation seems essential for many p53 target genes and p53-dependent processes.

  12. p21-LacZ reporter mice reflect p53-dependent toxic insult

    SciTech Connect

    Vasey, Douglas B. Wolf, C. Roland; MacArtney, Thomas; Brown, Ken; Whitelaw, C. Bruce A.

    2008-03-15

    There is an urgent need to discover less toxic and more selective drugs to treat disease. The use of transgenic mice that report on toxic insult-induced transcription can provide a valuable tool in this regard. To exemplify this strategy, we have generated transgenic mice carrying a p21-LacZ transgene. Transgene activity reflected endogenous p21 gene activation in various tissues, displayed compound-specific spatial expression signatures in the brain and immune tissues and enabled p53-dependent and p53-independent responses to be identified. We discuss the application of these mice in delineating the molecular events in normal cellular growth and disease and for the evaluation of drug toxicity.

  13. Implication of p53-dependent cellular senescence related gene, TARSH in tumor suppression

    SciTech Connect

    Wakoh, Takeshi; Uekawa, Natsuko; Terauchi, Kunihiko; Sugimoto, Masataka; Ishigami, Akihito; Shimada, Jun-ichi; Maruyama, Mitsuo

    2009-03-20

    A novel target of NESH-SH3 (TARSH) was identified as a cellular senescence related gene in mouse embryonic fibroblasts (MEFs) replicative senescence, the expression of which has been suppressed in primary clinical lung cancer specimens. However, the molecular mechanism underlying the regulation of TARSH involved in pulmonary tumorigenesis remains unclear. Here we demonstrate that the reduction of TARSH gene expression by short hairpin RNA (shRNA) system robustly inhibited the MEFs proliferation with increase in senescence-associated {beta}-galactosidase (SA-{beta}-gal) activity. Using p53{sup -/-} MEFs, we further suggest that this growth arrest by loss of TARSH is evoked by p53-dependent p21{sup Cip1} accumulation. Moreover, we also reveal that TARSH reduction induces multicentrosome in MEFs, which is linked in chromosome instability and tumor development. These results suggest that TARSH plays an important role in proliferation of replicative senescence and may serve as a trigger of tumor development.

  14. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes.

    PubMed

    Davalos, Albert R; Kawahara, Misako; Malhotra, Gautam K; Schaum, Nicholas; Huang, Jiahao; Ved, Urvi; Beausejour, Christian M; Coppe, Jean-Philippe; Rodier, Francis; Campisi, Judith

    2013-05-13

    Cellular senescence irreversibly arrests proliferation in response to potentially oncogenic stress. Senescent cells also secrete inflammatory cytokines such as IL-6, which promote age-associated inflammation and pathology. HMGB1 (high mobility group box 1) modulates gene expression in the nucleus, but certain immune cells secrete HMGB1 as an extracellular Alarmin to signal tissue damage. We show that nuclear HMGB1 relocalized to the extracellular milieu in senescent human and mouse cells in culture and in vivo. In contrast to cytokine secretion, HMGB1 redistribution required the p53 tumor suppressor, but not its activator ATM. Moreover, altered HMGB1 expression induced a p53-dependent senescent growth arrest. Senescent fibroblasts secreted oxidized HMGB1, which stimulated cytokine secretion through TLR-4 signaling. HMGB1 depletion, HMGB1 blocking antibody, or TLR-4 inhibition attenuated senescence-associated IL-6 secretion, and exogenous HMGB1 stimulated NF-κB activity and restored IL-6 secretion to HMGB1-depleted cells. Our findings identify senescence as a novel biological setting in which HMGB1 functions and link HMGB1 redistribution to p53 activity and senescence-associated inflammation.

  15. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes

    PubMed Central

    Kawahara, Misako; Malhotra, Gautam K.; Schaum, Nicholas; Huang, Jiahao; Ved, Urvi; Beausejour, Christian M.; Coppe, Jean-Philippe; Rodier, Francis

    2013-01-01

    Cellular senescence irreversibly arrests proliferation in response to potentially oncogenic stress. Senescent cells also secrete inflammatory cytokines such as IL-6, which promote age-associated inflammation and pathology. HMGB1 (high mobility group box 1) modulates gene expression in the nucleus, but certain immune cells secrete HMGB1 as an extracellular Alarmin to signal tissue damage. We show that nuclear HMGB1 relocalized to the extracellular milieu in senescent human and mouse cells in culture and in vivo. In contrast to cytokine secretion, HMGB1 redistribution required the p53 tumor suppressor, but not its activator ATM. Moreover, altered HMGB1 expression induced a p53-dependent senescent growth arrest. Senescent fibroblasts secreted oxidized HMGB1, which stimulated cytokine secretion through TLR-4 signaling. HMGB1 depletion, HMGB1 blocking antibody, or TLR-4 inhibition attenuated senescence-associated IL-6 secretion, and exogenous HMGB1 stimulated NF-κB activity and restored IL-6 secretion to HMGB1-depleted cells. Our findings identify senescence as a novel biological setting in which HMGB1 functions and link HMGB1 redistribution to p53 activity and senescence-associated inflammation. PMID:23649808

  16. COH-203, a novel microtubule inhibitor, exhibits potent anti-tumor activity via p53-dependent senescence in hepatocellular carcinoma

    SciTech Connect

    Qi, Huan; Zuo, Dai-Ying; Bai, Zhao-Shi; Xu, Jing-Wen; Li, Zeng-Qiang; Shen, Qi-Rong; Wang, Zhi-Wei; Zhang, Wei-Ge; Wu, Ying-Liang

    2014-12-12

    Highlights: • COH-203 exhibits anti-hepatoma effects in vitro and in vivo with low toxicity. • COH-203 inhibits tubulin polymerization. • COH-203 induces mitotic arrest followed by mitotic slippage in BEL-7402 cells. • COH-203 induces p53-dependent senescence in BEL-7402 cells. - Abstract: 5-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-3H-1, 2-dithiol-3-one (COH-203) is a novel synthesized analogue of combretastatin A-4 that can be classified as a microtubule inhibitor. In this study, we evaluated the anti-hepatoma effect of COH-203 in vitro and in vivo and explored the underlying molecular mechanisms. COH-203 was shown to be more effective in inhibiting the proliferation of liver cancer cells compared with normal liver cells. COH-203 also displayed potent anti-tumor activity in a hepatocellular carcinoma xenograft model without significant toxicity. Mechanistic studies demonstrated that treatment with COH-203 induced mitotic arrest by inhibiting tubulin polymerization in BEL-7402 liver cancer cells. Long-term COH-203 treatment in BEL-7402 cells led to mitotic slippage followed by senescence via the p14{sup Arf}–p53–p21 and p16{sup INK4α}–Rb pathways. Furthermore, suppression of p53 via pifithrin-α (p53 inhibitor) and p53-siRNA attenuated COH-203-induced senescence in BEL-7402 cells, suggesting that COH-203 induced senescence p53-dependently. In conclusion, we report for the first time that COH-203, one compound in the combretastatin family, promotes anti-proliferative activity through the induction of p-53 dependent senescence. Our findings will provide a molecular rationale for the development of COH-203 as a promising anti-tumor agent.

  17. MDM2 Inhibition Sensitizes Prostate Cancer Cells to Androgen Ablation and Radiotherapy in a p53-Dependent Manner12

    PubMed Central

    Feng, Felix Y.; Zhang, Yu; Kothari, Vishal; Evans, Joseph R.; Jackson, William C.; Chen, Wei; Johnson, Skyler B.; Luczak, Connor; Wang, Shaomeng; Hamstra, Daniel A.

    2016-01-01

    PURPOSE: Increased murine double minute 2 (MDM2) expression, independent of p53 status, is associated with increased cancer-specific mortality for men with prostate cancer treated with radiotherapy. We assessed MI-219, a small molecule inhibitor of MDM2 with improved pharmacokinetics over nutlin-3, for sensitization of prostate cancer cells to radiotherapy and androgen deprivation therapy, a standard treatment option for men with high-risk prostate cancer. EXPERIMENTAL DESIGN: The effect of MDM2 inhibition by MI-219 was assessed in vitro and in vivo with mouse xenograft models across multiple prostate cancer cell lines containing varying p53 functional status. RESULTS: MDM2 inhibition by MI-219 resulted in dose- and time-dependent p53 activation and decreased clonogenic cell survival after radiation in a p53-dependent manner. Mechanistically, radiosensitization following inhibition of MDM2 was largely the result of p53-dependent increases in apoptosis and DNA damage as evidenced by Annexin V flow cytometry and γ-H2AX foci immunofluorescence. Similarly, treatment with MI-219 enhanced response to antiandrogen therapy via a p53-dependent increase in apoptotic cell death. Lastly, triple therapy with radiation, androgen deprivation therapy, and MI-219 decreased xenograft tumor growth compared with any single- or double-agent treatment. CONCLUSION: MDM2 inhibition with MI-219 results in p53-dependent sensitization of prostate cancer cells to radiation, antiandrogen therapy, and the combination. These findings support MDM2 small molecule inhibitor therapy as a therapy intensification strategy to improve clinical outcomes in high-risk localized prostate cancer. TRANSLATIONAL RELEVANCE: The combination of radiotherapy and androgen deprivation therapy is a standard treatment option for men with high-risk prostate cancer. Despite improvements in outcomes when androgen deprivation therapy is added to radiation, men with high-risk prostate cancer have significant risk for

  18. Fatty acid degradation plays an essential role in proliferation of mouse female primordial germ cells via the p53-dependent cell cycle regulation

    PubMed Central

    Teng, Hui; Sui, Xuesong; Zhou, Cheng; Shen, Cong; Yang, Ye; Zhang, Pang; Guo, Xuejiang; Huo, Ran

    2016-01-01

    ABSTRACT Primordial germ cells (PGCs) are embryonic founders of germ cells that ultimately differentiate into oocytes and spermatogonia. Embryonic proliferation of PGCs starting from E11.5 ensures the presence of germ cells in adulthood, especially in female mammals whose total number of oocytes declines after this initial proliferation period. To better understand mechanisms underlying PGC proliferation in female mice, we constructed a proteome profile of female mouse gonads at E11.5. Subsequent KEGG pathway analysis of the 3,662 proteins profiled showed significant enrichment of pathways involved in fatty acid degradation. Further, the number of PGCs found in in vitro cultured fetal gonads significantly decreased with application of etomoxir, an inhibitor of the key rate-limiting enzyme of fatty acid degradation carnitine acyltransferase I (CPT1). Decrease in PGCs was further determined to be the result of reduced proliferation rather than apoptosis. The inhibition of fatty acid degradation by etomoxir has the potential to activate the Ca2+/CamKII/5′-adenosine monophosphate-activated protein kinase (AMPK) pathway; while as an upstream activator, activated AMPK can function as activator of p53 to induce cell cycle arrest. Thus, we detected the expressional level of AMPK, phosphorylated AMPK (P-AMPK), phosphorylated p53 (P-p53) and cyclin-dependent kinase inhibitor 1 (p21) by Western blots, the results showed increased expression of them after treatment with etomoxir, suggested the activation of p53 pathway was the reason for reduced proliferation of PGCs. Finally, the involvement of p53-dependent G1 cell cycle arrest in defective proliferation of PGCs was verified by rescue experiments. Our results demonstrate that fatty acid degradation plays an important role in proliferation of female PGCs via the p53-dependent cell cycle regulation. PMID:26716399

  19. Skp2 Regulates G2/M Progression in a p53-dependent Manner

    PubMed Central

    Hu, Rong

    2008-01-01

    Targeted proteasomal degradation mediated by E3 ubiquitin ligases controls cell cycle progression, and alterations in their activities likely contribute to malignant cell proliferation. S phase kinase-associated protein 2 (Skp2) is the F-box component of an E3 ubiquitin ligase complex that targets p27Kip1 and cyclin E1 to the proteasome. In human melanoma, Skp2 is highly expressed, regulated by mutant B-RAF, and required for cell growth. We show that Skp2 depletion in melanoma cells resulted in a tetraploid cell cycle arrest. Surprisingly, co-knockdown of p27Kip1 or cyclin E1 failed to prevent the tetraploid arrest induced by Skp2 knockdown. Enhanced Aurora A phosphorylation and repression of G2/M regulators cyclin B1, cyclin-dependent kinase 1, and cyclin A indicated a G2/early M phase arrest in Skp2-depleted cells. Furthermore, expression of nuclear localized cyclin B1 prevented tetraploid accumulation after Skp2 knockdown. The p53 status is most frequently wild type in melanoma, and the tetraploid arrest and down-regulation of G2/M regulatory genes were strongly dependent on wild-type p53 expression. In mutant p53 melanoma lines, Skp2 depletion did not induce cell cycle arrest despite up-regulation of p27Kip1. These data indicate that elevated Skp2 expression may overcome p53-dependent cell cycle checkpoints in melanoma cells and highlight Skp2 actions that are independent of p27Kip1 degradation. PMID:18716061

  20. The adenoviral E1B 55-kilodalton protein controls expression of immune response genes but not p53-dependent transcription.

    PubMed

    Miller, Daniel L; Rickards, Brenden; Mashiba, Michael; Huang, Wenying; Flint, S J

    2009-04-01

    The human adenovirus type 5 (Ad5) E1B 55-kDa protein modulates several cellular processes, including activation of the tumor suppressor p53. Binding of the E1B protein to the activation domain of p53 inhibits p53-dependent transcription. This activity has been correlated with the transforming activity of the E1B protein, but its contribution to viral replication is not well understood. To address this issue, we used microarray hybridization methods to examine cellular gene expression in normal human fibroblasts (HFFs) infected by Ad5, the E1B 55-kDa-protein-null mutant Hr6, or a mutant carrying substitutions that impair repression of p53-dependent transcription. Comparison of the changes in cellular gene expression observed in these and our previous experiments (D. L. Miller et al., Genome Biol. 8:R58, 2007) by significance analysis of microarrays indicated excellent reproducibility. Furthermore, we again observed that Ad5 infection led to efficient reversal of the p53-dependent transcriptional program. As this same response was also induced in cells infected by the two mutants, we conclude that the E1B 55-kDa protein is not necessary to block activation of p53 in Ad5-infected cells. However, groups of cellular genes that were altered in expression specifically in the absence of the E1B protein were identified by consensus k-means clustering of the hybridization data. Statistical analysis of the enrichment of genes associated with specific functions in these clusters established that the E1B 55-kDa protein is necessary for repression of genes encoding proteins that mediate antiviral and immune defenses.

  1. Ceramide Synthase 6 Is a Novel Target of Methotrexate Mediating Its Antiproliferative Effect in a p53-Dependent Manner.

    PubMed

    Fekry, Baharan; Esmaeilniakooshkghazi, Amin; Krupenko, Sergey A; Krupenko, Natalia I

    2016-01-01

    We previously reported that ceramide synthase 6 (CerS6) is elevated in response to folate stress in cancer cells, leading to enhanced production of C16-ceramide and apoptosis. Antifolate methotrexate (MTX), a drug commonly used in chemotherapy of several types of cancer, is a strong inhibitor of folate metabolism. Here we investigated whether this drug targets CerS6. We observed that CerS6 protein was markedly elevated in several cancer cell lines treated with MTX. In agreement with the enzyme elevation, its product C16-ceramide was also strongly elevated, so as several other ceramide species. The increase in C16-ceramide, however, was eliminated in MTX-treated cells lacking CerS6 through siRNA silencing, while the increase in other ceramides sustained. Furthermore, the siRNA silencing of CerS6 robustly protected A549 lung adenocarcinoma cells from MTX toxicity, while the silencing of another ceramide synthase, CerS4, which was also responsive to folate stress in our previous study, did not interfere with the MTX effect. The rescue effect of CerS6 silencing upon MTX treatment was further confirmed in HCT116 and HepG2 cell lines. Interestingly, CerS6 itself, but not CerS4, induced strong antiproliferative effect in several cancer cell lines if elevated by transient transfection. The effect of MTX on CerS6 elevation was likely p53 dependent, which is in agreement with the hypothesis that the protein is a transcriptional target of p53. In line with this notion, lometrexol, the antifolate inducing cytotoxicity through the p53-independent mechanism, did not affect CerS6 levels. We have also found that MTX induces the formation of ER aggregates, enriched with CerS6 protein. We further demonstrated that such aggregation requires CerS6 and suggests that it is an indication of ER stress. Overall, our study identified CerS6 and ceramide pathways as a novel MTX target.

  2. Ceramide Synthase 6 Is a Novel Target of Methotrexate Mediating Its Antiproliferative Effect in a p53-Dependent Manner

    PubMed Central

    Fekry, Baharan; Esmaeilniakooshkghazi, Amin; Krupenko, Sergey A.; Krupenko, Natalia I.

    2016-01-01

    We previously reported that ceramide synthase 6 (CerS6) is elevated in response to folate stress in cancer cells, leading to enhanced production of C16-ceramide and apoptosis. Antifolate methotrexate (MTX), a drug commonly used in chemotherapy of several types of cancer, is a strong inhibitor of folate metabolism. Here we investigated whether this drug targets CerS6. We observed that CerS6 protein was markedly elevated in several cancer cell lines treated with MTX. In agreement with the enzyme elevation, its product C16-ceramide was also strongly elevated, so as several other ceramide species. The increase in C16-ceramide, however, was eliminated in MTX-treated cells lacking CerS6 through siRNA silencing, while the increase in other ceramides sustained. Furthermore, the siRNA silencing of CerS6 robustly protected A549 lung adenocarcinoma cells from MTX toxicity, while the silencing of another ceramide synthase, CerS4, which was also responsive to folate stress in our previous study, did not interfere with the MTX effect. The rescue effect of CerS6 silencing upon MTX treatment was further confirmed in HCT116 and HepG2 cell lines. Interestingly, CerS6 itself, but not CerS4, induced strong antiproliferative effect in several cancer cell lines if elevated by transient transfection. The effect of MTX on CerS6 elevation was likely p53 dependent, which is in agreement with the hypothesis that the protein is a transcriptional target of p53. In line with this notion, lometrexol, the antifolate inducing cytotoxicity through the p53-independent mechanism, did not affect CerS6 levels. We have also found that MTX induces the formation of ER aggregates, enriched with CerS6 protein. We further demonstrated that such aggregation requires CerS6 and suggests that it is an indication of ER stress. Overall, our study identified CerS6 and ceramide pathways as a novel MTX target. PMID:26783755

  3. Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells

    SciTech Connect

    Fischer, Barbara; Benzina, Sami; Jeannequin, Pierre; Dufour, Patrick; Bergerat, Jean-Pierre; Denis, Jean-Marc; Gueulette, John; Bischoff, Pierre L. . E-mail: Pierre.Bischoff@ircad.u-strasbg.fr

    2005-08-26

    We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to the stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis.

  4. A Novel Anticancer Agent, 8-Methoxypyrimido[4′,5′:4,5]thieno(2,3-b) Quinoline-4(3H)-One Induces Neuro 2a Neuroblastoma Cell Death through p53-Dependent, Caspase-Dependent and -Independent Apoptotic Pathways

    PubMed Central

    Sahu, Upasana; Sidhar, Himakshi; Ghate, Pankaj S.; Advirao, Gopal M.; Raghavan, Sathees C.; Giri, Ranjit K.

    2013-01-01

    Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido [4′,5′:4,5]thieno(2,3-b) quinoline-4(3H)-one (MPTQ) is a structural analogue of an anticancer drug ellipticine and has been reported to posses anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death. MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM). Immunocytochemical analysis demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of caspase-3 and cleaved Poly (ADP Ribose) polymerase were observed in the nucleus of MPTQ treated neuro 2a cells, suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in MPTQ treated neuro 2a cells. Collectively

  5. P53 mediates amosite asbestos-induced alveolar epithelial cell mitochondria-regulated apoptosis.

    PubMed

    Panduri, Vijayalakshmi; Surapureddi, Sailesh; Soberanes, Saul; Weitzman, Sigmund A; Chandel, Navdeep; Kamp, David W

    2006-04-01

    Asbestos causes pulmonary toxicity in part by generating reactive oxygen species that cause DNA damage. We previously showed that the mitochondria-regulated (intrinsic) death pathway mediates alveolar epithelial cell (AEC) DNA damage and apoptosis. Because p53 regulates the DNA damage response in part by inducing intrinsic cell death, we determined whether p53-dependent transcriptional activity mediates asbestos-induced AEC mitochondrial dysfunction and apoptosis. We show that inhibitors of p53-dependent transcriptional activation (pifithrin and type 16-E6 protein) block asbestos-induced AEC mitochondrial membrane potential change (DeltaPsim), caspase 9 activation, and apoptosis. We demonstrate that asbestos activates p53 promoter activity, mRNA levels, protein expression, and Bax and p53 mitochondrial translocation. Further, pifithrin, E6, phytic acid, or rho(0)-A549 cells (cells incapable of mitochondrial reactive oxygen species production) block asbestos-induced p53 activation. Finally, we show that asbestos augments p53 expression in cells at the bronchoalveolar duct junctions of rat lungs and that phytic acid prevents this. These data suggest that p53-dependent transcription pathways mediate asbestos-induced AEC mitochondria-regulated apoptosis. This suggests an important interactive effect between p53 and the mitochondria in the pathogenesis of asbestos-induced pulmonary toxicity that may have broader implications for our understanding of pulmonary fibrosis and lung cancer.

  6. The Apoptotic Effect of Plant Based Nanosilver in Colon Cancer Cells is a p53 Dependent Process Involving ROS and JNK Cascade.

    PubMed

    Satapathy, Shakti Ranjan; Mohapatra, Purusottam; Das, Dipon; Siddharth, Sumit; Kundu, Chanakya Nath

    2015-04-01

    Here, we report the p53 dependent mitochondria-mediated apoptotic mechanism of plant derived silver-nanoparticle (PD-AgNPs) in colorectal cancer cells (CRCs). PD-AgNPs was synthesized by reduction of AgNO3 with leaf extract of a medicinal plant periwinkle and characterized. Uptake of PD-AgNPs (ξ - 2.52 ± 4.31 mV) in HCT116 cells was 3 fold higher in comparison to synthetic AgNPs (ξ +2.293 ± 5.1 mV). A dose dependent increase in ROS production, activated JNK and decreased mitochondrial membrane potential (MMP) were noted in HCT116 but not in HCT116 p53(-/-) cells after PD-AgNP exposure. PD-AgNP-mediated apoptosis in CRCs is a p53 dependent process involving ROS and JNK cascade.

  7. p53-dependent delayed effects of radiation vary according to time of irradiation of p53 + / - mice.

    PubMed

    Okazaki, Ryuji; Ootsuyama, Akira

    2014-01-01

    We previously reported that in p53 (+ / -) mice that had been given a whole-body dose of 3 Gy at 8 weeks of age, p53-dependent delayed effects of radiation, as manifested in T-cell receptor (TCR) variant fractions (VF) instability in mouse splenocytes, were biphasic, namely, induction of TCR-VF mutation reappeared at 44 weeks. The manifestation of the delayed effects and the measures of biological markers varied according to the timing of irradiation. We also reported that the decrease in function of the p53 gene was related to the effects of a delayed mutation. In the present study, we investigated the functions and mutations of the p53 gene in old age for p53 (+ / -) mice following irradiation at various ages. p53 (+ / -) mice were given a whole-body dose of 3 Gy at 8, 28 or 40 weeks of age. There were significant differences for all variables tested at 8 weeks of age. This was similarly the case for mice irradiated at 28 weeks of age, in which there were also significant differences in TCR VF and the percentage of apoptosis. In mice irradiated at 40 weeks of age, there were significant differences for all considered variables except for the p53 allele. We demonstrated that the different patterns of delayed mutation of the p53 gene at 56 weeks of age depended on the age at which mice had undergone 3-Gy whole-body irradiation. Our conclusions are limited to variation in p53-dependent delayed effects according to the time of irradiation.

  8. Cisplatin modulates B-cell translocation gene 2 to attenuate cell proliferation of prostate carcinoma cells in both p53-dependent and p53-independent pathways.

    PubMed

    Chiang, Kun-Chun; Tsui, Ke-Hung; Chung, Li-Chuan; Yeh, Chun-Nan; Feng, Tsui-Hsia; Chen, Wen-Tsung; Chang, Phei-Lang; Chiang, Hou-Yu; Juang, Horng-Heng

    2014-07-01

    Cisplatin is a widely used anti-cancer drug. The B-cell translocation gene 2 (BTG2) is involved in the cell cycle transition regulation. We evaluated the cisplatin effects on prostate cancer cell proliferation and the expressions of BTG2, p53, androgen receptor (AR) and prostate specific antigen (PSA) in prostate carcinoma, p53 wild-type LNCaP or p53-null PC-3, cells. Cisplatin treatments attenuated cell prostate cancer cell growth through inducing Go/G1 cell cycle arrest in lower concentration and apoptosis at higher dosage. Cisplatin treatments enhanced p53 and BTG2 expression, repressed AR and PSA expression, and blocked the activation of androgen on the PSA secretion in LNCaP cells. BTG2 knockdown in LNCaP cells attenuated cisplatin-mediated growth inhibition. Cisplatin enhanced BTG2 gene expression dependent on the DNA fragment located within -173 to -82 upstream of BTG2 translation initiation site in prostate cancer cells. Mutation of the p53 response element from GGGCAGAGCCC to GGGCACC or mutation of the NFκB response element from GGAAAGTCC to GGAAAGGAA by site-directed mutagenesis abolished the stimulation of cisplatin on the BTG2 promoter activity in LNCaP or PC-3 cells, respectively. Our results indicated that cisplatin attenuates prostate cancer cell proliferation partly mediated by upregulation of BTG2 through the p53-dependent pathway or p53-independent NFκB pathway.

  9. Glucocorticoid receptor activation inhibits p53-induced apoptosis of MCF10Amyc cells via induction of protein kinase Cε.

    PubMed

    Aziz, Moammir H; Shen, Hong; Maki, Carl G

    2012-08-24

    Glucocorticoid receptor (GR) is a ligand-dependent transcription factor that can promote apoptosis or survival in a cell-specific manner. Activated GR has been reported to inhibit apoptosis in mammary epithelial cells and breast cancer cells by increasing pro-survival gene expression. In this study, activated GR inhibited p53-dependent apoptosis in MCF10A cells and human mammary epithelial cells that overexpress the MYC oncogene. Specifically, GR agonists hydrocortisone or dexamethasone inhibited p53-dependent apoptosis induced by cisplatin, ionizing radiation, or the MDM2 antagonist Nutlin-3. In contrast, the GR antagonist RU486 sensitized the cells to apoptosis by these agents. Apoptosis inhibition was associated with maintenance of mitochondrial membrane potential, diminished caspase-3 and -7 activation, and increased expression at both the mRNA and protein level of the anti-apoptotic PKC family member PKCε. Knockdown of PKCε via siRNA targeting reversed the protective effect of dexamethasone and restored apoptosis sensitivity. These data provide evidence that activated GR can inhibit p53-dependent apoptosis through induction of the anti-apoptotic factor PKCε.

  10. HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway.

    PubMed

    Heo, Jong-Ik; Cho, Jung Hee; Kim, Jae-Ryong

    2013-08-01

    Holliday junction recognition protein (HJURP), a centromere protein-A (CENP-A) histone chaperone, mediates centromere-specific assembly of CENP-A nucleosome, contributing to high-fidelity chromosome segregation during cell division. However, the role of HJURP in cellular senescence of human primary cells remains unclear. We found that the expression levels of HJURP decreased in human dermal fibroblasts and umbilical vein endothelial cells in replicative or premature senescence. Ectopic expression of HJURP in senescent cells partially overcame cell senescence. Conversely, downregulation of HJURP in young cells led to premature senescence. p53 knockdown, but not p16 knockdown, abolished senescence phenotypes caused by HJURP reduction. These data suggest that HJURP plays an important role in the regulation of cellular senescence through a p53-dependent pathway and might contribute to tissue or organismal aging and protection of cellular transformation.

  11. The Fusion Protein of Respiratory Syncytial Virus Triggers p53-Dependent Apoptosis▿

    PubMed Central

    Eckardt-Michel, Julia; Lorek, Markus; Baxmann, Diane; Grunwald, Thomas; Keil, Günther M.; Zimmer, Gert

    2008-01-01

    Infection with respiratory syncytial virus (RSV) frequently causes inflammation and obstruction of the small airways, leading to severe pulmonary disease in infants. We show here that the RSV fusion (F) protein, an integral membrane protein of the viral envelope, is a strong elicitor of apoptosis. Inducible expression of F protein in polarized epithelial cells triggered caspase-dependent cell death, resulting in rigorous extrusion of apoptotic cells from the cell monolayer and transient loss of epithelial integrity. A monoclonal antibody directed against F protein inhibited apoptosis and was also effective if administered to A549 lung epithelial cells postinfection. F protein expression in epithelial cells caused phosphorylation of tumor suppressor p53 at serine 15, activation of p53 transcriptional activity, and conformational activation of proapoptotic Bax. Stable expression of dominant-negative p53 or p53 knockdown by RNA interference inhibited the apoptosis of RSV-infected A549 cells. HEp-2 tumor cells with low levels of p53 were not sensitive to RSV-triggered apoptosis. We propose a new model of RSV disease with the F protein as an initiator of epithelial cell shedding, airway obstruction, secondary necrosis, and consequent inflammation. This makes the RSV F protein a key target for the development of effective postinfection therapies. PMID:18216092

  12. Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase

    PubMed Central

    Yuan, Zhi-Min; Huang, Yinyin; Ishiko, Takatoshi; Kharbanda, Surender; Weichselbaum, Ralph; Kufe, Donald

    1997-01-01

    Activation of the c-Abl protein tyrosine kinase by certain DNA-damaging agents contributes to down-regulation of Cdk2 and G1 arrest by a p53-dependent mechanism. The present work investigates the potential role of c-Abl in apoptosis induced by DNA damage. Transient transfection studies with wild-type, but not kinase-inactive, c-Abl demonstrate induction of apoptosis. Cells that stably express inactive c-Abl exhibit resistance to ionizing radiation-induced loss of clonogenic survival and apoptosis. Cells null for c-abl are also impaired in the apoptotic response to ionizing radiation. We further show that cells deficient in p53 undergo apoptosis in response to expression of c-Abl and exhibit decreases in radiation-induced apoptosis when expressing inactive c-Abl. These findings suggest that c-Abl kinase regulates DNA damage-induced apoptosis. PMID:9037071

  13. p53-dependent G2 arrest associated with a decrease in cyclins A2 and B1 levels in a human carcinoma cell line

    PubMed Central

    Badie, C; Bourhis, J; Sobczak-Thépot, J; Haddada, H; Chiron, M; Janicot, M; Janot, F; Tursz, T; Vassal, G

    2000-01-01

    In vivo transfer of wild-type (wt) p53 gene via a recombinant adenovirus has been proposed to induce apoptosis and increase radiosensitivity in several human carcinoma models. In the context of combining p53 gene transfer and irradiation, we investigated the consequences of adenoviral-mediated wtp53 gene transfer on the cell cycle and radiosensitivity of a human head and neck squamous cell carcinoma line (SCC97) with a p53 mutated phenotype. We showed that ectopic expression of wtp53 in SCC97 cells resulted in a prolonged G1 arrest, associated with an increased expression of the cyclin-dependent kinase inhibitor WAF1/p21 target gene. A transient arrest in G2 but not in G1 was observed after irradiation. This G2 arrest was permanent when exponentially growing cells were transduced by Ad5CMV- p53 (RPR/INGN201) immediately after irradiation with 5 or 10 Gy. Moreover, levels of cyclins A2 and B1, which are known to regulate the G2/M transition, dramatically decreased as cells arrived in G2, whereas maximal levels of expression were observed in the absence of wtp53. In conclusion, adenoviral mediated transfer of wtp53 in irradiated SCC97 cells, which are mutated for p53, appeared to increase WAF1/p21 expression and decrease levels of the mitotic cyclins A2 and B1. These observations suggest that the G2 arrest resulted from a p53-dependent premature inactivation of the mitosis promoting factor. © 2000 Cancer Research Campaign PMID:10682678

  14. p53-dependent expression of CXCR5 chemokine receptor in MCF-7 breast cancer cells.

    PubMed

    Mitkin, Nikita A; Hook, Christina D; Schwartz, Anton M; Biswas, Subir; Kochetkov, Dmitry V; Muratova, Alisa M; Afanasyeva, Marina A; Kravchenko, Julia E; Bhattacharyya, Arindam; Kuprash, Dmitry V

    2015-03-19

    Elevated expression of chemokine receptors in tumors has been reported in many instances and is related to a number of survival advantages for tumor cells including abnormal activation of prosurvival intracellular pathways. In this work we demonstrated an inverse correlation between expression levels of p53 tumor suppressor and CXCR5 chemokine receptor in MCF-7 human breast cancer cell line. Lentiviral transduction of MCF-7 cells with p53 shRNA led to elevated CXCR5 at both mRNA and protein levels. Functional activity of CXCR5 in p53-knockdown MCF-7 cells was also increased as shown by activation of target gene expression and chemotaxis in response to B-lymphocyte chemoattractant CXCL13. Using deletion analysis and site-directed mutagenesis of the cxcr5 gene promoter and enhancer elements, we demonstrated that p53 appears to act upon cxcr5 promoter indirectly, by repressing the activity of NFκB transcription factors. Using chromatin immunoprecipitation and reporter gene analysis, we further demonstrated that p65/RelA was able to bind the cxcr5 promoter in p53-dependent manner and to directly transactivate it when overexpressed. Through the described mechanism, elevated CXCR5 expression may contribute to abnormal cell survival and migration in breast tumors that lack functional p53.

  15. Expression of mouse Fbxw7 isoforms is regulated in a cell cycle- or p53-dependent manner

    SciTech Connect

    Matsumoto, Akinobu; Onoyama, Ichiro; Nakayama, Keiichi I. . E-mail: nakayak1@bioreg.kyushu-u.ac.jp

    2006-11-10

    Fbxw7 is the F-box protein component of an SCF-type ubiquitin ligase that contributes to the ubiquitin-dependent degradation of cell cycle activators and oncoproteins. Three isoforms ({alpha}, {beta}, and {gamma}) of Fbxw7 are produced from mRNAs with distinct 5' exons. We have now investigated regulation of Fbxw7 expression in mouse tissues. Fbxw7{alpha} mRNA was present in all tissues examined, whereas Fbxw7{beta} mRNA was detected only in brain and testis, and Fbxw7{gamma} mRNA in heart and skeletal muscle. The amount of Fbxw7{alpha} mRNA was high during quiescence (G phase) in mouse embryonic fibroblasts (MEFs) and T cells, but it decreased markedly as these cells entered the cell cycle. The abundance of Fbxw7{alpha} mRNA was unaffected by cell irradiation or p53 status. In contrast, X-irradiation increased the amount of Fbxw7{beta} mRNA in wild-type MEFs but not in those from p53-deficient mice, suggesting that radiation-induced up-regulation of p53 leads to production of Fbxw7{beta} mRNA. Our results thus indicate that expression of Fbxw7 isoforms is differentially regulated in a cell cycle- or p53-dependent manner.

  16. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300

    PubMed Central

    Dornan, David; Hupp, Ted R.

    2001-01-01

    The N-terminal BOX-I domain of p53 containing a docking site for the negative regulator MDM2 and the positive effector p300, harbours two recently identified phosphorylation sites at Thr18 or Ser20 whose affect on p300 is undefined. Biochemical assays demonstrate that although MDM2 binding is inhibited by these phosphorylations, p300 binding is strikingly stabilized by Thr18 or Ser20 phosphorylation. Introducing EGFP-BOX-I domain peptides with an aspartate substitution at Thr18 or Ser20 induced a significant inhibition of endogenous p53-dependent transcription in cycling cells, in irradiated cells, as well as in cells transiently co-transfected with p300 and p53. In contrast an EGFP-wild-type BOX-I domain peptide stimulated p53 activity via inhibition of MDM2 protein binding. These results suggest that phosphorylation of p53 at Thr18 or Ser20 can activate p53 by stabilizing the p300–p53 complex and also identify a class of small molecular weight ligands capable of selective discrimination between MDM2- and p300-dependent activities. PMID:11258706

  17. cep-1/p53-dependent dysplastic pathology of the aging C. elegans gonad.

    PubMed

    McGee, Mathew D; Day, Nicholas; Graham, Jill; Melov, Simon

    2012-04-01

    The C. elegans germline and somatic gonad are actively developing until the animal reaches adulthood, and then continue to undergo striking changes as the animal ages. Reported changes include a depletion of available sperm, a decrease in oocyte quality up till mid-life, a reduction in germline nuclei, a decrease in fertility, and an accumulation of DNA in the midbody of aging C. elegans. Here, we have focused on the aging gonad in old animals, and show in detail that the aging gonad undergoes a massive uterine growth composed of endoreduplicating oocytes, yolk, and expanses of chromatin. We use a novel series of imaging techniques in combination with histological methodology for reconstructing aged worms in 3-dimensions, and show in old animals growing masses swelling inside the uterus to occupy most of the diameter of the worm. We link this accelerated growth to the cep-1/p53 tumor suppressor. Because cep-1 is required for DNA damage induced apoptosis, and daf-2 limits longevity, these results suggest a role for age-related DNA damage in dysplastic uterine growths, which in some respects resemble premalignant changes that can occur in aging mammals.

  18. Amphiregulin impairs apoptosis-stimulating protein 2 of p53 overexpression-induced apoptosis in hepatoma cells.

    PubMed

    Liu, Kai; Lin, Dongdong; Ouyang, Yabo; Pang, Lijun; Guo, Xianghua; Wang, Shanshan; Zang, Yunjin; Chen, Dexi

    2017-03-01

    Overexpression of apoptosis-stimulating protein 2 of p53 (ASPP2) induces apoptotic cell death in hepatoma cells (e.g. HepG2 cells) by enhancing the transactivation activity of p53, but long-term ASPP2 overexpression fails to induce more apoptosis since activation of the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway impairs the pro-apoptotic role of ASPP2. In this study, in recombinant adenovirus-ASPP2-infected HepG2 cells, ASPP2 overexpression induces amphiregulin expression in a p53-dependent manner. Although amphiregulin initially contributes to ASPP2-induced apoptosis, it eventually impairs the pro-apoptotic function of ASPP2 by activating the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway, leading to apoptosis resistance. Moreover, blocking soluble amphiregulin with a neutralizing antibody also significantly increased apoptotic cell death of HepG2 cells due to treatment with methyl methanesulfonate, cisplatin, or a recombinant p53 adenovirus, suggesting that the function of amphiregulin involved in inhibiting apoptosis may be a common mechanism by which hepatoma cells escape from stimulus-induced apoptosis. Thus, our data elucidate an apoptosis-evasion mechanism in hepatocellular carcinoma and have potential implications for hepatocellular carcinoma therapy.

  19. Wip1 inhibitor GSK2830371 inhibits neuroblastoma growth by inducing Chk2/p53-mediated apoptosis

    PubMed Central

    Chen, Zhenghu; Wang, Long; Yao, Dayong; Yang, Tianshu; Cao, Wen-Ming; Dou, Jun; Pang, Jonathan C.; Guan, Shan; Zhang, Huiyuan; Yu, Yang; Zhao, Yanling; Wang, Yongfeng; Xu, Xin; Shi, Yan; Patel, Roma; Zhang, Hong; Vasudevan, Sanjeev A.; Liu, Shangfeng; Yang, Jianhua; Nuchtern, Jed G.

    2016-01-01

    Neuroblastoma (NB) is the most common extracranial tumor in children. Unlike in most adult tumors, tumor suppressor protein 53 (p53) mutations occur with a relatively low frequency in NB and the downstream function of p53 is intact in NB cell lines. Wip1 is a negative regulator of p53 and hindrance of Wip1 activity by novel inhibitor GSK2830371 is a potential strategy to activate p53’s tumor suppressing function in NB. Yet, the in vivo efficacy and the possible mechanisms of GSK2830371 in NB have not yet been elucidated. Here we report that novel Wip1 inhibitor GSK2830371 induced Chk2/p53-mediated apoptosis in NB cells in a p53-dependent manner. In addition, GSK2830371 suppressed the colony-formation potential of p53 wild-type NB cell lines. Furthermore, GSK2830371 enhanced doxorubicin- (Dox) and etoposide- (VP-16) induced cytotoxicity in a subset of NB cell lines, including the chemoresistant LA-N-6 cell line. More importantly, GSK2830371 significantly inhibited tumor growth in an orthotopic xenograft NB mouse model by inducing Chk2/p53-mediated apoptosis in vivo. Taken together, this study suggests that GSK2830371 induces Chk2/p53-mediated apoptosis both in vitro and in vivo in a p53 dependent manner. PMID:27991505

  20. NSCA-1-a novel N-substituted coumalamide derivative-increases Adriamycin sensitivity in HepG2/adriamycin cells through modulating Akt/GSK-3β signaling and p53-dependant apoptotic pathway.

    PubMed

    Fan, Yanhua; Liu, Jianyu; Liu, Dan; Zhou, Zhipeng; Bao, Ying; Wang, Jian; Zhao, Qingchun; Xu, Yongnan

    2017-01-01

    Coumalamide derivatives are one of 2-pyrones derivatives, exerting multifunctional bioactivity. An array of coumalamide derivatives have been developed and presented good antiproliferative properties on cancer cells. However, the synthesis of 5-substituted coumalamide derivatives has not yet been published. Resistance to chemotherapeutic drugs is a major obstacle in hepatocellular carcinoma therapy. Recent evidence suggests that overexpression of constitutively active Akt confers on cancer cells resistance to chemotherapy. In this study, we report the synthesis and biological evaluation of a novel N-substituted coumalamide derivative (NSCA-1). The results indicated that NSCA-1 exerts synergistic cytotoxicity with Adriamycin in HepG2/ADR (HepG2/adriamycin) cells. Furthermore, both of the Akt kinase activity and phosphorylated Akt (Ser473) were found to be inhibited by NSCA-1 and subsequently resulting in decreased phosphorylation of GSK-3β. The intracellular accumulation of Adriamycin was also boosted by NSCA-1 via reducing the expression of p-gp. In addition, we found that combined treatment with NSCA-1 enhance cell apoptosis induced by Adriamycin via p53-dependant apoptotic pathway.

  1. Naphthazarin enhances ionizing radiation-induced cell cycle arrest and apoptosis in human breast cancer cells.

    PubMed

    Kim, Min Young; Park, Seong-Joon; Shim, Jae Woong; Yang, Kwangmo; Kang, Ho Sung; Heo, Kyu

    2015-04-01

    Naphthazarin (Naph, DHNQ, 5,8-dihydroxy-l,4-naphthoquinone) is one of the naturally available 1,4-naphthoquinone derivatives that are well-known for their anti-inflammatory, antioxidant, antibacterial and antitumor cytotoxic effects in cancer cells. Herein, we investigated whether Naph has effects on cell cycle arrest and apoptosis in MCF-7 human breast cancer cells exposed to ionizing radiation (IR). Naph reduced the MCF-7 cell viability in a dose-dependent manner. We also found that Naph and/or IR increased the p53-dependent p21 (CIP/WAF1) promoter activity. Noteworthy, our ChIP assay results showed that Naph and IR combined treatment activated the p21 promoter via inhibition of binding of multi-domain proteins, DNMT1, UHRF1 and HDAC1. Apoptosis and cell cycle analyses demonstrated that Naph and IR combined treatment induced cell cycle arrest and apoptosis in MCF-7 cells. Herein, we showed that Naph treatment enhances IR-induced cell cycle arrest and death in MCF-7 human breast cancer cells through the p53-dependent p21 activation mechanism. These results suggest that Naph might sensitize breast cancer cells to radiotherapy by enhancing the p53-p21 mechanism activity.

  2. Induction of p53-dependent activation of the human proliferating cell nuclear antigen gene in chromatin by ionizing radiation.

    PubMed

    Shan, Bin; Xu, Jin; Zhuo, Ying; Morris, Cindy A; Morris, Gilbert F

    2003-11-07

    A human fibroblast cell line with conditional p53 expression displayed a p53-dependent increase in both the protein and mRNA levels of proliferating cell nuclear antigen (PCNA) after exposure to ionizing radiation (IR). The combination of p53 induction and IR cooperated to activate a transiently expressed human PCNA promoter-reporter gene via a p53-responsive element. Chromatin immunoprecipitation assays with antibodies specific for p53 or p300/CREB-binding protein revealed specific p53-dependent enrichment of PCNA promoter sequences in immunoprecipitates of sheared chromatin prepared from irradiated cells. Maximal and specific association of acetylated histone H4 with the PCNA promoter also depended on p53 induction and exposure to IR. These data demonstrate p53 binding to a target site in the PCNA promoter, recruitment of p300/CREB-binding protein, and localized acetylation of histone H4 in an IR-dependent manner. These molecular events are likely to play a role in mediating activation of PCNA gene expression by p53 during the cellular response to DNA damage. The analyses indicate that the combination of p53 induction and IR activate the PCNA gene via mechanisms similar to that of p21/wild-type p53-activated factor but to a lesser extent. This differential regulation of PCNA and p21/wild-type p53-activated factor may establish the proper ratio of the two proteins to coordinate DNA repair with cell cycle arrest.

  3. Hdm2 and Nitric Oxide Radicals Contribute to the P53-Dependent Radioadaptive Response

    SciTech Connect

    Takahashi, Akihisa; Matsumoto, Hideki; Ohnishi, Takeo

    2008-06-01

    Purpose: The aim of this work was to characterize the radioadaptive response at the molecular level. Methods and Materials: We used wild-type (wt) p53 and mutated (m) p53-containing cells derived from the human lung cancer H1299 cell line, which is p53-null. Cellular radiation sensitivities were determined with a colony-forming assay. The accumulations of p53, the human homolog of endogenous murine double minute 2 (Hdm2), and inducible nitric oxide synthase were analyzed with Western blotting. Quantification of chromosomal aberrations was estimated by scoring dicentrics per cell. Results: In wtp53 cells, it was demonstrated that the lack of p53 accumulation was coupled with the activation of Hdm2 after low-dose irradiation (0.02 Gy). Although NO radicals were only minimally induced in wtp53 cells irradiated with a challenging irradiation (6 Gy) alone, NO radicals were seen to increase about two- to fourfold after challenging irradiation subsequent to a priming irradiation (0.02 Gy). Under similar irradiation conditions with a priming and challenging irradiation in wtp53 cells, induction of radioresistance and a depression of chromosomal aberrations were observed only in the absence of 5, 5'-(2, 5-Furanidiyl)bis-2-thiophenemethanol (RITA) or Nutlin-3 (p53-Hdm2 interaction inhibitors), aminoguanidine (an inducible nitric oxide synthase inhibitor), and c-PTIO (an NO radical scavenger). On the other hand, in p53 dysfunctional cells, a radioadaptive response was not observed in the presence or absence of those inhibitors. Moreover radioresistance developed when wtp53 cells were treated with isosorbide dinitrate (an NO-generating agent) alone. Conclusions: These findings suggest that NO radicals are initiators of the radioadaptive response, acting through the activation of Hdm2 and the depression of p53 accumulations.

  4. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    PubMed Central

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  5. CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination.

    PubMed

    Marjanović, Marko; Sánchez-Huertas, Carlos; Terré, Berta; Gómez, Rocío; Scheel, Jan Frederik; Pacheco, Sarai; Knobel, Philip A; Martínez-Marchal, Ana; Aivio, Suvi; Palenzuela, Lluís; Wolfrum, Uwe; McKinnon, Peter J; Suja, José A; Roig, Ignasi; Costanzo, Vincenzo; Lüders, Jens; Stracker, Travis H

    2015-07-09

    CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63-deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death, and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63-deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination.

  6. DIMP53-1: A novel small-molecule dual inhibitor of p53-MDM2/X interactions with multifunctional p53-dependent anticancer properties.

    PubMed

    Soares, Joana; Espadinha, Margarida; Raimundo, Liliana; Ramos, Helena; Gomes, Ana Sara; Gomes, Sara; Loureiro, Joana B; Inga, Alberto; Reis, Flávio; Gomes, Célia; Santos, Maria M M; Saraiva, Lucília

    2017-03-10

    The transcription factor p53 plays a crucial role in cancer development and dissemination, and thus p53-targeted therapies are amongst the most encouraging anticancer strategies. In human cancers with wild-type (wt) p53, its inactivation by interaction with murine double minute (MDM)2 and MDMX is a common event. Simultaneous inhibition of the p53 interaction with both MDMs is crucial to restore the tumor suppressor activity of p53. Here we describe the synthesis of the new tryptophanol-derived oxazoloisoindolinone DIMP53-1 and identify its activity as a dual inhibitor of the p53-MDM2/X interactions using a yeast-based assay. DIMP53-1 caused growth inhibition, mediated by p53 stabilization and upregulation of p53 transcriptional targets involved in cell cycle arrest and apoptosis, in wt p53-expressing tumor cells, including MDM2- or MDMX-overexpressing cells. Importantly, DIMP53-1 abolishes the p53-MDM2/X interactions by binding to p53, in human colon adenocarcinoma HCT116 cells. DIMP53-1 also inhibited the migration and invasion of HCT116 cells, and the migration and tube formation of HMVEC-D endothelial cells. Notably, in human tumor xenograft mice models, DIMP53-1 showed a p53-dependent antitumor activity through induction of apoptosis and inhibition of proliferation and angiogenesis. Finally, no genotoxicity or undesirable toxic effects were observed with DIMP53-1. In conclusion, DIMP53-1 is a novel p53 activator, which potentially binds to p53 inhibiting its interaction with MDM2 and MDMX. Although target-directed, DIMP53-1 has a multifunctional activity, targeting major hallmarks of cancer through its anti-proliferative, pro-apoptotic, anti-angiogenic, anti-invasive and anti-migratory properties. DIMP53-1 is a promising anticancer drug candidate and an encouraging starting point to develop improved derivatives for clinical application.

  7. Protocatechuic Acid Prevents oxLDL-Induced Apoptosis by Activating JNK/Nrf2 Survival Signals in Macrophages

    PubMed Central

    Varì, Rosaria; Scazzocchio, Beatrice; Santangelo, Carmela; Filesi, Carmelina; Galvano, Fabio; D'Archivio, Massimo; Masella, Roberta; Giovannini, Claudio

    2015-01-01

    Protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, exerts numerous biological activities including antiapoptotic, anti-inflammatory, and antiatherosclerotic effects. Oxidised LDL have atherogenic properties by damaging arterial wall cells and inducing p53-dependent apoptosis in macrophages. This study was aimed at defining the molecular mechanism responsible for the protective effects of PCA against oxidative and proapoptotic damage exerted by oxLDL in J774 A.1 macrophages. We found that the presence of PCA in cells treated with oxLDL completely inhibited the p53-dependent apoptosis induced by oxLDL. PCA decreased oxLDL-induced ROS overproduction and in particular prevented the early increase of ROS. This decrease seemed to be the main signal responsible for maintaining the intracellular redox homeostasis hindering the activation of p53 induced by ROS, p38MAPK, and PKCδ. Consequently the overexpression of the proapoptotic p53-target genes such as p66Shc protein did not occur. Finally, we demonstrated that PCA induced the activation of JNK, which, in turn, determined the increase of nuclear Nrf2, leading to inhibition of the early ROS overproduction. We concluded that the antiapoptotic mechanism of PCA was most likely related to the activation of the JNK-mediated survival signals that strengthen the cellular antioxidant defences rather than to the PCA antioxidant power. PMID:26180584

  8. Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway

    PubMed Central

    JEDINAK, ANDREJ; SLIVA, DANIEL

    2009-01-01

    In spite of the global consumption of mushrooms, only two epidemiological studies demonstrated an inverse correlation between mushroom intake and the risk of cancer. Therefore, in the present study we evaluated whether extracts from edible mushrooms Agaricus bisporus (portabella), Flammulina velutipes (enoki), Lentinula edodes (shiitake) and Pleurotus ostreatus (oyster) affect the growth of breast and colon cancer cells. Here, we identified as the most potent, P. ostreatus (oyster mushroom) which suppressed proliferation of breast cancer (MCF-7, MDA-MB-231) and colon cancer (HT-29, HCT-116) cells, without affecting proliferation of epithelial mammary MCF-10A and normal colon FHC cells. Flow cytometry revealed that the inhibition of cell proliferation by P. ostreatus was associated with the cell cycle arrest at G0/G1 phase in MCF-7 and HT-29 cells. Moreover, P. ostreatus induced the expression of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21(CIP1/WAF1), whereas inhibited the phosphorylation of retinoblastoma Rb protein in MCF-7 cells. In addition, P. ostreatus also up-regulated expression of p21 and inhibited Rb phosphorylation in HT-29 cells, suggesting that that P. ostreatus suppresses the proliferation of breast and colon cancer cells via p53-dependent as well as p53-independent pathway. In conclusion, our results indicated that the edible oyster mushroom has potential therapeutic/preventive effects on breast and colon cancer. PMID:19020765

  9. Climacostol reduces tumour progression in a mouse model of melanoma via the p53-dependent intrinsic apoptotic programme

    PubMed Central

    Perrotta, Cristiana; Buonanno, Federico; Zecchini, Silvia; Giavazzi, Alessio; Proietti Serafini, Francesca; Catalani, Elisabetta; Guerra, Laura; Belardinelli, Maria Cristina; Picchietti, Simona; Fausto, Anna Maria; Giorgi, Simone; Marcantoni, Enrico; Clementi, Emilio; Ortenzi, Claudio; Cervia, Davide

    2016-01-01

    Climacostol, a compound produced by the ciliated protozoan Climacostomum virens, displayed cytotoxic properties in vitro. This study demonstrates that it has anti-tumour potential. Climacostol caused a reduction of viability/proliferation of B16-F10 mouse melanoma cells, a rapidly occurring DNA damage, and induced the intrinsic apoptotic pathway characterised by the dissipation of the mitochondrial membrane potential, the translocation of Bax to the mitochondria, the release of Cytochrome c from the mitochondria, and the activation of Caspase 9-dependent cleavage of Caspase 3. The apoptotic mechanism of climacostol was found to rely on the up-regulation of p53 and its targets Noxa and Puma. In vivo analysis of B16-F10 allografts revealed a persistent inhibition of tumour growth rate when melanomas were treated with intra-tumoural injections of climacostol. In addition, it significantly improved the survival of transplanted mice, decreased tumour weight, induced a remarkable reduction of viable cells inside the tumour, activated apoptosis and up-regulated the p53 signalling network. Importantly, climacostol toxicity was more selective against tumour than non-tumour cells. The anti-tumour properties of climacostol and the molecular events associated with its action indicate that it is a powerful agent that may be considered for the design of pro-apoptotic drugs for melanoma therapy. PMID:27271364

  10. CAPE Analogs Induce Growth Arrest and Apoptosis in Breast Cancer Cells.

    PubMed

    Beauregard, Annie-Pier; Harquail, Jason; Lassalle-Claux, Grégoire; Belbraouet, Mehdi; Jean-Francois, Jacques; Touaibia, Mohamed; Robichaud, Gilles A

    2015-07-10

    Breast cancer is the second leading cause of death amongst women worldwide. As a result, many have turned their attention to new alternative approaches to treat this disease. Caffeic acid phenylethyl ester (CAPE), a well-known active compound from bee propolis, has been previously identified as a strong antioxidant, anti-inflammatory, antiviral and anticancer molecule. In fact, CAPE is well documented as inducing cell death by inhibiting NFκB and by inducing pro-apoptotic pathways (i.e., p53). With the objective of developing stronger anticancer compounds, we studied 18 recently described CAPE derivatives for their ability to induce apoptosis in breast cancer cell lines. Five of the said compounds, including CAPE, were selected and subsequently characterised for their anticancer mechanism of action. We validated that CAPE is a potent inducer of caspase-dependent apoptosis. Interestingly, some newly synthesized CAPE derivatives also showed greater cell death activity than the lead CAPE structure. Similarly to CAPE, analog compounds elicited p53 activation. Interestingly, one compound in particular, analog 10, induced apoptosis in a p53-mutated cell line. These results suggest that our new CAPE analog compounds may display the capacity to induce breast cancer apoptosis in a p53-dependent and/or independent manner. These CAPE analogs could thus provide new therapeutic approaches for patients with varying genotypic signatures (such as p53 mutations) in a more specific and targeted fashion.

  11. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  12. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    PubMed

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  13. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells.

    PubMed

    Matsumoto, Masaru; Nakajima, Wataru; Seike, Masahiro; Gemma, Akihiko; Tanaka, Nobuyuki

    2016-04-29

    Cisplatin is a highly effective anticancer drug for treatment of various tumors including non-small-cell lung cancer (NSCLC), and is especially useful in cases nonresponsive to molecular-targeted drugs. Accumulating evidence has shown that cisplatin activates the p53-dependent apoptotic pathway, but it also induces apoptosis in p53-mutated cancer cells. Here we demonstrated that DNA-damage inducible proapoptotic BH3 (Bcl-2 homology region 3)-only Bcl-2 family members, Noxa, Puma, Bim and Bid, are not involved in cisplatin-induced apoptosis in human NSCLC cell lines. In contrast, the expression of proapoptotic multidomain Bcl-2-family members, Bak and Bax, was induced by cisplatin in p53-dependent and -independent manners, respectively. Moreover, in wild-type p53-expressing cells, cisplatin mainly used the Bak-dependent apoptotic pathway, but this apoptotic pathway shifted to the Bax-dependent pathway by loss-of-function of p53. Furthermore, both Bak- and Bax-induced apoptosis was enhanced by the antiapoptotic Bcl-2 family member, Bcl-XL knockdown, but not by Mcl-1 knockdown. From this result, we tested the effect of ABT-263 (Navitoclax), the specific inhibitor of Bcl-2 and Bcl-XL, but not Mcl-1, and found that ABT-263 synergistically enhanced cisplatin-induced apoptosis in NSCLC cells in the presence or absence of p53. These results indicate a novel regulatory system in cisplatin-induced NSCLC cell apoptosis, and a candidate efficient combination chemotherapy method against lung cancers.

  14. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells

    PubMed Central

    Yoneshima, Yasuto; Abolhassani, Nona; Iyama, Teruaki; Sakumi, Kunihiko; Shiomi, Naoko; Mori, Masahiko; Shiomi, Tadahiro; Noda, Tetsuo; Tsuchimoto, Daisuke; Nakabeppu, Yusaku

    2016-01-01

    Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity. PMID:27618981

  15. PUMA is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes.

    PubMed

    Chen, H; Tian, M; Jin, L; Jia, H; Jin, Y

    2015-01-22

    PUMA (p53-upregulated modulator of apoptosis), a BH3-only member of the Bcl-2 protein family, is required for p53-dependent and p53-independent forms of apoptosis. PUMA has been invovled in the onset and progress of several diseases, including cancer, acquired immunodeficiency syndrome, and ischemic brain disease. Although many studies have shown that ischemia and reperfusion (I/R) can induce the apoptosis of astrocytes, the role of PUMA in I/R-mediated apoptosis of cerebral astrocyte apoptosis remains unclear. To mimic in vivo I/R conditions, primary mouse cerebral astrocytes were incubated in a combinational cultural condition of oxygen, glucose, and serum deprivation (OSGD) for 1 h followed by reperfusion (OSGD/R). Cell death determination assays and cell viability assays indicated that OSGD and OSGD/R induce the apoptosis of primary cerebral astrocytes. The expression of PUMA was significantly elevated in primary cerebral astrocytes during OSGD/R. Moreover, targeted down-regulation of PUMA by siRNA transfection significantly decreased the OSGD/R-induced apoptosis of primary cerebral astrocytes. We also found that OSGD and OSGD/R triggered the release of cytochrome c in astrocytes, indicating the dependence on a mitochondrial apoptotic pathway. Reactive oxygen species (ROS) was extremely generated during OSGD and OSGD/R, and the elimination of ROS by treated with N-acetyl-L-cysteine (NAC) remarkably inhibited the expression of PUMA and the apoptosis of primary cerebral astrocytes. The activation of Caspase 3 and Caspase 9 was extremely elevated in primary cerebral astrocytes during OSGD. In addition, we found that knockdown of PUMA led to the depressed expression of Bax, cleaved caspase-9 and caspase-3 during OSGD/R. These results indicate that PUMA is invovled in the apoptosis of cerebral astrocytes upon I/R injury.

  16. Terpinen-4-ol Induces Apoptosis in Human Nonsmall Cell Lung Cancer In Vitro and In Vivo.

    PubMed

    Wu, Chieh-Shan; Chen, Yun-Ju; Chen, Jeremy J W; Shieh, Jeng-Jer; Huang, Chia-Hsin; Lin, Pei-Shan; Chang, Gee-Chen; Chang, Jinghua-Tsai; Lin, Chi-Chen

    2012-01-01

    Terpinen-4-ol, a monoterpene component of the essential oils of several aromatic plants, exhibits antitumor effects. In this study, the antitumor effects of terpinen-4-ol and the cellular and molecular mechanisms responsible for it were evaluated and studied, respectively on human nonsmall cell lung cancer (NSCLC) cells. Our results indicated that terpinen-4-ol elicited a dose-dependent cytotoxic effect, as determined by MTT assay. Increased sub-G1 population and annexin-V binding, activation of caspases 9 and 3, cleavage of poly(ADPribose) polymerase (PARP), and a decrease of mitochondrial membrane potential (MMP) indicated involvement of the mitochondrial apoptotic pathway in terpinen-4-ol-treated A549 and CL1-0 cells. Elevation of the Bax/Bcl-2 ratio and a decrease in IAP family proteins XIAP and survivin were also observed following terpinen-4-ol treatment. Notably, terpinen-4-ol was able to increase p53 levels in A549 and CL1-0 cells. Diminution of p53 by RNA interference induced necrosis instead of apoptosis in A549 cells following terpinen-4-ol treatment, indicating that terpinen-4-ol-elicited apoptosis is p53-dependent. Moreover, intratumoral administration of terpinen-4-ol significantly suppressed the growth of s.c. A549 xenografts by inducing apoptosis, as confirmed by TUNEL assay. Collectively, these data provide insight into the molecular mechanisms underlying terpinen-4-ol-induced apoptosis in NSCLC cells, rendering this compound a potential anticancer drug for NSCLC.

  17. PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2.

    PubMed

    Chakraborti, Soumyananda; Chakraborty, Samik; Saha, Shilpi; Manna, Argha; Banerjee, Shruti; Adhikary, Arghya; Sarwar, Shamila; Hazra, Tapas K; Das, Tanya; Chakrabarti, Pinak

    2017-02-01

    We find that PEG functionalized ZnO nanoparticles (NP) have anticancer properties primarily because of ROS generation. Detailed investigation revealed two consequences depending on the level of ROS - either DNA damage repair or apoptosis - in a time-dependent manner. At early hours of treatment, NP promote NEIL2-mediated DNA repair process to counteract low ROS-induced DNA damage. However, at late hours these NP produce high level of ROS that inhibits DNA repair process, thereby directing the cell towards apoptosis. Mechanistically at low ROS conditions, transcription factor Sp1 binds to the NEIL2 promoter and facilitates its transcription for triggering a 'fight-back mechanism' thereby resisting cancer cell apoptosis. In contrast, as ROS increase during later hours, Sp1 undergoes oxidative degradation that decreases its availability for binding to the promoter thereby down-regulating NEIL2 and impairing the repair mechanism. Under such conditions, the cells strategically switch to the p53-dependent apoptosis.

  18. PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1-transformed cells.

    PubMed

    Jeong, Soo-Jin; Dasgupta, Arindam; Jung, Kyung-Jin; Um, Jee-Hyun; Burke, Aileen; Park, Hyeon Ung; Brady, John N

    2008-01-20

    The phosphatidylinositol-3-kinase (PI3K) and AKT (protein kinase B) signaling pathways play an important role in regulating cell cycle progression and cell survival. In previous studies, we demonstrated that AKT is activated in HTLV-1-transformed cells and that Tax activation of AKT is linked to p53 inhibition and cell survival. In the present study, we extend these observations to identify regulatory pathways affected by AKT in HTLV-1-transformed cells. We demonstrate that inhibition of AKT reduces the level of phosphorylated Bad, an important member of the pro-apoptotic family of proteins. Consistent with the decrease of phosphorylated Bad, cytochrome c is released from the mitochondria and caspase-9 is activated. Pretreatment of the cells with caspase-9 specific inhibitor z-LEHD-FMK or pan caspase inhibitor Ac-DEVD-CHO prevented LY294002-induced apoptosis. Of interest, p53 siRNA prevents LY294002-induced apoptosis in HTLV-1-transformed cells, suggesting that p53 reactivation is linked to apoptosis. In conclusion, the AKT pathway is involved in targeting multiple proteins which regulate caspase- and p53-dependent apoptosis in HTLV-1-transformed cells. Since AKT inhibitors simultaneously inhibit NF-kappaB and activate p53, these drugs should be promising candidates for HTLV-1-associated cancer therapy.

  19. Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells.

    PubMed

    Cang, Yong; Zhang, Jianxuan; Nicholas, Sally A; Bastien, Jayson; Li, Baojie; Zhou, Pengbo; Goff, Stephen P

    2006-12-01

    DDB1, a component of the Cul4 ubiquitin ligase complex, promotes protein ubiquitination in diverse cellular functions, including nuclear excision repair, regulation of the cell cycle, and DNA replication. To investigate its physiological significance, we generated mice with null and floxed alleles of the DDB1 gene. Here we report that null mutation of DDB1 caused early embryonic lethality, while conditional inactivation of the gene in brain and lens led to neuronal and lens degeneration, brain hemorrhages, and neonatal death. These defects stemmed from a selective elimination of nearly all proliferating neuronal progenitor cells and lens epithelial cells by apoptosis. The cell death was preceded by aberrant accumulation of cell cycle regulators and increased genomic instability and could be partially rescued by removal of the tumor suppressor protein p53. Our results indicate that DDB1 plays an essential role in maintaining viability and genomic integrity of dividing cells.

  20. The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors.

    PubMed

    Eguren, Manuel; Porlan, Eva; Manchado, Eusebio; García-Higuera, Irene; Cañamero, Marta; Fariñas, Isabel; Malumbres, Marcos

    2013-01-01

    The E3-ubiquitin ligase APC/C-Cdh1 is essential for endoreduplication but its relevance in the mammalian mitotic cell cycle is still unclear. Here we show that genetic ablation of Cdh1 in the developing nervous system results in hypoplastic brain and hydrocephalus. These defects correlate with enhanced levels of Cdh1 substrates and increased entry into the S phase in neural progenitors. However, cell division is prevented in the absence of Cdh1 due to hyperactivation of cyclin-dependent kinases, replicative stress, induction of p53, G2 arrest and apoptotic death of these progenitor cells. Concomitant ablation of p53 rescues apoptosis but not replicative stress, resulting in the presence of damaged neurons throughout the adult brain. These data indicate that the inactivation of Cdh1 in vivo results in replicative stress, cell cycle arrest and cell death, supporting recent therapeutic proposals aimed to inhibit the APC/C in tumours.

  1. PUMA promotes Bax translocation in FOXO3a-dependent pathway during STS-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Chen, Qun

    2009-08-01

    PUMA (p53 up-regulated modulator of apoptosis, also called Bbc3) was first identified as a BH3-only Bcl-2 family protein that is transcriptionally up-regulated by p53 and activated upon p53-dependent apoptotic stimuli, such as treatment with DNA-damaging drugs or UV irradiation. Recently studies have been shown that Puma is also up-regulated in response to certain p53-independent apoptotic stimuli, such as growth factor deprivation or treatment with glucocorticoids or STS (staurosporine). However, the molecular mechanisms of PUMA up-regulation and how PUMA functions in response to p53-independent apoptotic stimuli remain poorly understood. In this study, based on real-time single cell analysis, flow cytometry and western blotting technique, we investigated the function of PUMA in living human lung adenocarcinoma cells (ASTC-a-1) after STS treatment. Our results show that FOXO3a was activated by STS stimulation and then translocated from cytosol to nucleus. The expression of PUMA was up-regulated via a FOXO3a-dependent manner after STS treatment, while p53 had little function in this process. Moreover, cell apoptosis and Bax translocation induced by STS were not blocked by Pifithrin-α (p53 inhibitor), which suggested that p53 was not involved in this signaling pathway. Taken together, these results indicate that PUMA promoted Bax translocation in a FOXO3a-dependment pathway during STS-induced apoptosis, while p53 was dispensable in this process.

  2. Cisplatin induced apoptosis of ovarian cancer A2780s cells by activation of ERK/p53/PUMA signals.

    PubMed

    Song, Hao; Wei, Mei; Liu, Wenfen; Shen, Shulin; Li, Jiaqun; Wang, Liming

    2017-03-13

    Cisplatin (CDDP) is one of the most effective anticancer agents widely used in the treatment of solid tumors, including ovarian cancer. It is generally considered as a cytotoxic drug which kills cancer cells by causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, the underlying mechanisms leading to cell apoptosis remain obscure. In this study, the signaling pathways involved in CDDP -induced apoptosis were examined using CDDP-sensitive ovarian cancer A2780s cells. A2780s cells were treated with CDDP (1.5-3 μg/ml) for 6 h, 12 h and 24 h. Using siRNA targeting P53 and PUMA, and a selective MEK inhibitor, PD98059 to examine the relation between ERK1/2 activation, p53 and PUMA expression after exposure to CDDP, and the effect on CDDP-induced apoptosis. The results shown that treatment of A2780s cells with CDDP (3 μg/ml) for 6-24 h induced apoptosis, resulting in the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and accumulation of p53 and PUMA (p53 upregulated modulator of apoptosis) protein. Knockdown of P53 or PUMA by siRNA transfection blocked CDDP-induced apoptosis. Inhibition of ERK1/2 using PD98059, a selective MEK inhibitor, blocked the apoptotic cell death but prevented CDDP-induced accumulation of p53 and PUMA. Knockdown of P53 by siRNA transfection also blocked CDDP-induced accumulation of PUMA. We therefore concluded that CDDP activated ERK1/2 and induced-p53-dependent PUMA upregulation, resulting in triggering apoptosis in A2780s cells. Our study clearly demonstrates that the ERK1/2/p53/PUMA axis is related to CDDP-induced cell death in A2780s cells.

  3. Selective resistance of CD44hi T cells to p53-dependent cell death results in persistence of immunologic memory after total body irradiation.

    PubMed

    Yao, Zhenyu; Jones, Jennifer; Kohrt, Holbrook; Strober, Samuel

    2011-10-15

    Our previous studies showed that treatment of mice with total body irradiation (TBI) or total lymphoid tissue irradiation markedly changes the balance of residual T cell subsets to favor CD4(+)CD44(hi) NKT cells because of the differential resistance of the latter subset to cell death. The object of the current study was to further elucidate the changed balance and mechanisms of differential radioresistance of T cell subsets after graded doses of TBI. The experimental results showed that CD4(+) T cells were markedly more resistant than CD8(+) T cells, and CD44(hi) T cells, including NKT cells and memory T cells, were markedly more resistant than CD44(lo) (naive) T cells. The memory T cells immunized to alloantigens persisted even after myeloablative (1000 cGy) TBI and were able to prevent engraftment of bone marrow transplants. Although T cell death after 1000 cGy was prevented in p53(-/-) mice, there was progressive T cell death in p53(-/-) mice at higher doses. Although p53-dependent T cell death changed the balance of subsets, p53-independent T cell death did not. In conclusion, resistance of CD44(hi) T cells to p53-dependent cell death results in the persistence of immunological memory after TBI and can explain the immune-mediated rejection of marrow transplants in sensitized recipients.

  4. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis.

    PubMed

    Follis, Ariele Viacava; Chipuk, Jerry E; Fisher, John C; Yun, Mi-Kyung; Grace, Christy R; Nourse, Amanda; Baran, Katherine; Ou, Li; Min, Lie; White, Stephen W; Green, Douglas R; Kriwacki, Richard W

    2013-03-01

    Following DNA damage, nuclear p53 induces the expression of PUMA, a BH3-only protein that binds and inhibits the antiapoptotic BCL-2 repertoire, including BCL-xL. PUMA, unique among BH3-only proteins, disrupts the interaction between cytosolic p53 and BCL-xL, allowing p53 to promote apoptosis via direct activation of the BCL-2 effector molecules BAX and BAK. Structural investigations using NMR spectroscopy and X-ray crystallography revealed that PUMA binding induced partial unfolding of two α-helices within BCL-xL. Wild-type PUMA or a PUMA mutant incapable of causing binding-induced unfolding of BCL-xL equivalently inhibited the antiapoptotic BCL-2 repertoire to sensitize for death receptor-activated apoptosis, but only wild-type PUMA promoted p53-dependent, DNA damage-induced apoptosis. Our data suggest that PUMA-induced partial unfolding of BCL-xL disrupts interactions between cytosolic p53 and BCL-xL, releasing the bound p53 to initiate apoptosis. We propose that regulated unfolding of BCL-xL provides a mechanism to promote PUMA-dependent signaling within the apoptotic pathways.

  5. Beta Human Chorionic Gonadotropin - Induction of Apoptosis in Breast Cancer

    DTIC Science & Technology

    2006-01-01

    rehydrated, and digested with proteinase K (25 ug/ml in TBS) using standard 19 methods. After quenching with 3% hydrogen peroxide , sections were...the 19 Chemicon Mouse to Mouse detection kit. Endogenous peroxidase was blocked with 3% aqueous 20 hydrogen peroxide . Slides were incubated with...Agwarwal, M.L., Das, T., Sa, G., 2002. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 512

  6. Targeting Pro-Apoptotic TRAIL Receptors Sensitizes HeLa Cervical Cancer Cells to Irradiation-Induced Apoptosis

    SciTech Connect

    Maduro, John H.; Vries, Elisabeth de; Meersma, Gert-Jan; Hougardy, Brigitte; Zee, Ate G.J. van der; Jong, Steven de

    2008-10-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL (rhTRAIL) and the agonistic antibodies against DR4 and DR5 were added to irradiated HeLa cells. The effect was evaluated with apoptosis and cytotoxicity assays and at the protein level. Membrane receptor expression was measured with flow cytometry. Small-interfering RNA against p53, DR4, and DR5 was used to investigate their function on the combined effect. Results: rhTRAIL and the agonistic DR4 and DR5 antibodies strongly enhanced 10-Gy-induced apoptosis. This extra effect was 22%, 23%, and 29% for rhTRAIL, DR4, and DR5, respectively. Irradiation increased p53 expression and increased the membrane expression of DR5 and DR4. p53 suppression, as well as small-interfering RNA against DR5, resulted in a significant downregulation of DR5 membrane expression but did not affect apoptosis induced by irradiation and rhTRAIL. After small-interfering RNA against DR4, rhTRAIL-induced apoptosis and the additive effect of irradiation on rhTRAIL-induced apoptosis were abrogated, implicating an important role for DR4 in apoptosis induced through irradiation in combination with rhTRAIL. Conclusion: Irradiation-induced apoptosis is strongly enhanced by targeting the pro-apoptotic TRAIL receptors DR4 or DR5. Irradiation results in a p53-dependent increase in DR5 membrane expression. The sensitizing effect of rhTRAIL on irradiation in the HeLa cell line is, however especially mediated through the DR4 receptor.

  7. Bulbophyllum sterile petroleum ether fraction induces apoptosis in vitro and ameliorates tumor progression in vivo.

    PubMed

    Biswas, Subhankar; Pardeshi, Rashmi; Reddy, Neetinkumar D; Shoja, Muhammed Haneefa; Nayak, Pawan G; Setty, M Manjunath; Pai, K Sreedhara R

    2016-12-01

    Orchids of the genus Bulbophyllum have been reported to possess antitumor activity. Present study investigated the possible antitumor activity of the active fraction of bulb and root of Bulbophyllum sterile. Alcoholic extract along with petroleum ether, dichloromethane and ethyl acetate fractions were subjected to SRB assay in HCT-116, MDA-MB-231 and A549 cell lines. The active fractions were further evaluated for apoptosis, expression of apoptotic signaling proteins, comet assay and cell cycle analysis. Furthermore, they were assessed for in vivo antitumor activity in Ehrlich ascites carcinoma model. Petroleum fraction of bulbs (PFB) and roots (PFR) was found to be most active in HCT-116 cell lines with IC50 value of 94.2±6.0 and 75.7±9.8, respectively. Apoptosis was evident from acridine orange/ethidium bromide staining along with the expression of phospho-p53 and phospho-Bad. Both PFB and PFR arrested G2/M phase of the cell cycle with 32.6% and 49.4% arrest, respectively compared to 17.5% arrest with control. An increase in mean life span and hepatic antioxidant levels was observed with PFB and PFR treatment in EAC inoculated mice. The results suggested that the active fractions of bulbs and roots possess anticancer activity likely by inducing apoptosis through phospho-p53 dependent pathway.

  8. Male-killing symbiont damages host's dosage-compensated sex chromosome to induce embryonic apoptosis

    PubMed Central

    Harumoto, Toshiyuki; Anbutsu, Hisashi; Lemaitre, Bruno; Fukatsu, Takema

    2016-01-01

    Some symbiotic bacteria are capable of interfering with host reproduction in selfish ways. How such bacteria can manipulate host's sex-related mechanisms is of fundamental interest encompassing cell, developmental and evolutionary biology. Here, we uncover the molecular and cellular mechanisms underlying Spiroplasma-induced embryonic male lethality in Drosophila melanogaster. Transcriptomic analysis reveals that many genes related to DNA damage and apoptosis are up-regulated specifically in infected male embryos. Detailed genetic and cytological analyses demonstrate that male-killing Spiroplasma causes DNA damage on the male X chromosome interacting with the male-specific lethal (MSL) complex. The damaged male X chromosome exhibits a chromatin bridge during mitosis, and bridge breakage triggers sex-specific abnormal apoptosis via p53-dependent pathways. Notably, the MSL complex is not only necessary but also sufficient for this cytotoxic process. These results highlight symbiont's sophisticated strategy to target host's sex chromosome and recruit host's molecular cascades toward massive apoptosis in a sex-specific manner. PMID:27650264

  9. Resistance of differentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice.

    PubMed

    Hasegawa, M; Zhang, Y; Niibe, H; Terry, N H; Meistrich, M L

    1998-03-01

    The effect of the p53 gene on the survival of mouse testicular cells was evaluated by analysis of degenerating and terminal transferase-mediated end labeling (TUNEL)-positive cells and the subsequent production of further differentiated progeny. In p53 null mice, in contrast to wild-type mice, radiation induced negligible levels of degenerating or TUNEL-positive differentiating spermatogonia within 24 h. This was correlated with higher production of differentiated progeny of the differentiating spermatogonia in p53 null mice. Contrary to the differentiating spermatogonia, the stem spermatogonia of p53 null mice produced fewer differentiated progeny after irradiation than did the stem cells of wild-type mice. We conclude that, because the degeneration and TUNEL positivity of the differentiating spermatogonia in mice of different genotypes were correlated with each other and were dependent on p53, this process is indeed apoptosis. In the differentiating spermatogonia, p53-dependent apoptosis accounted for the bulk of the loss of their progeny after irradiation. Furthermore, whereas the differentiating spermatogonia died by apoptosis that was dependent on p53, the stem spermatogonia, which are more radioresistant, did not.

  10. p53-Dependent Senescence in Mesenchymal Stem Cells under Chronic Normoxia Is Potentiated by Low-Dose γ-Irradiation.

    PubMed

    Höfig, Ines; Ingawale, Yashodhara; Atkinson, Michael J; Hertlein, Heidi; Nelson, Peter J; Rosemann, Michael

    2016-01-01

    Mesenchymal stem cells (MSCs) are a source of adult multipotent cells important in tissue regeneration. Murine MSCs are known to proliferate poorly in vitro under normoxia. The aim of this study is to analyze the interaction of nonphysiological high oxygen and low-dose γ-irradiation onto growth, senescence, and DNA damage. Tri-potent bone marrow-derived MSCs from p53 wildtype and p53-/- mice were cultured under either 21% or 2% O2. Long-term observations revealed a decreasing ability of wildtype mMSCs to proliferate and form colonies under extended culture in normoxia. This was accompanied by increased senescence under normoxia but not associated with telomere shortening. After low-dose γ-irradiation, the normoxic wildtype cells further increased the level of senescence. The number of radiation-induced γH2AX DNA repair foci was higher in mMSCs kept under normoxia but not in p53-/- cells. P53-deficient MSCs additionally showed higher clonogeneity, lower senescence levels, and fewer γH2AX repair foci per cell as compared to their p53 wildtype counterparts irrespective of oxygen levels. These results reveal that oxygen levels together with γ-irradiation and p53 status are interconnected factors modulating growth capacity of BM MSCs in long-term culture. These efforts help to better understand and optimize handling of MSCs prior to their therapeutic use.

  11. p53-Dependent Senescence in Mesenchymal Stem Cells under Chronic Normoxia Is Potentiated by Low-Dose γ-Irradiation

    PubMed Central

    Ingawale, Yashodhara; Hertlein, Heidi; Nelson, Peter J.

    2016-01-01

    Mesenchymal stem cells (MSCs) are a source of adult multipotent cells important in tissue regeneration. Murine MSCs are known to proliferate poorly in vitro under normoxia. The aim of this study is to analyze the interaction of nonphysiological high oxygen and low-dose γ-irradiation onto growth, senescence, and DNA damage. Tri-potent bone marrow-derived MSCs from p53 wildtype and p53−/− mice were cultured under either 21% or 2% O2. Long-term observations revealed a decreasing ability of wildtype mMSCs to proliferate and form colonies under extended culture in normoxia. This was accompanied by increased senescence under normoxia but not associated with telomere shortening. After low-dose γ-irradiation, the normoxic wildtype cells further increased the level of senescence. The number of radiation-induced γH2AX DNA repair foci was higher in mMSCs kept under normoxia but not in p53−/− cells. P53-deficient MSCs additionally showed higher clonogeneity, lower senescence levels, and fewer γH2AX repair foci per cell as compared to their p53 wildtype counterparts irrespective of oxygen levels. These results reveal that oxygen levels together with γ-irradiation and p53 status are interconnected factors modulating growth capacity of BM MSCs in long-term culture. These efforts help to better understand and optimize handling of MSCs prior to their therapeutic use. PMID:26788069

  12. The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells

    SciTech Connect

    Han Xiaobing; Xi Ling; Wang Hui; Huang Xiaoyuan; Ma Xiangyi; Han Zhiqiang; Wu Peng; Ma Xiaoli; Lu Yunping; Wang, Gang Zhou Jianfeng; Ma Ding

    2008-10-17

    Diverse types of voltage-gated potassium (K{sup +}) channels have been shown to be involved in regulation of cell proliferation. The maxi-conductance Ca{sup 2+}-activated K{sup +} channels (BK channels) may play an important role in the progression of human cancer. To explore the role of BK channels in regulation of apoptosis in human ovarian cancer cells, the effects of the specific BK channel activator NS1619 on induction of apoptosis in A2780 cells were observed. Following treatment with NS1619, cell proliferation was measured by MTT assay. Apoptosis of A2780 cells pretreated with NS1619 was detected by agarose gel electrophoresis of cellular DNA and flow cytometry. Our data demonstrate that NS1619 inhibits the proliferation of A2780 cells in a dosage and time dependent manner IC{sub 50} = 31.1 {mu}M, for 48 h pretreatment and induces apoptosis. Western blot analyses showed that the anti-proliferation effect of NS1619 was associated with increased expression of p53, p21, and Bax. These results indicate that BK channels play an important role in regulating proliferation of human ovarian cancer cells and may induce apoptosis through induction of p21{sup Cip1} expression in a p53-dependent manner.

  13. The mechanism of PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Cai, Xiongwei; Liu, Timon C.; Ding, Xin-Min; Gu, Ying; Liu, Fan-Guang; Liu, Song-Hao

    2003-12-01

    Photodynamic therapy (PDT) can induce apoptosis in many cancer cells in vitro and in tumors in vivo. Cells become more oxidation with PDT, and maintain differentiation and proliferation, go apoptosis and necrosis with the increase of reactive oxygen species (ROS) concentration. ROS can induce apoptosis through mitochondria by inhibiting respiration chain or oxidative phosphorylation or damaging mitochondrial membrane. ROS can initiate apoptosis through endoplamic reticulum(ER) by opening Ca2+ channel or starting unfold protein response (UPR). ROS can also induce apoptosis through Golgi by producing ganglioside GD3 by use of ceramide, which induces apoptosis by activating caspase-3, JNK and p38 MAPK. It can also induce apoptosis by activating Bip (mitochondria-dependant) or preocaspase-12 (mitochondria- independent) or inhibiting protein synthesizing. There are so complicated cross-talking among different signal pathways or organnells that we think PDT-induced apoptosis is mediated by multiplex pathways and excessive levels in a refined network.

  14. Methods for determining Myc-induced apoptosis.

    PubMed

    Lu, Dan; Littlewood, Trevor D

    2013-01-01

    Although many oncoproteins promote cell growth and proliferation, some also possess the potential to induce cell death by apoptosis. Deregulated expression of the myc oncogene promotes apoptosis in both cultured cells and in some tissues in vivo. Here we describe techniques to detect Myc-induced apoptosis in vitro using flow cytometry and microscopy and in vivo using immunohistochemical staining.

  15. The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines.

    PubMed

    Kuo, Po-Lin; Lin, Ta-Chen; Lin, Chun-Ching

    2002-09-06

    The aim of this study is to investigate the anticancer effect of aloe-emodin in two human liver cancer cell lines, Hep G2 and Hep 3B. We observed that aloe-emodin inhibited cell proliferation and induced apoptosis in both examined cell lines, but with different the antiproliferative mechanisms. In Hep G2 cells, aloe-emodin induced p53 expression and was accompanied by induction of p21 expression that was associated with a cell cycle arrest in G1 phase. In addition, aloe-emodin had a marked increase in Fas/APO1 receptor and Bax expression. In contrast, with p53-deficient Hep 3B cells, the inhibition of cell proliferation of aloe-emodin was mediated through a p21-dependent manner that did not cause cell cycle arrest or increase the level of Fas/APO1 receptor, but rather promoted aloe-emodin induced apoptosis by enhancing expression of Bax. These findings suggest that aloe-emodin may be useful in liver cancer prevention.

  16. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy.

    PubMed

    Chang, Yong S; Graves, Bradford; Guerlavais, Vincent; Tovar, Christian; Packman, Kathryn; To, Kwong-Him; Olson, Karen A; Kesavan, Kamala; Gangurde, Pranoti; Mukherjee, Aditi; Baker, Theresa; Darlak, Krzysztof; Elkin, Carl; Filipovic, Zoran; Qureshi, Farooq Z; Cai, Hongliang; Berry, Pamela; Feyfant, Eric; Shi, Xiangguo E; Horstick, James; Annis, D Allen; Manning, Anthony M; Fotouhi, Nader; Nash, Huw; Vassilev, Lyubomir T; Sawyer, Tomi K

    2013-09-03

    Stapled α-helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein-protein interaction and may offer a viable modality for cancer therapy.

  17. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis

    PubMed Central

    Fong, Chii Shyang; Mazo, Gregory; Das, Tuhin; Goodman, Joshua; Kim, Minhee; O'Rourke, Brian P; Izquierdo, Denisse; Tsou, Meng-Fu Bryan

    2016-01-01

    Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evoking p21-dependent cell cycle arrest in response not only to centrosome loss, but also to other distinct defects causing prolonged mitosis. Intriguingly, 53BP1 mediates p53 activation independently of its DNA repair activity, but requiring its interacting protein USP28 that can directly deubiquitinate p53 in vitro and ectopically stabilize p53 in vivo. Moreover, 53BP1 can transduce prolonged mitosis to cell cycle arrest independently of the spindle assembly checkpoint (SAC), suggesting that while SAC protects mitotic accuracy by slowing down mitosis, 53BP1 and USP28 function in parallel to select against disturbed or delayed mitosis, promoting mitotic efficiency. DOI: http://dx.doi.org/10.7554/eLife.16270.001 PMID:27371829

  18. The role of intracellular zinc in chromium(VI)-induced oxidative stress, DNA damage and apoptosis.

    PubMed

    Rudolf, Emil; Cervinka, Miroslav

    2006-09-25

    Several studies have demonstrated that zinc is required for the optimal functioning of the skin. Changes in intracellular zinc concentrations have been associated with both improved protection of skin cells against various noxious factors as well as with increased susceptibility to external stress. Still, little is known about the role of intracellular zinc in hexavalent chromium (Cr(VI))-induced skin injury. To address this question, the effects of zinc deficiency or supplementation on Cr(VI)-induced cytotoxicity, oxidative stress, DNA injury and cell death were investigated in human diploid dermal fibroblasts during 48 h. Zinc levels in fibroblasts were manipulated by pretreatment of cells with 100 microM ZnSO4 and 4 or 25 microM zinc chelator TPEN. Cr(VI) (50, 10 and 1 microM) was found to produce time- and dose-dependent cytotoxicity resulting in oxidative stress, suppression of antioxidant systems and activation of p53-dependent apoptosis which is reported for the first time in this model in relation to environmental Cr(VI). Increased intracellular zinc partially attenuated Cr(VI)-induced cytotoxicity, oxidative stress and apoptosis by enhancing cellular antioxidant systems while inhibiting Cr(VI)-dependent apoptosis by preventing the activation of caspase-3. Decreased intracellular zinc enhanced cytotoxic effects of all the tested Cr(VI) concentrations, leading to rapid loss of cell membrane integrity and nuclear dispersion--hallmarks of necrosis. These new findings suggest that Cr(VI) as a model environmental toxin may damage in deeper regions residing skin fibroblasts whose susceptibility to such toxin depends among others on their intracellular Zn levels. Further investigation of the impact of Zn status on skin cells as well as any other cell populations exposed to Cr(VI) or other heavy metals is warranted.

  19. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    SciTech Connect

    Yu Xiaozhong Robinson, Joshua F.; Gribble, Elizabeth; Hong, Sung Woo; Sidhu, Jaspreet S.; Faustman, Elaine M.

    2008-12-15

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As{sup 3+}) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53{sup +/+} and p53{sup -/-} mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53{sup -/-} cells than in the p53{sup +/+} cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As{sup 3+}. A significant alteration in the Nrf2-mediated oxidative stress response pathway was found in both genotypes. In p53{sup +/+} MEFs, As{sup 3+} induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53{sup -/-} MEFs, As{sup 3+} induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic's dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent.

  20. Methyl methanesulfonate induces apoptosis in p53-deficient H1299 and Hep3B cells through a caspase 2- and mitochondria-associated pathway.

    PubMed

    Jiang, Ying; Zhang, Xiao-Yun; Sun, Li; Zhang, Guang-Lin; Duerksen-Hughes, Penelope; Zhu, Xin-Qiang; Yang, Jun

    2012-11-01

    Methyl methanesulfonate (MMS) has been shown to induce apoptosis in various cell types through p53-dependent pathways. Nevertheless, pharmacological and genetic blockade of p53 functions results in similar or delayed sensitivity to MMS treatment, suggesting the presence of p53-independent apoptotic mechanisms. To understand the p53-independent mechanisms that are engaged during MMS-induced apoptosis, we established MMS-induced apoptotic cell models using p53-deficient H1299 and Hep3B cells. Our results demonstrated that MMS at concentrations of 50, 100, 200, 400 and 800 μM induced the formation of gammaH2AX foci, and that at higher concentrations, 400 and 800 μM, MMS treatment led to apoptosis in the two cell lines. This apoptotic cell death was concurrent with the loss of mitochondrial membrane potential, nuclear-cytosolic translocation of active caspase 2, release of cytochrome c from mitochondria, and the cleavage of caspase 9, caspase 3 and PARP. However, MMS-induced DNA damage failed to stabilize the p53 family members TAp73 and DNp73. These results demonstrated a p53- and p73-independent mechanism for MMS-induced apoptosis that involves the nuclear-cytosolic translocation of active caspase 2 as well as the mitochondria-mediated pathway.

  1. Glycyrrhizic acid attenuates CCl4-induced hepatocyte apoptosis in rats via a p53-mediated pathway

    PubMed Central

    Guo, Xiao-Ling; Liang, Bo; Wang, Xue-Wei; Fan, Fu-Gang; Jin, Jing; Lan, Rui; Yang, Jing-Hui; Wang, Xiao-Chun; Jin, Lei; Cao, Qin

    2013-01-01

    AIM: To investigate the effect of glycyrrhizic acid (GA) on carbon tetrachloride (CCl4)-induced hepatocyte apoptosis in rats via a p53-dependent mitochondrial pathway. METHODS: Forty-five male Sprague-Dawley rats were randomly and equally divided into three groups, the control group, the CCl4 group, and the GA treatment group. To induce liver fibrosis in this model, rats were given a subcutaneous injection of a 40% solution of CCl4 in olive oil at a dose of 0.3 mL/100 g body weight biweekly for 8 wk, while controls received the same isovolumetric dose of olive oil by hypodermic injection, with an initial double-dose injection. In the GA group, rats were also treated with a 40% solution of CCl4 plus 0.2% GA solution in double distilled water by the intraperitoneal injection of 3 mL per rat three times a week from the first week following previously published methods, with modifications. Controls were given the same isovolumetric dose of double distilled water. Liver function parameters, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. Pathologic changes in the liver were detected by hematoxylin and eosin staining. Collagen fibers were evaluated by Sirius red staining. Hepatocyte apoptosis was investigated using the terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) assay and the cleaved caspase-3 immunohistochemistry assay. The expression levels of p53 and apoptosis-related proteins were evaluated by immunohistochemistry or Western blotting analysis. RESULTS: After 8 wk of treatment, GA significantly reduced serum activity of ALT (from 526.7 ± 57.2 to 342 ± 44.8, P < 0.05) and AST (from 640 ± 33.7 to 462.8 ± 30.6, P < 0.05), attenuated the changes in liver histopathology and reduced the staging score (from 3.53 ± 0.74 to 3.00 ± 0.76, P < 0.05) in CCl4-treated rats. GA markedly reduced the positive area of Sirius red and the ratio of the hepatic fibrotic region (from 7

  2. Local anesthetics induce human renal cell apoptosis.

    PubMed

    Lee, H Thomas; Xu, Hua; Siegel, Cory D; Krichevsky, Igor E

    2003-01-01

    Renal cell apoptosis contributes significantly to the pathogenesis of acute renal failure. Local anesthetics induce apoptosis in neuronal and lymphocytic cell lines. We examined the effects of chronic (48 h) local anesthetic treatment (lidocaine, bupivacaine and tetracaine) on human proximal tubular (HK-2) cells. Apoptosis induction was assessed by detecting poly(ADP)-ribose polymerase fragmentation, caspase activation, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, DNA laddering and by cellular morphology. Cell death was quantified by measuring neutral red dye uptake and lactate dehydrogenase released into the cell culture medium. All 3 local anesthetics caused concentration-dependent cell death, induced HK-2 cell apoptosis and potentiated TNF-alpha induced apoptosis. Local anesthetics induced HK-2 cell apoptosis by activation of caspases 3, 6, 7, 8 and 9. ZVAD-fmk, a pan-caspase inhibitor, blocked the local anesthetic induced HK-2 cell apoptosis. Local anesthetics also inhibited the activities of anti-apoptotic kinases protein kinase B (Akt) and extracellular signal regulated mitrogen-activated protein kinase. Local anesthetic's pro-apoptotic effects are independent of sodium channel inhibition as tetrodotoxin, a selective voltage-gated sodium channel blocker, failed to mimic local anesthetic-mediated induction or potentiation of HK-2 cell apoptosis. We conclude that local anesthetics induce human renal cell apoptotic signaling by caspase activation and via inhibition of pro-survival signaling pathways.

  3. Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells.

    PubMed

    Hargraves, Kris G; He, Lin; Firestone, Gary L

    2016-05-01

    The tumor suppressive microRNA miR-34a is transcriptionally regulated by p53 and shown to inhibit breast cancer cell proliferation as well as being a marker of increased disease free survival. Indole-3-carbinol (I3C) derived from cruciferous vegetables, artemisinin, extracted from the sweet wormwood plant, and artesunate, a semi-synthetic derivative of artemisinin, are phytochemicals with anti-tumorigenic properties however, little is known about the role of microRNAs in their mechanism of action. Human breast cancer cells expressing wild-type (MCF-7) or mutant p53 (T47D) were treated with a concentration range and time course of each phytochemical under conditions of cell cycle arrest as detected by flow cytometry to examine the potential connection between miR-34a expression and their anti-proliferative responses. Real-time PCR and western blot analysis of extracted RNA and total protein revealed artemsinin and artesunate increased miR-34a expression in a dose-dependent manner correlating with down-regulation of the miR-34a target gene, CDK4. I3C stimulation of miR-34a expression required functional p53, whereas, both artemisinin and artesunate up-regulated miR-34a expression regardless of p53 mutational status or in the presence of dominant negative p53. Phytochemical treatments inhibited the luciferase activity of a construct containing the wild-type 3'UTR of CDK4, but not those with a mutated miR-34a binding site, whereas, transfection of miR-34a inhibitors ablated the phytochemical mediated down-regulation of CDK4 and induction of cell cycle arrest. Our results suggest that miR-34a is an essential component of the anti-proliferative activities of I3C, artemisinin, and artesunate and demonstrate that both wild-type p53 dependent and independent pathways are responsible for miR-34a induction.

  4. Radiation-induced apoptosis in SCID mice spleen after low dose irradiation

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Kondo, N.; Inaba, H.; Uotani, K.; Kiyohara, Y.; Ohnishi, K.; Ohnishi, T.

    To assess the radioadaptive response of the whole body system in mice, we examined the temporal effect of low dose priming as an indicator of challenging irradiation-induced apoptosis through a p53 tumor suppressor protein- mediated signal transduction pathway. The p53 protein also plays an important role both in cell cycle control and DNA repair through cellular signal transduction. Using severe combined immunodeficiency mice defective in DNA-dependent protein kinase catalytic subunit, we examined the role of DNA-dependent protein kinase activity in radioadaptation induced by low dose irradiation. Specific pathogen free 5-week-old female severe combined immunodeficiency mice and the parental mice (CB-17 Icr +/ + were irradiated with X-ray at 3.0 C3y at 1, 2, 3 or 4 weeks after the conditioning irradiation at 0.15, 0.30, 0.45 or 0.60 Gy. The mice spleens were fixed for immunohistochemistry 12 h after the challenging irradiation. The p53-dependent apoptosis related Bax proteins on formalin-fixed paraffin-embedded sections were stained by the avidin-biotin peroxidase complex method The apoptosis incidence in the sections was measured by hematoxylin-eosin staining. The frequency of Bax- and apoptosis-positive cells increased up to 12 h after the challenging irradiation in the spleen of both mice. However, these cells were not observed after a low dose irradiation at 0.15-0.60 Gy When pre-irradiation at 0.45 Gy 2 weeks before the challenging irradiation at 3.0 Gy was performed, Bax accumulation and apoptosis induced by challenging irradiation were depressed in the spleens of CB-17 Icr +/ + mice, but not in severe combined immunodeficiency mice. These data suggest that DNA-dependent protein kinase might play a major role in radioadaptation induced by pre-irradiation with a low dose in mice spleen. We expect that the present findings will provide useful information in the health care of space crews.

  5. Mono(2-ethylhexyl) phthalate induces apoptosis in p53-silenced L02 cells via activation of both mitochondrial and death receptor pathways.

    PubMed

    Yang, Guangtao; Zhang, Wenjuan; Qin, Qizhi; Wang, Jing; Zheng, Hongyan; Xiong, Wei; Yuan, Jing

    2015-09-01

    Mono(2-ethylhexyl) phthalate (MEHP) is one of the main metabolites of di(2-ethylhexyl) phthalate. The evidence shows that DEHP may exert its toxic effects primarily via MEHP, which is 10-fold more potent than its parent compound in toxicity in vitro. MEHP-induced apoptosis is mediated by either p53-dependent or -independent pathway. However, the detailed mechanism of its toxicity remains unclear. In this study, immortalized normal human liver cell line L02 was chosen, as an in vitro model of nonmalignant liver, to elucidate the role of p53 in MEHP-induced apoptosis. The cells were treated with MEHP (6.25, 12.50, 25.00, 50.00, and 100.00 μM) for 24 and 36 h, then small interfering RNA (siRNA) was used to specifically silence p53 gene of L02 cells. The results indicated that MEHP caused oxidative DNA damage and apoptosis in L02 cells were associated with the p53 signaling pathway. Further study found that MEHP (50.00 and 100.00 μM) induced apoptosis in p53-silenced L02 cells, along with the up-regulations of Fas and FasL proteins as well as increased the Bax/Bcl-2 ratio and Caspase 3, 8, and 9 activities. Additionally, both FasL inhibitor (AF-016) and Caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp- fluoromethylketone (Z-VAD-FMK) could prevent the cell apoptosis induced by MEHP. The findings suggested that MEHP-induced apoptosis in L02 cells involving a Caspases-mediated mitochondrial signaling pathway and/or death receptor pathway. p53 was not absolutely necessary for MEHP-induced L02 cell apoptosis.

  6. Phytosphingosine induced mitochondria-involved apoptosis.

    PubMed

    Nagahara, Yukitoshi; Shinomiya, Takahisa; Kuroda, Sachiko; Kaneko, Naoki; Nishio, Reiji; Ikekita, Masahiko

    2005-02-01

    Sphingolipids are putative intracellular signal mediators in cell differentiation, growth inhibition, and apoptosis. Sphingosine, sphinganine, and phytosphingosine are structural analogs of sphingolipids and are classified as long-chain sphingoid bases. Sphingosine and sphinganine are known to play important roles in apoptosis. In the present study, we examined the phytosphingosine-induced apoptosis mechanism, focusing on mitochondria in human T-cell lymphoma Jurkat cells. Phytosphingosine significantly induced chromatin DNA fragmentation, which is a hallmark of apoptosis. Enzymatic activity measurements of caspases revealed that caspase-3 and caspase-9 are activated in phytosphingosine-induced apoptosis, but there is little activation of caspase-8 suggesting that phytosphingosine influences mitochondrial functions. In agreement with this hypothesis, a decrease in DeltaPsi(m) and the release of cytochrome c to the cytosol were observed upon phytosphingosine treatment. Furthermore, overexpression of mitochondria-localized anti-apoptotic protein Bcl-2 prevented phytosphingosine apoptotic stimuli. Western blot assays revealed that phytosphingosine decreases phosphorylated Akt and p70S6k. Dephosphorylation of Akt was partially inhibited by protein phosphatase inhibitor OA and OA attenuated phytosphingosine-induced apoptosis. Moreover, using a cell-free system, phytosphingosine directly reduced DeltaPsi(m). These results indicate that phytosphingosine perturbs mitochondria both directly and indirectly to induce apoptosis.

  7. Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells.

    PubMed

    Lee, Yujin; Sung, Bokyung; Kang, Yong Jung; Kim, Dong Hwan; Jang, Jung-Yoon; Hwang, Seong Yeon; Kim, Minjung; Lim, Hyun Sook; Yoon, Jeong-Hyun; Chung, Hae Young; Kim, Nam Deuk

    2014-05-01

    Apigenin (4',5,7-trihydroxyflavone) is a natural flavonoid, shown to have chemopreventive and/or anticancer properties in a variety of human cancer cells. The involvement of autophagy in apigenin-induced apoptotic cell death of HCT116 human colon cancer cells was investigated. Apigenin induced suppression of cell growth in a concentration-dependent manner in HCT116 cells. Flow cytometric analyses indicated that apigenin resulted in G2/M phase arrest. This flavone also suppressed the expression of both cyclin B1 and its activating partners, Cdc2 and Cdc25c, whereas the expression of cell cycle inhibitors, such as p53 and p53-dependent p21(CIP1/WAF1), was increased after apigenin treatment. Apigenin induced poly (ADP-ribose) polymerase (PARP) cleavage and decreased the levels of procaspase-8, -9 and -3. In addition, the apigenin-treated cells exhibited autophagy, as characterized by the appearance of autophagosomes under fluorescence microscopy and the accumulation of acidic vesicular organelles by flow cytometry. Furthermore, the results of the western blot analysis revealed that the levels of LC3-II, the processed form of LC3-I, was increased by apigenin. Treatment with the autophagy inhibitor 3-methyladenine (3-MA) significantly enhanced the apoptosis induced by apigenin, which was accompanied by an increase in the levels of PARP cleavage. These results indicate that apigenin has apoptosis- and autophagy-inducing effects in HCT116 colon cancer cells. Autophagy plays a cytoprotective role in apigenin-induced apoptosis, and the combination of apigenin and an autophagy inhibitor may be a promising strategy for colon cancer control.

  8. Inhibition of radiation-induced apoptosis by dexamethasone in cervical carcinoma cell lines depends upon increased HPV E6/E7

    PubMed Central

    Kamradt, M C; Mohideen, N; Krueger, E; Walter, S; Vaughan, A T M

    2000-01-01

    Through a glucocorticoid-responsive promoter, glucocorticoids can regulate the transcription of the human papillomavirus (HPV) E6 and E7 viral genes which target the tumour suppressor proteins p53 and Rb respectively. In C4-1 cells, the glucocorticoid dexamethasone up-regulated HPV E6/E7 mRNA and decreased radiation-induced apoptosis. In contrast, dexamethasone had no effect on apoptosis of cells that either lack the HPV genome (C33-a) or in which HPV E6/E7 transcription is repressed by dexamethasone (SW756). Irradiated C4-1 cells showed increased p53 expression, while dexamethasone treatment prior to irradiation decreased p53 protein expression. In addition, p21 mRNA was regulated by irradiation and dexamethasone in accordance with the observed changes in p53. Overall, glucocorticoids decreased radiation-induced apoptosis in cervical carcinoma cells which exhibit increased HPV E6/E7 transcription and decreased p53 expression. Therefore, in HPV-infected cervical epithelial cells, p53-dependent apoptosis appears to depend upon the levels of HPV E6/E7 mRNA. © 2000 Cancer Research Campaign PMID:10817508

  9. Induced Expression of Cancer Stem Cell Markers ALDH1A3 and Sox-2 in Hierarchical Reconstitution of Apoptosis-resistant Human Breast Cancer Cells

    PubMed Central

    Kashii-Magaribuchi, Karin; Takeuchi, Rie; Haisa, Yuko; Sakamoto, Akemi; Itoh, Aimi; Izawa, Yuki; Isa, Miyuki; Fukuzawa, Mayu; Murakami, Motonobu; Takahashi, Rei

    2016-01-01

    We established an experimental system that can induce p53-dependent apoptosis by doxycycline treatment to analyze characteristics of the apoptosis-resistant cancer cell subpopulation in the human breast cancer cell line HCC1937. Expression patterns of the stem cell markers, ALDH1A3 and Sox-2, the luminal differentiation marker, GATA3 and the proliferation index marker, Ki-67 were analyzed using immunostaining and fluorescence-activated cell sorting (FACS). After doxycycline treatment, the number of viable cells was gradually decreased over seven days in a time-dependent manner due to p53-induced apoptosis; however, the number of smaller-sized ALDH1A3+ cells assessed by immunostaining increased sharply after 1 day of doxycycline treatment, suggesting their apoptosis-resistant nature. The expression of ALDH1A3 was also detected in 78% of small-sized Ki-67+ proliferating progenitor cells, followed by the transient expression of GATA3, which presumably indicated the ability to differentiate into luminal progenitor cells. Although 42.2–58.5% of residual cells were positive for both ALDH1A3 and GATA3, their expression patterns exhibited an inverse correlation. The expression pattern of another stem cell marker, Sox-2, was similar, but more drastically altered after p53 induction compared with ALDH1A3. These findings may aid in understanding the hierarchical responses of cancer stem cells to therapeutic stresses. PMID:27917009

  10. DPI induces mitochondrial superoxide-mediated apoptosis.

    PubMed

    Li, Nianyu; Ragheb, Kathy; Lawler, Gretchen; Sturgis, Jennie; Rajwa, Bartek; Melendez, J Andres; Robinson, J Paul

    2003-02-15

    The iodonium compounds diphenyleneiodonium (DPI) and diphenyliodonium (IDP) are well-known phagocyte NAD(P)H oxidase inhibitors. However, it has been shown that at high concentrations they can inhibit the mitochondrial respiratory chain as well. Since inhibition of the mitochondrial respiratory chain has been shown to induce superoxide production and apoptosis, we investigated the effect of iodonium compounds on mitochondria-derived superoxide and apoptosis. Mitochondrial superoxide production was measured on both cultured cells and isolated rat-heart submitochondrial particles. Mitochondria function was examined by monitoring mitochondrial membrane potential. Apoptotic pathways were studied by measuring cytochrome c release and caspase 3 activation. Apoptosis was characterized by detecting DNA fragmentation on agarose gel and measuring propidium iodide- (PI-) stained subdiploid cells using flow cytometry. Our results showed that DPI could induce mitochondrial superoxide production. The same concentration of DPI induced apoptosis by decreasing mitochondrial membrane potential and releasing cytochrome c. Addition of antioxidants or overexpression of MnSOD significantly reduced DPI-induced mitochondrial damage, cytochrome c release, caspase activation, and apoptosis. These observations suggest that DPI can induce apoptosis via induction of mitochondrial superoxide. DPI-induced mitochondrial superoxide production may prove to be a useful model to study the signaling pathways of mitochondrial superoxide.

  11. Cycloheximide suppresses radiation-induced apoptosis in MOLT-4 cells with Arg72 variant of p53 through translational inhibition of p53 accumulation.

    PubMed

    Ito, Azusa; Morita, Akinori; Ohya, Soichiro; Yamamoto, Shinichi; Enomoto, Atsushi; Ikekita, Masahiko

    2011-01-01

    The human T-cell leukemia cell line MOLT-4 is highly radiosensitive, and thus it is often used as a model of p53-dependent radiation-induced apoptosis. Two branches of the p53-mediated apoptotic pathway are reported: "transcription-dependent" and "transcription-independent." However, the relative contribution of each in different types of cells is not yet clearly defined. Moreover, recent studies have shown that the codon 72 polymorphic variants of p53 show different sensitivities to apoptosis signals. The Arg72 variant has a more potent apoptosis-inducing activity in mitochondria than the Pro72 variant. Here, we initially investigated the codon 72 polymorphism of p53 in MOLT-4 cells. Analysis of the p53 exon 4 genomic DNA sequence, which includes codon 72, revealed that MOLT-4 cells are homozygous for the allele encoding Arg72. We next investigated the involvement of the transcription-independent function of p53 using an RNA synthesis inhibitor, actinomycin D (ActD), and a protein synthesis inhibitor, cycloheximide (CHX), and found that the apoptosis was suppressed by CHX but not by ActD. We also revealed that the suppressive effect of CHX on apoptosis was specifically mediated by p53, using a p53-knockdown MOLT-4 transfectant. Furthermore, the suppressive effect of CHX on apoptosis was highly correlated with the suppression of p53 protein accumulation, and less correlated with the suppression of p53 target genes expression. These results indicated that p53 transactivation is not necessary to induce apoptosis, and that p53 protein accumulation itself is both necessary and sufficient to do so.

  12. Absence of a p53 allele delays nitrogen mustard-induced early apoptosis and inflammation of murine skin.

    PubMed

    Inturi, Swetha; Tewari-Singh, Neera; Jain, Anil K; Roy, Srirupa; White, Carl W; Agarwal, Rajesh

    2013-09-15

    Bifunctional alkylating agent sulfur mustard (SM) and its analog nitrogen mustard (NM) cause DNA damage leading to cell death, and potentially activating inflammation. Transcription factor p53 plays a critical role in DNA damage by regulating cell cycle progression and apoptosis. Earlier studies by our laboratory demonstrated phosphorylation of p53 at Ser15 and an increase in total p53 in epidermal cells both in vitro and in vivo following NM exposure. To elucidate the role of p53 in NM-induced skin toxicity, we employed SKH-1 hairless mice harboring wild type (WT) or heterozygous p53 (p53+/-). Exposure to NM (3.2mg) caused a more profound increase in epidermal thickness and apoptotic cell death in WT relative to p53+/- mice at 24h. However, by 72h after exposure, there was a comparable increase in NM-induced epidermal cell death in both WT and p53+/- mice. Myeloperoxidase activity data showed that neutrophil infiltration was strongly enhanced in NM-exposed WT mice at 24h persisting through 72h of exposure. Conversely, robust NM-induced neutrophil infiltration (comparable to WT mice) was seen only at 72h after exposure in p53+/- mice. Similarly, NM-exposure strongly induced macrophage and mast cell infiltration in WT, but not p53+/- mice. Together, these data indicate that early apoptosis and inflammation induced by NM in mouse skin are p53-dependent. Thus, targeting this pathway could be a novel strategy for developing countermeasures against vesicants-induced skin injury.

  13. Sodium nitroprusside induces apoptosis of rabbit chondrocytes

    NASA Astrophysics Data System (ADS)

    Liang, Qian; Wang, Xiao-Ping; Chen, Tong-Sheng

    2013-02-01

    Osteoarthritis (OA) is characterized by a slowly progressing degradation of the matrix and destruction of articular cartilage. Apoptosis of chondrocyte is accounted for the mechanism of OA. Nitric oxide (NO), as a stimulus, has been shown to induce chondrocyte apoptosis by activating the matrix metalloproteinases (MMPs), increasing the expression of cyclooxygenase 2 (COX-2) and the level of prostaglandin E2 (PGE2), inhibiting the proteoglycan synthesis and type II collagen expression. In this study, sodium nitroprusside (SNP) was administered to be the NO donor to explore the mechanism of NO-induced apoptosis of rabbit chondrocytes obtained from six weeks old New Zealand rabbits. CCK-8 assay revealed the inhibitory effect of SNP on cell viability. We used flow cytometry (FCM) to assess the form of cell death by Annexin-V/propidium iodide (PI) double staining, and evaluate the change of mitochondrial membrane potential (ΔΨm). We found that the SNP induced chondrocyte apoptosis in a dose- and time-dependent manner and an observable reduction of ΔΨm. In conclusion, our findings indicate that SNP induces apoptosis of rabbit chondrocytes via a mitochondria-mediated pathway.

  14. Molecular mechanisms of UV-induced apoptosis.

    PubMed

    Kulms, D; Schwarz, T

    2000-10-01

    Sunburn cells, single standing cells with typical morphologic features occurring in UV-exposed skin, have been recognized as keratinocytes undergoing apoptosis following UV irradiation. Induction of apoptosis following UV exposure appears to be a protective mechanism, getting rid off severely damaged cells that bear the risk of malignant transformation. UV-mediated apoptosis is a highly complex process in which different molecular pathways are involved. These include DNA damage, activation of the tumor suppressor gene p53, triggering of cell death receptors either directly by UV or by autocrine release of death ligands, mitochondrial damage and cytochrome C release. Detailed knowledge about the interplay between these pathways will increase our understanding of photocarcinogenesis. This review briefly discusses recent findings concerning the molecular mechanisms underlying UV-induced apoptosis.

  15. PTEN Reduced UVB-Mediated Apoptosis in Retinal Pigment Epithelium Cells

    PubMed Central

    He, Jia; Long, Chongde; Huang, Zixin; Zhou, Xin; Kuang, Xielan; Liu, Lanying; Liu, Huijun; Tang, Yan; Fan, Yuting; Ning, Jie; Ma, Xinqi; Zhang, Qingjiong

    2017-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness and progressive loss of central vision in the elderly population. The important factor of AMD pathogenesis is the degeneration of retinal pigment epithelial (RPE) cells by oxidative stress. Inactivation of PTEN can disrupt intercellular adhesion in the RPE cells, but the mechanism of oxidative stress is less known. Here we presented evidence that UVB-mediated oxidative stress induced apoptosis in ARPE-19 cells. Downregulation of the expression of PTEN in UVB-irradiative RPE cells triggered DNA damage and increased the level of UVB-induced apoptosis by activating p53-dependent pathway. However, overexpression of PTEN increased cell survival by suppressing p-H2A in response to DNA damage and apoptosis. When using Pifithrin-α (one of p53 inhibitors), the level of p53-dependent apoptosis was significantly lower than untreated, which suggested that p53 was possibly involved in PTEN-dependent apoptosis. Thus, it elucidated the molecular mechanisms of UVB-induced damage in RPE cells and may offer an alternative therapeutic target in dry AMD. PMID:28321407

  16. A Novel Sirtuin 2 (SIRT2) Inhibitor with p53-dependent Pro-apoptotic Activity in Non-small Cell Lung Cancer*

    PubMed Central

    Hoffmann, Gesine; Breitenbücher, Frank; Schuler, Martin; Ehrenhofer-Murray, Ann E.

    2014-01-01

    Sirtuin 2 (SIRT2) is an NAD+-dependent protein deacetylase whose targets include histone H4 lysine 16, p53, and α-tubulin. Because deacetylation of p53 regulates its effect on apoptosis, pharmacological inhibition of SIRT2-dependent p53 deacetylation is of great therapeutic interest for the treatment of cancer. Here, we have identified two structurally related compounds, AEM1 and AEM2, which are selective inhibitors of SIRT2 (IC50 values of 18.5 and 3.8 μm, respectively), but show only weak effects on other sirtuins such as SIRT1, SIRT3, and yeast Sir2. Interestingly, both compounds sensitized non-small cell lung cancer cell lines toward the induction of apoptosis by the DNA-damaging agent etoposide. Importantly, this sensitization was dependent on the presence of functional p53, thus establishing a link between SIRT2 inhibition by these compounds and p53 activation. Further, treatment with AEM1 and AEM2 led to elevated levels of p53 acetylation and to increased expression of CDKN1A, which encodes the cell cycle regulator p21WAF1, as well as the pro-apoptotic genes PUMA and NOXA, three transcriptional targets of p53. Altogether, our data suggest that inhibition of SIRT2 by these compounds causes increased activation of p53 by decreasing SIRT2-dependent p53 deacetylation. These compounds thus provide a good opportunity for lead optimization and drug development to target p53-proficient cancers. PMID:24379401

  17. Methotrexate induces apoptosis through p53/p21-dependent pathway and increases E-cadherin expression through downregulation of HDAC/EZH2.

    PubMed

    Huang, Wen-Yu; Yang, Pei-Ming; Chang, Yu-Fan; Marquez, Victor E; Chen, Ching-Chow

    2011-02-15

    Methotrexate (MTX) is a dihydrofolate reductase (DHFR) inhibitor widely used as an anticancer drug in different kinds of human cancers. Here we investigated the anti-tumor mechanism of MTX against non-small cell lung cancer (NSCLC) A549 cells. MTX not only inhibited in vitro cell growth via induction of apoptosis, but also inhibited tumor formation in animal xenograft model. RNase protection assay (RPA) and RT-PCR demonstrated its induction of p53 target genes including DR5, p21, Puma and Noxa. Moreover, MTX promoted p53 phosphorylation at Ser15 and acetylaion at Lys373/382, which increase its stability and expression. The apoptosis and inhibition of cell viability induced by MTX were dependent on p53 and, partially, on p21. In addition, MTX also increased E-cadherin expression through inhibition of histone deacetylase (HDAC) activity and downregulation of polycomb group protein enhancer of zeste homologue 2 (EZH2). Therefore, the anticancer mechanism of MTX acts through initiation of p53-dependent apoptosis and restoration of E-cadherin expression by downregulation of HDAC/EZH2.

  18. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway.

    PubMed

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Smirnova, Iva; Schnee, Tona; Zagzag, David

    2008-07-01

    Previously, we identified noscapine as a small molecule inhibitor of the hypoxia-inducible factor-1 pathway in hypoxic human glioma cells and human umbilical vein endothelial cells. Noscapine is a nontoxic ingredient in cough medicine currently used in clinical trials for patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia to assess antitumor efficacy. Here, we have evaluated the sensitivity of four human glioma cell lines to noscapine-induced apoptosis. Noscapine was a potent inhibitor of proliferation and inducer of apoptosis. Induction of apoptosis was associated with activation of the c-jun N-terminal kinase signaling pathway concomitant with inactivation of the extracellular signal regulated kinase signaling pathway and phosphorylation of the antiapoptotic protein Bcl-2. Noscapine-induced apoptosis was associated with the release of mitochondrial proteins apoptosis-inducing factor (AIF) and/or cytochrome c. In some glioma cell lines, only AIF release occurred without cytochrome c release or poly (ADP-ribose) polymerase cleavage. Knock-down of AIF decreased noscapine-induced apoptosis. Our results suggest the potential importance of noscapine as a novel agent for use in patients with glioblastoma owing to its low toxicity profile and its potent anticancer activity.

  19. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation.

    PubMed

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Lee, Su-Jae; Lee, Chang-Woo; Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul; Hwang, Sang-Gu

    2014-07-11

    We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.

  20. Benzo(a)pyrene Induced p53 Mediated Male Germ Cell Apoptosis: Synergistic Protective Effects of Curcumin and Resveratrol

    PubMed Central

    Banerjee, Bhaswati; Chakraborty, Supriya; Ghosh, Debidas; Raha, Sanghamitra; Sen, Parimal C.; Jana, Kuladip

    2016-01-01

    Benzo(a)pyrene (B(a)P) is an environmental toxicant that induces male germ cell apoptosis. Curcumin and resveratrol are phytochemicals with cytoprotective and anti-oxidative properties. At the same time resveratrol is also a natural Aryl hydrocarbon Receptor (AhR) antagonist. Our present study in isolated testicular germ cell population from adult male Wistar rats, highlighted the synergistic protective effect of curcumin and resveratrol against B(a)P induced p53 mediated germ cell apoptosis. Curcumin-resveratrol significantly prevented B(a)P induced decrease in sperm cell count and motility, as well as increased serum testosterone level. Curcumin-resveratrol co-treatment actively protected B(a)P induced testicular germ cell apoptosis. Curcumin-resveratrol co-treatment decreased the expression of pro-apoptotic proteins like cleaved caspase 3, 8 and 9, cleaved PARP, Apaf1, FasL, tBid. Curcumin-resveratrol co-treatment decreased Bax/Bcl2 ratio, mitochondria to cytosolic translocation of cytochrome c and activated the survival protein Akt. Curcumin-resveratrol decreased the expression of p53 dependent apoptotic genes like Fas, FasL, Bax, Bcl2, and Apaf1. B(a)P induced testicular reactive oxygen species (ROS) generation and oxidative stress were significantly ameliorated with curcumin and resveratrol. Curcumin-resveratrol co-treatment prevented B(a)P induced nuclear translocation of AhR and CYP1A1 (Cytochrome P4501A1) expression. The combinatorial treatment significantly inhibited B(a)P induced ERK 1/2, p38 MAPK and JNK 1/2 activation. B(a)P treatment increased the expression of p53 and its phosphorylation (p53 ser 15). Curcumin-resveratrol co-treatment significantly decreased p53 level and its phosphorylation (p53 ser 15). The study concludes that curcumin-resveratrol synergistically modulated MAPKs and p53, prevented oxidative stress, regulated the expression of pro and anti-apoptotic proteins as well as the proteins involved in B(a)P metabolism thus protected germ

  1. [Ways of realizing apoptosis of human lymphocytes induced by UV-light and reactive oxygen species].

    PubMed

    Artiukhov, V G; Trubitsyna, M S; Nakvasina, M A; Solov'eva, E V; Lidokhova, O V

    2011-01-01

    lymphocytes after exposure to UV-irradiation and ROS is proposed. The authors come to the conclusion about the leading role of receptor-mediated (Fas-dependent) caspase- and p53-dependent ways of realizing apoptosis oflymphocytes induced by UV-light at doses 151 and 1510 J/m2 and active oxygen metabolites. The pattern of the possible intracellular events leading to apoptotic destruction of lymphocytes after their UV-irradiation is offered.

  2. Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells.

    PubMed

    Lee, Yean-Jang; Kuo, Hsing-Chun; Chu, Chia-Yih; Wang, Chau-Jong; Lin, Wan-Chyi; Tseng, Tsui-Hwa

    2003-12-15

    Caffeic acid phenethyl ester (CAPE), an active component of propolis, has many biological and pharmacological activities including antioxidant, anti-inflammation, antiviral action, and anticancer effect. Our previous studies showed that CAPE exhibited significant cytotoxicity in oral cancer cells. Herein we further investigated the cytotoxicity potential of CAPE and the mechanism of its action in C6 glioma cells. The data exhibited that C6 glioma cells underwent internucleosomal DNA fragmentation 24 hr after the treatment of CAPE (50 microM). The proportion of C6 glioma cells with hypodiploid nuclei was increased to 24% at 36 hr after the exposure. Further results showed that CAPE induced the release of cytochrome c from mitochondria into cytosol, and the activation of CPP32. CAPE application also enhanced the expression of p53, Bax, and Bak. Finally, the potential signaling components underlying CAPE induction of apoptosis were elucidated. We found that CAPE activated extracellular signal-regulated kinase (ERKs) and p38 mitogen-activated protein kinase (p38 MAPK) in C6 glioma cells. More importantly, p38 kinase formed a complex with p53 after the treatment of CAPE for 0.5 hr. The expression of p53, phospho-serine 15 of p53, and Bax, and inactivate form of CPP32 was suppressed by a pretreatment of a specific p38 MAPK inhibitor, SB203580. The resultant data suggest that p38 MAPK mediated the CAPE-induced p53-dependent apoptosis in C6 glioma cells.

  3. The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells.

    PubMed

    Priyadarsini, R Vidya; Murugan, R Senthil; Sripriya, P; Karunagaran, D; Nagini, S

    2010-06-01

    Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention in recent years owing to their potent antioxidant and anti-proliferative effects. The present study was designed to investigate the cellular and molecular mechanisms by which azadirachtin and nimbolide exert cytotoxic effects in the human cervical cancer (HeLa) cell line. Both azadirachtin and nimbolide significantly suppressed the viability of HeLa cells in a dose-dependent manner by inducing cell cycle arrest at G0/G1 phase accompanied by p53-dependent p21 accumulation and down-regulation of the cell cycle regulatory proteins cyclin B, cyclin D1 and PCNA. Characteristic changes in nuclear morphology, presence of a subdiploid peak and annexin-V staining pointed to apoptosis as the mode of cell death. Increased generation of reactive oxygen species with decline in the mitochondrial transmembrane potential and release of cytochrome c confirmed that the neem limonoids transduced the apoptotic signal via the mitochondrial pathway. Altered expression of the Bcl-2 family of proteins, inhibition of NF-kappaB activation and over-expression of caspases and survivin provide compelling evidence that azadirachtin and nimbolide induce a shift of balance toward a pro-apoptotic phenotype. Antioxidants such as azadirachtin and nimbolide that can simultaneously arrest the cell cycle and target multiple molecules involved in mitochondrial apoptosis offer immense potential as anti-cancer therapeutic drugs.

  4. Anti-Proliferative and Apoptosis-Inducing Effect of Theabrownin against Non-small Cell Lung Adenocarcinoma A549 Cells

    PubMed Central

    Wu, Feifei; Zhou, Li; Jin, Wangdong; Yang, Weiji; Wang, Ying; Yan, Bo; Du, Wenlin; Zhang, Qiang; Zhang, Lei; Guo, Yonghua; Zhang, Jin; Shan, Letian; Efferth, Thomas

    2016-01-01

    . Our results indicate that TB exhibits its anti-NSCLC activity via a P53-dependent mechanism, which may be a promising candidate of natural product for anti-cancer drug development in the treatment of NSCLC. PMID:27994550

  5. Lithium protects ethanol-induced neuronal apoptosis

    SciTech Connect

    Zhong Jin . E-mail: jizhong@iupui.edu; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-12-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3{beta}, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3{beta} (ser9). In addition, the selective GSK-3{beta} inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits.

  6. Minnelide/Triptolide Impairs Mitochondrial Function by Regulating SIRT3 in P53-Dependent Manner in Non-Small Cell Lung Cancer

    PubMed Central

    Kumar, Ajay; Corey, Catherine; Scott, Iain; Shiva, Sruti; D’Cunha, Jonathan

    2016-01-01

    Minnelide/Triptolide (TL) has recently emerged as a potent anticancer drug in non-small cell lung cancer (NSCLC). However, the precise mechanism of its action remains ambiguous. In this study, we elucidated the molecular basis for TL-induced cell death in context to p53 status. Cell death was attributed to dysfunction of mitochondrial bioenergetics in p53-deficient cells, which was characterized by decreased mitochondrial respiration, steady-state ATP level and membrane potential, but augmented reactive oxygen species (ROS). Increased ROS production resulted in oxidative stress in TL-treated cells. This was exhibited by elevated nuclear levels of a redox-sensitive transcriptional factor, NF-E2-related factor-2 (NRF2), along with diminished cellular glutathione (GSH) content. We further demonstrated that in the absence of p53, TL blunted the expression of mitochondrial SIRT3 triggering increased acetylation of NDUAF9 and succinate dehydrogenase, components of complexes I and II of the electron transport chain (ETC). TL-mediated hyperacetylation of complexes I and II proteins and these complexes displayed decreased enzymatic activities. We also provide the evidence that P53 regulate steady-state level of SIRT3 through Proteasome-Pathway. Finally, forced overexpression of Sirt3, but not deacetylase-deficient mutant of Sirt3 (H243Y), restored the deleterious effect of TL on p53-deficient cells by rescuing mitochondrial bioenergetics. On contrary, Sirt3 deficiency in the background of wild-type p53 triggered TL-induced mitochondrial impairment that echoed TL effect in p53-deficeint cells. These findings illustrate a novel mechanism by which TL exerts its potent effects on mitochondrial function and ultimately the viability of NSCLC tumor. PMID:27501149

  7. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    PubMed

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc.

  8. The Epigenetic Regulator HDAC1 Modulates Transcription of a Core Cardiogenic Program in Human Cardiac Mesenchymal Stromal Cells Through a p53-Dependent Mechanism.

    PubMed

    Moore, Joseph B; Zhao, John; Keith, Matthew C L; Amraotkar, Alok R; Wysoczynski, Marcin; Hong, Kyung U; Bolli, Roberto

    2016-12-01

    Histone deacetylase (HDAC) regulation is an essential process in myogenic differentiation. Inhibitors targeting the activity of specific HDAC family members have been shown to enhance the cardiogenic differentiation capacity of discrete progenitor cell types; a key property of donor cell populations contributing to their afforded benefits in cardiac cell therapy applications. The influence of HDAC inhibition on cardiac-derived mesenchymal stromal cell (CMC) transdifferentiation or the role of specific HDAC family members in dictating cardiovascular cell lineage specification has not been investigated. In the current study, the consequences of HDAC inhibition on patient-derived CMC proliferation, cardiogenic program activation, and cardiovascular differentiation/cell lineage specification were investigated using pharmacologic and genetic targeting approaches. Here, CMCs exposed to the pan-HDAC inhibitor sodium butyrate exhibited induction of a cardiogenic transcriptional program and heightened expression of myocyte and endothelial lineage-specific markers when coaxed to differentiate in vitro. Further, shRNA knockdown screens revealed CMCs depleted of HDAC1 to promote the induction of a cardiogenic transcriptional program characterized by enhanced expression of cardiomyogenic- and vasculogenic-specific markers, a finding which depended on and correlated with enhanced acetylation and stabilization of p53. Cardiogenic gene activation and elevated p53 expression levels observed in HDAC1-depleted CMCs were associated with improved aptitude to assume a cardiomyogenic/vasculogenic cell-like fate in vitro. These results suggest that HDAC1 depletion-induced p53 expression alters CMC cell fate decisions and identify HDAC1 as a potential exploitable target to facilitate CMC-mediated myocardial repair in ischemic cardiomyopathy. Stem Cells 2016;34:2916-2929.

  9. Statin-induced apoptosis and skeletal myopathy.

    PubMed

    Dirks, Amie J; Jones, Kimberly M

    2006-12-01

    Over 100 million prescriptions were filled for statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) in 2004. Statins were originally developed to lower plasma cholesterol in patients with hypercholesterolemia and are the most effective drugs on the market in doing so. Because of the discovered pleiotropic effects of statins, the use has expanded to the treatment of many other conditions, including ventricular arrythmias, idiopathic dilated cardiomyopathy, cancer, osteoporosis, and diabetes. The elderly population is growing. Therefore, it is estimated that the number of statin users will also increase. Fortunately, the use of statins is relatively safe with few side effects. Myopathy is the most common side effect with symptoms ranging from fatigue, weakness, and pain to symptoms associated with rhabdomyolysis which is a life-threatening condition. The development of statin-induced rhabdomyolysis is rare occurring in approximately 0.1% of patients; however, the occurrence of less severe symptoms is underreported and may be 1-5% or more. Physical exercise appears to increase the likelihood for the development of myopathy in patients taking statins. It is thought that as many as 25% of statin users who exercise may experience muscle fatigue, weakness, aches, and cramping due to statin therapy and potentially dismissed by the patient and physician. The mechanisms causing statin-induced myopathy have not been elucidated; however, research efforts suggest that apoptosis of myofibers may contribute. The mitochondrion is considered a regulatory center of apoptosis, and therefore its role in the induction of apoptosis will be discussed as well as the mechanism of statin-induced apoptosis and myopathy.

  10. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  11. Activation of p53 by Nutlin-3a, an antagonist of MDM2, induces apoptosis and cellular senescence in adult T-cell leukemia cells.

    PubMed

    Hasegawa, H; Yamada, Y; Iha, H; Tsukasaki, K; Nagai, K; Atogami, S; Sugahara, K; Tsuruda, K; Ishizaki, A; Kamihira, S

    2009-11-01

    It has been reported that the induction of cellular senescence through p53 activation is an effective strategy in tumor regression. Unfortunately, however, tumors including adult T-cell leukemia/lymphoma (ATL) have disadvantages such as p53 mutations and a lack of p16(INK4a) and/or p14(ARF). In this study we characterized Nutlin-3a-induced cell death in 16 leukemia/lymphoma cell lines. Eight cell lines, including six ATL-related cell lines, had wild-type p53 and Nutlin-3a-activated p53, and the cell lines underwent apoptosis or cell-cycle arrest, whereas eight cell lines with mutated p53 were resistant. Interestingly, senescence-associated-beta-galactosidase (SA-beta-gal) staining revealed that only ATL-related cell lines with wild-type p53 showed cellular senescence, although they lack both p16(INK4a) and p14(ARF). These results indicate that cellular senescence is an important event in p53-dependent cell death in ATL cells and is inducible without p16(INK4a) and p14(ARF). Furthermore, knockdown of Tp53-induced glycolysis and apoptosis regulator (TIGAR), a novel target gene of p53, by small interfering RNA(siRNA) indicated its important role in the induction of cellular senescence. As many patients with ATL carry wild-type p53, our study suggests that p53 activation by Nutlin-3a is a promising strategy in ATL. We also found synergism with a combination of Nutlin-3a and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), suggesting the application of Nutlin-3a-based therapy to be broader than expected.

  12. HIV-1 protease-induced apoptosis

    PubMed Central

    2014-01-01

    Background Apoptosis is one of the presumptive causes of CD4+ T cell depletion during HIV infection and progression to AIDS. However, the precise role of HIV-1 in this process remains unexplained. HIV-1 protease (PR) has been suggested as a possible factor, but a direct link between HIV-1 PR enzymatic activity and apoptosis has not been established. Results Here, we show that expression of active HIV-1 PR induces death in HeLa and HEK-293 cells via the mitochondrial apoptotic pathway. This conclusion is based on in vivo observations of the direct localization of HIV-1 PR in mitochondria, a key player in triggering apoptosis. Moreover, we observed an HIV-1 PR concentration-dependent decrease in mitochondrial membrane potential and the role of HIV-1 PR in activation of caspase 9, PARP cleavage and DNA fragmentation. In addition, in vitro data demonstrated that HIV-1 PR mediates cleavage of mitochondrial proteins Tom22, VDAC and ANT, leading to release of AIF and Hsp60 proteins. By using yeast two-hybrid screening, we also identified a new HIV-1 PR interaction partner, breast carcinoma-associated protein 3 (BCA3). We found that BCA3 accelerates p53 transcriptional activity on the bax promoter, thus elevating the cellular level of pro-apoptotic Bax protein. Conclusion In summary, our results describe the involvement of HIV-1 PR in apoptosis, which is caused either by a direct effect of HIV-1 PR on mitochondrial membrane integrity or by its interaction with cellular protein BCA3. PMID:24886575

  13. Selective IAP inhibition results in sensitization of unstimulated but not CD40-stimulated chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis

    PubMed Central

    Zhuang, Jianguo; Laing, Naomi; Oates, Melanie; Lin, Ke; Johnson, Gillian; Pettitt, Andrew R

    2014-01-01

    Despite recent advances in therapy, chronic lymphocytic leukaemia (CLL) remains incurable and new treatment strategies are therefore urgently required. Inhibitor of apoptosis proteins (IAPs) are over-expressed in CLL, suggesting both a role in disease pathogenesis and the potential for therapeutic targeting. To explore these questions, we evaluated the effects on primary CLL cells of AZD5582, a novel potent and selective inhibitor of IAPs. AZD5582 at nanomolar concentrations induced extensive degradation of cIAP-1 and cIAP-2, but minimally of X chromosome-linked IAP (XIAP). However, these effects of AZD5582 produced little or no direct cytotoxicity, nor did they sensitize CLL cells to p53-dependent killing by fludarabine or p53-independent killing by dexamethasone. In contrast, AZD5582 significantly enhanced apoptosis induced by the death receptor (DR) agonist tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Importantly, killing by TRAIL plus AZD5582 was independent of adverse prognostic features including TP53 deletion which is strongly associated with chemoresistance in CLL. Coculture experiments involving transfected mouse fibroblasts expressing human CD40L (CD154) to mimic the effect of T cells at sites of tissue involvement showed that CD40 stimulation almost completely prevented the killing of CLL cells by TRAIL plus AZD5582 despite up-regulating TRAIL receptors 1 and 2. In conclusion, our findings confirm the rate-limiting, upstream involvement of IAPs in the extrinsic but not intrinsic apoptotic pathway of CLL cells and suggest that drug combinations that simultaneously activate DRs and inhibit IAPs may have therapeutic potential in patients with CLL who have failed T-cell-depleting chemotherapy. PMID:25505620

  14. Honey induces apoptosis in renal cell carcinoma

    PubMed Central

    Samarghandian, Saeed; Afshari, Jalil Tavakkol; Davoodi, Saiedeh

    2011-01-01

    Background: The fact that antioxidants have several preventative effects against different diseases, such as coronary diseases, inflammatory disorders, neurologic degeneration, aging, and cancer, has led to the search for food rich in antioxidants. Honey has been used as a traditional food and medical source since ancient times. However, recently many scientists have been concentrating on the antioxidant property of honey. By use of human renal cancer cell lines (ACHN), we investigated the antiproliferative activity, apoptosis, and the antitumor activity of honey. Materials and Methods: The cells were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum treated with different concentrations of honey for 3 consecutive days. Cell viability was quantitated by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptotic cells were determined using Annexin-V-fluorescein isothiocyanate (FITC) by flow cytometry. Results: Honey decreased the cell viability in the malignant cells in a concentration- and time-dependent manner. The IC 50 values against the ACHN cell lines were determined as 1.7 ± 0.04% and 2.1 ± 0.03% μg/mL after 48 and 72 h, respectively. Honey induced apoptosis of the ACHN cells in a concentration-dependent manner, as determined by flow cytometry histogram of treated cells. Conclusion: It might be concluded that honey may cause cell death in the ACHN cells, in which apoptosis plays an important role. Most of the drugs used in the cancer treatment are apoptotic inducers, hence apoptotic nature of honey is considered vital. Therefore, it prompted us to investigate honey as a potential candidate for renal cancer treatment. PMID:21472079

  15. Hyperthermia: an effective strategy to induce apoptosis in cancer cells.

    PubMed

    Ahmed, Kanwal; Tabuchi, Yoshiaki; Kondo, Takashi

    2015-11-01

    Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.

  16. Apoptosis induced by a human milk protein.

    PubMed

    Håkansson, A; Zhivotovsky, B; Orrenius, S; Sabharwal, H; Svanborg, C

    1995-08-15

    To the breast-fed infant, human milk is more than a source of nutrients; it furnishes a wide array of molecules that restrict microbes, such as antibodies, bactericidins, and inhibitors of bacterial adherence. However, it has rarely been considered that human milk may also contain substances bioactive toward host cells. While investigating the effect of human milk on bacterial adherence to a human lung cancer cell line, we were surprised to discover that the milk killed the cells. Analysis of this effect revealed that a component of milk in a particular physical state--multimeric alpha-lact-albumin--is a potent Ca(2+)-elevating and apoptosis-inducing agent with broad, yet selective, cytotoxic activity. Multimeric alpha-lactalbumin killed all transformed, embryonic, and lymphoid cells tested but spared mature epithelial elements. These findings raise the possibility that milk contributes to mucosal immunity not only by furnishing antimicrobial molecules but also by policing the function of lymphocytes and epithelium. Finally, analysis of the mechanism by which multimeric alpha-lactalbumin induces apoptosis in transformed epithelial cells could lead to the design of antitumor agents.

  17. The mitochondrial pathway of anesthetic isoflurane-induced apoptosis.

    PubMed

    Zhang, Yiying; Dong, Yuanlin; Wu, Xu; Lu, Yan; Xu, Zhipeng; Knapp, Andrew; Yue, Yun; Xu, Tiejun; Xie, Zhongcong

    2010-02-05

    The common inhalation anesthetic isoflurane has been shown to induce apoptosis, which then leads to accumulation of beta-amyloid protein, the hallmark feature of Alzheimer disease neuropathogenesis. The underlying molecular mechanism of the isoflurane-induced apoptosis is largely unknown. We, therefore, set out to assess whether isoflurane can induce apoptosis by regulating Bcl-2 family proteins, enhancing reactive oxygen species (ROS) accumulation, and activating the mitochondrial pathway of apoptosis. We performed these studies in cultured cells, primary neurons, and mice. Here we show for the first time that treatment with 2% isoflurane for 6 h can increase pro-apoptotic factor Bax levels, decrease anti-apoptotic factor Bcl-2 levels, increase ROS accumulation, facilitate cytochrome c release from the mitochondria to the cytosol, induce activation of caspase-9 and caspase-3, and finally cause apoptosis as compared with the control condition. We have further found that isoflurane can increase the mRNA levels of Bax and reduce the mRNA levels of Bcl-2. The isoflurane-induced ROS accumulation can be attenuated by the intracellular calcium chelator BAPTA. Finally, the anesthetic desflurane does not induce activation of mitochondrial pathway of apoptosis. These results suggest that isoflurane may induce apoptosis through Bcl-2 family proteins- and ROS-associated mitochondrial pathway of apoptosis. These findings, which have identified at least partially the molecular mechanism by which isoflurane induces apoptosis, will promote more studies aimed at studying the potential neurotoxic effects of anesthetics.

  18. Aspartame-induced apoptosis in PC12 cells.

    PubMed

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity.

  19. Research Advances on Pathways of Nickel-Induced Apoptosis

    PubMed Central

    Guo, Hongrui; Chen, Lian; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2015-01-01

    High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. PMID:26703593

  20. The p53 co-activator Zac1 neither induces cell cycle arrest nor apoptosis in chicken Lim1 horizontal progenitor cells.

    PubMed

    Fard, S Shirazi; Blixt, Mke; Hallböök, F

    2015-01-01

    Chicken horizontal progenitor cells are able to enter their final mitosis even in the presence of DNA damage despite having a functional p53-p21 system. This suggests that they are resistant to DNA damage and that the regulation of the final cell cycle of horizontal progenitor cells is independent of the p53-p21 system. The activity of p53 is regulated by positive and negative modulators, including the zinc finger containing transcription factor Zac1 (zinc finger protein that regulates apoptosis and cell cycle arrest). Zac1 interacts with and enhances the activity of p53, thereby inducing cell cycle arrest and apoptosis. In this work, we use a gain-of-function assay in which mouse Zac1 (mZac1) is overexpressed in chicken retinal progenitor cells to study the effect on the final cell cycle of horizontal progenitor cells. The results showed that overexpression of mZac1 induced expression of p21 in a p53-dependent way and arrested the cell cycle as well as triggered apoptosis in chicken non-horizontal retinal progenitor cells. The negative regulation of the cell cycle by mZac1 is consistent with its proposed role as a tumour-suppressor gene. However, the horizontal cells were not affected by mZac1 overexpression. They progressed into S- and late G2/M-phase despite overexpression of mZac1. The inability of mZac1 to arrest the cell cycle in horizontal progenitor cells support the notion that the horizontal cells are less sensitive to events that triggers the p53 system during their terminal and neurogenic cell cycle, compared with other retinal cells. These properties are associated with a cell that has a propensity to become neoplastic and thus with a cell that may develop retinoblastoma.

  1. Quercetin-induced apoptosis prevents EBV infection.

    PubMed

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Cho, Hyosun; Kang, Hyojeung

    2015-05-20

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma.

  2. Quercetin-induced apoptosis prevents EBV infection

    PubMed Central

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-01-01

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma

  3. Apoptosis induced by propolis in human hepatocellular carcinoma cell line.

    PubMed

    Choi, Y H; Lee, W Y; Nam, S Y; Choi, K C; Park, Y E

    1999-07-01

    Propolis has been reported to exhibit a wide spectrum of activities including antibiotic, antiviral, anti-inflammatory, immunostimulatory and tumor carcinostatic properties. We showed propolis induced apoptosis in a human hepatoma cell line (SNU449) by FITC-Annexin V/PI staining. We also compared the apoptosis inducing effect between Korean and Commercial (Sigma # p-1010) propolis. There was no difference on apoptosis between them.

  4. Friend Leukemia Virus Infection Enhances DNA Damage-Induced Apoptosis of Hematopoietic Cells, Causing Lethal Anemia in C3H Hosts

    PubMed Central

    Kitagawa, Masanobu; Yamaguchi, Shuichi; Hasegawa, Maki; Tanaka, Kaoru; Sado, Toshihiko; Hirokawa, Katsuiku; Aizawa, Shiro

    2002-01-01

    Exposure of hematopoietic progenitors to gamma irradiation induces p53-dependent apoptosis. However, host responses to DNA damage are not uniform and can be modified by various factors. Here, we report that a split low-dose total-body irradiation (TBI) (1.5 Gy twice) to the host causes prominent apoptosis in bone marrow cells of Friend leukemia virus (FLV)-infected C3H mice but not in those of FLV-infected DBA mice. In C3H mice, the apoptosis occurs rapidly and progressively in erythroid cells, leading to lethal host anemia, although treatment with FLV alone or TBI alone induced minimal apoptosis in bone marrow cells. A marked accumulation of P53 protein was demonstrated in bone marrow cells from FLV-infected C3H mice 12 h after treatment with TBI. Although a similar accumulation of P53 was also observed in bone marrow cells from FLV-infected DBA mice treated with TBI, the amount appeared to be parallel to that of mice treated with TBI alone and was much lower than that of FLV- plus TBI-treated C3H mice. To determine the association of p53 with the prominent enhancement of apoptosis in FLV- plus TBI-treated C3H mice, p53 knockout mice of the C3H background (C3H p53−/−) were infected with FLV and treated with TBI. As expected, p53 knockout mice exhibited a very low frequency of apoptosis in the bone marrow after treatment with FLV plus TBI. Further, C3H p53−/− → C3H p53+/+ bone marrow chimeric mice treated with FLV plus TBI survived even longer than the chimeras treated with FLV alone. These findings indicate that infection with FLV strongly enhances radiation-induced apoptotic cell death of hematopoietic cells in host animals and that the apoptosis occurs through a p53-associated signaling pathway, although the response was not uniform in different host strains. PMID:12097591

  5. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells.

    PubMed

    Bhattacharya, Sujoy; Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco-2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco-2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF-α/CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner.

  6. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway.

    PubMed

    Singh, Santosh Kumar; Banerjee, Saswati; Acosta, Edward P; Lillard, James W; Singh, Rajesh

    2017-02-13

    Resveratrol (RES) is the most effective natural products used for the treatment of a variety of cancers. In this study, we tested the effect of RES in enhancing the efficacy of docetaxel (DTX) treatment in prostate cancer (PCa) cells. The C4-2B and DU-145 cell lines were treated with RES, DTX and combination followed by evaluating the apoptosis and cell cycle progression. The combined drug treatment up-regulates the pro-apoptotic genes (BAX, BID, and BAK), cleaved PARP and down regulates the anti-apoptotic genes (MCL-1, BCL-2, BCL-XL) promoting apoptosis. In C4-2B cells the combination up regulated the expression of p53, and cell cycle inhibitors (p21WAF1/CIP1, p27KIP), which, in turn, inhibited the expression of CDK4, cyclin D1, cyclin E1 and induced hypo-phosphorylation of Rb thus blocking the transition of cells in the G0/G1 to S phase. In contrast, the synergistic effect was not profound in DU145 due to its lesser sensitivity to DTX. The suppression of cyclin B1 and CDK1 expression in both cell lines inhibits the further progression of cells in G2/M phase. The current study demonstrates that combination treatment blocks the cell cycle arrest by modulation of key regulators and promotes apoptosis via p53 dependent and independent mechanism in PCa.

  7. Apoptosis Induced by Metal Complexes and Interaction with Dexamethasone

    PubMed Central

    Kim, Jung Sun; Barros, José Carlos Almeida

    2002-01-01

    Apoptosis induced by rhodium II amidate, rhodium II propionate, cisplatin and interactions with dexamethaxone were studied on some human leukemia cell lines Raji, Jurkat and U937. Apoptosis was studied by flow cytometry, agarose gel electrophoresis and morphological analysis. Rhodium II propionate induced apoptosis in all the three cell lines, Rhodium II amidate, in the lymphoid cell lines Jurkat and Raji, and cisplatin, only in the Jurkat, a T lymphoid cell line. It has also been observed that the addition of dexamethasone enhances the apoptosis index only in U937, a monocytic line with a glucocorticoid receptor bearing. PMID:18476001

  8. Role of PUMA in methamphetamine-induced neuronal apoptosis.

    PubMed

    Chen, Chuanxiang; Qincao, Litao; Xu, Jingtao; Du, Sihao; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2016-01-05

    Exposure to methamphetamine (METH), a widely used illicit drug, has been shown to cause neuron apoptosis. p53 upregulated modulator of apoptosis (PUMA) is a key mediator in neuronal apoptosis. This study aimed to examine the effects of PUMA in METH-induced neuronal apoptosis. We determined PUMA protein expression in PC12 cells and SH-SY5Y cells after METH exposure using western blot. We also observed the effect of METH on neuronal apoptosis after silencing PUMA expression with siRNA using TUNEL staining and flow cytometry. Additionally, to investigate possible mechanisms of METH-induced PUMA-mediated neuronal apoptosis, we measured the protein expression of apoptotic markers, including cleaved caspase-3, cleaved PARP, Bax, B-cell leukemia/lymphoma-2 (Bcl-2) and cytochrome c (cyto c), after METH treatment with or without PUMA knockdown. Results showed that METH exposure induced cell apoptosis, increased PUMA protein levels, activated caspase-3 and PARP, elevated Bax and reduced Bcl-2 expression, as well as increased the release of cyto c from mitochondria to the cytoplasm in both PC12 and SH-SY5Y cells. All these effects were attenuated or reversed after silencing PUMA. A schematic depicting the role of PUMA in METH-induced mitochondrial apoptotic pathway was proposed. Our results suggest that PUMA plays an important role in METH-triggered apoptosis and it may be a potential target for ameliorating neuronal injury and apoptosis caused by METH.

  9. Glucocorticoid-induced apoptosis and cellular mechanisms of myopathy.

    PubMed

    Dirks-Naylor, Amie J; Griffiths, Carrie L

    2009-10-01

    Glucocorticoid-induced myopathy is a common side effect of chronic glucocorticoid therapy. Several mechanisms are currently being examined as ways in which glucocorticoid-induced myopathy occurs. These include apoptotic signaling through mitochondrial-mediated and Fas-mediated apoptosis, the role of the proteosome, the suppression of the IGF-1 signaling, and the role of ceramide in glucocorticoid-induced apoptosis and myopathy. It is difficult to differentiate which mechanism may be the initiating event responsible for the induction of apoptosis; however, all of the mechanisms play a vital role in glucocorticoid-induced myopathy.

  10. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)

    PubMed Central

    Elmallah, Mohammed I. Y.; Micheau, Olivier

    2015-01-01

    Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells. PMID:26580630

  11. Mechanisms and Consequences of Ebolavirus-Induced Lymphocyte Apoptosis

    DTIC Science & Technology

    2010-01-01

    system to respond to infection (5, 6). However, recent studies have indicated that a functional CD8+ T cell-mediated immune response is generated in...systemic implications of lymphocyte apoptosis in EBOV infection are known. In this study , we show data suggesting that EBOV-induced lymphocyte apoptosis in...apoptosis in vitro through an unknown mechanism (11). However, no previous studies have analyzed the effect of blocking either the intrinsic or extrinsic

  12. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    SciTech Connect

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Lee, Su-Jae; Lee, Chang-Woo; Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul; Hwang, Sang-Gu

    2014-07-11

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.

  13. [Apoptosis and thymocyte development (epithelial cells as inducers of thymocyte apoptosis)].

    PubMed

    Iarilin, A A; Bulanova, E G; Sharova, N I; Budagian, V M

    1998-01-01

    Apoptosis, together with proliferation, is a main factor of selection of the clones of developing T-lymphocytes: the clones not supported by positive selection are subject to apoptosis and apoptosis accounts for discarding of potentially autoaggressive clones, i.e., for negative selection in the thymus and peripheral lymphoid tissue. Realization of apoptosis at different stages of the development of T-lymphocytes depends to a varying extent on Fas, Bcl-2, p53, and other regulators. The dendritic cells are the main cell type, the contact with determines apoptosis of T-lymphocytes. A possible role of the epithelial cells was shown in few models (on murine cells) and was not practically studied. We obtained a line of epithelial cells of the human thymus cells HTSC, cocultivation with which induces apoptosis of immature thymocytes and blood T-cells activated by mitogens. Development of apoptosis is suppressed by inhibitors of protein and RNA synthesis, chelators Ca2+, ions Zn2+, and factors destroying the cytoskeleton components. In this model, interaction of pairs of molecules CD4-HLA class II and LFA-1-ICAM-1. When in contact with the HTSC cells, the thymocytes of mice mutant for Fas-receptor (line MRL.lpr) are subject to apoptosis, but when this receptor is present, it affects the development of apoptosis.

  14. UXT plays dual opposing roles on SARM-induced apoptosis.

    PubMed

    Sethurathinam, Shalini; Singh, Laishram Pradeepkumar; Panneerselvam, Porkodi; Byrne, Bernadette; Ding, Jeak Ling

    2013-10-11

    Apoptosis is a vital defense mechanism for the clearance of infected cells. Ubiquitously expressed transcript (UXT), which exists in two isoforms (V1 and V2), interact with both apoptotic and cellular proteins. By yeast two-hybrid analysis, we found that UXT interacts with SARM (sterile α and HEAT armadillo motif-containing protein). Since SARM is a TLR adaptor which induces intrinsic apoptosis following immune activation, we were prompted to query whether UXT and SARM might co-regulate apoptosis. We found that the UXT isoforms elicit dual opposing regulatory effects on SARM-induced apoptosis; while UXT V1, co-expressed with SARM, caused a reduction in caspase 8 activity, UXT V2 strongly increased caspase 8 activity and enhanced SARM-induced apoptosis by activating the extrinsic pathway and depolarizing the mitochondria.

  15. Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes

    PubMed Central

    Smith, Lindsay K.; Cidlowski, John A.

    2016-01-01

    Glucocorticoids exert a wide range of physiological effects, including the induction of apoptosis in lymphocytes. The progression of glucocorticoid-induced apoptosis is a multi-component process requiring contributions from both genomic and cytoplasmic signaling events. There is significant evidence indicating that the transactivation activity of the glucocorticoid receptor is required for the initiation of glucocorticoid-induced apoptosis. However, the rapid cytoplasmic effects of glucocorticoids may also contribute to the glucocorticoid-induced apoptosis-signaling pathway. Endogenous glucocorticoids shape the T-cell repertoire through both the induction of apoptosis by neglect during thymocyte maturation and the antagonism of T-cell receptor (TCR)-induced apoptosis during positive selection. Owing to their ability to induce apoptosis in lymphocytes, synthetic glucocorticoids are widely used in the treatment of haematological malignancies. Glucocorticoid chemotherapy is limited, however, by the emergence of glucocorticoid resistance. The development of novel therapies designed to overcome glucocorticoid resistance will dramatically improve the efficacy of glucocorticoid therapy in the treatment of haematological malignancies. PMID:20541659

  16. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  17. Zinc pyrithione induces apoptosis and increases expression of Bim.

    PubMed

    Mann, J J; Fraker, P J

    2005-03-01

    We demonstrate herein that zinc pyrithione can induce apoptosis at nanomolar concentrations. Zinc pyrithione was a potent inducer of cell death causing greater than 40-60% apoptosis among murine thymocytes, murine splenic lymphocytes and human Ramos B and human Jurkat T cells. Conversely, the addition of a zinc chelator protected thymocytes against zinc pyrithione induced apoptosis indicating these responses were specific for zinc. Zinc-induced apoptosis was dependent on transcription and translation which suggested possible regulation by a proapoptotic protein. Indeed, zinc induced a 1.9 and 3.4 fold increase respectively in expression of the BimEL and BimL isoforms and also stimulated production of the most potent isoform, BimS. This increase in Bim isoform expression was dependent on transcription being blocked by treatment with actinomycin D. Overexpression of Bcl-2 or Bcl-xL provided substantial protection of Ramos B and Jurkat T cells against zinc-induced apoptosis. Zinc also activated the caspase cascade demonstrated by cleavage of caspase 9. Addition of specific inhibitors for caspase 9 and caspase 3 also blocked zinc-induced apoptosis. The data herein adds to the growing evidence that free or unbound zinc could be harmful to cells of the immune system.

  18. Preventive effects of bicarbonate on cerivastatin-induced apoptosis.

    PubMed

    Kobayashi, Masaki; Kaido, Fumie; Kagawa, Toshiki; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2007-08-16

    Although HMG-CoA reductase inhibitors such as statins are the most widely used cholesterol-lowering agents, there is a risk of myopathy or rhabdmyolysis occurring in patients taking these drugs. It has been reported that a number of lipophilic statins cause apoptosis in various cells, but it is still not clear whether intracellular acidification is involved in statin-induced apoptosis. There have been few studies aimed at identifying compounds that suppress statin-induced myotoxicity. In the present study, we examined the relationship between cerivastatin-induced apoptosis and intracellular acidification and the effect of bicarbonate on cerivastatin-induced apoptosis using an RD cell line as a model of in vitro skeletal muscle. Cerivastatin reduced the number of viable cells and caused dramatic morphological changes and DNA fragmentation in a concentration-dependent manner. Moreover, cerivastatin-induced apoptosis was associated with intracellular acidification and caspase-9 and -3/7 activation. On the other hand, bicarbonate suppressed cerivastatin-induced pH alteration, caspase activation, morphological change and reduction of cell viability. Accordingly, bicarbonate suppressed statin-induced apoptosis. The strategy to combine statins with bicarbonate can lead to reduction in the chance of the severe adverse events including myopathy or rhabdmyolysis.

  19. Crizotinib induces PUMA-dependent apoptosis in colon cancer cells.

    PubMed

    Zheng, Xingnan; He, Kan; Zhang, Lin; Yu, Jian

    2013-05-01

    Oncogenic alterations in MET or anaplastic lymphoma kinase (ALK) have been identified in a variety of human cancers. Crizotinib (PF02341066) is a dual MET and ALK inhibitor and approved for the treatment of a subset of non-small cell lung carcinoma and in clinical development for other malignancies. Crizotinib can induce apoptosis in cancer cells, whereas the underlying mechanisms are not well understood. In this study, we found that crizotinib induces apoptosis in colon cancer cells through the BH3-only protein PUMA. In cells with wild-type p53, crizotinib induces rapid induction of PUMA and Bim accompanied by p53 stabilization and DNA damage response. The induction of PUMA and Bim is mediated largely by p53, and deficiency in PUMA or p53, but not Bim, blocks crizotinib-induced apoptosis. Interestingly, MET knockdown led to selective induction of PUMA, but not Bim or p53. Crizotinib also induced PUMA-dependent apoptosis in p53-deficient colon cancer cells and synergized with gefitinib or sorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and therapeutic responses to crizotinib in xenograft models. These results establish a critical role of PUMA in mediating apoptotic responses of colon cancer cells to crizotinib and suggest that mechanisms of oncogenic addiction to MET/ALK-mediated survival may be cell type-specific. These findings have important implications for future clinical development of crizotinib.

  20. Apoptosis in vascular cells induced by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Sladek, Raymond; Stoffels, Eva

    2006-10-01

    Apoptosis is a natural mechanism of cellular self-destruction. It can be triggered by moderate, yet irreversible damage. Apoptosis plays a major role in tissue renewal. Artificial apoptosis induction will become a novel therapy that meets all requirements for tissue-saving surgery. Diseased tissues can disappear without inflammation and scarring. This is particularly important in treatment of blockages in body tracts (e.g. cardiovascular diseases). Artificial induction of apoptosis can be achieved by means of cold plasma treatment. In this work an atmospheric micro-plasma operated in helium/air has been used to induce apoptosis in vascular cells. Parametric studies of apoptosis induction have been conducted; the efficiency is almost 100%. The apoptotic factors are ROS/RNS (reactive oxygen and nitrogen species). Their densities in the plasma have been measured by mass spectrometry. For apoptosis induction, RNS seem to be more important than ROS, because of their relative abundance. Moreover, addition of a ROS scavenger (ascorbic acid) to the cell culture medium does not reduce the occurrence of apoptosis. Cold plasma is a very efficient tool for fundamental studies of apoptosis, and later, for controlled tissue removal in vivo.

  1. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    SciTech Connect

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  2. Wogonin Induces Eosinophil Apoptosis and Attenuates Allergic Airway Inflammation

    PubMed Central

    Dorward, David A.; Sharma, Sidharth; Rennie, Jillian; Felton, Jennifer M.; Alessandri, Ana L.; Duffin, Rodger; Schwarze, Jurgen; Haslett, Christopher; Rossi, Adriano G.

    2015-01-01

    Rationale: Eosinophils are key effector cells in allergic diseases, including allergic rhinitis, eczema, and asthma. Their tissue presence is regulated by both recruitment and increased longevity at inflamed sites. Objectives: To investigate the ability of the flavone wogonin to induce eosinophil apoptosis in vitro and attenuate eosinophil-dominant allergic inflammation in vivo in mice. Methods: Human and mouse eosinophil apoptosis in response to wogonin was investigated by cellular morphology, flow cytometry, mitochondrial membrane permeability, and pharmacological caspase inhibition. Allergic lung inflammation was modeled in mice sensitized and challenged with ovalbumin. Bronchoalveolar lavage (BAL) and lung tissue were examined for inflammation, mucus production, and inflammatory mediator production. Airway hyperresponsiveness to aerosolized methacholine was measured. Measurements and Main Results: Wogonin induced time- and concentration-dependent human and mouse eosinophil apoptosis in vitro. Wogonin-induced eosinophil apoptosis occurred with activation of caspase-3 and was inhibited by pharmacological caspase inhibition. Wogonin administration attenuated allergic airway inflammation in vivo with reductions in BAL and interstitial eosinophil numbers, increased eosinophil apoptosis, reduced airway mucus production, and attenuated airway hyperresponsiveness. This wogonin-induced reduction in allergic airway inflammation was prevented by concurrent caspase inhibition in vivo. Conclusions: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation, suggesting that it has therapeutic potential for the treatment of allergic inflammation in humans. PMID:25629436

  3. Ibuprofen enhances TRAIL-induced apoptosis through DR5 upregulation.

    PubMed

    Todo, Momoko; Horinaka, Mano; Tomosugi, Mitsuhiro; Tanaka, Ryoichi; Ikawa, Haruna; Sowa, Yoshihiro; Ishikawa, Hideki; Fujiwara, Hitoshi; Otsuji, Eigo; Sakai, Toshiyuki

    2013-11-01

    Numerous human chemoprevention studies have demonstrated that non-steroidal anti-inflammatory drugs (NSAIDs) possess chemopreventive effects against a variety of malignant tumors. However, there have been many clinical studies on aspirin, but not ibuprofen, even though ibuprofen is one of the most clinically and safely used NSAIDs showing potent anti-inflammatory effects. Moreover, we reported that many chemopreventive agents enhance the apoptosis-inducing effects of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which is known to be crucial for cancer prevention. We, therefore, investigated whether ibuprofen enhances the cytocidal effect of TRAIL and found that ibuprofen markedly stimulated the apoptosis-inducing efficacy of TRAIL against human colon cancer HCT116 cells. As detected by western blot analysis and real-time RT-PCR, ibuprofen upregulated the expression of death receptor 5 (DR5), a TRAIL receptor. TRAIL-induced apoptosis enhanced by ibuprofen was effectively decreased by a caspase inhibitor and dominant-negative DR5. Noteworthy, co-treatment of ibuprofen with TRAIL did not enhance apoptosis in normal peripheral blood mononuclear cells (PBMCs). These results demonstrated that ibuprofen and TRAIL synergistically induced apoptosis in human colon cancer HCT116 cells but not in normal PBMCs, raising the possibility that ibuprofen may be promising as a safe chemopreventive agent against colon cancer.

  4. SHMT1 knockdown induces apoptosis in lung cancer cells by causing uracil misincorporation

    PubMed Central

    Paone, A; Marani, M; Fiascarelli, A; Rinaldo, S; Giardina, G; Contestabile, R; Paiardini, A; Cutruzzolà, F

    2014-01-01

    Reprogramming of cellular metabolism towards de novo serine production fuels the growth of cancer cells, providing essential precursors such as amino acids and nucleotides and controlling the antioxidant and methylation capacities of the cell. The enzyme serine hydroxymethyltransferase (SHMT) has a key role in this metabolic shift, and directs serine carbons to one-carbon units metabolism and thymidilate synthesis. While the mitochondrial isoform of SHMT (SHMT2) has recently been identified as an important player in the control of cell proliferation in several cancer types and as a hot target for anticancer therapies, the role of the cytoplasmic isoform (SHMT1) in cancerogenesis is currently less defined. In this paper we show that SHMT1 is overexpressed in tissue samples from lung cancer patients and lung cancer cell lines, suggesting that, in this widespread type of tumor, SHMT1 plays a relevant role. We show that SHMT1 knockdown in lung cancer cells leads to cell cycle arrest and, more importantly, to p53-dependent apoptosis. Our data demonstrate that the induction of apoptosis does not depend on serine or glycine starvation, but is because of the increased uracil accumulation during DNA replication. PMID:25412303

  5. Resveratrol inhibits TIGAR to promote ROS induced apoptosis and autophagy.

    PubMed

    Kumar, Bhupender; Iqbal, Mohammad Askandar; Singh, Rajnish Kumar; Bamezai, Rameshwar N K

    2015-11-01

    Resveratrol has been shown to exhibit its anti-cancer effect through a variety of mechanisms. Here, TIGAR (TP53-Induced Glycolysis and Apoptosis Regulator) was identified as an important target of resveratrol for exhibiting ROS-dependent-consequences on apoptosis and autophagy. Resveratrol treatment decreased TIGAR protein irrespective of cell line used. Down-regulated TIGAR protein triggered a drop in reduced-glutathione levels which resulted in sustained ROS, responsible for apoptosis and autophagy. Over-expression and silencing experiments demonstrated the importance of TIGAR in affecting the ROS-dependent anti-cancer effects of resveratrol. Resveratrol treated cells exhibited autophagy to escape apoptosis, however, chloroquine treatment along with resveratrol, blocked protective autophagy and facilitated apoptosis. Collectively, results unravel the effects of resveratrol on TIGAR in mediating its ROS dependent influence and suggest a better combination therapy of resveratrol and chloroquine for probable cancer treatment.

  6. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis.

    PubMed

    Zhang, Hai-Tao; Xue, Jing-Hui; Zhang, Zhi-Wen; Kong, Hai-Bo; Liu, Ai-Jun; Li, Shou-Chun; Xu, Dong-Gang

    2015-10-05

    Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.

  7. Downregulation of serine/arginine-rich splicing factor 3 induces G1 cell cycle arrest and apoptosis in colon cancer cells.

    PubMed

    Kurokawa, K; Akaike, Y; Masuda, K; Kuwano, Y; Nishida, K; Yamagishi, N; Kajita, K; Tanahashi, T; Rokutan, K

    2014-03-13

    Serine/arginine-rich splicing factor 3 (SRSF3) likely has wide-ranging roles in gene expression and facilitation of tumor cell growth. SRSF3 knockdown induced G1 arrest and apoptosis in colon cancer cells (HCT116) in association with altered expression of 833 genes. Pathway analysis revealed 'G1/S Checkpoint Regulation' as the most highly enriched category in the affected genes. SRSF3 knockdown did not induce p53 or stimulate phosphorylation of p53 or histone H2A.X in wild-type HCT116 cells. Furthermore, the knockdown induced G1 arrest in p53-null HCT116 cells, suggesting that p53-dependent DNA damage responses did not mediate the G1 arrest. Real-time reverse transcription-polymerase chain reaction and western blotting confirmed that SRSF3 knockdown reduced mRNA and protein levels of cyclins (D1, D3 and E1), E2F1 and E2F7. The decreased expression of cyclin D and E2F1 likely impaired the G1-to-S-phase progression. Consequently, retinoblastoma protein remained hypophosphorylated in SRSF3 knockdown cells. The knockdown also induced apoptosis in association with reduction of BCL2 protein levels. We also found that SRSF3 knockdown facilitated skipping of 81 5'-nucleotides (27 amino acids) from exon 8 of homeodomain-interacting protein kinase-2 (HIPK2) and produced a HIPK2 Δe8 isoform. Full-length HIPK2 (HIPK2 FL) is constantly degraded through association with an E3 ubiquitin ligase (Siah-1), whereas HIPK2 Δe8, lacking the 27 amino acids, lost Siah-1-binding ability and became resistant to proteasome digestion. Interestingly, selective knockdown of HIPK2 FL induced apoptosis in various colon cancer cells expressing wild-type or mutated p53. Thus, these findings disclose an important role of SRSF3 in the regulation of the G1-to-S-phase progression and alternative splicing of HIPK2 in tumor growth.

  8. X-ray-induced cell death: Apoptosis and necrosis

    SciTech Connect

    Nakano, Hisako; Shinohara, Kunio

    1994-10-01

    X-ray-induced cell death in MOLT-4N1, a subclone of MOLT-4 cells, and M10 cells was studied with respect to their modes of cell death, apoptosis and necrosis. MOLT-4N1 cells showed radiosensitivity similar to that of M10 cells, a radiosensitive mutant of L5178Y, as determined by the colony formation assay. Analysis of cell size demonstrated that MOLT-4N1 cells increased in size at an early stage after irradiation and then decreased to a size smaller than that of control cells, whereas the size of irradiated M10 cells increased continuously. Apoptosis detected by morphological changes and DNA ladder formation (the cleavage of DNA into oligonucleosomal fragments) occurred in X-irradiated MOLT-4N1 cells but not in M10 cells. Pulsed-field gel electrophoresis showed that the ladder formation involved an intermediate-sized DNA (about 20 kbp). Most of the DNA was detected at the origin in both methods of electrophoresis in the case of M10 cells, though a trace amount of ladder formation was observed. Heat treatment of M10 cells induced apoptosis within 30 min after treatment, in contrast to MOLT-4N1 cells. The results suggest that apoptosis and necrosis are induced by X rays in a manner which is dependent on the cell line irrespective of the capability of the cells to develop apoptosis. DNA fragmentation was the earliest change observed in the development of apoptosis. 27 refs., 8 figs., 1 tab.

  9. Sodium fluoride induces apoptosis in cultured splenic lymphocytes from mice

    PubMed Central

    Cui, Hengmin; Chen, Lian; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling

    2016-01-01

    Though fluorine has been shown to induce apoptosis in immune organs in vivo, there has no report on fluoride-induced apoptosis in the cultured lymphocytes. Therefore, this study was conducted with objective of investigating apoptosis induced by sodium fluoride (NaF) and the mechanism behind that in the cultured splenic lymphocytes by flow cytometry, western blot and Hoechst 33258 staining. The splenic lymphocytes were isolated from 3 weeks old male ICR mice and exposed to NaF (0, 100, 200, and 400 μmol/L) in vitro for 24 and 48 h. When compared to control group, flow cytometry assay and Hoechst 33258 staining showed that NaF induced lymphocytes apoptosis, which was promoted by decrease of mitochondria transmembrane potential, up-regulation of Bax, Bak, Fas, FasL, caspase 9, caspase 8, caspase 7, caspase 6 and caspase 3 protein expression (P < 0.05 or P <0.01), and down-regulation of Bcl-2 and Bcl-xL protein expression (P <0.05 or P <0.01). The above-mentioned data suggested that NaF-induced apoptosis in splenic lymphocytes could be mediated by mitochondrial and death receptor pathways. PMID:27655720

  10. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    PubMed

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  11. Simulating cell apoptosis induced sinus node dysfunction.

    PubMed

    Kharche, Sanjay; Beling, John; Biktasheva, Irina V; Zhang, Henggui; Biktashev, Vadim N

    2013-01-01

    Sinus node dysfunction (SND) is correlated to the pacemaker sinoatrial node (SAN) cell apoptosis. This study explores the effect of such a dysfunctional SAN on electrical propagation into neighboring atrial tissue. The Fenton Karma model was extended to simulate mouse SAN and atrial cell action potentials. The cell models were incorporated into a 2D model consisting of a central SAN region surrounded by atrial tissue. The intercellular gap junctional coupling, as quantified by the diffusion constant, was estimated to give conduction speeds as observed in mouse atrial tissue. The size of mouse SAN pacemaking region was estimated using the 2D model. In multiple simulations, the effects of an increasing proportion of apoptotic pacemaker cells on atrial tissue pacing were simulated and quantified. The SAN size that gave a basal mouse atrial cycle length (ACL) of 295 ms was found to be 0.6 mm in radius. At low pacemaker cell apoptosis proportion, there was a drastic increase of ACL. At modest increase in the number of apoptotic cells, bradycardia was observed. The incidence of sinus arrest was also found to be high. When the number of apoptotic cells were 10% of the total number of pacemaking cells, all pacemaking was arrested. Phenomenological models have been developed to study mouse atrial electrophysiology and confirm experimental findings. The results show the significance of cell apoptosis as a major mechanism of SND.

  12. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    PubMed

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  13. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  14. αB-crystallin promotes oncogenic transformation and inhibits caspase activation in cells primed for apoptosis by Rb inactivation.

    PubMed

    Petrovic, Vladimir; Malin, Dmitry; Cryns, Vincent L

    2013-04-01

    The retinoblastoma (Rb) tumor suppressor gene is frequently inactivated in cancer, resulting in deregulated activation of E2F transcription factors, which promote S-phase entry, p53-dependent and p53-independent apoptosis. Transformed cells evade p53-dependent apoptosis initiated by Rb inactivation by TP53 mutation. However, the mechanisms by which cancer cells circumvent p53-independent apoptosis in this context are poorly understood. Because Rb inactivation primes cells for apoptosis by p53-independent induction of procaspases, we postulated that αB-crystallin, an inhibitor of procaspase-3 activation, would suppress caspase activation in cells with combined Rb and p53 inactivation. Notably, αB-crystallin is commonly expressed in ER/PR/HER2 "triple-negative" breast carcinomas characterized by frequent Rb loss and TP53 mutation. We report that αB-crystallin (-/-) knock out (KO) MEFs immortalized by dominant negative (DN) p53 are resistant to transformation by the adenovirus E1A oncoprotein, which inactivates Rb, while wild-type (WT) MEFs are readily transformed by DN p53 and E1A. αB-crystallin (-/-) KO MEFs stably expressing DN p53 and E1A were more sensitive to chemotherapy-induced caspase-3 activation and apoptosis than the corresponding WT MEFs, despite comparable induction of procaspases by E1A. Similarly, silencing Rb in WT and αB-crystallin (-/-) KO MEFs immortalized by DN p53 increased procaspase levels and sensitized αB-crystallin (-/-) KO MEFs to chemotherapy. Furthermore, silencing αB-crystallin in triple-negative breast cancer cells, which lack Rb and express mutant p53, enhanced chemotherapy sensitivity compared to non-silencing controls. Our results indicate that αB-crystallin inhibits caspase activation in cells primed for apoptosis by Rb inactivation and plays a novel oncogenic role in the context of combined Rb and p53 inactivation.

  15. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  16. Transcription factor Sox4 is required for PUMA-mediated apoptosis induced by histone deacetylase inhibitor, TSA.

    PubMed

    Jang, Sang-Min; Kang, Eun-Jin; Kim, Jung-Woong; Kim, Chul-Hong; An, Joo-Hee; Choi, Kyung-Hee

    2013-08-23

    PUMA is a crucial regulator of apoptotic cell death mediated by p53-dependent and p53-independent mechanisms. In many cancer cells, PUMA expression is induced in response to DNA-damaging reagent in a p53-dependent manner. However, few studies have investigated transcription factors that lead to the induction of PUMA expression via p53-independent apoptotic signaling. In this study, we found that the transcription factor Sox4 increased PUMA expression in response to trichostatin A (TSA), a histone deacetylase inhibitor in the p53-null human lung cancer cell line H1299. Ectopic expression of Sox4 led to the induction of PUMA expression at the mRNA and protein levels, and TSA-mediated up-regulation of PUMA transcription was repressed by the knockdown of Sox4. Using luciferase assays and chromatin immunoprecipitation, we also determined that Sox4 recruits p300 on the PUMA promoter region and increases PUMA gene expression in response to TSA treatment. Taken together, these results suggest that Sox4 is required for p53-independent apoptotic cell death mediated by PUMA induction via TSA treatment.

  17. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    PubMed

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  18. Mechanisms of sulindac-induced apoptosis and cell cycle arrest.

    PubMed

    Jung, Barbara; Barbier, Valerie; Brickner, Howard; Welsh, John; Fotedar, Arun; McClelland, Michael

    2005-02-28

    The mechanism underlying the chemopreventive effects of the non-steroidal anti-inflammatory drug sulindac remains unclear. Its active metabolite, sulindac sulfide, induces cell cycle arrest as well as apoptosis in mammalian cell lines. We now show that in murine thymocytes, sulindac sulfide-induced cell death is p53, bax, Fas, and FasL independent. In contrast, bcl2 transgenic thymocytes are resistant to sulindac sulfide-induced apoptosis. In addition, we demonstrate that sulindac sulfide-induced cell cycle arrest in mouse embryonic fibroblasts (MEFs) is partly mediated by the retinoblastoma tumor suppressor protein (Rb) and the cyclin kinase inhibitor p21waf1/cip1. Furthermore, MEFs deficient in p21 or Rb are more susceptible to sulindac sulfide-induced cell death. These results suggest that sulindac may selectively target premalignant cells with cell cycle checkpoint deficits.

  19. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria.

  20. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  1. Tubular cell apoptosis and cidofovir-induced acute renal failure.

    PubMed

    Ortiz, Alberto; Justo, Pilar; Sanz, Ana; Melero, Rosa; Caramelo, Carlos; Guerrero, Manuel Fernández; Strutz, Frank; Müller, Gerhard; Barat, Antonio; Egido, Jesus

    2005-01-01

    Cidofovir is an antiviral drug with activity against a wide array of DNA viruses including poxvirus. The therapeutic use of cidofovir is marred by a dose-limiting side effect, nephrotoxicity, leading to proximal tubular cell injury and acute renal failure. Treatment with cidofovir requires the routine use of prophylactic measures. A correct knowledge of the cellular and molecular mechanisms of cidofovir toxicity may lead to the development of alternative prophylactic strategies. We recently cared for a patient with irreversible acute renal failure due to cidofovir. Renal biopsy showed tubular cell apoptosis. Cidofovir induced apoptosis in primary cultures of human proximal tubular cells in a temporal (peak apoptosis at 7 days) and concentration (10-40 microg/ml) pattern consistent with that of clinical toxicity. Apoptosis was identified by the presence of hypodiploid cells, by the exposure of annexin V binding sites and by morphological features and was associated with the appearance of active caspase-3 fragments. Cell death was specific as it was also present in a human proximal tubular epithelial cell line (HK-2), but not in a human kidney fibroblast cell line, and was prevented by probenecid. An inhibitor of caspase-3 (DEVD) prevented cidofovir apoptosis. The survival factors present in serum, insulin-like growth factor-1 and hepatocyte growth factor, were also protective. The present data suggest that apoptosis induction is a mechanism contributing to cidofovir nephrotoxicity. The prophylactic administration of factors with survival activity for tubular epithelium should be further explored in cidofovir renal injury.

  2. Salmonella typhimurium Invasion Induces Apoptosis in Infected Macrophages

    NASA Astrophysics Data System (ADS)

    Monack, Denise M.; Raupach, Barbel; Hromockyj, Alexander E.; Falkow, Stanley

    1996-09-01

    Invasive Salmonella typhimurium induces dramatic cytoskeletal changes on the membrane surface of mammalian epithelial cells and RAW264.7 macrophages as part of its entry mechanism. Noninvasive S. typhimurium strains are unable to induce this membrane ruffling. Invasive S. typhimurium strains invade RAW264.7 macrophages in 2 h with 7- to 10-fold higher levels than noninvasive strains. Invasive S. typhimurium and Salmonella typhi, independent of their ability to replicate intracellularly, are cytotoxic to RAW264.7 macrophages and, to a greater degree, to murine bone marrow-derived macrophages. Here, we show that the macrophage cytotoxicity mediated by invasive Salmonella is apoptosis, as shown by nuclear morphology, cytoplasmic vacuolization, and host cell DNA fragmentation. S. typhimurium that enter cells causing ruffles but are mutant for subsequent intracellular replication also initiate host cell apoptosis. Mutant S. typhimurium that are incapable of inducing host cell membrane ruffling fail to induce apoptosis. The activation state of the macrophage plays a significant role in the response of macrophages to Salmonella invasion, perhaps indicating that the signal or receptor for initiating programmed cell death is upregulated in activated macrophages. The ability of Salmonella to promote apoptosis may be important for the initiation of infection, bacterial survival, and escape of the host immune response.

  3. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes.

    PubMed

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-11-30

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  4. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    PubMed Central

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-01-01

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes. PMID:27916916

  5. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis.

    PubMed

    Liu, Gang; Beri, Rohinee; Mueller, Amanda; Kamp, David W

    2010-11-05

    Asbestos causes pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully elucidated. Accumulating evidence show that alveolar epithelial cell (AEC) apoptosis is a crucial initiating and perpetuating event in the development of pulmonary fibrosis following exposure to a wide variety of noxious stimuli, including asbestos. We review the important molecular mechanisms underlying asbestos-induced AEC apoptosis. Specifically, we focus on the role of asbestos in augmenting AEC apoptosis by the mitochondria- and p53-regulated death pathways that result from the production of iron-derived reactive oxygen species (ROS) and DNA damage. We summarize emerging evidence implicating the endoplasmic reticulum (ER) stress response in AEC apoptosis in patients with idiopathic pulmonary fibrosis (IPF), a disease with similarities to asbestosis. Finally, we discuss a recent finding that a mitochondrial oxidative DNA repair enzyme (8-oxoguanine DNA glycosylase; Ogg1) acts as a mitochondrial aconitase chaperone protein to prevent oxidant (asbestos and H(2)O(2))-induced AEC mitochondrial dysfunction and intrinsic apoptosis. The coupling of mitochondrial Ogg1 to mitochondrial aconitase is a novel mechanism linking metabolism to mitochondrial DNA that may be important in the pathophysiologic events resulting in oxidant-induced toxicity as seen in tumors, aging, and respiratory disorders (e.g. asbestosis, IPF). Collectively, these studies are illuminating the molecular basis of AEC apoptosis following asbestos exposure that may prove useful for developing novel therapeutic strategies. Importantly, the asbestos paradigm is elucidating pathophysiologic insights into other more common pulmonary diseases, such as IPF and lung cancer, for which better therapy is required.

  6. Molecular Mechanisms of Par-4-Induced Apoptosis in Prostate Cancer

    DTIC Science & Technology

    2007-05-01

    Sambrook J, Fritsch EF, Maniatis T. (1989). Molecular Cloning : A Laboratory Manual (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory...AD_________________ Award Number: W81XWH-05-1-0622 TITLE: Molecular Mechanisms of Par-4-Induced...SUBTITLE 5a. CONTRACT NUMBER Molecular Mechanisms of Par-4-Induced Apoptosis in Prostate Cancer 5b. GRANT NUMBER W81XWH-05-1-0622 5c. PROGRAM

  7. Magnolol-induced H460 cells death via autophagy but not apoptosis.

    PubMed

    Li, Hai-Bo; Yi, Xin; Gao, Jian-Mei; Ying, Xi-Xiang; Guan, Hong-Quan; Li, Jian-Chun

    2007-12-01

    We have reported that the protective effect of Magnolol on TBHP-induced injury in human nonsmall lung cancer H460 cells is partially via a p53 dependent mechanism. In this study, we found that Magnolol displayed a stimulatory effect at low concentrations (< or = 20 microM) whilst inhibitory effect at high concentrations (> or = 40 microM) in H460 cells. To investigate the mechanism of inducing the biphasic effect in H460 cells with Magnolol, we showed that Magnolol stimulated DNA synthesis at low concentrations and displayed an inhibition effect at high concentrations in H460 cells. More importantly, the inhibition of DNA synthesis was accompanied by the S phase cell cycle arrest and the appearance of intense intracytoplasmic vacuoles. These vacuoles can be labeled by autophagic marker monodansylcadaverin (MDC), 3-methyladenine (3-MA), an inhibitor of autophagy, was able to inhibit the occurrence of autophagy. The results of the LDH activity assay and TUNEL assay also showed that Magnolol at high concentrations inhibiting H460 cell growth was not via apoptotic pathway. Furthermore, accompanied by the occurrence of autophagy, the expression of phospho-Akt was down-regulated but PTEN significantly was up-regulated. In conclusion, Magnolol induces H460 cells death by autophagy but not apoptotic pathway. Blockade of PI3K/PTEN/Akt pathway is maybe related to Magnolol-induced autophagy. Autophagic cells death induction by Magnolol underlines the potential utility of its induction as a new cancer treatment modality.

  8. Determinants of PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Kessel, David; Luo, Yu; Kim, Hyeong-Reh C.

    2000-03-01

    Photodynamic therapy can initiate cell death by apoptosis or necrosis. Using agents with known patterns of sub-cellular localization, we examined the correlation between sites of photodamage and the mode of cell death, using murine leukemia cells in vitro. Mitochondrial or mitochondrial/lysosomal photodamage caused the rapid release of cytochrome c. This effect was not temperature sensitive, and could be demonstrated immediately after irradiation of photosensitized cells at 10 degrees C. Subsequent warming to 37 degrees C led to a rapid apoptotic response, consistent with the known ability of cytochrome c to trigger the activation of caspase-3. In contrast, lysosomal or lysosomal/membrane photodamage resulted in the release of cathepsins and other proteolytic enzymes. A subsequent incubation at 37 degrees C resulted in mitochondrial degradation, leading to loss of cytochrome c within 30 min. The apoptotic response was both delayed and incomplete, with many dead cells not exhibiting an apoptotic morphology. The latter outcome was traced to photodamage to procaspase-3, an effect not observed with sensitizers that caused mainly mitochondrial photodamage. Studies in a cell-free system demonstrated that agents with lysosomal and/or membrane targets could bring about photoinactivation of caspase-3. These result are consistent with the proposal that photodynamic therapy can both activate and inactivate components of the apoptotic process.

  9. Perfluorooctane sulfonate induces apoptosis in N9 microglial cell line.

    PubMed

    Zhang, Ling; Li, Yuan-yuan; Zeng, Huai-cai; Li, Miao; Wan, Yan-Jian; Schluesener, Hermann J; Zhang, Zhi-yuan; Xu, Shun-qing

    2011-03-01

    Perfluorooctane sulfonate (PFOS) is an environmental persistent acid found at low levels in human, wildlife, and environmental media samples. To study the apoptosis effects of PFOS on microglia, murine N9 cell line was used as a model in current research. The results showed that PFOS could reduce the cell viability significantly, and the cellular apoptosis induced by PFOS was closely accompanied with dissipation of mitochondria membrane potential, upregulation messenger RNAs (mRNAs) of p53, Bax, caspase 9, and caspase 3, and decreased expression of Bcl-2 mRNA. These results suggested that PFOS could disturb homeostasis of N9 cells, impact mitochondria, and affect gene expression of apoptotic regulators, all of which resulted in a start-up of apoptosis.

  10. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  11. Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells.

    PubMed

    Sakamoto, Takako; Horiguchi, Hyogo; Oguma, Etsuko; Kayama, Fujio

    2010-09-01

    Phytoestrogens have attracted attention as being safer alternatives to hormone replacement therapy (HRT) and as chemopreventive reagents for breast cancer because dietary soy isoflavone intake has been correlated with reduction in risk. To identify safe and effective phytoestrogen candidates for HRT and breast cancer prevention, we investigated the effects of daidzein, genistein, coumestrol, resveratrol and glycitein on cell growth, cell cycle, cyclin D1 expression, apoptosis, Bcl-2/Bax expression ratio and p53-dependent or NF-kappaB-dependent transcriptional activity in MCF-7 breast cancer cells. Phytoestrogens, except for glycitein, significantly enhanced estrogen-response-element-dependent transcriptional activity up to a level similar to that of 17beta-estradiol (E(2)). E(2) increased cell growth significantly, coumestrol increased cell growth moderately, and resveratrol and glycitein reduced cell growth. Phytoestrogens, except for glycitein, stimulated the promotion of cells to G(1)/S transition in cell cycle analysis, similar to E(2). This stimulation was accompanied by transient up-regulation of cyclin D1. While genistein, resveratrol and glycitein all increased apoptosis and reduced the Bcl-2/Bax ratio, resveratrol reduced this ratio more than either genistein or glycitein. Moreover, resveratrol significantly enhanced p53-dependent transcriptional activity, but slightly reduced NF-kappaB-dependent transcriptional activity. On knockdown analysis, genistein, resveratrol and glycitein all reduced the Bcl-2/Bax ratio in the presence of apoptosis-inducing stimuli, and estrogen receptor (ER) alpha silencing had no effect on these reductions. In contrast, in the absence of apoptosis-inducing stimuli, only resveratrol reduced the ratio, and ERalpha silencing abolished this reduction. Thus, resveratrol might be the most promising candidate for HRT and chemoprevention of breast cancer due to its estrogenic activity and high antitumor activity.

  12. Manganese induced apoptosis in haematopoietic cells of Nephrops norvegicus (L.).

    PubMed

    Oweson, Carolina A M; Baden, Susanne P; Hernroth, Bodil E

    2006-05-10

    Manganese (Mn) is highly abundant as MnO2 in marine sediments. During hypoxia in bottom waters, the reduced bioavailable fraction of manganese, Mn2+, increases. Thereby, Norway lobster, Nephrops norvegicus, can experience concentrations up to 1000 times normoxic levels. A previous study has shown that exposure to a realistic concentration of 20 mg l(-1) of Mn for 10 days reduced the number of circulating haemocytes in N. norvegicus significantly. Here we aimed to investigate if apoptosis contributes to the Mn-induced haemocytopenia, with the overall hypothesis that Mn induces apoptosis in a time and concentration dependent manner. N. norvegicus were exposed to Mn (0, 5, 10 and 20 mg l(-1)) for 5 and 10 days. After 5 days of exposure the total haemocyte counts were not affected. However, after 10 days there was a gradual decrease in cell numbers, reaching a reduction by 44% when the animals were exposed to 20 mg Mn l(-1). Apoptosis in cells, released from the haematopoietic tissue, was investigated by using TUNEL assay, which detects specific DNA strand breaks. The fraction of apoptotic cells gradually increased from 2.5% in un-exposed lobsters to 15% in those exposed to 20 mg l(-1) but there was no difference related to the exposure time. A gradual increase of apoptosis was further confirmed by electrophoretic DNA-ladder formation, however to a lower extent in lobsters exposed during 5 days. Cell viability, determined by metabolic activity and cell membrane integrity, was not reduced, indicating that apoptosis rather than necrosis caused reduced number of haemocytes. It was concluded that apoptosis seemed to increase already after 5 days of 5 mg l(-1) of Mn-exposure, although exposure for 10 days was required before it was reflected in the haemocyte numbers. Reduced numbers of haemocytes may increase the prevalence for infections in N. norvegicus in their natural habitat.

  13. p73-induced apoptosis: A question of compartments and cooperation

    SciTech Connect

    Dobbelstein, Matthias; Strano, Sabrina; Roth, Judith; Blandino, Giovanni . E-mail: blandino@ifo.it

    2005-06-10

    The transcriptionally active forms of p73 are capable of inducing apoptosis, and the isoforms termed TAp73 are important players when E2F and its oncogenic activators induce programmed cell death. However, the conditions under that TAp73 can kill a cell remain to be clarified. Recently, it has been found that p73 proteins are not merely floating in the nucleoplasm but rather can associate with specific compartments in the cell. Examples of intranuclear compartments associated with p73 proteins include the PML oncogenic domains and the nuclear matrix. In addition, p73 is found in the cytoplasm. It remains to be seen whether p73 might also associate with mitochondria, in analogy with p53. The relocalization of p73 is expected to be mediated by specific binding partners, mostly other proteins. Here, we discuss the possibility that the compartmentalization of p73, and the cooperation with the corresponding binding partners, might decide about its apoptosis-inducing activity.

  14. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells

    PubMed Central

    Pomares, Helena; Palmeri, Claudia M; Iglesias-Serret, Daniel; Moncunill-Massaguer, Cristina; Saura-Esteller, José; Núñez-Vázquez, Sonia; Gamundi, Enric; Arnan, Montserrat; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; González-Barca, Eva M

    2016-01-01

    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AML. PMID:27542247

  15. Analogs of farnesylcysteine induce apoptosis in HL-60 cells.

    PubMed

    Pérez-Sala, D; Gilbert, B A; Rando, R R; Cañada, F J

    1998-04-24

    S-Farnesyl-thioacetic acid (FTA), a competitive inhibitor of isoprenylated protein methyltransferase, potently suppressed the growth of HL-60 cells and induced apoptosis, as evidenced by the development of increased annexin-V binding, decreased binding of DNA dyes and internucleosomal DNA degradation. FTA did not impair the membrane association of ras proteins, conversely, it brought about a decrease in the proportion of ras present in the cytosolic fraction. Farnesylated molecules which are weak inhibitors of the methyltransferase also induced DNA laddering and reduced the proportion of cytosolic ras. These findings suggest that neither inhibition of isoprenylated protein methylation nor impairment of ras membrane association are essential for apoptosis induced by farnesylcysteine analogs.

  16. Molecular Mechanisms of Particle Ration Induced Apoptosis in Lymphocyte

    NASA Astrophysics Data System (ADS)

    Shi, Yufang

    Space radiation, composed of high-energy charged nuclei (HZE particles) and protons, has been previously shown to severely impact immune homeostasis in mice. To determine the molecular mechanisms that mediate acute lymphocyte depletion following exposure to HZE particle radiation mice were exposed to particle radiation beams at Brookhaven National Laboratory. We found that mice given whole body 5 6Fe particle irradiation (1GeV /n) had dose-dependent losses in total lymphocyte numbers in the spleen and thymus (using 200, 100 and 50 cGy), with thymocytes being more sensitive than splenocytes. All phenotypic subsets were reduced in number. In general, T cells and B cells were equally sensitive, while CD8+ T cells were more senstive than CD4+ T cells. In the thymus, immature CD4+CD8+ double-positive thymocytes were exquisitely sensitive to radiation-induced losses, single-positive CD4 or CD8 cells were less sensitive, and the least mature double negative cells were resistant. Irradiation of mice deficient in genes encoding essential apoptosis-inducing proteins revealed that the mechanism of lymphocyte depletion is independent of Fas ligand and TRAIL (TNF-ralated apoptosis-inducing ligand), in contrast to γ-radiation-induced lymphocyte losses which require the Fas-FasL pathway. Using inhibitors in vitro, lymphocyte apoptosis induced by HZE particle radiation was found to be caspase dependent, and not involve nitric oxide or oxygen free radicals.

  17. Herbal Medicine as Inducers of Apoptosis in Cancer Treatment

    PubMed Central

    Safarzadeh, Elham; Sandoghchian Shotorbani, Siamak; Baradaran, Behzad

    2014-01-01

    Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer. PMID:25364657

  18. Calnexin deficiency and endoplasmic reticulum stress-induced apoptosis.

    PubMed

    Zuppini, Anna; Groenendyk, Jody; Cormack, Lori A; Shore, Gordon; Opas, Michal; Bleackley, R Chris; Michalak, Marek

    2002-02-26

    In this study, we used calnexin-deficient cells to investigate the role of this protein in ER stress-induced apoptosis. We found that calnexin-deficient cells are relatively resistant to ER stress-induced apoptosis. However, caspase 3 and 8 cleavage and cytochrome c release were unchanged in these cells, indicating that ER to mitochondria "communication" during apoptotic stimulation is not affected in the absence of calnexin. The Bcl-2:Bax ratio was also not significantly changed in calnexin-deficient cells regardless of whether the ER stress was induced with thapsigargin or not. Ca(2+) homeostasis and ER morphology were unaffected by the lack of calnexin, but ER stress-induced Bap31 cleavage was significantly inhibited. Immunoprecipitation experiments revealed that Bap31 forms complexes with calnexin, which may play a role in apoptosis. The results suggest that calnexin may not play a role in the initiation of the ER stress but that the protein has an effect on later apoptotic events via its influence on Bap31 function.

  19. Apoptotic mitochondrial dysfunction induced by benzo(a)pyrene in liver epithelial cells: role of p53 and pHi changes.

    PubMed

    Huc, Laurence; Gilot, David; Gardyn, Claire; Rissel, Mary; Dimanche-Boitrel, Marie-Thérèse; Guillouzo, André; Fardel, Olivier; Lagadic-Gossmann, Dominique

    2003-12-01

    How pH(i) changes, more specifically alkalinization, affect the apoptotic cascade has yet to be determined. The aim of the present work was to test the involvement of mitochondria in the apoptotic cascade triggered by benzo(a)pyrene [B(a)P] and to determine the role of pH(i) changes and p53 relative to mitochondria. Our results indicate that B(a)P-induced apoptosis might rely upon a p53-dependent and a pH-sensitive mitochondrial dysfunction.

  20. Nicotine induces Nme2-mediated apoptosis in mouse testes.

    PubMed

    Gu, Yunqi; Xu, Wangjie; Nie, Dongsheng; Zhang, Dong; Dai, Jingbo; Zhao, Xianglong; Zhang, Meixing; Wang, Zhaoxia; Chen, Zhong; Qiao, Zhongdong

    2016-04-15

    In mouse testes, germ cell apoptosis can be caused by cigarette smoke and lead to declining quality of semen, but the exact molecular mechanisms remain unclear. To evaluate the effects of nicotine exposure on apoptosis during spermatogenesis, we first constructed a nicotine-treated mouse model and detected germ cell apoptosis activity in the testes using the TUNEL method. Then we analyzed the variation of telomere length and telomerase activity by real-time PCR and TRAP-real-time PCR, respectively. Further, we investigated a highly expressed gene, Nme2, in mouse testes after nicotine treatment from our previous results, which has close correlation with the apoptosis activity predicted by bioinformatics. We performed NME2 overexpression in Hela cells to confirm whether telomere length and telomerase activity were regulated by the Nme2 gene. Finally, we examined methylation of CpG islands in the Nme2 promoter with the Bisulfite Sequencing (BSP) method. The results showed that apoptosis had increased significantly, and then telomerase activity became weak. Further, telomere length was shortened in the germ cells among the nicotine-treated group. In Hela cells, both overexpression of the Nme2 gene and nicotine exposure can suppress the activity of telomerase activity and shorten telomere length. BSP results revealed that the Nme2 promoter appeared with low methylation in mouse testes after nicotine treatment. We assume that nicotine-induced apoptosis may be caused by telomerase activity decline, which is inhibited by the up expression of Nme2 because of its hypomethylation in mouse germ cells.

  1. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    PubMed Central

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  2. Pulse mode of laser photodynamic treatment induced cell apoptosis.

    PubMed

    Klimenko, Vladimir V; Knyazev, Nickolay A; Moiseenko, Fedor V; Rusanov, Anatoliy A; Bogdanov, Alexey A; Dubina, Michael V

    2016-03-01

    One of the factors limiting photodynamic therapy (PDT) is hypoxia in tumor cells during photodynamic action. PDT with pulse mode irradiation and appropriate irradiation parameters could be more effective in the singlet oxygen generation and tissue re-oxygenation than continuous wave (CW) mode. We theoretically demonstrate differences between the cumulative singlet oxygen concentration in PDT using pulse mode and CW mode of laser irradiation. In vitro experimental results show that photodynamic treatment with pulse mode irradiation has similar cytotoxicity to CW mode and induces mainly cell apoptosis, whereas CW mode induces necrotic cell death. We assume that the cumulative singlet oxygen concentration and the temporal distribution of singlet oxygen are important in photodynamic cytotoxicity and apoptosis initiation. We expect our research may improve irradiation protocols and photodynamic therapy efficiency.

  3. Alpha particles induce apoptosis through the sphingomyelin pathway.

    PubMed

    Seideman, Jonathan H; Stancevic, Branka; Rotolo, Jimmy A; McDevitt, Michael R; Howell, Roger W; Kolesnick, Richard N; Scheinberg, David A

    2011-10-01

    The sphingomyelin pathway involves the enzymatic cleavage of sphingomyelin to produce ceramide, a second messenger that serves as a key mediator in the rapid apoptotic response to various cell stressors. Low-linear energy transfer (LET) γ radiation can initiate this pathway, independent of DNA damage, via the cell membrane. Whether short-ranged, high-LET α particles, which are of interest as potent environmental carcinogens, radiotherapies and potential components of dirty bombs, can act through this mechanism to signal apoptosis is unknown. Here we show that irradiation of Jurkat cells with α particles emitted by the ²²⁵Ac-DOTA-anti-CD3 IgG antibody construct results in dose-dependent apoptosis. This apoptosis was significantly reduced by pretreating cells with cholesterol-depleting nystatin, a reagent known to inhibit ceramide signaling by interfering with membrane raft coalescence and ceramide-rich platform generation. The effects of nystatin on α-particle-induced apoptosis were related to disruption of the ceramide pathway and not to microdosimetry alterations, because similar results were obtained after external irradiation of the cells with a broad beam of collimated α particles using a planar ²⁴¹Am source. External irradiation allowed for more precise control of the dosimetry and geometry of the irradiation, independent of antibody binding or cell internalization kinetics. Mechanistically consistent with these findings, Jurkat cells rapidly increased membrane concentrations of ceramide after external irradiation with an average of five α-particle traversals per cell. These data indicate that α particles can activate the sphingomyelin pathway to induce apoptosis.

  4. Butyrate-Induced Apoptosis in Prostate Cancer Cell Lines

    DTIC Science & Technology

    2001-09-01

    butyrate-induced apoptosis was independent of cell cycle phase. 14. SUBJECT TERMS 15. NUMBER OF PAGES prostate cancer, histone deacetylase inhibitors, bone...of cells plated) HDI histone deacetylase inhibitor SBHA suberoylbishydroxamate PKC protein kinase C activator SDS-PAGE SDS polyacrylamide gel...cancer cell lines 1. Summary of goals and findings Histone deacetylase inhibitors (HDI) such as butyrate and suberoylbishydroxamate (SBHA) have

  5. Acetaminophen Induces Apoptosis in Rat Cortical Neurons

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Blanco, Almudena; Muñoz-Fernández, Maríangeles; Ceña, Valentín

    2010-01-01

    Background Acetaminophen (AAP) is widely prescribed for treatment of mild pain and fever in western countries. It is generally considered a safe drug and the most frequently reported adverse effect associated with acetaminophen is hepatotoxicity, which generally occurs after acute overdose. During AAP overdose, encephalopathy might develop and contribute to morbidity and mortality. Our hypothesis is that AAP causes direct neuronal toxicity contributing to the general AAP toxicity syndrome. Methodology/Principal Findings We report that AAP causes direct toxicity on rat cortical neurons both in vitro and in vivo as measured by LDH release. We have found that AAP causes concentration-dependent neuronal death in vitro at concentrations (1 and 2 mM) that are reached in human plasma during AAP overdose, and that are also reached in the cerebrospinal fluid of rats for 3 hours following i.p injection of AAP doses (250 and 500 mg/Kg) that are below those required to induce acute hepatic failure in rats. AAP also increases both neuronal cytochrome P450 isoform CYP2E1 enzymatic activity and protein levels as determined by Western blot, leading to neuronal death through mitochondrial–mediated mechanisms that involve cytochrome c release and caspase 3 activation. In addition, in vivo experiments show that i.p. AAP (250 and 500 mg/Kg) injection induces neuronal death in the rat cortex as measured by TUNEL, validating the in vitro data. Conclusions/Significance The data presented here establish, for the first time, a direct neurotoxic action by AAP both in vivo and in vitro in rats at doses below those required to produce hepatotoxicity and suggest that this neurotoxicity might be involved in the general toxic syndrome observed during patient APP overdose and, possibly, also when AAP doses in the upper dosing schedule are used, especially if other risk factors (moderate drinking, fasting, nutritional impairment) are present. PMID:21170329

  6. Sphingosine-induced apoptosis is dependent on lysosomal proteases.

    PubMed Central

    Kågedal, K; Zhao, M; Svensson, I; Brunk, U T

    2001-01-01

    We propose a new mechanism for sphingosine-induced apoptosis, involving relocation of lysosomal hydrolases to the cytosol. Owing to its lysosomotropic properties, sphingosine, which is also a detergent, especially when protonated, accumulates by proton trapping within the acidic vacuolar apparatus, where most of its action as a detergent would be exerted. When sphingosine was added in low-to-moderate concentrations to Jurkat and J774 cells, partial lysosomal rupture occurred dose-dependently, starting within a few minutes. This phenomenon preceded caspase activation, as well as changes of mitochondrial membrane potential. High sphingosine doses rapidly caused extensive lysosomal rupture and ensuing necrosis, without antecedent apoptosis or caspase activation. The sphingosine effect was prevented by pre-treatment with another, non-toxic, lysosomotropic base, ammonium chloride, at 10 mM. The lysosomal protease inhibitors, pepstatin A and epoxysuccinyl-L-leucylamido-3-methyl-butane ethyl ester ('E-64d'), inhibited markedly sphingosine-induced caspase activity to almost the same degree as the general caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp-fluoromethylketone ('Z-VAD-FMK'), although they did not by themselves inhibit caspases. We conclude that cathepsin D and one or more cysteine proteases, such as cathepsins B or L, are important mediators of sphingosine-induced apoptosis, working upstream of the caspase cascade and mitochondrial membrane-potential changes. PMID:11583579

  7. The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis.

    PubMed

    Boivin, Dominique; Gendron, Sébastien; Beaulieu, Edith; Gingras, Denis; Béliveau, Richard

    2002-08-01

    Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytochrome c from mitochondria to the cytoplasm. Neovastat-induced apoptosis appears to be specific to endothelial cells because treatment of other cell types such as U-87, COS-7, NIH-3T3, and SW1353 did not result in increased caspase-3 activity. These results demonstrate that Neovastat contains a proapoptotic factor that specifically induces the activation of caspases in endothelial cells and the resulting apoptosis of these cells.

  8. Idelalisib induces PUMA-dependent apoptosis in colon cancer cells

    PubMed Central

    Yang, Shida; Zhu, Zhiyong; Zhang, Xiaobing; Zhang, Ning; Yao, Zhicheng

    2017-01-01

    Idelalisib, a PI3K inhibitor, specifically targeting p110δ, has been approved for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma and follicular lymphoma. However, the mechanisms of action of idelalisib in colon cancer cells are not well understood. We investigated how idelalisib suppresses colon cancer cells growth and potentiates effects of other chemotherapeutic drugs. In this study, we found that idelalisib treatment induces PUMA in colon cancer cells irrespective of p53 status through the p65 pathway following AKT inhibition and glycogen synthase kinase 3β (GSK3β) activation. PUMA is necessary for idelalisib-induced apoptosis in colon cancer cells. Idelalisib also synergized with 5-FU or regorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and antitumor effect of idelalisib in xenograft model. These results demonstrate a critical role of PUMA in mediating the anticancer effects of idelalisib in colon cancer cells and suggest that PUMA induction can be used as an indicator of idelalisib sensitivity, and also have important implications for it clinical applications. PMID:28008149

  9. Proteasomal Dysfunction Induced By Diclofenac Engenders Apoptosis Through Mitochondrial Pathway.

    PubMed

    Amanullah, Ayeman; Upadhyay, Arun; Chhangani, Deepak; Joshi, Vibhuti; Mishra, Ribhav; Yamanaka, Koji; Mishra, Amit

    2017-05-01

    Diclofenac is the most commonly used phenylacetic acid derivative non-steroidal anti-inflammatory drug (NSAID) that demonstrates significant analgesic, antipyretic, and anti-inflammatory effects. Several epidemiological studies have demonstrated anti-proliferative activity of NSAIDs and examined their apoptotic induction effects in different cancer cell lines. However, the precise molecular mechanisms by which these pharmacological agents induce apoptosis and exert anti-carcinogenic properties are not well known. Here, we have observed that diclofenac treatment induces proteasome malfunction and promotes accumulation of different critical proteasome substrates, including few pro-apoptotic proteins in cells. Exposure of diclofenac consequently elevates aggregation of various ubiquitylated misfolded proteins. Finally, we have shown that diclofenac treatment promotes apoptosis in cells, which could be because of mitochondrial membrane depolarization and cytochrome c release into cytosol. This study suggests possible beneficial insights of NSAIDs-induced apoptosis that may improve our existing knowledge in anti-proliferative interspecific strategies development. J. Cell. Biochem. 118: 1014-1027, 2017. © 2016 Wiley Periodicals, Inc.

  10. Idelalisib induces PUMA-dependent apoptosis in colon cancer cells.

    PubMed

    Yang, Shida; Zhu, Zhiyong; Zhang, Xiaobing; Zhang, Ning; Yao, Zhicheng

    2017-01-24

    Idelalisib, a PI3K inhibitor, specifically targeting p110δ, has been approved for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma and follicular lymphoma. However, the mechanisms of action of idelalisib in colon cancer cells are not well understood. We investigated how idelalisib suppresses colon cancer cells growth and potentiates effects of other chemotherapeutic drugs. In this study, we found that idelalisib treatment induces PUMA in colon cancer cells irrespective of p53 status through the p65 pathway following AKT inhibition and glycogen synthase kinase 3β (GSK3β) activation. PUMA is necessary for idelalisib-induced apoptosis in colon cancer cells. Idelalisib also synergized with 5-FU or regorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and antitumor effect of idelalisib in xenograft model. These results demonstrate a critical role of PUMA in mediating the anticancer effects of idelalisib in colon cancer cells and suggest that PUMA induction can be used as an indicator of idelalisib sensitivity, and also have important implications for it clinical applications.

  11. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  12. Holothuria leucospilota Extract Induces Apoptosis in Leishmania major Promastigotes

    PubMed Central

    FOROUTAN-RAD, Masoud; KHADEMVATAN, Shahram; SAKI, Jasem; HASHEMITABAR, Mahmoud

    2016-01-01

    Background: The present study aimed to survey antileishmanial activity of methanolic Holothuria leucospilota extract against Leishmania major promastigotes in vitro. Methods: Promastigotes were cultured in RPMI 1640 and after reaching the stationary phase, the study was conducted with different concentrations of the extract. Afterwards, MTT colorimetric assay for the obtaining of 50% inhibitory concentration (IC50) was utilized. Furthermore, in order to determine the possible induction of apoptosis in L. major promastigotes, flow cytometry and DNA fragmentation methods were employed using annexin-V FLUOS staining kit and DNA ladder kit, respectively. Results: The IC50 value of H. leucospilota extract at three time points of 24, 48, and 72 h was estimated 2000, 300 and 85 μg/ml, respectively. In addition, the extract revealed a dose and time-dependent antileishmanial activity. Furthermore, various characteristics of apoptosis appeared after L. major promastigotes treatment, which included cell shrinkage, formation of apoptotic bodies, blebbing of the cell membrane, and externalization of phosphatidylserine, although no laddering pattern was observed. Conclusion: The methanolic extract of H. leucospilota possesses lethal effect on L. major promastigotes and induces the apoptosis in parasites. Further studies are required to address the apoptosis mechanism in vivo. PMID:28127339

  13. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  14. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  15. Erythropoietin protects cardiac myocytes against anthracycline-induced apoptosis

    SciTech Connect

    Fu Ping; Arcasoy, Murat O. . E-mail: arcas001@mc.duke.edu

    2007-03-09

    The cardiotoxic adverse effects of anthracycline antibiotics limit their therapeutic utility as essential components of chemotherapy regimens for hematologic and solid malignancies. Here we show that the hematopoietic cytokine erythropoietin attenuates doxorubicin-induced apoptosis of primary neonatal rat ventricular cardiomyocytes in a dose-dependent manner. Erythropoietin treatment induced rapid, time-dependent phosphorylation of MAP kinases (MAPK) Erk1/2 and the phosphatidylinositol 3-kinase substrate Akt. Treatment of cardiomyocytes with inhibitors of phosphatidylinositol 3-kinase (LY294002) or Akt (Akti-1/2) abolished the protective effect of erythropoietin, whereas treatment with MAPK kinase (MEK1) inhibitor U0126 did not. Erythropoietin also induced the phosphorylation of GSK-3{beta}, a downstream target of PI3K-Akt. Because phosphorylation is known to inactivate GSK-3{beta}, we investigated whether GSK-3{beta} inhibition is cardioprotective. We found that GSK-3{beta} inhibitors SB216763 or lithium chloride blocked doxorubicin-induced cardiomyocyte apoptosis in a manner similar to erythropoietin, suggesting that GSK-3{beta} inhibition is involved in erythropoietin-mediated cardioprotection. Erythropoietin may serve as a novel cardioprotective agent against anthracycline-induced cardiotoxicity.

  16. Novel synthetic organosulfur compounds induce apoptosis of human leukemic cells.

    PubMed

    Wong, W W; Macdonald, S; Langler, R F; Penn, L Z

    2000-01-01

    It has been well documented that natural organosulfur compounds (OSCs) derived from plants such as garlic, onions and mahogany trees possess antiproliferative properties; however, the essential chemical features of the active OSC compounds remain unclear. To investigate the association between OSC structure and growth inhibitory activity, we synthesized novel relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richii. In this study, we have examined the antiproliferative effects of these novel OSCs on a model human leukemic cell system and show that the compounds segregate into three groups. Group I, consisting of compounds A, B, G and J, did not affect either cell proliferation or the cell cycle profile of the leukemic cell lines. Group II, consisting of compounds F and H, induced the cells to undergo apoptosis from the G2/M phase of the cell cycle. Group III, consisting of compounds C, D, E and I, decreased cell proliferation and induced apoptosis throughout the cell cycle. The apoptotic agonists of Group II and III shared a common disulfide moiety, essential for leukemic cell cytotoxicity. Interestingly, Group II compounds did not affect cell viability of normal human diploid cells, suggesting the regions flanking the disulfide group contributes to the specificity of cell killing. Thus, we provide evidence that structure-activity analysis of natural products can identify novel compounds for the development of new therapeutics that can trigger apoptosis in a tumor-specific manner.

  17. Progesterone prevents radiation-induced apoptosis in breast cancer cells.

    PubMed

    Vares, Guillaume; Ory, Katherine; Lectard, Bruno; Levalois, Céline; Altmeyer-Morel, Sandrine; Chevillard, Sylvie; Lebeau, Jérôme

    2004-06-03

    Sex steroid hormones play an essential role in the control of homeostasis in the mammary gland. Although the involvement of progesterone in cellular proliferation and differentiation is well established, its exact role in the control of cell death still remains unclear. As dysregulation of the apoptotic process plays an important role in the pathogenesis of breast cancer, we investigated the regulation of apoptosis by progesterone in various breast cancer cell lines. Our results show that progesterone treatment protects against radiation-induced apoptosis. This prevention appears to be mediated by the progesterone receptor and is unrelated to p53 status. There is also no correlation with the intrinsic hormonal effect on cell proliferation, as the presence of cells in a particular phase of the cell cycle. Surprisingly, progesterone partly allows bypassing of the irradiation-induced growth arrest in G(2)/M in PgR+ cells, leading to an increase in cell proliferation after irradiation. One consequence of this effect is a higher rate of chromosome damage in these proliferating progesterone-treated cells compared to what is observed in untreated irradiated cells. We propose that progesterone, by inhibiting apoptosis and promoting the proliferation of cells with DNA damage, potentially facilitates the emergence of genetic mutations that may play a role in malignant transformation.

  18. Chestnut extract induces apoptosis in AGS human gastric cancer cells.

    PubMed

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2011-06-01

    In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with 200 µg/mL CPE for 24 hr. CPE at various concentrations (0-200 µg/mL) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPE exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

  19. Tamoxifen Induces Apoptosis of Leishmania major Promastigotes in Vitro.

    PubMed

    Doroodgar, Masoud; Delavari, Mahdi; Doroodgar, Moein; Abbasi, Ali; Taherian, Ali Akbar; Doroodgar, Abbas

    2016-02-01

    Tamoxifen is an antagonist of the estrogen receptor and currently used for the treatment of breast cancer. The current treatment of cutaneous leishmaniasis with pentavalent antimony compounds is not satisfactory. Therefore, in this study, due to its antileishmanial activity, effects of tamoxifen on the growth of promastigotes and amastigotes of Leishmania major Iranian strain were evaluated in vitro. Promastigotes and amastigotes were treated with different concentrations (1, 5, 10, 20, and 50 μg/ml) and time periods (24, 48, and 72 hr) of tamoxifen. After tamoxifen treatment, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 biphenyl tetrazolium bromide assay) was used to determine the percentage of live parasites and Graph Pad Prism software to calculate IC50. Flow cytometry was applied to investigate the induction of tamoxifen-induced apoptosis in promastigotes. The half maximal inhibitory concentration (IC50) of tamoxifen on promastigotes was 2.6 μg/ml after 24 hr treatment. Flow cytometry analysis showed that tamoxifen induced early and late apoptosis in Leishmania promastigotes. While after 48 hr in control group the apoptosis was 2.0%, the 50 µg/L concentration of tamoxifen increased it to 59.7%. Based on the in vitro antileishmanial effect, tamoxifen might be used for leishmaniasis treatment; however, further researches on in vivo effects of tamoxifen in animal models are needed.

  20. Bisphenol A-induced apoptosis of cultured rat Sertoli cells.

    PubMed

    Iida, Hiroshi; Maehara, Kazue; Doiguchi, Masamichi; Mōri, Takayuki; Yamada, Fumio

    2003-01-01

    Bisphenol A (BPA) was examined for its effects on cultured Sertoli cells established from 18-day-old rat testes. We demonstrated that exposure of cultured Sertoli cells to BPA decreased the cell viability in a dose- and a time-dependent manner and that exposure to BPA brought about morphologic changes of the cells, such as membrane blebs, cell rounding, cytoskeletal collapse, and chromatin condensation or fragmentation, all of which conform to the morphologic criteria for apoptosis. Immunocytochemistry showed that active caspase-3, a major execution caspase, was expressed in round Sertoli cells positively labeled by the TUNEL method. Co-localization of active caspase-3 and aggregated actin fragments was also observed in the round Sertoli cells. Theses results suggest that BPA induces cell death of Sertoli cells by promoting apoptosis. Apoptosis-inducing cell death was observed in cells exposed to 150-200 microM BPA, while BPA at <100 microM had only slight cytotoxic effects on the cells.

  1. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    PubMed Central

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  2. Nicotine Induces Podocyte Apoptosis through Increasing Oxidative Stress

    PubMed Central

    Lan, Xiqian; Lederman, Rivka; Eng, Judith M.; Shoshtari, Seyedeh Shadafarin Marashi; Saleem, Moin A.; Malhotra, Ashwani; Singhal, Pravin C.

    2016-01-01

    Background Cigarette smoking plays an important role in the progression of chronic kidney disease (CKD). Nicotine, one of the major components of cigarette smoking, has been demonstrated to increase proliferation of renal mesangial cells. In this study, we examined the effect of nicotine on podocyte injury. Methods To determine the expression of nicotinic acetylcholine receptors (nAChR subunits) in podocytes, cDNAs and cell lysate of cultured human podocytes were used for the expression of nAChR mRNAs and proteins, respectively; and mouse renal cortical sections were subjected to immunofluorescant staining. We also studied the effect of nicotine on podocyte nephrin expression, reactive oxygen species (ROS) generation (via DCFDA loading followed by fluorometric analysis), proliferation, and apoptosis (morphologic assays). We evaluated the effect of nicotine on podocyte downstream signaling including phosphorylation of ERK1/2, JNK, and p38 and established causal relationships by using respective inhibitors. We used nAChR antagonists to confirm the role of nicotine on podocyte injury. Results Human podocytes displayed robust mRNA and protein expression of nAChR in vitro studies. In vivo studies, mice renal cortical sections revealed co-localization of nAChRs along with synaptopodin. In vitro studies, nephrin expression in podocyte was decreased by nicotine. Nicotine stimulated podocyte ROS generation; nonetheless, antioxidants such as N-acetyl cysteine (NAC) and TEMPOL (superoxide dismutase mimetic agent) inhibited this effect of nicotine. Nicotine did not modulate proliferation but promoted apoptosis in podocytes. Nicotine enhanced podocyte phosphorylation of ERK1/2, JNK, and p38, and their specific inhibitors attenuated nicotine-induced apoptosis. nAChR antagonists significantly suppressed the effects of nicotine on podocyte. Conclusions Nicotine induces podocyte apoptosis through ROS generation and associated downstream MAPKs signaling. The present study provides

  3. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    SciTech Connect

    Liiv, Ingrid; Haljasorg, Uku; Kisand, Kai; Maslovskaja, Julia; Laan, Martti; Peterson, Paert

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  4. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    PubMed

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  5. Deletion of the Mitochondrial Flavoprotein Apoptosis Inducing Factor (AIF) Induces β-Cell Apoptosis and Impairs β-Cell Mass

    PubMed Central

    Schulthess, Fabienne T.; Katz, Sophie; Ardestani, Amin; Kawahira, Hiroshi; Georgia, Senta; Bosco, Domenico; Bhushan, Anil; Maedler, Kathrin

    2009-01-01

    Background Apoptosis is a hallmark of β-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to β-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on β-cell mass and survival using the Harlequin (Hq) mutant mice, which are hypomorphic for AIF. Methodology/Principal Findings Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT). Analysis of β-cell mass in these mice revealed a greater than 4-fold reduction in β-cell mass together with an 8-fold increase in β-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of β-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in β-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the β-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. β-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on β-cell function was potentiated. Conclusions/Significance Our results indicate that AIF is essential for maintaining β-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on β-cell survival. PMID:19197367

  6. Diethanolamine alters neurogenesis and induces apoptosis in fetal mouse hippocampus

    PubMed Central

    Craciunescu, Corneliu N.; Wu, Renan; Zeisel, Steven H.

    2006-01-01

    Diethanolamine (DEA) is present in many consumer products such as shampoo. Dermal administration of DEA diminishes hepatic stores of the essential nutrient choline, and we previously reported that dietary choline deficiency during pregnancy reduces neurogenesis and increases apoptosis in the hippocampus of fetal rats and mice. Therefore, DEA could also alter brain development. Timed-pregnant C57BL/6 mice were dosed dermally from gestation day 7 through 17 with DEA at 0, 20, 80, 160, 320, and 640 mg/kg body/day. At doses of DEA > 80 mg/kg body/day, we observed decreased litter size. In fetuses (embryonic day 17) collected from dams treated dermally with 80 mg/kg body/day DEA, we observed decreased neural progenitor cell mitosis at the ventricular surface of the ventricular zone of the hippocampus [to 56±14% (SE) histone 3 (H3) phosphorylation as compared to controls; P < 0.01]. We also observed increased apoptosis in fetal hippocampus (to 170±10% of control measured using TUNEL and to 178±7% of control measured using activated caspase 3; P < 0.01). Thus, maternal exposure to DEA reduces the number of neural progenitor cells in hippocampus by two mechanisms, and this could permanently alter memory function in offspring of mothers exposed to this common ingredient of shampoos and soaps.—Craciunescu, C. N., Wu, R., Zeisel, S. H. Diethanolamine alters neurogenesis and induces apoptosis in fetal mouse hippocampus. PMID:16873886

  7. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy

    PubMed Central

    Ma, Dan-Dan; Yang, Wan-Xi

    2016-01-01

    Engineered nanoparticles (ENPs) have been widely applied in industry, commodities, biology and medicine recently. The potential for many related threats to human health has been highlighted. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs such as brain, liver, lung, testes, etc, and cause toxic effects. Many references have studied ENP effects on the cells of different organs with related cell apoptosis noted. Understanding such pathways towards ENP induced apoptosis may aid in the design of effective cancer targeting ENP drugs. Such ENPs can either have a direct effect towards cancer cell apoptosis or can be used as drug delivery agents. Characteristics of ENPs, such as sizes, shape, forms, charges and surface modifications are all seen to play a role in determining their toxicity in target cells. Specific modifications of such characteristics can be applied to reduce ENP bioactivity and thus alleviate unwanted cytotoxicity, without affecting the intended function. This provides an opportunity to design ENPs with minimum toxicity to non-targeted cells. PMID:27056889

  8. Ticlopidine induced colitis: a histopathological study including apoptosis.

    PubMed Central

    Berrebi, D; Sautet, A; Flejou, J F; Dauge, M C; Peuchmaur, M; Potet, F

    1998-01-01

    AIMS: To describe ticlopidine related microscopic colitis and to assess the occurrence of apoptosis in the colon epithelium. METHODS: A series of colorectal biopsy samples from nine patients with ticlopidine related chronic diarrhoea were analysed. Biopsies were also taken from five of these patients between two and four months after ticlopidine withdrawal. The number of apoptotic cells in the crypts/mm2 (apoptotic index) was calculated using in situ labelling by terminal deoxyribonucleotidyl transferase (TdT) mediated dUTP-biotin nick end labelling (TUNEL). All specimens were matched to normal colorectal specimens from a control group of comparable age and sex distribution. RESULTS: Histological examination of the colon biopsy specimens taken from all nine patients with ticlopidine related chronic diarrhoea showed characteristic features of microscopic colitis. The histology returned to normal when ticlopidine was withdrawn. Apoptotic cells were rarely found in controls, and the mean apoptotic index was 0.53. The apoptotic index was significantly higher (16.53) in ticlopidine related colitis, but decreased dramatically to control value when ticlopidine was withdrawn. CONCLUSION: Microscopic colitis can be induced by ticlopidine and is accompanied by an increase in epithelial apoptosis. Hence, increased apoptosis might be related to drug injury or might be part of microscopic colitis. Images PMID:9659239

  9. Cytosolic pro-apoptotic SPIKE induces mitochondrial apoptosis in cancer.

    PubMed

    Nikolic, Ivana; Kastratovic, Tatjana; Zelen, Ivanka; Zivanovic, Aleksandar; Arsenijevic, Slobodan; Mitrovic, Marina

    2010-04-30

    Proteins of the BCL-2 family are important regulators of apoptosis. The BCL-2 family includes three main subgroups: the anti-apoptotic group, such as BCL-2, BCL-XL, BCL-W, and MCL-1; multi-domain pro-apoptotic BAX, BAK; and pro-apoptotic "BH3-only" BIK, PUMA, NOXA, BID, BAD, and SPIKE. SPIKE, a rare pro-apoptotic protein, is highly conserved throughout the evolution, including Caenorhabditis elegans, whose expression is downregulated in certain tumors, including kidney, lung, and breast. In the literature, SPIKE was proposed to interact with BAP31 and prevent BCL-XL from binding to BAP31. Here, we utilized the Position Weight Matrix method to identify SPIKE to be a BH3-only pro-apoptotic protein mainly localized in the cytosol of all cancer cell lines tested. Overexpression of SPIKE weakly induced apoptosis in comparison to the known BH3-only pro-apoptotic protein BIK. SPIKE promoted mitochondrial cytochrome c release, the activation of caspase 3, and the caspase cleavage of caspase's downstream substrates BAP31 and p130CAS. Although the informatics analysis of SPIKE implicates this protein as a member of the BH3-only BCL-2 subfamily, its role in apoptosis remains to be elucidated.

  10. Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans.

    PubMed

    Lam, Minh; Jou, Paul C; Lattif, Ali A; Lee, Yoojin; Malbasa, Christi L; Mukherjee, Pranab K; Oleinick, Nancy L; Ghannoum, Mahmoud A; Cooper, Kevin D; Baron, Elma D

    2011-01-01

    The high prevalence of drug resistance necessitates the development of novel antifungal agents against infections caused by opportunistic fungal pathogens, such as Candida albicans. Elucidation of apoptosis in yeast-like fungi may provide a basis for future therapies. In mammalian cells, photodynamic therapy (PDT) has been demonstrated to generate reactive oxygen species, leading to immediate oxidative modifications of biological molecules and resulting in apoptotic cell death. In this report, we assess the in vitro cytotoxicity and mechanism of PDT, using the photosensitizer Pc 4, in planktonic C. albicans. Confocal image analysis confirmed that Pc 4 localizes to cytosolic organelles, including mitochondria. A colony formation assay showed that 1.0 μM Pc 4 followed by light at 2.0 J cm(-2) reduced cell survival by 4 logs. XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide) assay revealed that Pc 4-PDT impaired fungal metabolic activity, which was confirmed using the FUN-1 (2-chloro-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenylquinolinium iodide) fluorescence probe. Furthermore, we observed changes in nuclear morphology characteristic of apoptosis, which were substantiated by increased externalization of phosphatidylserine and DNA fragmentation following Pc 4-PDT. These data indicate that Pc 4-PDT can induce apoptosis in C. albicans. Therefore, a better understanding of the process will be helpful, as PDT may become a useful treatment option for candidiasis.

  11. The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells

    PubMed Central

    Lee, Chang-Hoon; Lee, Kyoung-Hee; Jang, An-Hee

    2017-01-01

    Background Previous studies report that apoptosis and autophagy are involved in the pathogenesis of emphysema, and macroautophagy is one of the processes regulating the apoptosis pathway. However, few studies have evaluated whether chaperone-mediated autophagy (CMA) contributes to the regulation of apoptosis. In this study, we investigated the impact of autophagy, including both macroautophagy and CMA, on the apoptosis in bronchial epithelial cells. Methods Cigarette smoke extract (CSE) was injected intratracheally into C57BL/6 mice, and emphysema and apoptosis were evaluated in the lungs. After treatment with CSE, apoptosis, macroautophagy, and CMA were measured in BEAS2-B cells, and the impact of autophagy on the apoptosis was evaluated following knockdown of autophagy-related genes by short interfering RNAs (siRNAs). Results Intratracheal CSE injection resulted in the development of emphysema and an increase in apoptosis in mice. CSE increased the apoptosis in BEAS2-B cells, and also elevated the expression of proteins related to both macroautophagy and CMA in BEAS2-B cells. The knockdown experiment with siRNAs showed that macroautophagy increases apoptosis in BEAS2-B cells, while CMA suppresses apoptosis. Conclusion The intratracheal injection of CSE induces pulmonary emphysema and an increase in apoptosis in mice. CSE also induces apoptosis, macroautophagy, and CMA of bronchial epithelial cells. Macroautophagy and CMA regulate apoptosis in opposite directions. PMID:28119751

  12. Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells.

    PubMed

    Kim, Eun-Ae; Jang, Ji-Hoon; Lee, Yun-Han; Sung, Eon-Gi; Song, In-Hwan; Kim, Joo-Young; Kim, Suji; Sohn, Ho-Yong; Lee, Tae-Jin

    2014-07-01

    Dioscin, a saponin extracted from the roots of Polygonatum zanlanscianense, shows several bioactivities such as antitumor, antifungal, and antiviral properties. Although, dioscin is already known to induce cell death in variety cancer cells, the molecular basis for dioscin-induced cell death was not definitely known in cancer cells. In this study, we found that dioscin treatment induced cell death in dose-dependent manner in breast cancer cells such as MDA-MB-231, MDA-MB-453, and T47D cells. Dioscin decreased expressions of Bcl-2 and cIAP-1 proteins, which were down-regulated at the transcriptional level. Conversely, Mcl-1 protein level was down-regulated by facilitating ubiquitin/proteasome-mediated Mcl-1 degradation in dioscin-treated cells. Pretreatment with z-VAD fails to attenuate dioscin-induced cell death as well as caspase-mediated events such as cleavages of procaspase-3 and PARP. In addition, dioscin treatment increased the population of annexin V positive cells and induced DNA fragmentation in a dose-dependent manner in MDA-MB-231 cells. Furthermore, apoptosis inducing factor (AIF) was released from the mitochondria and translocated to the nucleus. Suppression in AIF expression by siRNA reduced dioscin-induced apoptosis in MDA-MB-231 cells. Taken together, our results demonstrate that dioscin-induced cell death was mediated via AIF-facilitating caspase-independent pathway as well as down-regulating anti-apoptotic proteins such as Bcl-2, cIAP-1, and Mcl-1 in breast cancer cells.

  13. In vitro Antiproliferative and Apoptosis Inducing Effect of Allium atroviolaceum Bulb Extract on Breast, Cervical, and Liver Cancer Cells

    PubMed Central

    Khazaei, Somayeh; Esa, Norhaizan M.; Ramachandran, Vasudevan; Hamid, Roslida A.; Pandurangan, Ashok K.; Etemad, Ali; Ismail, Patimah

    2017-01-01

    Natural products are considered potent sources for novel drug discovery and development. The multiple therapeutic effects of natural compounds in traditional medicine motivate us to evaluate the cytotoxic activity of bulb of Allium atroviolaceum in MCF7 and MDA-MB-231, HeLa and HepG2 cell lines. The bulb methanol extract of A. atroviolaceum was found to be an active cell proliferation inhibitor at the time and dose dependent manner. Determination of DNA content by flow cytometry demonstrated S and G2/M phase arrest of MCF-7 cell, correlated to Cdk1 downregulation, S phase arrest in MDA-MB-231 which is p53 and Cdk1-dependent, sub-G0 cell cycle arrest in HeLa aligned with Cdk1 downregulation, G0/G1, S, G2/M phase arrest in HepG2 which is p53-dependent. Apoptosis as the mechanism of cell death was confirmed by morphology study, caspases activity assay, as well as apoptosis related gene expression, Bcl-2. Caspase-8, -9, and -3 activity with downregulation of Bcl-2 illustrated occurrence of both intrinsic and extrinsic pathways in MCF7, while caspase-3 and -8 activity revealed extrinsic pathway of apoptosis, although Bcl-2 downregulated. In HeLa cells, the activity of caspase-9 and -3 and downregulation of Bcl-2 shows intrinsic pathway or mitochondrial pathway, whereas HepG2 shows caspase independent apoptosis. Further, the combination of the extract with tamoxifen against MCF7 and MDA-MB-231 and combination with doxorubicin against HeLa and HeG2 demonstrated synergistic effect in most concentrations, suggests that the bulb of A. atroviolaceum may be useful for the treatment of cancer lonely or in combination with other drugs. PMID:28197098

  14. N-Acetyl-L-cysteine enhances apoptosis through inhibition of nuclear factor-kappaB in hypoxic murine embryonic fibroblasts.

    PubMed

    Qanungo, Suparna; Wang, Mi; Nieminen, Anna-Liisa

    2004-11-26

    In this study, we investigated the role of reduced glutathione (GSH) and nuclear factor-kappaB (NFkappaB) in hypoxia-induced apoptosis. Hypoxia caused p53-dependent apoptosis in murine embryonic fibroblasts transfected with Ras and E1A. N-Acetyl-l-cysteine (NAC) but not other antioxidants, such as the vitamin E analog trolox and epigallocatechin-3-gallate, enhanced hypoxia-induced caspase-3 activation and apoptosis. NAC also enhanced hypoxia-induced apoptosis in two human cancer cell lines, MIA PaCa-2 pancreatic cancer cells and A549 lung carcinoma cells. In murine embryonic fibroblasts, all three antioxidants blocked hypoxia-induced reactive oxygen species formation. NAC did not enhance hypoxia-induced cytochrome c release but did enhance poly-(ADP ribose) polymerase cleavage, indicating that NAC acted at a post-mitochondrial level. NAC-mediated enhancement of apoptosis was mimicked by incubating cells with GSH monoester, which increased intracellular GSH similarly to NAC. Hypoxia promoted degradation of an inhibitor of kappaB(IkappaBalpha), NFkappaB-p65 translocation into the nucleus, NFkappaB binding to DNA, and subsequent transactivation of NFkappaB, which increased X chromosome-linked inhibitor of apoptosis protein levels. NAC failed to block degradation by IkappaBalpha and sequestration of the p65 subunit of NFkappaB to the nucleus. However, NAC did abrogate hypoxia-induced NFkappaB binding to DNA, NFkappaB-dependent gene expression, and induction of X chromosome-linked inhibitor of apoptosis protein. In conclusion, NAC enhanced hypoxic apoptosis by a mechanism apparently involving GSH-dependent suppression of NFkappaB transactivation.

  15. Transcriptional inhibition of p21{sup WAF1/CIP1} gene (CDKN1) expression by survivin is at least partially p53-dependent: Evidence for survivin acting as a transcription factor or co-factor

    SciTech Connect

    Tang, Lei; Ling, Xiang; Liu, Wensheng; Das, Gokul M.; Li, Fengzhi

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Survivin inhibits the expression of p21 protein, mRNA and promoter activity. Black-Right-Pointing-Pointer Survivin neutralizes p53-induced p21 expression and promoter activity. Black-Right-Pointing-Pointer Survivin physically interacts with p53 in cancer cells. Black-Right-Pointing-Pointer Genetic silencing of endogenous survivin upregulates p21 in p53 wild type cancer cells. Black-Right-Pointing-Pointer Both p53 and survivin interacts on the two p53-binding sites in the p21 promoter. -- Abstract: Growing evidence suggests a role for the antiapoptotic protein survivin in promotion of cancer cell G1/S transition and proliferation. However, the underlying mechanism is unclear. Further, although upregulation of p21{sup WAF1/CIP1} by p53 plays an important role in p53-mediated cell G1 arrests in response to various distresses, it is unknown whether survivin plays a role in the regulation of p21{sup WAF1/CIP1} expression. Here, we report that exogenous expression of survivin in p53-wild type MCF-7 breast cancer cells inhibits the expression of p21{sup WAF1/CIP1} protein, mRNA and promoter activity, while the survivin C84A mutant and antisense failed to do so. Cotransfection experiments in the p53 mutant H1650 lung cancer cell line showed that survivin neutralizes p53-induced p21{sup WAF1/CIP1} expression and promoter activity. Importantly, genetically silencing of endogenous survivin using lentiviral survivin shRNA also enhances endogenous p21 in p53 wild type cancer cells, suggesting the physiological relevance of the fining. We further demonstrated that both p53 and survivin interacts on the two p53-binding sites in the p21{sup WAF1/CIP1} promoter (-2313 to -2212; -1452 to -1310), and survivin physically interacts with p53 in cancer cells. Together, we propose that survivin may act as a transcription factor or cofactor to interact with p53 on the p21{sup WAF1/CIP1} promoter leading to the inhibition of p21{sup WAF1/CIP1

  16. Apoptosis in immunocytes induced by several types of pesticides.

    PubMed

    Fukuyama, Tomoki; Tajima, Yukari; Ueda, Hideo; Hayashi, Koichi; Shutoh, Yasufumi; Harada, Takanori; Kosaka, Tadashi

    2010-03-01

    Several types of pesticides, such as organophosphates and organochlorines, can induce thymocyte apoptosis, resulting in thymic atrophy and predisposing the highly sensitive fetal immune system to loss of tolerance to self-antigens and subsequent increased risk for autoimmune disease and allergies. In the studies here, mouse primary thymocytes and a human acute T-cell leukemia cell line (J45.01) were employed to examine potential thymocyte apoptosis induced by several types of chemicals, including several commonly-used pesticides. Thymocytes and J45.01 cells were treated for 4 or 8 hr with varying doses of metamidophos, parathion, PNMC, or methoxychlor; dexamethasone was used as a positive control. Apoptosis, cell viability, the proportion of Annexin-V+ cells, the activities of caspases 3/7, 8, and 9, and the levels of DNA fragmentation in both the J45.01 cells and thymocytes were then examined. The results here show that with both cell types, there was an increase in the proportion of annexin-V+ cells and levels of DNA fragmentation following exposure to parathion, PNMC, methoxychlor, or dexamethasone (positive control); however, the levels of sensitivity appeared to differ between the cell types. Furthermore, caspase-7 and -8 activities also differed between the J45.01 cells and thymocytes when treated with PNMC, methoxychlor, or dexamethasone. A more precise characterization of these inter-cellular differences is the logical next step in our studies of the effects of these (and other) pesticides on immune cell integrity. These specific types of follow-on mechanistic experiments are currently underway in our laboratories.

  17. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress

    PubMed Central

    Natarajan, Sathish Kumar; Becker, Donald F

    2012-01-01

    Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-inducing factor (AIF), proline dehydrogenase, and NADPH oxidase. These proteins have diverse biochemical functions and influence apoptotic signaling by unique mechanisms. The role of AIF in apoptotic signaling is two-fold, with AIF changing intracellular location from the inner mitochondrial membrane space to the nucleus upon exposure of cells to apoptotic stimuli. In the mitochondria, AIF enhances mitochondrial bioenergetics and complex I activity/assembly to help maintain proper cellular redox homeostasis. After translocating to the nucleus, AIF forms a chromatin degrading complex with other proteins, such as cyclophilin A. AIF translocation from the mitochondria to the nucleus is triggered by oxidative stress, implicating AIF as a mitochondrial redox sensor. Proline dehydrogenase is a membrane-associated flavoenzyme in the mitochondrion that catalyzes the rate-limiting step of proline oxidation. Upregulation of proline dehydrogenase by the tumor suppressor, p53, leads to enhanced mitochondrial reactive oxygen species that induce the intrinsic apoptotic pathway. NADPH oxidases are a group of enzymes that generate reactive oxygen species for oxidative stress and signaling purposes. Upon activation, NADPH oxidase 2 generates a burst of superoxide in neutrophils that leads to killing of microbes during phagocytosis. NADPH oxidases also participate in redox signaling that involves hydrogen peroxide-mediated activation of different pathways regulating cell proliferation and cell death. Potential therapeutic strategies for each enzyme are also highlighted. PMID:22593641

  18. Human Immunodeficiency Virus Type 1 Vpr Induces Apoptosis through Caspase Activation

    PubMed Central

    Stewart, Sheila A.; Poon, Betty; Song, Joo Y.; Chen, Irvin S. Y.

    2000-01-01

    Human immunodeficiency virus type 1 (HIV-1) Vpr is a 96-amino-acid protein that is found associated with the HIV-1 virion. Vpr induces cell cycle arrest at the G2/M phase of the cell cycle, and this arrest is followed by apoptosis. We examined the mechanism of Vpr-induced apoptosis and found that HIV-1 Vpr-induced apoptosis requires the activation of a number of cellular cysteinyl aspartate-specific proteases (caspases). We demonstrate that ectopic expression of anti-apoptotic viral proteins, which inhibit caspase activity, and addition of synthetic peptides, which represent caspase cleavage sites, can inhibit Vpr-induced apoptosis. Finally, inhibition of caspase activity and subsequent inhibition of apoptosis results in increased viral expression, suggesting that therapeutic strategies aimed at reducing Vpr-induced apoptosis in vivo require careful consideration. PMID:10708425

  19. Aloe-emodin-induced apoptosis in human gastric carcinoma cells.

    PubMed

    Chen, Sheng-Hsuan; Lin, Kai-Yuan; Chang, Chun-Chao; Fang, Chia-Lang; Lin, Chih-Ping

    2007-11-01

    The purpose of this study was to investigate the anticancer effect of aloe-emodin, an anthraquinone compound present in the leaves of Aloe vera, on two distinct human gastric carcinoma cell lines, AGS and NCI-N87. We demonstrate that aloe-emodin induced cell death in a dose- and time-dependent manner. Noteworthy is that the AGS cells were generally more sensitive than the NCI-N87 cells. Aloe-emodin caused the release of apoptosis-inducing factor and cytochrome c from mitochondria, followed by the activation of caspase-3, leading to nuclear shrinkage and apoptosis. In addition, exposure to aloe-emodin suppressed the casein kinase II activity in a time-dependent manner and was accompanied by a reduced phosphorylation of Bid, a downstream substrate of casein kinase II and a pro-apoptotic molecule. These preclinical studies suggest that aloe-emodin represents a suitable and novel chemotherapeutic drug candidate for the treatment of human gastric carcinoma.

  20. Lead Induces Apoptosis and Histone Hyperacetylation in Rat Cardiovascular Tissues.

    PubMed

    Xu, Li-Hui; Mu, Fang-Fang; Zhao, Jian-Hong; He, Qiang; Cao, Cui-Li; Yang, Hui; Liu, Qi; Liu, Xue-Hui; Sun, Su-Ju

    2015-01-01

    Acute and chronic lead (Pb) exposure might cause hypertension and cardiovascular diseases. The purpose of this study was to evaluate the effects of early acute exposure to Pb on the cellular morphology, apoptosis, and proliferation in rats and to elucidate the early mechanisms involved in the development of Pb-induced hypertension. Very young Sprague-Dawley rats were allowed to drink 1% Pb acetate for 12 and 40 days. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA) decreased in the tissues of the abdominal and thoracic aortas and increased in the cardiac tissue after 12 and 40 days of Pb exposure, respectively. Bax was upregulated and Bcl-2 was downregulated in vascular and cardiac tissues after 40 days of Pb exposure. In addition, an increase in caspase-3 activity was observed after 40 days of exposure to Pb. In terms of morphology, we found that the internal elastic lamina (IEL) of aorta lost the original curve and the diameter of cardiac cell was enlarged after 40 days. Furthermore, the exposure led to a marked increase in acetylated histone H3 levels in the aortas and cardiac tissue after 12 and 40 days, than that in the control group. These findings indicate that Pb might increase the level of histone acetylation and induce apoptosis in vascular and cardiac tissues. However, the mechanism involved need to be further investigated.

  1. Single-Cell-Precision Microplasma-Induced Cancer Cell Apoptosis

    PubMed Central

    Lu, Xinpei; He, Guangyuan; Ostrikov, Kostya

    2014-01-01

    The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure. PMID:24971517

  2. Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells

    SciTech Connect

    Ota, Kimiko; Nakamura, Jiro; Li, Weiguo; Kozakae, Mika; Watarai, Atsuko; Nakamura, Nobuhisa; Yasuda, Yutaka; Nakashima, Eirtaro; Naruse, Keiko; Watabe, Kazuhiko; Kato, Koichi; Oiso, Yutaka; Hamada, Yoji . E-mail: yhama@med.nagoya-u.ac.jp

    2007-05-25

    Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS.

  3. Daily variations in colchicine-induced apoptosis in duodenal crypts.

    PubMed

    Norma, V González; Badrán, Amado F; Barbeito, Claudio G

    2005-01-01

    Apoptotic cell death can be induced by several agents, among them colchicine, a microtubule disrupting-drug that affects continuously renewing cell populations, such as the intestinal crypt enterocytes. The objectives of this investigation were (1) to confirm in vivo colchicines-inductive effect and (2) to determine the existence of 24 h variations in the crypt enterocytes apoptotic indices. The study was done on C3H/S male adult mice housed under standardized conditions. Starting at midnight until the end of a circadian period, subgroups of mice were sacrificed after having been injected with colchicine or saline i.p. 4h beforehand. Duodenal samples were processed for hematoxylin-eosin staining and TUNEL technique. In order to score the number of apoptosis, the longitudinal sections of the crypts were divided into three regions comprised, respectively, of tiers 1-4, 5-12, and 13-20, proceeding from the bottom to the top of the crypt. Values of each lot were expressed as mean +/- SEM. A highly significant statistical difference in apoptotic indices was found for colchicine-treated animals. The 24 h curve for colchicine-induced apoptosis displayed qualitative and quantitative differences compared to other inducer agents. Highest apoptotic indices were found in the deepest crypt regions. Daily variations were observed in all the crypt sectors of the colchicine-treated animals and in tiers 5-12 of the saline controls. The present work demonstrates that the colchicine cytotoxicity due to its apoptotic-inducing effect depends on the dosing time during the 24 h in this mouse strain.

  4. The Effect of Selenium on the Cd-Induced Apoptosis via NO-Mediated Mitochondrial Apoptosis Pathway in Chicken Liver.

    PubMed

    Zhang, Runxiang; Yi, Ran; Bi, Yanju; Xing, Lu; Bao, Jun; Li, Jianhong

    2017-01-06

    Cd-induced apoptosis and the protective effects of Se against Cd-induced injury have been reported in previous studies. However, little is known regarding the effects of Cd-induced apoptosis in hepatic cells and the antagonistic effects of Se on Cd in poultry. In the present study, 128 healthy 31-week-old laying hens were randomly divided into four groups, which were fed basic diets, with the addition of Se (Na2SeO3, 2 mg/kg), Cd (CdCl2, 150 mg/kg), or Se + Cd (150 mg/kg of CdCl2 and 2 mg/kg of Na2SeO3) for 90 days. Ultrastructural changes, nitric oxide (NO) concentrations, inducible nitric oxide synthase (iNOS) activities, results of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of apoptosis, and the expression of iNOS and apoptosis-related genes in livers were determined. It was observed that Cd treatment significantly increased the concentrations of NO and iNOS activity in chicken livers. The production of excessive NO initiated the mitochondrial apoptotic pathway. Exposure to Cd increased the mRNA and the protein expression levels of iNOS, caspase-3, Bax, p53, and Cyt-c. Furthermore, the ratio of Bax/Bcl-2 increased, while the expression of Bcl-2 decreased. Treatment with Se significantly alleviated Cd-induced apoptosis in chicken livers, as evidenced by a reduction in the production of NO, iNOS activity, the number of apoptotic cells, and mRNA and protein expression levels of iNOS, caspase-3, Bax, and Cyt-c. It indicated that Cd induced NO-mediated apoptosis through the mitochondrial apoptotic pathway and Se exerted antagonizing effects. The present study provides new insights as to how Se affects Cd-induced toxicity in the chicken liver.

  5. Betulin induces reactive oxygen species-dependent apoptosis in human gastric cancer SGC7901 cells.

    PubMed

    Li, Yang; Liu, Xiaokang; Jiang, Dan; Lin, Yingjia; Wang, Yushi; Li, Qing; Liu, Linlin; Jin, Ying-Hua

    2016-09-01

    Betulin, an abundant natural compound, significantly inhibited the cell viability of advanced human gastric cancer SGC7901 cells. Mechanism study demonstrated that betulin induced apoptosis through mitochondrial Bax and Bak accumulation-mediated intrinsic apoptosis pathway. Downregulation of the anti-apoptosis proteins Bcl-2 and XIAP was involved during betulin-induced cell apoptosis. Reactive oxygen species (ROS) was generated in cells after betulin treatment in a time- and dose-dependent manner. Addition of antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated betulin-induced ROS generation as well as Bcl-2 and XIAP downregulation. The mitochondrial accumulation of Bax and Bak, as well as caspase activity, was also remarkably inhibited by NAC treatment, indicating that ROS are important signaling intermediates that lead to betulin-induced apoptosis by modulating multiple apoptosis-regulating proteins in SGC7901 cells.

  6. [X-ray irradiation induces apoptosis of mouse GC1 sperm cells via nuclear translocation of apoptosis-inducing factor].

    PubMed

    Yang, Huiying; Ding, Jingbin; Wang, Zhijun; Ding, Juan; Xia, Xinshe; Zhao, Wei

    2017-03-01

    Objective To study the effect of X-ray irradiation on the localization of apoptosis inducing factor (AIF) in mouse GC1 sperm cells. Methods After GC1 cells were treated with 0, 3, 6 and 9 Gy X irradiation, BrdU incorporation assay was performed to detect the proliferation of GC1 cells. Forty-eight hours after irradiation, the nuclear condensation was observed by DAPI staining. The subcellular localization of AIF was showed using the immunofluorescence staining, both in the whole cell extracts and in nuclear extracts, and the expression levels of AIF were detected using Western blot analysis. Results With the increase of X-ray irradiation dose, the proliferation of GC1 cells significantly decreased, and the activity of cells was weakened. After 6 Gy irradiation, in nuclear extracts, but not in the whole cell extracts, the protein AIF was upregulated significantly. It meant the nuclear translocation of protein AIF. Conclusion X-ray irradiation induces the apoptosis of mouse GC1 sperm cells, meanwhile, the nuclear translocation of AIF occurs.

  7. Deficiency of the Bax gene attenuates denervation-induced apoptosis

    PubMed Central

    Siu, P. M.; Alway, S. E.

    2015-01-01

    Apoptosis has been implicated in mediating denervation-induced muscle wasting. In this study we determined the effect of interference of apoptosis on muscle wasting during denervation by using mice genetically deficient in pro-apoptotic Bax. After denervation, muscle wasting was evident in both wild-type and Bax−/− muscles but reduction of muscle weight was attenuated in Bax−/− mice. Apoptotic DNA fragmentation increased in wild-type denervated muscles whereas there was no statistical increase in DNA fragmentation in denervated muscles from Bax−/− mice. Mitochondrial AIF and Smac/DIABLO releases and Bcl-2, p53 and HSP27 increased whereas XIAP and MnSOD decreased to a similar extent in muscles from wild-type and Bax−/− mice following denervation. Mitochondrial cytochrome c release was elevated in denervated muscles from wild-type mice but the increase was suppressed in muscles from Bax−/− mice. Increases in caspase-3 and -9 activities and oxidative stress markers H2O2, MDA/4-HAE and nitrotyrosine were all evident in denervated muscles from wild-type mice but these changes were absent in muscles from Bax−/− mice. Moreover, ARC increased exclusively in denervated Bax−/− muscle. Our data indicate that under conditions of denervation, pro-apoptotic signalling is suppressed and muscle wasting is attenuated when the Bax gene is lacking. These findings suggest that interventions targeting apoptosis may be valuable in ameliorating denervation-associated pathologic muscle wasting in certain neuromuscular disorders that involve partial or full denervation. PMID:16763784

  8. Prolactin Induces Apoptosis of Lactotropes in Female Rodents

    PubMed Central

    Ferraris, Jimena; Zárate, Sandra; Jaita, Gabriela; Boutillon, Florence; Bernadet, Marie; Auffret, Julien; Seilicovich, Adriana; Binart, Nadine; Pisera, Daniel

    2014-01-01

    Anterior pituitary cell turnover occurring during female sexual cycle is a poorly understood process that involves complex regulation of cell proliferation and apoptosis by multiple hormones. In rats, the prolactin (PRL) surge that occurs at proestrus coincides with the highest apoptotic rate. Since anterior pituitary cells express the prolactin receptor (PRLR), we aimed to address the actual role of PRL in the regulation of pituitary cell turnover in cycling females. We showed that acute hyperprolactinemia induced in ovariectomized rats using PRL injection or dopamine antagonist treatment rapidly increased apoptosis and decreased proliferation specifically of PRL producing cells (lactotropes), suggesting a direct regulation of these cell responses by PRL. To demonstrate that apoptosis naturally occurring at proestrus was regulated by transient elevation of endogenous PRL levels, we used PRLR-deficient female mice (PRLRKO) in which PRL signaling is totally abolished. According to our hypothesis, no increase in lactotrope apoptotic rate was observed at proestrus, which likely contributes to pituitary tumorigenesis observed in these animals. To decipher the molecular mechanisms underlying PRL effects, we explored the isoform-specific pattern of PRLR expression in cycling wild type females. This analysis revealed dramatic changes of long versus short PRLR ratio during the estrous cycle, which is particularly relevant since these isoforms exhibit distinct signaling properties. This pattern was markedly altered in a model of chronic PRLR signaling blockade involving transgenic mice expressing a pure PRLR antagonist (TGΔ1–9-G129R-hPRL), providing evidence that PRL regulates the expression of its own receptor in an isoform-specific manner. Taken together, these results demonstrate that i) the PRL surge occurring during proestrus is a major proapoptotic signal for lactotropes, and ii) partial or total deficiencies in PRLR signaling in the anterior pituitary may result

  9. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    PubMed

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  10. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    PubMed Central

    Pellegrini, Gretel G.; Morales, Cynthya C.; Wallace, Taylor C.; Plotkin, Lilian I.; Bellido, Teresita

    2016-01-01

    Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further

  11. Autophagy Protects from Raddeanin A-Induced Apoptosis in SGC-7901 Human Gastric Cancer Cells

    PubMed Central

    Liu, Shen-lin; Fang, Liang-hua; Zhou, Jin-yong; Wu, Jian; Xi, Song-yang; Chen, Yan; Zhang, Ying-ying; Xu, Song

    2016-01-01

    Raddeanin A (RA) is an extractive from Anemone raddeana Regel, a traditional Chinese medicine. The aim of this study is to assess the efficacy of RA against human gastric cancer (GC) cells (SGC-7901) and explore its mechanism. MTT assay showed that RA inhibition of proliferation of SGC-7901 cells increased in a dose-dependent manner. Flow cytometry analysis and Hoechst 33258 staining showed that RA induced apoptosis on SGC-7901 cells. Meanwhile, it induced autophagy. Western blotting analysis showed that the RA induces apoptosis and autophagy by activating p38 MAPK pathway and inhibiting mTOR pathway. Further studies showed that autophagy inhibition could protect from RA-induced apoptosis in SGC-7901 cells. In conclusion, RA can induce SGC-7901 cell apoptosis and autophagy by activating p38 MAPK pathway. And autophagy can protect SGC-7901 cells from apoptosis induced by RA. PMID:27974905

  12. Interaction between various resistance modifiers and apoptosis inducer 12H-benzo[alpha]phenothiazine.

    PubMed

    Mucsi, Ilona; Varga, Andreas; Kawase, Masami; Motohashi, Noboru; Molnar, Joseph

    2002-01-01

    The effect of some resistance modifiers on apoptosis induction by a benzo[alpha]phenothiazine derivative was studied on the L5178Y mouse lymphoma cells (parent) and its multidrug resistant (MDR) subline. For evaluation of apoptosis the cells were stained with FITC-labelled annexin V and propidium iodide and the results were analysed by flow cytometry. 12H-benzo[alpha]phenothiazine [M627] induced apoptosis both in the parent cells and in the MDR cells. The apoptosis induction by [M627] was not affected significantly by post- or pre-treatment with resistance modifiers, while in the cells treated by (+/-)-verapamil before and after apoptosis induction with [M627], the apoptosis was somewhat higher. The resistance modifier compounds alone also induced apoptosis and it was slightly higher in the parent cells than its MDR1/A gene-transformed subline.

  13. Cellular senescence: ex vivo p53-dependent asymmetric cell kinetics

    PubMed Central

    2001-01-01

    Although senescence is a defining property of euploid mammalian cells, its physiologic basis remains obscure. Previously, cell kinetics properties of normal tissue cells have not been considered in models for senescence. We now provide evidence that senescence is in fact the natural consequence of normal in vivo somatic stem cell kinetics extended in culture. This concept of senescence is based on our discovery that cells engineered to conditionally express the well-recognized tumor suppressor protein and senescence factor, p53, exhibit asymmetric cell kinetics. In vivo, asymmetric cell kinetics are essential for maintenance of somatic stem cells; ex vivo, the same cell kinetics yield senescence as a simple kinetic endpoint. This new “asymmetric cell kinetics model” for senescence suggests novel strategies for the isolation and propagation of somatic tissue stem cells in culture. PMID:12488624

  14. Endonucleases induced TRAIL-insensitive apoptosis in ovarian carcinoma cells

    SciTech Connect

    Geel, Tessa M.; Meiss, Gregor; Gun, Bernardina T. van der; Kroesen, Bart Jan; Leij, Lou F. de; Zaremba, Mindaugas; Silanskas, Arunas; Kokkinidis, Michael; Ruiters, Marcel H.; McLaughlin, Pamela M.; Rots, Marianne G.

    2009-09-10

    TRAIL induced apoptosis of tumor cells is currently entering phase II clinical settings, despite the fact that not all tumor types are sensitive to TRAIL. TRAIL resistance in ovarian carcinomas can be caused by a blockade upstream of the caspase 3 signaling cascade. We explored the ability of restriction endonucleases to directly digest DNA in vivo, thereby circumventing the caspase cascade. For this purpose, we delivered enzymatically active endonucleases via the cationic amphiphilic lipid SAINT-18{sup Registered-Sign }:DOPE to both TRAIL-sensitive and insensitive ovarian carcinoma cells (OVCAR and SKOV-3, respectively). Functional nuclear localization after delivery of various endonucleases (BfiI, PvuII and NucA) was indicated by confocal microscopy and genomic cleavage analysis. For PvuII, analysis of mitochondrial damage demonstrated extensive apoptosis both in SKOV-3 and OVCAR. This study clearly demonstrates that cellular delivery of restriction endonucleases holds promise to serve as a novel therapeutic tool for the treatment of resistant ovarian carcinomas.

  15. Evidence that FTY720 induces rat thymocyte apoptosis.

    PubMed

    Isoyama, Naohito; Takai, Kimio; Tsuchida, Masahiro; Matsumura, Masafumi; Naito, Katsusuke

    2006-04-01

    FTY720, a novel immunomodulator with the potential to improve immunosuppressive therapy after organ transplantation, is currently under clinical investigation. FTY720 drastically decreases blood lymphocytes, especially T cells, accelerating lymphocyte homing to secondary lymphoid organs. However, its immunosuppressive effects remain unknown. We investigated these effects in rat thymocytes. Rats were intramuscularly injected with 10mg/kg/day FTY720 or saline for 7days. Thymuses were removed on days 0, 1, 3, 5, 7 and 14 after treatment. Three-color analysis was performed with a flow cytofluorometer. Apoptotic nuclei in the tissue sections were identified by TUNEL. Genomic DNA was then extracted and samples were electrophoresed on 2.0% agarose gel. FTY720 reduced the total number of thymocytes and, with time, significantly reduced the percentage of CD4+8+ TCRalphabeta(negative/low) thymocytes. Light microscopy of thymuses of FTY720-treated rats revealed obvious reductions in the size of the cortical region. TUNEL analysis showed that FTY720 induced thymocyte apoptosis in the cortical region. Furthermore, DNA fragmentation was observed in thymocytes treated with FTY720, indicating thymocyte apoptosis. FTY720 reduced the number of CD4+8+ thymocytes before TCRalphabeta expression resulting in impaired thymocyte differentiation and maturation. This might be an immunosuppressive effect of FTY720.

  16. PDT-induced apoptosis in arterial smooth muscles cells

    NASA Astrophysics Data System (ADS)

    Nyamekye, Isaac; Renick, R.; Gilbert, C.; McEwan, Jean R.; Evan, G.; Bishop, Christopher C. R.; Bown, Stephen G.

    1995-03-01

    PDT kills smooth muscle cells (SMC) in vivo and thus prevents intimal hyperplasia after angioplasty. It causes little inflammation and structural integrity of the artery is not compromised. We have studied the process of the SMC death in vitro. Cultured rat SMC (cell line sv40 ATCC) were sensitized with aluminum disulphonated phthalocyanine (AlS2Pc), and then irradiated with 675 nm laser light (2.5 J/cm2). Controls were studied using only sensitizer or laser for treatment. The cells were incubated and the dying process observed with a time lapse video and microscope system. PDT caused a characteristic pattern of death. Cells lost contact with neighbors, shrank, and showed hyperactivity and membrane ruffling. The cells imploded into active and condensed membrane bound vesicles which were terminally reduced to residual bodies. These are the morphological changes of apoptosis. The control cells which were given AlS2Pc alone or laser alone showed no death. PDT induced cultured arterial SMC death by apoptosis rather than necrosis. An apoptotic mechanism of cell death in vivo would explain the relative lack of inflammation and local tissue destruction in the face of massive death.

  17. Porcine JAB1 significantly enhances apoptosis induced by staurosporine

    PubMed Central

    Jiang, P; Wang, J; Kang, Z; Li, D; Zhang, D

    2013-01-01

    c-Jun activation domain-binding protein-1 (JAB1), also known as the subunit 5 of the COP9 signalosome, is a multifunctional protein that regulates cell proliferation, apoptosis and oncogenesis by interacting with and subsequently degrading a large number of proteins. Although human JAB1 (hJAB1) has been studied for a long time, studies on porcine JAB1 (pJAB1) have never been reported. In the present study, we cloned and characterized the pJAB1 gene. The genomic structure of the pJAB1 gene was determined. The open-reading frame of pJAB1 encoded 334 amino acids. The deduced amino acid sequence was highly similar to homologs in other species. Furthermore, the tertiary structure analysis and phylogenetic analysis indicated that JAB1 was highly conservative among species. pJAB1 may interact with several proteins according to protein–protein interactions analysis. In addition, pJAB1 was found to be universally expressed in porcine tissues. Subcellular localization analysis showed that GFP–pJAB1 fusion protein distributed specifically in the cytoplasm. Flow cytometric analysis proved that pJAB1 significantly enhanced apoptosis induced by staurosporine, which at least partially depended on the activation of caspase-9 and caspase-3. This study is useful for understanding the function of pJAB1 and offers a potential molecular model for the investigation of diseases related to hJAB1. PMID:24091666

  18. Distinct patterns of cleavage and translocation of cell cycle control proteins in CD95-induced and p53-induced apoptosis.

    PubMed Central

    Park, Weon Seo; Jung, Kyeong Cheon; Chung, Doo Hyun; Nam, Woo-Dong; Choi, Won Jin; Bae, Youngmee

    2003-01-01

    Apoptotic cell death induced by p53 occurs at a late G1 cell cycle checkpoint termed the restriction (R) point, and it has been proposed that p53-induced apoptosis causes upregulation of CD95. However, as cells with defective in CD95 signaling pathway are still sensitive to p53-induced apoptosis, CD95 cannot be the sole factor resulting in apoptosis. In addition, unlike p53-induced apoptosis, the relationship between CD95-mediated apoptosis and the cell cycle is not clearly understood. It would therefore be worth investigating whether CD95-mediated cell death is pertinent with p53-induced apoptosis in view of cell cycle related molecules. In this report, biochemical analysis showed that etoposide-induced apoptosis caused the induction and the nuclear translocation of effector molecules involved in G1 cell cycle checkpoint. However, there was no such translocation in the case of CD95-mediated death. Thus, although both types of apoptosis involved caspase activation, the cell cycle related proteins responded differently. This argues against the idea that p53-induced apoptosis occurs through the induction of CD95/CD95L expression. PMID:12923319

  19. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis.

    PubMed

    Alanazi, Ibrahim; Ebrahimie, Esmaeil; Hoffmann, Peter; Adelson, David L

    2013-11-01

    A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.

  20. Evodiamine Induces Apoptosis and Enhances TRAIL-Induced Apoptosis in Human Bladder Cancer Cells through mTOR/S6K1-Mediated Downregulation of Mcl-1

    PubMed Central

    Zhang, Tao; Qu, Shanna; Shi, Qi; He, Dalin; Jin, Xunbo

    2014-01-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), either alone or in combination with other anti-cancer agents, has been considered as a new strategy for anti-cancer therapy. In this study, we demonstrated that evodiamine, a quinolone alkaloid isolated from the fruit of Evodia fructus, induced apoptosis and enhanced TRAIL-induced apoptosis in human bladder cancer cells. To elucidate the underlying mechanism, we found that evodiamine significantly reduced the protein levels of Mcl-1 in 253J and T24 bladder cancer cells, and overexpression of this molecule attenuated the apoptosis induced by evodiamine alone, or in combination with TRAIL. Further experiments revealed that evodiamine did not affect the mRNA level, proteasomal degradation and protein stability of Mcl-1. On the other hand, evodiamine inhibited the mTOR/S6K1 pathway, which usually regulates protein translation; moreover, knockdown of S6K1 with small interfering RNA (siRNA) effectively reduced Mcl-1 levels, indicating evodiamine downregulates c-FLIP through inhibition of mTOR/S6K1 pathway. Taken together, our results indicate that evodiamine induces apoptosis and enhances TRAIL-induced apoptosis possibly through mTOR/S6K1-mediated downregulation of Mcl-1; furthermore, these findings provide a rationale for the combined application of evodiamine with TRAIL in the treatment of bladder cancer. PMID:24566141

  1. Role of p53 in cdk Inhibitor VMY-1-103-induced Apoptosis in Prostate Cancer

    DTIC Science & Technology

    2013-11-01

    JA, Uren A. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog /GLI pathway. J Clin Invest. 2011...induced apoptosis in prostate cancer PRINCIPAL INVESTIGATOR: Lymor Ringer...2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of p53 in cdk inhibitor VMY-1-103-induced apoptosis in prostate cancer 5b. GRANT NUMBER

  2. Propolis suppresses tumor angiogenesis by inducing apoptosis in tube-forming endothelial cells.

    PubMed

    Ohta, Toshiro; Kunimasa, Kazuhiro; Kobayashi, Tomomi; Sakamoto, Miwa; Kaji, Kazuhiko

    2008-09-01

    We have reported that propolis suppresses tumor-induced angiogenesis in vivo and in vitro, but antiangiogenic mechanism of propolis at cellular level remains unclear. In this study, we observed that propolis not only inhibited tube formation but also induced apoptosis of endothelial cells. These results suggest that propolis exerts its antiangiogenic effects at least in part through induction of apoptosis.

  3. Inhibition of phosphate-induced apoptosis in resting zone chondrocytes by thrombin peptide 508.

    PubMed

    Zhong, Ming; Carney, Darrell H; Ryaby, James T; Schwartz, Zvi; Boyan, Barbara D

    2009-01-01

    Growth plate chondrocytes are susceptible to apoptosis. Terminally differentiated chondrocytes are deleted via apoptosis, which primes the growth plate to vascular invasion and subsequent bone formation. Whether less differentiated resting zone chondrocytes are subject to the same mechanism that governs the apoptotic pathway of more differentiated growth zone chondrocytes is not known. In our current study, we demonstrated that inorganic phosphate, a key inducer of growth plate chondrocyte apoptosis, also causes apoptosis in resting zone chondrocytes, via a pathway similar to the one in growth zone chondrocytes. Our results demonstrated that the conditions that cause growth plate chondrocyte apoptosis lie in the external environment, instead of the differences in differentiation state.

  4. Gliotoxin Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

    PubMed Central

    Chen, Junxiong; Wang, Chenliang; Lan, Wenjian; Huang, Chunying; Lin, Mengmeng; Wang, Zhongyang; Liang, Wanling; Iwamoto, Aikichi; Yang, Xiangling; Liu, Huanliang

    2015-01-01

    The discovery of new bioactive compounds from marine natural sources is very important in pharmacological research. Here we developed a Wnt responsive luciferase reporter assay to screen small molecule inhibitors of cancer associated constitutive Wnt signaling pathway. We identified that gliotoxin (GTX) and some of its analogues, the secondary metabolites from marine fungus Neosartorya pseufofischeri, acted as inhibitors of the Wnt signaling pathway. In addition, we found that GTX downregulated the β-catenin levels in colorectal cancer cells with inactivating mutations of adenomatous polyposis coli (APC) or activating mutations of β-catenin. Furthermore, we demonstrated that GTX induced growth inhibition and apoptosis in multiple colorectal cancer cell lines with mutations of the Wnt signaling pathway. Together, we illustrated a practical approach to identify small-molecule inhibitors of the Wnt signaling pathway and our study indicated that GTX has therapeutic potential for the prevention or treatment of Wnt dependent cancers and other Wnt related diseases. PMID:26445050

  5. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  6. Ultrastructural lesions induced by neptunium-237: apoptosis or necrosis?

    PubMed

    Pusset, D; Fromm, M; Poncy, J L; Kantelip, B; Galle, P; Chambaudet, A; Baud, M; Boulahdour, H

    2002-07-01

    In this study, we are concerned with the 237 isotope of neptunium (237Np), which is a by-product of uranium in nuclear reactors. To study ultrastructural lesions induced by this element, a group of rats were injected with a solution of 237Np-nitrate once a day for 14 weeks. Lesions observed in liver and kidney are described using electron microscopy. Ultrastructural alterations of cellular membranes and intracellular organelles demonstrated the existence of neptunium toxicity. This toxicity was characterized by various lesions, such as cytoplasmic clarification, disappearance of mitochondrial cristae, swollen mitochondria, abnormal condensation of nuclear chromatin, and nuclear fragmentations. This study demonstrated the probable induction of apoptosis by neptunium both in liver and kidneys.

  7. Promises of apoptosis-inducing peptides in cancer therapeutics.

    PubMed

    Barras, David; Widmann, Christian

    2011-08-01

    Until recently, most research efforts aimed at developing anti-cancer tools were focusing on small molecules. Alternative compounds are now being increasingly assessed for their potential anti-cancer properties, including peptides and their derivatives. One earlier limitation to the use of peptides was their limited capacity to cross membranes but this limitation was alleviated with the characterization of cell-permeable sequences. Additionally, means are designed to target peptides to their malignant targets. Most anti-cancer peptidic compounds induce apoptosis of tumor cells by modulating the activity of Bcl-2 family members that control the release of death factors from the mitochondria or by inhibiting negative regulators of caspases, the proteases that mediate the apoptotic response in cells. Some of these peptides have been shown to inhibit the growth of tumors in mouse models. Hopefully, pro-apoptotic anti-tumor peptides will soon be tested for their efficacy in patients with cancers.

  8. Sensitive apoptosis induced by microcystins in the crucian carp (Carassius auratus) lymphocytes in vitro.

    PubMed

    Zhang, Jianying; Zhang, Hangjun; Chen, Yingxu

    2006-08-01

    Microcystins including leucine-arginine l-amino acid (MCLR) and arginine-arginine l-amino acid (MCRR) can inhibit several serine/threonine protein phosphatases. In this study, we focused on the efficient biomarker for analyzing toxic cyanobacteria blooms using in vitro apoptosis bioassay. We explored the existence of sensitive apoptosis induced by MCLR and MCRR on isolated lymphocytes of the crucian carp (Carassius auratus) at a low exposure level. Apoptosis was detected in vitro and was clearly distinguished by condensation of nuclear chromatin and formation of apoptotic bodies, after 2 h exposure at 1, 5, 10 nM MCLR and MCRR, respectively. Agarose gel electrophoresis further revealed DNA fragmentation (DNA ladder) caused by apoptosis. We found that MCLR and MCRR can induce lymphocyte apoptosis in a dose- and time-dependent manner with flow cytometry analysis. Our study provides the first evidence that microcystins can induce fish lymphocytes apoptosis and may impair fish immune function.

  9. Simple chemicals can induce maturation and apoptosis of dendritic cells

    PubMed Central

    Manome, H; Aiba, S; Tagami, H

    1999-01-01

    As is well known in the case of Langerhans cells, dendritic cells (DCs) play a crucial role in the initiation of immunity to simple chemicals such as noted in the contact hypersensitivity. Because DCs are scattered in non‐lymphoid organs as immature cells, they must be activated to initiate primary antigen‐specific immune reactions. Therefore, we hypothesized that some simple chemicals must affect the function of DCs. In this paper, we first demonstrated that human monocyte‐derived DCs responded to such simple chemicals as 2,4‐dinitrochlorobenzene (DNCB), 2,4,6‐trinitrochlorobenzene (TNCB), 2,4‐dinitrofluorobenzene (DNFB), NiCl2, MnCl2, CoCl2, SnCl2, and CdSO4 by augmenting their expression of CD86 or human leucocyte antigen‐DR (HLA‐DR), down‐regulating c‐Fms expression or increasing their production of tumour necrosis factor‐α (TNF‐α). In addition, the DCs stimulated with the chemicals demonstrated increased allogeneic T‐cell stimulatory function. Next, we found that, among these chemicals, only NiCl2 and CoCl2 induced apoptosis in them. Finally, we examined the effects of these chemicals on CD86 expression by three different macrophage subsets and DCs induced from the cultures of human peripheral blood monocytes in the presence of macrophage colony‐stimulating factor (M‐CSF), M‐CSF + interleukin‐4 (IL‐4), granulocyte–macrophage colony‐stimulating factor (GM‐CSF), and GM‐CSF + IL‐4, respectively. Among them, only DCs dramatically augmented their expression of CD86. These observations have revealed unique characteristics of DCs, which convert chemical stimuli to augmentation of their antigen presenting function, although their responses to different chemicals were not necessarily uniform in the phenotypic changes, cytokine production or in the induction of apoptosis. PMID:10594678

  10. RGD-FasL Induces Apoptosis in Hepatocellular Carcinoma

    PubMed Central

    Liu, Zhongchen; Wang, Juan; Yin, Ping; Qiu, Jinhua; Liu, Ruizhen; Li, Wenzhu; Fan, Xin; Cheng, Xiaofeng; Chen, Caixia; Zhang, Jiakai; Zhuang, Guohong

    2009-01-01

    Despite impressive results obtained in animal models, the clinical use of Fas ligand (FasL) as an anticancer drug is limited by severe toxicity. Systemic toxicity of death ligands may be prevented by using genes encoding membrane-bound death ligands and by targeted transgene expression through either targeted transduction or targeted transcription. Selective induction of tumor cell death is a promising anticancer strategy. A fusion protein is created by fusing the extracellular domain of Fas ligand (FasL) to the peptide arginine-glycine-aspartic acid (RGD) that selectively targets avβ3-integrins on tumor endothelial cells. The purpose of this study is to evaluate the effects of RGD-FasL on tumor growth and survival in a murine hepatocellular carcinoma (HCC) tumor model. Treatment with RGD-FasL displaying an obvious suppressive effect on the HCC tumor model as compared to that with FasL (p < 0.05) and resulted in a more additive effect on tumor growth delay in this model. RGD-FasL treatment significantly enhanced mouse survival and caused no toxic effect, such as weight loss, organ failure, or other treatment-related toxicities. Apoptosis was detected by flow cytometric analysis and TUNEL assays; those results also showed that RGD-FasL is a more potent inducer of cell apoptosis for H22 and H9101 cell lines than FasL (p < 0.05). In conclusion, RGD-FasL appears to be a low-toxicity selective inducer of tumor cell death, which merits further investigation in preclinical and clinical studies. Furthermore, this approach offers a versatile technology for complexing target ligands with therapeutic recombinant proteins. To distinguish the anti-tumor effects of FasL in vivo, tumor and liver tissues were harvested to examine for evidence of necrotic cells, tumor cells, or apoptotic cells by Hematoxylin and eosin (H&E) staining. PMID:19728930

  11. Somatostatin protects photoreceptor cells against high glucose–induced apoptosis

    PubMed Central

    Mazzeo, Aurora; Cazzoni, Daniele; Beltramo, Elena; Hernández, Cristina; Porta, Massimo; Simó, Rafael; Valverde, Ángela M.

    2016-01-01

    Purpose Many cellular and molecular studies in experimental animals and early retinal function tests in patients with diabetic retinopathy (DR) have shown that retinal neurodegeneration is an early event in the pathogenesis of the disease. Somatostatin (SST) is one of the most important neuroprotective factors synthesized by the retina: SST levels are decreased in parallel to retinal neurodegeneration in early stages of DR. In this study, we characterized the induction of apoptosis (programmed cell death) in a 661W photoreceptor-like cell line cultured under high glucose (HG) conditions and the effect of SST. Methods A 661W photoreceptor-like cell line and retinal explants from 10-week-old male C57BL/6 mice were cultured under HG conditions and treated with SST. Results Hyperglycemia significantly reduced the cellular viability by increasing the percentage of apoptotic cells, and this effect was ameliorated by SST (p˂0.05). Activation of caspase-8 by hyperglycemia was found in the 661W cells and retinal explants and decreased in the presence of SST (p˂0.05). Moreover, we detected activation of calpain-2 associated with hyperglycemia-induced cell death, as well as increased protein tyrosine phosphatase 1B (PTP1B) protein levels; both had a pattern of cleavage that was absent in the presence of SST (p˂0.05). Treatment of the 661W cells and retinal explants with SST for 24 h increased the phosphorylation of type 1 insulin-like growth factor receptor (IGF-IR; tyrosine 1165/1166) and protein kinase B (Akt; serine 473), suggesting this survival signaling is activated in the neuroretina by SST (p˂0.05). Conclusions This study has provided new mechanistic insights first into the involvement of calpain-2 and PTP1B in the loss of cell survival and increased caspase-8-dependent apoptosis induced by hyperglycemia in photoreceptor cells and second, on the protective effect of SST against apoptosis by the enhancement of IGF-IR-mediated Akt phosphorylation. PMID:28050125

  12. Regulation of isocyanate-induced apoptosis, oxidative stress, and inflammation in cultured human neutrophils: isocyanate-induced neutrophils apoptosis.

    PubMed

    Mishra, P K; Khan, S; Bhargava, A; Panwar, H; Banerjee, S; Jain, S K; Maudar, K K

    2010-06-01

    Implications of environmental toxins on the regulation of neutrophil function are being significantly appraised. Such effects can be varied and markedly different depending on the type and extent of chemical exposure, which results in direct damage to the immune system. Isocyanates with functional group (-NCO), are considered as highly reactive molecules with diverse industrial applications. However, patho-physiological implications resulting from their occupational and accidental exposures have not been well delineated. The present study was carried out to assess the immunotoxic response of isocyanates and their mode of action at a molecular level on cultured human neutrophils isolated from healthy human volunteers. Studies were conducted to evaluate both dose- and time-dependent (n = 3) response using N-succinimidyl N-methylcarbamate, a chemical entity that mimics the effects of methyl isocyanate in vitro. Measure of apoptosis through annexin-V-FITC/PI assay, active caspase-3, apoptotic DNA ladder assay and mitochondrial depolarization; induction of oxidative stress by CM-H(2)DCFDA and formation of 8'-hydroxy-2'-deoxyguanosine; and levels of antioxidant defense system enzyme glutathione reductase, multiplex cytometric bead array analysis to quantify the secreted cytokine levels (interleukin-8, interleukin-1beta, interleukin-6, interleukin-10, interferon-gamma, tumor necrosis factor, and interleukin-12p70) parameters were evaluated. Our results demonstrate that isocyanates induce neutrophil apoptosis via activation of mitochondrial-mediated pathway along with reactive oxygen species production; depletion in antioxidant defense states; and elevated pro-inflammatory cytokine response.

  13. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    PubMed

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  14. PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy.

    PubMed

    Tan, S; Wei, X; Song, M; Tao, J; Yang, Y; Khatoon, S; Liu, H; Jiang, J; Wu, B

    2014-03-13

    Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of the study is to investigate whether PUMA is involved in PHG by mediating ER stress apoptotic signaling. To identify whether PUMA is involved in PHG by mediating ER stress, gastric mucosal injury and apoptosis were studied in both PHG patients and PHG animal models using PUMA knockout (PUMA-KO) and PUMA wild-type (PUMA-WT) mice. The induction of PUMA expression and ER stress signaling were investigated, and the mechanisms of PUMA-mediated apoptosis were analyzed. GES-1 and SGC7901 cell lines were used to further identify whether PUMA-mediated apoptosis was induced by ER stress in vitro. Epithelial apoptosis and PUMA were markedly induced in the gastric mucosa of PHG patients and mouse PHG models. ER stress had a potent role in the induction of PUMA and apoptosis in PHG models, and the apoptosis was obviously attenuated in PUMA-KO mice. Although the targeted deletion of PUMA did not affect ER stress, mitochondrial apoptotic signaling was downregulated in mice. Meanwhile, PUMA knockdown significantly ameliorated ER stress-induced mitochondria-dependent apoptosis in vitro. These results indicate that PUMA mediates ER stress-induced mucosal epithelial apoptosis through the mitochondrial apoptotic pathway in PHG, and that PUMA is a potentially therapeutic target for PHG.

  15. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    SciTech Connect

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-20

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV{sub XS}; 400 {mu}g/ml), UV-irradiated virus (CIV{sub UV}; 10 {mu}g/ml) and CVPE (CIV protein extract; 10 {mu}g/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 {mu}g/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV{sub UV} or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV{sub UV} particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV{sub UV}, CIV{sub XS} or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae

  16. Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis.

    PubMed

    Panayiotidis, Mihalis I; Franco, Rodrigo; Bortner, Carl D; Cidlowski, John A

    2010-07-01

    Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na(+)-K(+)-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na(+)-K(+)-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H(2)O(2), thapsigargin or UV-C implicating a role for the Na(+)-K(+)-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca(2+) homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca(2+) levels in response to H(2)O(2), thapsigargin or UV-C. FasL-induced alterations in Ca(2+) were not abolished in Ca(2+)-free medium but incubation of cells with BAPTA-AM inhibited both Ca(2+) perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na(+)-K(+)-ATPase activity during apoptosis is linked to perturbations in cell Ca(2+) homeostasis that modulate apoptosis induced by the activation of Fas by FasL.

  17. Mitochondrial DNA damage induces apoptosis in senescent cells

    PubMed Central

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-01-01

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV–HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells. PMID:23868060

  18. Mitochondrial DNA damage induces apoptosis in senescent cells.

    PubMed

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-07-18

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV-HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.

  19. RIP-1/c-FLIPL Induce Hepatic Cancer Cell Apoptosis Through Regulating Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)

    PubMed Central

    Sun, Jichun; Yu, Xiao; Wang, Changfa; Yu, Can; Li, Zhiqiang; Nie, Wanpin; Xu, Xundi; Miao, Xiongying; Jin, Xiaoxin

    2017-01-01

    Background Almost all hepatic cancer cells have resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. c-FLIPL and RIP-1 are apoptotic negative regulatory factors. This study investigated the role of c-FLIPL and RIP-1 in hepatic cancer cell resistance to TRAIL-induced apoptosis. Material/Methods HepG2 cells were treated by TRAIL, RIP-1 siRNA, and/or BY11-7082. Cell viability was detected by MTT assay. Cell apoptosis was tested by flow cytometry. DISC component proteins, RIP-1, and p-p65 were measured by Western blot. Caspase-8 and caspase-3 were determined by spectrophotometry. Results Single TRAIL treatment showed no significant impact on cell proliferation and apoptosis. HepG2 cells expressed high levels of RIP1 and c-FLIPL, while a high concentration of TRAIL upregulated RIP-1 and c-FLIPL expression but not DR4 and DR5. Single TRAIL treatment did not obviously activate caspase-8 and caspase-3. RIP-1 or c-FLIPL siRNA markedly induced cell apoptosis and enhanced caspase-8 and caspase-3 activities. Combined transfection obviously increased apoptotic cells. TRAIL markedly upregulated RIP-1 expression and enhanced p-p65 protein. Downregulating RIP-1 and/or BAY11-7082 significantly reduced NF-κB transcriptional activity, blocked cells in G0/G1 phase, weakened proliferation, elevated caspase-8 and caspase-3 activities, and promoted cell apoptosis. Conclusions TRAIL can enhance RIP1 and c-FLIPL expression in HepG2 cells. High expression of RIP1 and c-FLIPL is an important reason for TRAIL resistance. Downregulation of RIP1 and c-FLIPL can relieve caspase-8 suppression, activate caspase-3, and promote cell apoptosis. TRAIL mediates apoptosis resistance through upregulating RIP-1 expression, enhancing NF-κB transcriptional activity, and weakening caspase activity. PMID:28270653

  20. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells.

    PubMed

    Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-01

    This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

  1. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    SciTech Connect

    Atkinson, Shelley L.; Li Yuqing; Wong, C. Shun . E-mail: shun.wong@sw.ca

    2005-06-01

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor {alpha}. Proliferation of OPC was assessed by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system.

  2. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway.

    PubMed

    Wang, Wen-Ke; Lu, Qing-Hua; Zhang, Jia-Ning; Wang, Ben; Liu, Xiang-Juan; An, Feng-Shuang; Qin, Wei-Dong; Chen, Xue-Ying; Dong, Wen-Qian; Zhang, Cheng; Zhang, Yun; Zhang, Ming-Xiang

    2014-11-01

    Apoptosis is a key event involved in diabetic cardiomyopathy. The expression of high mobility group box 1 protein (HMGB1) is up-regulated in diabetic mice. However, the molecular mechanism of high glucose (HG)-induced cardiomyocyte apoptosis remains obscure. We aimed to determine the role of HMGB1 in HG-induced apoptosis of cardiomyocytes. Treating neonatal primary cardiomyocytes with HG increased cell apoptosis, which was accompanied by elevated levels of HMGB1. Inhibition of HMGB1 by short-hairpin RNA significantly decreased HG-induced cell apoptosis by reducing caspase-3 activation and ratio of Bcl2-associated X protein to B-cell lymphoma/leukemia-2 (bax/bcl-2). Furthermore, HG activated E26 transformation-specific sequence-1 (Ets-1), and HMGB1 inhibition attenuated HG-induced activation of Ets-1 via extracellular signal-regulated kinase 1/2 (ERK1/2) signalling. In addition, inhibition of Ets-1 significantly decreased HG-induced cardiomyocyte apoptosis. Similar results were observed in streptozotocin-treated diabetic mice. Inhibition of HMGB1 by short-hairpin RNA markedly decreased myocardial cell apoptosis and activation of ERK and Ets-1 in diabetic mice. In conclusion, inhibition of HMGB1 may protect against hyperglycaemia-induced cardiomyocyte apoptosis by down-regulating ERK-dependent activation of Ets-1.

  3. ASPP2 Plays a Dual Role in gp120-Induced Autophagy and Apoptosis of Neuroblastoma Cells.

    PubMed

    Liu, Zhiying; Qiao, Luxin; Zhang, Yulin; Zang, Yunjing; Shi, Ying; Liu, Kai; Zhang, Xin; Lu, Xiaofan; Yuan, Lin; Su, Bin; Zhang, Tong; Wu, Hao; Chen, Dexi

    2017-01-01

    HIV invasion of the central nervous system (CNS) in the majority of patients infected with HIV-1, leads to dysfunction and injury within the CNS, showing a variety of neurological symptoms which was broadly termed HIV-associated neurocognitive disorder (HAND). But the molecular mechanisms are not completely understood. It has been suggested that apoptosis and autophagic dysfunction in neurons may play an important role in the development of HAND. Previous studies have indicated that p53 may be involved in the onset of neurological disorder in AIDS. Apoptosis-stimulating protein of p53-2 (ASPP2), a p53-binding protein with specific function of inducing p53, has been reported to modulate autophagy. In the present study, we observed that gp120 induces autophagy and apoptosis in SH-SY5Y neuroblastoma cells. Adenovirus-mediated overexpression of ASPP2 significantly inhibited autophagy and apoptosis induced by low dose of gp120 protein (50 ng/mL), but induced autophagy and apoptosis when treated by high dose of gp120 protein (200 ng/mL). Further, ASPP2 knockdown attenuated autophagy and apoptosis induced by gp120. Conclusion: ASPP2 had different effects on the autophagy and apoptosis of neurons induced by different concentration of gp120 protein. It may be a potential therapeutic agent for HAND through modulating autophagy and apoptosis in CNS.

  4. ASPP2 Plays a Dual Role in gp120-Induced Autophagy and Apoptosis of Neuroblastoma Cells

    PubMed Central

    Liu, Zhiying; Qiao, Luxin; Zhang, Yulin; Zang, Yunjing; Shi, Ying; Liu, Kai; Zhang, Xin; Lu, Xiaofan; Yuan, Lin; Su, Bin; Zhang, Tong; Wu, Hao; Chen, Dexi

    2017-01-01

    HIV invasion of the central nervous system (CNS) in the majority of patients infected with HIV-1, leads to dysfunction and injury within the CNS, showing a variety of neurological symptoms which was broadly termed HIV-associated neurocognitive disorder (HAND). But the molecular mechanisms are not completely understood. It has been suggested that apoptosis and autophagic dysfunction in neurons may play an important role in the development of HAND. Previous studies have indicated that p53 may be involved in the onset of neurological disorder in AIDS. Apoptosis-stimulating protein of p53-2 (ASPP2), a p53-binding protein with specific function of inducing p53, has been reported to modulate autophagy. In the present study, we observed that gp120 induces autophagy and apoptosis in SH-SY5Y neuroblastoma cells. Adenovirus-mediated overexpression of ASPP2 significantly inhibited autophagy and apoptosis induced by low dose of gp120 protein (50 ng/mL), but induced autophagy and apoptosis when treated by high dose of gp120 protein (200 ng/mL). Further, ASPP2 knockdown attenuated autophagy and apoptosis induced by gp120. Conclusion: ASPP2 had different effects on the autophagy and apoptosis of neurons induced by different concentration of gp120 protein. It may be a potential therapeutic agent for HAND through modulating autophagy and apoptosis in CNS. PMID:28392757

  5. Calmodulin inhibition contributes to sensitize TRAIL-induced apoptosis in human lung cancer H1299 cells.

    PubMed

    Hwang, Mi-kyung; Min, Yong Ki; Kim, Seong Hwan

    2009-12-01

    Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) preferentially triggers apoptosis in tumor cells versus normal cells. However, TRAIL alone is not effective in treating TRAIL-resistant tumors. We evaluated the effect of 180 enzyme inhibitors on TRAIL-induced apoptosis in human lung cancer H1299 cells, and found fluphenazine-N-2-chloroethane (a calmodulin (CaM) antagonist) sensitized TRAIL-induced apoptosis. Interestingly, in the presence of TRAIL, it increased caspase-8 binding to the Fas-associated death domain (FADD), but decreased binding of FADD-like interleukin-1beta-converting enzyme inhibitory proteins (FLIPs). Additionally, its combination with TRAIL inhibited Akt phosphorylation. These results were consistently observed in cells treated with CaM siRNA. We suggested the blockade of CaM could sensitize lung cancer cells to TRAIL-induced apoptosis in at least 2 ways: (i) it can activate death-inducing signaling complex mediated apoptosis by inhibiting TRAIL-induced binding of FLIP and TRAIL-enhanced binding of caspase-8 to FADD; (ii) it can inhibit Akt phosphorylation, consequently leading to decreased expression of anti-apoptotic molecules such as FLIP and members of the inhibitor of apoptosis protein family. This study suggests the combination of CaM antagonists with TRAIL may have the therapeutic potential to overcome the resistance of lung cancers to apoptosis.

  6. induces PUMA activation: a new mechanism for Aβ-mediated neuronal apoptosis.

    PubMed

    Feng, Jie; Meng, Chengbo; Xing, Da

    2015-02-01

    p53 upregulated modulator of apoptosis (PUMA) is a promising tumor therapy target because it elicits apoptosis and profound sensitivity to radiation and chemotherapy. However, inhibition of PUMA may be beneficial for curbing excessive apoptosis associated with neurodegenerative disorders. Alzheimer's disease (AD) is a representative neurodegenerative disease in which amyloid-β (Aβ) deposition causes neurotoxicity. The regulation of PUMA during Aβ-induced neuronal apoptosis remains poorly understood. Here, we reported that PUMA expression was significantly increased in the hippocampus of transgenic mice models of AD and hippocampal neurons in response to Aβ. PUMA knockdown protected the neurons against Aβ-induced apoptosis. Furthermore, besides p53, PUMA transactivation was also regulated by forkhead box O3a through p53-independent manner following Aβ treatment. Notably, PUMA contributed to neuronal apoptosis through competitive binding of apoptosis repressor with caspase recruitment domain to activate caspase-8 that cleaved Bid into tBid to accelerate Bax mitochondrial translocation, revealing a novel pathway of Bax activation by PUMA to mediate Aβ-induced neuronal apoptosis. Together, we demonstrated that PUMA activation involved in Aβ-induced apoptosis, representing a drug target to antagonize AD progression.

  7. Apoptosis-inducing activity of high molecular weight fractions of tea extracts.

    PubMed

    Hayakawa, S; Kimura, T; Saeki, K; Koyama, Y; Aoyagi, Y; Noro, T; Nakamura, Y; Isemura, M

    2001-02-01

    High molecular weight fractions of green tea, black tea, oolong tea, and pu-erh tea were found to induce apoptosis in human monoblastic leukemia U937 cells by examination of their ability to inhibit cell proliferation and to induce apoptotic body formation and DNA ladder formation. These tea fractions were also shown to induce apoptosis in stomach cancer MKN-45 cells. In addition to known antitumor-promoting activity of tea high molecular weight fractions, their apoptosis-inducing activity may contribute to cancer chemopreventive effects of tea.

  8. Ginger (Zingiber officinale) induces apoptosis in Trichomonas vaginalis in vitro

    PubMed Central

    Arbabi, Mohsen; Delavari, Mahdi; Fakhrieh Kashan, Zohre; Taghizadeh, Mohsen; Hooshyar, Hossein

    2016-01-01

    Background: Trichomoniasis is the most common sexually transmitted protozoan diseases in the worldwide. Metronidazole is the choice drug for trichomoniasis treatment, however, metronidazole resistant Trichomonas vaginalis (T.vaginalis) has been reported. Natural products are the source of most new drugs, and Zingiber officinale (Ginger) is widely used ingredient in the traditional medicine. Objective: The aim of the present study was to determine the effect of different concentrations of the ginger ethanol extract on the growth of T.vaginalis trophozoites in vitro. Materials and Methods: In this experimental study, 970 women who were attend in Kashan health centers were examined for T. vaginalis. Of them, 23 samples were infected with T.vaginalis. Three T. vaginalis isolates were cultured in a TYI-S-33 medium. The effect of ginger ethanol extracts and its toxicity in different concentrations (25, 50, 100, 200, 400, 800 µg/ml) on mouse macrophages were measured in triplicate exam by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The effect of ginger on apoptosis induction was determined by Flow cytometry. Results: The IC50 of ginger and metronidazole were 93.8 and 0.0326 µg/ml, respectively. 12, 24 and 48 hr after adding different concentrations of extract on mouse macrophages, fatality rates in maximum dose (800 µg/ml) were 0.19, 0.26 and 0.31 respectively. Flow cytometry results showed the apoptosis rate following treatment with different concentrations of the extract after 48 hr were 17, 28.5, 42.1, 58.8, 76.3 and 100% respectively, while in the control group was 2.9%. Conclusion: Ginger ethanol extract induces programmed death in T. vaginalis. It is recommended that due to the known teratogenic effect of metronidazole, ginger can be considered as an alternative drug for metronidazole. PMID:27981254

  9. Inhibition of protein geranylgeranylation induces apoptosis in synovial fibroblasts.

    PubMed

    Connor, Alison M; Berger, Stuart; Narendran, Aru; Keystone, Edward C

    2006-01-01

    Statins, competitive inhibitors of hydroxymethylglutaryl-CoA reductase, have recently been shown to have a therapeutic effect in rheumatoid arthritis (RA). In RA, synovial fibroblasts in the synovial lining, are believed to be particularly important in the pathogenesis of disease because they recruit leukocytes into the synovium and secrete angiogenesis-promoting molecules and proteases that degrade extracellular matrix. In this study, we show a marked reduction in RA synovial fibroblast survival through the induction of apoptosis when the cells were cultured with statins. Simvastatin was more effective in RA synovial fibroblasts than atorvastatin, and both statins were more potent on tumor necrosis factor-alpha-induced cells. In contrast, in osteoarthritis synovial fibroblasts, neither the statin nor the activation state of the cell contributed to the efficacy of apoptosis induction. Viability of statin-treated cells could be rescued by geranylgeraniol but not by farnesol, suggesting a requirement for a geranylgeranylated protein for synovial fibroblast survival. Phase partitioning experiments confirmed that in the presence of statin, geranylgeranylated proteins are redistributed to the cytoplasm. siRNA experiments demonstrated a role for Rac1 in synovial fibroblast survival. Western blotting showed that the activated phosphorylated form of Akt, a protein previously implicated in RA synovial fibroblast survival, was decreased by about 75%. The results presented in this study lend further support to the importance of elevated pAkt levels to RA synovial fibroblast survival and suggest that statins might have a beneficial role in reducing the aberrant pAkt levels in patients with RA. The results may also partly explain the therapeutic effect of atorvastatin in patients with RA.

  10. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway

    PubMed Central

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Tang, Jiajun; Huan, Jingning

    2016-01-01

    Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis. PMID:27807512

  11. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  12. Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells.

    PubMed

    Shimizu, Takamitsu; Kawai, Junya; Ouchi, Kenji; Kikuchi, Haruhisa; Osima, Yoshiteru; Hidemi, Rikiishi

    2016-04-01

    Agaricus blazei (A. blazei) is a mushroom with many biological effects and active ingredients. We purified a tumoricidal substance from A. blazei, an ergosterol derivative, and named it 'Agarol'. Cytotoxic effects of Agarol were determined by the MTT assay using A549, MKN45, HSC-3, and HSC-4 human carcinoma cell lines treated with Agarol. Apoptosis was detected by flow cytometry analysis. Reactive oxygen species (ROS) levels and mitochondria membrane potential (∆ψm) were also determined by flow cytometry. Western blot analysis was used to quantify the expression of apoptosis-related proteins. Agarol predominantly induced apoptosis in two p53-wild cell lines (A549 and MKN45) compared to the other p53-mutant cell lines (HSC-3 and HSC-4). Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of ROS, reduced ∆ψm, release of apoptosis-inducing factor (AIF) from the mitochondria to the cytosol, upregulation of Bax, and downregulation of Bcl-2. Caspase-3 activities did not increase, and z-VAD-fmk, a caspase inhibitor, did not inhibit the Agarol-induced apoptosis. These findings indicate that Agarol induces caspase-independent apoptosis in human carcinoma cells through a mitochondrial pathway. The in vivo anticancer activity of Agarol was confirmed in a xenograft murine model. This study suggests a molecular mechanism by which Agarol induces apoptosis in human carcinoma cells and indicates the potential use of Agarol as an anticancer agent.

  13. Par-4/NF-κB Mediates the Apoptosis of Islet β Cells Induced by Glucolipotoxicity

    PubMed Central

    QiNan, Wu; XiaGuang, Gan; XiaoTian, Lei; WuQuan, Deng; Ling, Zhang; Bing, Chen

    2016-01-01

    Apoptosis of islet β cells is a primary pathogenic feature of type 2 diabetes, and ER stress and mitochondrial dysfunction play important roles in this process. Previous research has shown that prostate apoptosis response-4 (Par-4)/NF-κB induces cancer cell apoptosis through endoplasmic reticulum (ER) stress and mitochondrial dysfunction. However, the mechanism by which Par-4/NF-κB induces islet β cell apoptosis remains unknown. We used a high glucose/palmitate intervention to mimic type 2 diabetes in vitro. We demonstrated that the high glucose/palmitate intervention induced the expression and secretion of Par-4. It also causes increased expression and activation of NF-κB, which induced NIT-1 cell apoptosis and dysfunction. Overexpression of Par-4 potentiates these effects, whereas downregulation of Par-4 attenuates them. Inhibition of NF-κB inhibited the Par-4-induced apoptosis. Furthermore, these effects occurred through the ER stress cell membrane and mitochondrial pathway of apoptosis. Our findings reveal a novel role for Par-4/NF-κB in islet β cell apoptosis and type 2 diabetes. PMID:27340675

  14. Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer.

    PubMed

    Shukla, Sanjeev; Fu, Pingfu; Gupta, Sanjay

    2014-05-01

    Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70-Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy.

  15. MicroRNA-322 protects hypoxia-induced apoptosis in cardiomyocytes via BDNF gene

    PubMed Central

    Yang, Liguo; Song, Shigang; Lv, Hang

    2016-01-01

    Background: Cardiomyocytes apoptosis under hypoxia condition contributes significantly to various cardiovascular diseases. In this study, we investigated the role of microRNA-322 (miR-322) in regulating hypoxia-induced apoptosis in neonatal murine cardiomyocytes in vitro. Method: Cardiomyocytes of C57BL/6J mice were treated with hypoxia condition in vitro. Cardiomyocyte apoptosis was measured by TUNEL assay. Gene expression pattern of miR-322 was measured by qRT-PCR. Stable downregulation of miR-322 in cardiomyocytes were achieved by lentiviral transduction, and the effect of miR-322 downregulation on hypoxia-induced cardiomyocyte apoptosis was investigated. Possible regulation of miR-322 on its downstream target gene, brain derived neurotrophic factor (BDNF) was investigated in cardiomyocytes. BDNF was then genetically silenced by siRNA to evaluate its role in miR-137 mediated cardiomyocyte apoptosis protection under hypoxia condition. Results: Under hypoxia condition, significant apoptosis was induced and miR-322 was significantly upregulated in cardiomyocytes in vitro. Through lentiviral transduction, miR-322 was efficiently knocked down in cardiomyocytes. Downregulation of miR-322 protected hypoxia-induced cardiomyocyte apoptosis. Luciferase assay showed BDNF was the target gene of miR-322. QRT-PCR showed BDNF expression was associated with miR-322 regulation on hypoxia-induced cardiomyocyte apoptosis. Silencing BDNF in cardiomyocyte through siRNA transfection reversed the protective effect of miR-322 downregulation on hypoxia-induced apoptosis. Conclusion: Our study revealed that miR-322, in association with BDNF, played important role in regulating hypoxia-induced apoptosis in cardiomyocyte. PMID:27398164

  16. The C. elegans TIA-1/TIAR homolog TIAR-1 is required to induce germ cell apoptosis.

    PubMed

    Silva-García, Carlos Giovanni; Estela Navarro, Rosa

    2013-10-01

    In Caenorhabditis elegans, physiological germ cell apoptosis eliminates more than half of the cells in the hermaphrodite gonad to support gamete quality and germline homeostasis by a still unidentified mechanism. External factors can also affect germ cell apoptosis. The BH3-only protein EGL-1 induces germ cell apoptosis when animals are exposed to pathogens or agents that produce DNA damage. DNA damage-induced apoptosis also requires the nematode p53 homolog CEP-1. Previously, we found that heat shock, oxidative, and osmotic stresses induce germ cell apoptosis through an EGL-1 and CEP-1 independent mechanism that requires the MAPKK pathway. However, we observed that starvation increases germ cell apoptosis by an unknown pathway. Searching for proteins that participate in stress-induced apoptosis, we found the RNA-binding protein TIAR-1 (a homolog of the mammalian TIA-1/TIAR family of proteins). Here, we show that TIAR-1 in C. elegans is required to induce apoptosis in the germline under several conditions. We also show that TIAR-1 acts downstream of CED-9 (a BCL2 homolog) to induce apoptosis under stress conditions, and apparently does not seem to regulate ced-4 or ced-3 mRNAs accumulation directly. TIAR-1 is expressed ubiquitously in the cytoplasm of the soma as well as the germline, where it sometimes associates with P granules. We show that animals lacking TIAR-1 expression are temperature sensitive sterile due to oogenesis and spermatogenesis defects. Our work shows that TIAR-1 is required for proper germline function and demonstrates that this protein is important to induce germ cell apoptosis under several conditions.

  17. The Mitochondria-Mediate Apoptosis of Lepidopteran Cells Induced by Azadirachtin

    PubMed Central

    Huang, Jingfei; Lv, Chaojun; Hu, Meiying; Zhong, Guohua

    2013-01-01

    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis. PMID:23516491

  18. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    PubMed

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  19. An inducible long noncoding RNA amplifies DNA damage signaling

    PubMed Central

    Schmitt, Adam M.; Garcia, Julia T.; Hung, Tiffany; Flynn, Ryan A.; Shen, Ying; Qu, Kun; Payumo, Alexander Y.; Peres-da-Silva, Ashwin; Broz, Daniela Kenzelmann; Baum, Rachel; Guo, Shuling; Chen, James K.; Attardi, Laura D.; Chang, Howard Y.

    2016-01-01

    Long noncoding RNAs (lncRNAs) are prevalent genes with frequently exquisite regulation but mostly unknown functions. Here we demonstrate a role of lncRNAs in guiding organismal DNA damage response. DNA damage activates transcription of DINO (Damage Induced NOncoding) via p53. DINO is required for p53-dependent gene expression, cell cycle arrest, and apoptosis in response to DNA damage, and DINO expression suffice to activate damage signaling and cell cycle arrest in the absence of DNA damage. DINO binds to and promotes p53 protein stabilization, mediating a p53 auto-amplification loop. Dino knockout or promoter inactivation in mice dampens p53 signaling and ameliorates acute radiation syndrome in vivo. Thus, inducible lncRNA can create a feedback loop with its cognate transcription factor to amplify cellular signaling networks. PMID:27668660

  20. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis.

    PubMed Central

    Herr, I; Wilhelm, D; Böhler, T; Angel, P; Debatin, K M

    1997-01-01

    We report here that anticancer drugs such as doxorubicin lead to induction of the CD95 (APO-1/Fas) system of apoptosis and the cellular stress pathway which includes JNK/SAPKs. Ceramide, which accumulates in response to different types of cellular stress such as chemo- and radiotherapy, strongly induced expression of CD95-L, cleavage of caspases and apoptosis. Antisense CD95-L as well as dominant-negative FADD inhibited ceramide- and cellular stress-induced apoptosis. Fibroblasts from type A Niemann-Pick patients (NPA), genetically deficient in ceramide synthesis, failed to up-regulate CD95-L expression and to undergo apoptosis after gamma-irradiation or doxorubicin treatment. In contrast, JNK/SAPK activity was still inducible by doxorubicin in the NPA cells, suggesting that activation of JNK/SAPKs alone is not sufficient for induction of the CD95 system and apoptosis. CD95-L expression and apoptosis in NPA fibroblasts were restorable by exogenously added ceramide. In addition, NPA fibroblasts undergo apoptosis after triggering of CD95 with an agonistic antibody. These data demonstrate that ceramide links cellular stress responses induced by gamma-irradiation or anticancer drugs to the CD95 pathway of apoptosis. PMID:9321399

  1. Grape seed proanthocyanidin extract protects lymphocytes against histone-induced apoptosis

    PubMed Central

    Chang, Ping; Mo, Bing; Cauvi, David M.; Yu, Ying; Guo, Zhenhui; Zhou, Jian; Huang, Qiong; Yan, Qitao; Chen, Guiming

    2017-01-01

    Apoptosis of lymphocytes is associated with immunosuppression and poor prognosis in sepsis. Our previous report showed that histones, nuclear proteins released from damaged or dying cells in sepsis, can mediate lymphocyte apoptosis via mitochondria damage. Grape seed proanthocyanidin extract (GSPE), a natural substance with protective properties against oxidative stress, plays a vital role in cell and mitochondria protection. We thus hypothesized that GSPE may play a protective role in histone-induced lymphocyte apoptosis through its anti-oxidative properties. In this study, we investigated the protective efficacy of GSPE on lymphocyte apoptosis induced by extracellular histones, a main contributor of death in sepsis. Human blood lymphocytes were treated with 50 μg/ml histones, 2 μg/ml GSPE, or a combination of both. A total of 100 μM N-acetylcysteine (NAC), a reactive oxygen species (ROS) inhibitor, was used as a positive control for GSPE. Apoptosis, intracellular ROS levels, mitochondrial membrane potential, Bcl-2 expression, and caspase-3 cleavage were measured. Our data clearly indicate that GSPE significantly inhibited lymphocyte apoptosis, generation of ROS, the loss of mitochondrial membrane potential, the decrease in Bcl-2 expression, and caspase-3 activation induced by extracellular histones. In conclusion, we show that GSPE has a protective effect on lymphocyte apoptosis induced by extracellular histones. This study suggests GSPE as a potential therapeutic agent that could help reduce lymphocyte apoptosis, and thus the state of immunosuppression was observed in septic patients. PMID:28344907

  2. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    PubMed Central

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  3. Positive Feedback Cycle of TNFα Promotes Staphylococcal Enterotoxin B-Induced THP-1 Cell Apoptosis

    PubMed Central

    Zhang, Xiaopeng; Shang, Weilong; Yuan, Jizhen; Hu, Zhen; Peng, Huagang; Zhu, Junmin; Hu, Qiwen; Yang, Yi; Liu, Hui; Jiang, Bei; Wang, Yinan; Li, Shu; Hu, Xiaomei; Rao, Xiancai

    2016-01-01

    Staphylococcal enterotoxin B (SEB) has been demonstrated to be of importance in Staphylococcus aureus related diseases, such as atopic dermatitis (AD). Dysregulated apoptosis in AD is remarkable, and SEB can induce apoptosis of various cell types. However, the mechanisms by which SEB induces apoptosis and influences disease processes remain unclear. In this study, the recombinant SEB-induced THP-1 monocyte apoptosis was demonstrated in the absence of preliminary cell activation in a time- and dose-dependent manner. SEB could up-regulate the expression of tumor necrosis factor alpha (TNFα) in THP-1 cells and induce apoptosis via an extrinsic pathway. TNFα could in turn increase the expression of HLA-DRa, the SEB receptor on the cell surface. As a result, a positive feedback cycle of TNFα was established. TNFα expression and SEB-induced apoptosis were decreased by knocking down the expression of either HLA-DRa or TNFR1. Therefore, the feedback cycle of TNFα is crucial for SEB functions. This work provides insights into the mechanisms of SEB-induced monocyte apoptosis and emphasizes the major role of TNFα in future related studies. PMID:27709104

  4. Inhibition of proteasome activity is involved in cobalt-induced apoptosis of human alveolar macrophages.

    PubMed

    Araya, Jun; Maruyama, Muneharu; Inoue, Akira; Fujita, Tadashi; Kawahara, Junko; Sassa, Kazuhiko; Hayashi, Ryuji; Kawagishi, Yukio; Yamashita, Naohiro; Sugiyama, Eiji; Kobayashi, Masashi

    2002-10-01

    Inhalation of particulate cobalt has been known to induce interstitial lung disease. There is growing evidence that apoptosis plays a crucial role in physiological and pathological settings and that the ubiquitin-proteasome system is involved in the regulation of apoptosis. Cadmium, the same transitional heavy metal as cobalt, has been reported to accumulate ubiquitinated proteins in neuronal cells. On the basis of these findings, we hypothesized that cobalt would induce apoptosis in the lung by disturbance of the ubiquitin-proteasome pathway. To evaluate this, we exposed U-937 cells and human alveolar macrophages (AMs) to cobalt chloride (CoCl(2)) and examined their apoptosis by DNA fragmentation assay, 4',6-diamidino-2'-phenylindol dihydrochloride staining, and Western blot analysis. CoCl(2) induced apoptosis and accumulated ubiquitinated proteins. Exposure to CoCl(2) inhibited proteasome activity in U-937 cells. Cobalt-induced apoptosis was mediated via mitochondrial pathway because CoCl(2) released cytochrome c from mitochondria. These results suggest that cobalt-induced apoptosis of AMs may be one of the mechanisms for cobalt-induced lung injury and that the accumulation of ubiquitinated proteins might be involved in this apoptotic process.

  5. Kaurene diterpene induces apoptosis in human leukemia cells partly through a caspase-8-dependent pathway.

    PubMed

    Kondoh, Masuo; Suzuki, Ikue; Sato, Masao; Nagashima, Fumihiro; Simizu, Siro; Harada, Motoki; Fujii, Makiko; Osada, Hiroyuki; Asakawa, Yoshinori; Watanabe, Yoshiteru

    2004-10-01

    Defects in apoptosis signaling pathways contribute to tumorigenesis and drug resistance, and these defects are often a cause of failure of chemotherapy. Thus, a major goal in chemotherapy is to find cytotoxic agents that restore the ability of tumor cells to undergo apoptosis. We previously found that an Ent-kaurene diterpene, Ent-11alpha-hydroxy-16-kauren-15-one (KD), induced apoptosis in human promyelocytic leukemia HL-60 cells. Here, we found that caspase-8, an apoptotic factor, is involved in KD-induced apoptosis. Although treatment of HL-60 cells with KD resulted in the activation of caspase-8 and -9, a caspase-8-specific inhibitor but not a caspase-9-specific inhibitor attenuated KD-induced apoptosis. Expression of a catalytically inactive caspase-8 partly attenuated KD-induced apoptosis. Treatment with KD led to a time-dependent cleavage of Bid, a substrate of caspase-8, as well as to the proteolytic processing of procaspase-8, indicating that KD treatment induces apoptosis through a caspase-8-dependent pathway. Moreover, overexpression of the drug resistance factor Bcl-2, which is frequently overexpressed in many tumors, failed to confer resistance to KD-induced cytotoxicity. Thus, KD may be a promising experimental cytotoxic agent that possibly points to new strategies to overcome a drug resistance.

  6. Carbamate pesticide-induced apoptosis and necrosis in human natural killer cells.

    PubMed

    Li, Q; Kobayashi, M; Kawada, T

    2014-01-01

    We previously found that ziram, a carbamate fungicide, significantly induced apoptosis and necrosis in human NK-92MI, a natural killer cell line. To investigate whether other carbamate pesticides also induce apoptosis and necrosis in human natural killer cell, we conducted further experiments with NK-92CI, a human natural killer cell line using a more sensitive assay. NK-92CI cells were treated with ziram, thiram, maneb or carbaryl at 0.031-40 microM for 2-24 h in the present study. Apoptosis and necrosis were determined by FITC-Annexin-V/PI staining. To explore the mechanism of apoptosis, intracellular levels of active caspases 3 and mitochondrial cytochrome-c release were determined by flow cytometry. We found that ziram and thiram also induced apoptosis and necrosis in a time- and dose-dependent manner; however, maneb and carbaryl induced apoptosis and necrosis only at higher doses in NK-92CI cells. The strength of the apoptosis-inducing effect differed among the pesticides, and the order was as follows: thiram > ziram greater than maneb greater than carbaryl. NK-92CI was more sensitive to ziram than NK-92MI. Moreover, ziram and thiram significantly increased the intracellular level of active caspase 3 in NK-92CI and caspase inhibitor significantly inhibited the apoptosis. Ziram and thiram significantly caused mitochondrial cytochrome-c release in NK-92CI. These findings indicate that carbamate pesticides can induce apoptosis in natural killer cells, and the apoptosis is mediated by both the caspase-cascade and mitochondrial cytochrome-c pathways.

  7. Endocannabinoids participate in placental apoptosis induced by hypoxia inducible factor-1.

    PubMed

    Abán, C; Martinez, N; Carou, C; Albamonte, I; Toro, A; Seyahian, A; Franchi, A; Leguizamón, G; Trigubo, D; Damiano, A; Farina, M

    2016-10-01

    During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed towards the relevance of endocannabinoids (ECs) and hypoxia as modulators of trophoblast cell death. However, the relation between these factors is still unknown. In this report, we evaluated the participation of ECs in placental apoptosis induced by cobalt chloride (CoCl2), a hypoxia mimicking agent that stabilizes the expression of hypoxia inducible factor-1 alpha (HIF-1α). We found that HIF-1α stabilization decreased FAAH mRNA and protein levels, suggesting an increase in ECs tone. Additionally, CoCl2 incubation and Met-AEA treatment reduced cell viability and increased TUNEL-positive staining in syncytiotrophoblast layer. Immunohistochemical analysis demonstrated Bax and Bcl-2 protein expression in the cytoplasm of syncytiotrophoblast. Finally, HIF-1α stabilization produced an increase in Bax/Bcl-2 ratio, activation of caspase 3 and PARP cleavage. All these changes in apoptotic parameters were reversed with AM251, a CB1 antagonist. These results demonstrate that HIF-1α may induce apoptosis in human placenta via intrinsic pathway by a mechanism that involves activation of CB1 receptor suggesting a role of the ECs in this process.

  8. Effects of parabens on apoptosis induced by serum-free medium.

    PubMed

    Egawa, Mari; Aoki, Kentaro; Sun, Yongkun; Hosokawa, Toshiyuki; Saito, Takeshi; Kurasaki, Masaaki

    2012-01-01

    Alkyl esters of p-hydroxybenzoic acids (parabens), an endocrine disrupter, are used as preservatives in cosmetics and foods. In this study, to understand the relationship between parabens and differentiation in infants, the effects of parabens on apoptosis induced by serum deprivation in PC12 cells were investigated. In addition, apoptosis-related factors were assayed. As results, a tendency toward enhancement of apoptosis was observed in the cells cultured in the serum-free medium with methylparaben, and this tendency was suggested to be related to the contents of BAD, a pro-apoptotic protein. Butylparaben did not show any tendency to enhance apoptosis.

  9. Experimental study on apoptosis induced by semiconductor laser to hair removal and armpit odor treatment

    NASA Astrophysics Data System (ADS)

    Shi, Hongmin; Yan, Min; Zhang, Meijue

    2005-07-01

    Objective: To observe and explore the effects and mechanism of apoptosis on canine induced by Laser. Try to find a new approach to treat of armpit odor with no traumatism. Method: We used different power of semiconductor Laser to irradiate the black hair canine to observe and evaluate the tissue effects with electroscope, flow cytometry and Tunel technique at different period of time after irradiation. Result: The apoptosis has been observed within the hair follicle cells and apocrine gland cells after irradiation. After repeat irradiation in low power level, more apoptosis has been observed. Conclusion: Apoptosis exists in hair follicle cells and apocrine gland cells after Laser irradiation.

  10. Novel fluorescence molecular imaging of chemotherapy-induced intestinal apoptosis

    NASA Astrophysics Data System (ADS)

    Levin, Galit; Shirvan, Anat; Grimberg, Hagit; Reshef, Ayelet; Yogev-Falach, Merav; Cohen, Avi; Ziv, Ilan

    2009-09-01

    Chemotherapy-induced enteropathy (CIE) is one of the most serious complications of anticancer therapy, and tools for its early detection and monitoring are highly needed. We report on a novel fluorescence method for detection of CIE, based on molecular imaging of the related apoptotic process. The method comprises systemic intravenous administration of the ApoSense fluorescent biomarker (N,N'-didansyl-L-cystine DDC) in vivo and subsequent fluorescence imaging of the intestinal mucosa. In the reported proof-of-concept studies, mice were treated with either taxol+cyclophosphamide or doxil. DDC was administered in vivo at various time points after drug administration, and tracer uptake by ileum tissue was subsequently evaluated by ex vivo fluorescent microscopy. Chemotherapy caused marked and selective uptake of DDC in ileal epithelial cells, in correlation with other hallmarks of apoptosis (i.e., DNA fragmentation and Annexin-V binding). Induction of DDC uptake occurred early after chemotherapy, and its temporal profile was parallel to that of the apoptotic process, as assessed histologically. DDC may therefore serve as a useful tool for detection of CIE. Future potential integration of this method with fluorescent endoscopic techniques, or development of radio-labeled derivatives of DDC for emission tomography, may advance early diagnosis and monitoring of this severe adverse effect of chemotherapy.

  11. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis.

    PubMed Central

    Mosser, D D; Caron, A W; Bourget, L; Denis-Larose, C; Massie, B

    1997-01-01

    Resistance to stress-induced apoptosis was examined in cells in which the expression of hsp70 was either constitutively elevated or inducible by a tetracycline-regulated transactivator. Heat-induced apoptosis was blocked in hsp70-expressing cells, and this was associated with reduced cleavage of the common death substrate protein poly(ADP-ribose) polymerase (PARP). Heat-induced cell death was correlated with the activation of the stress-activated protein kinase SAPK/JNK (c-Jun N-terminal kinase). Activation of SAPK/JNK was strongly inhibited in cells in which hsp70 was induced to a high level, indicating that hsp70 is able to block apoptosis by inhibiting signaling events upstream of SAPK/JNK activation. In contrast, SAPK/JNK activation was not inhibited by heat shock in cells with constitutively elevated levels of hsp70. Cells that constitutively overexpress hsp70 resist apoptosis induced by ceramide, a lipid signaling molecule that is generated by apoptosis-inducing treatments and is linked to SAPK/JNK activation. Similar to heat stress, resistance to ceramide-induced apoptosis occurs in spite of strong SAPK/JNK activation. Therefore, hsp70 is also able to inhibit apoptosis at some point downstream of SAPK/JNK activation. Since PARP cleavage is prevented in both cell lines, these results suggest that hsp70 is able to prevent the effector steps of apoptotic cell death. Processing of the CED-3-related protease caspase-3 (CPP32/Yama/apopain) is inhibited in hsp70-expressing cells; however, the activity of the mature enzyme is not affected by hsp70 in vitro. Caspase processing may represent a critical heat-sensitive target leading to cell death that is inhibited by the chaperoning function of hsp70. The inhibition of SAPK/JNK signaling and apoptotic protease effector steps by hsp70 likely contributes to the resistance to stress-induced apoptosis seen in transiently induced thermotolerance. PMID:9271409

  12. Low temperature protects mammalian cells from apoptosis initiated by various stimuli in vitro

    SciTech Connect

    Sakurai, Toshiharu; Itoh, Katsuhiko; Liu Yu; Higashitsuji, Hiroaki; Sumitomo, Yasuhiko; Sakamaki, Kazuhiro; Fujita, Jun . E-mail: jfujita@virus.kyoto-u.ac.jp

    2005-10-01

    Mild hypothermia shows protective effects on patients with brain damage and cardiac arrest. To elucidate the molecular mechanisms underlying these effects, we examined the effects of low temperature (32 deg. C) on cells exposed to a variety of stress in vitro. We found that 32 deg. C suppressed induction of apoptosis by cytotoxic stimuli such as adriamycin, etoposide, thapsigargin, NaCl, H{sub 2}O{sub 2}, and anti-Fas antibody. In adriamycin-treated BALB/3T3 cells, the down-shift in temperature from 37 deg. C to 32 deg. C increased the Bcl-xL protein level and decreased the mRNA level of Puma and mitochondrial translocation of Bax, suppressing caspase-9-mediated apoptosis. Furthermore, the protein level and stability of p53 were decreased, and its nuclear export was increased concomitant with Mdm2 mRNA upregulation. The low temperature effect was not observed in p53 {sup -/-}/Mdm2 {sup -/-} mouse embryonic fibroblasts, suggesting that the effect is mediated by suppression of the p53 pathway. In contrast, while thapsigargin-induced apoptosis was suppressed by the low temperature, no effect on the p53 protein level was observed. Furthermore, the survival rate of p53 {sup -/-}/Mdm2 {sup -/-} cells exposed to thapsigargin was increased when cultured at 32 deg. C compared with 37 deg. C. In conclusion, mild hypothermia protects cells from a variety of stress by p53-dependent and p53-independent mechanisms.

  13. 14-3-3 Protects against stress-induced apoptosis

    PubMed Central

    Clapp, C; Portt, L; Khoury, C; Sheibani, S; Norman, G; Ebner, P; Eid, R; Vali, H; Mandato, C A; Madeo, F; Greenwood, M T

    2012-01-01

    Expression of human Bax, a cardinal regulator of mitochondrial membrane permeabilization, causes death in yeast. We screened a human cDNA library for suppressors of Bax-mediated yeast death and identified human 14-3-3β/α, a protein whose paralogs have numerous chaperone-like functions. Here, we show that, yeast cells expressing human 14-3-3β/α are able to complement deletion of the endogenous yeast 14-3-3 and confer resistance to a variety of different stresses including cadmium and cycloheximide. The expression of 14-3-3β/α also conferred resistance to death induced by the target of rapamycin inhibitor rapamycin and by starvation for the amino acid leucine, conditions that induce autophagy. Cell death in response to these autophagic stimuli was also observed in the macroautophagic-deficient atg1Δ and atg7Δ mutants. Furthermore, 14-3-3β/α retained its ability to protect against the autophagic stimuli in these autophagic-deficient mutants arguing against so called ‘autophagic death'. In line, analysis of cell death markers including the accumulation of reactive oxygen species, membrane integrity and cell surface exposure of phosphatidylserine indicated that 14-3-3β/α serves as a specific inhibitor of apoptosis. Finally, we demonstrate functional conservation of these phenotypes using the yeast homolog of 14-3-3: Bmh1. In sum, cell death in response to multiple stresses can be counteracted by 14-3-3 proteins. PMID:22785534

  14. New Hypotheses and Opportunities in Endocrine Therapy: Amplification of Oestrogen-Induced Apoptosis

    PubMed Central

    Jordan, V. Craig; Lewis-Wambi, Joan S.; Patel, Roshani R.; Kim, Helen; Ariazi, Eric A.

    2010-01-01

    Aims To outline the progress being made in the understanding of acquired resistance to long term therapy with the selective oestrogen receptor modulators (SERMs, tamoxifen and raloxifene) and aromatase inhibitors. The question to be addressed is how we can amplify the new biology of oestrogen-induced apoptosis to create more complete responses in exhaustively antihormone treated metastatic breast cancer. Methods and Results Three questions are posed and addressed. 1.) Do we know how oestrogen works? 2.) Can we improve adjuvant antihormonal therapy? 3.) Can we enhance oestrogen-induced apoptosis? The new player in oestrogen action is GPR30 and there are new drugs specific for this target to trigger apoptosis. Similarly, anti-angiogenic drugs can be integrated into adjuvant antihormone therapy or to enhance oestrogen-induced apoptosis in Phase II antihormone resistant breast cancer. The goal is to reduce the development of acquired antihormone resistance or undermine the ability of breast cancer cells to undergo apoptosis with oestrogen respectively. Finally, drugs to reduce the synthesis of glutathione, a subcellular molecule compound associated with drug resistance, can enhance oestradiol-induced apoptosis. Conclusions We propose an integrated approach for the rapid testing of agents to blunt survival pathways and amplify oestrogen-induced apoptosis and tumour regression in Phase II resistant metastatic breast cancer. This Pharma platform will provide rapid clinical results to predict efficacy in large scale clinical trials. PMID:19914527

  15. Cocaine Enhances HIV-1–Induced CD4+ T-Cell Apoptosis

    PubMed Central

    Pandhare, Jui; Addai, Amma B.; Mantri, Chinmay K.; Hager, Cynthia; Smith, Rita M.; Barnett, Louis; Villalta, Fernando; Kalams, Spyros A.; Dash, Chandravanu

    2015-01-01

    Substance abuse is a major barrier in eradication of the HIV epidemic because it serves as a powerful cofactor for viral transmission, disease progression, and AIDS-related mortality. Cocaine, one of the commonly abused drugs among HIV-1 patients, has been suggested to accelerate HIV disease progression. However, the underlying mechanism remains largely unknown. Therefore, we tested whether cocaine augments HIV-1–associated CD4+ T-cell decline, a predictor of HIV disease progression. We examined apoptosis of resting CD4+ T cells from HIV-1–negative and HIV-1–positive donors in our study, because decline of uninfected cells plays a major role in HIV-1 disease progression. Treatment of resting CD4+ T cells with cocaine (up to 100 μmol/L concentrations) did not induce apoptosis, but 200 to 1000 μmol/L cocaine induced apoptosis in a dose-dependent manner. Notably, treatment of CD4+ T cells isolated from healthy donors with both HIV-1 virions and cocaine significantly increased apoptosis compared with the apoptosis induced by cocaine or virions alone. Most important, our biochemical data suggest that cocaine induces CD4+ T-cell apoptosis by increasing intracellular reactive oxygen species levels and inducing mitochondrial depolarization. Collectively, our results provide evidence of a synergy between cocaine and HIV-1 on CD4+ T-cell apoptosis that may, in part, explain the accelerated disease observed in HIV-1–infected drug abusers. PMID:24486327

  16. Bupivacaine induces apoptosis through caspase-dependent and -independent pathways in canine mammary tumor cells.

    PubMed

    Chiu, Yi-Shu; Cheng, Yeong-Hsiang; Lin, Sui-Wen; Chang, Te-Sheng; Liou, Chian-Jiun; Lai, Yu-Shen

    2015-06-01

    Local anesthetics have been reported to induce apoptosis in various cell lines. In this study, we showed that bupivacaine also induced apoptosis in DTK-SME cells, a vimentin(+)/AE1(+)/CK7(+)/HSP27(+), tumorigenic, immortalized, canine mammary tumor cell line. Bupivacaine induced apoptosis in DTK-SME cells in a time- and concentration-dependent manner. Apoptosis-associated morphological changes, including cell shrinkage and rounding, chromatin condensation, and formation of apoptotic bodies, were observed in the bupivacaine-treated DTK-SME cells. Apoptosis was further confirmed with annexin V staining, TUNEL staining, and DNA laddering assays. At the molecular level, the activation of caspases-3, -8, and -9 corresponded well to the degree of DNA fragmentation triggered by bupivacaine. We also demonstrated that the pan-caspase inhibitor, z-VAD-fmk, only partially inhibited the apoptosis induced by bupivacaine. Moreover, treated cells increased expression of endonuclease G, a death effector that acts independently of caspases. Our data suggested that bupivacaine-induced apoptosis occurs through both caspase-dependent and caspase-independent apoptotic pathways.

  17. Apoptosis of rat hepatic stellate cells induced by diallyl trisulfide and proteomics profiling in vitro.

    PubMed

    Zhang, Yajie; Zhou, Xiaoming; Xu, Lipeng; Wang, Lulu; Liu, Jinling; Ye, Jing; Qiu, Pengxin; Liu, Qinghua

    2016-11-18

    Diallyl trisulfide (DATS), a major garlic derivative, inhibits cell proliferation and triggers apoptosis in a variety of cancer cell lines. However, the effects of DATS on hepatic stellate cells (HSCs) remain unknown. The aim of this study was to analyze the effects of DATS on cell proliferation and apoptosis, as well as the protein expression profile in rat HSCs. Rat HSCs were treated with or without 12 and 24 μg/mL DATS for various time intervals. Cell proliferation and apoptosis were determined using tetrazolium dye (MTT) colorimetric assay, bromodeoxyuridine (5-bromo-2'-deoxyuridine; BrdU) assay, Hoechst 33342 staining, electroscopy, and flow cytometry. Protein expression patterns in HSCs were systematically studied using 2-dimensional electrophoresis and mass spectrometry. DATS inhibited cell proliferation and induced apoptosis of HSCs in a time-dependent manner. We observed clear morphological changes in apoptotic HSCs and dramatically increased annexin V-positive - propidium iodide negative apoptosis compared with the untreated control group. Twenty-one significant differentially expressed proteins, including 9 downregulated proteins and 12 upregulated proteins, were identified after DATS administration, and most of them were involved in apoptosis. Our results suggest that DATS is an inducer of apoptosis in HSCs, and several key proteins may be involved in the molecular mechanism of apoptosis induced by DATS.

  18. Inhibition of COX-2/PGE2 cascade ameliorates cisplatin-induced mesangial cell apoptosis

    PubMed Central

    Yu, Xiaowen; Yang, Yunwen; Yuan, Hui; Wu, Meng; Li, Shuzhen; Gong, Wei; Yu, Jing; Xia, Weiwei; Zhang, Yue; Ding, Guixia; Huang, Songming; Jia, Zhanjun; Zhang, Aihua

    2017-01-01

    Cisplatin is one of the most potent cytotoxic drug for the treatment of many types of cancer. However, the side effects on normal tissues, particularly on the kidney, greatly limited its use in clinic. Emerging evidence demonstrated that cisplatin could directly cause mesangial cell apoptosis, while the potential mechanism is still elusive. Here we examined the contribution of COX-2 in cisplatin-induced mesangial cell apoptosis. Firstly, we found cisplatin induced cell apoptosis in mesangial cells shown by increased number of apoptotic cells in parallel with the upregulation of Bax and the downregulation of Bcl-2. Interestingly, cisplatin-induced cell apoptosis was accompanied by an upregulation of COX-2 at both mRNA and protein levels in dose- and time-dependent manners. Importantly, inhibition of COX-2 via a specific COX-2 inhibitor celecoxib markedly blocked cisplatin-induced mesangial cell apoptosis as evidenced by the decreased number of apoptotic cells, blocked increments of cleaved caspase-3 and Bax, and reversed Bcl-2 downregulation. Meanwhile, cisplatin-induced PGE2 production was markedly blocked by the treatment of celecoxib. In conclusion, this study indicated that COX-2/PGE2 cascade activation mediated cisplatin-induced mesangial cell apoptosis. The findings not only offered new insights into the understanding of cisplatin nephrotoxicity but also provided the therapeutic potential by targeting COX-2/PGE2 cascade in treating cisplatin-induced kidney injury. PMID:28386348

  19. Involvement of Mst1 in tumor necrosis factor-{alpha}-induced apoptosis of endothelial cells

    SciTech Connect

    Ohtsubo, Hideki; Ichiki, Toshihiro Imayama, Ikuyo; Ono, Hiroki; Fukuyama, Kae; Hashiguchi, Yasuko; Sadoshima, Junichi; Sunagawa, Kenji

    2008-03-07

    Mammalian sterile 20-kinase 1 (Mst1), a member of the sterile-20 family protein kinase, plays an important role in the induction of apoptosis. However, little is know about the physiological activator of Mst1 and the role of Mst1 in endothelial cells (ECs). We examined whether Mst1 is involved in the tumor necrosis factor (TNF)-{alpha}-induced apoptosis of ECs. Western blot analysis revealed that TNF-{alpha} induced activation of caspase 3 and Mst1 in a time- and dose-dependent manner. TNF-{alpha}-induced Mst1 activation is almost completely prevented by pretreatment with Z-DEVD-FMK, a caspase 3 inhibitor. Nuclear staining with Hoechst 33258 and fluorescence-activated cell sorting of propidium iodide-stained cells showed that TNF-{alpha} induced apoptosis of EC. Diphenyleneiodonium, an inhibitor of NADPH oxidase, and N-acetylcysteine, a potent antioxidant, also inhibited TNF-{alpha}-induced activation of Mst1 and caspase 3, as well as apoptosis. Knockdown of Mst1 expression by short interfering RNA attenuated TNF-{alpha}-induced apoptosis but not cleavage of caspase 3. These results suggest that Mst1 plays an important role in the induction of TNF-{alpha}-induced apoptosis of EC. However, positive feedback mechanism between Mst1 and caspase 3, which was shown in the previous studies, was not observed. Inhibition of Mst1 function may be beneficial for maintaining the endothelial integrity and inhibition of atherogenesis.

  20. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    PubMed Central

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  1. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress.

    PubMed

    Peng, Ping-An; Wang, Le; Ma, Qian; Xin, Yi; Zhang, Ou; Han, Hong-Ya; Liu, Xiao-Li; Ji, Qing-Wei; Zhou, Yu-Jie; Zhao, Ying-Xin

    2015-12-01

    Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress.

  2. Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus.

    PubMed

    Wang, Xiaoyun; Wang, Youzhi; Zhou, Yuguang; Wei, Xinli

    2014-01-01

    Farnesol (FOH) is known to induce apoptosis in some fungi and mammalian cells. We treated Aspergillus flavus, one of the leading causes of human invasive aspergillosis and a key producer of the most potent naturally occurring hepatocarcinogenic compounds, with FOH to assess its effect on the viability of the fungus. FOH strongly inhibited germination and growth of A. flavus and induced markers for apoptosis including nuclear condensation, phosphatidylserine (PS) externalization, DNA fragmentation and intracellular reactive oxygen species (ROS) generation, metacaspase activation and abnormal cellular ultrastructure. Moreover, FOH-induced apoptosis in A. flavus was inhibited by the broad-spectrum caspase inhibitor Z-VAD-fmk and partially inhibited by the ROS scavenger l-proline, which suggests that FOH induces apoptosis in A. flavus via a mechanism involving metacaspase activation and ROS production.

  3. Ruthenium complexes containing bis-benzimidazole derivatives as a new class of apoptosis inducers.

    PubMed

    Li, Linlin; Wong, Yum-Shing; Chen, Tianfeng; Fan, Cundong; Zheng, Wenjie

    2012-01-28

    A series of ruthenium complexes containing bis-benzimidazole derivatives have been synthesized and identified as able to target mitochondria and induce caspase-dependent apoptosis in cancer cells through superoxide overproduction.

  4. Inhibition of nitric oxide-induced apoptosis by nicotine in oral epithelial cells.

    PubMed

    Banerjee, Abhijit G; Gopalakrishnan, Velliyur K; Vishwanatha, Jamboor K

    2007-11-01

    Development of oral cancer is clearly linked to the usage of smokeless tobacco. The molecular mechanisms involved in this process are however not well understood. Toward this goal, we investigated the effect of smokeless tobacco exposure on apoptosis of oral epithelial cells. Exposure of oral epithelial cells to smokeless tobacco extract (STE) induces apoptosis in a dose-dependent manner, until a threshold level of nicotine is achieved upon which apoptosis is inhibited. 1 mM of nicotine is able to inhibit apoptosis significantly induced by STE in these oral cells. Exposure of cells to nicotine alone has no effect on apoptosis, but nicotine inhibits apoptosis induced by other agents present in STE. In this study we show that, the anti-apoptotic action of nicotine is specifically associated with down-regulation of nitric oxide (NO) production. Using specific inducers of NO, we have demonstrated that inhibition of apoptosis by nicotine is through down-regulation of NO production. Further, we observed that nicotine clearly acts as a sink of NO radicals, shown using peroxynitrite generator (SIN-1) in conjunction or absence of radical scavengers. Nicotine thus causes most damage in transformed epithelial cells as depicted by accumulation of nitrotyrosine in a 3-NT ELISA assay. Inhibition of apoptosis is a hallmark in tumor progression and propels development of cancer. It may further result in functional loss of apoptotic effector mechanisms in the transformed cells. Thus, our data clearly indicates that inhibition of NO-induced apoptosis by nicotine may lead to tobacco-induced oral carcinogenesis, and implies careful development of modalities in tobacco cessation programs.

  5. Selective apoptosis-inducing activity of crinum-type Amaryllidaceae alkaloids.

    PubMed

    McNulty, James; Nair, Jerald J; Codina, Carles; Bastida, Jaume; Pandey, Siyaram; Gerasimoff, Jenny; Griffin, Carly

    2007-04-01

    The selective apoptosis-inducing activity of Amaryllidaceae alkaloids belonging to the crinane-type is reported. A mini-library of natural and synthetic crinane alkaloids was assembled. Biological screening indicated crinamine 4 and haemanthamine 9 to be potent inducers of apoptosis in tumour cells at micromolar concentrations. Structure-activity relationships demonstrated the requirement for both an alpha-C2 bridge and a free hydroxyl at the C-11 position as pharmacophoric requirements for this activity.

  6. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway

    SciTech Connect

    Li, Fengbo; Sun, Xiaolei; Ma, Jianxiong; Ma, Xinlong; Zhao, Bin; Zhang, Yang; Tian, Peng; Li, Yanjun; Han, Zhe

    2014-09-26

    Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.

  7. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition.

    PubMed

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-04-08

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment.

  8. A novel role for the apoptosis inhibitor ARC in suppressing TNFα-induced regulated necrosis.

    PubMed

    Kung, G; Dai, P; Deng, L; Kitsis, R N

    2014-04-01

    TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis.

  9. Hyperthermia Induces Apoptosis of 786-O Cells through Suppressing Ku80 Expression

    PubMed Central

    Qi, Defeng; Hu, Yuan; Li, Jinhui; Peng, Tao; Su, Jialin; He, Yun; Ji, Weidong

    2015-01-01

    Hyperthermia as an anticancer method has been paid increasing attention in recent years. Several studies have shown that hyperthermia can kill tumor cells by inducing apoptosis. However, the underlying molecular mechanisms of hyperthermia-induced apoptosis are largely unknown. To investigate the effects and molecular mechanism of hyperthermia on the apoptosis in renal carcinoma 786-O cells, we firstly examined apoptosis and Ku expression in 786-O cell line treated with heat exposure (42°C for 0-4 h). The results showed that hyperthermia induced apoptosis of 786-O cells, and suppressed significantly Ku80 expression, but not Ku70 expression. Next, we knock-down Ku80 in 786-O cells, generating stable cell line 786-O-shKu80, and detected apoptosis, cell survival and cell cycle distribution. Our data showed higher apoptotic rate and lower surviving fraction in the stable cell line 786-O-shKu80 compared with those in control cells, exposed to the same heat stress (42°C for 0-4 h). Moreover, the results also showed suppression of Ku80 led to G2/M phase arrest in the stable cell line 786-O-shKu80 following heat treatment. Together, these findings indicate that Ku80 may play an important role in hyperthermia-induced apoptosis and heat-sensitivity of renal carcinoma cells through influencing the cell cycle distribution. PMID:25902193

  10. Acid Sphingomyelinase Mediates Oxidized-LDL Induced Apoptosis in Macrophage via Endoplasmic Reticulum Stress

    PubMed Central

    Zhao, Min; Pan, Wei; Shi, Rui-zheng; Bai, Yong-ping; You, Bo-yang; Zhang, Kai; Fu, Qiong-mei; Schuchman, Edward H.

    2016-01-01

    Aim: Macrophage apoptosis is a vital event in advanced atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is a major contributor to this process. Acid sphingomyelinase (ASM) and ceramide are also involved in the induction of apoptosis, particularly in macrophages. Our current study focuses on ASM and investigates its role in ox-LDL-induced macrophage apoptosis. Methods: Human THP-1 and mouse peritoneal macrophages were cultured in vitro and treated with ox-LDL. ASM activity and ceramide levels were quantified using ultra performance liquid chromatography. Protein and mRNA levels were analyzed using Western blot analysis and quantitative realtime PCR, respectively. Cell apoptosis was determined using Hoechst staining and flow cytometry. Results: Ox-LDL-induced macrophage apoptosis was triggered by profound endoplasmic reticulum (ER) stress, leading to an upregulation of ASM activity and ceramide levels at an early stage. ASM was inhibited by siRNA or desipramine (DES), and/or ceramide was degraded by recombinant acid ceramidase (AC). These events attenuated the effect of ox-LDL on ER stress. In contrast, recombinant ASM upregulated ceramide and ER stress. ASM siRNA, DES, recombinant AC, and ER stress inhibitor 4-phenylbutyric acid were blocked by elevated levels of C/EBP homologous protein (CHOP); ox-LDL induced elevated levels of CHOP. These events attenuated macrophage apoptosis. Conclusion: These results indicate that ASM/ceramide signaling pathway is involved in ox-LDL-induced macrophage apoptosis via ER stress pathway. PMID:26923251

  11. Drug-Induced Reactivation of Apoptosis Abrogates HIV-1 Infection

    PubMed Central

    Hanauske-Abel, Hartmut M.; Saxena, Deepti; Palumbo, Paul E.; Hanauske, Axel-Rainer; Luchessi, Augusto D.; Cambiaghi, Tavane D.; Hoque, Mainul; Spino, Michael; Gandolfi, Darlene D'Alliessi; Heller, Debra S.; Singh, Sukhwinder; Park, Myung Hee; Cracchiolo, Bernadette M.; Tricta, Fernando; Connelly, John; Popowicz, Anthony M.; Cone, Richard A.; Holland, Bart; Pe’ery, Tsafi; Mathews, Michael B.

    2013-01-01

    HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal

  12. Mechanisms and Consequences of Ebolavirus-Induced Lymphocyte Apoptosis

    DTIC Science & Technology

    2011-01-31

    innate and adaptive immune system to respond to infection (5, 6). However, recent studies have indicated that a functional CD8+ T cell-mediated immune...apoptotic pathway (s) nor the systemic implications of lymphocyte apoptosis in EBOV infection are known. In this study , we show data suggesting that...pathway (s) nor the systemic implications of lymphocyte apoptosis in EBOV infection are known. In this study , we show data suggesting that EBOV

  13. Resveratrol inhibits the hydrogen dioxide-induced apoptosis via Sirt 1 activation in osteoblast cells.

    PubMed

    He, Na; Zhu, Xuewei; He, Wei; Zhao, Shiwei; Zhao, Weiyan; Zhu, Chunlei

    2015-01-01

    Sirt 1 plays a critical role in stress responses. We determined the deregulation of Sirt 1 activity, p53 acetylation, Bcl-2 expression, and mitochondria-dependent apoptosis in mouse osteoblast MC3T3-E1 cells which were exposed to H2O2. And then we investigated the protective role of Sirt 1 activator, Resveratrol (RSV), against the H2O2-induced apoptosis. Results demonstrated that Sirt 1 and Bcl-2 were inhibited, whereas p53 acetylation, Bax, and caspase 9 were promoted by H2O2, as was aggravated by the Sirt 1 inhibitor, EX-527. Instead, RSV inhibited the H2O2-induced both p53 acetylation and the caspase 9 activation, whereas ameliorated the H2O2-induced Bcl-2 inhibition and apoptosis. In conclusion, Sirt 1 was downregulated during the H2O2-induced apoptosis in MC3T3-E1 cells. And the chemical activation of Sirt 1 inhibited the H2O2-induced apoptosis via the downregulation of p53 acetylation. Our results suggest that Sirt 1 upregulation appears to be an important strategy to inhibit the oxidative stress-induced apoptosis.

  14. Different pathways to apoptosis induced by tetraphenylporphine derivatives and light in V79 cells

    NASA Astrophysics Data System (ADS)

    Noodt, Barbara B.; Berg, Kristian; Stokke, Trond; Peng, Qian; Nesland, Jahn M.

    1997-12-01

    Photodynamic therapy (PDT)-induced kinetics of apoptosis were studied in V79 cells using several differently localized photosensitizing dyes, mostly tetraphenylporphine derivatives. Apoptotic fractions were quantified by flow cytometry after staining the samples by the terminal deoxynucleotidyl transferase (TdT)-assay. Methylene blue derivative (MBD), a new dye for PDT, and 5-aminolevulinic acid (ALA)-induced protoporphyrin IX that are both localized in mitochondria, induced apoptosis rapidly within hours after PDT. With MBD it was shown that rapid apoptosis was induced only with dye concentration above a certain threshold. With a lower dye concentration apoptosis was delayed more than one day and was induced due to inhibition of oxidative phosphorylation. After PDT with two membrane localized dyes, tetra(3- hydroxyphenyl)porphyrin (3THPP) and Photofrin, maximal induction of apoptosis took about 12 h. With two lysosomal localized sulfonated meso-tetraphenylporphines (TPPS2a and TPPS4) no apoptosis was induced until more than 12 h after PDT. The results are discussed in relation to evidence in the literature on the nature of possible pathways involved.

  15. Thimerosal induces apoptosis and G2/M phase arrest in human leukemia cells.

    PubMed

    Woo, Kyung Jin; Lee, Tae-Jin; Bae, Jae Hoon; Jang, Byeong-Churl; Song, Dae-Kyu; Cho, Jae-We; Suh, Seong-Il; Park, Jong-Wook; Kwon, Taeg Kyu

    2006-09-01

    Thimerosal is an organomercury compound with sulfhydryl-reactive properties. The ability of thimerosal to act as a sulfhydryl group is related to the presence of mercury. Due to its antibacterial effect, thimerosal is widely used as preservatives and has been reported to cause chemically mediated side effects. In the present study, we showed that the molecular mechanism of thimerosal induced apoptosis in U937 cells. Thimerosal was shown to be responsible for the inhibition of U937 cells growth by inducing apoptosis. Treatment with 2.5-5 microM thimerosal but not thiosalicylic acid (structural analog of thimerosal devoid of mercury) for 12 h produced apoptosis, G(2)/M phase arrest, and DNA fragmentation in a dose-dependent manner. Treatment with caspase inhibitor significantly reduced thimerosal-induced caspase 3 activation. In addition, thimerosal-induced apoptosis was attenuated by antioxidant Mn (III) meso-tetrakis (4-benzoic acid) porphyrin (Mn-TBAP). These data indicate that the cytotoxic effect of thimerosal on U937 cells is attributable to the induced apoptosis and that thimerosal-induced apoptosis is mediated by reactive oxygen species generation and caspase-3 activation.

  16. Role of asymmetric dimethylarginine in homocysteine-induced apoptosis of vascular smooth muscle cells.

    PubMed

    Yuan, Qiong; Jiang, De-Jian; Chen, Qing-Quan; Wang, Shan; Xin, Hong-Ya; Deng, Han-Wu; Li, Yuan-Jian

    2007-05-18

    Homocysteine (Hcy) could induce apoptosis of vascular smooth muscle cells (VSMC). Asymmetric dimethylarginine (ADMA) has been thought as a novel risk factor for cardiovascular diseases. We hypothesized that ADMA mediates homocysteine-induced apoptosis of VSMC. In this experiment the level of ADMA in the medium measured by high-performance liquid chromatography (HPLC) was elevated when the apoptosis of T/G HA-VSMC was induced by Hcy which was detected by Hoechst33342 staining or flow cytometry (FCM) with Annecin V+Propidium Iodide (PI). Exogenous ADMA induced the apoptosis of VSMC. At the same time, ADMA elevated the level of intracellular reactive oxidative species (ROS) determined by fluorescent ROS detection kit. The activation of JNK and p38MAPK contributed to ADMA-induced apoptosis of VSMC. The present results suggest that endogenous ADMA is involved in apoptosis of VSMC induced by Hcy, and the effects of ADMA is related to elevation of intracellular ROS and activation of JNK/p38MAPK signaling pathways.

  17. Cytoprotective role of autophagy during paclitaxel-induced apoptosis in Saos-2 osteosarcoma cells.

    PubMed

    Kim, Hyeon Jun; Lee, Seung Gee; Kim, Yoon-Jae; Park, Ji-Eun; Lee, Kyu Yeol; Yoo, Young Hyun; Kim, Jong-Min

    2013-06-01

    Osteosarcoma (OS) is the most common primary malignant bone cancer in children and adolescents. Although paclitaxel (PCX) has been considered one of the most important cancer chemotherapeutic drugs, the current protocols for OS treatment do not incorporate this agent. Therefore, the purpose of this study was to evaluate the induction of cell death in OS cells after exposure to PCX, to identify the cell death mechanism(s) activated by PCX and to investigate whether autophagy is associated with PCX-induced apoptosis. The results of the present study confirmed that exposure to low PCX concentrations can induce apoptotic cell death in Saos-2 cells; furthermore, caspase-3 activation, PARP degradation and XIAP downregulation were observed in combination with PCX-induced apoptosis. The potential involvement of mitochondrial events (intrinsic apoptotic pathway) in PCX-induced apoptosis in OS cells was verified by the alteration (depolarization) of mitochondrial membrane potential. In addition, pretreatment with 3-methyladenine (3-MA), a specific inhibitor of autophagy, significantly increased PCX-induced apoptotic cell death in Saos-2 cells. The augmentation of PCX-induced apoptosis by 3-MA was accompanied by increase in the cytochrome c release from the mitochondria, caspase-3 activity and XIAP downregulation, which suggests that inhibiting autophagy further stimulates the PCX-induced mitochondrion-related (intrinsic) apoptotic pathway by provoking caspase-3 activation. Thus, autophagy observed during PCX-induced apoptosis in Saos-2 OS cells represents the role of cytoprotection in cellular homeostatic processes. In conclusion, the results of this study revealed that PCX exposure effectively induces OS cell death by apoptosis associated with the mitochondrial-mediated caspase-dependent pathway. PCX can increase autophagic activity and suppressing autophagy enhances PCX-induced apoptosis in OS cells. Therefore, it is suggested that combination treatment involving low

  18. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    SciTech Connect

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  19. Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression.

    PubMed

    Klampfer, Lidija; Huang, Jie; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard

    2004-08-27

    Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.

  20. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    SciTech Connect

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  1. Actinobacillus pleuropneumoniae serotype 10 derived ApxI induces apoptosis in porcine alveolar macrophages.

    PubMed

    Chien, Maw-Sheng; Chan, You-Yu; Chen, Zeng-Weng; Wu, Chi-Ming; Liao, Jiunn-Wang; Chen, Ter-Hsin; Lee, Wei-Cheng; Yeh, Kuang-Sheng; Hsuan, Shih-Ling

    2009-03-30

    Actinobacillus pleuropneumoniae (AP) is the causative agent of swine pleuropneumonia, a fibrinous, exudative, hemorrhagic, necrotizing pleuropneumonia affecting all ages of pigs. Actinobacillus pleuropneumoniae exotoxins (Apx) are one of the major virulence factors of AP. Due to the complex nature of Apx toxins produced by AP, little is known regarding the interactions of individual species of Apx toxin with target cells. The objective of this study was to examine whether AP serotype 10-derived exotoxin, ApxI, caused apoptosis in porcine alveolar macrophages (PAMs) and to delineate the underlying signaling pathways. Isolated PAMs were stimulated with different concentrations of native ApxI and monitored for apoptosis using Hoechst staining, TUNEL, and DNA laddering assays. The ApxI-stimulated PAMs exhibited typical morphological features of apoptosis, including condensation of chromatin, formation of apoptotic bodies and DNA laddering. ApxI-induced apoptosis in a concentration- and time-dependent manner. Furthermore, to delineate the signaling events involved in ApxI-induced apoptosis, it was observed that caspase 3 was activated in ApxI-stimulated PAMs. Ablation of caspase 3 activity via specific inhibitors protected PAMs from apoptosis by ApxI. This study is the first to demonstrate that native ApxI causes apoptosis in PAMs at low concentrations and that these apoptotic events are mediated via a caspase 3-dependent pathway. These findings suggest a role of ApxI in AP infection as it might impair the host defense system through the induction of apoptosis in PAMs.

  2. A radiation-induced acute apoptosis involving TP53 and BAX precedes the delayed apoptosis and neoplastic transformation of CGL1 human hybrid cells.

    PubMed

    Mendonca, Marc S; Mayhugh, Brendan M; McDowell, Berry; Chin-Sinex, Helen; Smith, Martin L; Dynlacht, Joseph R; Spandau, Dan F; Lewis, Davina A

    2005-06-01

    Exposing CGL1 (HeLa x fibroblast) hybrid cells to 7 Gy of X rays results in the onset of a delayed apoptosis in the progeny of the cells 10 to 12 cell divisions postirradiation that correlates with the emergence of neoplastically transformed foci. The delayed apoptosis begins around day 8 postirradiation and lasts for 11 days. We now demonstrate that the delayed apoptosis is also characterized by the appearance of approximately 50-kb apoptotic DNA fragments and caspase 3 activation postirradiation. In addition, we confirm that stabilization of TP53 and transactivation of pro-apoptosis BAX also occurs during the delayed apoptosis and show that anti-apoptosis BCL-X(L) is down-regulated. To test whether the delayed apoptosis was due to a nonfunctional acute TP53 damage response in CGL1 cells, studies of acute apoptosis were completed. After irradiation, CGL1 cells underwent an acute wave of apoptosis that involves TP53 stabilization, transactivation of BAX gene expression, and a rapid caspase activation that ends by 96 h postirradiation. In addition, the acute onset of apoptosis correlates with transactivation of a standard wild-type TP53-responsive reporter (pG13-CAT) in CGL1 cells after radiation exposure. We propose that the onset of the delayed apoptosis is not the result of a nonfunctional acute TP53 damage response pathway but rather is a consequence of X-ray-induced genomic instability arising in the distant progeny of the irradiated cells.

  3. Wogonin, a plant flavone, potentiates etoposide-induced apoptosis in cancer cells.

    PubMed

    Lee, Eibai; Enomoto, Riyo; Suzuki, Chie; Ohno, Masataka; Ohashi, Toshinori; Miyauchi, Azusa; Tanimoto, Eriko; Maeda, Kaori; Hirano, Hiroyuki; Yokoi, Toshio; Sugahara, Chiyoko

    2007-01-01

    Etoposide, a podophylotoxin anticancer agent, induces apoptotic cell death in normal and cancer cells. Etoposide-induced apoptosis plays a role in not only anticancer effect but also adverse reaction, such as myelosuppression. Since we have found that wogonin, a flavone found in Scutellaria baicalensis Georgi, prevents thymocyte apoptosis induced by various compounds including etoposide, we examined the effect of this flavone on etoposide-induced apoptosis in cancer cells. Although 100 muM wogonin itself significantly increased DNA fragmentation in HL-60 cells, this change was not observed in Jurkat cells. On the other hand, this flavone significantly potentiated etoposide-induced apoptosis in Jurkat and HL-60 cells. Similarly, wogonin accelerated etoposide-induced cell death in lung cancer cells. Since wogonin had no effect on the action of other anticancer agents, such as 5-FU and cisplatin, this flavone seems to accelerate only etoposide-induced apoptotic cell death in cancer cells. These results suggest that the modification of etoposide-induced apoptosis by wogonin may be available to reduce the adverse reaction of this agent.

  4. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells.

    PubMed

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2006-03-01

    In the present study, using inhibitors of ceramide synthase (fumonisin B1), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells.

  5. Autophagy may protect MC3T3-E1 cells from fluoride-induced apoptosis.

    PubMed

    Wei, Min; Duan, Dongmei; Liu, Yujie; Wang, Zhigang; Li, Zhongli

    2014-06-01

    Fluoride is an essential trace element for all mammalian species; however, excess fluoride intake is known to be toxic to cells in animals and humans. The toxicity of fluoride is mainly exerted via induction of apoptosis. Autophagy is induced by numerous cytotoxic stimuli; however, it is often unclear whether, under specific conditions, autophagy has a pro‑survival or a pro‑apoptotic role. To answer this critical question, the present study assessed autophagy and apoptosis simultaneously in single cells. It was demonstrated that fluoride was able to inhibit cell proliferation and induce apoptosis and autophagy, whereas autophagy appeared to be protective. Further analysis revealed that MAPK/JNK‑dependent autophagy may be protective in fluoride‑induced apoptosis. It is anticipated that the presented single‑cell approach may be a powerful tool for gaining a quantitative understanding of the complex regulation of autophagy, its effect on cell fate and its association with other cellular pathways.

  6. Inhibition of autophagy ameliorates atherogenic inflammation by augmenting apigenin-induced macrophage apoptosis.

    PubMed

    Wang, Qun; Zeng, Ping; Liu, Yuanliang; Wen, Ge; Fu, Xiuqiong; Sun, Xuegang

    2015-07-01

    Increasing evidences showed that the survival of macrophages promotes atherogenesis. Macrophage apoptosis in the early phase of atherosclerotic process negatively regulates the progression of atherosclerotic lesions. We demonstrated that a natural anti-oxidant apigenin could ameliorate atherogenesis in ApoE(-/-) mice. It reduced the number of foam cells and decreased the serum levels of tumor necrosis factor α, interleukin 1β (IL-1β) and IL-6. Our results showed that oxidized low-density lipoprotein (oxLDL) led to the secretion of pro-inflammatory cytokines. Apigenin-induced apoptosis and downregulated the secretion of TNF-α, IL-6 and IL-1β. It is further supported by the use of zVAD, a pan-caspase inhibitor, demonstrating that apigenin lowered cytokine profile through induction of macrophage apoptosis. Moreover, apigenin-induced Atg5/Atg7-dependent autophagy in macrophages pretreated with oxLDL. Results illustrated that autophagy inhibition increased apigenin-induced apoptosis through activation of Bax. The present findings suggest that oxLDL maintained the survival of macrophages and activated the secretion of pro-inflammatory cytokines to initiate atherosclerosis. Apigenin-induced apoptosis of lipid-laden macrophages and resolved inflammation to ameliorate atherosclerosis. In conclusion, combination of apigenin with autophagy inhibition may be a promising strategy to induce foam cell apoptosis and subdue atherogenic cytokines.

  7. Corosolic acid inhibits the proliferation of osteosarcoma cells by inducing apoptosis

    PubMed Central

    Jia, Yong; Yuan, Hua; Shan, Shouqin; Xu, Gang; Yu, Jie; Zhao, Chenguang; Mou, Xiang

    2016-01-01

    Corosolic acid (CRA), a pentacyclic triterpene isolated from medicinal herbs, has been reported to exhibit anticancer properties in several cancers. However, the anticancer activity of CRA in osteosarcoma cells is still unclear. In the present study, the inhibitory effect of CRA in osteosarcoma MG-63 cells was investigated, and the results revealed that CRA significantly inhibited the viability of MG-63 cells in a dose- and time-dependent manner. A typical apoptotic hallmark such as DNA ladder was detected by agarose gel electrophoresis following treatment with CRA. Further experiments demonstrated that CRA induced apoptosis of MG-63 cells by flow cytometry using propidium iodide and annexin V staining. In addition, it was observed that the apoptosis of MG-63 cells induced by CRA was closely associated with activation of caspase-3 and caspase-9, loss of mitochondrial membrane potential, and release of cytochrome c from mitochondria, suggesting that CRA may trigger the activation of the mitochondria-mediated apoptosis pathway. In addition, the inhibition of caspase activity attenuated the CRA-induced apoptosis of MG-63 cells, which further confirmed the role of the mitochondrial pathway in CRA-induced apoptosis. These results indicated that CRA could induce the apoptosis of osteosarcoma cells through activating the mitochondrial pathway, which provides an evidence that CRA may be a useful chemotherapeutic agent for osteosarcoma. PMID:27895790

  8. Galangin induces apoptosis in hepatocellular carcinoma cells through the caspase 8/t-Bid mitochondrial pathway.

    PubMed

    Zhang, Hai-Tao; Wu, Jun; Wen, Min; Su, Li-Juan; Luo, Hui

    2012-01-01

    This study has investigated whether galangin, a flavonol derived from Alpinia officinarum Hance and used as food additives in southern China, induces apoptosis in hepatocellular carcinoma cells (HCCs) by activation of the caspase-8 and Bid pathway. The apoptosis of HCCs was evaluated by in situ uptake of propidium iodide and Hoechst 33258. Protein expressions were detected by Western blotting. Caspase-8 activity was measured using colorimetric method. To confirm the galangin-induced apoptotic pathway, inhibition of caspase-8 activity by Z-IETD-FMK, knockdown of Bid expression with siRNA, and overexpression of Bcl-2 in cells were carried out, respectively. The results show that galangin has significantly induced apoptosis in HCC lines. The caspase-8 is activated, and the cleavage of Bid results in the increase in tBid. The galangin-induced apoptosis is attenuated by Z-IETD-FMK, Bid siRNA, and Bcl-2 overexpression, respectively. However, Bcl-2 fails to suppress caspase-8 activation and the cleavage of Bid. This study has demonstrated that galangin induces apoptosis in HCCs by activating caspase 8/t-Bid mitochondrial pathway. Although Bcl-2 overexpression attenuates galangin-mediated apoptosis of HCCs, it is not mediated by the inhibition of tBid generation and caspase-8 activation.

  9. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca+2-dependent cell signaling.

    PubMed

    Rojas, M; García, L F; Nigou, J; Puzo, G; Olivier, M

    2000-07-01

    Mycobacterium tuberculosis-induced macrophage apoptosis can be inhibited by mannosylated lipoarabinomannan (ManLAM), although it induces tumor necrosis factor (TNF)-alpha and NO production, which participate in apoptosis induction. ManLAM also modulates Ca(+2)-dependent intracellular events, and Ca(+2) participates in apoptosis in different systems. Ca(+2) was assessed for involvement in M. tuberculosis-induced macrophage apoptosis and for modulation by ManLAM. The role of Ca(+2) was supported by the blockade of apoptosis by cAMP inhibitors and the Ca(+2) chelator, BAPTA/AM. These agents also inhibited caspase-1 activation and cAMP-responsive element-binding protein translocation without affecting TNF-alpha production. Infection of macrophages with M. tuberculosis induced an influx of Ca(+2) that was prevented by ManLAM. Similarly, M. tuberculosis infection-altered mitochondrial permeability transition was prevented by ManLAM and BAPTA/AM. Finally, ManLAM and BAPTA/AM reversed the effects of M. tuberculosis on p53 and Bcl-2 expression. ManLAM counteracts the alterations of calcium-dependent intracellular events that occur during M. tuberculosis-induced macrophage apoptosis.

  10. Compound K induces apoptosis via CAMK-IV/AMPK pathways in HT-29 colon cancer cells.

    PubMed

    Kim, Do Yeon; Park, Min Woo; Yuan, Hai Dan; Lee, Hyo Jung; Kim, Sung Hoon; Chung, Sung Hyun

    2009-11-25

    Although compound K (CK), an intestinal metabolite of ginseng protopanaxadiol saponins, has been known to induce apoptosis in various cancer cells, association of AMP-activated protein kinase (AMPK) with apoptosis in HT-29 colon cancer cells remains unclear. We hypothesized that CK may exert an anticancer activity through modulating the AMPK pathway in HT-29 cells. CK-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic factors (cytochrome c and apoptosis-inducing factor) from mitochondria, and cleavage of caspase-9, caspase-3, caspase-8, Bid, and PARP proteins. This apoptotic effect of CK on colon cancer cells was found to be initiated by AMPK activation, and AMPK was activated through phosphorylation by Ca2+/calmodulin-activated protein kinase-IV (CAMK-IV). Treatment of HT-29 cells with compound C (AMPK inhibitor) or siRNA for AMPK completely abolished the CK-induced apoptosis. STO-609, CAMKs inhibitor, also attenuated CK-induced AMPK activation and apoptosis. In conclusion, the present study demonstrates that CK-mediated cell death of HT-29 colon cancer cells is regulated by CAMK-IV/AMPK pathways, and these findings provide a molecular basis for the anticancer effect of CK.

  11. The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation.

    PubMed

    St-Louis, Marie-Claude; Archambault, Denis

    2007-10-10

    We have previously showed that equine arteritis virus (EAV), an arterivirus, induces apoptosis in vitro. To determine the caspase activation pathways involved in EAV-induced apoptosis, target cells were treated with peptide inhibitors of apoptosis Z-VAD-FMK (pan-caspase inhibitor), Z-IETD-FMK (caspase-8-specific inhibitor) or Z-LEHD-FMK (caspase-9-specific inhibitor) 4 h prior to infection with the EAV T1329 Canadian isolate. Significant inhibition of apoptosis was obtained with all peptide inhibitors used. Furthermore, apoptosis was inhibited in cells expressing the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase (HSV2-R1) or hsp70, two proteins which are known to inhibit apoptosis associated with caspase-8 activation and cytochrome c release-dependent caspase-9 activation, respectively. Given the activation of Bid and the translocation of cytochrome c within the cytoplasm, the overall results indicate that EAV induces apoptosis initiated by caspase-8 activation and subsequent mitochondria-dependent caspase-9 activation.

  12. Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway.

    PubMed

    Wang, Xichun; Xu, Wei; Fan, Mengxue; Meng, Tingting; Chen, Xiaofang; Jiang, Yunjing; Zhu, Dianfeng; Hu, Wenjuan; Gong, Jiajie; Feng, Shibin; Wu, Jinjie; Li, Yu

    2016-04-01

    Deoxynivalenol (DON) has broad toxicity in animals and humans. In this study the impact of DON treatment on apoptotic pathways in PC12 cells was determined. The effects of DON were evaluated on (i) typical indicators of apoptosis, including cellular morphology, cell activity, lactate dehydrogenase (LDH) release, and apoptosis ratio in PC12 cells, and on (ii) the expression of key genes and proteins related to apoptosis, including Bcl-2, Bax, Bid, cytochrome C (Cyt C), apoptosis inducing factor (AIF), cleaved-Caspase9, and cleaved-Caspase3. DON treatment inhibited proliferation of PC12 cells, induced significant morphological changes and apoptosis, promoted the release of Cyt C and AIF from the mitochondria, and increased the activities of cleaved-Caspase9 and cleaved-Caspase3. Bcl-2 expression decreased with increasing DON concentrations, in contrast to Bax and Bid, which were increased with increasing DON concentration. These data demonstrate that DON induces apoptosis in PC12 cells through the mitochondrial apoptosis pathway.

  13. Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells.

    PubMed Central

    Wu, M; Lee, H; Bellas, R E; Schauer, S L; Arsura, M; Katz, D; FitzGerald, M J; Rothstein, T L; Sherr, D H; Sonenshein, G E

    1996-01-01

    Apoptosis of the WEHI 231 immature B cell lymphoma line following membrane interaction with an antibody against the surface IgM chains (anti-IgM) is preceded by dramatic changes in Nuclear Factor-kappaB (NF-kappaB)/ Rel binding activities. An early transient increase in NF-kappaB/Rel binding is followed by a significant decrease in intensity below basal levels. Here we have explored the role of these changes in Rel-related factors in B cell apoptosis. Treatment of WEH1 231 cells with N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), a protease inhibitor which prevents degradation of the inhibitor of NF-kappaB (IkappaB)-alpha, or with low doses of pyrrolidinedithiocarbamate (PDTC) selectively inhibited NF-kappaB/Rel factor binding and induced apoptosis. Bcl-XL expression protected WEHI 231 cells from apoptosis induced by these agents. Microinjection of WEHI 231 cells with either IkappaB-alpha-GST protein or a c-Rel affinity-purified antibody induced apoptosis. Ectopic c-Rel expression ablated apoptosis induced by TPCK or anti-IgM. Treatment of BALENLM 17 and A20 B lymphoma cells or normal murine splenic B lymphocytes with either TPCK or PDTC also resulted in apoptosis. These findings indicate that the drop in NF-kappaB/Rel binding following anti-IgM treatment activates apoptosis of WEHI 231 cells; furthermore, they implicate the NF-kappaB/Rel family in control of apoptosis of normal and transformed B cells. Images PMID:8887559

  14. Steroid receptor coactivator-interacting protein (SIP) inhibits caspase-independent apoptosis by preventing apoptosis-inducing factor (AIF) from being released from mitochondria.

    PubMed

    Wang, Dandan; Liang, Jing; Zhang, Yu; Gui, Bin; Wang, Feng; Yi, Xia; Sun, Luyang; Yao, Zhi; Shang, Yongfeng

    2012-04-13

    Apoptosis-inducing factor (AIF) is a caspase-independent death effector. Normally residing in the mitochondrial intermembrane space, AIF is released and translocated to the nucleus in response to proapoptotic stimuli. Nuclear AIF binds to DNA and induces chromatin condensation and DNA fragmentation, characteristics of apoptosis. Until now, it remained to be clarified how the mitochondrial-nuclear translocation of AIF is regulated. Here we report that steroid receptor coactivator-interacting protein (SIP) interacts directly with AIF in mitochondria and specifically inhibits caspase-independent and AIF-dependent apoptosis. Challenging cells with apoptotic stimuli leads to rapid degradation of SIP, and subsequently AIF is liberated from mitochondria and translocated to the nucleus to induce apoptosis. Together, our data demonstrate that SIP is a novel regulator in caspase-independent and AIF-mediated apoptosis.

  15. Elastase induced lung epithelial cell apoptosis and emphysema through placenta growth factor

    PubMed Central

    Hou, H-H; Cheng, S-L; Liu, H-T; Yang, F-Z; Wang, H-C; Yu, C-J

    2013-01-01

    Chronic pulmonary obstructive disease (COPD) is the fourth leading cause of death worldwide, however, the pathogenic factors and mechanisms are not fully understood. Pulmonary emphysema is one of the major components of COPD and is thought to result from oxidative stress, chronic inflammation, protease–antiprotease imbalance and lung epithelial (LE) cell apoptosis. In our previous studies, COPD patients were noted to have higher levels of placenta growth factor (PlGF) in serum and bronchoalveolar lavage fluid than controls. In addition, transgenic mice overexpressing PlGF developed pulmonary emphysema and exposure to PlGF in LE cells induced apoptosis. Furthermore, intratracheal instillation of porcine pancreatic elastase (PPE) on to PlGF wild type mice induced emphysema, but not in PlGF knockout mice. Therefore, we hypothesized that PPE generates pulmonary emphysema through the upregulation of PlGF expression in LE cells. The elevation of PlGF then leads to LE cell apoptosis. In the present study, we investigated whether PPE induces PlGF expression, whether PlGF induces apoptosis and whether the downstream mechanisms of PlGF are related to LE cell apoptosis. We found that PPE increased PlGF secretion and expression both in vivo and in vitro. Moreover, PlGF-induced LE cell apoptosis and PPE-induced emphysema in the mice were mediated by c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) pathways. Given these findings, we suggest that the increase in PlGF and PlGF-induced JNK and p38 MAPK pathways contribute to PPE-induced LE cell apoptosis and emphysema. Regulatory control of PlGF and agents against its downstream signals may be potential therapeutic targets for COPD. PMID:24008737

  16. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation

    PubMed Central

    Yang, Chunguang; Ma, Xueyou; Wang, Zhihua; Zeng, Xing; Hu, Zhiquan; Ye, Zhangqun; Shen, Guanxin

    2017-01-01

    Background Curcumin induces apoptosis and autophagy in different cancer cells. Moreover, chemical and biological experiments have evidenced that curcumin is a biologically active iron chelator and induces cytotoxicity through iron chelation. We thus hypothesized that curcumin may induce apoptosis and autophagy in castration-resistant prostate cancer (CRPC) cells through its iron-chelating properties. Materials and methods CRPC cells were loaded with curcumin alone or in combination with ferric ammonium citrate (FAC). Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was assessed by flow cytometry, terminal deoxynucleotidyl transferase nick end labeling (TUNEL) assay and caspase activity. Autophagy status was analyzed by the detection of autophagosomes and light chain 3-II (LC3-II) using transmission electron microscopy and Western blot. Iron-binding activity of curcumin was assessed by spectrophotometry and MTT assay. The expression levels of transferrin receptor 1 (TfR1) and iron regulatory protein 1 (IRP1) were examined by Western blot. Results Curcumin induced apoptosis and autophagy in CRPC cells. Combining curcumin with autophagy inhibitors (3-methyladenine [3-MA]) synergized the apoptotic effect of curcumin. Moreover, curcumin bound to FAC at a ratio of ~1:1, as assessed by spectrophotometry and MTT assay. Apoptosis and autophagy induced by curcumin were counteracted by equal amounts of FAC. At apoptosis- and autophagy-inducing concentrations, curcumin enhanced the expression levels of TfR1 and IRP1, indicative of iron deprivation induced by curcumin. Conclusion Together, our results indicate that curcumin induces apoptosis and protective autophagy in CRPC cells, which are at least partially dependent on its iron-chelating properties. PMID:28243065

  17. Essential role for cathepsin D in bleomycin-induced apoptosis of alveolar epithelial cells.

    PubMed

    Li, Xiaopeng; Rayford, Heather; Shu, Ruijie; Zhuang, Jiaju; Uhal, Bruce D

    2004-07-01

    Our earlier studies showed that bleomycin-induced apoptosis of type II alveolar epithelial cells (AECs) requires the autocrine synthesis and proteolytic processing of angiotensinogen into ANG II and that inhibitors of ANG-converting enzyme (ACEis) block bleomycin-induced apoptosis (Li X, Zhang H, Soledad-Conrad V, Zhuang J, and Uhal BD. Am J Physiol Lung Cell Mol Physiol 284: L501-L507, 2003). Given the documented role of cathepsin D (CatD) in apoptosis of other cell types, we hypothesized that CatD might be the AEC enzyme responsible for the conversion of angiotensinogen into ANG I, the substrate for ACE. Primary cultures of rat type II AECs challenged with bleomycin in vitro showed upregulation and secretion of CatD enzymatic activity and immunoreactive protein but no increases in CatD mRNA. The aspartyl protease inhibitor pepstatin A, which completely blocked CatD enzymatic activity, inhibited bleomycin-induced nuclear fragmentation by 76% and reduced bleomycin-induced caspase-3 activation by 47%. Antisense oligonucleotides against CatD mRNA reduced CatD-immunoreactive protein and inhibited bleomycin-induced nuclear fragmentation by 48%. A purified fragment of angiotensinogen (F1-14) containing the CatD and ACE cleavage sites, when applied to unchallenged AEC in vitro, yielded mature ANG II peptide and induced apoptosis. The apoptosis induced by F1-14 was inhibited 96% by pepstatin A and 77% by neutralizing antibodies specific for CatD (both P < 0.001). These data indicate a critical role for CatD in bleomycin-induced apoptosis of cultured AEC and suggest that the role(s) of CatD in AEC apoptosis include the conversion of newly synthesized angiotensinogen to ANG II.

  18. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    SciTech Connect

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting; Kao, Jun-Kai; Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu; Chiu, Husan-Wen; Chang, Chuan-Hsun; Liang, Shu-Mei; Chen, Yi-Ju; Huang, Jau-Ling; Shieh, Jeng-Jer

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  19. C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes.

    PubMed

    Khan, Mahmood; Varadharaj, Saradhadevi; Shobha, Jagdish C; Naidu, Madireddi U; Parinandi, Narasimham L; Kutala, Vijay Kumar; Kuppusamy, Periannan

    2006-01-01

    Doxorubicin (DOX), a potent antineoplastic agent, poses limitations for its therapeutic use due to the associated risk of developing cardiomyopathy and congestive heart failure. The cardiotoxicity of doxorubicin is associated with oxidative stress and apoptosis. We have recently shown that Spirulina, a blue-green alga with potent antioxidant properties, offered significant protection against doxorubicin-induced cardiotoxicity in mice. The aim of the present study was to establish the possible protective role of C-phycocyanin, one of the active ingredients of Spirulina, against doxorubicin-induced oxidative stress and apoptosis. The study was carried out using cardiomyocytes isolated from adult rat hearts. Doxorubicin significantly enhanced the formation of reactive oxygen species (ROS) in cells as measured by the 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium fluorescence. The doxorubicin-induced reactive oxygen species formation was significantly attenuated in cells pretreated with C-phycocyanin. It was further observed that the doxorubicin-induced DNA fragmentation and apoptosis, as assayed by TUNEL assay and flow cytometry coupled with BrdU-FITC/propidium iodide staining, were markedly attenuated by C-phycocyanin. C-phycocyanin also significantly attenuated the doxorubicin-induced increase in the expression of Bax protein, release of cytochrome c, and increase in the activity of caspase-3 in cells. In summary, C-phycocyanin ameliorated doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes. This study further supports the crucial role of the antioxidant nature of C-phycocyanin in its cardioprotection against doxorubicin-induced oxidative stress and apoptosis.

  20. Metformin enhances TRAIL-induced apoptosis by Mcl-1 degradation via Mule in colorectal cancer cells

    PubMed Central

    Kim, Jung Lim; Kim, Bo Ram; Na, Yoo Jin; Jo, Min Jee; Jeong, Yoon A.; Lee, Suk-Young; Lee, Sun Il; Lee, Yong Yook; Oh, Sang Cheul

    2016-01-01

    Metformin is an anti-diabetic drug with a promising anti-cancer potential. In this study, we show that subtoxic doses of metformin effectively sensitize human colorectal cancer (CRC) cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which induces apoptosis. Metformin alone did not induce apoptosis, but significantly potentiated TRAIL-induced apoptosis in CRC cells. CRC cells treated with metformin and TRAIL showed activation of the intrinsic and extrinsic pathways of caspase activation. We attempted to elucidate the underlying mechanism, and found that metformin significantly reduced the protein levels of myeloid cell leukemia 1 (Mcl-1) in CRC cells and, the overexpression of Mcl-1 inhibited cell death induced by metformin and/or TRAIL. Further experiments revealed that metformin did not affect mRNA levels, but increased proteasomal degradation and protein stability of Mcl-1. Knockdown of Mule triggered a significant decrease of Mcl-1 polyubiquitination. Metformin caused the dissociation of Noxa from Mcl-1, which allowed the binding of the BH3-containing ubiquitin ligase Mule followed by Mcl-1ubiquitination and degradation. The metformin-induced degradation of Mcl-1 required E3 ligase Mule, which is responsible for the polyubiquitination of Mcl-1. Our study is the first report indicating that metformin enhances TRAIL-induced apoptosis through Noxa and favors the interaction between Mcl-1 and Mule, which consequently affects Mcl-1 ubiquitination. PMID:27517746

  1. Hispidulin induces mitochondrial apoptosis in acute myeloid leukemia cells by targeting extracellular matrix metalloproteinase inducer

    PubMed Central

    Gao, Hui; Liu, Yongji; Li, Kan; Wu, Tianhui; Peng, Jianjun; Jing, Fanbo

    2016-01-01

    Acute myeloid leukemia (AML) represents a heterogeneous group of hematological neoplasms with marked heterogeneity in response to both standard therapy and survival. Hispidulin, a flavonoid compound that is anactive ingredient in the traditional Chinese medicinal herb Salvia plebeia R. Br, has recently been reported to have anantitumor effect against solid tumors in vitro and in vivo. The aim of the present study was to investigate the effects of hispidulin on the human leukemia cell line in vitro and the underlying mechanisms of its actions on these cells. Our results showed that hispidulin inhibits AML cell proliferation in a dose- and time-dependent manner, and induces cell apoptosis throughan intrinsic mitochondrial pathway. Our results also revealed that hispidulin treatment significantly inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) expression in both tested AML cell lines in a dose-dependent manner, and that the overexpression of EMMPRIN protein markedly attenuates hispidulin-induced cell apoptosis. Furthermore, our results strongly indicated that the modulating effect of hispidulin on EMMPRIN is correlated with its inhibitory effect on both the Akt and STAT3 signaling pathways. PMID:27158398

  2. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    SciTech Connect

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  3. Bozepinib, a novel small antitumor agent, induces PKR-mediated apoptosis and synergizes with IFNα triggering apoptosis, autophagy and senescence.

    PubMed

    Marchal, Juan Antonio; Carrasco, Esther; Ramirez, Alberto; Jiménez, Gema; Olmedo, Carmen; Peran, Macarena; Agil, Ahmad; Conejo-García, Ana; Cruz-López, Olga; Campos, Joaquin María; García, María Ángel

    2013-01-01

    Bozepinib [(RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine] is a potent antitumor compound that is able to induce apoptosis in breast cancer cells. In the present study, we show that bozepinib also has antitumor activity in colon cancer cells, showing 50% inhibitory concentration (IC50) values lower than those described for breast cancer cells and suggesting great potential of this synthetic drug in the treatment of cancer. We identified that the double-stranded RNA-dependent protein kinase (PKR) is a target of bozepinib, being upregulated and activated by the drug. However, p53 was not affected by bozepinib, and was not necessary for induction of apoptosis in either breast or colon cancer cells. In addition, the efficacy of bozepinib was improved when combined with the interferon-alpha (IFNα) cytokine, which enhanced bozepinib-induced apoptosis with involvement of protein kinase PKR. Moreover, we report here, for the first time, that in combined therapy, IFNα induces a clear process of autophagosome formation, and prior treatment with chloroquine, an autophagy inhibitor, is able to significantly reduce IFNα/bozepinib-induced cell death. Finally, we observed that a minor population of caspase 3-deficient MCF-7 cells persisted during long-term treatment with lower doses of bozepinib and the bozepinib/IFNα combination. Curiously, this population showed β-galactosidase activity and a percentage of cells arrested in S phase, that was more evident in cells treated with the bozepinib/IFNα combination than in cells treated with bozepinib or IFNα alone. Considering the resistance of some cancer cells to conventional chemotherapy, combinations enhancing the diversity of the cell death outcome might succeed in delivering more effective and less toxic chemotherapy.

  4. Infection-induced bystander-apoptosis of monocytes is TNF-alpha-mediated.

    PubMed

    Dreschers, Stephan; Gille, Christian; Haas, Martin; Grosse-Ophoff, Julia; Schneider, Marion; Leiber, Anja; Bühring, Hans-Jörg; Orlikowsky, Thorsten W

    2013-01-01

    Phagocytosis induced cell death (PICD) is crucial for controlling phagocyte effector cells, such as monocytes, at sites of infection, and essentially contributes to termination of inflammation. Here we tested the hypothesis, that during PICD bystander apoptosis of non-phagocyting monocytes occurs, that apoptosis induction is mediated via tumor necrosis factor-alpha (TNF-α and that TNF-α secretion and -signalling is causal. Monocytes were infected with Escherichia coli (E. coli), expressing green fluorescent protein (GFP), or a pH-sensitive Eos-fluorescent protein (EOS-FP). Monocyte phenotype, phagocytic activity, apoptosis, TNF-receptor (TNFR)-1, -2-expression and TNF-α production were analyzed. Apoptosis occured in phagocyting and non-phagocyting, bystander monocytes. Bacterial transport to the phagolysosome was no prerequisite for apoptosis induction, and desensitized monocytes from PICD, as confirmed by EOS-FP expressing E. coli. Co-cultivation with non-infected carboxyfluorescein-succinimidyl-ester- (CFSE-) labelled monocytes resulted in significant apoptotic cell death of non-infected bystander monocytes. This process required protein de-novo synthesis and still occurred in a diminished way in the absence of cell-cell contact. E. coli induced a robust TNF-α production, leading to TNF-mediated apoptosis in monocytes. Neutralization with an anti-TNF-α antibody reduced monocyte bystander apoptosis significantly. In contrast to TNFR2, the pro-apoptotic TNFR1 was down-regulated on the monocyte surface, internalized 30 min. p.i. and led to apoptosis predominantly in monocytes without phagocyting bacteria by themselves. Our results suggest, that apoptosis of bystander monocytes occurs after infection with E. coli via internalization of TNFR1, and indicate a relevant role for TNF-α. Modifying monocyte apoptosis in sepsis may be a future therapeutic option.

  5. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells.

    PubMed

    Figarola, James L; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay; Singhal, Sharad S

    2014-05-01

    Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis.

  6. Peroxynitrite induces apoptosis in canine cerebral vascular muscle cells: possible relation to neurodegenerative diseases and strokes.

    PubMed

    Li, Jianfeng; Su, Jialin; Li, Wenyan; Liu, Weimin; Altura, Bella T; Altura, Burton M

    2003-10-30

    Considerable evidence is accumulating to suggest that in vivo formation of free radicals in the brain, such as peroxynitrite (ONOO-), and programmed cell death (i.e. apoptosis) play important roles in neurodegeneration and stroke. However, it is not known whether ONOO- can induce apoptosis in cerebral vascular smooth muscle cells (CVSMCs). The present study was designed to determine whether or not canine CVSMCs undergo apoptosis following treatment with ONOO-. Direct exposure of canine CVSMCs to ONOO- induced apoptosis in a concentration-dependent manner, as confirmed by means of fluorescence staining, TdT-mediated dUTP nick-end labeling and comet assays. Peroxynitrite treatment resulted in an elevation of [Ca2+]i in the CVSMCs. Peroxynitrite-induced apoptosis may thus be brought about by activation of Ca2+-dependent endonucleases. Although the precise mechanisms by which peroxynitrite induces apoptosis need to be further investigated, the present findings could be used to suggest that ONOO- formation in the brain may play important roles in neurodegenerative processes and strokes via detrimental actions on cerebral microvessels and blood flow.

  7. The mitochondrial and death receptor pathways involved in the thymocytes apoptosis induced by aflatoxin B1

    PubMed Central

    Chi, Xiaofeng; Li, Xiaochong; Jiang, Min; Fang, Jing; Cui, Hengmin; Lai, Weimin; Zhou, Yi; Zhou, Shan

    2016-01-01

    Aflatoxin B1 (AFB1) is a potent immunosuppressive agent in endotherms, which can be related to the up-regulated apoptosis of immune organs. In this study, we investigated the roles of the mitochondrial, death receptor, and endoplasmic reticulum pathways in Aflatoxin B1 induced thymocytes apoptosis. Chickens were fed an aflatoxin B1 containing diet (0.6 mg/kg AFB1) for 3 weeks. Our results showed that (1) AFB1 diet induced the decrease of T-cell subsets, morphological changes, and excessive apoptosis of thymus. (2) The excessive apoptosis involved the mitochondrial pathway (up-regulation of Bax, Bak, cytC and down-regulation of Bcl-2 and Bcl-xL) and death receptor pathway (up-regulation of FasL, Fas and FADD). (3) Oxidative stress, an apoptosis inducer, was confirmed in the thymus. In conclusion, this is the first study to demonstrate that mitochondrial and death receptor pathways involved in AFB1 induced thymocytes apoptosis in broilers. PMID:26933817

  8. Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Koteswara Rao, G; Bag, Indira; Bhadra, Utpal; Pal-Bhadra, Manika

    2016-03-01

    Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof (RNAi) induced apoptosis in the eye discs. mof (RNAi) induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1 clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof (RNAi) induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof (1) mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof (RNAi) proceeds through a caspase-dependent and JNK mediated pathway.

  9. Cadmium induces apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive oxygene species.

    PubMed

    Risso-de Faverney, C; Devaux, A; Lafaurie, M; Girard, J P; Bailly, B; Rahmani, R

    2001-06-01

    Cadmium poses a serious environmental threat in aquatic ecosystems but the mechanisms of its toxicity remain unclear. The purpose of this work was first to determine whether cadmium induced apoptosis in trout hepatocytes, second to determine whether or not reactive oxygen species (ROS) were involved in cadmium-induced apoptosis and genotoxicity. Hepatocytes exposed to increasing cadmium concentrations (in the range of 1-10 microM) showed a molecular hallmark of apoptosis which is the fragmentation of the nuclear DNA into oligonucleosomal-length fragments, resulting from an activation of endogenous endonucleases and recognized as a 'DNA ladder' on conventional agarose gel electrophoresis. Exposure of hepatocytes to cadmium led clearly to the DEVD-dependent protease activation, acting upstream from the endonucleases and considered as central mediators of apoptosis. DNA strand breaks in cadmium-treated trout hepatocytes was assessed using the comet assay, a rapid and sensitive single-cell gel electrophoresis technique used to detect DNA primary damage in individual cells. Simultaneous treatment of trout hepatocytes with cadmium and the nitroxide radical TEMPO used as a ROS scavenger, reduced significantly DNA fragmentation, DEVD-related protease activity and DNA strand breaks formation. These results lead to a working hypothesis that cadmium-induced apoptosis and DNA strand breaks in trout hepatocytes are partially triggered by the generation of ROS. Additional studies are required for proposing a mechanistic model of cadmium-induced apoptosis and genotoxicity in trout liver cells, in underlying the balance between DNA damage and cellular defence systems in fish.

  10. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro.

    PubMed

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang; Dong, Wei-Guo

    2012-05-11

    Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC(50)=75 μM). This cytotoxicity was reflected by cell cycle arrest at G(2)/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  11. RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion.

    PubMed

    Calleros, Laura; Lasa, Marina; Rodríguez-Alvarez, Francisco J; Toro, María J; Chiloeches, Antonio

    2006-07-01

    Cholesterol is essential for cell viability, and homeostasis of cellular cholesterol is crucial to various cell functions. Here we examined the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in NIH3T3 cells. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment resulted in a significant increase in cellular apoptosis and caspase-3 activation. This effect is not due to a deficiency of nonsterol isoprenoids, intermediate metabolites of the cholesterol biosynthetic pathway, but rather to low cholesterol levels, since addition of cholesterol together with LPDS and 25-HC nearly abolished apoptosis, whereas addition of farnesyl pyrophosphate or geranylgeranyl-pyrophosphate did not reverse the cell viability loss induced by LPDS plus 25-HC treatment. These effects were accompanied by an increase in ERK, JNK and p38 MAPK activity. However, only the inhibition of p38 MAPK with the specific inhibitor SB203580 or the overexpression of a kinase defective MKK6 resulted in a significant decrease in apoptosis and caspase-3 cleavage induced by cholesterol depletion. Furthermore, LPDS plus 25-HC increased RhoA activity, and this effect was reversed by addition of exogenous cholesterol. Finally, overexpression of the dominant negative N19RhoA inhibited p38 MAPK phosphorylation and apoptosis induced by low cholesterol levels. Together, our results demonstrate that cholesterol depletion induces apoptosis through a RhoA- and p38 MAPK-dependent mechanism.

  12. Stimulation through CD50 preferentially induces apoptosis of TCR1+ human peripheral blood lymphocytes.

    PubMed

    López-Briones, S; Portales-Pérez, D P; Baranda, L; de la Fuente, H; Rosenstein, Y; González-Amaro, R

    1998-01-01

    Apoptosis has an important role in several key immunological phenomena such as regulation of the immune response, and deletion of auto-reactive cells. This phenomenon is induced following the interaction of several cell membrane receptors with their respective ligands or after cell activation. We have studied the possible effect of signaling through CD50/ICAM-3 and CD69/AIM on apoptosis of peripheral blood lymphocytes. Apoptosis was assessed by both flow cytometry analysis (content of cell DNA and binding to annexin V), and detection of DNA fragmentation by agarose gel electrophoresis. We found that a stimulatory anti-CD50 mAb was able to induce a small but significant degree of apoptosis in resting peripheral blood mononuclear cells from most donors; this effect was dose-dependent and was evident as early as at 12 h, with a maximal induction at 48 h. Studies with T and non-T cells showed that only the former cell population was sensitive to the induction of apoptosis through CD50. Further experiments revealed that the anti-ICAM-3 mAb preferentially induced apoptosis of TCR gamma delta-bearing cells. In addition, we found a significant increase in Cai2+ in PBMC stimulated with an anti-CD50 mAb, suggesting the involvement of this signaling pathway in the induction of apoptosis through this adhesion receptor. In contrast, under our experimental conditions, stimulation through CD69 did not have any effect on the induction of apoptosis on either cultured T lymphoblasts or PMA-stimulated PBMC. Our findings suggest that the interaction of CD50 with its natural ligand LFA-1 results in the induction of apoptosis in a significant fraction of resting PBMC. This phenomenon may be involved in immune regulation, lymphocyte turnover and peripheral deletion of auto-reactive cells.

  13. Resistance to etoposide-induced apoptosis in a Burkitt's lymphoma cell line.

    PubMed

    Zhao, E G; Song, Q; Cross, S; Misko, I; Lees-Miller, S P; Lavin, M F

    1998-08-31

    Burkitt's lymphoma cells that vary in their phenotypic characteristics show significantly different degrees of susceptibility to radiation-induced apoptosis. Propensity to undergo apoptosis is reflected in the degradation of substrates such as DNA-dependent protein kinase but the status of bcl-2, c-myc and p53 has been uninformative. In this study, we have focused on 2 Epstein-Barr virus (EBV)-associated Burkitt's cell lines, one (WW2) susceptible and the other (BL29) resistant to etoposide-induced apoptosis. Differences in expression of BHRF1, an EBV gene that is homologous to the Bcl-2 proto-oncogene and known to inhibit apoptosis, or changes in apoptosis inhibitory proteins (IAPs), did not appear to account for the difference in susceptibility in the 2 cell lines. Cytoplasmic extracts from etoposide-treated WW2 cells caused apoptotic changes in nuclei isolated from either BL29 or WW2 cells, whereas extracts from BL29 cells failed to do so. In addition, extracts from etoposide-treated WW2 cells degraded the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an important indicator of apoptosis, but this protein was resistant to degradation by BL29 extracts. It appears likely that caspase 3 (CPP32) is involved in this degradation since it was activated only in the apoptosis susceptible cells and the pattern of cleavage of DNA-PKcs was similar to that reported previously with recombinant caspase 3. As observed previously, addition of caspase 3 to nuclei failed to induce morphological changes indicative of apoptosis, but addition of caspase 3 to nuclei in the presence of extract from the resistant cells led to apoptotic changes. We conclude that resistance to apoptosis in BL29 cells is due to a failure of etoposide to activate upstream effectors of caspase activity.

  14. FasL and TRAIL Induce Epidermal Apoptosis and Skin Ulceration Upon Exposure to Leishmania major

    PubMed Central

    Eidsmo, Liv; Fluur, Caroline; Rethi, Bence; Eriksson Ygberg, Sofia; Ruffin, Nicolas; De Milito, Angelo; Akuffo, Hannah; Chiodi, Francesca

    2007-01-01

    Receptor-mediated apoptosis is proposed as an important regulator of keratinocyte homeostasis in human epidermis. We have previously reported that Fas/FasL interactions in epidermis are altered during cutaneous leishmaniasis (CL) and that keratinocyte death through apoptosis may play a pathogenic role for skin ulceration. To further investigate the alterations of apoptosis during CL, a keratinocyte cell line (HaCaT) and primary human epidermal keratinocytes were incubated with supernatants from Leishmania major-infected peripheral blood mononuclear cells. An apoptosis-specific microarray was used to assess mRNA expression in HaCaT cells exposed to supernatants derived from L. major-infected cultures. Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression were significantly up-regulated, and apoptosis was detected in both HaCaT and human epidermal keratinocyte cells. The keratinocyte apoptosis was partly inhibited through blocking of Fas or FasL and even more efficiently through TRAIL neutralization. Up-regulation of Fas on keratinocytes in epidermis and the presence of FasL-expressing macrophages and T cells in dermis were previously reported by us. In this study, keratinocytes expressing TRAIL, as well as the proapoptotic receptor TRAIL-R2, were detected in skin biopsies from CL cases. We propose that activation of Fas and TRAIL apoptosis pathways, in the presence of inflammatory mediators at the site of infection, leads to tissue destruction and ulceration during CL. PMID:17200196

  15. Bisphenol A diglycidyl ether-induced apoptosis involves Bax/Bid-dependent mitochondrial release of apoptosis-inducing factor (AIF), cytochrome c and Smac/DIABLO

    PubMed Central

    Fehlberg, Sebastian; Gregel, Cornelia M; Göke, Alexandra; Göke, Rüdiger

    2003-01-01

    Bisphenol A diglycidyl ether (BADGE) is a peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, which is able to induce apoptosis in tumor cells independently of PPAR-γ in caspase-dependent and -independent manners. Additionally, BADGE promotes TRAIL-induced apoptosis. We report that BADGE activates via Bax and caspases-2 and -8 both the intrinsic and extrinsic apoptotic pathways using Bid as a shunt. BADGE stimulates the mitochondrial release of apoptosis-inducing factor (AIF), cytochrome c and second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO). The release of cytochrome c could not be blocked by inhibitors of caspases-3, -8 and -9 indicating that BADGE acts upstream of caspases-3 and -9 and does not involve caspase-8 to release cytochrome c. While the caspase-independent apoptotic effect might be mediated by AIF, the sensitizing effect of BADGE against other apoptotic substances is most likely mediated by the X-linked inhibitor of apoptosis inhibitor Smac/DIABLO. Our data suggest that BADGE or BADGE derivatives could represent promising substances for the treatment of neoplasms improving the antitumoral activity of TRAIL. PMID:12788809

  16. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis

    PubMed Central

    Chai, Xiqing; Kong, Weina; Liu, Lingyun; Yu, Wenguo; Zhang, Zhenqing; Sun, Yimin

    2014-01-01

    Hypoxia-inducible factor 1 (HIF-1) attenuates amyloid-beta protein neurotoxicity and decreases apoptosis induced by oxidative stress or hypoxia in cortical neurons. In this study, we constructed a recombinant adeno-associated virus (rAAV) vector expressing the human HIF-1α gene (rAAV-HIF-1α), and tested the assumption that rAAV-HIF-1α represses hippocampal neuronal apoptosis induced by amyloid-beta protein. Our results confirmed that rAAV-HIF-1α significantly reduces apoptosis induced by amyloid-beta protein in primary cultured hippocampal neurons. Direct intracerebral rAAV-HIF-1α administration also induced robust and prolonged HIF-1α production in rat hippocampus. Single rAAV-HIF-1α administration resulted in decreased apoptosis of hippocampal neurons in an Alzheimer's disease rat model established by intracerebroventricular injection of aggregated amyloid-beta protein (25–35). Our in vitro and in vivo findings demonstrate that HIF-1 has potential for attenuating hippocampal neuronal apoptosis induced by amyloid-beta protein, and provides experimental support for treatment of neurodegenerative diseases using gene therapy. PMID:25206774

  17. Phenylethanoid glycosides from Cistanches salsa inhibit apoptosis induced by 1-methyl-4-phenylpyridinium ion in neurons.

    PubMed

    Tian, Xue-Fei; Pu, Xiao-Ping

    2005-02-10

    In our study we investigated the neuroprotective effects of phenylethanoid glycosides (PhGs) from Cistanches salsa on 1-methyl-4-phenylpyridinium ion (MPP(+))-induced apoptosis in cerebellar granule neurons (CGNs). CGNs were treated with 100 microM MPP(+) for 24h to induce apoptosis, simultaneously CGNs were incubated with PhGs at 10, 20 and 40 microg/ml, respectively. In addition CGNs were pretreated with PhGs at 20 microg/ml for 6, 12, 24 h, respectively, and then treated with 100 microM MPP(+) for 24 h. 3-(4,5-Dimethylthiazol-2-ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the treatment of CGNs with PhGs inhibited the decrease of cell viability induced by MPP(+). The activation of caspase-3 and caspase-8 was induced by MPP(+) in apoptosis. The caspase-3 and caspase-8 fluorogenic assays showed that the treatments of CGNs with PhGs efficiently suppressed the activation of caspase-3 and caspase-8 induced by MPP(+). It is concluded that PhGs can prevent the MPP(+)-induced apoptosis in CGNs and exert its anti-apoptosis effect by inhibiting caspase-3 and caspase-8 activities.

  18. Angiotensin protects cortical neurons from hypoxic-induced apoptosis via the angiotensin type 2 receptor.

    PubMed

    Grammatopoulos, Tom; Morris, Katherine; Ferguson, Paul; Weyhenmeyer, James

    2002-03-28

    The effects of angiotensin on mouse cortical neuronal cultures exposed to chemical-induced hypoxia was investigated. Cultures exposed to 10 mM sodium azide for 5 min showed a 17% increase in apoptosis when assayed 24 h postinsult. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 blocked sodium azide-induced cell death suggesting that the NMDA receptor contributes to the mediated cell death. Pretreatment of cultured neurons with angiotensin decreased sodium azide-induced apoptosis by 94%. When the AT(1) receptor was blocked by its receptor antagonist, losartan, angiotensin activation of the AT(2) receptor completely inhibited sodium azide-induced apoptosis. Pretreatment of neurons with the AT(2) receptor antagonist PD123319 resulted in angiotensin reducing sodium azide-induced apoptosis by 48%. These results demonstrate that angiotensin can significantly attenuate sodium azide-induced apoptosis primarily through activation of the AT(2) receptor and suggests that angiotensin may have a protective role in neurons undergoing ischemic injury.

  19. Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells.

    PubMed

    Zuo, Wanhong; Zhu, Linyan; Bai, Zhiquan; Zhang, Haifeng; Mao, Jianwen; Chen, Lixin; Wang, Liwei

    2009-10-02

    Chloride channel activity is one of the critical factors responsible for cell apoptotic volume decrease (AVD). However, the roles of chloride channels in apoptosis have not been fully understood. In the current study, we assessed the role of chloride channels in hydrogen peroxide (H(2)O(2))-induced apoptosis of pheochromocytoma cells (PC12). Extracellular application of H(2)O(2) activated a chloride current and induced cell volume decrease in a few minutes. Incubation of cells with H(2)O(2) elevated significantly the membrane permeability to the DNA dye Hoechst 33258 in 1h and induced apoptosis of most PC12 cells tested in 24h. The chloride channel blocker NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) prevented appearance of H(2)O(2)-induced high membrane permeability and cell shrinkage, suppressed H(2)O(2)-activated chloride currents and protected PC12 cells from apoptosis induced by H(2)O(2). The results suggest that chloride channels may contribute to H(2)O(2)-induced apoptosis by ways of elevation of membrane permeability and AVD in PC12 cells.

  20. Radiation-induced apoptosis in human lymphocytes: Potential as a biological dosimeter

    SciTech Connect

    Boreham, D.R.; Gale, K.L.; Maves, S.R.; Walker, J.A.; Morrison, D.P.

    1996-11-01

    We have tested the possibility of using apoptosis (programmed cell death) in human peripheral blood lymphocytes as a short-term biological dosimeter. Lymphocytes isolated from whole blood were irradiated in culture with 250 kVp x-rays or {sup 60}Co gamma rays. Two assays were used to measure apoptosis in lymphocytes after irradiation: in situ terminal deoxynucleotidyl transferase assay and fluorescence analysis of DNA unwinding assay. Similar qualitative and quantitative results were produced by the assays, supporting the notion that the fluorescence analysis of DNA unwinding assay measured DNA fragmentation associated with apoptosis. Induction of apoptosis in lymphocytes irradiated in vitro was proportional to dose and could be detected following exposures as low as 0.05 Gy. Lymphocytes irradiated in vitro was proportional to dose and could be detected following exposures as low as 0.05 Gy. Lymphocytes from individual donors had reproducible dose responses. There was, however, variation between donors. X-ray and gamma-ray exposures induced similar levels of apoptosis at similar doses. The induction kinetics of apoptosis in vitro indicate a maximum is reached about 72 h after irradiation. In conclusion, the in vitro experimental evidence indicates that radiation-induced apoptosis in human lymphocytes has the kinetics, sensitivity, and reproductibility to be a potential biological dosimeter. 29 refs., 5 figs.

  1. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL.

    PubMed

    Rosati, Emanuela; Sabatini, Rita; Rampino, Giuliana; De Falco, Filomena; Di Ianni, Mauro; Falzetti, Franca; Fettucciari, Katia; Bartoli, Andrea; Screpanti, Isabella; Marconi, Pierfrancesco

    2010-10-14

    A better understanding of apoptotic signaling in B-chronic lymphocytic leukemia (B-CLL) cells may help to define new therapeutic strategies. This study investigated endoplasmic reticulum (ER) stress signaling in spontaneous apoptosis of B-CLL cells and whether manipulating ER stress increases their apoptosis. Results show that a novel ER stress-triggered caspase cascade, initiated by caspase-4 and involving caspase-8 and -3, plays an important role in spontaneous B-CLL cell apoptosis. ER stress-induced apoptosis in B-CLL cells also involves CHOP/GADD153 up-regulation, increased JNK1/2 phosphorylation, and caspase-8-mediated cleavage of Bap31 to Bap20, known to propagate apoptotic signals from ER to mitochondria. In ex vivo B-CLL cells, some apoptotic events associated with mitochondrial pathway also occur, including mitochondrial cytochrome c release and caspase-9 processing. However, pharmacologic inhibition studies show that caspase-9 plays a minor role in B-CLL cell apoptosis. ER stress also triggers survival signals in B-CLL cells by increasing BiP/GRP78 expression. Manipulating ER signaling by siRNA down-regulation of BiP/GRP78 or treating B-CLL cells with 2 well-known ER stress-inducers, tunicamycin and thapsigargin, increases their apoptosis. Overall, our findings show that ER triggers an essential pathway for B-CLL cell apoptosis and suggest that genetic and pharmacologic manipulation of ER signaling could represent an important therapeutic strategy.

  2. Chinese herbal medicine Yougui Pill reduces exogenous glucocorticoid-induced apoptosis in anterior pituitary cells

    PubMed Central

    Ji, Yong-zhi; Geng, Long; Zhou, Hong-bo; Wei, Hua-chen; Chen, Hong-duo

    2016-01-01

    Long-term glucocorticoid use may result in sustained suppression of one or more secreted components from the hypothalamo-pituitary-adrenal axis, and often results in apoptosis. Yougui Pill (YGP), a 10-component traditional Chinese herbal medicine, has been shown to be clinically effective for glucocorticoid-induced suppression of the hypothalamo-pituitary-adrenal axis. However, the pharmacological and molecular mechanisms remain unclear. We hypothesized that YGP would exert an anti-apoptosis effect on dexamethasone-treated anterior pituitary cells. In vivo experiments showed that YGP significantly reduced the number of apoptotic cells, down-regulated mRNA expression of cytochrome c, caspase-3, and caspase-9, and up-regulated mRNA expression of Bcl-2. These findings suggest that YGP reduced glucocorticoid-induced apoptosis in rat anterior pituitary cells by regulating the mitochondria-mediated apoptosis pathway. PMID:28197193

  3. Baicalin inhibits colistin sulfate-induced apoptosis of PC12 cells.

    PubMed

    Jiang, Hong; Lv, Pengfei; Li, Jichang; Wang, Hongjun; Zhou, Tiezhong; Liu, Yingzi; Lin, Wei

    2013-10-05

    Baicalin, a type of flavonoid extracted from the dried root of Scutellaria baicalensis georgi, has been shown to effectively inhibit cell apoptosis. Therefore, we assumed that baicalin would suppress co-listin sulfate-induced neuronal apoptosis. PC12 cells exposed to colistin sulfate (62.5-500 μg/mL) for 24 hours resulted in PC12 cell apoptosis. In addition, caspase-3 activity, lactate dehydrogenase level and free radical content increased in a dose-dependent manner. Subsequently, PC12 cells were pretreated with baicalin (25, 50 and 100 μg/mL), and exposed to 125 μg/mL colistin sulfate. Cell morphology markedly changed, and cell viability increased. Moreover, caspase-3 activity, tate dehydrogenase level and free radical content decreased. Results indicated that baicalin inhi-bited colistin sulfate-induced PC12 cell apoptosis by suppressing free radical injury, and reducing caspase-3 activity and lactate dehydrogenase activity.

  4. Recessive mutations in a common pathway block thymocyte apoptosis induced by multiple signals

    PubMed Central

    1994-01-01

    The glucocorticoid receptor (GR) is a ligand-regulated transcription factor that controls genes necessary to initiate glucocorticoid-induced thymocyte apoptosis. We have performed a genetic analysis of thymocyte cell death by isolating and characterizing a panel of GR+ dexamethasone- resistant mutants of the murine WEHI7.2 thymocyte cell line. These apoptosis-defective (Apt-) mutants were used to identify previously unknown early steps in the apoptotic pathway. The Apt- mutants contain nonglucocorticoid receptor, recessive mutations in genes that represent multiple complementation groups. These mutations block apoptosis induced by dexamethasone, gamma irradiation, and c-AMP treatment before the point where Bcl-2 exerts its protective effect. We propose that different signals share a common apoptotic pathway, and that the induction of apoptosis involves multiple precommitment steps that can be blocked by recessive mutations. PMID:7798323

  5. Mst1 is an interacting protein that mediates PHLPPs' induced apoptosis.

    PubMed

    Qiao, Meng; Wang, Yaqi; Xu, Xiaoen; Lu, Jing; Dong, Yongli; Tao, Wufan; Stein, Janet; Stein, Gary S; Iglehart, James D; Shi, Qian; Pardee, Arthur B

    2010-05-28

    PHLPP1 and PHLPP2 phosphatases exert their tumor-suppressing functions by dephosphorylation and inactivation of Akt in several breast cancer and glioblastoma cells. However, Akt, or other known targets of PHLPPs that include PKC and ERK, may not fully elucidate the physiological role of the multifunctional phosphatases, especially their powerful apoptosis induction function. Here, we show that PHLPPs induce apoptosis in cancer cells independent of the known targets of PHLPPs. We identified Mst1 as a binding partner that interacts with PHLPPs both in vivo and in vitro. PHLPPs dephosphorylate Mst1 on the T387 inhibitory site, which activate Mst1 and its downstream effectors p38 and JNK to induce apoptosis. The same T387 site can be phosphorylated by Akt. Thus, PHLPP, Akt, and Mst1 constitute an autoinhibitory triangle that controls the fine balance of apoptosis and proliferation that is cell type and context dependent.

  6. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    SciTech Connect

    Kim, G. J.; Lee, J. K.; Kim, W.; Kim, K. T.

    2010-01-11

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  7. Apoptosis and morphological alterations after UVA irradiation in red blood cells of p53 deficient Japanese medaka (Oryzias latipes).

    PubMed

    Sayed, Alla El-Din Hamid; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi

    2016-08-01

    Morphological alterations in red blood cells were described as hematological bioindicators of UVA exposure to investigate the sensitivity to UVA in wild type Japanese medaka (Oryzias latipes) and a p53 deficient mutant. The fewer abnormal red blood cells were observed in the p53 mutant fish under the control conditions. After exposure to different doses of UVA radiation (15min, 30min and 60min/day for 3days), cellular and nuclear alterations in red blood cells were analyzed in the UVA exposed fish compared with non-exposed controls and those alterations included acanthocytes, cell membrane lysis, swollen cells, teardrop-like cell, hemolyzed cells and sickle cells. Those alterations were increased after the UVA exposure both in wild type and the p53 deficient fish. Moreover, apoptosis analyzed by acridine orange assay showed increased number of apoptosis in red blood cells at the higher UVA exposure dose. No micronuclei but nuclear abnormalities as eccentric nucleus, nuclear budding, deformed nucleus, and bilobed nucleus were observed in each group. These results suggested that UVA exposure induced both p53 dependent and independent apoptosis and morphological alterations in red blood cells but less sensitive to UVA than Wild type in medaka fish.

  8. Iron starvation induces apoptosis in Rhizopus oryzae in vitro.

    PubMed

    Shirazi, Fazal; Kontoyiannis, Dimitrios P; Ibrahim, Ashraf S

    2015-01-01

    Mortality associated with mucormycosis remains high despite current antifungals. Iron-starvation strategies have been shown to have promising activity against Mucorales. We hypothesized that iron starvation enhances apoptosis in Rhizopus oryzae. Apoptosis was characterized in R. oryzae transformed with RNAi plasmid targeting FTR1 expression (iron permease mutant) or empty plasmid grown in iron rich (0.125% FeCl3) and iron depleted media (YNB+1mM ferrozine and 1 mM ascorbic acid). Increased apoptosis was observed with dihydrorhodamine-123 and rhodamine-123 staining in the iron starved mutant FTR1 when compared to empty plasmid, followed by increased extracellular ATP levels. In addition, DNA fragmentation and metacaspase activity were prominent in FTR1. In contrast, Rhizopus strains grown in iron-rich medium displayed minimal apoptosis. Our results demonstrate a metacaspase dependent apoptotic process in iron deprived condition and further support the role of iron starvation strategies as an adjunct treatment for mucormycosis, a mechanism by which iron starvation affects R. oryzae.

  9. Formaldehyde induces apoptosis through decreased Prx 2 via p38 MAPK in lung epithelial cells.

    PubMed

    Lim, Seul Ki; Kim, Jong Chun; Moon, Chang Jong; Kim, Gye Yeop; Han, Ho Jae; Park, Soo Hyun

    2010-05-27

    Formaldehyde (FA) is an important substance that induces sick house syndrome and diseases, such as asthma and allergies. Oxidative stress is involved in the development of respiratory disease, and diverse antioxidants may protect respiratory tract cells from apoptosis. Peroxiredoxin is a pivotal endogenous antioxidant. In the present study, FA induced death in A549 cells, a lung epithelial cell line, in a dose-dependent manner. FA also increased lipid peroxide formation (LPO) in A549 cells, suggesting a role for oxidative stress. Additionally, FA decreased peroxiredoxin 2 (Prx 2) protein levels after a 24 or 48h exposure to FA. We also examined whether the FA-induced decrease in Prx 2 was associated with apoptosis. Prx 2 overexpression protected against FA-induced cell apoptosis but not necrosis. Prx 2 overexpression blocked FA-induced increase in Bax, a pro-apoptotic molecule, and a decrease in Bcl-2, an anti-apoptotic molecule. Prx 2 overexpression also protected against FA-induced activation of some special apoptosis-associated proteins [caspase-3, caspase-9, and polypeptide poly (ADP-ribose) polymerase (PARP)]. Furthermore, we examined the signaling molecules involved in the FA-induced decrease in Prx 2 expression. The FA-induced decrease in Prx 2 and increase in cell apoptosis was restored by treatment with SB203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by SP600125 [a c-jun-N-terminal kinase (JNK) inhibitor]. Also, FA-induced events were blocked by treatment with p38 siRNA, but not by scrambled siRNA. Indeed, FA increased p38 MAPK activation, suggesting a role for p38 MAPK in FA action. In conclusion, FA mediated apoptosis in lung epithelial cells by decreasing Prx 2 via p38 MAPK.

  10. Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS.

    PubMed

    Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2014-09-01

    This study aims to investigate the mechanism by which resveratrol (RV) prevents sodium nitroprusside (SNP)-induced chondrocyte apoptosis, which is a characteristic feature of osteoarthritis (OA). Rabbit articular chondrocytes were pre-incubated with 100 μM RV for 18 h before 1.5 mM SNP co-treatment for 6 h. Cell viability was evaluated by CCK-8. Annexin V/PI double staining and Hoechst 33258 staining were used to determine the fashion of SNP-induced chondrocytes death. Mitochondrial membrane potential (ΔΨm) was measured by using flow cytometry (FCM) with TMRM and Rhodamine 123 staining. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were confirmed by FCM analysis with DCFH-DA and DAF-FM DA staining. Cytoskeleton proteins of chondrocytes co-stained with Actin-Trakcer Green and Tubulin-Trakcer Red were validated by confocal microscopy. SNP induced time- and dose-dependent chondrocytes apoptosis with decline of ΔΨm, activation of caspases as well as cytoskeletal remodeling. SNP induced a significant induction of both ROS and NO. RV remarkably prevented SNP-induced ROS production and apoptosis as well as cytoskeletal remodeling, but did not prevent SNP-induced NO production. Pretreatment with NO scavengers did not significantly prevent SNP-induced apoptosis and cytoskeletal remodeling. SNP induces NO-independent ROS production which dominates rabbit articular chondrocyte apoptosis, and RV protects chondrocytes against SNP-induced apoptosis via scavenging ROS instead of NO.

  11. ZnO nanoparticles enhanced germ cell apoptosis in Caenorhabditis elegans, in comparison with ZnCl2.

    PubMed

    O'Donnell, Brittany; Huo, Lily; Polli, Joseph R; Qiu, Li; Collier, David; Zhang, Baohong; Pan, Xiaoping

    2016-12-20

    Effects of ZnO NPs and ionic Zn on germline apoptosis and the regulation of genes in the apoptosis pathway were investigated in vivo using the model organism Caenorhabditis elegans (C. elegans). Age synchronized Bristol N2 worms were exposed to ZnO NPs and ZnCl2 at concentrations of 6.14×10(-1), 61.4, and 614 μM form larval stage 1 (L1) to early adulthood. Possible ZnO nanoparticles were observed under the worm cuticle and also in the gonadal region by transmission electron microscopy (TEM). ZnO NPs and ZnCl2 both significantly increased the number of apoptotic cells as compared to controls in the 61.4 and 614 μM treatment groups (p< .05). However, ZnO NPs induced more apoptotic cells in the 61.4 μM treatment than ZnCl2 (p< .05), suggesting ZnO NP is more potent in inducing apoptosis at specific exposure concentration. Findings using the MD701 (bcIs39 [(lim-7)ced-1p::GFP + lin-15(+)]) strain further confirmed the observations in N2 strain. Genes involved in the apoptosis pathway (ced-13, ced-3, ced-4, ced-9, cep-1, dpl-1, efl-1, efl-2, egl-1, egl-38, lin-35, pax-2, and sir-2.1) were in general upregulated in response to ZnO NP exposure. The cep-1/p53 gene was up-regulated in gene expression assay. In the cep-1 loss of function mutant, no significant increase in apoptosis was observed. Therefore, the increased apoptosis resulting from ZnO NPs exposure is likely cep-1/p53 dependent. This study provides evidence that ZnO nanoparticles affect germ cell apoptotic machinery as a potential mechanism of reproductive toxicity.

  12. Asbestos-induced alveolar epithelial cell apoptosis. The role of endoplasmic reticulum stress response.

    PubMed

    Kamp, David W; Liu, Gang; Cheresh, Paul; Kim, Seok-Jo; Mueller, Amanda; Lam, Anna P; Trejo, Humberto; Williams, David; Tulasiram, Sandhya; Baker, Margaret; Ridge, Karen; Chandel, Navdeep S; Beri, Rohinee

    2013-12-01

    Asbestos exposure results in pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully understood. Alveolar epithelial cell (AEC) apoptosis is important in the development of pulmonary fibrosis after exposure to an array of toxins, including asbestos. An endoplasmic reticulum (ER) stress response and mitochondria-regulated (intrinsic) apoptosis occur in AECs of patients with idiopathic pulmonary fibrosis, a disease with similarities to asbestosis. Asbestos induces AEC intrinsic apoptosis, but the role of the ER is unclear. The objective of this study was to determine whether asbestos causes an AEC ER stress response that promotes apoptosis. Using human A549 and rat primary isolated alveolar type II cells, amosite asbestos fibers increased AEC mRNA and protein expression of ER stress proteins involved in the unfolded protein response, such as inositol-requiring kinase (IRE) 1 and X-box-binding protein-1, as well as ER Ca²(2+) release ,as assessed by a FURA-2 assay. Eukarion-134, a superoxide dismutase/catalase mimetic, as well as overexpression of Bcl-XL in A549 cells each attenuate asbestos-induced AEC ER stress (IRE-1 and X-box-binding protein-1 protein expression; ER Ca²(2+) release) and apoptosis. Thapsigargin, a known ER stress inducer, augments AEC apoptosis, and eukarion-134 or Bcl-XL overexpression are protective. Finally, 4-phenylbutyric acid, a chemical chaperone that attenuates ER stress, blocks asbestos- and thapsigargin-induced AEC IRE-1 protein expression, but does not reduce ER Ca²(2+) release or apoptosis. These results show that asbestos triggers an AEC ER stress response and subsequent intrinsic apoptosis that is mediated in part by ER Ca²(2+) release.

  13. Sorafenib inhibition of Mcl-1 accelerates ATRA induced apoptosis in differentiation responsive AML cells

    PubMed Central

    Wang, Rui; Xia, Lijuan; Gabrilove, Janice; Waxman, Samuel; Jing, Yongkui

    2015-01-01

    Purpose All trans retinoic acid (ATRA) is successful in treating acute promyelocytic leukemia (APL) by inducing terminal differentiation-mediated cell death, but it has limited activity in non-APL acute myeloid leukemia (AML). We aim to improve ATRA therapy of AML by enhancing apoptosis through repression of the anti-apoptotic proteins Bcl-2 and Mcl-1. Experimental Design APL and AML cell lines, as well as primary AML samples, were used to explore the mechanisms regulating differentiation and apoptosis during ATRA treatment. Stable transfection and gene silencing with siRNA were used to identify the key factors that inhibit apoptosis during induction of differentiation and drugs that accelerate apoptosis. Results In differentiation responsive AML cells, ATRA treatment induces long-lasting repression of Bcl-2 while first up-modulating and then reducing the Mcl-1 level. The Mcl-1 level appears to serve as a gatekeeper between differentiation and apoptosis. During differentiation induction, activation of MEK/ERK and PI3K/Akt pathways by ATRA leads to activation of p90RSK and inactivation of glycogen synthase kinase 3β (GSK3β), which increase Mcl-1 levels by increasing its translation and stability. Sorafenib blocks ATRA-induced Mcl-1 increase by reversing p90RSK activation and GSK3β inactivation, maintains the repressed Bcl-2 level, and enhances ATRA induced apoptosis in non-APL AML cell lines and in primary AML cells. Conclusion Inhibition of Mcl-1 is required for apoptosis induction in ATRA differentiation responsive AML cells. ATRA and Sorafenib can be developed as a novel drug combination therapy for AML patients because this drug combination augments apoptosis by inhibiting Bcl-2 and Mcl-1. PMID:26459180

  14. Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.

    PubMed

    Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A; Jette, Cicely

    2014-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.

  15. Bupivacaine induces apoptosis via mitochondria and p38 MAPK dependent pathways.

    PubMed

    Lu, Jun; Xu, Shi Yuan; Zhang, Qing Guo; Xu, Rui; Lei, Hong Yi

    2011-04-25

    Mitochondria and the p38 mitogen-activated protein kinase (MAPK) pathways play important roles in apoptosis. Although the effect of bupivacaine on apoptosis is known, it remains unclear whether bupivacaine induces apoptosis via mitochondrial depolarization and the p38 MAPK activity. In this study, SH-SY5Y cells were pretreated respectively with 50μM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 10μM 4-(4-Fluorophenyl)-2-[4-(methylsulfinyl)phenyl]-5-(4-pyridyl)-1H-imidazole (SB203580), and 50μM DIDS plus 10μM SB203580 30min prior to the treatment with either 1mM bupivacaine or an equivalent amount of medium. The cell viability, mitochondrial membrane potential, phospho-p38 MAPK (p-p38 MAPK) and cell apoptosis were investigated with MTT assay, western blots, Hoechst 33258 staining and flow cytometry assay. In addition, the roles of chloridion (Cl(-)) channel and reactive oxygen species were studied to explore the molecular mechanism of bupivacaine-induced mitochondrial injury. Pretreatment with DIDS could attenuate reactive oxygen species production, the phosphorylation of p38MAPK, dissipation of mitochondrial membrane potential and apoptosis of SH-SY5Y cells induced by bupivacaine. Pretreatment with SB203580 could attenuate apoptosis, but could not attenuate reactive oxygen species production, or dissipation of mitochondrial membrane potential induced by bupivacaine. These findings indicate that the mitochondrial anion channel and p38 MAPK pathway are implicated in bupicavaine-induced apoptosis. Bupivacaine-induced reactive oxygen species production results in an alteration in the permeability of the mitochondrial membranes and Cl(-) influx into mitochondria, which seems to be responsible for mitochondrial depolarization and the p38 MAPK activation.

  16. Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis

    PubMed Central

    Wang, Yan; Xu, Yingqiong; Liu, Qian; Zhang, Yuanyuan; Gao, Zhen; Yin, Mingzhu; Jiang, Nan; Cao, Guosheng; Yu, Boyang; Cao, Zhengyu; Kou, Junping

    2017-01-01

    Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases. PMID:28352215

  17. Crimean-Congo Hemorrhagic Fever Virus-Infected Hepatocytes Induce ER-Stress and Apoptosis Crosstalk

    PubMed Central

    Rodrigues, Raquel; Paranhos-Baccalà, Gláucia; Vernet, Guy; Peyrefitte, Christophe N.

    2012-01-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a widely distributed tick-borne member of the Nairovirus genus (Bunyaviridae) with a high mortality rate in humans. CCHFV induces a severe disease in infected patients that includes, among other symptoms, massive liver necrosis and failure. The interaction between liver cells and CCHFV is therefore important for understanding the pathogenesis of this disease. Here, we described the in vitro CCHFV-infection and -replication in the hepatocyte cell line, Huh7, and the induced cellular and molecular response modulation. We found that CCHFV was able to infect and replicate to high titres and to induce a cytopathic effect (CPE). We also observed by flow cytometry and real time quantitative RT-PCR evidence of apoptosis, with the participation of the mitochondrial pathway. On the other hand, we showed that the replication of CCHFV in hepatocytes was able to interfere with the death receptor pathway of apoptosis. Furthermore, we found in CCHFV-infected cells the over-expression of PUMA, Noxa and CHOP suggesting the crosstalk between the ER-stress and mitochondrial apoptosis. By ELISA, we observed an increase of IL-8 in response to viral replication; however apoptosis was shown to be independent from IL-8 secretion. When we compared the induced cellular response between CCHFV and DUGV, a mild or non-pathogenic Nairovirus for humans, we found that the most striking difference was the absence of CPE and apoptosis. Despite the XBP1 splicing and PERK gene expression induced by DUGV, no ER-stress and apoptosis crosstalk was observed. Overall, these results suggest that CCHFV is able to induce ER-stress, activate inflammatory mediators and modulate both mitochondrial and death receptor pathways of apoptosis in hepatocyte cells, which may, in part, explain the role of the liver in the pathogenesis of CCHFV. PMID:22238639

  18. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs.

    PubMed

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S; Liu, Peter Y; Cohen, Pinchas; Wang, Christina

    2015-04-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.

  19. Nitrous oxide plus isoflurane induces apoptosis and increases β-amyloid protein levels

    PubMed Central

    Zhen, Yu; Dong, Yuanlin; Wu, Xu; Xu, Zhipeng; Lu, Yan; Zhang, Yiying; Norton, David; Tian, Ming; Li, Shuren; Xie, Zhongcong

    2009-01-01

    Background Some anesthetics have been suggested to induce neurotoxicity including promotion of Alzheimer’s disease neuropathogenesis. Nitrous oxide and isoflurane are common anesthetics. Here, we set out to assess effects of nitrous oxide and/or isoflurane on apoptosis and β-amyloid (Aβ) levels in H4 human neuroglioma cells and primary neurons from naïve mice. Methods The cells or neurons were exposed to 70% nitrous oxide and/or 1% isoflurane for six hours. The cells or neurons and conditioned media were harvested at the end of the treatment. Caspase-3 activation, apoptosis, processing of amyloid precursor protein, and Aβ levels were determined. Results Treatment with a combination of 70% nitrous oxide and 1% isoflurane for six hours induced caspase-3 activation and apoptosis in H4 naïve cells and primary neurons from naïve mice. The 70% nitrous oxide plus 1% isoflurane, but neither alone, for six hours induced caspase-3 activation and apoptosis, and increased levels of β-site amyloid precursor protein-cleaving enzyme and Aβ in H4-amyloid precursor protein cells. In addition, the nitrous oxide plus isoflurane-induced Aβ generation was reduced by a broad caspase inhibitor Z-VAD. Finally, the nitrous oxide plus isoflurane-induced caspase-3 activation was attenuated by γ-secretase inhibitor L-685,458, but potentiated by exogenously added Aβ. Conclusion These results suggest that common anesthetics nitrous oxide plus isoflurane may promote neurotoxicity by inducing apoptosis and increasing Aβ levels. The generated Aβ may further potentiate apoptosis to form another round of apoptosis and Aβ generation. More studies, especially the in vivo confirmation of these in vitro findings, are needed. PMID:19741497

  20. The Effects of Humanin and Its Analogues on Male Germ Cell Apoptosis Induced by Chemotherapeutic Drugs

    PubMed Central

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S.; Liu, Peter Y.; Cohen, Pinchas; Wang, Christina

    2015-01-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy (Cyclophosphamide, CP and Doxorubicin, DOX)-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: 1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; 2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; 3) self-dimerization or binding to IGFBP-3 may not be involved in HN’s effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects. PMID:25666707