Sample records for induces persistent lung

  1. Intravenous and intratracheal mesenchymal stromal cell injection in a mouse model of pulmonary emphysema.

    PubMed

    Tibboel, Jeroen; Keijzer, Richard; Reiss, Irwin; de Jongste, Johan C; Post, Martin

    2014-06-01

    The aim of this study was to characterize the evolution of lung function and -structure in elastase-induced emphysema in adult mice and the effect of mesenchymal stromal cell (MSC) administration on these parameters. Adult mice were treated with intratracheal (4.8 units/100 g bodyweight) elastase to induce emphysema. MSCs were administered intratracheally or intravenously, before or after elastase injection. Lung function measurements, histological and morphometric analysis of lung tissue were performed at 3 weeks, 5 and 10 months after elastase and at 19, 20 and 21 days following MSC administration. Elastase-treated mice showed increased dynamic compliance and total lung capacity, and reduced tissue-specific elastance and forced expiratory flows at 3 weeks after elastase, which persisted during 10 months follow-up. Histology showed heterogeneous alveolar destruction which also persisted during long-term follow-up. Jugular vein injection of MSCs before elastase inhibited deterioration of lung function but had no effects on histology. Intratracheal MSC treatment did not modify lung function or histology. In conclusion, elastase-treated mice displayed persistent characteristics of pulmonary emphysema. Jugular vein injection of MSCs prior to elastase reduced deterioration of lung function. Intratracheal MSC treatment had no effect on lung function or histology.

  2. Expression of cyclin D{sub 1} during endotoxin-induced aleveolar type II cell hyperplasia in rat lung and the detection of apoptotic cells during the remodeling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfaigzi, J.; Wood, M.B.; Johnson, N.F.

    Our studies have shown that endotoxin intratracheally instilled into the rat lung induces proliferation of alveolar type II cells. In that study, the alveolar type II cells. In that study, the alveolar type II cell hyperplasia occurred 2 d after instillation of endotoxin and persisted for a further 2 d. After hyperplasia, the lung remodeled and returned to a normal state within 24-48 h. Understanding the mechanisms involved in the remodeling process of this transient hyperplasia may be useful to identify molecular changes that are altered in neoplasia. The purpose of the present study was to corroborate induction of epithelialmore » cell hyperplasia by endotoxin and to delineate mechanisms involved in tissue remodeling after endotoxin-induced alveolar type II cell hyperplasia. In conclusion, immonostaining with cyclin D1 and cytokeratin shows that endotoxin induced epithelial cell proliferation and resulted in hyperplasia in the lung which persisted through 4 d post-instillation.« less

  3. Persistence of Gamma-H2AX Foci in Irradiated Bronchial Cells Correlates with Susceptibility to Radiation Associated Lung Cancer in Mice

    NASA Technical Reports Server (NTRS)

    Ochola, Donasian O.; Sharif, Rabab; Bedford, Joel S.; Keefe, Thomas J.; Kato, Takamitsu A.; Fallgren, Christina M.; Demant, Peter; Costes, Sylvain V.; Weil, Michael M.

    2018-01-01

    The risk of developing radiation-induced lung cancer differs between different strains of mice, but the underlying cause of the strain differences is unknown. Strains of mice also differ in their ability to efficiently repair DNA double strand breaks resulting from radiation exposure. We phenotyped mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy in repairing DNA double strand breaks during protracted radiation exposures. We monitored persistent gamma-H2AX radiation induced foci (RIF) 24 hours after exposure to chronic gamma-rays as a surrogate marker for repair deficiency in bronchial epithelial cells for 17 of the CcS/Dem strains and the BALB/cHeN founder strain. We observed a very strong correlation R2 = 79.18%, P < 0.001) between the level of persistent RIF and radiogenic lung cancer percent incidence measured in the same strains. Interestingly, spontaneous levels of foci in non-irradiated strains also showed good correlation with lung cancer incidence (R2=32.74%, P =0.013). These results suggest that genetic differences in DNA repair capacity largely account for differing susceptibilities to radiation-induced lung cancer among CcS/Dem mouse strains and that high levels of spontaneous DNA damage is also a relatively good marker of cancer predisposition. In a smaller pilot study, we found that the repair capacity measured in peripheral blood leucocytes also correlated well with radiogenic lung cancer susceptibility, raising the possibility that such phenotyping assay could be used to detect radiogenic lung cancer susceptibility in humans.

  4. Mechanical versus humoral determinants of brain death-induced lung injury

    PubMed Central

    Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Hupkens, Emeline; Dewachter, Céline; Creteur, Jacques; Mc Entee, Kathleen; Naeije, Robert; Rondelet, Benoît

    2017-01-01

    Background The mechanisms of brain death (BD)-induced lung injury remain incompletely understood, as uncertainties persist about time-course and relative importance of mechanical and humoral perturbations. Methods Brain death was induced by slow intracranial blood infusion in anesthetized pigs after randomization to placebo (n = 11) or to methylprednisolone (n = 8) to inhibit the expression of pro-inflammatory mediators. Pulmonary artery pressure (PAP), wedged PAP (PAWP), pulmonary vascular resistance (PVR) and effective pulmonary capillary pressure (PCP) were measured 1 and 5 hours after Cushing reflex. Lung tissue was sampled to determine gene expressions of cytokines and oxidative stress molecules, and pathologically score lung injury. Results Intracranial hypertension caused a transient increase in blood pressure followed, after brain death was diagnosed, by persistent increases in PAP, PCP and the venous component of PVR, while PAWP did not change. Arterial PO2/fraction of inspired O2 (PaO2/FiO2) decreased. Brain death was associated with an accumulation of neutrophils and an increased apoptotic rate in lung tissue together with increased pro-inflammatory interleukin (IL)-6/IL-10 ratio and increased heme oxygenase(HO)-1 and hypoxia inducible factor(HIF)-1 alpha expression. Blood expressions of IL-6 and IL-1β were also increased. Methylprednisolone pre-treatment was associated with a blunting of increased PCP and PVR venous component, which returned to baseline 5 hours after BD, and partially corrected lung tissue biological perturbations. PaO2/FiO2 was inversely correlated to PCP and lung injury score. Conclusions Brain death-induced lung injury may be best explained by an initial excessive increase in pulmonary capillary pressure with increased pulmonary venous resistance, and was associated with lung activation of inflammatory apoptotic processes which were partially prevented by methylprednisolone. PMID:28753621

  5. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, Da

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbitsmore » were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure–volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. - Highlights: • A novel rabbit model of chlorine-induced lung disease was developed. • Acute effects of chlorine were pulmonary edema, hypoxemia and impaired lung function. • Persistent small airway disease developed following recovery from acute injury. • Small airway disease included inflammation and bronchiolitis obliterans lesions. • The model should be useful for studying chlorine lung injury and testing treatments.« less

  6. Persistent structural adaptation in the lungs of guinea pigs raised at high altitude.

    PubMed

    Ravikumar, Priya; Bellotto, Dennis J; Hsia, Connie C W

    2015-03-01

    Laboratory guinea pigs raised at high altitude (HA, 3800 m) for up to 6 mo exhibit enhanced alveolar growth and remodeling (Hsia et al., 2005. Resp. Physiol. Neurobiol. 147, 105-115). To determine whether initial HA-induced structural enhancement persists following return to intermediate altitude (IA), we raised weanling guinea pigs at (a) HA for 11-12 mo, (b) IA (1200 m) for 11-12 mo, and (c) HA for 4 mo followed by IA for 7-8 mo (HA-to-IA). Morphometric analysis was performed under light and electron microscopy. Body weight and lung volume were similar among groups. Prolonged HA residence increased alveolar epithelium and interstitium volumes while reducing alveolar-capillary blood volume. The HA-induced gains in type-1 epithelium volume and alveolar surface area were no longer present following return to IA whereas volume increases in type-2 epithelium and interstitium and the reduction in alveolar duct volume persisted. Results demonstrate persistent augmentation of some but not all aspects of lung structure throughout prolonged HA residence, with partial reversibility following re-acclimatization to IA. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Long-term intravenous administration of carboxylated single-walled carbon nanotubes induces persistent accumulation in the lungs and pulmonary fibrosis via the nuclear factor-kappa B pathway.

    PubMed

    Qin, Yue; Li, Suning; Zhao, Gan; Fu, Xuanhao; Xie, Xueping; Huang, Yiyi; Cheng, Xiaojing; Wei, Jinbin; Liu, Huagang; Lai, Zefeng

    2017-01-01

    Numerous studies have demonstrated promising application of single-walled carbon nanotubes (SWNTs) in drug delivery, diagnosis, and targeted therapy. However, the adverse health effects resulting from intravenous injection of SWNTs are not completely understood. Studies have shown that levels of "pristine" or carboxylated carbon nanotubes are very high in mouse lungs after intravenous injection. We hypothesized that long-term and repeated intravenous administration of carboxylated SWNTs (c-SWNTs) can result in persistent accumulation and induce histopathologic changes in rat lungs. Here, c-SWNTs were administered repeatedly to rats via tail-vein injection for 90 days. Long-term intravenous injection of c-SWNTs caused sustained embolization in lung capillaries and granuloma formation. It also induced a persistent inflammatory response that was regulated by the nuclear factor-kappa B signaling pathway, and which resulted in pulmonary fibrogenesis. c-SWNTs trapped within lung capillaries traversed capillary walls and injured alveolar epithelial cells, thereby stimulating production of pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta) and pro-fibrotic growth factors (transforming growth factor-beta 1). Protein levels of type-I and type-III collagens, matrix metalloproteinase-2, and the tissue inhibitor of metalloproteinase-2 were upregulated after intravenous exposure to c-SWNTs as determined by immunohistochemical assays and Western blotting, which suggested collagen deposition and remodeling of the extracellular matrix. These data suggest that chronic and cumulative toxicity of nanomaterials to organs with abundant capillaries should be assessed if such nanomaterials are applied via intravenous administration.

  8. Persistent Expression Changes of Fibrosis Related Genes in the Lung Tissues of Rats Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Theriot, Corey; Zalesak, Selina; Yeshitla, Samrawit; Williams, Kyle; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of reactive dust, containing 1-2% of respirable fine dust (< 3 microns). The habitable area of any lunar landing vehicle would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents through inhalation to assess the health risk of dust exposures to humans and to identify the mechanisms and potential pathways involved in lunar dust-induced toxicity. Ccl3, Ccl12, Cxcl2, Cxcl5, Itgb8, Tnf, Ldhc, Clec4e, Bmp7, and Smad6, showed persistently significant expression changes in the lung tissue. The expression of several of these genes were dose- and time- dependent, and were significantly correlated with other pathological. Our previous data showed that no pathological changes were detected in low dose groups. However, several genes, primarily produced by lung epithelial, were significantly altered persistently in response to low-dose dust exposure. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity, contributing not only the risk assessment for future space exploration, but also understandings of the dust-induced toxicity to humans on earth.

  9. Ozone-Induced Injury and Oxidative Stress in Bronchiolar Epithelium Are Associated with Altered Pulmonary Mechanics

    PubMed Central

    Sunil, Vasanthi R.

    2013-01-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3h) resulted in rapid (within 3h) and persistent (up to 72h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24h post-exposure. Ozone also induced the appearance of 8-hydroxy-2′-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3–24h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning. PMID:23492811

  10. Persistent effects of chlorine inhalation on respiratory health

    PubMed Central

    Hoyle, Gary W.; Svendsen, Erik R.

    2016-01-01

    Chlorine gas is a toxic respiratory irritant that is considered a chemical threat agent because of the potential for release in industrial accidents or terrorist attacks. Chlorine inhalation damages the respiratory tract, including the airways and distal lung, and can result in acute lung injury. Some individuals exposed to chlorine experience a full recovery from acute injury, whereas others develop persistent adverse effects, such as respiratory symptoms, inflammation, and lung-function decrements. In animal models, chlorine can produce persistent inflammation, remodeling, and obstruction in large or small airways, depending on species. Airways with pseudostratified epithelium are repaired efficiently, with surviving basal epithelial cells serving as progenitor cells that repopulate the complement of differentiated cell types. Distal airways lacking basal cells are repaired less efficiently, leading to chronic inflammation and fibrosis at these sites. Persistent chlorine-induced airway disease in humans is treated with asthma medication to relieve symptoms. However, such treatment does not ameliorate the underlying disease pathogenesis, so treatments that are more effective at preventing initial development of airway disease after irritant gas exposure and at reversing established disease are needed. PMID:27385061

  11. The role of impaired esophageal and gastric motility in end-stage lung diseases and after lung transplantation.

    PubMed

    Fisichella, Piero Marco; Jalilvand, Anahita

    2014-01-01

    Today, many questions persist regarding the causal relationship of gastroesophageal reflux disease (GERD) to promote aspiration and its potential to induce both pulmonary and allograft failure. Current hypotheses, which have identified GERD as a nonimmune risk factor in inducing pulmonary and allograft failure, center on the role of GERD-induced aspiration of gastroduodenal contents. Risk factors of GERD, such as impaired esophageal and gastric motility, may indirectly play a role in the aspiration process. In fact, although impaired esophageal and gastric motility is not independently a cause of lung deterioration or allograft failure, they may cause and or exacerbate GERD. This report seeks to review present research on impaired esophageal and gastric motility in end-stage lung disease to characterize prevalence, etiology, pathophysiology, and current treatment options within this special patient population. Published by Elsevier Inc.

  12. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice.

    PubMed

    Li, Yan; Xu, Jun; Shi, Weiqing; Chen, Cheng; Shao, Yan; Zhu, Limei; Lu, Wei; Han, XiaoDong

    2016-10-28

    The avian influenza virus (AIV) can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. We hypothesized that mesenchymal stromal cells (MSCs) would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 10 4 MID 50 of A/HONG KONG/2108/2003 [H9N2 (HK)] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF) and serum, and assessed pathological changes to the lungs. MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.

  13. Unique Chemokine Profiles of Lung Tissues Distinguish Post-chemotherapeutic Persistent and Chronic Tuberculosis in a Mouse Model.

    PubMed

    Park, Soomin; Baek, Seung-Hun; Cho, Sang-Nae; Jang, Young-Saeng; Kim, Ahreum; Choi, In-Hong

    2017-01-01

    There is a substantial need for biomarkers to distinguish latent stage from active Mycobacterium tuberculosis infections, for predicting disease progression. To induce the reactivation of tuberculosis, we present a new experimental animal model modified based on the previous model established by our group. In the new model, the reactivation of tuberculosis is induced without administration of immunosuppressive agents, which might disturb immune responses. To identify the immunological status of the persistent and chronic stages, we analyzed immunological genes in lung tissues from mice infected with M. tuberculosis . Gene expression was screened using cDNA microarray analysis and confirmed by quantitative RT-PCR. Based on the cDNA microarray results, 11 candidate cytokines genes, which were obviously up-regulated during the chronic stage compared with those during the persistent stage, were selected and clustered into three groups: (1) chemokine genes, except those of monocyte chemoattractant proteins (MCPs; CXCL9, CXCL10, CXCL11, CCL5, CCL19); (2) MCP genes (CCL2, CCL7, CCL8, CCL12); and (3) TNF and IFN-γ genes. Results from the cDNA microarray and quantitative RT-PCR analyses revealed that the mRNA expression of the selected cytokine genes was significantly higher in lung tissues of the chronic stage than of the persistent stage. Three chemokines (CCL5, CCL19, and CXCL9) and three MCPs (CCL7, CCL2, and CCL12) were noticeably increased in the chronic stage compared with the persistent stage by cDNA microarray ( p < 0.01, except CCL12) or RT-PCR ( p < 0.01). Therefore, these six significantly increased cytokines in lung tissue from the mouse tuberculosis model might be candidates for biomarkers to distinguish the two disease stages. This information can be combined with already reported potential biomarkers to construct a network of more efficient tuberculosis markers.

  14. Time course of polyhexamethyleneguanidine phosphate-induced lung inflammation and fibrosis in mice.

    PubMed

    Song, Jeongah; Kim, Woojin; Kim, Yong-Bum; Kim, Bumseok; Lee, Kyuhong

    2018-04-15

    Pulmonary fibrosis is a chronic progressive disease with unknown etiology and has poor prognosis. Polyhexamethyleneguanidine phosphate (PHMG-P) causes acute interstitial pneumonia and pulmonary fibrosis in humans when it exposed to the lung. In a previous study, when rats were exposed to PHMG-P through inhalation for 3 weeks, lung inflammation and fibrosis was observed even after 3 weeks of recovery. In this study, we aimed to determine the time course of PHMG-P-induced lung inflammation and fibrosis. We compared pathological action of PHMG-P with that of bleomycin (BLM) and investigated the mechanism underlying PHMG-P-induced lung inflammation and fibrosis. PHMG-P (0.9 mg/kg) or BLM (1.5 mg/kg) was intratracheally administered to mice. At weeks 1, 2, 4 and 10 after instillation, the levels of inflammatory and fibrotic markers and the expression of inflammasome proteins were measured. The inflammatory and fibrotic responses were upregulated until 10 and 4 weeks in the PHMG-P and BLM groups, respectively. Immune cell infiltration and considerable collagen deposition in the peribronchiolar and interstitial areas of the lungs, fibroblast proliferation, and hyperplasia of type II epithelial cells were observed. NALP3 inflammasome activation was detected in the PHMG-P group until 4 weeks, which is suspected to be the main reason for the persistent inflammatory response and exacerbation of fibrotic changes. Most importantly, the pathological changes in the PHMG-P group were similar to those observed in humidifier disinfectant-associated patients. A single exposure of PHMG-P led to persistent pulmonary inflammation and fibrosis for at least 10 weeks. Copyright © 2018. Published by Elsevier Inc.

  15. Intermittent hypoxia during recovery from neonatal hyperoxic lung injury causes long-term impairment of alveolar development: A new rat model of BPD.

    PubMed

    Mankouski, Anastasiya; Kantores, Crystal; Wong, Mathew J; Ivanovska, Julijana; Jain, Amish; Benner, Eric J; Mason, Stanley N; Tanswell, A Keith; Auten, Richard L; Jankov, Robert P

    2017-02-01

    Bronchopulmonary dysplasia (BPD) is a chronic lung injury characterized by impaired alveologenesis that may persist into adulthood. Rat models of BPD using varying degrees of hyperoxia to produce injury either cause early mortality or spontaneously recover following removal of the inciting stimulus, thus limiting clinical relevance. We sought to refine an established rat model induced by exposure to 60% O 2 from birth by following hyperoxia with intermittent hypoxia (IH). Rats exposed from birth to air or 60% O 2 until day 14 were recovered in air with or without IH (FI O 2 = 0.10 for 10 min every 6 h) until day 28 Animals exposed to 60% O 2 and recovered in air had no evidence of abnormal lung morphology on day 28 or at 10-12 wk. In contrast, 60% O 2 -exposed animals recovered in IH had persistently increased mean chord length, more dysmorphic septal crests, and fewer peripheral arteries. Recovery in IH also increased pulmonary vascular resistance, Fulton index, and arterial wall thickness. IH-mediated abnormalities in lung structure (but not pulmonary hypertension) persisted when reexamined at 10-12 wk, accompanied by increased pulmonary vascular reactivity and decreased exercise tolerance. Increased mean chord length secondary to IH was prevented by treatment with a peroxynitrite decomposition catalyst [5,10,15,20-Tetrakis(4-sulfonatophenyl)-21H,23H-porphyrin iron (III) chloride, 30 mg/kg/day, days 14-28], an effect accompanied by fewer inflammatory cells. We conclude that IH during recovery from hyperoxia-induced injury prevents recovery of alveologenesis and leads to changes in lung and pulmonary vascular function lasting into adulthood, thus more closely mimicking contemporary BPD. Copyright © 2017 the American Physiological Society.

  16. Allergic inflammation induces a persistent mechanistic switch in thromboxane-mediated airway constriction in the mouse

    PubMed Central

    Cyphert, Jaime M.; Allen, Irving C.; Church, Rachel J.; Latour, Anne M.; Snouwaert, John N.; Coffman, Thomas M.

    2012-01-01

    Actions of thromboxane (TXA2) to alter airway resistance were first identified over 25 years ago. However, the mechanism underlying this physiological response has remained largely undefined. Here we address this question using a novel panel of mice in which expression of the thromboxane receptor (TP) has been genetically manipulated. We show that the response of the airways to TXA2 is complex: it depends on expression of other G protein-coupled receptors but also on the physiological context of the signal. In the healthy airway, TXA2-mediated airway constriction depends on expression of TP receptors by smooth muscle cells. In contrast, in the inflamed lung, the direct actions of TXA2 on smooth muscle cell TP receptors no longer contribute to bronchoconstriction. Instead, in allergic lung disease, TXA2-mediated airway constriction depends on neuronal TP receptors. Furthermore, this mechanistic switch persists long after resolution of pulmonary inflammation. Our findings demonstrate the powerful ability of lung inflammation to modify pathways leading to airway constriction, resulting in persistent changes in mechanisms of airway reactivity to key bronchoconstrictors. Such alterations are likely to shape the pathogenesis of asthmatic lung disease. PMID:21984570

  17. Acute Lung Injury and Persistent Small Airway Disease in a Rabbit Model of Chlorine Inhalation

    PubMed Central

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, David M.; Powell, Karen S.; Roberts, Andrew M.; Hoyle, Gary W.

    2016-01-01

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. PMID:27913141

  18. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Makanga, Martine; Maruyama, Hidekazu; Dewachter, Celine; Da Costa, Agnès Mendes; Hupkens, Emeline; de Medina, Geoffrey; Naeije, Robert; Dewachter, Laurence

    2015-04-01

    Congenital diaphragmatic hernia (CDH) has a high mortality rate mainly due to lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). Simvastatin has been shown to prevent the development of pulmonary hypertension (PH) in experimental models of PH. We, therefore, hypothesized that antenatal simvastatin would attenuate PPHN in nitrofen-induced CDH in rats. The efficacy of antenatal simvastatin was compared with antenatal sildenafil, which has already been shown to improve pathological features of PPHN in nitrofen-induced CDH. On embryonic day (E) 9.5, nitrofen or vehicle was administered to pregnant Sprague-Dawley rats. On E11, nitrofen-treated rats were randomly assigned to antenatal simvastatin (20 mg·kg(-1)·day(-1) orally), antenatal sildenafil (100 mg·kg(-1)·day(-1) orally), or placebo administration from E11 to E21. On E21, fetuses were delivered by cesarean section, killed, and checked for left-sided CDH. Lung tissue was then harvested for further pathobiological evaluation. In nitrofen-induced CDH, simvastatin failed to reduce the incidence of nitrofen-induced CDH in the offspring and to increase the body weight, but improved the lung-to-body weight ratio and lung parenchyma structure. Antenatal simvastatin restored the pulmonary vessel density and external diameter, and reduced the pulmonary arteriolar remodeling compared with nitrofen-induced CDH. This was associated with decreased lung expression of endothelin precursor, endothelin type A and B receptors, endothelial and inducible nitric oxide synthase, together with restored lung activation of apoptotic processes mainly in the epithelium. Antenatal simvastatin presented similar effects as antenatal therapy with sildenafil on nitrofen-induced CDH. Antenatal simvastatin improves pathological features of lung hypoplasia and PPHN in experimental nitrofen-induced CDH. Copyright © 2015 the American Physiological Society.

  19. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia

    PubMed Central

    Makanga, Martine; Maruyama, Hidekazu; Dewachter, Celine; Da Costa, Agnès Mendes; Hupkens, Emeline; de Medina, Geoffrey; Naeije, Robert

    2015-01-01

    Congenital diaphragmatic hernia (CDH) has a high mortality rate mainly due to lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). Simvastatin has been shown to prevent the development of pulmonary hypertension (PH) in experimental models of PH. We, therefore, hypothesized that antenatal simvastatin would attenuate PPHN in nitrofen-induced CDH in rats. The efficacy of antenatal simvastatin was compared with antenatal sildenafil, which has already been shown to improve pathological features of PPHN in nitrofen-induced CDH. On embryonic day (E) 9.5, nitrofen or vehicle was administered to pregnant Sprague-Dawley rats. On E11, nitrofen-treated rats were randomly assigned to antenatal simvastatin (20 mg·kg−1·day−1 orally), antenatal sildenafil (100 mg·kg−1·day−1 orally), or placebo administration from E11 to E21. On E21, fetuses were delivered by cesarean section, killed, and checked for left-sided CDH. Lung tissue was then harvested for further pathobiological evaluation. In nitrofen-induced CDH, simvastatin failed to reduce the incidence of nitrofen-induced CDH in the offspring and to increase the body weight, but improved the lung-to-body weight ratio and lung parenchyma structure. Antenatal simvastatin restored the pulmonary vessel density and external diameter, and reduced the pulmonary arteriolar remodeling compared with nitrofen-induced CDH. This was associated with decreased lung expression of endothelin precursor, endothelin type A and B receptors, endothelial and inducible nitric oxide synthase, together with restored lung activation of apoptotic processes mainly in the epithelium. Antenatal simvastatin presented similar effects as antenatal therapy with sildenafil on nitrofen-induced CDH. Antenatal simvastatin improves pathological features of lung hypoplasia and PPHN in experimental nitrofen-induced CDH. PMID:25617377

  20. Effect of total body irradiation on late lung effects: hidden dangers.

    PubMed

    Johnston, Carl J; Manning, Casey; Hernady, Eric; Reed, Christina; Thurston, Sally W; Finkelstein, Jacob N; Williams, Jacqueline P

    2011-08-01

    In our ongoing investigation into the consequences of a radiological terrorism or nuclear dispersion event, we assessed whether a dose range that is believed to be sub-threshold for the development of lung endpoints results in late pathological changes and, secondarily, whether those late changes affect the lung's ability to respond to subsequent challenge. C57BL/6J mice received total body irradiation (0.5-10 Gy) and were followed for 6-18 months after irradiation. At 12 and 15 months, a subset of mice was exposed to a second challenge (aerosolised lipopolysaccharide [LPS]). Cytokines shown to be upregulated early (hours) following irradiation (interleukin [IL]6, keratinocyte chemoattractant [KC], IL1B, and IL1R2) demonstrated increases in messenger ribose nucleic acid (mRNA) expression at late time points, beginning at nine months. Although persistent, dose-dependent increases in T cell counts were seen, no other overt changes in pathophysiology were observed. Nonetheless, animals that were exposed to a secondary challenge at late time points demonstrated an increased inflammatory cell recruitment and persistence in response relative to controls. We propose that, following doses that elicit little change in pathophysiology, sub-clinical radiation-induced injury increases the lungs' susceptibility to a secondary challenge, possibly through a radiation-induced alteration in the immune defense system.

  1. Noninvasive assessment of peroxidative lung damage by HIPDM lung scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miniati, M.; Borrelli, E.; Monti, S.

    1991-03-15

    The basic compound iodobenzyl-propanediamine (HIPDM), when given intravenously, is extracted by the lungs whence it is effluxed at a slow exponential rate. In humans (normal non smokers), the mean residence time ({bar t}) of 123I-HIPDM, assessed by external detection, averages 7.2 {plus minus} 1.1 hrs. Persistence of HIPDM in lungs is significantly increased in asymptomatic smokers and, to a greater extent, in patients with ARDS. Since production of free oxygen radicals reportedly occurs as a consequence of smoke exposure and in the course of acute lung injury, the authors hypothesized that the prolonged persistence of HIPDM in the lungs ofmore » smokers and of patients with ARDS might reflect a peroxidative damage of lung tissue. They tested this hypothesis in rabbits since their baseline HIPDM lung clearance is similar to that of nonsmoking humans. In rabbits, acute lung injury was induced by phorbol myristate acetate. Three hrs after PMA administration, the animals received an i.v. bolus of {sup 131}I-HIPDM. Radioactivity over the chest was recorded for 2 hrs by gamma camera and HIPDM mean residence time in the lungs was computed. Thereafter, the animals were sacrificed and their lungs were removed to measure wet/dry weight ratio as index of lung edema and malondialdehyde (MDA) content as index of lipid peroxidation. HIPDM mean residence time was positively correlated with MDA level in lung tissue, but not with wet/dry weight ratio. Noninvasive assessment of HIPDM lung kinetics may then serve as specific in vivo marker of peroxidative lung injury.« less

  2. Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Eun-Jung, E-mail: pejtoxic@hanmail.net; Hong, Young-Shick; Lee, Byoung-Seok

    2016-07-15

    Due to their unique physicochemical properties, the potential health effects of single-walled carbon nanotubes (SWCNTs) have attracted continuous attention together with their extensive application. In this study, we aimed to identify local and systemic health effects following pulmonary persistence of SWCNTs. As expected, SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation (50, 100, and 200 μg/kg). In the lung, the total number of cells and the percentages of lymphocytes and neutrophils significantly increased at 200 μg/kg compared to the control, and the Th1-polarized immune response was induced accompanying enhanced expression of tissue damage-related genes andmore » increased release of chemokines. Additionally, SWCNTs enhanced the expression of antigen presentation-related proteins on the surface of antigen-presenting cells, however, maturation of dendritic cells was inhibited by their persistence. As compared to the control, a significant increase in the percentage of neutrophils and a remarkable decrease of BUN and potassium level were observed in the blood of mice treated with the highest dose. This was accompanied by the down-regulation of the expression of antigen presentation-related proteins on splenocytes. Moreover, protein and glucose metabolism were disturbed with an up-regulation of fatty acid β-oxidation. Taken together, we conclude that SWCNTs may induce adverse health effects by disturbing immune and metabolic regulation functions in the body. Therefore, careful application of SWCNTs is necessary for the enforcement of safety in nano-industries. - Highlights: • We evaluated local and systemic health effects following persistence of SWCNTs. • SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation. • Th1-polarized immune response was induced in the lung. • The expression of antigen presentation-related proteins was altered. • Immune and metabolic regulation function were disturbed.« less

  3. Epithelial neoplasia coincides with exacerbated injury and fibrotic response in the lungs of Gprc5a-knockout mice following silica exposure

    PubMed Central

    Zhong, Shuangshuang; Song, Hongyong; Sun, Beibei; Zhou, Binhua P.; Deng, Jiong; Han, Baohui

    2015-01-01

    Exposure to crystalline silica is suggested to increase the risk for a variety of lung diseases, including fibrosis and lung cancer. However, epidemiological evidences for the exposure-risk relationship are ambiguous and conflicting, and experimental study from a reliable animal model to explore the relationship is lacking. We reasoned that a mouse model that is sensitive to both lung injury and tumorigenesis would be appropriate to evaluate the exposure-risk relationship. Previously, we showed that, Gprc5a−/− mice are susceptible to both lung tumorigenesis and endotoxin-induced acute lung injury. In this study, we investigated the biological consequences in Gprc5a−/− mouse model following silica exposure. Intra-tracheal administration of fine silica particles in Gprc5a−/− mice resulted in more severe lung injury and pulmonary inflammation than in wild-type mice. Moreover, an enhanced fibrogenic response, including EMT-like characteristics, was induced in the lungs of Gprc5a−/− mice compared to those from wild-type ones. Importantly, increased hyperplasia or neoplasia coincided with silica-induced tissue injury and fibrogenic response in lungs from Gprc5a−/− mice. Consistently, expression of MMP9, TGFβ1 and EGFR was significantly increased in lungs from silica-treated Gprc5a−/− mice compared to those untreated or wild-type ones. These results suggest that, the process of tissue repair coincides with tissue damages; whereas persistent tissue damages leads to abnormal repair or neoplasia. Thus, silica-induced pulmonary inflammation and injury contribute to increased neoplasia development in lungs from Gprc5a−/− mouse model. PMID:26447616

  4. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema.

    PubMed

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol Lg; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William Ka; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-10-05

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c(+) lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers.

  5. T helper 1 background protects against airway hyperresponsiveness and inflammation in guinea pigs with persistent respiratory syncytial virus infection.

    PubMed

    Sutton, Troy C; Tayyari, Farnoosh; Khan, M Aatif; Manson, Heather E; Hegele, Richard G

    2007-05-01

    A family history of allergy has been implicated in children who develop post-bronchiolitis wheezing and asthma. In a guinea pig model of respiratory syncytial virus (RSV) lung infection, we evaluated the role of host Th1 background (either genetic or induced) on the development of a persistent infection, nonspecific airway hyperresponsiveness (AHR) and airway inflammation. Allergy resistant/T helper 1 (Th1)-skewed strain 2 guinea pigs (STR2) and cytosine phosphate guanine oligodeoxynucleotides (CpG-ODN) (Th1 stimuli) pretreated Cam Hartley guinea pigs (CH) were inoculated with RSV and compared with virus-inoculated allergy-susceptible/Th2-skewed CHs and to sham-inoculated STR2 and CH, 60 d post-inoculation. We measured titers of intrapulmonary RSV, lung interferon (IFN)-gamma and interleukin (IL)-5 mRNA expression, AHR and airway T cells and eosinophils. All virus-inoculated groups of animals showed evidence of persistent RSV lung infection; however, Th2-skewed guinea pigs had virus-associated AHR and significantly greater levels of airway T cells and eosinophils. In conclusion, RSV can establish persistent infection of the guinea pig lung regardless of host Th1/Th2 background; however; a host Th1 background limits the extent of virus-associated AHR and airway inflammation. Heterogeneity in virus-host interactions may be relevant to understanding why some children hospitalized for RSV bronchiolitis go on to develop recurrent wheezing/asthma symptoms.

  6. STAT1-Regulated Lung MDSC-like Cells Produce IL-10 and Efferocytose Apoptotic Neutrophils With Relevance In Resolution of Bacterial Pneumonia

    PubMed Central

    Poe, Stephanie L.; Arora, Meenakshi; Oriss, Timothy B.; Yarlagadda, Manohar; Isse, Kumiko; Khare, Anupriya; Levy, David E.; Lee, Janet S.; Mallampalli, Rama; Ray, Anuradha; Ray, Prabir

    2012-01-01

    Bacterial pneumonia remains a significant burden worldwide. Although an inflammatory response in the lung is required to fight the causative agent, persistent tissue-resident neutrophils in non-resolving pneumonia can induce collateral tissue damage and precipitate acute lung injury. However, little is known about mechanisms orchestrated in the lung tissue that remove apoptotic neutrophils to restore tissue homeostasis. In mice infected with Klebsiella pneumoniae, a bacterium commonly associated with hospital-acquired pneumonia, we show that interleukin-10 is essential for resolution of lung inflammation and recovery of mice after infection. Although IL-10−/− mice cleared bacteria, they displayed increased morbidity with progressive weight loss and persistent lung inflammation in the later phase after infection. A source of tissue IL-10 was found to be resident CD11b+Gr1intF4/80+ cells resembling myeloid-derived suppressor cells that appeared with a delayed kinetics after infection. These cells efficiently efferocytosed apoptotic neutrophils, which was aided by IL-10. The lung neutrophil burden was attenuated in infected STAT1−/− mice with concomitant increase in the frequency of the MDSC-like cells and lung IL-10 levels. Thus, inhibiting STAT1 in combination with antibiotics may be a novel therapeutic strategy to address inefficient resolution of bacterial pneumonia. PMID:22785228

  7. Acyloxyacyl hydrolase promotes the resolution of lipopolysaccharide-induced acute lung injury

    PubMed Central

    Tang, Zihui; Yang, Qian; Qian, Guojun; Qian, Jing; Zeng, Wenjiao; Gu, Jie; Chu, Tianqing; Zhu, Ning; Zhang, Wenhong; Yan, Dapeng; He, Rui; Chu, Yiwei

    2017-01-01

    Pulmonary infection is the most common risk factor for acute lung injury (ALI). Innate immune responses induced by Microbe-Associated Molecular Pattern (MAMP) molecules are essential for lung defense but can lead to tissue injury. Little is known about how MAMP molecules are degraded in the lung or how MAMP degradation/inactivation helps prevent or ameliorate the harmful inflammation that produces ALI. Acyloxyacyl hydrolase (AOAH) is a host lipase that inactivates Gram-negative bacterial endotoxin (lipopolysaccharide, or LPS). We report here that alveolar macrophages increase AOAH expression upon exposure to LPS and that Aoah+/+ mice recover more rapidly than do Aoah-/- mice from ALI induced by nasally instilled LPS or Klebsiella pneumoniae. Aoah-/- mouse lungs had more prolonged leukocyte infiltration, greater pro- and anti-inflammatory cytokine expression, and longer-lasting alveolar barrier damage. We also describe evidence that the persistently bioactive LPS in Aoah-/- alveoli can stimulate alveolar macrophages directly and epithelial cells indirectly to produce chemoattractants that recruit neutrophils to the lung and may prevent their clearance. Distinct from the prolonged tolerance observed in LPS-exposed Aoah-/- peritoneal macrophages, alveolar macrophages that lacked AOAH maintained or increased their responses to bioactive LPS and sustained inflammation. Inactivation of LPS by AOAH is a previously unappreciated mechanism for promoting resolution of pulmonary inflammation/injury induced by Gram-negative bacterial infection. PMID:28622363

  8. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs

    PubMed Central

    2011-01-01

    Background Increased asthma risk/exacerbation in children and infants is associated with exposure to elevated levels of ultrafine particulate matter (PM). The presence of a newly realized class of pollutants, environmentally persistent free radicals (EPFRs), in PM from combustion sources suggests a potentially unrecognized risk factor for the development and/or exacerbation of asthma. Methods Neonatal rats (7-days of age) were exposed to EPFR-containing combustion generated ultrafine particles (CGUFP), non-EPFR containing CGUFP, or air for 20 minutes per day for one week. Pulmonary function was assessed in exposed rats and age matched controls. Lavage fluid was isolated and assayed for cellularity and cytokines and in vivo indicators of oxidative stress. Pulmonary histopathology and characterization of differential protein expression in lung homogenates was also performed. Results Neonates exposed to EPFR-containing CGUFP developed significant pulmonary inflammation, and airway hyperreactivity. This correlated with increased levels of oxidative stress in the lungs. Using differential two-dimensional electrophoresis, we identified 16 differentially expressed proteins between control and CGUFP exposed groups. In the rats exposed to EPFR-containing CGUFP; peroxiredoxin-6, cofilin1, and annexin A8 were upregulated. Conclusions Exposure of neonates to EPFR-containing CGUFP induced pulmonary oxidative stress and lung dysfunction. This correlated with alterations in the expression of various proteins associated with the response to oxidative stress and the regulation of glucocorticoid receptor translocation in T lymphocytes. PMID:21388553

  9. LUNG INJURY, INFLAMMATION AND AKT SIGNALING FOLLOWING INHALATION OF PARTICULATE HEXAVALENT CHROMIUM

    PubMed Central

    Beaver, Laura M.; Stemmy, Erik J.; Constant, Stephanie L.; Schwartz, Arnold; Little, Laura G.; Gigley, Jason P.; Chun, Gina; Sugden, Kent D.; Ceryak, Susan M.; Patierno, Steven R.

    2013-01-01

    Certain particulate hexavalent chromium [Cr(VI)] compounds are human respiratory carcinogens that release genotoxic soluble chromate, and are associated with fibrosis, fibrosarcomas, adenocarcinomas and squamous cell carcinomas of the lung. We postulate that inflammatory processes and mediators may contribute to the etiology of Cr(VI) carcinogenesis, however the immediate (0–24 hours) pathologic injury and immune responses after exposure to particulate chromates have not been adequately investigated. Our aim was to determine the nature of the lung injury, inflammatory response, and survival signaling responses following intranasal exposure of BALB/c mice to particulate basic zinc chromate. Factors associated with lung injury, inflammation and survival signaling were measured in airway lavage fluid and in lung tissue. A single chromate exposure induced an acute immune response in the lung, characterized by a rapid and significant increase in IL-6 and GRO-α levels, an influx of neutrophils, and a decline in macrophages in lung airways. Histological examination of lung tissue in animals challenged with a single chromate exposure revealed an increase in bronchiolar cell apoptosis and mucosal injury. Furthermore, chromate exposure induced injury and inflammation that progressed to alveolar and interstitial pneumonitis. Finally, a single Cr(VI) challenge resulted in a rapid and persistent increase in the number of airways immunoreactive for phosphorylation of the survival signaling protein Akt, on serine 473. These data illustrate that chromate induces both survival signaling and an inflammatory response in the lung, which we postulate may contribute to early oncogenesis. PMID:19109987

  10. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation.

    PubMed

    Musah, Sadiatu; Schlueter, Connie F; Humphrey, David M; Powell, Karen S; Roberts, Andrew M; Hoyle, Gary W

    2017-01-15

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24h after exposure to 800ppm chlorine for 4min to study acute effects or up to 7days after exposure to 400ppm for 8min to study longer term effects. Acute effects observed 6 or 24h after inhalation of 800ppm chlorine for 4min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400ppm chlorine for 8min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Welding fume exposure and associated inflammatory and hyperplastic changes in the lungs of tumor susceptible a/j mice.

    PubMed

    Solano-Lopez, Claudia; Zeidler-Erdely, Patti C; Hubbs, Ann F; Reynolds, Steven H; Roberts, Jenny R; Taylor, Michael D; Young, Shih-Houng; Castranova, Vincent; Antonini, James M

    2006-01-01

    It has been suggested that welding fume (WF) exposure increases lung cancer risk in welders. Epidemiology studies have failed to conclude that WF alone causes lung cancer and animal studies are lacking. We examined the course of inflammation, damage, and repair in the lungs of A/J mice, a lung tumor susceptible strain, caused by stainless steel WF. Mice were exposed by pharyngeal aspiration to 40 mg/kg of WF, silica, or saline. Bronchoalveolar lavage (BAL) was performed 24 hours, 1 and 16 weeks to assess lung injury and inflammation and histopathology was done 1, 8, 16, 24, and 48 weeks postexposure. Both exposures increased inflammatory cells, lactate dehydrogenase and albumin at 24 hr and 1 week. At 16 weeks, these parameters remained elevated in silica-exposed but not WF-exposed mice. Histopathologic evaluation at 1 week indicated that WF induced bronchiolar epithelial hyperplasia with associated cellular atypia, alveolar bronchiolo-alveolar hyperplasia (BAH) in peribronchiolar alveoli, and peribronchiolar lymphogranulomatous inflammation. Persistent changes included foci of histiocytic inflammation, fibrosis, atypical bronchiolar epithelial cells, and bronchiolar BAH. The principle changes in silica-exposed mice were histiocytic and suppurative inflammation, fibrosis, and alveolar BAH. Our findings that WF causes persistent bronchiolar and peribronchiolar epithelial changes, suggest a need for studies of bronchiolar changes after WF exposure.

  12. Activation and overexpression of Sirt1 attenuates lung fibrosis via P300.

    PubMed

    Zeng, Zhilin; Cheng, Sheng; Chen, Huilong; Li, Qinghai; Hu, Yinan; Wang, Qi; Zhu, Xianying; Wang, Jun

    2017-05-13

    Persistent fibroblast activation is a predominant feature of idiopathic pulmonary fibrosis (IPF), but the transcriptional and epigenetic mechanisms controlling this process are not well understood. Silent information regulator type-1 (Sirt1) is a member of class Ⅲ histone deacetylase with important regulatory roles in a variety of pathophysiologic processes, but its role in fibrotic lung diseases is not clearly elucidated. Sirt1 expression in lung tissues of IPF patients and in a mouse model of bleomycin (BLM)-induced lung fibrosis were evaluated by immunofluorescence. The function of Sirt1 in BLM-induced lung fibrosis in the mouse model or transforming growth factor β1 (TGF-β1)-mediated lung fibroblast cellular model was investigated by Sirt1 activation, overexpression and knockdown of Sirt1. Finally, the involvement of p300 signaling pathways was assessed. In this study, we found up-regulation of Sirt1 in BLM-induced lung fibrosis, as well as in the lungs of IPF patients, including in the aggregated pulmonary fibroblasts of fibrotic foci. Activation or overexpression of Sirt1 attenuated TGF-β1-mediated lung fibroblast differentiation and activation and diminished the severity of experimental lung fibrosis in mice. Whereas knockdown of Sirt1 promoted the pro-fibrogenic activity of TGF-β1 in lung fibroblasts. A potential mechanism for the role of Sirt1 in lung fibrosis was through regulating the expression of p300. Thus, we characterized Sirt1 as an important regulator of lung fibrosis and provides a proof of principle for activation or overexpression of Sirt1 as a potential novel therapeutic strategy for IPF. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malaviya, Rama; Venosa, Alessandro; Hall, LeRoy

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition,more » bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute lung injury induced by NM.« less

  14. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema

    PubMed Central

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol LG; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William KA; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-01-01

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c+ lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers. DOI: http://dx.doi.org/10.7554/eLife.09623.001 PMID:26437452

  15. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    PubMed

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an EMMPRIN blocking antibody markedly inhibited TGF-β1 induced proliferation, migration, and differentiation of fibroblasts to myofibroblasts. EMMPRIN overexpression in lung fibroblasts was found to induce an increase in TOPFLASH luciferase reporter activity when compared with control fibroblasts. These findings indicate that TGF-β1 induces the release of EMMPRIN that activates β-catenin/canonical Wnt signaling pathway. EMMPRIN overexpression induces an anti-apoptotic and pro-fibrotic phenotype in lung fibroblasts that may contribute to the persistent fibro-proliferative state seen in IPF.

  16. Endotoxin Inhalation Alters Lung Development in Neonatal Mice

    PubMed Central

    Kulhankova, Katarina; George, Caroline L.S.; Kline, Joel N.; Darling, Melissa; Thorne, Peter S.

    2012-01-01

    Background Childhood asthma is a significant public health problem. Epidemiologic evidence suggests an association between childhood asthma exacerbations and early life exposure to environmental endotoxin. Although the pathogenesis of endotoxin-induced adult asthma is well studied, questions remain about the impact of environmental endotoxin on pulmonary responsiveness in early life. Methods We developed a murine model of neonatal/juvenile endotoxin exposures approximating those in young children and evaluated the lungs inflammatory and remodeling responses. Results Persistent lung inflammation induced by the inhalation of endotoxin in early life was demonstrated by the influx of inflammatory cells and pro-inflammatory mediators to the airways and resulted in abnormal alveolarization. Conclusions Results of this study advance the understanding of the impact early life endotoxin inhalation has on the lower airways, and demonstrates the importance of an experimental design that approximates environmental exposures as they occur in young children. PMID:22576659

  17. Ceramides: a potential therapeutic target in pulmonary emphysema.

    PubMed

    Tibboel, Jeroen; Reiss, Irwin; de Jongste, Johan C; Post, Martin

    2013-10-01

    The aim of this manuscript was to characterize airway ceramide profiles in a rodent model of elastase-induced emphysema and to examine the effect of pharmacological intervention directed towards ceramide metabolism. Adult mice were anesthetized and treated with an intratracheal instillation of elastase. Lung function was measured, broncho-alveolar lavage fluid collected and histological and morphometrical analysis of lung tissue performed within 3 weeks after elastase injection, with and without sphingomyelinase inhibitors or serine palmitoyltransferase inhibitor. Ceramides in broncho-alveolar lavage (BAL) fluid were quantified by tandem mass spectrometry. BAL fluid showed a transient increase in total protein and IgM, and activated macrophages and neutrophils. Ceramides were transiently upregulated at day 2 after elastase treatment. Histology showed persistent patchy alveolar destruction at day 2 after elastase installation. Acid and neutral sphingomyelinase inhibitors had no effect on BAL ceramide levels, lung function or histology. Addition of a serine palmitoyltransferase inhibitor ameliorated lung function changes and reduced ceramides in BAL. Ceramides were increased during the acute inflammatory phase of elastase-induced lung injury. Since addition of a serine palmitoyltransferase inhibitor diminished the rise in ceramides and ameliorated lung function, ceramides likely contributed to the early phase of alveolar destruction and are a potential therapeutic target in the elastase model of lung emphysema.

  18. Chronic exposure to particulate chromate induces spindle assembly checkpoint bypass in human lung cells.

    PubMed

    Wise, Sandra S; Holmes, Amie L; Xie, Hong; Thompson, W Douglas; Wise, John Pierce

    2006-11-01

    One of the hallmarks of lung cancer is chromosome instability (CIN), particularly a tetraploid phenotype, which is normally prevented by the spindle assembly checkpoint. Hexavalent chromium Cr(VI) is an established human lung carcinogen, and Cr(VI) induces tumors at lung bifurcation sites where Cr(VI) particles impact and persist. However, the effects of Cr(VI) on the spindle assembly checkpoint are unknown and little is known about prolonged exposure to particulate Cr(VI). Accordingly, we investigated particulate Cr(VI)-induced bypass of the spindle assembly checkpoint after several days of exposure in WHTBF-6 cells. We found that lead chromate indeed induces spindle assembly checkpoint bypass in human lung cells, as 72, 96, and 120 h treatments with 0.5 or 1 microg/cm2 lead chromate induced significant increases in the percentage of cells with aberrant mitotic figures. For example, treatment with 1 microg/cm2 lead chromate for 96 h induced 11, 12.3, and 14% of cells with premature anaphase, centromere spreading and premature centromere division, respectively. In addition, we found a disruption of mitosis with more cells accumulating in anaphase; cells treated for 96 h increased from 18% in controls to 31% in cells treated with lead chromate. To confirm involvement of the spindle assembly checkpoint, Mad2 expression was used as a marker. Mad2 expression was decreased in cells exposed to chronic treatments of lead chromate, consistent with disruption of the checkpoint. We also found concentration- and time-dependent increases in tetraploid cells, which continued to grow and form colonies. When cells were treated with chronic lead alone there was no increase in aberrant mitotic cells or polyploidy; however, chronic exposure to a soluble Cr(VI) showed an increase in aberrant mitotic cells and polyploidy. These data suggest that lead chromate does induce CIN and may be one mechanism in the development of Cr(VI)-induced lung cancer.

  19. Lung Inflammation, Injury, and Proliferative Response after Repetitive Particulate Hexavalent Chromium Exposure

    PubMed Central

    Beaver, Laura M.; Stemmy, Erik J.; Schwartz, Arnold M.; Damsker, Jesse M.; Constant, Stephanie L.; Ceryak, Susan M.; Patierno, Steven R.

    2009-01-01

    Background Chronic inflammation is implicated in the development of several human cancers, including lung cancer. Certain particulate hexavalent chromium [Cr(VI)] compounds are well-documented human respiratory carcinogens that release genotoxic soluble chromate and are associated with fibrosis, fibrosarcomas, adenocarcinomas, and squamous cell carcinomas of the lung. Despite this, little is known about the pathologic injury and immune responses after repetitive exposure to particulate chromates. Objectives In this study we investigated the lung injury, inflammation, proliferation, and survival signaling responses after repetitive exposure to particulate chromate. Methods BALB/c mice were repetitively treated with particulate basic zinc chromate or saline using an intranasal exposure regimen. We assessed lungs for Cr(VI)-induced changes by bronchoalveolar lavage, histologic examination, and immunohistochemistry. Results Single exposure to Cr(VI) resulted in inflammation of lung tissue that persists for up to 21 days. Repetitive Cr(VI) exposure induced a neutrophilic inflammatory airway response 24 hr after each treatment. Neutrophils were subsequently replaced by increasing numbers of macrophages by 5 days after treatment. Repetitive Cr(VI) exposure induced chronic peribronchial inflammation with alveolar and interstitial pneumonitis dominated by lymphocytes and macrophages. Moreover, chronic toxic mucosal injury was observed and accompanied by increased airway pro-matrix metalloprotease-9. Injury and inflammation correlated with airways becoming immunoreactive for phosphorylation of the survival signaling protein Akt and the proliferation marker Ki-67. We observed a reactive proliferative response in epithelial cells lining airways of chromate-exposed animals. Conclusions These data illustrate that repetitive exposure to particulate chromate induces chronic injury and an inflammatory microenvironment that may promote Cr(VI) carcinogenesis. PMID:20049209

  20. Inflammation has a role in urethane‑induced lung cancer in C57BL/6J mice.

    PubMed

    Xu, Cai; Zhou, Lingyu; Lu, Lei; Chen, Ting; Wei, Siyu; Lin, Xiaojing; Lian, Xuemei

    2016-10-01

    Lung cancer is a common and highly frequent cause of cancer‑associated mortality worldwide. Several studies have indicated that chronic inflammation is associated with an increased risk of several types of human cancer. The lung is vulnerable to various chemical and biological insults, and persistent exposure to these factors may result in the release of several inflammatory cytokines from inflammatory cells, thus leading to chronic inflammation and a risk of lung cancer. Due to the extensive application of C57BL/6J mice in lipid metabolism‑related research, it appears important to establish a lung cancer model based on C57BL/6J mice. Therefore, the present study designed an experimental model, in which C57BL/6J mice received several injections of urethane. The study aimed to explore whether inflammation has a role in this model of lung cancer. The results demonstrated that 10 weekly intraperitoneal injections of urethane induced a 100% lung tumor incidence, and urethane‑treated mice possessed higher numbers of immune cells. In addition, the expression levels of cytokines and chemokines in bronchoalveolar lavage fluid were significantly different between the two groups. Activation of the transcription factor nuclear factor‑κB was increased in the lung tissues of urethane‑treated mice, and its expression was upregulated in a time‑dependent manner. These results suggested that the accumulation of lung inflammation may be associated with the occurrence of lung cancer in C57BL/6J mice.

  1. Evaluation of the fate and pathological response in the lung and pleura of brake dust alone and in combination with added chrysotile compared to crocidolite asbestos following short-term inhalation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, D.M., E-mail: davidb@itox.ch; Rogers, R.A., E-mail: rarogers5@yahoo.com; Sepulveda, R.

    This study was designed to provide an understanding of the biokinetics and potential toxicology in the lung and pleura following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake-dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6 h/day for 5 days to either brake-dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brake-dust or crocidolite asbestos. The chrysotile fibers were relatively biosoluble whereas the crocidolite asbestos fibers persisted through the life-timemore » of the animal. This was reflected in the lung and the pleura where no significant pathological response was observed at any time point in the brake dust or chrysotile/brake dust exposure groups through 365 days post exposure. In contrast, crocidolite asbestos produced a rapid inflammatory response in the lung parenchyma and the pleura, inducing a significant increase in fibrotic response in both of these compartments. Crocidolite fibers were observed embedded in the diaphragm with activated mesothelial cells immediately after cessation of exposure. While no chrysotile fibers were found in the mediastinal lymph nodes, crocidolite fibers of up to 35 μm were observed. These results provide support that brake-dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung or the pleural cavity following short term inhalation. - Highlights: • Evaluated brake dust w/wo added chrysotile in comparison to crocidolite asbestos. • Persistence, translocation, pathological response in the lung and pleural cavity. • Chrysotile cleared rapidly from the lung while the crocidolite asbestos persisted. • No significant pathology in lung or pleural cavity observed at any time point in the brake-dust groups. • Crocidolite quickly produced pathological response in the lung and pleural cavity.« less

  2. Tissue-specific and time-dependent clonal expansion of ENU-induced mutant cells in gpt delta mice.

    PubMed

    Nakayama, Takafumi; Sawai, Tomoko; Masuda, Ikuko; Kaneko, Shinya; Yamauchi, Kazumi; Blyth, Benjamin J; Shimada, Yoshiya; Tachibana, Akira; Kakinuma, Shizuko

    2017-10-01

    DNA mutations play a crucial role in the origins of cancer, and the clonal expansion of mutant cells is one of the fundamental steps in multistage carcinogenesis. In this study, we correlated tumor incidence in B6C3F1 mice during the period after exposure to N-ethyl-N-nitrosourea (ENU) with the persistence of ENU-induced mutant clones in transgenic gpt delta B6C3F1 mice. The induced gpt mutations afforded no selective advantage in the mouse cells and could be distinguished by a mutational spectrum that is characteristic of ENU treatment. The gpt mutations were passengers of the mutant cell of origin and its daughter cells and thus could be used as neutral markers of clones that arose and persisted in the tissues. Female B6C3F1 mice exposed for 1 month to 200 ppm ENU in the drinking water developed early thymic lymphomas and late liver and lung tumors. To assay gpt mutations, we sampled the thymus, liver, lung, and small intestine of female gpt delta mice at 3 days, 4 weeks, and 8 weeks after the end of ENU exposure. Our results reveal that, in all four tissues, the ENU-induced gpt mutations persisted for weeks after the end of mutagen exposure. Clonal expansion of mutant cells was observed in the thymus and small intestine, with the thymus showing larger clone sizes. These results indicate that the clearance of mutant cells and the potential for clonal expansion during normal tissue growth depends on tissue type and that these factors may affect the sensitivity of different tissues to carcinogenesis. Environ. Mol. Mutagen. 58:592-606, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Induction of persistent in vivo resistance to Mycobacterium avium infection in BALB/c mice injected with interleukin-18-secreting fibroblasts.

    PubMed

    Chung, Su W; Choi, Sang H; Kim, Tae S

    2004-01-02

    Interferon-gamma (IFN-gamma) is closely associated with the generation of cell-mediated immunity and resistance to intracellular parasites. Interleukin-18 (IL-18) is known to strongly induce IFN-gamma production by T cells and natural killer (NK) cells. To determine whether the paracrine secretion of IL-18 can efficiently stimulate the resistance to Mycobacterium avium complex (MAC) infection, 3T3 fibroblasts were stably transfected to secrete bioactive IL-18 and their effects on MAC infection were investigated in genetically susceptible BALB/c mice, compared with that of free recombinant IL-18. Immunization with IL-18-secreting fibroblasts (3T3/IL-18) during intranasal infection with MAC resulted in a significant decrease in bacterial load of lung during the entire 8-week observation period, while rIL-18 reduced the bacterial load at initial 1 week but not by 8 weeks postinfection. Immunization with the 3T3/IL-18 cells induced and maintained significantly higher levels of cytotoxic activity and nitric oxide production by lung cells than those of rIL-18 immunization. Furthermore, lung cells in mice injected with the 3T3/IL-18 cells showed persistent production of IFN-gamma throughout the 8-week period, suggesting that the 3T3/IL-18 cells induced the resistance to MAC infection via IFN-gamma production. This work suggests that IL-18-secreting fibroblasts may serve as a vehicle for paracrine secretion of IL-18 in immunotherapy of MAC infection.

  4. LAG3 Expression in Active Mycobacterium tuberculosis Infections

    PubMed Central

    Phillips, Bonnie L.; Mehra, Smriti; Ahsan, Muhammad H.; Selman, Moises; Khader, Shabaana A.; Kaushal, Deepak

    2016-01-01

    Mycobacterium tuberculosis (MTB) is a highly successful pathogen because of its ability to persist in human lungs for long periods of time. MTB modulates several aspects of the host immune response. Lymphocyte-activation gene 3 (LAG3) is a protein with a high affinity for the CD4 receptor and is expressed mainly by regulatory T cells with immunomodulatory functions. To understand the function of LAG3 during MTB infection, a nonhuman primate model of tuberculosis, which recapitulates key aspects of natural human infection in rhesus macaques (Macaca mulatta), was used. We show that the expression of LAG3 is highly induced in the lungs and particularly in the granulomatous lesions of macaques experimentally infected with MTB. Furthermore, we show that LAG3 expression is not induced in the lungs and lung granulomas of animals exhibiting latent tuberculosis infection. However, simian immunodeficiency virus–induced reactivation of latent tuberculosis infection results in an increased expression of LAG3 in the lungs. This response is not observed in nonhuman primates infected with non-MTB bacterial pathogens, nor with simian immunodeficiency virus alone. Our data show that LAG3 was expressed primarily on CD4+ T cells, presumably by regulatory T cells but also by natural killer cells. The expression of LAG3 coincides with high bacterial burdens and changes in the host type 1 helper T-cell response. PMID:25549835

  5. Management of long-term persistent air leakage developed after bullectomy for giant bullous lung disease associated with neurofibromatosis type 1

    PubMed Central

    Kim, Si-Wook

    2016-01-01

    Persistent air leakage is a serious and sometimes fatal complication of bullous lung disease surgery. A 32-year-old man with lung involvement of neurofibromatosis type I underwent bullectomy for huge bullae and recurrent pneumothorax. Persistent postoperative air leakage developed and the lung was totally collapsed. The initial surgery failed, but a second trial employing a novel suture technique on half-absorbed polyglycolic acid (PGA) felt successfully resolved the massive air leakage. Pneumothorax did not recur and the patient remained stable without dyspnea. Thus, a suture technique employing half-absorbed PGA felt was an effective option for managing persistent air leakage. PMID:26904244

  6. Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs.

    PubMed

    Kurz, S; Steffens, H P; Mayer, A; Harris, J R; Reddehase, M J

    1997-04-01

    The state of cytomegalovirus (CMV) after the resolution of acute infection is an unsolved problem in CMV research. While the term "latency" is in general use to indicate the maintenance of the viral genome, a formal exclusion of low-level persistent productive infection depends on the sensitivity of the assay for detecting infectious virus. We have improved the method for detecting infectivity by combining centrifugal infection of permissive indicator cells in culture, expansion to an infectious focus, and sensitive detection of immediate-early RNA in the infected cells by reverse transcriptase PCR. A limiting-dilution approach defined the sensitivity of this assay. Infectivity was thereby found to require as few as 2 to 9 virion DNA molecules of murine CMV, whereas the standard measure of infectivity, the PFU, is the equivalent of ca. 500 viral genomes. Since murine CMV forms multicapsid virions in most infected tissues, the genome-to-infectivity ratio is necessarily >1. This assay thus sets a new standard for investigating CMV latency. In mice in which acute infection was resolved, the viral DNA load in the lungs, a known organ site of CMV latency and recurrence, was found to be 1 genome per 40 lung cells, or a total of ca. 1 million genomes. Despite this high load of CMV DNA, infectious virus was not detected with the improved assay, but recurrence was inducible. These data provide evidence against a low-level persistent productive infection and also imply that intermittent spontaneous recurrence is not a frequent event in latently infected lungs.

  7. Radiation-induced impairment in lung lymphatic vasculature.

    PubMed

    Cui, Ye; Wilder, Julie; Rietz, Cecilia; Gigliotti, Andrew; Tang, Xiaomeng; Shi, Yuanyuan; Guilmette, Raymond; Wang, Hao; George, Gautam; Nilo de Magaldi, Eduarda; Chu, Sarah G; Doyle-Eisele, Melanie; McDonald, Jacob D; Rosas, Ivan O; El-Chemaly, Souheil

    2014-12-01

    The lymphatic vasculature has been shown to play important roles in lung injury and repair, particularly in lung fibrosis. The effects of ionizing radiation on lung lymphatic vasculature have not been previously reported. C57Bl/6 mice were immobilized in a lead shield exposing only the thoracic cavity, and were irradiated with a single dose of 14 Gy. Animals were sacrificed and lungs collected at different time points (1, 4, 8, and 16 weeks) following radiation. To identify lymphatic vessels in lung tissue sections, we used antibodies that are specific for lymphatic vessel endothelial receptor 1 (LYVE-1), a marker of lymphatic endothelial cells (LEC). To evaluate LEC cell death and oxidative damage, lung tissue sections were stained for LYVE-1 and with TUNEL staining, or 8-oxo-dG respectively. Images were imported into ImageJ v1.36b and analyzed. Compared to a non-irradiated control group, we observed a durable and progressive decrease in the density, perimeter, and area of lymphatic vessels over the study period. The decline in the density of lymphatic vessels was observed in both subpleural and interstitial lymphatics. Histopathologically discernible pulmonary fibrosis was not apparent until 16 weeks after irradiation. Furthermore, there was significantly increased LEC apoptosis and oxidative damage at one week post-irradiation that persisted at 16 weeks. There is impairment of lymphatic vasculature after a single dose of ionizing radiation that precedes architectural distortion and fibrosis, suggesting important roles for the lymphatic circulation in the pathogenesis of the radiation-induced lung injury.

  8. Complement inhibition decreases early fibrogenic events in the lung of septic baboons.

    PubMed

    Silasi-Mansat, Robert; Zhu, Hua; Georgescu, Constantin; Popescu, Narcis; Keshari, Ravi S; Peer, Glenn; Lupu, Cristina; Taylor, Fletcher B; Pereira, Heloise Anne; Kinasewitz, Gary; Lambris, John D; Lupu, Florea

    2015-11-01

    Acute respiratory distress syndrome (ARDS) induced by severe sepsis can trigger persistent inflammation and fibrosis. We have shown that experimental sepsis in baboons recapitulates ARDS progression in humans, including chronic inflammation and long-lasting fibrosis in the lung. Complement activation products may contribute to the fibroproliferative response, suggesting that complement inhibitors are potential therapeutic agents. We have been suggested that treatment of septic baboons with compstatin, a C3 convertase inhibitor protects against ARDS-induced fibroproliferation. Baboons challenged with 10(9) cfu/kg (LD50) live E. coli by intravenous infusion were treated or not with compstatin at the time of challenge or 5 hrs thereafter. Changes in the fibroproliferative response at 24 hrs post-challenge were analysed at both transcript and protein levels. Gene expression analysis showed that sepsis induced fibrotic responses in the lung as early as 24 hrs post-bacterial challenge. Immunochemical and biochemical analysis revealed enhanced collagen synthesis, induction of profibrotic factors and increased cell recruitment and proliferation. Specific inhibition of complement with compstatin down-regulated sepsis-induced fibrosis genes, including transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), tissue inhibitor of metalloproteinase 1 (TIMP1), various collagens and chemokines responsible for fibrocyte recruitment (e.g. chemokine (C-C motif) ligand 2 (CCL2) and 12 (CCL12)). Compstatin decreased the accumulation of myofibroblasts and proliferating cells, reduced the production of fibrosis mediators (TGF-β, phospho-Smad-2 and CTGF) and inhibited collagen deposition. Our data demonstrate that complement inhibition effectively attenuates collagen deposition and fibrotic responses in the lung after severe sepsis. Inhibiting complement could prove an attractive strategy for preventing sepsis-induced fibrosis of the lung. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Catalase-peroxidase activity has no influence on virulence in a murine model of tuberculosis.

    PubMed

    Cardona, Pere Joan; Gordillo, Sergi; Amat, Isabel; Díaz, Jorge; Lonca, Joan; Vilaplana, Cristina; Pallarés, Angeles; Llatjós, Roger; Ariza, Aurelio; Ausina, Vicenç

    2003-01-01

    The capacity to generate a chronic and persistent infection in the experimental murine model of tuberculosis induced aerogenically by a low-dose inoculum was determined in eight isoniazid-resistant clinical strains of Mycobacterium tuberculosis showing different catalase-peroxidase (C-P) activities. Determination of bacillary concentration in lung and spleen and the percentage of pulmonary parenchyma occupied by granulomas were monitored. Data showed no relation between the lack of C-P activity and the ability to develop a persistent infection, highlighting the potential of C-P negative strains to spread through the community.

  10. Increased c-kit and stem cell factor expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2016-05-01

    Persistent pulmonary hypertension(PPH) in congenital diaphragmatic hernia (CDH) is caused by increased vascular cell proliferation and endothelial cell (EC) dysfunction, thus leading to obstructive changes in the pulmonary vasculature. C-Kit and its ligand, stem cell factor(SCF), are expressed by ECs in the developing lung mesenchyme, suggesting an important role during lung vascular formation. Conversely, absence of c-Kit expression has been demonstrated in ECs of dysplastic alveolar capillaries. We hypothesized that c-Kit and SCF expression is increased in the pulmonary vasculature of nitrofen-induced CDH. Timed-pregnant rats received nitrofen or vehicle on gestational day 9(D9). Fetuses were sacrificed on D15, D18, and D21, and divided into control and CDH group. Pulmonary gene expression levels of c-Kit and SCF were analyzed by qRT-PCR. Immunofluorescence double staining for c-Kit and SCF was combined with CD34 to evaluate protein expression in ECs of the pulmonary vasculature. Relative mRNA levels of c-Kit and SCF were significantly increased in lungs of CDH fetuses on D15, D18, and D21 compared to controls. Confocal laser scanning microscopy confirmed markedly increased vascular c-Kit and SCF expression in mesenchymal ECs of CDH lungs on D15, D18, and D21 compared to controls. Increased expression of c-Kit and SCF in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that increased c-Kit signaling during lung vascular formation may contribute to vascular remodeling and thus to PPH. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. LAG3 expression in active Mycobacterium tuberculosis infections.

    PubMed

    Phillips, Bonnie L; Mehra, Smriti; Ahsan, Muhammad H; Selman, Moises; Khader, Shabaana A; Kaushal, Deepak

    2015-03-01

    Mycobacterium tuberculosis (MTB) is a highly successful pathogen because of its ability to persist in human lungs for long periods of time. MTB modulates several aspects of the host immune response. Lymphocyte-activation gene 3 (LAG3) is a protein with a high affinity for the CD4 receptor and is expressed mainly by regulatory T cells with immunomodulatory functions. To understand the function of LAG3 during MTB infection, a nonhuman primate model of tuberculosis, which recapitulates key aspects of natural human infection in rhesus macaques (Macaca mulatta), was used. We show that the expression of LAG3 is highly induced in the lungs and particularly in the granulomatous lesions of macaques experimentally infected with MTB. Furthermore, we show that LAG3 expression is not induced in the lungs and lung granulomas of animals exhibiting latent tuberculosis infection. However, simian immunodeficiency virus-induced reactivation of latent tuberculosis infection results in an increased expression of LAG3 in the lungs. This response is not observed in nonhuman primates infected with non-MTB bacterial pathogens, nor with simian immunodeficiency virus alone. Our data show that LAG3 was expressed primarily on CD4(+) T cells, presumably by regulatory T cells but also by natural killer cells. The expression of LAG3 coincides with high bacterial burdens and changes in the host type 1 helper T-cell response. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. The Lung Immune Response to Nontypeable Haemophilus influenzae (Lung Immunity to NTHi)

    PubMed Central

    King, Paul T.; Sharma, Roleen

    2015-01-01

    Haemophilus influenzae is divided into typeable or nontypeable strains based on the presence or absence of a polysaccharide capsule. The typeable strains (such as type b) are an important cause of systemic infection, whilst the nontypeable strains (designated as NTHi) are predominantly respiratory mucosal pathogens. NTHi is present as part of the normal microbiome in the nasopharynx, from where it may spread down to the lower respiratory tract. In this context it is no longer a commensal and becomes an important respiratory pathogen associated with a range of common conditions including bronchitis, bronchiectasis, pneumonia, and particularly chronic obstructive pulmonary disease. NTHi induces a strong inflammatory response in the respiratory tract with activation of immune responses, which often fail to clear the bacteria from the lung. This results in recurrent/persistent infection and chronic inflammation with consequent lung pathology. This review will summarise the current literature about the lung immune response to nontypeable Haemophilus influenzae, a topic that has important implications for patient management. PMID:26114124

  13. Fisetin, a bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF-κB.

    PubMed

    Goh, Fera Y; Upton, Nadine; Guan, Shouping; Cheng, Chang; Shanmugam, Muthu K; Sethi, Gautam; Leung, Bernard P; Wong, W S Fred

    2012-03-15

    Persistent activation of nuclear factor-κB (NF-κB) has been associated with the development of asthma. Fisetin (3,7,3',4'-tetrahydroxyflavone), a naturally occurring bioactive flavonol, has been shown to inhibit NF-κB activity. We hypothesized that fisetin may attenuate allergic asthma via negative regulation of the NF-κB activity. Female BALB/c mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Fisetin dose-dependently inhibited ovalbumin-induced increases in total cell count, eosinophil count, and IL-4, IL-5 and IL-13 levels recovered in bronchoalveolar lavage fluid. It attenuated ovalbumin-induced lung tissue eosinophilia and airway mucus production, mRNA expression of adhesion molecules, chitinase, IL-17, IL-33, Muc5ac and inducible nitric oxide synthase in lung tissues, and airway hyperresponsiveness to methacholine. Fisetin blocked NF-κB subunit p65 nuclear translocation and DNA-binding activity in the nuclear extracts from lung tissues of ovalbumin-challenged mice. In normal human bronchial epithelial cells, fisetin repressed TNF-α-induced NF-κB-dependent reporter gene expression. Our findings implicate a potential therapeutic value of fisetin in the treatment of asthma through negative regulation of NF-κB pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer.

    PubMed

    Kennedy, E M; Powell, D R; Li, Z; Bell, J S K; Barwick, B G; Feng, H; McCrary, M R; Dwivedi, B; Kowalski, J; Dynan, W S; Conneely, K N; Vertino, P M

    2018-04-30

    Human deep space and planetary travel is limited by uncertainties regarding the health risks associated with exposure to galactic cosmic radiation (GCR), and in particular the high linear energy transfer (LET), heavy ion component. Here we assessed the impact of two high-LET ions 56 Fe and 28 Si, and low-LET X rays on genome-wide methylation patterns in human bronchial epithelial cells. We found that all three radiation types induced rapid and stable changes in DNA methylation but at distinct subsets of CpG sites affecting different chromatin compartments. The 56 Fe ions induced mostly hypermethylation, and primarily affected sites in open chromatin regions including enhancers, promoters and the edges ("shores") of CpG islands. The 28 Si ion-exposure had mixed effects, inducing both hyper and hypomethylation and affecting sites in more repressed heterochromatic environments, whereas X rays induced mostly hypomethylation, primarily at sites in gene bodies and intergenic regions. Significantly, the methylation status of 56 Fe ion sensitive sites, but not those affected by X ray or 28 Si ions, discriminated tumor from normal tissue for human lung adenocarcinomas and squamous cell carcinomas. Thus, high-LET radiation exposure leaves a lasting imprint on the epigenome, and affects sites relevant to human lung cancer. These methylation signatures may prove useful in monitoring the cumulative biological impact and associated cancer risks encountered by astronauts in deep space.

  15. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractionsmore » from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.« less

  16. Pirfenidone ameliorates lipopolysaccharide-induced pulmonary inflammation and fibrosis by blocking NLRP3 inflammasome activation.

    PubMed

    Li, Yi; Li, Haitao; Liu, Shuai; Pan, Pinhua; Su, Xiaoli; Tan, Hongyi; Wu, Dongdong; Zhang, Lemeng; Song, Chao; Dai, Minhui; Li, Qian; Mao, Zhi; Long, Yuan; Hu, Yongbin; Hu, Chengping

    2018-05-18

    Acute respiratory distress syndrome(ARDS)is a severe clinical disorder characterized by its acute onset, diffuse alveolar damage, intractable hypoxemia, and non-cardiogenic pulmonary edema. Acute lung injury(ALI) can trigger persistent lung inflammation and fibrosis through activation of the NLRP3 inflammasome and subsequent secretion of mature IL-1β, suggesting that the NLRP3 inflammasome is a potential therapeutic target for ALI, for which new therapeutic approaches are needed. Our present study aims to assess whether pirfenidone,with anti-fibrotic and anti-inflammatory properties, can improve LPS-induced inflammation and fibrosis by inhibiting NLRP3 inflammasome activation. Male C57BL/6 J mice were intratracheally injected with LPS to induce ALI. Mice were administered pirfenidone by oral gavage throughout the entire experimental course. The mouse macrophage cell line (J774 A.1) was incubated with LPS and ATP, with or without PFD pre-treatment. We demonstrated that PFD remarkably ameliorated LPS-induced pulmonary inflammation and fibrosis and reduced IL-1β and TGF-β1 levels in bronchoalveolar lavage fluid(BALF). Pirfenidone substantially reduced NLRP3 and ASC expression and inhibited caspase-1 activation and IL-1β maturation in lung tissues. In vitro, the experiments revealed that PFD significantly suppressed LPS/ATP-induced production of reactive oxygen species (ROS) and decreased caspase-1 activation and the level of IL-1β in J774 A.1 cells. Taken together, the administration of PFD reduced LPS-induced lung inflammation and fibrosis by blocking NLRP3 inflammasome activation and subsequent IL-1β secretion. These findings indicated that PFD can down-regulate NLRP3 inflammasome activation and that it may offer a promising therapeutic approach for ARDS patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Survival and Intra-Nuclear Trafficking of Burkholderia pseudomallei: Strategies of Evasion from Immune Surveillance?

    PubMed

    Vadivelu, Jamuna; Vellasamy, Kumutha Malar; Thimma, Jaikumar; Mariappan, Vanitha; Kang, Wen-Tyng; Choh, Leang-Chung; Shankar, Esaki M; Wong, Kum Thong

    2017-01-01

    During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure. We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells. TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei. B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection.

  18. Survival and Intra-Nuclear Trafficking of Burkholderia pseudomallei: Strategies of Evasion from Immune Surveillance?

    PubMed Central

    Vadivelu, Jamuna; Vellasamy, Kumutha Malar; Thimma, Jaikumar; Mariappan, Vanitha; Kang, Wen-Tyng; Choh, Leang-Chung; Wong, Kum Thong

    2017-01-01

    Background During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure. Methods We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells. Results TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei. Conclusion B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection. PMID:28045926

  19. Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs.

    PubMed

    Moyron-Quiroz, Juan E; Rangel-Moreno, Javier; Hartson, Louise; Kusser, Kim; Tighe, Michael P; Klonowski, Kimberly D; Lefrançois, Leo; Cauley, Linda S; Harmsen, Allen G; Lund, Frances E; Randall, Troy D

    2006-10-01

    Secondary lymphoid organs (SLOs) promote primary immune responses by recruiting naive lymphocytes and activated APCs. However, their role in the persistence or responsiveness of memory lymphocytes is unclear. We tested whether memory cells were maintained and could respond to challenge in the absence of SLOs. We found that influenza-specific CD8 cells in the lung acquired a memory phenotype, underwent homeostatic proliferation, recirculated through nonlymphoid tissues, and responded to and cleared a challenge infection in the complete absence of SLOs. Similarly, influenza-specific virus-neutralizing antibody was generated and maintained in the absence of SLOs. Inducible bronchus-associated lymphoid tissue (iBALT) was also formed in the lungs of previously infected mice and may provide a niche for the maintenance of memory cells at the local level. These data show that SLOs are dispensable for the maintenance of immunologic memory and directly demonstrate the utility of local tissues, such as iBALT, in secondary immune responses.

  20. Prolonged Injury and Altered Lung Function after Ozone Inhalation in Mice with Chronic Lung Inflammation

    PubMed Central

    Groves, Angela M.; Gow, Andrew J.; Massa, Christopher B.; Laskin, Jeffrey D.

    2012-01-01

    Surfactant protein–D (Sftpd) is a pulmonary collectin important in down-regulating macrophage inflammatory responses. In these experiments, we analyzed the effects of chronic macrophage inflammation attributable to loss of Sftpd on the persistence of ozone-induced injury, macrophage activation, and altered functioning in the lung. Wild-type (Sftpd+/+) and Sftpd−/− mice (aged 8 wk) were exposed to air or ozone (0.8 parts per million, 3 h). Bronchoalveolar lavage (BAL) fluid and tissue were collected 72 hours later. In Sftpd−/− mice, but not Sftpd+/+ mice, increased BAL protein and nitrogen oxides were observed after ozone inhalation, indicating prolonged lung injury and oxidative stress. Increased numbers of macrophages were also present in BAL fluid and in histologic sections from Sftpd−/− mice. These cells were enlarged and foamy, suggesting that they were activated. This conclusion was supported by findings of increased BAL chemotactic activity, and increased expression of inducible nitric oxide synthase in lung macrophages. In both Sftpd+/+ and Sftpd−/− mice, inhalation of ozone was associated with functional alterations in the lung. Although these alterations were limited to central airway mechanics in Sftpd+/+ mice, both central airway and parenchymal mechanics were modified by ozone exposure in Sftpd−/− mice. The most notable changes were evident in resistance and elastance spectra and baseline lung function, and in lung responsiveness to changes in positive end-expiratory pressure. These data demonstrate that a loss of Sftpd is associated with prolonged lung injury, oxidative stress, and macrophage accumulation and activation in response to ozone, and with more extensive functional changes consistent with the loss of parenchymal integrity. PMID:22878412

  1. Lung Irradiation Increases Mortality After Influenza A Virus Challenge Occurring Late After Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, Casey M.; Johnston, Carl J.; Department of Pediatrics, University of Rochester Medical Center, Rochester, New York

    2013-05-01

    Purpose: To address whether irradiation-induced changes in the lung environment alter responses to a viral challenge delivered late after exposure but before the appearance of late lung radiation injury. Methods and Materials: C57BL/6J mice received either lung alone or combined lung and whole-body irradiation (0-15 Gy). At 10 weeks after irradiation, animals were infected with 120 HAU influenza virus strain A/HKx31. Innate and adaptive immune cell recruitment was determined using flow cytometry. Cytokine and chemokine production and protein leakage into the lung after infection were assessed. Results: Prior irradiation led to a dose-dependent failure to regain body weight after infectionmore » and exacerbated mortality, but it did not affect virus-specific immune responses or virus clearance. Surviving irradiated animals displayed a persistent increase in total protein in bronchoalveolar lavage fluid and edema. Conclusions: Lung irradiation increased susceptibility to death after infection with influenza virus and impaired the ability to complete recovery. This altered response does not seem to be due to a radiation effect on the immune response, but it may possibly be an effect on epithelial repair.« less

  2. Perinatal exposure to environmental tobacco smoke is associated with changes in DNA methylation that precede the adult onset of lung disease in a mouse model.

    PubMed

    Cole, Elizabeth; Brown, Traci A; Pinkerton, Kent E; Postma, Britten; Malany, Keegan; Yang, Mihi; Kim, Yang Jee; Hamilton, Raymond F; Holian, Andrij; Cho, Yoon Hee

    2017-08-01

    Prenatal and early-life environmental tobacco smoke (ETS) exposure can induce epigenetic alterations associated with inflammation and respiratory disease. The objective of this study was to address the long-term epigenetic consequences of perinatal ETS exposure on latent respiratory disease risk, which are still largely unknown. C57BL/6 mice were exposed to prenatal and early-life ETS; offspring lung pathology, global DNA, and gene-specific methylation were measured at two adult ages. Significant alterations in global DNA methylation and promoter methylation of IFN-γ and Thy-1 were found in ETS-exposed offspring at 10-12 and 20 weeks of age. These sustained epigenetic alterations preceded the onset of significant pulmonary pathologies observed at 20 weeks of age. This study suggests that perinatal ETS exposure induces persistent epigenetic alterations in global DNA, as well as IFN-γ and Thy-1 promoter methylation that precede the adult onset of fibrotic lung pathology. These epigenetic findings could represent potential biomarkers of latent respiratory disease risk.

  3. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    PubMed

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition. Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.

  4. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury.

    PubMed

    Hasan, Djo; Blankman, Paul; Nieman, Gary F

    2017-09-01

    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.

  5. Infection-induced airway fibrosis in two rat strains with differential susceptibility.

    PubMed Central

    McIntosh, J C; Simecka, J W; Ross, S E; Davis, J K; Miller, E J; Cassell, G H

    1992-01-01

    Chronic infections play a significant role in the morbidity and mortality of patients with chronic airflow limitation. By stimulating airway inflammation, persistent infection has the potential to cause airway fibrosis. However, in patient this condition is most typically found in lungs damaged by other factors, such as smoking, abnormal secretions, or barotrauma. We report the characterization of Mycoplasma pulmonis infection-induced lung fibrosis in two immunocompetent rat strains with no preexisting lung disease. The fibrosis was predominantly in the airways, as demonstrated by the findings for infected animals of increased airway inflammation, airway fibrosis, and airway wall thickness, which correlated with the collagen content of the lungs. Also, the physiological alterations were the opposite of those found in interstitial fibrosis, with a positive correlation between lung compliance and collagen content. The airway fibrosis was noted earlier and to a greater extent in Lewis rats than in Fisher rats, and this result apparently was related to regulation of the inflammatory response. Airway wall thickness, airway inflammation, and airway fibrosis are commonly reported in tissue specimens from patients with chronic airway diseases and have been shown to correlate with airflow limitation in patients with chronic obstructive pulmonary disease. Thus, this model may be useful in furthering our understanding of the role of chronic infection and airway inflammation in airflow obstruction. Images PMID:1612760

  6. Effects of an anti-inflammatory VAP-1/SSAO inhibitor, PXS-4728A, on pulmonary neutrophil migration.

    PubMed

    Schilter, Heidi C; Collison, Adam; Russo, Remo C; Foot, Jonathan S; Yow, Tin T; Vieira, Angelica T; Tavares, Livia D; Mattes, Joerg; Teixeira, Mauro M; Jarolimek, Wolfgang

    2015-03-20

    The persistent influx of neutrophils into the lung and subsequent tissue damage are characteristics of COPD, cystic fibrosis and acute lung inflammation. VAP-1/SSAO is an endothelial bound adhesion molecule with amine oxidase activity that is reported to be involved in neutrophil egress from the microvasculature during inflammation. This study explored the role of VAP-1/SSAO in neutrophilic lung mediated diseases and examined the therapeutic potential of the selective inhibitor PXS-4728A. Mice treated with PXS-4728A underwent intra-vital microscopy visualization of the cremaster muscle upon CXCL1/KC stimulation. LPS inflammation, Klebsiella pneumoniae infection, cecal ligation and puncture as well as rhinovirus exacerbated asthma models were also assessed using PXS-4728A. Selective VAP-1/SSAO inhibition by PXS-4728A diminished leukocyte rolling and adherence induced by CXCL1/KC. Inhibition of VAP-1/SSAO also dampened the migration of neutrophils to the lungs in response to LPS, Klebsiella pneumoniae lung infection and CLP induced sepsis; whilst still allowing for normal neutrophil defense function, resulting in increased survival. The functional effects of this inhibition were demonstrated in the RV exacerbated asthma model, with a reduction in cellular infiltrate correlating with a reduction in airways hyperractivity. This study demonstrates that the endothelial cell ligand VAP-1/SSAO contributes to the migration of neutrophils during acute lung inflammation, pulmonary infection and airway hyperractivity. These results highlight the potential of inhibiting of VAP-1/SSAO enzymatic function, by PXS-4728A, as a novel therapeutic approach in lung diseases that are characterized by neutrophilic pattern of inflammation.

  7. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands.

    PubMed

    Procházková, Jiřina; Strapáčová, Simona; Svržková, Lucie; Andrysík, Zdeněk; Hýžďalová, Martina; Hrubá, Eva; Pěnčíková, Kateřina; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Espinosa, Joaquín M; Vondráček, Jan; Machala, Miroslav

    2018-08-01

    Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Incomplete lung recovery following sub-acute inhalation of combustion-derived ultrafine particles in mice.

    PubMed

    Noël, A; Xiao, R; Perveen, Z; Zaman, H M; Rouse, R L; Paulsen, D B; Penn, A L

    2016-02-24

    Particulate matter (PM) is one of the six criteria pollutant classes for which National Ambient Air Quality Standards have been set by the United States Environmental Protection Agency. Exposures to PM have been correlated with increased cardio-pulmonary morbidity and mortality. Butadiene soot (BDS), generated from the incomplete combustion of 1,3-butadiene (BD), is both a model PM mixture and a real-life example of a petrochemical product of incomplete combustion. There are numerous events, including wildfires, accidents at refineries and tank car explosions that result in sub-acute exposure to high levels of airborne particles, with the people exposed facing serious health problems. These real-life events highlight the need to investigate the health effects induced by short-term exposure to elevated levels of PM, as well as to assess whether, and if so, how well these adverse effects are resolved over time. In the present study, we investigated the extent of recovery of mouse lungs 10 days after inhalation exposures to environmentally-relevant levels of BDS aerosols had ended. Female BALB/c mice exposed to either HEPA-filtered air or to BDS (5 mg/m(3) in HEPA filtered air, 4 h/day, 21 consecutive days) were sacrificed immediately, or 10 days after the final BDS exposure. Bronchoalveolar lavage fluid (BALF) was collected for cytology and cytokine analysis. Lung proteins and RNA were extracted for protein and gene expression analysis. Lung histopathology evaluation also was performed. Sub-acute exposures of mice to hydrocarbon-rich ultrafine particles induced: (1) BALF neutrophil elevation; (2) lung mucosal inflammation, and (3) increased BALF IL-1β concentration; with all three outcomes returning to baseline levels 10 days post-exposure. In contrast, (4) lung connective tissue inflammation persisted 10 days post-exposure; (5) we detected time-dependent up-regulation of biotransformation and oxidative stress genes, with incomplete return to baseline levels; and (6) we observed persistent particle alveolar load following 10 days of recovery. These data show that 10 days after a 21-day exposure to 5 mg/m(3) of BDS has ended, incomplete lung recovery promotes a pro-biotransformation, pro-oxidant, and pro-inflammatory milieu, which may be a starting point for potential long-term cardio-pulmonary effects.

  9. The effect of mouth breathing on exercise induced fall in lung function in children with allergic asthma and rhinitis.

    PubMed

    Turkalj, Mirjana; Živković, Jelena; Lipej, Marcel; Bulat Lokas, Sandra; Erceg, Damir; Anzić, Srđan Ante; Magdić, Robert; Plavec, Davor

    2016-07-01

    Exercise induced bronchospasm (EIB) represents a common feature of childhood asthma which is most commonly revealed during free running. On the other hand aerobic exercise shows significant beneficial effects in asthmatics especially on the reduction of the level of systemic inflammation and is recommended as part of its treatment. The aim of this study was to test how mandatory mouth breathing influences the exercise induced level of decrease in lung function according to the level of severity of allergic rhinitis (AR). Free 6-minute running test preceded and followed by spirometry done with and without a nose clip a day apart was conducted in 55 children with moderate persistent asthma and AR. Children were divided into two groups according to the severity of nasal symptoms. There was a greater fall in forced expiratory volume in one second after exercise with a nose clip in children with less nasal symptoms than in children with more nasal symptoms (mean ± SD; -5.28 (7.91) vs. -0.08 (4.58), p = 0.0228) compared to testing without the nose clip (mean ± SD; LNS, -1.31 ± 3.89%, p = 0.2408; MNS, -1.47 ± 3.68%, p = 0.2883). Our results show that regular mouth breathing due to nasal congestion may lessen the degree of EIB in patients with persistent AR and allergic asthma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Significance of Intratracheal Instillation Tests for the Screening of Pulmonary Toxicity of Nanomaterials.

    PubMed

    Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Fujisawa, Yuri; Fujita, Katsuhide

    Inhalation tests are the gold standard test for the estimation of the pulmonary toxicity of respirable materials. Intratracheal instillation tests have been used widely, but they yield limited evidence of the harmful effects of respirable materials. We reviewed the effectiveness of intratracheal instillation tests for estimating the hazards of nanomaterials, mainly using research papers featuring intratracheal instillation and inhalation tests centered on a Japanese national project. Compared to inhalation tests, intratracheal instillation tests induced more acute inflammatory responses in the animal lung due to a bolus effect regardless of the toxicity of the nanomaterials. However, nanomaterials with high toxicity induced persistent inflammation in the chronic phase, and nanomaterials with low toxicity induced only transient inflammation. Therefore, in order to estimate the harmful effects of a nanomaterial, an observation period of 3 months or 6 months following intratracheal instillation is necessary. Among the endpoints of pulmonary toxicity, cell count and percentage of neutrophil, chemokines for neutrophils and macrophages, and oxidative stress markers are considered most important. These markers show persistent and transient responses in the lung from nanomaterials with high and low toxicity, respectively. If the evaluation of the pulmonary toxicity of nanomaterials is performed in not only the acute but also the chronic phase in order to avoid the bolus effect of intratracheal instillation and inflammatory-related factors that are used as endpoints of pulmonary toxicity, we speculate that intratracheal instillation tests can be useful for screening for the identification of the hazard of nanomaterials through pulmonary inflammation.

  11. Cable Pili and the Associated 22 Kda Adhesin Contribute to Burkholderia Cenocepacia Persistence In Vivo

    PubMed Central

    Goldberg, Joanna B.; Ganesan, Shyamala; Comstock, Adam T.; Zhao, Ying; Sajjan, Uma S.

    2011-01-01

    Background Infection by Burkholderia cenocepacia in cystic fibrosis (CF) patients is associated with poor clinical prognosis. Previously, we demonstrated that one of the highly transmissible strains, BC7, expresses cable pili and the associated 22 kDa adhesin, both of which contribute to BC7 binding to airway epithelial cells. However, the contribution of these factors to induce inflammation and bacterial persistence in vivo is not known. Methodology/Principal Findings Wild-type BC7 stimulated higher IL-8 responses than the BC7 cbl and BC7 adhA mutants in both CF and normal bronchial epithelial cells. To determine the role of cable pili and the associated adhesin, we characterized a mouse model of B. cenocepacia, where BC7 are suspended in Pseudomonas aeruginosa alginate. C57BL/6 mice were infected intratracheally with wild-type BC7 suspended in either alginate or PBS and were monitored for lung bacterial load and inflammation. Mice infected with BC7 suspended in PBS completely cleared the bacteria by 3 days and resolved the inflammation. In contrast, mice infected with BC7 suspended in alginate showed persistence of bacteria and moderate lung inflammation up to 5 days post-infection. Using this model, mice infected with the BC7 cbl and BC7 adhA mutants showed lower bacterial loads and mild inflammation compared to mice infected with wild-type BC7. Complementation of the BC7 cblS mutation in trans restored the capacity of this strain to persist in vivo. Immunolocalization of bacteria revealed wild-type BC7 in both airway lumen and alveoli, while the BC7 cbl and BC7 adhA mutants were found mainly in airway lumen and peribronchiolar region. Conclusions and Significance B. cenocepacia suspended in alginate can be used to determine the capacity of bacteria to persist and cause lung inflammation in normal mice. Both cable pili and adhesin contribute to BC7-stimulated IL-8 response in vitro, and BC7 persistence and resultant inflammation in vivo. PMID:21811611

  12. BMP4 and LGL1 are Down Regulated in an Ovine Model of Congenital Diaphragmatic Hernia

    PubMed Central

    Emmerton-Coughlin, Heather M. A.; Martin, K. Kathryn; Chiu, Jacky S. S.; Zhao, Lin; Scott, Leslie A.; Regnault, Timothy R. H.; Bütter, Andreana

    2014-01-01

    Background/Purpose: The molecular pathophysiology of lung hypoplasia in congenital diaphragmatic hernia (CDH) remains poorly understood. The Wnt signaling pathway and downstream targets, such as bone morphogenetic proteins (BMP) 4 and other factors such as late gestation lung protein 1 (LGL1), are essential to normal lung development. Nitrofen-induced hypoplastic CDH rodent lungs demonstrate down regulation of the Wnt pathway including BMP4 and reduced LGL1 expression. The aim of the current study was to examine the molecular pathophysiology associated with a surgically induced CDH in an ovine model. Methods: Left thoracotomy was performed at 80 days in 14 fetal sheep; CDH was created in seven experimental animals. Lungs were harvested at 136 days (term = 145 days). Lung weight (LW) and mean terminal bronchiole density (MTBD) were measured to determine the degree of pulmonary hypoplasia. Quantitative real time PCR was undertaken to analyze Wnt2, Wnt7b, BMP4, and LGL1 mRNA expression. Results: Total LW was decreased while MTBD was increased in the CDH group (p < 0.05), confirming pulmonary hypoplasia. BMP4 and LGL1 mRNA was significantly reduced in CDH lungs (p < 0.05). Wnt2 mRNA was decreased, although not significantly (p < 0.06). Conclusion: For the first time, down regulation of BMP4 and LGL1 are reported in an ovine CDH model. In contrast to other animal models, these changes are persistent to near term. These findings suggest that mechanical compression from herniated viscera may play a more important role in causing pulmonary hypoplasia in CDH, rather than a primary defect in lung organogenesis. PMID:25593968

  13. Cytotoxic potential of lung CD8(+) T cells increases with chronic obstructive pulmonary disease severity and with in vitro stimulation by IL-18 or IL-15.

    PubMed

    Freeman, Christine M; Han, MeiLan K; Martinez, Fernando J; Murray, Susan; Liu, Lyrica X; Chensue, Stephen W; Polak, Timothy J; Sonstein, Joanne; Todt, Jill C; Ames, Theresa M; Arenberg, Douglas A; Meldrum, Catherine A; Getty, Christi; McCloskey, Lisa; Curtis, Jeffrey L

    2010-06-01

    Lung CD8(+) T cells might contribute to progression of chronic obstructive pulmonary disease (COPD) indirectly via IFN-gamma production or directly via cytolysis, but evidence for either mechanism is largely circumstantial. To gain insights into these potential mechanisms, we analyzed clinically indicated lung resections from three human cohorts, correlating findings with spirometrically defined disease severity. Expression by lung CD8(+) T cells of IL-18R and CD69 correlated with severity, as did mRNA transcripts for perforin and granzyme B, but not Fas ligand. These correlations persisted after correction for age, smoking history, presence of lung cancer, recent respiratory infection, or inhaled corticosteroid use. Analysis of transcripts for killer cell lectin-like receptor G1, IL-7R, and CD57 implied that lung CD8(+) T cells in COPD do not belong to the terminally differentiated effector populations associated with chronic infections or extreme age. In vitro stimulation of lung CD8(+) T cells with IL-18 plus IL-12 markedly increased production of IFN-gamma and TNF-alpha, whereas IL-15 stimulation induced increased intracellular perforin expression. Both IL-15 and IL-18 protein expression could be measured in whole lung tissue homogenates, but neither correlated in concentration with spirometric severity. Although lung CD8(+) T cell expression of mRNA for both T-box transcription factor expressed in T cells and GATA-binding protein 3 (but not retinoic acid receptor-related orphan receptor gamma or alpha) increased with spirometric severity, stimulation of lung CD8(+) T cells via CD3epsilon-induced secretion of IFN-gamma, TNF-alpha, and GM-CSF, but not IL-5, IL-13, and IL-17A. These findings suggest that the production of proinflammatory cytokines and cytotoxic molecules by lung-resident CD8(+) T cells contributes to COPD pathogenesis.

  14. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu; Patel-Vayas, Kinal; Shen, Jianliang

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h andmore » 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated early after ozone. ► Oxidative stress may contribute to regulating macrophage phenotype and function.« less

  15. Group B streptococcal phospholipid causes pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Curtis, Jerri; Kim, Geumsoo; Wehr, Nancy B.; Levine, Rodney L.

    2003-04-01

    Group B Streptococcus is the most common cause of bacterial infection in the newborn. Infection in many cases causes persistent pulmonary hypertension, which impairs gas exchange in the lung. We purified the bacterial components causing pulmonary hypertension and identified them as cardiolipin and phosphatidylglycerol. Synthetic cardiolipin or phosphatidylglycerol also induced pulmonary hypertension in lambs. The recognition that bacterial phospholipids may cause pulmonary hypertension in newborns with Group B streptococcal infection opens new avenues for therapeutic intervention.

  16. Group B streptococcal phospholipid causes pulmonary hypertension.

    PubMed

    Curtis, Jerri; Kim, Geumsoo; Wehr, Nancy B; Levine, Rodney L

    2003-04-29

    Group B Streptococcus is the most common cause of bacterial infection in the newborn. Infection in many cases causes persistent pulmonary hypertension, which impairs gas exchange in the lung. We purified the bacterial components causing pulmonary hypertension and identified them as cardiolipin and phosphatidylglycerol. Synthetic cardiolipin or phosphatidylglycerol also induced pulmonary hypertension in lambs. The recognition that bacterial phospholipids may cause pulmonary hypertension in newborns with Group B streptococcal infection opens new avenues for therapeutic intervention.

  17. Toxicity of Carbon Nanotubes in the Lungs of Mice 7 and 90 Days After Intratracheal Instillation

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John T.; McCluskey, Richard; Hunter, Robert L.

    2002-01-01

    Single-walled carbon nanotubes have many potential applications in the electronic, computer, and aerospace industries. Because unprocessed nanotubes could become airborne and potentially reach the lungs, their pulmonary toxicity was investigated. The three products studied were made by different methods, and contained different types and amounts of residual catalytic metals. Mice were each intratracheally instilled once with 0,0.1 or 0.5 mg of nanotubes, a carbon black negative control, or a quartz positive control, and killed for histopathological study 7 d or 90 d after the treatment. All nanotube products induced epithelioid granulomas and, in some cases, interstitial inflammation in the animals of the 7 -d groups. These lesions persisted and were worse in the 90-d groups. We found that, if nanotubes reach the lung, they can be more toxic than quartz, which is considered a serious occupational health hazard in chronic inhalation exposures.

  18. Detection of Mycoplasma bovis by in-situ hybridization and expression of inducible nitric oxide synthase, nitrotyrosine and manganese superoxide dismutase in the lungs of experimentally-infected calves.

    PubMed

    Hermeyer, K; Jacobsen, B; Spergser, J; Rosengarten, R; Hewicker-Trautwein, M

    2011-01-01

    Pneumonic lesions occurring in calves after respiratory infection with Mycoplasma bovis are characterized by subacute or chronic suppurative bronchopneumonia with multiple foci of necrosis and by persistence of M. bovis antigen, which is frequently associated with phagocytes at the periphery of the necrotic foci. The aims of this study were: (1) to investigate the expression of inducible nitric oxide synthase (iNOS), nitrotyrosine (NT) and manganese superoxide dismutase (Mn-SOD) in the lung lesions of calves infected experimentally with M. bovis, and (2) to analyse the distribution and localization of M. bovis DNA by in-situ hybridization and correlate these findings with the immunohistochemical detection of M. bovis antigen. Phagocytic cells infiltrating the lung tissue were characterized using the markers CD68, S100A8 and S100A9. Lung tissue from 18 infected calves and three non-infected controls were examined. All infected calves had an increased number of cells expressing iNOS, NT and Mn-SOD in the inflamed lung tissue. These molecules were most strongly expressed by macrophages demarcating necrotic areas, by altered bronchiolar epithelial cells and by macrophages within obliterated bronchioles. Co-localization of M. bovis DNA, M. bovis antigen and macrophages expressing iNOS, NT and Mn-SOD was observed. These findings suggest that the generation of reactive oxygen and nitrogen species is involved in the development of severe chronic lung damage in M. bovis infection. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Characterization of the seven-day course of pulmonary response following unilateral lung acid injury in rats.

    PubMed

    Setzer, Florian; Schmidt, Barbara; Hueter, Lars; Schwarzkopf, Konrad; Sänger, Jörg; Schreiber, Torsten

    2018-01-01

    Aspiration of gastric acid is an important cause of acute lung injury. The time course of the pulmonary response to such an insult beyond the initial 48 hours is incompletely characterized. The purpose of this study was to comprehensively describe the pulmonary effects of focal lung acid injury over a seven day period in both directly injured and not directly injured lung tissue. Male Wistar rats underwent left-endobronchial instillation with hydrochloric acid and were sacrificed at 4, 24, 48, 96 or 168 h after the insult. Healthy non-injured animals served as controls. We assessed inflammatory cell counts and cytokine levels in right and left lung lavage fluid and blood, arterial oxygen tension, alterations in lung histology, lung wet-to-dry weight ratio and differential lung perfusion. Lung acid instillation induced an early strong inflammatory response in the directly affected lung, peaking at 4-24 hours, with only partial resolution after 7 days. A less severe response with complete resolution after 4 days was seen in the opposite lung. Alveolar cytokine levels, with exception of IL-6, only partially reflected the localization of lung injury and the time course of the functional and histologic alterations. Alveolar leucocyte subpopulations exhibited different time courses in the acid injured lung with persistent elevation of alveolar lymphocytes and macrophages. After acid instillation there was an early transient decrease in arterial oxygen tension and lung perfusion was preferentially distributed to the non-injured lung. These findings provide a basis for further research in the field of lung acid injury and for studies exploring effects of mechanical ventilation on injured lungs. Incomplete recovery in the directly injured lung 7 days after acid instillation suggests that increased vulnerability and susceptibility to further noxious stimuli are still present at that time.

  20. γδ T cells protect against LPS-induced lung injury

    PubMed Central

    Wehrmann, Fabian; Lavelle, James C.; Collins, Colm B.; Tinega, Alex N.; Thurman, Joshua M.; Burnham, Ellen L.; Simonian, Philip L.

    2016-01-01

    γδ T lymphocytes are a unique T cell population with important anti-inflammatory capabilities. Their role in acute lung injury, however, is poorly understood but may provide significant insight into lung-protective mechanisms occurring after injury. In a murine model of lung injury, wild-type C57BL/6 and TCRδ−/− mice were exposed to Escherichia coli LPS, followed by analysis of γδ T cell and macrophage subsets. In the absence of γδ T cells, TCRδ−/− mice developed increased inflammation and alveolar-capillary leak compared with wild-type C57BL/6 mice after LPS exposure that correlated with expansion of distinct macrophage populations. Classically activated M1 macrophages were increased in the lung of TCRδ−/− mice at d 1, 4, and 7 after LPS exposure that peaked at d 4 and persisted at d 7 compared with wild-type animals. In response to LPS, Vγ1 and Vγ7 γδ T cells were expanded in the lung and expressed IL-4. Coculture experiments showed decreased expression of TNF-α by resident alveolar macrophages in the presence of γδ T cells that was reversed in the presence of an anti-IL-4-blocking antibody. Treatment of mice with rIL4 resulted in reduced numbers of M1 macrophages, inflammation, and alveolar-capillary leak. Therefore, one mechanism by which Vγ1 and Vγ7 γδ T cells protect against LPS-induced lung injury is through IL-4 expression, which decreases TNF-α production by resident alveolar macrophages, thus reducing accumulation of M1 macrophages, inflammation, and alveolar-capillary leak. PMID:26428678

  1. Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells.

    PubMed

    Ghandhi, Shanaz A; Turner, Helen C; Shuryak, Igor; Dugan, Gregory O; Bourland, J Daniel; Olson, John D; Tooze, Janet A; Morton, Shad R; Batinic-Haberle, Ines; Cline, J Mark; Amundson, Sally A

    2018-01-01

    We investigated the cytogenetic and gene expression responses of peripheral blood cells of non-human primates (NHP, Macaca mulatta) that were whole-thorax irradiated with a single dose of 10 Gy. In this model, partial irradiation of NHPs in the thoracic region (Whole Thorax Lung Irradiation, WTLI) allows the study of late radiation-induced lung injury, while avoiding acute radiation syndromes related to hematopoietic and gastrointestinal injury. A transient drop in circulating lymphocytes and platelets was seen by 9 days, followed by elevations in respiratory rate, circulating neutrophils, lymphocytes, and monocytes at 60-100 days, corresponding to computed tomography (CT) and histologic evidence of pneumonitis, and elective euthanasia of four animals. To evaluate long-term DNA damage in NHP peripheral blood lymphocytes after 10 Gy WTLI, we used the cytokinesis-block micronucleus (CBMN) assay to measure chromosomal aberrations as post-mitotic micronuclei in blood samples collected up to 8 months after irradiation. Regression analysis showed significant induction of micronuclei in NHP blood cells that persisted with a gradual decline over the 8-month study period, suggesting long-term DNA damage in blood lymphocytes after WTLI. We also report transcriptomic changes in blood up to 30 days after WTLI. We isolated total RNA from peripheral blood at 3 days before and then at 2, 5 and 30 days after irradiation. We identified 1187 transcripts that were significantly changed across the 30-day time course. From changes in gene expression, we identified biological processes related to immune responses, which persisted across the 30-day study. Response to oxygen-containing compounds and bacteria were implicated by gene-expression changes at the earliest day 2 and latest, day 30 time-points. Gene expression changes suggest a persistent altered state of the immune system, specifically response to infection, for at least a month after WTLI.

  2. In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis

    PubMed Central

    Gautam, Uma S.; Foreman, Taylor W.; Bucsan, Allison N.; Veatch, Ashley V.; Alvarez, Xavier; Adekambi, Toidi; Golden, Nadia A.; Gentry, Kaylee M.; Doyle-Meyers, Lara A.; Didier, Peter J.; Blanchard, James L.; Kousoulas, K. Gus; Lackner, Andrew A.; Kalman, Daniel; Rengarajan, Jyothi; Khader, Shabaana A.; Kaushal, Deepak

    2018-01-01

    Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB. PMID:29255022

  3. Systems Biology-Based Identification of Mycobacterium tuberculosis Persistence Genes in Mouse Lungs

    PubMed Central

    Dutta, Noton K.; Bandyopadhyay, Nirmalya; Veeramani, Balaji; Lamichhane, Gyanu; Karakousis, Petros C.; Bader, Joel S.

    2014-01-01

    ABSTRACT Identifying Mycobacterium tuberculosis persistence genes is important for developing novel drugs to shorten the duration of tuberculosis (TB) treatment. We developed computational algorithms that predict M. tuberculosis genes required for long-term survival in mouse lungs. As the input, we used high-throughput M. tuberculosis mutant library screen data, mycobacterial global transcriptional profiles in mice and macrophages, and functional interaction networks. We selected 57 unique, genetically defined mutants (18 previously tested and 39 untested) to assess the predictive power of this approach in the murine model of TB infection. We observed a 6-fold enrichment in the predicted set of M. tuberculosis genes required for persistence in mouse lungs relative to randomly selected mutant pools. Our results also allowed us to reclassify several genes as required for M. tuberculosis persistence in vivo. Finally, the new results implicated additional high-priority candidate genes for testing. Experimental validation of computational predictions demonstrates the power of this systems biology approach for elucidating M. tuberculosis persistence genes. PMID:24549847

  4. Il-10 deficient mice express IFN-γ mRNA and clear Leptospira interrogans from their kidneys more rapidly than normal C57BL/6 mice.

    PubMed

    Devlin, Amy A; Halvorsen, Priya J; Miller, Jennifer C; Laster, Scott M

    2017-05-01

    Leptospira interrogans (L. interrogans), the causative agent of leptospirosis, is a widespread zoonotic spirochete that lives a dual lifestyle. L. interrogans infects mice, rats, and wildlife in a persistent and asymptomatic fashion, while also causing productive and acute infections in other mammals such as humans and hamsters. Infections in humans can be fatal, accompanied by a cytokine storm and shock-like symptoms. Production of IL-10 has been noted in both rodent and human infections which has led a number of investigators to hypothesize that IL-10 plays a role in the pathogenesis of this disease. To test this hypothesis we have compared bacteremia and the cytokine response of normal and IL-10 deficient C57Bl/6 mice following ip infection with L. interrogans. In normal mice bacterial 16s mRNA was detected in both lung and kidney tissues within a day after infection. Levels of 16s mRNA then dropped in both organs with complete elimination from the lung by day 3 but persistence in the kidney for 7days after infection. In contrast, in IL-10 deficient mice, the organism was eliminated more rapidly from the kidney. We found that infection of both control and IL-10 deficient mice produced similar levels of a number of pro-inflammatory cytokine mRNAs. On the other hand, IFN-γ mRNA was only induced in IL-10 deficient mice. These results support the hypothesis that L. interrogans ability to induce IL-10, which in turn prevents production of IFN-γ and inhibits T cell immunity, may contribute to the persistent growth of this microorganism in the murine kidney. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. STATs in Lung Development: Distinct Early and Late Expression, Growth Modulation and Signaling Dysregulation in Congenital Diaphragmatic Hernia.

    PubMed

    Piairo, Paulina; Moura, Rute S; Baptista, Maria João; Correia-Pinto, Jorge; Nogueira-Silva, Cristina

    2018-01-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening developmental anomaly, intrinsically combining severe pulmonary hypoplasia and hypertension. During development, signal transducers and activators of transcription (STAT) are utilized to elicit cell growth, differentiation, and survival. We used the nitrofen-induced CDH rat model. At selected gestational time points, lungs were divided into two experimental groups, i.e., control or CDH. We performed immunohistochemistry and western blotting analysis to investigate the developmental expression profile of the complete family of STATs (STAT1-6), plus specific STATs activation (p-STAT3, p-STAT6) and regulation by SOCS (SOCS3) in normal lungs against those of diseased lungs. The normal fetal lung explants were treated with piceatannol (STAT3 inhibitor) in vitro followed by morphometrical analysis. Molecular profiling of STATs during the lung development revealed distinct early and late expression signatures. Experimental CDH altered the STATs expression, activation, and regulation in the fetal lungs. In particular, STAT3 and STAT6 were persistently over-expressed and early over-activated. Piceatannol treatment dose-dependently stimulated the fetal lung growth. These findings suggest that STATs play an important role during normal fetal lung development and CDH pathogenesis. Moreover, functionally targeting STAT signaling modulates fetal lung growth, which highlights that STAT3 and STAT6 signaling might be promising therapeutic targets in reducing or preventing pulmonary hypoplasia in CDH. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. IL-22 Is Essential for Lung Epithelial Repair following Influenza Infection

    PubMed Central

    Pociask, Derek A.; Scheller, Erich V.; Mandalapu, Sivanarayana; McHugh, Kevin J.; Enelow, Richard I.; Fattman, Cheryl L.; Kolls, Jay K.; Alcorn, John F.

    2014-01-01

    Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22−/− mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22−/− mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22−/− animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease. PMID:23490254

  7. Hypoxia-Induced Mesenchymal Stromal Cells Exhibit an Enhanced Therapeutic Effect on Radiation-Induced Lung Injury in Mice due to an Increased Proliferation Potential and Enhanced Antioxidant Ability.

    PubMed

    Li, Bailong; Li, Cheng; Zhu, Mo; Zhang, Youjun; Du, Jicong; Xu, Yang; Liu, Bin; Gao, Fu; Liu, Hu; Cai, Jianming; Yang, Yanyong

    2017-01-01

    Radiation therapy is an important treatment for thoracic cancer; however, side effects accompanied with radiotherapy lead to limited tumor control and a decline in patient quality of life. Among these side effects, radiation-induced lung injury (RILI) is the most serious and common. Hence, an effective remedy for RILI is needed. Mesenchymal stromal cells (MSCs) are multipotent adult stem cells that have been demonstrated to be an effective treatment in some disease caused by tissue damage. However, unlike other injuries, RILI received limited therapeutic effects from implanted MSCs due to local hypoxia and extensive reactive oxygen species (ROS) in irradiated lungs. Since the poor survival of MSCs is primarily due to hypoxia and ROS generation, we hypothesize that persistent and adaptive hypoxia treatment induces enhanced resistance to hypoxic stress in implanted MSC. The aim of this study is to investigate whether persistent and adaptive hypoxia treatment of bmMSCs prior to their transplantation in injured mice enhanced survival and improved curative effects in RILI. Primary bmMSCs were obtained from the marrow of six-week-old male C57BL6/J mice and were cultured either under normoxic conditions (21% O2) or hypoxic conditions (2.5% O2). Mice were injected with normoxia/hypoxia MSCs after thoracic irradiation (20 Gy). The therapeutic effects of MSCs on RILI were assessed by pathological examinations that included H&E staining, Masson staining and α-SMA staining; meanwhile, inflammatory factors were measured using an ELISA. The morphology of MSCs in vitro was recorded using a microscope and identified by flow cytometry, cell viability was measured using the CCK-8 assay, the potential for proliferation was detected by the EdU assay, and ROS levels were measured using a ROS fluorogenic probe. In addition, HIF-1α and several survival pathway proteins (Akt, p-Akt, Caspase-3) were also detected by western blotting. Implanted MSCs alleviated both early radiation-induced pneumonia and late pulmonary fibrosis. However, hypoxia MSCs displayed a more pronounced therapeutic effect compared to normoxia MSCs. Compared to normoxia MSCs, the hypoxia MSCs demonstrated greater cell viability, an enhanced proliferation potential, decreased ROS levels and increased resistance to hypoxia and ROS stress. In addition, hypoxia MSCs achieved higher activation levels of HIF-1α and Akt, and HIF-1α played a critical role in the development of resistance. Hypoxia enhances the therapeutic effect of mesenchymal stromal cells on radiation-induced lung injury by promoting MSC proliferation and improving their antioxidant ability, mediated by HIF-1α. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. Xeroderma Pigmentosum Group C Deficiency Alters Cigarette Smoke DNA Damage Cell Fate and Accelerates Emphysema Development.

    PubMed

    Sears, Catherine R; Zhou, Huaxin; Justice, Matthew J; Fisher, Amanda J; Saliba, Jacob; Lamb, Isaac; Wicker, Jessica; Schweitzer, Kelly S; Petrache, Irina

    2018-03-01

    Cigarette smoke (CS) exposure is a major risk factor for the development of emphysema, a common disease characterized by loss of cells comprising the lung parenchyma. The mechanisms of cell injury leading to emphysema are not completely understood but are thought to involve persistent cytotoxic or mutagenic DNA damage induced by CS. Using complementary cell culture and mouse models of CS exposure, we investigated the role of the DNA repair protein, xeroderma pigmentosum group C (XPC), on CS-induced DNA damage repair and emphysema. Expression of XPC was decreased in mouse lungs after chronic CS exposure and XPC knockdown in cultured human lung epithelial cells decreased their survival after CS exposure due to activation of the intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis were increased in XPC-deficient mouse lungs and were further increased by CS exposure. XPC deficiency was associated with structural and functional changes characteristic of emphysema, which were worsened by age, similar to levels observed with chronic CS exposure. Taken together, these findings suggest that repair of DNA damage by XPC plays an important and previously unrecognized role in the maintenance of alveolar structures. These findings support that loss of XPC, possibly due to chronic CS exposure, promotes emphysema development and further supports a link between DNA damage, impaired DNA repair, and development of emphysema.

  9. Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells

    PubMed Central

    Yang, Shu-Er; Hsieh, Ming-Tsuen; Tsai, Tung-Hu; Hsu, Shih-Lan

    2003-01-01

    Magnolol, an active component isolated from the root and stem bark of Magnolia officinalis, has been reported to exhibit antitumour effects, but little is known about its molecular mechanisms of action. Magnolol inhibited proliferation of human lung squamous carcinoma CH27 cells at low concentrations (10–40 μM), and induced apoptosis at high concentrations (80–100 μM). Treatment with 80 μM magnolol significantly increased the expression of Bad and Bcl-XS proteins, whereas it decreased the expression of Bcl-XL. Overexpression of Bcl-2 protected CH27 cells against magnolol-triggered apoptosis. Magnolol treatment resulted in accumulation of cytosolic cytochrome c and activation of caspase-9 and downstream caspases (caspase-3 and -6). Pretreatment with z-VAD-fmk markedly inhibited magnolol-induced cell death, but did not prevent cytosolic cytochrome c accumulation. Magnolol induced a modest and persistent JNK activation and ERK inactivation in CH27 cells without evident changes in the protein levels. The responsiveness of JNK and ERK to magnolol suggests the involvement of these kinases in the initiation of the apoptosis process. These results indicate that regulation of the Bcl-2 family, accumulation of cytosolic cytochrome c, and activation of caspase-9 and caspase-3 may be the effector mechanisms of magnolol-induced apoptosis. PMID:12522090

  10. Serine protease activity contributes to control of Mycobacterium tuberculosis in hypoxic lung granulomas in mice

    PubMed Central

    Reece, Stephen T.; Loddenkemper, Christoph; Askew, David J.; Zedler, Ulrike; Schommer-Leitner, Sandra; Stein, Maik; Mir, Fayaz Ahmad; Dorhoi, Anca; Mollenkopf, Hans-Joachim; Silverman, Gary A.; Kaufmann, Stefan H.E.

    2010-01-01

    The hallmark of human Mycobacterium tuberculosis infection is the presence of lung granulomas. Lung granulomas can have different phenotypes, with caseous necrosis and hypoxia present within these structures during active tuberculosis. Production of NO by the inducible host enzyme NOS2 is a key antimycobacterial defense mechanism that requires oxygen as a substrate; it is therefore likely to perform inefficiently in hypoxic regions of granulomas in which M. tuberculosis persists. Here we have used Nos2–/– mice to investigate host-protective mechanisms within hypoxic granulomas and identified a role for host serine proteases in hypoxic granulomas in determining outcome of disease. Nos2–/– mice reproduced human-like granulomas in the lung when infected with M. tuberculosis in the ear dermis. The granulomas were hypoxic and contained large amounts of the serine protease cathepsin G and clade B serine protease inhibitors (serpins). Extrinsic inhibition of serine protease activity in vivo resulted in distorted granuloma structure, extensive hypoxia, and increased bacterial growth in this model. These data suggest that serine protease activity acts as a protective mechanism within hypoxic regions of lung granulomas and present a potential new strategy for the treatment of tuberculosis. PMID:20679732

  11. Cardiac Ischemia Reperfusion Injury Following Instillation of 20 nm Citrate-capped Nanosilver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becak DP, Holland NA; Shannahan, Jonathan H.

    Background: Silver nanoparticles (AgNP) have garnered much interest due to their antimicrobial properties, becoming one of the most utilized nano scale materials. However, any potential evocable cardiovascular injury associated with exposure has not been previously reported. We have previously demonstrated expansion of myocardial infarction after intratracheal (IT) instillation of other nanomaterials. We hypothesized that pulmonary exposure to Ag core AgNP induces persistent increase in circulating cytokines, expansion of cardiac ischemia-reperfusion (I/R) injury and associated with altered coronary vessel reactivity. Methods: Male Sprague-Dawley rats were exposed to 200 µg of 20 nm citrate capped Ag core AgNP, or a citrate vehiclemore » intratracheally (IT). One and 7 days following IT instillation lungs were evaluated for inflammation and silver presence, serum was analyzed for concentrations of selected cytokines, and cardiac I/R injury and coronary artery reactivity was assessed. Results: AgNP instillation resulted in modest pulmonary injury with detection of silver in lung tissue and infiltrating cells, elevation of serum cytokines: G-CSF, MIP-1α, IL-1β, IL-2, IL-6, IL-13, IL-10, IL-18, IL-17, TNFα, and RANTES, expansion of I/R injury and depression of the coronary vessel reactivity at 1 day post IT compared to vehicle treated rats. Seven days post IT instillation was associated with persistent detection of silver in lungs, elevation in cytokines: IL-2, IL-13, and TNFα and expansion of I/R injury. Conclusions: Based on these data, IT instillation of AgNP increases circulating levels of several cytokines, which may contribute to persistent expansion of I/R injury possibly through an impaired vascular responsiveness.« less

  12. The Complexity of HIV Persistence and Pathogenesis in the Lung Under Antiretroviral Therapy: Challenges Beyond AIDS

    PubMed Central

    2014-01-01

    Abstract Antiretroviral therapy (ART) represents a significant milestone in the battle against AIDS. However, we continue learning about HIV and confronting challenges 30 years after its discovery. HIV has cleverly tricked both the host immune system and ART. First, the many HIV subtypes and recombinant forms have different susceptibilities to antiretroviral drugs, which may represent an issue in countries where ART is just being introduced. Second, even under the suppressive pressures of ART, HIV still increases inflammatory mediators, deregulates apoptosis and proliferation, and induces oxidative stress in the host. Third, the preference of HIV for CXCR4 as a co-receptor may also have noxious outcomes, including potential malignancies. Furthermore, HIV still replicates cryptically in anatomical reservoirs, including the lung. HIV impairs bronchoalveolar T-lymphocyte and macrophage immune responses, rendering the lung susceptible to comorbidities. In addition, HIV-infected individuals are significantly more susceptible to long-term HIV-associated complications. This review focuses on chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension, and lung cancer. Almost two decades after the advent of highly active ART, we now know that HIV-infected individuals on ART live as long as the uninfected population. Fortunately, its availability is rapidly increasing in low- and middle-income countries. Nevertheless, ART is not risk-free: the developed world is facing issues with antiretroviral drug toxicity, resistance, and drug–drug interactions, while developing countries are confronting issues with immune reconstitution inflammatory syndrome. Several aspects of the complexity of HIV persistence and challenges with ART are discussed, as well as suggestions for new avenues of research. PMID:24797368

  13. Assessment and monitoring of flow limitation and other parameters from flow/volume loops.

    PubMed

    Dueck, R

    2000-01-01

    Flow/volume (F/V) spirometry is routinely used for assessing the type and severity of lung disease. Forced vital capacity (FVC) and timed vital capacity (FEV1) provide the best estimates of airflow obstruction in patients with asthma, chronic obstructive pulmonary disease (COPD) and emphysema. Computerized spirometers are now available for early home recognition of asthma exacerbation in high risk patients with severe persistent disease, and for recognition of either infection or rejection in lung transplant patients. Patients with severe COPD may exhibit expiratory flow limitation (EFL) on tidal volume (VT) expiratory F/V (VTF/V) curves, either with or without applying negative expiratory pressure (NEP). EFL results in dynamic hyperinflation and persistently raised alveolar pressure or intrinsic PEEP (PEEPi). Hyperinflation and raised PEEPi greatly enhance dyspnea with exertion through the added work of the threshold load needed to overcome raised pleural pressure. Esophageal (pleural) pressure monitoring may be added to VTF/V loops for assessing the severity of PEEPi: 1) to optimize assisted ventilation by mask or via endotracheal tube with high inspiratory flow rates to lower I:E ratio, and 2) to assess the efficacy of either pressure support ventilation (PSV) or low level extrinsic PEEP in reducing the threshold load of PEEPi. Intraoperative tidal volume F/V loops can also be used to document the efficacy of emphysema lung volume reduction surgery (LVRS) via disappearance of EFL. Finally, the mechanism of ventilatory constraint can be identified with the use of exercise tidal volume F/V loops referenced to maximum F/V loops and static lung volumes. Patients with severe COPD show inspiratory F/V loops approaching 95% of total lung capacity, and flow limitation over the entire expiratory F/V curve during light levels of exercise. Surprisingly, patients with a history of congestive heart failure may lower lung volume towards residual volume during exercise, thereby reducing airway diameter and inducing expiratory flow limitation.

  14. Persistent and progressive long-term lung disease in survivors of preterm birth.

    PubMed

    Urs, Rhea; Kotecha, Sailesh; Hall, Graham L; Simpson, Shannon J

    2018-04-13

    Preterm birth accounts for approximately 11% of births globally, with rates increasing across many countries. Concurrent advances in neonatal care have led to increased survival of infants of lower gestational age (GA). However, infants born <32 weeks of GA experience adverse respiratory outcomes, manifesting with increased respiratory symptoms, hospitalisation and health care utilisation into early childhood. The development of bronchopulmonary dysplasia (BPD) - the chronic lung disease of prematurity - further increases the risk of poor respiratory outcomes throughout childhood, into adolescence and adulthood. Indeed, survivors of preterm birth have shown increased respiratory symptoms, altered lung structure, persistent and even declining lung function throughout childhood. The mechanisms behind this persistent and sometimes progressive lung disease are unclear, and the implications place those born preterm at increased risk of respiratory morbidity into adulthood. This review aims to summarise what is known about the long-term pulmonary outcomes of contemporary preterm birth, examine the possible mechanisms of long-term respiratory morbidity in those born preterm and discuss addressing the unknowns and potentials for targeted treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Overexpression of transforming growth factor-β1 in fetal monkey lung results in prenatal pulmonary fibrosis

    PubMed Central

    Tarantal, A.F.; Chen, H.; Shi, T.T.; Lu, C-H.; Fang, A.B.; Buckley, S.; Kolb, M.; Gauldie, J.; Warburton, D.; Shi, W.

    2011-01-01

    Altered transforming growth factor (TGF)-β expression levels have been linked to a variety of human respiratory diseases, including bronchopulmonary dysplasia and pulmonary fibrosis. However, a causative role for aberrant TGF-β in neonatal lung diseases has not been defined in primates. Exogenous and transient TGF-β1 overexpression in fetal monkey lung was achieved by transabdominal ultrasound-guided fetal intrapulmonary injection of adenoviral vector expressing TGF-β1 at the second or third trimester of pregnancy. The lungs were then harvested near term, and fixed for histology and immunohistochemistry. Lung hypoplasia was observed where TGF-β1 was overexpressed during the second trimester. The most clearly marked phenotype consisted of severe pulmonary and pleural fibrosis, which was independent of the gestational time point when TGF-β1 was overexpressed. Increased cell proliferation, particularly in α-smooth muscle actin-positive myofibroblasts, was detected within the fibrotic foci. But epithelium to mesenchyme transdifferentiation was not detected. Massive collagen fibres were deposited on the inner and outer sides of the pleural membrane, with an intact elastin layer in the middle. This induced fibrotic pathology persisted even after adenoviral-mediated TGF-β1 overexpression was no longer evident. Therefore, overexpression of TGF-β1 within developing fetal monkey lung results in severe and progressive fibrosis in lung parenchyma and pleural membrane, in addition to pulmonary hypoplasia. PMID:20351039

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Mainul, E-mail: mainul.husain@hc-sc.gc.ca; Kyjovska, Zdenka O., E-mail: zky@nrcwe.dk; Bourdon-Lacombe, Julie, E-mail: julie.bourdon-lacombe@hc-sc.gc.ca

    Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally instilled with 162 μg CBNPs alongside vehicle controls. Lung tissues were examined 3 h, and 1, 2, 3, 4, 5, 14, and 42 days (d) post-exposure. Global gene expression and pulmonary inflammation were assessed. DNA damage was evaluated in bronchoalveolar lavage (BAL) cells and lung tissue using the comet assay. Increased neutrophil influx was observed at all time-points. DNA strandmore » breaks were increased in BAL cells 3 h post-exposure, and in lung tissues 2–5 d post-exposure. Approximately 2600 genes were differentially expressed (± 1.5 fold; p ≤ 0.05) across all time-points in the lungs of exposed mice. Altered transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3 h post-exposure declining to base-levels by 3 d, increasing again at 14 d, and then persisting to 42 d post-exposure. Thus, this single CBNP exposure that was equivalent to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42 d post-exposure, raising concern over the chronic effects of CBNP exposure. - Highlights: • A single exposure to CBNPs induced expression changes in over 2600 genes in mouse lungs. • Altered genes were associated with immune-inflammatory and acute phase responses. • Several genes were involved in DNA repair, apoptosis, and muscle contraction. • Effects of a single exposure to CBNPs lasted until 42 d post-exposure. • A single exposure to CBNPs induced a biphasic inflammatory response in gene expression.« less

  17. Partial pneumonectomy of telomerase null mice carrying shortened telomeres initiates cell growth arrest resulting in a limited compensatory growth response

    PubMed Central

    Jackson, Sha-Ron; Lee, Jooeun; Reddy, Raghava; Williams, Genevieve N.; Kikuchi, Alexander; Freiberg, Yael; Warburton, David

    2011-01-01

    Telomerase mutations and significantly shortened chromosomal telomeres have recently been implicated in human lung pathologies. Natural telomere shortening is an inevitable consequence of aging, which is also a risk factor for development of lung disease. However, the impact of shortened telomeres and telomerase dysfunction on the ability of lung cells to respond to significant challenge is still largely unknown. We have previously shown that lungs of late generation, telomerase null B6.Cg-Terctm1Rdp mice feature alveolar simplification and chronic stress signaling at baseline, a phenocopy of aged lung. To determine the role telomerase plays when the lung is challenged, B6.Cg-Terctm1Rdp mice carrying shortened telomeres and wild-type controls were subjected to partial pneumonectomy. We found that telomerase activity was strongly induced in alveolar epithelial type 2 cells (AEC2) of the remaining lung immediately following surgery. Eighty-six percent of wild-type animals survived the procedure and exhibited a burst of early compensatory growth marked by upregulation of proliferation, stress response, and DNA repair pathways in AEC2. In B6.Cg-Terctm1Rdp mice carrying shortened telomeres, response to pneumonectomy was characterized by decreased survival, diminished compensatory lung growth, attenuated distal lung progenitor cell response, persistent DNA damage, and cell growth arrest. Overall, survival correlated strongly with telomere length. We conclude that functional telomerase and properly maintained telomeres play key roles in both long-term survival and the early phase of compensatory lung growth following partial pneumonectomy. PMID:21460122

  18. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5)

    PubMed Central

    Walters, Dianne M.; White, Kevin M.; Patel, Ushma; Davis, Martin J.; Veluci-Marlow, Roberta M.; Bhupanapadu Sunkesula, Solomon Raju; Bonner, James C.; Martin, Jessica R.; Gladwell, Wes; Kleeberger, Steven R.

    2014-01-01

    Interstitial lung diseases (ILDs) are characterized by injury, inflammation, and scarring of alveoli, leading to impaired function. The etiology of idiopathic forms of ILD is not understood, making them particularly difficult to study due to the lack of appropriate animal models. Consequently, few effective therapies have emerged. We developed an inbred mouse model of ILD using vanadium pentoxide (V2O5), the most common form of a transition metal found in cigarette smoke, fuel ash, mineral ores, and steel alloys. Pulmonary responses to V2O5, including dose-dependent increases in lung permeability, inflammation, collagen content, and dysfunction, were significantly greater in DBA/2J mice compared to C57BL/6J mice. Inflammatory and fibrotic responses persisted for 4 mo in DBA/2J mice, while limited responses in C57BL/6J mice resolved. We investigated the genetic basis for differential responses through genetic mapping of V2O5-induced lung collagen content in BXD recombinant inbred (RI) strains and identified significant linkage on chromosome 4 with candidate genes that associate with V2O5-induced collagen content across the RI strains. Results suggest that V2O5 may induce pulmonary fibrosis through mechanisms distinct from those in other models of pulmonary fibrosis. These findings should further advance our understanding of mechanisms involved in ILD and thereby aid in identification of new therapeutic targets.—Walters, D. M., White, K. M., Patel, U., Davis, M. J., Veluci-Marlow, R. M., Bhupanapadu Sunkesula, S. R., Bonner, J. C., Martin, J. R., Gladwell, W., Kleeberger, S. R. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5). PMID:24285090

  19. Comparative analysis of lysyl oxidase (like) family members in pulmonary fibrosis.

    PubMed

    Aumiller, Verena; Strobel, Benjamin; Romeike, Merrit; Schuler, Michael; Stierstorfer, Birgit E; Kreuz, Sebastian

    2017-03-10

    Extracellular matrix (ECM) composition and stiffness are major driving forces for the development and persistence of fibrotic diseases. Lysyl oxidase (LOX) and LOX-like (LOXL) proteins play crucial roles in ECM remodeling due to their collagen crosslinking and intracellular functions. Here, we systematically investigated LOX/L expression in primary fibroblasts and epithelial cells under fibrotic conditions, Bleomycin (BLM) induced lung fibrosis and in human IPF tissue. Basal expression of all LOX/L family members was detected in epithelial cells and at higher levels in fibroblasts. Various pro-fibrotic stimuli broadly induced LOX/L expression in fibroblasts, whereas specific induction of LOXL2 and partially LOX was observed in epithelial cells. Immunohistochemical analysis of lung tissue from 14 IPF patients and healthy donors revealed strong induction of LOX and LOXL2 in bronchial and alveolar epithelium as well as fibroblastic foci. Using siRNA experiments we observed that LOXL2 and LOXL3 were crucial for fibroblast-to-myofibroblast transition (FMT). As FMT could only be reconstituted with an enzymatically active LOXL2 variant, we conclude that LOXL2 enzymatic function is crucial for fibroblast transdifferentiation. In summary, our study provides a comprehensive analysis of the LOX/L family in fibrotic lung disease and indicates prominent roles for LOXL2/3 in fibroblast activation and LOX/LOXL2 in IPF.

  20. The efficacy of the Kampo medicine rikkunshito for chemotherapy-induced anorexia (RICH trial): study protocol for a randomized controlled trial.

    PubMed

    Inoue, Takuya; Takagi, Hironori; Owada, Yuki; Watanabe, Yuzuru; Yamaura, Takumi; Fukuhara, Mitsuro; Muto, Satoshi; Okabe, Naoyuki; Matsumura, Yuki; Hasegawa, Takeo; Osugi, Jun; Hoshino, Mika; Higuchi, Mitsunori; Shio, Yutaka; Yokouchi, Hiroshi; Kanazawa, Kenya; Ohbuchi, Katsuya; Fukushima, Takahisa; Munakata, Mitsuru; Suzuki, Hiroyuki

    2017-10-18

    Cisplatin is a key drug in lung cancer therapy. However, cisplatin is also well known to induce gastrointestinal disorders, such as chemotherapy-induced nausea and vomiting, anorexia, and weight loss. These symptoms sometimes affect patients' quality of life and make continuation of chemotherapy difficult. Anorexia is a cause of concern for patients with cancer because a persistent loss of appetite progresses to cancer cachexia. Although evidence-based management for chemotherapy has recently been established, there is room for improvement. This placebo-controlled, double-blind, randomized trial will aim to determine the efficacy of the traditional Japanese Kampo medicine rikkunshito (TJ-43) for preventing anorexia caused by cisplatin-including chemotherapy in patients with lung cancer. Patients with lung cancer who plan to receive cisplatin-including chemotherapy will be recruited. Patients who provide written consent will be randomly allocated to receive either TJ-43 (arm A) or placebo (arm B) for one course of chemotherapy (21 or 28 consecutive days). Investigators and patients will be masked to the treatment assignment throughout the trial. The primary endpoint will be evaluated as the change in dietary intake from day 0 (the day before the start of chemotherapy) to day 7 of cisplatin-including chemotherapy. The two arms of the trial will comprise 30 patients each. From November 2014, a total of 60 patients will be recruited, and recruitment for the study is planned to be complete by October 2017. This trial is designed to examine the efficacy of rikkunshito (TJ-43) for reducing anorexia and maintaining food intake caused by cisplatin-including chemotherapy in patients with lung cancer. Japan Pharmaceutical Information Center Clinical Trials Information (JAPIC CTI), trial registration: JAPIC CTI-142747 . Registered on 15 December 2014; the RICH trial.

  1. Linking the generation of DNA adducts to lung cancer.

    PubMed

    Ceppi, Marcello; Munnia, Armelle; Cellai, Filippo; Bruzzone, Marco; Peluso, Marco E M

    2017-09-01

    Worldwide, lung cancer is the leading cause of cancer death. DNA adducts are considered a reliable biomarker that reflects carcinogen exposure to tobacco smoke, but the central question is what is the relationship of DNA adducts and cancer? Therefore, we investigated this relationship by a meta-analysis of twenty-two studies with bronchial adducts for a total of 1091 subjects, 887 lung cancer cases and 204 apparently healthy individuals with no evidence of lung cancer. Our study shows that these adducts are significantly associated to increase lung cancer risk. The value of Mean Ratio lung-cancer (MR) of bronchial adducts resulting from the random effects model was 2.64, 95% C.I. 2.00-3.50, in overall lung cancer cases as compared to controls. The significant difference, with lung cancer patients having significant higher levels of bronchial adducts than controls, persisted after stratification for smoking habits. The MR lung-cancer value between lung cancer patients and controls for smokers was 2.03, 95% C.I. 1.42-2.91, for ex-smokers 3.27, 95% C.I. 1.49-7.18, and for non-smokers was 3.81, 95% C.I. 1.85-7.85. Next, we found that the generation of bronchial adducts is significantly related to inhalation exposure to tobacco smoke carcinogens confirming its association with volatile carcinogens. The MR smoking estimate of bronchial adducts resulting from meta-regression was 2.28, 95% Confidence Interval (C.I.) 1.10-4.73, in overall smokers in respect to non-smokers. The present work provides strengthening of the hypothesis that bronchial adducts are not simply relate to exposure, but are a cause of chemical-induced lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Coxiella burnetii, a hidden pathogen in interstitial lung disease?

    PubMed

    Melenotte, Cléa; Izaaryene, Jalal-Jean; Gomez, Carine; Delord, Marion; Prudent, Elsa; Lepidi, Hubert; Mediannikov, Oleg; Lacoste, Marion; Djossou, Felix; Mania, Alexandre; Bernard, Noelle; Huchot, Eric; Mège, Jean-Louis; Brégeon, Fabienne; Raoult, Didier

    2018-04-06

    We report 7 patients with interstitial lung disease (ILD) on CT-scan reviewing. C. burnetii was diagnosed in situ in one lung biopsy performed. All patients had advanced interstitial lung fibrosis and persistent C. burnetii infection. Q fever may be a cofactor of ILD, especially in endemic areas.

  3. Schistosoma mansoni Tegument (Smteg) Induces IL-10 and Modulates Experimental Airway Inflammation.

    PubMed

    Marinho, Fábio Vitarelli; Alves, Clarice Carvalho; de Souza, Sara C; da Silva, Cintia M G; Cassali, Geovanni D; Oliveira, Sergio C; Pacifico, Lucila G G; Fonseca, Cristina T

    2016-01-01

    Previous studies have demonstrated that S. mansoni infection and inoculation of the parasite eggs and antigens are able to modulate airways inflammation induced by OVA in mice. This modulation was associated to an enhanced production of interleukin-10 and to an increased number of regulatory T cells. The S. mansoni schistosomulum is the first stage to come into contact with the host immune system and its tegument represents the host-parasite interface. The schistosomula tegument (Smteg) has never been studied in the context of modulation of inflammatory disorders, although immune evasion mechanisms take place in this phase of infection to guarantee the persistence of the parasite in the host. The aim of this study was to evaluate the Smteg ability to modulate inflammation in an experimental airway inflammation model induced by OVA and to characterize the immune factors involved in this modulation. To achieve the objective, BALB/c mice were sensitized with ovalbumin (OVA) and then challenged with OVA aerosol after Smteg intraperitoneal inoculation. Protein extravasation and inflammatory cells were assessed in bronchoalveolar lavage and IgE levels were measured in serum. Additionally, lungs were excised for histopathological analyses, cytokine measurement and characterization of the cell populations. Inoculation with Smteg led to a reduction in the protein levels in bronchoalveolar lavage (BAL) and eosinophils in both BAL and lung tissue. In the lung tissue there was a reduction in inflammatory cells and collagen deposition as well as in IL-5, IL-13, IL-25 and CCL11 levels. Additionally, a decrease in specific anti-OVA IgE levels was observed. The reduction observed in these inflammatory parameters was associated with increased levels of IL-10 in lung tissues. Furthermore, Smteg/asthma mice showed high percentage of CD11b+F4/80+IL-10+ and CD11c+CD11b+IL-10+ cells in lungs. Taken together, these findings demonstrate that S. mansoni schistosomula tegument can modulates experimental airway inflammation.

  4. Gene expression analysis in hypoplastic lungs in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Burgos, Carmen Mesas; Uggla, Andreas Ringman; Fagerström-Billai, Fredrik; Eklöf, Ann-Christine; Frenckner, Björn; Nord, Magnus

    2010-07-01

    Pulmonary hypoplasia and persistent pulmonary hypertension are the main causes of mortality and morbidity in newborns with congenital diaphragmatic hernia (CDH). Nitrofen is well known to induce CDH and lung hypoplasia in a rat model, but the mechanism remains unknown. To increase the understanding of the underlying pathogenesis of CDH, we performed a global gene expression analysis using microarray technology. Pregnant rats were given 100 mg nitrofen on gestational day 9.5 to create CDH. On day 21, fetuses after nitrofen administration and control fetuses were removed; and lungs were harvested. Global gene expression analysis was performed using Affymetrix Platform and the RAE 230 set arrays. For validation of microarray data, we performed real-time polymerase chain reaction and Western blot analysis. Significantly decreased genes after nitrofen administration included several growth factors and growth factors receptors involved in lung development, transcription factors, water and ion channels, and genes involved in angiogenesis and extracellular matrix. These results could be confirmed with real-time polymerase chain reaction and protein expression studies. The pathogenesis of lung hypoplasia and CDH in the nitrofen model includes alteration at a molecular level of several pathways involved in lung development. The complexity of the nitrofen mechanism of action reminds of human CDH; and the picture is consistent with lung hypoplasia and vascular disease, both important contributors to the high mortality and morbidity in CDH. Increased understanding of the molecular mechanisms that control lung growth may be the key to develop novel therapeutic techniques to stimulate pre- and postnatal lung growth. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span

    PubMed Central

    Morales-Nebreda, Luisa; Cuda, Carla M.; Walter, James M.; Chen, Ching-I; Anekalla, Kishore R.; Joshi, Nikita; Williams, Kinola J.N.; Abdala-Valencia, Hiam; Yacoub, Tyrone J.; Chi, Monica; Gates, Khalilah; Homan, Philip J.; Soberanes, Saul; Dominguez, Salina; Saber, Rana; Hinchcliff, Monique; Marshall, Stacy A.; Bharat, Ankit; Berdnikovs, Sergejs; Bhorade, Sangeeta M.; Balch, William E.; Chandel, Navdeep S.; Jain, Manu; Ridge, Karen M.; Bagheri, Neda; Shilatifard, Ali

    2017-01-01

    Little is known about the relative importance of monocyte and tissue-resident macrophages in the development of lung fibrosis. We show that specific genetic deletion of monocyte-derived alveolar macrophages after their recruitment to the lung ameliorated lung fibrosis, whereas tissue-resident alveolar macrophages did not contribute to fibrosis. Using transcriptomic profiling of flow-sorted cells, we found that monocyte to alveolar macrophage differentiation unfolds continuously over the course of fibrosis and its resolution. During the fibrotic phase, monocyte-derived alveolar macrophages differ significantly from tissue-resident alveolar macrophages in their expression of profibrotic genes. A population of monocyte-derived alveolar macrophages persisted in the lung for one year after the resolution of fibrosis, where they became increasingly similar to tissue-resident alveolar macrophages. Human homologues of profibrotic genes expressed by mouse monocyte-derived alveolar macrophages during fibrosis were up-regulated in human alveolar macrophages from fibrotic compared with normal lungs. Our findings suggest that selectively targeting alveolar macrophage differentiation within the lung may ameliorate fibrosis without the adverse consequences associated with global monocyte or tissue-resident alveolar macrophage depletion. PMID:28694385

  6. Risk factors for onset of persistent respiratory symptoms in children with cystic fibrosis.

    PubMed

    McColley, Susanna A; Ren, Clement L; Schechter, Michael S; Regelmann, Warren E; Pasta, David J; Konstan, Michael W

    2012-10-01

    To characterize the onset of persistent signs and symptoms of cystic fibrosis (CF) lung disease and identify characteristics that predict onset. Patients in the Epidemiologic Study of CF who were <4 years of age at enrollment and had ≥2 years of follow-up were included. We defined persistence as a sign or symptom that was present during two consecutive encounters separated by 60-365 days, and persistent clubbing as ≥50% of encounters with clubbing within 365 days. Predictors were assessed in a Cox proportional hazards model for age at first occurrence of each symptom. Each sign or symptom met the criterion of persistence in a substantial proportion of patients during a follow-up period of 7 ± 3 years (mean ± SD; range 2-12). Risk factors that predicted earlier onset of signs and symptoms included pancreatic enzyme use, Pseudomonas aeruginosa infection, and prior diagnosis of asthma. Other risk factors had variable effects on signs and symptoms. Signs and symptoms of lung disease begin early in CF. Risk factors previously reported for lower forced expiratory volume in 1 sec are also associated with earlier onset of persistent signs and symptoms of CF lung disease, but their impact varies. Copyright © 2012 Wiley Periodicals, Inc.

  7. Protective effect of Galectin-9 in murine model of lung emphysema: Involvement of neutrophil migration and MMP-9 production

    PubMed Central

    Horio, Yuko; Ichiyasu, Hidenori; Kojima, Keisuke; Saita, Naoki; Migiyama, Yohei; Iriki, Toyohisa; Fujii, Kazuhiko; Niki, Toshiro; Hirashima, Mitsuomi; Kohrogi, Hirotsugu

    2017-01-01

    Purpose Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and pulmonary emphysema. Persistent inflammation and remodeling of the lungs and airways result in reduced lung function and a lower quality of life. Galectin (Gal)-9 plays a crucial role as an immune modulator in various diseases. However, its role in the pathogenesis of pulmonary emphysema is unknown. This study investigates whether Gal-9 is involved in pulmonary inflammation and changes in emphysema in a porcine pancreatic elastase (PPE)-induced emphysema model. Materials and methods Gal-9 was administered to mice subcutaneously once daily from 1 day before PPE instillation to day 5. During the development of emphysema, lung tissue and bronchoalveolar lavage fluid (BALF) were collected. Histological and cytological findings, concentrations of chemokines and matrix metalloproteinases (MMPs) in the BALF, and the influence of Gal-9 treatment on neutrophils were analyzed. Results Gal-9 suppressed the pathological changes of PPE-induced emphysema. The mean linear intercept (Lm) of Gal-9-treated emphysema mice was significantly lower than that of PBS-treated emphysema mice (66.1 ± 3.3 μm vs. 118.8 ± 14.8 μm, respectively; p < 0.01). Gal-9 decreased the number of neutrophils and levels of MMP-9, MMP-2 and tissue inhibitor of metalloproteinases (TIMP)-1 in the BALF. The number of neutrophils in the BALF correlated significantly with MMPs levels. Interestingly, Gal-9 pretreatment in vitro inhibited the chemotactic activity of neutrophils and MMP-9 production from neutrophils. Furthermore, in Gal-9-deficient mice, PPE-induced emphysema progressed significantly compared with that in wild–type (WT) mice (108.7 ± 6.58 μm vs. 77.19 ± 6.97 μm, respectively; p < 0.01). Conclusions These results suggest that Gal-9 protects PPE-induced inflammation and emphysema by inhibiting the infiltration of neutrophils and decreasing MMPs levels. Exogenous Gal-9 could be a potential therapeutic agent for COPD. PMID:28704475

  8. Persistent Expression Changes of Fibrosis-Related Genes in the Lung Tissues of Rats Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Yeshitla, Samrawit A.; Wu, Honglu; Meyers, Valerie; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% of very fine respirable dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents to assess the health risk of dust exposures to humans. One of the particular interests in the study is to evaluate dust-induced changes of the expression of fibrosis-related genes, and to identify specific signaling pathways involved in lunar dustinduced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 milligrams per cubic meters of lunar dust. Five rats per group were euthanized at 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The bronchoalveolar lavage fluid (BALF) was collected by lavaging with phosphate-buffered saline (PBS). A zymosan-induced luminolbased chemiluminescence assay was used to assess the activity of BAL cells. The lavaged lung tissue was snap frozen in LN2 and total RNA was isolated using the Qigen RNeasy kit. The expression of 84 fibrosisrelated genes were analyzed using the RT2 Profiler PCR Array technique. The expression of 18 genes of interest were further measured using real-time PCR technique in all the samples. 10 out of 18 genes of interest showed persistently significant expression changes in the local lung tissue exposed to lunar dust, indicating a prolonged proinflammatory response. The expressions of several of these genes were dose- and time-dependent and were significantly correlated with other pathological parameters. The potential signaling pathways and upstream regulators were further analyzed using IPA pathway analysis tool based on the gene expression data. The data presented in this study, for the first time, explore the molecular mechanisms of lunar dust induced toxicity, contributing not only the risk assessment for future space exploration, but also understandings of the dust-induced toxicity in humans on earth.

  9. Transcriptional Activation of Mucin by Pseudomonas aeruginosa Lipopolysaccharide in the Pathogenesis of Cystic Fibrosis Lung Disease

    NASA Astrophysics Data System (ADS)

    Li, Jian-Dong; Dohrman, Austin F.; Gallup, Marianne; Miyata, Susumu; Gum, James R.; Kim, Young S.; Nadel, Jay A.; Prince, Alice; Basbaum, Carol B.

    1997-02-01

    An unresolved question in cystic fibrosis (CF) research is how mutations of the CF transmembrane conductance regulator, a CI ion channel, cause airway mucus obstruction leading to fatal lung disease. Recent evidence has linked the CF transmembrane conductance regulator mutation to the onset and persistence of Pseudomonas aeruginosa infection in the airways, and here we provide evidence directly linking P. aeruginosa infection to mucus overproduction. We show that P. aeruginosa lipopolysaccharide profoundly upregulates transcription of the mucin gene MUC 2 in epithelial cells via inducible enhancer elements and that this effect is blocked by the tyrosine kinase inhibitors genistein and tyrphostin AG 126. These findings improve our understanding of CF pathogenesis and suggest that the attenuation of mucin production by lipopolysaccharide antagonists and tyrosine kinase inhibitors could reduce morbidity and mortality in this disease.

  10. Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.

    PubMed

    McGeachie, M J; Yates, K P; Zhou, X; Guo, F; Sternberg, A L; Van Natta, M L; Wise, R A; Szefler, S J; Sharma, S; Kho, A T; Cho, M H; Croteau-Chonka, D C; Castaldi, P J; Jain, G; Sanyal, A; Zhan, Y; Lajoie, B R; Dekker, J; Stamatoyannopoulos, J; Covar, R A; Zeiger, R S; Adkinson, N F; Williams, P V; Kelly, H W; Grasemann, H; Vonk, J M; Koppelman, G H; Postma, D S; Raby, B A; Houston, I; Lu, Q; Fuhlbrigge, A L; Tantisira, K G; Silverman, E K; Tonascia, J; Weiss, S T; Strunk, R C

    2016-05-12

    Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).

  11. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis.

    PubMed

    Medjkane, Souhila; Perez-Sanchez, Cristina; Gaggioli, Cedric; Sahai, Erik; Treisman, Richard

    2009-03-01

    Rho GTPases control cytoskeletal dynamics through cytoplasmic effectors and regulate transcriptional activation through myocardin-related transcription factors (MRTFs), which are co-activators for serum response factor (SRF). We used RNA interference to investigate the contribution of the MRTF-SRF pathway to cytoskeletal dynamics in MDA-MB-231 breast carcinoma and B16F2 melanoma cells, in which basal MRTF-SRF activity is Rho-dependent. Depletion of MRTFs or SRF reduced cell adhesion, spreading, invasion and motility in culture, without affecting proliferation or inducing apoptosis. MRTF-depleted tumour cell xenografts showed reduced cell motility but proliferated normally. Tumour cells depleted of MRTF or SRF failed to colonize the lung from the bloodstream, being unable to persist after their arrival in the lung. Only a few genes show MRTF-dependent expression in both cell lines. Two of these, MYH9 (NMHCIIa) and MYL9 (MLC2), are also required for invasion and lung colonization. Conversely, expression of activated MAL/MRTF-A increases lung colonization by poorly metastatic B16F0 cells. Actin-based cell behaviour and experimental metastasis thus require Rho-dependent nuclear signalling through the MRTF-SRF network.

  12. Immunosuppression in Early Postnatal Days Induces Persistent and Allergen-Specific Immune Tolerance to Asthma in Adult Mice

    PubMed Central

    Chen, Yan; Zhang, Jin; Lu, Yong; Wang, Libo

    2015-01-01

    Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma. PMID:25860995

  13. Intratracheal instillation of single-wall carbon nanotubes in the rat lung induces time-dependent changes in gene expression

    PubMed Central

    Fujita, Katsuhide; Fukuda, Makiko; Fukui, Hiroko; Horie, Masanori; Endoh, Shigehisa; Uchida, Kunio; Shichiri, Mototada; Morimoto, Yasuo; Ogami, Akira; Iwahashi, Hitoshi

    2015-01-01

    Abstract The use of carbon nanotubes in the industry has grown; however, little is known about their toxicological mechanism of action. Single-wall carbon nanotube (SWCNT) suspensions were administered by single intratracheal instillation in rats. Persistence of alveolar macrophage-containing granuloma was observed around the sites of SWCNT aggregation at 90 days post-instillation in 0.2-mg- or 0.4-mg-injected doses per rat. Meanwhile, gene expression profiling revealed that a large number of genes involved in the inflammatory response were markedly upregulated until 90 days or 180 days post-instillation. Subsequently, gene expression patterns were dramatically altered at 365 days post-instillation, and the number of upregulated genes involved in the inflammatory response was reduced. These results suggested that alveolar macrophage-containing granuloma reflected a characteristic of the histopathological transition period from the acute-phase to the subchronic-phase of inflammation, as well as pulmonary acute phase response persistence up to 90 or 180 days after intratracheal instillation in this experimental setting. The expression levels of the genes Ctsk, Gcgr, Gpnmb, Lilrb4, Marco, Mreg, Mt3, Padi1, Slc26a4, Spp1, Tnfsf4 and Trem2 were persistently upregulated in a dose-dependent manner until 365 days post-instillation. In addition, the expression levels of Atp6v0d2, Lpo, Mmp7, Mmp12 and Rnase9 were significantly upregulated until 754 days post-instillation. We propose that these persistently upregulated genes in the chronic-phase response following the acute-phase response act as potential biomarkers in lung tissue after SWCNT instillation. This study provides further insight into the time-dependent changes in genomic expression associated with the pulmonary toxicity of SWCNTs. PMID:24911292

  14. The role of hypoxia inducible factor-1α in the increased MMP-2 and MMP-9 production by human monocytes exposed to nickel nanoparticles.

    PubMed

    Wan, Rong; Mo, Yiqun; Chien, Sufan; Li, Yihua; Li, Yixin; Tollerud, David J; Zhang, Qunwei

    2011-12-01

    Nickel is an important economic commodity, but it can cause skin sensitization and may cause lung diseases such as lung fibrosis, pneumonitis, bronchial asthma and lung cancer. With development of nanotechnology, nano-sized nickel (Nano-Ni) and nano-sized titanium dioxide (Nano-TiO₂) particles have been developed and produced for many years with new formulations and surface properties to meet novel demands. Our previous studies have shown that Nano-Ni instilled into rat lungs caused a greater inflammatory response as compared with standard-sized nickel (5 μm) at equivalent mass concentrations. Nano-Ni caused a persistent high level of inflammation in lungs even at low doses. Recently, several studies have shown that nanoparticles can translocate from the lungs to the circulatory system. To evaluate the potential systemic effects of metal nanoparticles, we compared the effects of Nano-Ni and Nano-TiO₂ on matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) gene expression and activity. Our results showed that exposure of human monocyte U937 to Nano-Ni caused dose- and time- dependent increase in MMP-2 and MMP-9 mRNA expression and pro-MMP-2 and pro-MMP-9 activity, but Nano-TiO₂ did not. Nano-Ni also caused dose- and time- related increase in tissue inhibitor of metalloproteinases 1 (TIMP-1), but Nano-TiO₂ did not. To determine the potential mechanisms involved, we measured the expression of hypoxia inducible factor 1α (HIF-1α) in U937 cells exposed to Nano-Ni and Nano-TiO₂. Our results showed that exposure to Nano-Ni caused HIF-1α accumulation in the nucleus. Furthermore, pre-treatment of U937 cells with heat shock protein 90 (Hsp90) inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG), prior to exposure to Nano-Ni significantly abolished Nano-Ni-induced MMP-2 and MMP-9 mRNA upregulation and increased pro-MMP-2 and pro-MMP-9 activity. Our results suggest that HIF-1α accumulation may be involved in the increased MMP-2 and MMP-9 production in U937 cells exposed to Nano-Ni.

  15. Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth.

    PubMed

    Alphonse, Rajesh S; Vadivel, Arul; Fung, Moses; Shelley, William Chris; Critser, Paul John; Ionescu, Lavinia; O'Reilly, Megan; Ohls, Robin K; McConaghy, Suzanne; Eaton, Farah; Zhong, Shumei; Yoder, Merv; Thébaud, Bernard

    2014-05-27

    Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth-arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood-derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. Impaired ECFC function may contribute to arrested alveolar growth. Cord blood-derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage. © 2014 American Heart Association, Inc.

  16. Primary Severe Acute Respiratory Syndrome Coronavirus Infection Limits Replication but Not Lung Inflammation upon Homologous Rechallenge

    PubMed Central

    Clay, Candice; Donart, Nathan; Fomukong, Ndingsa; Knight, Jennifer B.; Lei, Wanli; Price, Lance; Hahn, Fletcher; Van Westrienen, Jesse

    2012-01-01

    Our knowledge regarding immune-protective and immunopathogenic events in severe acute respiratory syndrome coronavirus (SARS-CoV) infection is limited, and little is known about the dynamics of the immune response at the primary site of disease. Here, an African green monkey (AGM) model was used to elucidate immune mechanisms that facilitate viral clearance but may also contribute to persistent lung inflammation following SARS-CoV infection. During primary infection, SARS-CoV replicated in the AGM lung for up to 10 days. Interestingly, lung inflammation was more prevalent following viral clearance, as leukocyte numbers peaked at 14 days postinfection (dpi) and remained elevated at 28 dpi compared to those of mock-infected controls. Lung macrophages but not dendritic cells were rapidly activated, and both cell types had high activation marker expression at late infection time points. Lung proinflammatory cytokines were induced at 1 to 14 dpi, but most returned to baseline by 28 dpi except interleukin 12 (IL-12) and gamma interferon. In SARS-CoV homologous rechallenge studies, 11 of the 12 animals were free of replicating virus at day 5 after rechallenge. However, incidence and severity of lung inflammation was not reduced despite the limited viral replication upon rechallenge. Evaluating the role of antibodies in immune protection or potentiation revealed a progressive increase in anti-SARS-CoV antibodies in lung and serum that did not correlate temporally or spatially with enhanced viral replication. This study represents one of the first comprehensive analyses of lung immunity, including changes in leukocyte populations, lung-specific cytokines, and antibody responses following SARS-CoV rechallenge in AGMs. PMID:22345460

  17. Ibuprofen-induced patent ductus arteriosus closure: physiologic, histologic, and biochemical effects on the premature lung.

    PubMed

    McCurnin, Donald; Seidner, Steven; Chang, Ling-Yi; Waleh, Nahid; Ikegami, Machiko; Petershack, Jean; Yoder, Brad; Giavedoni, Luis; Albertine, Kurt H; Dahl, Mar Janna; Wang, Zheng-ming; Clyman, Ronald I

    2008-05-01

    The goal was to study the pulmonary, biochemical, and morphologic effects of a persistent patent ductus arteriosus in a preterm baboon model of bronchopulmonary dysplasia. Preterm baboons (treated prenatally with glucocorticoids) were delivered at 125 days of gestation (term: 185 days), given surfactant, and ventilated for 14 days. Twenty-four hours after birth, newborns were randomly assigned to receive either ibuprofen (to close the patent ductus arteriosus; n = 8) or no drug (control; n = 13). After treatment was started, the ibuprofen group had significantly lower pulmonary/systemic flow ratio, higher systemic blood pressure, and lower left ventricular end diastolic diameter, compared with the control group. There were no differences in cardiac performance indices between the groups. Ventilation index and dynamic compliance were significantly improved with ibuprofen. The improved pulmonary mechanics in ibuprofen-treated newborns were not attributable to changes in levels of surfactant protein B, C, or D, saturated phosphatidylcholine, or surfactant inhibitory proteins. There were no differences in tracheal concentrations of cytokines commonly associated with the development of bronchopulmonary dysplasia. The groups had similar messenger RNA expression of genes that regulate inflammation and remodeling in the lung. Lungs from ibuprofen-treated newborns were significantly drier (lower wet/dry ratio) and expressed 2.5 times more epithelial sodium channel protein than did control lungs. By 14 days after delivery, control newborns had morphologic features of arrested alveolar development (decreased alveolar surface area and complexity), compared with age-matched fetuses. In contrast, there was no evidence of alveolar arrest in the ibuprofen-treated newborns. Ibuprofen-induced patent ductus arteriosus closure improved pulmonary mechanics, decreased total lung water, increased epithelial sodium channel expression, and decreased the detrimental effects of preterm birth on alveolarization.

  18. N-acetyl cysteine improves the effects of corticosteroids in a mouse model of chlorine-induced acute lung injury.

    PubMed

    Wigenstam, Elisabeth; Koch, Bo; Bucht, Anders; Jonasson, Sofia

    2015-02-03

    Chlorine (Cl2) causes tissue damage and a neutrophilic inflammatory response in the airways manifested by pronounced airway hyperreactivity (AHR). The importance of early anti-inflammatory treatment has previously been addressed. In the previous study, both high-dose and low-dose of dexamethasone (DEX) decreased the risk of developing delayed effects, such as persistent lung injuries, while only high-dose treatment could significantly counteract acute-phase effects. One aim of this study was to evaluate whether a low-dose of DEX in combination with the antioxidant N-acetyl cysteine (NAC) and if different treatments (Triptolide, Reparixin and Rolipram) administered 1h after Cl2-exposure could improve protection against acute lung injury in Cl2-exposed mice. BALB/c mice were exposed to 300 ppm Cl2 during 15 min. Assessment of AHR and inflammatory cells in bronchoalveolar lavage was analyzed 24h post exposure. Neither of DEX nor NAC reduced the AHR and displayed only minor effects on inflammatory cell influx when given as separate treatments. When given in combination, a protective effect on AHR and a significant reduction in inflammatory cells (neutrophils) was observed. Neither of triptolide, Reparixin nor Rolipram had an effect on AHR but Triptolide had major effect on the inflammatory cell influx. Treatments did not reduce the concentration of either fibrinogen or plasminogen activator inhibitor-1 in serum, thereby supporting the theory that the inflammatory response is not solely limited to the lung. These results provide a foundation for future studies aimed at identifying new concepts for treatment of chemical-induced lung injury. Studies addressing combination of anti-inflammatory and antioxidant treatment are highly motivated. Copyright © 2014. Published by Elsevier Ireland Ltd.

  19. Persistent activation of an innate immune axis translates respiratory viral infection into chronic lung disease

    PubMed Central

    Kim, Edy Y.; Battaile, John T.; Patel, Anand C.; You, Yingjian; Agapov, Eugene; Grayson, Mitchell H.; Benoit, Loralyn A.; Byers, Derek E.; Alevy, Yael; Tucker, Jennifer; Swanson, Suzanne; Tidwell, Rose; Tyner, Jeffrey W.; Morton, Jeffrey D.; Castro, Mario; Polineni, Deepika; Patterson, G. Alexander; Schwendener, Reto A.; Allard, John D.; Peltz, Gary; Holtzman, Michael J.

    2008-01-01

    To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of a chronic lung disease that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after infection with a common type of respiratory virus is cleared to trace levels of noninfectious virus. Unexpectedly, the chronic inflammatory disease arises independently of an adaptive immune response and is driven by IL-13 produced by macrophages stimulated by CD1d-dependent TCR-invariant NKT cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a novel NKT cell-macrophage innate immune axis. PMID:18488036

  20. Differential immune responses to Segniliparus rotundus and Segniliparus rugosus infection and analysis of their comparative virulence profiles.

    PubMed

    Kim, Jong-Seok; Kim, Woo Sik; Lee, Keehoon; Won, Choul-Jae; Kim, Jin Man; Eum, Seok-Yong; Koh, Won-Jung; Shin, Sung Jae

    2013-01-01

    Two closely related bacterial species, Segniliparus rotundus and Segniliparus rugosus, have emerged as important human pathogens, but little is known about the immune responses they elicit or their comparative pathophysiologies. To determine the virulence and immune responses of the two species, we compared their abilities to grow in phagocytic and non-phagocytic cells. Both species maintained non-replicating states within A549 epithelial cells. S. rugosus persisted longer and multiplied more rapidly inside murine bone marrow-derived macrophages (BMDMs), induced more pro-inflammatory cytokines, and induced higher levels of macrophage necrosis. Activation of BMDMs by both species was mediated by toll-like receptor 2 (TLR2), followed by mitogen-activated protein kinases (MAPK) and nuclear factor κB (NF-κB) signaling pathways, indicating a critical role for TLR2 in Segniliparus-induced macrophage activation. S. rugosus triggered faster and stronger activation of MAPK signaling and IκB degradation, indicating that S. rugosus induces more pro-inflammatory cytokines than S. rotundus. Multifocal granulomatous inflammations in the liver and lung were observed in mice infected with S. rugosus, but S. rotundus was rapidly cleared from all organs tested within 15 days post-infection. Furthermore, S. rugosus induced faster infiltration of innate immune cells such as neutrophils and macrophages to the lung than S. rotundus. Our results suggest that S. rugosus is more virulent and induces a stronger immune response than S. rotundus.

  1. Human CD34+ Progenitor Cells Freshly Isolated from Umbilical Cord Blood Attenuate Inflammatory Lung Injury following LPS Challenge

    PubMed Central

    Huang, Xiaojia; Sun, Kai; Zhao, Yidan D.; Vogel, Stephen M.; Song, Yuanling; Mahmud, Nadim; Zhao, You-Yang

    2014-01-01

    Adult stem cell-based therapy is a promising novel approach for treatment of acute lung injury. Here we investigated the therapeutic potential of freshly isolated human umbilical cord blood CD34+ progenitor cells (fCB-CD34+ cells) in a mouse model of acute lung injury. At 3 h post-lipopolysaccharide (LPS) challenge, fCB-CD34+ cells were transplanted i.v. to mice while CD34− cells or PBS were administered as controls in separate cohorts of mice. We observed that fCB-CD34+ cell treatment inhibited lung vascular injury evident by decreased lung vascular permeability. In contrast, CD34− cells had no effects on lung vascular injury. Lung inflammation determined by myeloperoxidase activity, neutrophil sequestration and expression of pro-inflammatory mediators was attenuated in fCB-CD34+ cell-treated mice at 26 h post-LPS challenge compared to PBS or CD34− cell-treated controls. Importantly, lung inflammation in fCB-CD34+ cell-treated mice was returned to normal levels as seen in basal mice at 52 h post-LPS challenge whereas PBS or CD34− cell-treated control mice exhibited persistent lung inflammation. Accordingly, fCB-CD34+ cell-treated mice exhibited a marked increase of survival rate. Employing in vivo 5-bromo-2′-deoxyuridine incorporation assay, we found a drastic induction of lung endothelial proliferation in fCB-CD34+ cell-treated mice at 52 h post-LPS compared to PBS or CD34− cell-treated controls, which contributed to restoration of vascular integrity and thereby inhibition of lung inflammation. Taken together, these data have demonstrated the protective effects of fCB-CD34+ cell on acute lung injury induced by LPS challenge, suggesting fCB-CD34+ cells are an important source of stem cells for the treatment of acute lung injury. PMID:24558433

  2. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats.

    PubMed

    Antonini, James M; Roberts, Jenny R; Stone, Samuel; Chen, Bean T; Schwegler-Berry, Diane; Chapman, Rebecca; Zeidler-Erdely, Patti C; Andrews, Ronnee N; Frazer, David G

    2011-05-01

    Welding generates complex metal fumes that vary in composition. The objectives of this study were to compare the persistence of deposited metals and the inflammatory potential of stainless and mild steel welding fumes, the two most common fumes used in US industry. Sprague-Dawley rats were exposed to 40 mg/m(3) of stainless or mild steel welding fumes for 3 h/day for 3 days. Controls were exposed to filtered air. Generated fume was collected, and particle size and elemental composition were determined. Bronchoalveolar lavage was done on days 0, 8, 21, and 42 after the last exposure to assess lung injury/inflammation and to recover lung phagocytes. Non-lavaged lung samples were analyzed for total and specific metal content as a measure of metal persistence. Both welding fumes were similar in particle morphology and size. Following was the chemical composition of the fumes-stainless steel: 57% Fe, 20% Cr, 14% Mn, and 9% Ni; mild steel: 83% Fe and 15% Mn. There was no effect of the mild steel fume on lung injury/inflammation at any time point compared to air control. Lung injury and inflammation were significantly elevated at 8 and 21 days after exposure to the stainless steel fume compared to control. Stainless steel fume exposure was associated with greater recovery of welding fume-laden macrophages from the lungs at all time points compared with the mild steel fume. A higher concentration of total metal was observed in the lungs of the stainless steel welding fume at all time points compared with the mild steel fume. The specific metals present in the two fumes were cleared from the lungs at different rates. The potentially more toxic metals (e.g., Mn, Cr) present in the stainless steel fume were cleared from the lungs more quickly than Fe, likely increasing their translocation from the respiratory system to other organs.

  3. Impact of continuous positive airway pressure on the pulmonary changes promoted by immersion in water

    PubMed Central

    Rizzetti, Danize Aparecida; Quadros, Janayna Rodembuch Borba; Ribeiro, Bruna Esmerio; Callegaro, Letícia; Veppo, Aline Arebalo; Wiggers, Giulia Alessandra; Peçanha, Franck Maciel

    2017-01-01

    ABSTRACT Objective: To determine whether different levels of CPAP improve the lung volumes and capacities of healthy subjects immersed in water. Methods: This was a randomized clinical trial, conducted between April and June of 2016, involving healthy female volunteers who were using oral contraceptives. Three 20-min immersion protocols were applied: control (no CPAP); CPAP5 (CPAP at 5 cmH2O); and CPAP10 (CPAP at 10 cmH2O). We evaluated HR, SpO2, FVC, FEV1, the FEV1/FVC ratio, peak expiratory flow rate (PEFR), and FEF25-75%) at three time points: pre-immersion; 10 min after immersion; and 10 min after the end of each protocol. Results: We evaluated 13 healthy volunteers. The CPAP10 protocol reversed the restrictive pattern of lung function induced by immersion in water, maintaining pulmonary volumes and capacities for a longer period than did the CPAP5 protocol. Conclusions: When the hemodynamic change causing a persistent lung disorder, only the application of higher positive pressures is effective in maintaining long-term improvements in the pulmonary profile. PMID:29340488

  4. Impact of continuous positive airway pressure on the pulmonary changes promoted by immersion in water.

    PubMed

    Rizzetti, Danize Aparecida; Quadros, Janayna Rodembuch Borba; Ribeiro, Bruna Esmerio; Callegaro, Letícia; Veppo, Aline Arebalo; Wiggers, Giulia Alessandra; Peçanha, Franck Maciel

    2017-01-01

    To determine whether different levels of CPAP improve the lung volumes and capacities of healthy subjects immersed in water. This was a randomized clinical trial, conducted between April and June of 2016, involving healthy female volunteers who were using oral contraceptives. Three 20-min immersion protocols were applied: control (no CPAP); CPAP5 (CPAP at 5 cmH2O); and CPAP10 (CPAP at 10 cmH2O). We evaluated HR, SpO2, FVC, FEV1, the FEV1/FVC ratio, peak expiratory flow rate (PEFR), and FEF25-75%) at three time points: pre-immersion; 10 min after immersion; and 10 min after the end of each protocol. We evaluated 13 healthy volunteers. The CPAP10 protocol reversed the restrictive pattern of lung function induced by immersion in water, maintaining pulmonary volumes and capacities for a longer period than did the CPAP5 protocol. When the hemodynamic change causing a persistent lung disorder, only the application of higher positive pressures is effective in maintaining long-term improvements in the pulmonary profile.

  5. Suspected drug-induced infiltrative lung disease culminating in acute respiratory failure in a dog treated with cytarabine and prednisone.

    PubMed

    Hart, Samantha K; Waddell, Lori

    2016-11-01

    To describe a case of suspected drug-induced infiltrative lung disease (ILD) and acute respiratory failure associated with the administration of cytarabine and prednisone in a dog requiring mechanical ventilation. A 4.5-year-old, female spayed Yorkshire Terrier presented to the ICU with acute onset of respiratory distress following a 24-hour cytarabine infusion. The patient was previously diagnosed with meningoencephalitis of unknown etiology (MUO), caudal occipital malformation, and syringohydromyelia, and was being treated with oral prednisone and levetiracetam, and cytarabine infusions. The patient developed tachypnea and dyspnea, and had diffuse crackles on auscultation of all lung fields, and hypoxemia 6 hours following completion of the fourth cytarabine infusion (300 mg/m 2 ). Thoracic radiographs revealed diffuse, bilateral infiltrates consistent with noncardiogenic pulmonary edema or acute respiratory distress syndrome. Respiratory distress and hypoxemia persisted despite oxygen supplementation and furosemide therapy and led to initiation of mechanical ventilation. Approximately 12 hours later, the dog became progressively hypoxemic with worsening pulmonary edema. The owners elected euthanasia. Postmortem examination revealed pulmonary edema and diffuse interstitial pneumonia. Histopathologic evaluation revealed pulmonary edema, severe acute neutrophilic and histiocytic pneumonia, and multifocal interstitial fibrosis. Bacterial culture yielded no growth. Drug-induced ILD is rarely reported in the veterinary literature, and has not previously been reported in dogs receiving cytarabine. As with administration of any medication, adverse events may occur. While ILD is unlikely to be commonly recognized, it may be considered in veterinary patients receiving chemotherapy that acutely become dyspneic. © Veterinary Emergency and Critical Care Society 2016.

  6. The role of macrophage mediators in respirable quartz-elicited inflammation

    NASA Astrophysics Data System (ADS)

    van Berlo, D.; Albrecht, C.; Knaapen, A. M.; van Schooten, F. J.; Schins, R. P. F.

    2009-02-01

    The instigation and persistence of an inflammatory response is widely considered to be critically important in quartz-induced lung cancer and fibrosis. Macrophages have been long recognised as a crucial player in pulmonary inflammation, but evidence for the role of type II epithelial cells is accumulating. Investigations were performed in the rat lung type II cell line RLE and the rat alveolar macrophage cell line NR8383 using Western blotting, NF-κB immunohistochemistry and qRT-PCR of the pro-inflammatory genes iNOS and COX-2, as well as the cellular stress gene HO-1. The direct effect of quartz on pro-inflammatory signalling cascades and gene expression in RLE cells was compared to the effect of conditioned media derived from quartz-treated NR8383 cells. Conditioned media activated the NF-κB signalling pathway and induced a far stronger upregulation of iNOS mRNA than quartz itself. Quartz elicited a stronger, progressive induction of COX-2 and HO-1 mRNA. Our results suggest a differentially mediated inflammatory response, in which reactive particles themselves induce oxidative stress and activation of COX-2, while mediators released from particle-activated macrophages trigger NF-κB activation and iNOS expression in type II cells.

  7. World Trade Center (WTC) dust exposure in mice is associated with inflammation, oxidative stress and epigenetic changes in the lung

    PubMed Central

    Sunil, Vasanthi R.; Vayas, Kinal N.; Fang, Mingzhu; Zarbl, Helmut; Massa, Christopher; Gow, Andrew J.; Cervelli, Jessica A.; Kipen, Howard; Laumbach, Robert J.; Lioy, Paul J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2017-01-01

    Exposure to World Trade Center (WTC) dust has been linked to respiratory disease in humans. In the present studies we developed a rodent model of WTC dust exposure to analyze lung oxidative stress and inflammation, with the goal of elucidating potential epigenetic mechanisms underlying these responses. Exposure of mice to WTC dust (20 μg, i.t.) was associated with upregulation of heme oxygenase-1 and cyclooxygenase-2 within 3 days, a response which persisted for at least 21 days. Whereas matrix metalloproteinase was upregulated 7 days post-WTC dust exposure, IL-6RA1 was increased at 21 days; conversely, expression of mannose receptor, a scavenger receptor important in particle clearance, decreased. After WTC dust exposure, increases in methylation of histone H3 lysine K4 at 3 days, lysine K27 at 7 days and lysine K36, were observed in the lung, along with hypermethylation of Line-1 element at 21 days. Alterations in pulmonary mechanics were also observed following WTC dust exposure. Thus, 3 days post-exposure, lung resistance and tissue damping were decreased. In contrast at 21 days, lung resistance, central airway resistance, tissue damping and tissue elastance were increased. These data demonstrate that WTC dust-induced inflammation and oxidative stress are associated with epigenetic modifications in the lung and altered pulmonary mechanics. These changes may contribute to the development of WTC dust pathologies. PMID:27986442

  8. S-1-induced lung injury combined with pneumocystis pneumonia

    PubMed Central

    Yano, Shuichi

    2013-01-01

    Pulmonary injuries due to S-1 have been reported, and these reports have shown an increase in lung cancer following the increased usage of S-1 in treating lung cancer. We report the first case of lung injury due to S-1 in combination with pneumocystis pneumonia (PCP), because the radiological findings and clinical courses were compatible with S-1-induced lung injury combined with PCP. We should consider that S-1 might induce lung injuries which might occur with PCP, especially with a history of drug-induced or radiation-induced lung injuries. PMID:23386491

  9. Outcome of influenza infection managed with oseltamivir in lung transplant recipients.

    PubMed

    Ison, Michael G; Sharma, Amita; Shepard, Jo-Anne O; Wain, John C; Ginns, Leo C

    2008-03-01

    Influenza causes significant morbidity and mortality in lung transplant recipients and likely predisposes to obliterative bronchiolitis. Neuraminidase inhibitors shorten the duration of symptoms and virus shedding and the number of antibiotic-requiring complications in ambulatory immunocompetent patients, although the efficacy of these agents in lung transplant recipients has not been assessed previously. In this study, 9 lung transplant patients who were treated with oseltamivir for influenza infections were identified and analyzed retrospectively. Oseltamivir was well tolerated. Infection resolved in all patients and there were no deaths. Two patients developed pneumonia shortly after their influenza infection and both responded to antibiotic therapy. None of the patients had persistent abnormalities noted on chest imaging and most did not show significant changes on pulmonary function testing. Two patients with the lowest pulmonary function test (PFT) values pre-infection had persistent defects after infection. Oseltamivir is well tolerated in lung transplant recipients and may reduce the risk of complications, although further studies are warranted.

  10. Long-term (postnatal day 70) outcome and safety of intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells in neonatal hyperoxic lung injury.

    PubMed

    Ahn, So Yoon; Chang, Yun Sil; Kim, Soo Yoon; Sung, Dong Kyung; Kim, Eun Sun; Rime, So Yub; Yu, Wook Joon; Choi, Soo Jin; Oh, Won Il; Park, Won Soon

    2013-03-01

    This study was performed to evaluate the long-term effects and safety of intratracheal (IT) transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in neonatal hyperoxic lung injury at postnatal day (P)70 in a rat model. Newborn Sprague Dawley rat pups were subjected to 14 days of hyperoxia (90% oxygen) within 10 hours after birth and allowed to recover at room air until sacrificed at P70. In the transplantation groups, hUCB-MSCs (5×10⁵) were administered intratracheally at P5. At P70, various organs including the heart, lung, liver, and spleen were histologically examined, and the harvested lungs were assessed for morphometric analyses of alveolarization. ED-1, von Willebrand factor, and human-specific nuclear mitotic apparatus protein (NuMA) staining in the lungs and the hematologic profile of blood were evaluated. Impaired alveolar and vascular growth, which evidenced by an increased mean linear intercept and decreased amount of von Willebrand factor, respectively, and the hyperoxia-induced inflammatory responses, as evidenced by inflammatory foci and ED-1 positive alveolar macrophages, were attenuated in the P70 rat lungs by IT transplantation of hUCB-MSCs. Although rare, donor cells with human specific NuMA staining were persistently present in the P70 rat lungs. There were no gross or microscopic abnormal findings in the heart, liver, or spleen, related to the MSCs transplantation. The protective and beneficial effects of IT transplantation of hUCB-MSCs in neonatal hyperoxic lung injuries were sustained for a prolonged recovery period without any long-term adverse effects up to P70.

  11. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice.

    PubMed

    Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei

    2016-10-01

    RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection.

  12. A new mechanism for DNA alterations induced by alpha particles such as those emitted by radon and radon progeny.

    PubMed Central

    Lehnert, B E; Goodwin, E H

    1997-01-01

    The mechanism(s) by which alpha (alpha) particles like those emitted from inhaled radon and radon progeny cause their carcinogenic effects in the lung remains unclear. Although direct nuclear traversals by alpha-particles may be involved in mediating these outcomes, increasing evidence indicates that a particles can cause alterations in DNA in the absence of direct hits to cell nuclei. Using the occurrence of excessive sister chromatid exchanges (SCE) as an index of DNA damage in human lung fibroblasts, we investigated the hypothesis that alpha-particles may induce DNA damage through the generation of extracellular factors. We have found that a relatively low dose of alpha-particles can result in the generation of extracellular factors, which, upon transfer to unexposed normal human cells, can cause excessive SCE to an extent equivalent to that observed when the cells are directly irradiated with the same irradiation dose. A short-lived, SCE-inducing factor(s) is generated in alpha-irradiated culture medium containing serum in the absence of cells. A more persistent SCE-inducing factor(s), which can survive freeze-thaw and is heat labile is produced by fibroblasts after exposure to the alpha-particles. These results indicate that the initiating target for alpha-particle-induced genetic changes can be larger than a cell's nucleus or even a whole cell. How transmissible factors like those observed here in vitro may extend to the in vivo condition in the context of a-particle-induced carcinogenesis in the respiratory tract remains to be determined. PMID:9400706

  13. Influence of Particle Size on Persistence and Clearance of Aerosolized Silver Nanoparticles in the Rat Lung

    PubMed Central

    Anderson, Donald S.; Patchin, Esther S.; Silva, Rona M.; Uyeminami, Dale L.; Sharmah, Arjun; Guo, Ting; Das, Gautom K.; Brown, Jared M.; Shannahan, Jonathan; Gordon, Terry; Chen, Lung Chi; Pinkerton, Kent E.; Van Winkle, Laura S.

    2015-01-01

    The growing use of silver nanoparticles (AgNPs) in consumer products raises concerns about potential health effects. This study investigated the persistence and clearance of 2 different size AgNPs (20 and 110 nm) delivered to rats by single nose-only aerosol exposures (6 h) of 7.2 and 5.4 mg/m3, respectively. Rat lung tissue was assessed for silver accumulations using inductively-coupled plasma mass spectrometry (ICP-MS), autometallography, and enhanced dark field microscopy. Involvement of tissue macrophages was assessed by scoring of silver staining in bronchoalveolar lavage fluid (BALF). Silver was abundant in most macrophages at 1 day post-exposure. The group exposed to 20 nm AgNP had the greatest number of silver positive BALF macrophages at 56 days post-exposure. While there was a significant decrease in the amount of silver in lung tissue at 56 days post-exposure compared with 1 day following exposure, at least 33% of the initial delivered dose was still present for both AgNPs. Regardless of particle size, silver was predominantly localized within the terminal bronchial/alveolar duct junction region of the lung associated with extracellular matrix and within epithelial cells. Inhalation of both 20 and 110 nm AgNPs resulted in a persistence of silver in the lung at 56 days post-exposure and local deposition as well as accumulation of silver at the terminal bronchiole alveolar duct junction. Further the smaller particles, 20 nm AgNP, produced a greater silver burden in BALF macrophages as well as greater persistence of silver positive macrophages at later timepoints (21 and 56 days). PMID:25577195

  14. Lipopolysaccharide-induced overproduction of nitric oxide and overexpression of iNOS and interleukin-1β proteins in zinc-deficient rats.

    PubMed

    Miyazaki, Takashi; Takenaka, Tsuneo; Inoue, Tsutomu; Sato, Makiko; Miyajima, Yuka; Nodera, Makoto; Hanyu, Mayuko; Ohno, Yoichi; Shibazaki, Satomi; Suzuki, Hiromichi

    2012-03-01

    Zinc deficiency leads to decreased cellular immune responses. The overproduction of nitrogen species derived from inducible nitric oxide synthase (iNOS), its enzyme, and interleukine-1 beta (IL-1β), and inflammatory cytokine have been implicated in immune responses. The goal of this study was to investigate the effects of lipopolysaccharide (LPS)-induced changes in NO metabolites, iNOS, and IL-1β protein expression in the lungs of zinc-deficient rats. Male Sprague-Dawley rats (body weight, 100 g) were divided into two groups and were fed either a zinc-deficient diet (ZnD) or a zinc-containing diet (Cont). After 4 weeks on these diets, rats received a 10-mg/kg dose of LPS injected via the tail vein and were then maintained for an additional 72 h. To determine total NO concentrations in the blood, serum zinc concentration, iNOS protein expression, IL-1β, and iNOS immunohistochemistry, blood and lung samples were obtained at pre-LPS injection, 5, 24, and 72 h after injection. Total NO levels were significantly increased at 5, at 24, and at 72 h after LPS injection compared with pre-LPS injection level in ZnD group; significant changes in total NO levels was elevated at 5 h from at pre-LPS level but not significant changes from basal level at 24 and 72 h in the control group. Based on western blot analyses and immunohistochemistry, clear bands indicating iNOS and IL-1β protein expression and iNOS antibody-stained inflammatory cells were detected at 5 and 24 h in the ZnD group and 5 h in the Cont group, not observed at 24 and 72 h in the control group. These results suggest that zinc deficiency induces overexpression of iNOS and IL-1β proteins from inflammatory cells around the alveolar blood vessels, resulting in overproduction of total NO and persisted inflammatory response in the zinc-deficient rat lung. Taken together, overexpression of LPS-induced iNOS, overproduction of iNOS-derived NO, and overexpression of IL-1β may induce nitrosative and oxidative stresses in the lung, and these stresses may be involved low immunity of zinc deficiency states.

  15. Persisting risk of nickel related lung cancer and nasal cancer among Clydach refiners.

    PubMed

    Grimsrud, T K; Peto, J

    2006-05-01

    To evaluate the risk of lung cancer and nasal cancer among workers employed at the Clydach nickel refinery, South Wales since 1930 by combining data from the two most recently published papers on this cohort. Observed and expected numbers of cancer deaths were extracted for workers who had a minimum of five years service and were employed for the first time between 1902 and 1992. Standardised mortality ratios (SMR) were calculated for subgroups according to year of employment, time since first employment, and process work. A persisting excess of respiratory cancer was found for workers employed in the period 1930-92, with a lung cancer SMR of 133 (95% CI 103 to 172) and a SMR for nasal cancer of 870 (95% CI 105 to 3141). The lung cancer excess was most clearly seen 20 years or more after first employment and seemed to be confined to process workers. There was no indication of a further reduction in risk since 1930. The extreme nickel related cancer hazard at the refinery before 1920 was greatly reduced during subsequent years. Some of the carcinogenic exposures seem to have remained after 1930, producing an elevated risk of nasal cancer and a 30% excess of lung cancer in the workforce. There was evidence of a persisting risk among process workers first employed since 1953.

  16. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8+ T-cell priming and viral control

    PubMed Central

    Duhan, Vikas; Khairnar, Vishal; Friedrich, Sarah-Kim; Zhou, Fan; Gassa, Asmae; Honke, Nadine; Shaabani, Namir; Gailus, Nicole; Botezatu, Lacramioara; Khandanpour, Cyrus; Dittmer, Ulf; Häussinger, Dieter; Recher, Mike; Hardt, Cornelia; Lang, Philipp A.; Lang, Karl S.

    2016-01-01

    Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8+ T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8+ T cells and for viral control. In contrast to specific antibodies, memory CD8+ T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus. PMID:26805453

  17. Synthetic vitreous fibers: a review of toxicology research and its impact on hazard classification.

    PubMed

    Hesterberg, T W; Hart, G A

    2001-01-01

    Because the inhalation of asbestos, a naturally occurring, inorganic fibrous material, is associated with lung fibrosis and thoracic cancers, concerns have been raised about the possible health effects of synthetic vitreous fibers (SVFs). SVFs include a very broad variety of inorganic fibrous materials with an amorphous molecular structure. Traditionally, SVFs have been divided into three subcategories based on composition: fiberglass, mineral wool (rock, stone, and slag wools), and refractory ceramic fiber. For more than 50 years, the toxicologic potential of SVFs has been researched extensively using human epidemiology and a variety of laboratory studies. Here we review the research and its impact on hazard classification and regulation of SVFs. Large, ongoing epidemiology studies of SVF manufacturing workers have provided very little evidence of harmful effects in humans. Several decades of research using rodents exposed by inhalation have confirmed that SVF pulmonary effects are determined by the "Three D's", fiber dose (lung), dimension, and durability. Lung dose over time is determined by fiber deposition and biopersistence in the lung. Deposition is inversely related to fiber diameter. Biopersistence is directly related to fiber length and inversely related to fiber dissolution and fragmentation rates. Inhaled short fibers are cleared from the lung relatively quickly by mobile phagocytic cells, but long fibers persist until they dissolve or fragment. In contrast to asbestos, most of the SVFs tested in rodent inhalation studies cleared rapidly from the lung (were nonbiopersistent) and were innocuous. However, several relativley biopersistent SVFs induced chronic inflammation, lung scarring (fibrosis), and thoracic neoplasms. Thus, biopersistence of fibers is now generally recognized as a key determinant of the toxicologic potential of SVFs. In vitro dissolution of fibers in simulated extracellular fluid correlates fairly well with fiber biopersistence in the lung and pulmonary toxicity, but several exceptions suggest that biopersistence involves more than dissolution rate. Research demonstrating the relationship between biopersistence and SVF toxicity has provided a scientific basis for hazard classification and regulation of SVFs. For a nonhazardous classification, legislation recently passed by the European Union requires a respirable insulation wool to have a low lung-biopersistence or be noncarcinogenic in laboratory rats. U.S. fiberglass and mineral wool industries and the Occupational Health and Safety Administration (OSHA) have formed a voluntary Health and Safety Partnership Program (HSPP) that include: a voluntary permissible exposure level (PEL) in the workplace of 1 fiber/cc, a respiratory protection program for specified tasks, continued workplace air monitoring, and, where possible, the development of fiber formulations that do not persist in the lung. RCF manufacturers have implemented a Product Stewardship Program that includes: a recommended exposure guideline of 0.5 fibers/cc; a 5-year workplace air monitoring program; and research into the development of high-temperature-resistant, biosoluble fibers.

  18. Immunoregulation of Bone Marrow-Derived Mesenchymal Stem Cells on the Chronic Cigarette Smoking-Induced Lung Inflammation in Rats

    PubMed Central

    Li, Xiaoyan; Wang, Junyan; Cao, Jing; Ma, Lijuan; Xu, Jianying

    2015-01-01

    Impact of bone mesenchymal stem cell (BMSC) transfusion on chronic smoking-induced lung inflammation is poorly understood. In this study, a rat model of smoking-related lung injury was induced and the rats were treated with vehicle or BMSCs for two weeks. Different subsets of CD4+ T cells, cytokines, and anti-elastin in the lungs as well as the lung injury were characterized. Serum and lung inducible nitric oxide synthase (iNOS) and STAT5 phosphorylation in lymphocytes from lung tissue were also analyzed. Results indicated that transfusion of BMSCs significantly reduced the chronic smoking-induced lung injury, inflammation, and levels of lung anti-elastin in rats. The frequency of Th1 and Th17 cells and the levels of IL-2, IL-6, IFN-γ, TNF-α, IL-17, IP-10, and MCP-1 increased, but the frequency of Tregs and IL-10 decreased. Transfusion of BMSCs significantly modulated the imbalance of immune responses by mitigating chronic smoking-increased Th1 and Th17 responses, but enhancing Treg responses in the lungs of rats. Transfusion of BMSCs limited chronic smoking-related reduction in the levels of serum and lung iNOS and mitigated smoking-induced STAT5 phosphorylation in lymphocytes from lung tissue. BMSCs negatively regulated smoking-induced autoimmune responses in the lungs of rats and may be promising for the intervention of chronic smoking-related lung injury. PMID:26665150

  19. Hypergravity-induced immunomodulation in a rodent model: lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Green, Lora M.; Miller, Glen M.; Nelson, Gregory A.

    2002-01-01

    The major goal of this study was to quantify changes in lymphoid organs and cells over time due to centrifugation-induced hypergravity. C57BL/6 mice were exposed to 1, 2 and 3 G and the following assays were performed on days 1, 4, 7, 10, and 21: spleen, thymus, lung, and liver masses; total leukocyte, lymphocyte, monocyte/macrophage, and granulocyte counts; level of splenocyte apoptosis; enumeration of CD3+ T, CD3+/CD4+ T helper, CD3+/CD8+ T cytotoxic, B220+ B, and NK1.1+ natural killer cells; and quantification of cells expressing CD25, CD69, and CD71 activation markers. The data show that increased gravity resulted in decreased body, spleen, thymus, and liver, but not lung, mass. Significant reductions were noted in all three major leukocyte populations (lymphocytes, granulocytes, monocyte/macrophages) [correction of macrphages] with increased gravity; persistent depletion was noted in blood but not spleen. Among the various lymphocyte populations, the CD3+/CD8+ T cells and B220+ B cells were the most affected and NK1.1+ NK cells the least affected. Overall, the changes were most evident during the first week, with a greater influence noted for cells in the spleen. A linear relationship was found between some of the measurements and the level of gravity, especially on day 4. These findings indicate that hypergravity profoundly alters leukocyte number and distribution in a mammalian model and that some aberrations persisted throughout the three weeks of the study. In certain cases, the detected changes were similar to those observed after whole-body irradiation. In future investigations we hope to combine hypergravity with low-dose rate irradiation and immune challenge.

  20. Persistence of RSV promotes proliferation and epithelial-mesenchymal transition of bronchial epithelial cells through Nodal signaling.

    PubMed

    Xiang, Zhao; Liang, Zhang; Yanfeng, Huang; Leitao, Kang

    2017-10-01

    Nodal may play an important role in the development of cancers. The present study was designed to determine the effects of Nodal induced by respiratory syncytial virus (RSV) infection on the occurrence and development of lung cancer and the underlying mechanisms. After verification of RSV infection by observation of cytopathic effect and indirect immunofluorescence, real-time PCR, Western blot and methylation assays were used to verify the influence of RSV on Nodal expression. Then, a Nodal overexpressed vector was constructed and the effects of Nodal on the proliferation and apoptosis of bronchial epithelial cells (BECs) and epithelial-mesenchymal transition (EMT) were assayed by flow cytometry and Western blot, respectively. Moreover, Lefty and pSmad2/3 were assayed by Western blot and Cyclin D1, CDK4, c-myc and Bcl-2 induced by Nodal overepression or RSV infection were also assayed by real-time PCR. The results showed that Nodal over expression and demethylation of the promoter were observed in BECs after RSV infection. Activation of Nodal promoted proliferation, colony formation and EMT and inhibited apoptosis of BECs. Nodal also promoted malignant change by promoting expression of cyclin D1 and related-dependent kinase and inhibiting apoptosis. Besides, RSV infection inhibited Lefty expression and promoted the activation of pSmad2/3. RSV also promoted Cyclin D1, CDK4, c-myc and Bcl-2 expression through the activation of pSmad2/3. Our data showed that persistence of RSV promoted the proliferation, epithelial-mesenchymal transition and expression of oncogenes through Nodal signaling, which may be associated with the occurrence and development of lung cancers.

  1. Hyperoxic exposure of immature mice increases the inflammatory response to subsequent rhinovirus infection: Association with danger signals

    PubMed Central

    Cui, Tracy X.; Maheshwer, Bhargavi; Hong, Jun Y.; Goldsmith, Adam M.; Bentley, J. Kelley; Popova, Antonia P.

    2016-01-01

    Infants with a history of prematurity and bronchopulmonary dysplasia (BPD) have a high risk of asthma and viral-induced exacerbations later in life. We hypothesized that hyperoxic exposure, a predisposing factor to BPD, modulates the innate immune response, producing an exaggerated pro-inflammatory reaction to viral infection. Two-to-3 day-old C57BL/6J mice were exposed to air or 75% oxygen for 14 days. Mice were infected intranasally with rhinovirus (RV) immediately after O2 exposure. Lung mRNA and protein expression, histology, dendritic cells (DCs) and airways responsiveness were assessed 1-12 days after infection. Tracheal aspirates from premature human infants were collected for mRNA detection. Hyperoxia increased lung IL-12 expression which persisted up to 12 days post-exposure. Hyperoxia-exposed RV-infected mice showed further increases in IL-12 and increased expression of IFN-γ, TNF-α, CCL2, CCL3 and CCL4, as well as increased airway inflammation and responsiveness. In RV-infected, air-exposed mice the response was not significant. Induced IL-12 expression in hyperoxia-exposed, RV-infected mice was associated with increased IL-12-producing CD103+ lung DCs. Hyperoxia also increased expression of Clec9a, a CD103+ DC-specific damaged cell-recognition molecule. Hyperoxia increased levels of ATP metabolites and expression of adenosine receptor A1, further evidence of cell damage and related signaling. In human preterm infants, tracheal aspirate Clec9a expression positively correlated with the level of prematurity. Hyperoxic exposure increases the activation of CD103+, Clec9a+ DCs, leading to increased inflammation and airway hyperresponsiveness upon RV infection. In premature infants, danger signal-induced DC activation may promote pro-inflammatory airway responses, thereby increasing respiratory morbidity. PMID:27183577

  2. Microarray-based analysis of the lung recovery process after stainless-steel welding fume exposure in Sprague-Dawley rats.

    PubMed

    Oh, Jung-Hwa; Yang, Mi-jin; Yang, Young-Su; Park, Han-Jin; Heo, Sun Hee; Lee, Eun-Hee; Song, Chang-Woo; Yoon, Seokjoo

    2009-02-01

    Repeated exposure to welding fumes promotes a reversible increase in pulmonary disease risk, but the molecular mechanisms by which welding fumes induce lung injury and how the lung recovers from such insults are unclear. In the present study, pulmonary function and gene-expression profiles in the lung were analyzed by Affymetrix GeneChip microarray after 30 days of consecutive exposure to manual metal arc welding combined with stainless-steel (MMA-SS) welding fumes, and again after 30 days of recovery from MMA-SS fume exposure. In total, 577 genes were identified as being either up-regulated or down-regulated (over twofold changes, p < 0.05) in the lungs of low-dose or high-dose groups. Differentially expressed genes were classified based on a k-means clustering algorithm and biological functions and molecular networks were further analyzed using Ingenuity Pathways Analysis. Among the genes affected by exposure to or recovery from MMA-SS fumes, the transcriptional changes of 13 genes that were highly altered by treatment were confirmed by quantitative real-time PCR. Notably, Mmp12, Cd5l, Ccl7, Cxcl5, and Spp1 related to the immune response were up-regulated only in the exposure group, whereas Trem2, IgG-2a, Igh-1a, and Igh were persistently up-regulated in both the exposure and recovery groups. In addition, several genes that might play a role in the repair process of the lung were up-regulated exclusively in the recovery group. Collectively, these data may help elucidate the molecular mechanism of the recovery process of the lung after welding fume exposure.

  3. Changes in gene expression in lungs of mice exposed to traffic-related air pollution.

    PubMed

    Yang, Jie; Chen, Yi; Yu, Zhi; Ding, Hui; Ma, Zhongfu

    2018-06-01

    Long-term exposure to traffic-related pollutants can lead to a variety of respiratory diseases, including inflammation, asthma, and lung cancer; however, the underlying biological mechanisms are not fully understood. We focused on the effects of exposure to different air pollutants on the expression of genes associated with inflammatory immune responses, allergic reactions and asthma, and lung cancer. In order to understand the cellular responses induced by exposure to different traffic-related pollutants, we performed PCR array to evaluate the mRNA expression of genes associated with inflammatory immune responses, allergic reactions and asthma, and lung cancer in the lungs of mice exposed to three different environments, including the laboratory (clean air), and polluted parking garages in Foshan and Guangzhou for four weeks. Cytokines (IFN-γ, IL-4, and IL-17A) were analyzed by Flow cytometry; the morphological structures were detected by Haematoxylin and eosin (H&E) staining. Our results revealed that the main pollutant in Guangzhou was PM2.5, the main pollutants in Foshan were gaseous pollutants including CO, NO x and SO 2. IFN-γ was significantly lower, and IL-4, and IL-17A were significantly higher in mice in the Guangzhou and Foshan groups compared with laboratory group. The morphological structures were damaged in Guangzhou and Foshan groups. In addition, we found that exposure to traffic-related pollutants triggered the expression of inflammatory genes (Cxcl11 and Tnfs4), allergy and asthma genes (Clca3 and Prg2), and lung cancer genes (Agr2, Col11a1, and Sostdc1). As such, our results demonstrate that persistent exposure to traffic-related pollutants may elevate the incidence of immune disorders and asthma, and may be as a risk factor for lung cancer. Copyright © 2018. Published by Elsevier Ltd.

  4. Genomic instability in quartz dust exposed rat lungs: Is inflammation responsible?

    NASA Astrophysics Data System (ADS)

    Albrecht, C.; Knaapen, A. M.; Cakmak Demircigil, G.; Coskun, Erdem; van Schooten, F. J.; Borm, P. J. A.; Schins, R. P. F.

    2009-02-01

    Exposure to quartz dusts has been associated with lung cancer and fibrosis. Although the responsible mechanisms are not completely understood, progressive inflammation with associated induction of persistent oxidative stress has been discussed as a key event for these diseases. Previously we have evaluated the kinetics of pulmonary inflammation in the rat model following a single intratracheal instillation of 2mg DQ12 quartz, either in its native form or upon its surface modification with polyvinylpyridine-N-oxide or aluminium lactate. This model has been applied now to evaluate the role of inflammation in the kinetics of induction of DNA damage and response at 3, 7, 28, and 90 days after treatment. Bronchoalveolar lavage (BAL) cell counts and differentials as well as BAL fluid myeloperoxidase activity were used as markers of inflammation. Whole lung homogenate was investigated to determine the induction of the oxidative and pre-mutagenic DNA lesion 8-hydroxy-2-deoxy-guanosine (8-OHdG) by HPLC/ECD, while mRNA and protein expression of oxidative stress and DNA damage response genes including hemeoxygenase-1 (HO-1) and apurinic/apyrimidinic endonuclease (APE/Ref-1) were evaluated using Western blotting and real time PCR. Isolated lung epithelial cells from the treated rats were used for DNA strand breakage analysis using the alkaline comet assay as well as for micronucleus scoring in May-Gruenwald-Giemsa stained cytospin preparations. In the rats that were treated with quartz, no increased 8-OHdG levels were observed, despite the presence of a marked and persistent inflammation. However, DNA strand breakage in the lung epithelial cells of the quartz treated rats was significantly enhanced at 3 days, but not at 28 days. Moreover, significantly enhanced micronucleus frequencies were observed for all four time points investigated. In the animals that were treated with the PVNO modified quartz, micronuclei scores did not differ from controls, while in those treated with the aluminium coated quartz intermediate effects were found. These findings were in line with the kinetics of inflammation and epithelial proliferation in the rat lungs for the different treatments. Notably, a highly significant correlation was observed between neutrophil numbers and micronucleus frequencies, indicative for a role of inflammation in eliciting genomic instability in target cells of quartz-induced carcinogenesis. Our ongoing investigations focus on the evaluation of the causality between both in relation to quartz exposure.

  5. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese individuals.

  6. Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn

    PubMed Central

    Lakshminrusimha, Satyan; Porta, Nicolas F. M.; Farrow, Kathryn N.; Chen, Bernadette; Gugino, Sylvia F.; Kumar, Vasanth H.; Russell, James A.; Steinhorn, Robin H.

    2009-01-01

    Prostacyclin is a pulmonary vasodilator and is produced by prostacyclin synthase and stimulates adenylate cyclase (AC) via the prostacyclin receptor (IP) to produce cAMP. Forskolin is a direct stimulant of AC. Phosphodiesterase 3 hydrolyzes cAMP and is inhibited by milrinone. Objective To characterize the prostacyclin-AC-cAMP pathway in the ovine ductal ligation model of persistent pulmonary hypertension of the newborn (PPHN). Setting University-based laboratory animal facility. Subjects Lambs delivered to time-dated pregnant ewes. Interventions Fifth generation pulmonary arteries (PA) and lung parenchyma were isolated from control fetal lambs (n = 8) and fetal lambs with PPHN induced by antenatal ductal ligation (n = 9). We studied relaxation responses to various agonists (milrinone, forskolin, prostacyclin, and iloprost, a prostacyclin analog) that increase cAMP in PA after half-maximal constriction with norepinephrine and pretreatment with propranolol ± indo-methacin. Lung protein levels of prostacyclin synthase, IP, AC2, and phosphodiesterase 3A were analyzed by Western blot and cAMP by enzyme-linked immunoassay. Main Results Milrinone relaxed control and PPHN PA and pretreatment with indomethacin significantly impaired this response. Relaxation to milrinone, prostacyclin, and iloprost were significantly impaired in PA from PPHN lambs. Pretreatment with milrinone markedly enhanced relaxation to prostacyclin and iloprost in PPHN PA, similar to relaxation in control PA. Relaxation to forskolin was similar in control and PPHN PAs indicating normal AC activity. Protein levels of prostacyclin synthase and IP were decreased in PPHN lungs compared with control, but AC2, cAMP, and phosphodiesterase 3A remained unchanged. Conclusions Prostacyclin and iloprost are dilators of PAs from PPHN lambs and their effect is enhanced by milrinone. This combination therapy may be an effective strategy in the management of patients with PPHN. PMID:19057444

  7. Fetal Onset of Aberrant Gene Expression Relevant to Pulmonary Carcinogenesis in Lung Adenocarcinoma Development Induced by In Utero Arsenic Exposure

    PubMed Central

    Shen, Jun; Liu, Jie; Xie, Yaxiong; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2009-01-01

    Arsenic is a human pulmonary carcinogen. Our work indicates that in utero arsenic exposure in mice can induce or initiate lung cancer in female offspring. To define early molecular changes, pregnant C3H mice were given 85 ppm arsenic in drinking water from days 8 to 18 of gestation and expression of selected genes in the fetal lung or in lung tumors developing in adults was examined. Transplacental arsenic exposure increased estrogen receptor-α (ER-α) transcript and protein levels in the female fetal lung. An overexpression of various estrogen-regulated genes also occurred, including trefoil factor-3, anterior gradient-2, and the steroid metabolism genes 17-β-hydroxysteroid dehydrogenase type 5 and aromatase. The insulin growth factor system, which can be influenced by ER and has been implicated in the pulmonary oncogenic process, was activated in fetal lung after gestational arsenic exposure. in utero arsenic exposure also induced overexpression of α-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 in fetal lung, all of which are associated with lung cancer. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ER-α expression. In contrast, normal adult lung and diethylnitrosamine-induced lung adenocarcinoma showed little evidence of ER-α expression. Thus, transplacental arsenic exposure at a carcinogenic dose produced aberrant estrogen-linked pulmonary gene expression. ER-α activation was specifically associated with arsenic-induced lung adenocarcinoma and adenoma but not with nitrosamine-induced lung tumors. These data provide evidence that arsenic-induced aberrant ER signaling could disrupt early life stage genetic programing in the lung leading eventually to lung tumor formation much later in adulthood. PMID:17077188

  8. Fetal onset of aberrant gene expression relevant to pulmonary carcinogenesis in lung adenocarcinoma development induced by in utero arsenic exposure.

    PubMed

    Shen, Jun; Liu, Jie; Xie, Yaxiong; Diwan, Bhalchandra A; Waalkes, Michael P

    2007-02-01

    Arsenic is a human pulmonary carcinogen. Our work indicates that in utero arsenic exposure in mice can induce or initiate lung cancer in female offspring. To define early molecular changes, pregnant C3H mice were given 85 ppm arsenic in drinking water from days 8 to 18 of gestation and expression of selected genes in the fetal lung or in lung tumors developing in adults was examined. Transplacental arsenic exposure increased estrogen receptor-alpha (ER-alpha) transcript and protein levels in the female fetal lung. An overexpression of various estrogen-regulated genes also occurred, including trefoil factor-3, anterior gradient-2, and the steroid metabolism genes 17-beta-hydroxysteroid dehydrogenase type 5 and aromatase. The insulin growth factor system, which can be influenced by ER and has been implicated in the pulmonary oncogenic process, was activated in fetal lung after gestational arsenic exposure. In utero arsenic exposure also induced overexpression of alpha-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 in fetal lung, all of which are associated with lung cancer. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ER-alpha expression. In contrast, normal adult lung and diethylnitrosamine-induced lung adenocarcinoma showed little evidence of ER-alpha expression. Thus, transplacental arsenic exposure at a carcinogenic dose produced aberrant estrogen-linked pulmonary gene expression. ER-alpha activation was specifically associated with arsenic-induced lung adenocarcinoma and adenoma but not with nitrosamine-induced lung tumors. These data provide evidence that arsenic-induced aberrant ER signaling could disrupt early life stage genetic programing in the lung leading eventually to lung tumor formation much later in adulthood.

  9. Lung Function in Pregnancy in Langerhans Cell Histiocytosis.

    PubMed

    Radzikowska, Elżbieta; Wiatr, Elżbieta; Franczuk, Monika; Bestry, Iwona; Roszkowski-Śliż, Kazimierz

    2018-01-01

    Pulmonary Langerhans cell histiocytosis (LCH) is a rare disease, affecting usually young people. The course of the disease is variable. In some pulmonary LCH patients a severe lung destruction and progression in spite of chemotherapy is observed, but in others just a cessation of smoking induces a regression of the disease. In the present study we seek to determine the influence of pregnancy on pulmonary function in LCH patients, an unchartered area of research. We addressed the issue by investigating eight pregnant women out of the 45 women hospitalized with the diagnosis of pulmonary LCH in the period from 2000 to 2015. For five of the eight pregnant women it was the second gestation. The median follow-up period was 120 months (range 72-175 months). Ten healthy children were born by a C-section. Two spontaneous miscarriages in the seventh week of gestation, and one tubal ectopic pregnancy were recorded. We found that pregnancy did not significantly influence pulmonary function assessed by the following indices: forced expiratory volume in 1 s (FEV1), lung vital capacity (VC), total lung capacity (TLC), residual volume (RV), diffusing capacity of the lungs for carbon monoxide (DLCO), and the distance and arterial oxygen saturation in 6-min walk test. Only one patient in the third trimester of pregnancy experienced bilateral pneumothorax, with persistent air leak. In all patients, delivery and postpartum period were uneventful. We conclude that pregnancy in pulmonary LCH patients is safe and not associated with deterioration of pulmonary function or blood oxygenation.

  10. Biphasic cellular and tissue response of rat lungs after eight-day aerosol exposure to the silicon dioxide cristobalite.

    PubMed Central

    Absher, M. P.; Trombley, L.; Hemenway, D. R.; Mickey, R. M.; Leslie, K. O.

    1989-01-01

    Cristobalite is a crystalline silicon dioxide that elicits pulmonary inflammation and fibrosis in humans and experimental animals. Exposure of rats to aerosols of respirable cristobalite for 8 days led to a rapid influx of neutrophils and macrophages into alveolar and tissue compartments of the lung followed by a more gradual accumulation of T lymphocytes. This inflammatory response persisted throughout 52 weeks after the end of the exposure. For some variables studied there appeared to be a cyclical nature to the response. Statistical analysis of alveolar cell populations and lung tissue weight, protein, and hydroxyproline showed significant time-dependent fluctuations. Histologic analysis revealed a progressive deposition of collagen and type II cell hyperplasia centered on airways, however, there appeared to be some correlation between fluctuations in alveolar cell populations and overall tissue pathology. The observed cellular and biochemical fluctuations and the persistence of the inflammatory response may be due to the presence of silica in the lung, which serves as a source of repetitive stimulation of lung cells. Images Figure 4 Figure 5 PMID:2547319

  11. Persistent lung oscillator response to CO2 after buccal oscillator inhibition in the adult frog.

    PubMed

    Leclère, Renaud; Straus, Christian; Similowski, Thomas; Bodineau, Laurence; Fiamma, Marie-Noëlle

    2012-08-15

    The automatic ventilatory drive in amphibians depends on two oscillators interacting with each other, the gill/buccal and lung oscillators. The lung oscillator would be homologous to the mammalian pre-Bötzinger complex and the gill/buccal oscillator homologous to the mammalian parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN). Dysfunction of the pFRG/RTN has been involved in the development of respiratory diseases associated to the loss of CO(2) chemosensitivity such as the congenital central hypoventilation syndrome. Here, on adult in vitro isolated frog brainstem, consequences of the buccal oscillator inhibition (by reducing Cl(-)) were evaluated on the respiratory rhythm developed by the lung oscillator under hypercapnic challenges. Our results show that under low Cl(-) concentration (i) the buccal oscillator is strongly inhibited and the lung burst frequency and amplitude decreased and (ii) it persists a powerful CO(2) chemosensitivity. In conclusion, in frog, the CO(2) chemosensitivity depends on cellular contingent(s) whose the functioning is independent of the concentration of Cl(-) and origin remains unknown. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Oral kanglaite injection (KLTI) attenuates the lung cancer-promoting effect of high-fat diet (HFD)-induced obesity.

    PubMed

    Cao, Ning; Ma, Xiaofang; Guo, Zhenzhen; Zheng, Yaqiu; Geng, Shengnan; Meng, Mingjing; Du, Zhenhua; Lin, Haihong; Duan, Yongjian; Du, Gangjun

    2016-09-20

    Obesity is a risk factor for cancer and cancer-related mortality, however, its role in lung cancer progression remains controversial. This study aimed to assess whether high-fat diet (HFD)-induced obesity promotes lung cancer progression and whether the promotion can be decreased by Kanglaite injection (KLTI). In vivo, HFD-induced overweight or obesity increases the lung carcinoma incidence and multiplicity in a urethane-induced lung carcinogenic model and cancer-related mortality in a LLC allograft model by increasing oxidative stress and cellular signaling molecules including JAK, STAT3, Akt, mTOR, NF-κB and cyclin D1. These changes resulted in increases in vascular disruption and the lung water content, thereby promoting lung epithelial proliferation and the epithelial-mesenchymal transition (EMT) during carcinogenesis. Chronic KLTI treatment substantially prevented the weight gain resulting from HFD consumption, thereby reversing the metabolic dysfunction-related physiological changes and reducing susceptibility to lung carcinogenesis. In vitro, KLTI significantly suppressed the proliferation and induced apoptosis and differentiation in 3T3-L1 preadipocyte cells and attenuated endothelial cell permeability in HUVECs. Our study indicates that there is a potential relationship between obesity and lung cancer. This is the first study to show that obesity can directly accelerate carcinogen-induced lung cancer progression and that KLTI can decrease the lung cancer-promoting effect of HFD-induced obesity.

  13. NOS2-deficient mice with hypoxic necrotizing lung lesions predict outcomes of tuberculosis chemotherapy in humans.

    PubMed

    Gengenbacher, Martin; Duque-Correa, Maria A; Kaiser, Peggy; Schuerer, Stefanie; Lazar, Doris; Zedler, Ulrike; Reece, Stephen T; Nayyar, Amit; Cole, Stewart T; Makarov, Vadim; Barry Iii, Clifton E; Dartois, Véronique; Kaufmann, Stefan H E

    2017-08-18

    During active TB in humans a spectrum of pulmonary granulomas with central necrosis and hypoxia exists. BALB/c mice, predominantly used in TB drug development, do not reproduce this complex pathology thereby inaccurately predicting clinical outcome. We found that Nos2 -/- mice incapable of NO-production in immune cells as microbial defence uniformly develop hypoxic necrotizing lung lesions, widely observed in human TB. To study the impact of hypoxic necrosis on the efficacy of antimycobacterials and drug candidates, we subjected Nos2 -/- mice with TB to monotherapy before or after establishment of human-like pathology. Isoniazid induced a drug-tolerant persister population only when necrotic lesions were present. Rifapentine was more potent than rifampin prior to development of human-like pathology and equally potent thereafter, in agreement with recent clinical trials. Pretomanid, delamanid and the pre-clinical candidate BTZ043 were bactericidal independent of pulmonary pathology. Linezolid was bacteriostatic in TB-infected Nos2 -/- mice but significantly improved lung pathology. Hypoxic necrotizing lesions rendered moxifloxacin less active. In conclusion, Nos2 -/- mice are a predictive TB drug development tool owing to their consistent development of human-like pathology.

  14. Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis.

    PubMed

    Gupta, Indranil; Ganguly, Souradipta; Rozanas, Christine R; Stuehr, Dennis J; Panda, Koustubh

    2016-07-19

    Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage.

  15. Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis

    PubMed Central

    Gupta, Indranil; Ganguly, Souradipta; Rozanas, Christine R.; Stuehr, Dennis J.

    2016-01-01

    Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage. PMID:27382160

  16. DHA suppresses chronic apoptosis in the lung caused by perinatal inflammation.

    PubMed

    Ali, Mehboob; Heyob, Kathryn M; Velten, Markus; Tipple, Trent E; Rogers, Lynette K

    2015-09-01

    We have previously shown that an adverse perinatal environment significantly alters lung growth and development and results in persistently altered cardiopulmonary physiology in adulthood. Our model of maternal LPS treatment followed by 14 days of neonatal hyperoxia exposure causes severe pulmonary disease characterized by permanent decreases in alveolarization and diffuse interstitial fibrosis. The current investigations tested the hypothesis that dysregulation of Notch signaling pathways contributes to the permanently altered lung phenotype in our model and that the improvements we have observed previously with maternal docosahexaenoic acid (DHA) supplementation are mediated through normalization of Notch-related protein expression. Results indicated that inflammation (IL-6 levels) and oxidation (F2a-isoprostanes) persisted through 8 wk of life in mice exposed to LPS/O2 perinatally. These changes were attenuated by maternal DHA supplementation. Modest but inconsistent differences were observed in Notch-pathway proteins Jagged 1, DLL 1, PEN2, and presenilin-2. We detected substantial increases in markers of apoptosis including PARP-1, APAF-1, caspase-9, BCL2, and HMGB1, and these increases were attenuated in mice that were nursed by DHA-supplemented dams during the perinatal period. Although Notch signaling is not significantly altered at 8 wk of age in mice with perinatal exposure to LPS/O2, our findings indicate that persistent apoptosis continues to occur at 8 wk of age. We speculate that ongoing apoptosis may contribute to persistently altered lung development and may further enhance susceptibility to additional pulmonary disease. Finally, we found that maternal DHA supplementation prevented sustained inflammation, oxidation, and apoptosis in our model. Copyright © 2015 the American Physiological Society.

  17. Influence of radiation therapy on the lung-tissue in breast cancer patients: CT-assessed density changes and associated symptoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotstein, S.; Lax, I.; Svane, G.

    1990-01-01

    The relative electron density of lung tissue was measured from computer tomography (CT) slices in 33 breast cancer patients treated by various techniques of adjuvant radiotherapy. The measurements were made before radiotherapy, 3 months and 9 months after completion of radiation therapy. The changes in lung densities at 3 months and 9 months were compared to radiation induced radiological (CT) findings. In addition, subjective symptoms such as cough and dyspnoea were assessed before and after radiotherapy. It was observed that the mean of the relative electron density of lung tissue varied from 0.25 when the whole lung was considered tomore » 0.17 when only the anterior lateral quarter of the lung was taken into account. In patients with positive radiological (CT) findings the mean lung density of the anterior lateral quarter increased 2.1 times 3 months after radiotherapy and was still increased 1.6 times 6 months later. For those patients without findings, in the CT pictures the corresponding values were 1.2 and 1.1, respectively. The standard deviation of the pixel values within the anterior lateral quarter of the lung increased 3.8 times and 3.2 times at 3 months and 9 months, respectively, in the former group, as opposed to 1.2 and 1.1 in the latter group. Thirteen patients had an increase in either cough or dyspnoea as observed 3 months after completion of radiotherapy. In eleven patients these symptoms persisted 6 months later. No significant correlation was found between radiological findings and subjective symptoms. However, when three different treatment techniques were compared among 29 patients the highest rate of radiological findings was observed in patients in which the largest lung volumes received the target dose. A tendency towards an increased rate of subjective symptoms was also found in this group.« less

  18. Nucleic Acid-Induced Resistance to Viral Infection

    PubMed Central

    Takano, Kouichi; Warren, Joel; Jensen, Keith E.; Neal, Alan L.

    1965-01-01

    Takano, Kouichi (Chas. Pfizer & Co., Inc., Terre Haute, Ind.), Joel Warren, Keith E. Jensen, and Alan L. Neal. Nucleic acid resistance to viral infection. J. Bacteriol. 90:1542–1547. 1965.—Administration of nonviral nucleic acids to mice increased their resistance to a subsequent infection with influenza or encephalomyocarditis viruses. Injection of ribonucleic acid or deoxyribonucleic acid by peripheral routes did not modify susceptibility to intranasal infection. Lung tissue extracts from animals previously treated with yeast nucleic acid inhibited the growth of vaccinia and influenza viruses. The protective effect of exogenous nucleic acids persisted in mice for several days, but gradually diminished to undetectable levels. PMID:4285332

  19. Perfluorodecalin lavage of a longstanding lung atelectasis in a child with spinal muscle atrophy.

    PubMed

    Henrichsen, Thore; Lindenskov, Paal H H; Shaffer, Thomas H; Loekke, Ruth J V; Fugelseth, Drude; Lindemann, Rolf

    2012-04-01

    Persistent lung atelectasis is difficult to treat and perfluorochemical (PFC) liquid may be an option for bronchioalveolar lavage (BAL). A 4-year-old girl with spinal muscle atrophy was admitted in respiratory failure. On admission, the X-ray confirmed the persistence of total right-sided lung atelectasis, which had been present for 14 months. She was endotracheally intubated and ventilated from the day of admission. BAL with normal saline was performed twice without improvement. Following failed extubation and being dependent on continuous respiratory support, a trial of BAL using PFC liquid (Perfluorodecalin HP) was carried out. The PFC was delivered through the endotracheal tube on three consecutive days. A loading dose of 3 ml/kg was administered, followed by a varying dose in order to more effectively lavage the lungs. She tolerated the procedure well the first 2 days, although there were no clinical signs of improvement in the atelectasis. Intentionally, higher inflation pressures were applied after PFC instillation on day 3. Chest X-ray then showed hazy infiltrates on her left lung and she required more ventilatory support. However, lung infiltrates cleared over the next 3 days. A tracheotomy was done 6 days after the last PFC instillation. She had a slow recovery and was successfully decanulated. Clinical improvement of lung function was seen including less need of BiPAP and oxygen. A chest CT scan showed then functional lung tissue appearing in the previous total atelectatic right lung. Lavage with PFC can safely be performed with a therapeutic effect in a child with unilateral total lung atelectasis. Copyright © 2011 Wiley Periodicals, Inc.

  20. Mechanisms of decreased intestinal epithelial proliferation and increased apoptosis in murine acute lung injury.

    PubMed

    Husain, Kareem D; Stromberg, Paul E; Woolsey, Cheryl A; Turnbull, Isaiah R; Dunne, W Michael; Javadi, Pardis; Buchman, Timothy G; Karl, Irene E; Hotchkiss, Richard S; Coopersmith, Craig M

    2005-10-01

    The aim of this study was to determine the effects of acute lung injury on the gut epithelium and examine mechanisms underlying changes in crypt proliferation and apoptosis. The relationship between severity and timing of lung injury to intestinal pathology was also examined. Randomized, controlled study. University research laboratory. Genetically inbred mice. Following induction of acute lung injury, gut epithelial proliferation and apoptosis were assessed in a) C3H/HeN wild-type and C3H/HeJ mice, which lack functional Toll-like receptor 4 (n = 17); b) C57Bl/6 mice that received monoclonal anti-tumor necrosis factor-alpha or control antibody (n = 22); and c) C57Bl/6 wild-type and transgenic mice that overexpress Bcl-2 in their gut epithelium (n = 21). Intestinal epithelial proliferation and death were also examined in animals with differing degrees of lung inflammation (n = 24) as well as in a time course analysis following a fixed injury (n = 18). Acute lung injury caused decreased proliferation and increased apoptosis in crypt epithelial cells in all animals studied. C3H/HeJ mice had higher levels of proliferation than C3H/HeN animals without additional changes in apoptosis. Anti-tumor necrosis factor-alpha antibody had no effect on gut epithelial proliferation or death. Overexpression of Bcl-2 did not change proliferation despite decreasing gut apoptosis. Proliferation and apoptosis were not correlated to severity of lung injury, as gut alterations were lost in mice with more severe acute lung injury. Changes in both gut epithelial proliferation and death were apparent within 12 hrs, but proliferation was decreased 36 hrs following acute lung injury while apoptosis returned to normal. Acute lung injury causes disparate effects on crypt proliferation and apoptosis, which occur, at least in part, through differing mechanisms involving Toll-like receptor 4 and Bcl-2. Severity of lung injury does not correlate with perturbations in proliferation or death in the gut epithelium, and acute lung injury-induced changes in intestinal epithelial proliferation persist longer than those in apoptosis.

  1. Effects of positive end-expiratory pressure titration and recruitment maneuver on lung inflammation and hyperinflation in experimental acid aspiration-induced lung injury.

    PubMed

    Ambrosio, Aline M; Luo, Rubin; Fantoni, Denise T; Gutierres, Claudia; Lu, Qin; Gu, Wen-Jie; Otsuki, Denise A; Malbouisson, Luiz M S; Auler, Jose O C; Rouby, Jean-Jacques

    2012-12-01

    In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.

  2. Attenuation of acute lung inflammation induced by cigarette smoke in CXCR3 knockout mice.

    PubMed

    Nie, Li; Xiang, Ruolan; Zhou, Weixun; Lu, Bao; Cheng, Deyun; Gao, Jinming

    2008-12-16

    CD8+ T cells may participate in cigarette smoke (CS) induced-lung inflammation in mice. CXCL10/IP-10 (IFNgamma-inducible protein 10) and CXCL9/Mig (monokine induced by IFN-gamma) are up-regulated in CS-induced lung injury and may attract T-cell recruitment to the lung. These chemokines together with CXCL11/ITAC (IFN-inducible T-cell alpha chemoattractant) are ligands for the chemokine receptor CXCR3 which is preferentially expressed chiefly in activated CD8+ T cells. The purpose of this investigation was to study the contribution of CXCR3 to acute lung inflammation induced by CS using CXCR3 knockout (KO) mice. Mice (n = 8 per group) were placed in a closed plastic box connected to a smoke generator and were exposed whole body to the tobacco smoke of five cigarettes four times a day for three days. Lung pathological changes, expression of inflammatory mediators in bronchoalveolar lavage (BAL) fluid and lungs at mRNA and protein levels, and lung infiltration of CD8+ T cells were compared between CXCR3-/- mice and wild type (WT) mice. Compared with the WT littermates, CXCR3 KO mice showed less CS-induced lung inflammation as evidenced by less infiltration of inflammatory cells in airways and lung tissue, particularly fewer CD8+ T cells, lower levels of IFNgamma and CXCR3 ligands (particularly CXCL10). Our findings show that CXCR3 is important in promoting CD8+ T cell recruitment and in initiating IFNgamma and CXCL10 release following CS exposure. CXCR3 may represent a promising therapeutic target for acute lung inflammation induced by CS.

  3. Attenuation of acute lung inflammation induced by cigarette smoke in CXCR3 knockout mice

    PubMed Central

    Nie, Li; Xiang, Ruolan; Zhou, Weixun; Lu, Bao; Cheng, Deyun; Gao, Jinming

    2008-01-01

    Background CD8+ T cells may participate in cigarette smoke (CS) induced-lung inflammation in mice. CXCL10/IP-10 (IFNγ-inducible protein 10) and CXCL9/Mig (monokine induced by IFN-γ) are up-regulated in CS-induced lung injury and may attract T-cell recruitment to the lung. These chemokines together with CXCL11/ITAC (IFN-inducible T-cell alpha chemoattractant) are ligands for the chemokine receptor CXCR3 which is preferentially expressed chiefly in activated CD8+ T cells. The purpose of this investigation was to study the contribution of CXCR3 to acute lung inflammation induced by CS using CXCR3 knockout (KO) mice. Methods Mice (n = 8 per group) were placed in a closed plastic box connected to a smoke generator and were exposed whole body to the tobacco smoke of five cigarettes four times a day for three days. Lung pathological changes, expression of inflammatory mediators in bronchoalveolar lavage (BAL) fluid and lungs at mRNA and protein levels, and lung infiltration of CD8+ T cells were compared between CXCR3-/- mice and wild type (WT) mice. Results Compared with the WT littermates, CXCR3 KO mice showed less CS-induced lung inflammation as evidenced by less infiltration of inflammatory cells in airways and lung tissue, particularly fewer CD8+ T cells, lower levels of IFNγ and CXCR3 ligands (particularly CXCL10). Conclusion Our findings show that CXCR3 is important in promoting CD8+ T cell recruitment and in initiating IFNγ and CXCL10 release following CS exposure. CXCR3 may represent a promising therapeutic target for acute lung inflammation induced by CS. PMID:19087279

  4. Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.

    PubMed

    Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye

    2008-01-01

    The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits.

  5. Thermal degradation events as health hazards - Particle vs gas phase effects, mechanistic studies with particles

    NASA Technical Reports Server (NTRS)

    Oberdoerster, G.; Ferin, J.; Finkelstein, J.; Soderholm, S.

    1992-01-01

    Experiments on animal subjects are performed to demonstrate that significant lung injury can result from the inhalation of ultrafine TiO2 or Al2O3 particles. The methods include intratracheal instillation of particles, long-term inhalation of particles, and in vitro studies of alveolar macrophages (AMs) to study the production of fibroplast growth factors. The ultrafine TiO2 particles are shown to induce more acute inflammatory reactions than larger particles and lead to persistent chronic effects in the AM-mediated clearance function of particles. The ultrafine particles also induce cytokines more readily, and the data generally suggests that the occurrence of such particles in thermal degradation events makes the fumes highly toxic. The exposure to thermal degradation products is therefore a critical concern for manned space missions with potentially degradable plastic products.

  6. Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9+ and IL-13+ type 2 innate lymphoid cell subpopulations.

    PubMed

    Verma, Mukesh; Liu, Sucai; Michalec, Lidia; Sripada, Anand; Gorska, Magdalena M; Alam, Rafeul

    2017-11-10

    IL-33 plays an important role in the development of experimental asthma. We sought to study the role of the IL-33 receptor suppressor of tumorigenicity 2 (ST2) in the persistence of asthma in a mouse model. We studied allergen-induced experimental asthma in ST2 knockout (KO) and wild-type control mice. We measured airway hyperresponsiveness by using flexiVent; inflammatory indices by using ELISA, histology, and real-time PCR; and type 2 innate lymphoid cells (ILC2s) in lung single-cell preparations by using flow cytometry. Airway hyperresponsiveness was increased in allergen-treated ST2 KO mice and comparable with that in allergen-treated wild-type control mice. Peribronchial and perivascular inflammation and mucus production were largely similar in both groups. Persistence of experimental asthma in ST2 KO mice was associated with an increase in levels of thymic stromal lymphopoietin (TSLP), IL-9, and IL-13, but not IL-5, in bronchoalveolar lavage fluid. Expectedly, ST2 deletion caused a reduction in IL-13 + CD4 T cells, forkhead box P3-positive regulatory T cells, and IL-5 + ILC2s. Unexpectedly, ST2 deletion led to an overall increase in innate lymphoid cells (CD45 + lin - CD25 + cells) and IL-13 + ILC2s, emergence of a TSLP receptor-positive IL-9 + ILC2 population, and an increase in intraepithelial mast cell numbers in the lung. An anti-TSLP antibody abrogated airway hyperresponsiveness, inflammation, and mucus production in allergen-treated ST2 KO mice. It also caused a reduction in innate lymphoid cell, ILC2, and IL-9 + and IL-13 + ILC2 numbers in the lung. Genetic deletion of the IL-33 receptor paradoxically increases TSLP production, which stimulates the emergence of IL-9 + and IL-13 + ILC2s and mast cells and leads to development of chronic experimental asthma. An anti-TSLP antibody abrogates all pathologic features of asthma in this model. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. A rare case of pulmonary toxoplasmosis in a patient with undifferentiated inflammatory arthritis on chronic methotrexate and corticosteroid therapy.

    PubMed

    Abdulkareem, Abdullateef; D'Souza, Ryan Steven; Patel, Nitin; Donato, Anthony A

    2017-08-23

    Pulmonary toxoplasmosis is a serious pulmonary condition caused by the protozoan Toxoplasma gondii It typically affects immunocompromised patients presenting acutely with cough, fever, myalgias, arthralgias and lymphadenopathy, and chronically with persistent cough and dyspnoea. Because of its protean features, it can mimic many more common lung conditions in the immunocompromised patient, including atypical pneumonia, Pneumocystis pneumonia and interstitial lung disease. In this article, we present the case of a 55-year-old woman who presented to our hospital with persistent dyspnoea and cough, initially suspected to have an arthritis-related interstitial lung disease. She received a final diagnosis of pulmonary toxoplasmosis after lung biopsy demonstrated Toxoplasma cysts, later confirmed by serology. Treatment with trimethoprim-sulfamethoxazole resulted in significant improvement of her respiratory symptoms after 3 months. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Amphiregulin suppresses epithelial cell apoptosis in lipopolysaccharide-induced lung injury in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogata-Suetsugu, Saiko; Yanagihara, Toyoshi; Hamada, Naoki

    Background and objective: As a member of the epidermal growth factor family, amphiregulin contributes to the regulation of cell proliferation. Amphiregulin was reported to be upregulated in damaged lung tissues in patients with chronic obstructive pulmonary disease and asthma and in lung epithelial cells in a ventilator-associated lung injury model. In this study, we investigated the effect of amphiregulin on lipopolysaccharide (LPS)-induced acute lung injury in mice. Methods: Acute lung injury was induced by intranasal instillation of LPS in female C57BL/6 mice, and the mice were given intraperitoneal injections of recombinant amphiregulin or phosphate-buffered saline 6 and 0.5 h before andmore » 3 h after LPS instillation. The effect of amphiregulin on apoptosis and apoptotic pathways in a murine lung alveolar type II epithelial cell line (LA-4 cells) were examined using flow cytometry and western blotting, respectively. Results: Recombinant amphiregulin suppressed epithelial cell apoptosis in LPS-induced lung injury in mice. Western blotting revealed that amphiregulin suppressed epithelial cell apoptosis by inhibiting caspase-8 activity. Conclusion: Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury treatment through its prevention of epithelial cell apoptosis. - Highlights: • Amphiregulin suppresses epithelial cell apoptosis in LPS-induced lung injury in mice. • The mechanism relies on inhibiting caspase-8 activity. • Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury.« less

  9. Incidental lung volume reduction following fulminant pulmonary hemorrhage in a patient with severe emphysema.

    PubMed

    Hetzel, Juergen; Spengler, Werner; Horger, Marius; Boeckeler, Michael

    2015-06-01

    Endoscopic lung volume reduction is an emerging technique meant to improve lung function parameters, quality of life, and exercise tolerance in patients with severe lung emphysema. This is the first report of lung volume reduction by autologous blood in a patient with non-bullous lung emphysema. A 74-year-old woman with heterogeneous lung emphysema developed accidentally diffuse lobar bleeding immediately after valve placement. Due to persistent hemorrhage, the valves had to be removed shortly thereafter. Despite extraction of the valves, respiratory function of the patient improved rapidly indicated also by a drop in the COPD assessment test questionnaire, 3 months later. This was consistent with both improvement of lung function tests and six-minute walking test.

  10. Lung parenchyma at maturity is influenced by postnatal growth but not by moderate preterm birth in sheep.

    PubMed

    Maritz, Gert; Probyn, Megan; De Matteo, Robert; Snibson, Ken; Harding, Richard

    2008-01-01

    We have recently shown that moderate preterm birth, in the absence of respiratory support, altered the structure of lung parenchyma in young lambs, but the long-term effects are unknown. To determine whether structural changes persist to maturity, and whether postnatal growth affects lung structure at maturity in sheep. At approximately 1.2 years after birth, lung parenchyma of sheep born 14 days before term (n = 7) was stereologically compared with that of controls born at term (n = 8, term approx. 146 days). Preterm birth per se had no significant effect on lung volume, alveolar number and size, and thicknesses of the alveolar walls and blood-gas barrier. After combining the preterm and term groups, we examined the effects of postnatal growth rates on lung parenchyma. Slower-growing sheep (SG; n = 7: 4 preterm, 3 term) were compared with faster-growing sheep (FG; n = 8: 3 preterm, 5 term). At approximately 1.2 years, the right lung volume, relative to body weight, was significantly lower in SG than FG sheep (p < 0.05) and alveolar number was significantly lower by approximately 44%. The total alveolar internal surface area of the right lung of SG sheep was 38% smaller than in FG sheep; it was also significantly lower when related to both lung and body weight. Our data suggest that moderate preterm birth does not cause persistent alterations in lung parenchyma. However, slow postnatal growth in low-birth-weight sheep results in smaller lungs with fewer alveoli and a lower alveolar surface area relative to body weight. Copyright (c) 2007 S. Karger AG, Basel.

  11. The mechanism of rapamycin in the intervention of paraquat-induced acute lung injury in rats.

    PubMed

    Chen, Da; Jiao, Guangyu; Ma, Tao; Liu, Xiaowei; Yang, Chen; Liu, Zhi

    2015-01-01

    1. Paraquat (PQ) is an organic nitrogen heterocyclic herbicide that is widely used in agriculture throughout the world. Numerous studies have reported PQ intoxication on humans. 2. In this study, we established a rat lung injury model induced by PQ and evaluated the intervention effect of rapamycin on the model, exploring the pathogenesis of PQ on lung injury as well as therapeutic effects of rapamycin on PQ-induced lung injury. 3. A rat lung injury model was established by gavage of PQ, and rapamycin was used to treat the model animals with PQ-induced lung injury. Different physiological indices were measured through Western blot and real-time polymerase chain reaction to evaluate the effect of rapamycin on the PQ-induced lung injury. 4. The analyses showed that application of rapamycin could significantly reduce the lung injury damage caused by PQ, with lung tissue wet-dry weight ratio, pathological features, compositions in serum, protein in bronchoalveolar lavage fluid and other indices being significantly improved after the injection of rapamycin. 5. It was inferred that the use of rapamycin could improve the PQ-induced lung injury through inhibiting the activity of mTOR. And we expected the use of rapamycin to be a potential treatment method for the PQ intoxication in future.

  12. No air leak on PPV does not exclude tracheobronchial injury after blunt chest trauma.

    PubMed

    Ong, Victor Yeok Kein; Tan, Kenneth Hock Soon

    2008-04-01

    Tracheobronchial injuries are commonly associated with persistent air leak with pneumothoraces especially when on positive pressure ventilation (PPV). Injuries with absence of these features together with collapse of the lung and consequent low arterial oxygen tension while on PPV are less well recognised. We present a patient with traumatic aortic dissection and preoperatively undiagnosed complete transaction of the left main bronchus following blunt chest trauma. He had no persistent air leak with lower lung lobe collapse despite undergoing PPV and had low arterial oxygen tension which failed to respond to appropriate oxygen therapy.

  13. Abnormal lung function at preschool age asthma in adolescence?

    PubMed

    Lajunen, Katariina; Kalliola, Satu; Kotaniemi-Syrjänen, Anne; Sarna, Seppo; Malmberg, L Pekka; Pelkonen, Anna S; Mäkelä, Mika J

    2018-05-01

    Asthma often begins early in childhood. However, the risk for persistence is challenging to evaluate. This longitudinal study relates lung function assessed with impulse oscillometry (IOS) in preschool children to asthma in adolescence. Lung function was measured with IOS in 255 children with asthma-like symptoms aged 4-7 years. Baseline measurements were followed by exercise challenge and bronchodilation tests. At age 12-16 years, 121 children participated in the follow-up visit, when lung function was assessed with spirometry, followed by a bronchodilation test. Asthma symptoms and medication were recorded by a questionnaire and atopy defined by skin prick tests. Abnormal baseline values in preschool IOS were significantly associated with low lung function, the need for asthma medication, and asthma symptoms in adolescence. Preschool abnormal R5 at baseline (z-score ≥1.645 SD) showed 9.2 odds ratio (95%CI 2.7;31.7) for abnormal FEV1/FVC, use of asthma medication in adolescence, and 9.9 odds ratio (95%CI 2.9;34.4) for asthma symptoms. Positive exercise challenge and modified asthma-predictive index at preschool age predicted asthma symptoms and the need for asthma medication, but not abnormal lung function at teenage. Abnormal preschool IOS is associated with asthma and poor lung function in adolescence and might be utilised for identification of asthma persistence. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Persistent and Newly Developed Chronic Bronchitis Are Associated with Worse Outcomes in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Zhao, Huaqing; Boriek, Aladin M.; Anzueto, Antonio; Soler, Xavier; Bhatt, Surya P.; Rennard, Stephen I.; Wise, Robert; Comellas, Alejandro; Ramsdell, Joe W.; Kinney, Gregory L.; Han, MeiLan K.; Martinez, Carlos H.; Yen, Andrew; Black-Shinn, Jennifer; Porszasz, Janos; Criner, Gerard J.; Hanania, Nicola A.; Sharafkhaneh, Amir; Crapo, James D.; Make, Barry J.; Silverman, Edwin K.; Curtis, Jeffrey L.

    2016-01-01

    Rationale: Chronic bronchitis is, by definition, a chronic condition, but the development and remission of this condition in cigarette smokers with or without chronic obstructive pulmonary disease (COPD) are poorly understood. Also, it is unclear how the persistence or new development of chronic bronchitis affects symptoms and outcomes. Objectives: To ascertain the relationship between smoking status and the presence or absence of chronic bronchitis and the subsequent effects on symptoms and outcomes. Methods: We analyzed 1,775 current or ex-smokers with GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage 0–IV COPD in phase 2 of the Genetic Epidemiology of COPD (COPDGene) Study, which included subjects after 5 years of follow-up from phase 1. We asked subjects at enrollment and at 5 years of follow-up about symptoms consistent with chronic bronchitis. We divided subjects into four groups: persistent chronic bronchitis– (negative at phase 1/negative at phase 2), resolved chronic bronchitis (positive/negative), new chronic bronchitis (negative/positive), and persistent chronic bronchitis+ (positive/positive). We analyzed respiratory symptoms, health-related quality of life, lung function, exacerbation frequency, and 6-minute walk distance. Measurements and Main Results: Compared with the persistent chronic bronchitis– group, members of the persistent chronic bronchitis+ group were more likely to have continued smoking (53.4%). Subjects with new chronic bronchitis were more likely to have resumed (6.6%) or continued smoking (45.6%), whereas subjects with resolved chronic bronchitis were more likely to have quit smoking (23.5%). Compared with the persistent chronic bronchitis– group, the other groups had a shorter 6-minute walk distance, worse lung function, greater exacerbation frequency, and worse respiratory symptoms. Modified Medical Research Council dyspnea and St. George’s Respiratory Questionnaire scores worsened between phase 1 and phase 2 in subjects with new chronic bronchitis but improved in the resolved chronic bronchitis group. On multinomial logistic regression, quitting smoking conferred an odds ratio (OR) of 4.289 (95% confidence interval [CI], 2.689–6.842) for resolved chronic bronchitis, whereas resuming smoking had an OR of 4.585 (95% CI, 2.008–10.471) for new chronic bronchitis. Persistent smoking had an OR of 2.621 (95% CI, 1.677–4.096) and 5.767 (95% CI, 3.702–8.983) for subjects with new chronic bronchitis and subjects with persistent chronic bronchitis, respectively. Conclusions: Persistent and newly developed chronic bronchitis are associated with continued or resumed smoking, greater respiratory symptoms, worse health-related quality of life, worse lung function, and greater exacerbation frequency. These findings stress the importance of repeatedly assessing chronic cough and sputum production in smokers to identify those at risk for poor outcomes. PMID:27158740

  15. Persistent and Newly Developed Chronic Bronchitis Are Associated with Worse Outcomes in Chronic Obstructive Pulmonary Disease.

    PubMed

    Kim, Victor; Zhao, Huaqing; Boriek, Aladin M; Anzueto, Antonio; Soler, Xavier; Bhatt, Surya P; Rennard, Stephen I; Wise, Robert; Comellas, Alejandro; Ramsdell, Joe W; Kinney, Gregory L; Han, MeiLan K; Martinez, Carlos H; Yen, Andrew; Black-Shinn, Jennifer; Porszasz, Janos; Criner, Gerard J; Hanania, Nicola A; Sharafkhaneh, Amir; Crapo, James D; Make, Barry J; Silverman, Edwin K; Curtis, Jeffrey L

    2016-07-01

    Chronic bronchitis is, by definition, a chronic condition, but the development and remission of this condition in cigarette smokers with or without chronic obstructive pulmonary disease (COPD) are poorly understood. Also, it is unclear how the persistence or new development of chronic bronchitis affects symptoms and outcomes. To ascertain the relationship between smoking status and the presence or absence of chronic bronchitis and the subsequent effects on symptoms and outcomes. We analyzed 1,775 current or ex-smokers with GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage 0-IV COPD in phase 2 of the Genetic Epidemiology of COPD (COPDGene) Study, which included subjects after 5 years of follow-up from phase 1. We asked subjects at enrollment and at 5 years of follow-up about symptoms consistent with chronic bronchitis. We divided subjects into four groups: persistent chronic bronchitis- (negative at phase 1/negative at phase 2), resolved chronic bronchitis (positive/negative), new chronic bronchitis (negative/positive), and persistent chronic bronchitis+ (positive/positive). We analyzed respiratory symptoms, health-related quality of life, lung function, exacerbation frequency, and 6-minute walk distance. Compared with the persistent chronic bronchitis- group, members of the persistent chronic bronchitis+ group were more likely to have continued smoking (53.4%). Subjects with new chronic bronchitis were more likely to have resumed (6.6%) or continued smoking (45.6%), whereas subjects with resolved chronic bronchitis were more likely to have quit smoking (23.5%). Compared with the persistent chronic bronchitis- group, the other groups had a shorter 6-minute walk distance, worse lung function, greater exacerbation frequency, and worse respiratory symptoms. Modified Medical Research Council dyspnea and St. George's Respiratory Questionnaire scores worsened between phase 1 and phase 2 in subjects with new chronic bronchitis but improved in the resolved chronic bronchitis group. On multinomial logistic regression, quitting smoking conferred an odds ratio (OR) of 4.289 (95% confidence interval [CI], 2.689-6.842) for resolved chronic bronchitis, whereas resuming smoking had an OR of 4.585 (95% CI, 2.008-10.471) for new chronic bronchitis. Persistent smoking had an OR of 2.621 (95% CI, 1.677-4.096) and 5.767 (95% CI, 3.702-8.983) for subjects with new chronic bronchitis and subjects with persistent chronic bronchitis, respectively. Persistent and newly developed chronic bronchitis are associated with continued or resumed smoking, greater respiratory symptoms, worse health-related quality of life, worse lung function, and greater exacerbation frequency. These findings stress the importance of repeatedly assessing chronic cough and sputum production in smokers to identify those at risk for poor outcomes.

  16. Oral administration of aflatoxin G₁ induces chronic alveolar inflammation associated with lung tumorigenesis.

    PubMed

    Liu, Chunping; Shen, Haitao; Yi, Li; Shao, Peilu; Soulika, Athena M; Meng, Xinxing; Xing, Lingxiao; Yan, Xia; Zhang, Xianghong

    2015-02-03

    Our previous studies showed oral gavage of aflatoxin G₁ (AFG₁) induced lung adenocarcinoma in NIH mice. We recently found that a single intratracheal administration of AFG₁ caused chronic inflammatory changes in rat alveolar septum. Here, we examine whether oral gavage of AFG₁ induces chronic lung inflammation and how it contributes to carcinogenesis. We evaluated chronic lung inflammatory responses in Balb/c mice after oral gavage of AFG₁ for 1, 3 and 6 months. Inflammatory responses were heightened in the lung alveolar septum, 3 and 6 months after AFG₁ treatment, evidenced by increased macrophages and lymphocytes infiltration, up-regulation of NF-κB and p-STAT3, and cytokines production. High expression levels of superoxide dismutase (SOD-2) and hemoxygenase-1 (HO-1), two established markers of oxidative stress, were detected in alveolar epithelium of AFG₁-treated mice. Promoted alveolar type II cell (AT-II) proliferation in alveolar epithelium and angiogenesis, as well as increased COX-2 expression were also observed in lung tissues of AFG₁-treated mice. Furthermore, we prolonged survival of the mice in the above model for another 6 months to examine the contribution of AFG₁-induced chronic inflammation to lung tumorigenesis. Twelve months later, we observed that AFG₁ induced alveolar epithelial hyperplasia and adenocarcinoma in Balb/c mice. Up-regulation of NF-κB, p-STAT3, and COX-2 was also induced in lung adenocarcinoma, thus establishing a link between AFG₁-induced chronic inflammation and lung tumorigenesis. This is the first study to show that oral administration of AFG₁ could induce chronic lung inflammation, which may provide a pro-tumor microenvironment to contribute to lung tumorigenesis. Copyright © 2014. Published by Elsevier Ireland Ltd.

  17. Induced hypernatraemia is protective in acute lung injury.

    PubMed

    Bihari, Shailesh; Dixon, Dani-Louise; Lawrence, Mark D; Bersten, Andrew D

    2016-06-15

    Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Nintedanib Compared With Placebo in Treating Against Radiation-Induced Pneumonitis in Patients With Non-small Cell Lung Cancer That Cannot Be Removed by Surgery and Are Undergoing Chemoradiation Therapy

    ClinicalTrials.gov

    2017-07-08

    Radiation-Induced Pneumonitis; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  19. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    PubMed Central

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage. PMID:23969972

  20. The TGF-beta-Pseudoreceptor BAMBI is strongly expressed in COPD lungs and regulated by nontypeable Haemophilus influenzae

    PubMed Central

    2010-01-01

    Background Nontypeable Haemophilus influenzae (NTHI) may play a role as an infectious trigger in the pathogenesis of chronic obstructive pulmonary disease (COPD). Few data are available regarding the influence of acute and persistent infection on tissue remodelling and repair factors such as transforming growth factor (TGF)-β. Methods NTHI infection in lung tissues obtained from COPD patients and controls was studied in vivo and using an in vitro model. Infection experiments were performed with two different clinical isolates. Detection of NTHI was done using in situ hybridization (ISH) in unstimulated and in in vitro infected lung tissue. For characterization of TGF-β signaling molecules a transcriptome array was performed. Expression of the TGF-pseudoreceptor BMP and Activin Membrane-bound Inhibitor (BAMBI) was analyzed using immunohistochemistry (IHC), ISH and PCR. CXC chemokine ligand (CXCL)-8, tumor necrosis factor (TNF)-α and TGF-β expression were evaluated in lung tissue and cell culture using ELISA. Results In 38% of COPD patients infection with NTHI was detected in vivo in contrast to 0% of controls (p < 0.05). Transcriptome arrays showed no significant changes of TGF-β receptors 1 and 2 and Smad-3 expression, whereas a strong expression of BAMBI with upregulation after in vitro infection of COPD lung tissue was demonstrated. BAMBI was expressed ubiquitously on alveolar macrophages (AM) and to a lesser degree on alveolar epithelial cells (AEC). Measurement of cytokine concentrations in lung tissue supernatants revealed a decreased expression of TGF-β (p < 0.05) in combination with a strong proinflammatory response (p < 0.01). Conclusions We show for the first time the expression of the TGF pseudoreceptor BAMBI in the human lung, which is upregulated in response to NTHI infection in COPD lung tissue in vivo and in vitro. The combination of NTHI-mediated induction of proinflammatory cytokines and inhibition of TGF-β expression may influence inflammation induced tissue remodeling. PMID:20513241

  1. The TGF-beta-pseudoreceptor BAMBI is strongly expressed in COPD lungs and regulated by nontypeable Haemophilus influenzae.

    PubMed

    Drömann, Daniel; Rupp, Jan; Rohmann, Kristina; Osbahr, Sinia; Ulmer, Artur J; Marwitz, Sebastian; Röschmann, Kristina; Abdullah, Mahdi; Schultz, Holger; Vollmer, Ekkehard; Zabel, Peter; Dalhoff, Klaus; Goldmann, Torsten

    2010-05-31

    Nontypeable Haemophilus influenzae (NTHI) may play a role as an infectious trigger in the pathogenesis of chronic obstructive pulmonary disease (COPD). Few data are available regarding the influence of acute and persistent infection on tissue remodelling and repair factors such as transforming growth factor (TGF)-beta. NTHI infection in lung tissues obtained from COPD patients and controls was studied in vivo and using an in vitro model. Infection experiments were performed with two different clinical isolates. Detection of NTHI was done using in situ hybridization (ISH) in unstimulated and in in vitro infected lung tissue. For characterization of TGF-beta signaling molecules a transcriptome array was performed. Expression of the TGF-pseudoreceptor BMP and Activin Membrane-bound Inhibitor (BAMBI) was analyzed using immunohistochemistry (IHC), ISH and PCR. CXC chemokine ligand (CXCL)-8, tumor necrosis factor (TNF)-alpha and TGF-beta expression were evaluated in lung tissue and cell culture using ELISA. In 38% of COPD patients infection with NTHI was detected in vivo in contrast to 0% of controls (p < 0.05). Transcriptome arrays showed no significant changes of TGF-beta receptors 1 and 2 and Smad-3 expression, whereas a strong expression of BAMBI with upregulation after in vitro infection of COPD lung tissue was demonstrated. BAMBI was expressed ubiquitously on alveolar macrophages (AM) and to a lesser degree on alveolar epithelial cells (AEC). Measurement of cytokine concentrations in lung tissue supernatants revealed a decreased expression of TGF-beta (p < 0.05) in combination with a strong proinflammatory response (p < 0.01). We show for the first time the expression of the TGF pseudoreceptor BAMBI in the human lung, which is upregulated in response to NTHI infection in COPD lung tissue in vivo and in vitro. The combination of NTHI-mediated induction of proinflammatory cytokines and inhibition of TGF-beta expression may influence inflammation induced tissue remodeling.

  2. Expression of Iroquois genes is up-regulated during early lung development in the nitrofen-induced pulmonary hypoplasia.

    PubMed

    Doi, Takashi; Lukošiūtė, Aušra; Ruttenstock, Elke; Dingemann, Jens; Puri, Prem

    2011-01-01

    Iroquois homeobox (Irx) genes have been implicated in the early lung morphogenesis of vertebrates. Irx1-3 and Irx5 gene expression is seen in fetal lung in rodents up to day (D) 18.5 of gestation. Fetal lung in Irx knockdown mice shows loss of mesenchyme and dilated airspaces, whereas nitrofen-induced hypoplastic lung displays thickened mesenchyme and diminished airspaces. We hypothesized that the Irx genes are up-regulated during early lung morphogenesis in the nitrofen-induced hypoplastic lung. Pregnant rats were exposed either to olive oil or nitrofen on D9. Fetal lungs harvested on D15 were divided into control and nitrofen groups; and the lungs harvested on D18 were divided into control, nitrofen without congenital diaphragmatic hernia (CDH[-]), and nitrofen with CDH (CDH[+]). Irx gene expression levels were analyzed by reverse transcriptase polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression of Irx family. Pulmonary Irx1-3 and Irx5 messenger RNA expression levels were significantly up-regulated in nitrofen group compared with controls at D15. On D15, Irx immunoreactivity was increased in nitrofen-induced hypoplastic lung compared with controls. Overexpression of Irx genes in the early lung development may cause pulmonary hypoplasia in the nitrofen CDH model by inducing lung dysmorphogenesis with thickened mesenchyme and diminished airspaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Epidemiology of radiation-induced cancer.

    PubMed Central

    Radford, E P

    1983-01-01

    The epidemiology of radiation-induced cancer is important for theoretical and practical insights that these studies give to human cancer in general and because we have more evidence from radiation-exposed populations than for any other environmental carcinogen. On theoretical and experimental grounds, the linear no-threshold dose-response relationship is a reasonable basis for extrapolating effects to low doses. Leukemia is frequently the earliest observed radiogenic cancer but is now considered to be of minor importance, because the radiation effect dies out after 25 or 30 years, whereas solid tumors induced by radiation develop later and the increased cancer risk evidently persists for the remaining lifetime. Current estimates of the risk of particular cancers from radiation exposure cannot be fully evaluated until the population under study have been followed at least 40 or 50 years after exposure. Recent evidence indicates that for lung cancer induction, combination of cigarette smoking and radiation exposure leads to risks that are not multiplicative but rather nearly additive. PMID:6653538

  4. Beta-cryptoxanthin protection against cigarette smoke-induced inflammatory responses in the lung is due to the action of its own molecule

    USDA-ARS?s Scientific Manuscript database

    Higher intake of the dietary xanthophyll, beta-cryptoxanthin (BCX), has been associated with a lower risk of lung cancer death in smokers. We have previously shown that BCX feeding was effective in reducing both cigarette smoke (CS)-induced lung inflammation in ferrets and carcinogen-induced lung tu...

  5. Induction of mesenchymal cell phenotypes in lung epithelial cells by adenovirus E1A.

    PubMed

    Behzad, A R; Morimoto, K; Gosselink, J; Green, J; Hogg, J C; Hayashi, S

    2006-12-01

    Epithelial-mesenchymal transformation is now recognised as an important feature of tissue remodelling. The present report concerns the role of adenovirus infection in inducing this transformation in an animal model of chronic obstructive pulmonary disease. Guinea pig primary peripheral lung epithelial cells (PLECs) transfected with adenovirus E1A (E1A-PLECs) were compared to guinea pig normal lung fibroblasts (NLFs) transfected with E1A (E1A-NLFs). These cells were characterised by PCR, immunocytochemistry, electron microscopy, and Western and Northern blot analyses. Electrophoretic mobility shift assays were performed in order to examine nuclear factor (NF)-kappaB and activator protein (AP)-1 binding activities. E1A-PLECs and E1A-NLFs positive for E1A DNA, mRNA and protein expressed cytokeratin and vimentin but not smooth muscle alpha-actin. Both exhibited cuboidal morphology and junctional complexes, but did not contain lamellar bodies or express surfactant protein A, B or C mRNAs. These two cell types differed, however, in their NF-kappaB and AP-1 binding after lipopolysaccharide stimulation, possibly due to differences in the expression of the subunits that comprise these transcriptional complexes. E1A transfection results in the transformation of peripheral lung epithelial cells and normal lung fibroblasts to a phenotype intermediate between that of the two primary cells. It is postulated that this intermediate phenotype may play a major role in the remodelling of the airways in chronic obstructive pulmonary disease associated with persistence of adenovirus E1A DNA.

  6. [Carcinogenic effect of metals].

    PubMed

    Desurmont, M

    1983-09-01

    Some metals are essential oligo-elements for man. However, if the body load of these same metal derivatives becomes excessive they may be responsible for deleterious effects, particularly cytotoxic ones. Metals are divided into four categories: potent carcinogens; presumptive carcinogens with a documented cocarcinogenic effect; ascertained cocarcinogens; metals with no demonstrated carcinogenic or cocarcinogenic effect. The most common tumors induced by metals are those of the lung. Arsenic induces cancer of the lung and skin, beryllium may induce lung cancer, the effects of cobalt are dubious, cadmium can induce cancer of the lung and, above all, prostate, the role of iron is uncertain, hexavalent chrome may induce cancer of the lung and nasal fossae, nickel is responsible for cancer of lung and nasal fossae. Our understanding of metal carcinogenesis is clearly insufficient and more experimental research and epidemiologic studies addressing this subject are needed.

  7. Attenuation of Lipopolysaccharide-Induced Lung Vascular Stiffening by Lipoxin Reduces Lung Inflammation

    PubMed Central

    Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.

    2015-01-01

    Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633

  8. Losartan attenuated lipopolysaccharide-induced lung injury by suppression of lectin-like oxidized low-density lipoprotein receptor-1.

    PubMed

    Deng, Wang; Deng, Yue; Deng, Jia; Wang, Dao-Xin; Zhang, Ting

    2015-01-01

    Recent study has shown that renin-angiotensin system plays an important role in the development of acute lung injury (ALI) with high level of angiotensin II (AngII) generated form AngI catalyzed by angiotensin-converting enzyme. AngII plays a major effect mainly through AT1 receptor. Therefore, we speculate inhibition of AT1 receptor may possibly attenuate the lung injury. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuated lung injury by alleviation of the inflammation response in ALI, but the mechanism of losartan in ALI still remains unclear. Thirty male Sprague-Dawley rats were randomly divided into Control group, ALI group (LPS), and Losartan group (LPS + Losartan). Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis. The expressions of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), intercellular adhesion molecule-1 (ICAM-1) and caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. In ALI group, TNF-α and protein level in BALF, MPO activity in lung tissue, pulmonary edema and lung injury were significantly increased. Losartan significantly reduced LPS-induced increase in TNF-α and protein level in BALF, MPO activity, pulmonary edema and lung injury in LPS-induced lung injury. The mRNA and protein expression levels of LOX-1 were significantly decreased with the administration of losartan in LPS-induced lung injury. Also, losartan blocked the protein levels of caspase-3 and ICAM-1 mediated by LOX-1 in LPS-induced lung injury. Losartan attenuated lung injury by alleviation of the inflammation and cell apoptosis by inhibition of LOX-1 in LPS-induced lung injury.

  9. Losartan attenuated lipopolysaccharide-induced lung injury by suppression of lectin-like oxidized low-density lipoprotein receptor-1

    PubMed Central

    Deng, Wang; Deng, Yue; Deng, Jia; Wang, Dao-Xin; Zhang, Ting

    2015-01-01

    Introduction: Recent study has shown that renin-angiotensin system plays an important role in the development of acute lung injury (ALI) with high level of angiotensin II (AngII) generated form AngI catalyzed by angiotensin-converting enzyme. AngII plays a major effect mainly through AT1 receptor. Therefore, we speculate inhibition of AT1 receptor may possibly attenuate the lung injury. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuated lung injury by alleviation of the inflammation response in ALI, but the mechanism of losartan in ALI still remains unclear. Methods: Thirty male Sprague-Dawley rats were randomly divided into Control group, ALI group (LPS), and Losartan group (LPS + Losartan). Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis. The expressions of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), intercellular adhesion molecule-1 (ICAM-1) and caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. Results: In ALI group, TNF-α and protein level in BALF, MPO activity in lung tissue, pulmonary edema and lung injury were significantly increased. Losartan significantly reduced LPS-induced increase in TNF-α and protein level in BALF, MPO activity, pulmonary edema and lung injury in LPS-induced lung injury. The mRNA and protein expression levels of LOX-1 were significantly decreased with the administration of losartan in LPS-induced lung injury. Also, losartan blocked the protein levels of caspase-3 and ICAM-1 mediated by LOX-1 in LPS-induced lung injury. Conclusions: Losartan attenuated lung injury by alleviation of the inflammation and cell apoptosis by inhibition of LOX-1 in LPS-induced lung injury. PMID:26884836

  10. Anti-inflammatory and Anti-oxidative Effects of Dexpanthenol on Lipopolysaccharide Induced Acute Lung Injury in Mice.

    PubMed

    Li-Mei, Wan; Jie, Tan; Shan-He, Wan; Dong-Mei, Meng; Peng-Jiu, Yu

    2016-10-01

    The aim of this study is to investigate the effects of dexpanthenol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS). Lung injury was induced by exposure to atomized LPS. Mice were randomly divided into four groups: control group; Dxp (500 mg/kg) group; LPS group; LPS + Dxp (500 mg/kg) group. The effects of dexpanthenol on LPS-induced neutrophil recruitment, cytokine levels, total protein concentration, myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) contents were examined. Additionally, lung tissue was examined by histology to investigate the changes in pathology in the presence and absence of dexpanthenol. In LPS-challenged mice, dexpanthenol significantly improved lung edema. Dexpanthenol also markedly inhibited the LPS-induced neutrophiles influx, protein leakage, and release of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Furthermore, dexpanthenol attenuated MPO activity and MDA contents and increased SOD and GSH activity in the LPS-challenged lung tissue. These data suggest that dexpanthenol protects mice from LPS-induced acute lung injury by its anti-inflammatory and anti-oxidative activities.

  11. Astilbin alleviates sepsis-induced acute lung injury by inhibiting the expression of macrophage inhibitory factor in rats.

    PubMed

    Zhang, Hong-Bo; Sun, Li-Chao; Zhi, Li-da; Wen, Qian-Kuan; Qi, Zhi-Wei; Yan, Sheng-Tao; Li, Wen; Zhang, Guo-Qiang

    2017-10-01

    Sepsis is a systemic inflammatory response syndrome caused by severe infections. Astilbin is a dihydroflavonol derivative found in many medicinal and food plants with multiple pharmacological functions. To investigate the effects of astilbin on sepsis-induced acute lung injury (ALI), cecal ligation and puncture was performed on rats to establish a sepsis-induced ALI model; these rats were then treated with astilbin at different concentrations. Lung injury scores, including lung wet/dry ratio, protein leakage, myeloperoxidase activity, and inflammatory cell infiltration were determined to evaluate the effects of astilbin on sepsis-induced ALI. We found that astilbin treatment significantly attenuates sepsis-induced lung injury and improves survival rate, lung injury scores, lung wet/dry ratio, protein leakage, myeloperoxidase activity, and inflammatory cell infiltration. Astilbin treatment also dramatically decreased the production of inflammatory cytokines and chemokines in bronchoalveolar lavage fluid. Further, astilbin treatment inhibited the expression and production of macrophage inhibitory factor (MIF), which inhibits the inflammatory response. Collectively, these data suggest that astilbin has a protective effect against sepsis-induced ALI by inhibiting MIF-mediated inflammatory responses. This study provides a molecular basis for astilbin as a new medical treatment for sepsis-induced ALI.

  12. Identification of Novel Targets for Lung Cancer Therapy Using an Induced Pluripotent Stem Cell Model.

    PubMed

    Shukla, Vivek; Rao, Mahadev; Zhang, Hongen; Beers, Jeanette; Wangsa, Darawalee; Wangsa, Danny; Buishand, Floryne O; Wang, Yonghong; Yu, Zhiya; Stevenson, Holly; Reardon, Emily; McLoughlin, Kaitlin C; Kaufman, Andrew; Payabyab, Eden; Hong, Julie A; Zhang, Mary; Davis, Sean R; Edelman, Daniel C; Chen, Guokai; Miettinen, Markku; Restifo, Nicholas; Ried, Thomas; Meltzer, Paul S; Schrump, David S

    2018-04-01

    Despite extensive studies, the genetic and epigenetic mechanisms that mediate initiation and progression of lung cancers have not been fully elucidated. Previously, we have demonstrated that via complementary mechanisms, including DNA methylation, polycomb repressive complexes, and noncoding RNAs, cigarette smoke induces stem-like phenotypes that coincide with progression to malignancy in normal respiratory epithelia as well as enhanced growth and metastatic potential of lung cancer cells. To further investigate epigenetic mechanisms contributing to stemness/pluripotency in lung cancers and potentially identify novel therapeutic targets in these malignancies, induced pluripotent stem cells were generated from normal human small airway epithelial cells. Lung induced pluripotent stem cells were generated by lentiviral transduction of small airway epithelial cells of OSKM (Yamanaka) factors (octamer-binding transcription factor 4 [Oct4], sex-determining region Y box 2 [SOX2], Kruppel-like factor 4 [KLF4], and MYC proto-oncogene, bHLH transcription factor [MYC]). Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation sequencing analysis were performed. The lung induced pluripotent stem cells exhibited hallmarks of pluripotency, including morphology, surface antigen and stem cell gene expression, in vitro proliferation, and teratoma formation. In addition, lung induced pluripotent stem cells exhibited no chromosomal aberrations, complete silencing of reprogramming transgenes, genomic hypermethylation, upregulation of genes encoding components of polycomb repressive complex 2, hypermethylation of stem cell polycomb targets, and modulation of more than 15,000 other genes relative to parental small airway epithelial cells. Additional sex combs like-3 (ASXL3), encoding a polycomb repressive complex 2-associated protein not previously described in reprogrammed cells, was markedly upregulated in lung induced pluripotent stem cell as well as human small cell lung cancer lines and specimens. Overexpression of the additional sex combs like-3 gene correlated with increased genomic copy number in small cell lung cancer lines. Knock-down of the additional sex combs like-3 gene inhibited proliferation, clonogenicity, and teratoma formation by lung induced pluripotent stem cells and significantly diminished in vitro clonogenicity and growth of small cell lung cancer cells in vivo. Collectively, these studies highlight the potential utility of this lung induced pluripotent stem cell model for elucidating epigenetic mechanisms contributing to pulmonary carcinogenesis and suggest that additional sex combs like-3 is a novel target for small cell lung cancer therapy.

  13. Environment And Genetics in Lung cancer Etiology (EAGLE) study: an integrative population-based case-control study of lung cancer.

    PubMed

    Landi, Maria Teresa; Consonni, Dario; Rotunno, Melissa; Bergen, Andrew W; Goldstein, Alisa M; Lubin, Jay H; Goldin, Lynn; Alavanja, Michael; Morgan, Glen; Subar, Amy F; Linnoila, Ilona; Previdi, Fabrizio; Corno, Massimo; Rubagotti, Maurizia; Marinelli, Barbara; Albetti, Benedetta; Colombi, Antonio; Tucker, Margaret; Wacholder, Sholom; Pesatori, Angela C; Caporaso, Neil E; Bertazzi, Pier Alberto

    2008-06-06

    Lung cancer is the leading cause of cancer mortality worldwide. Tobacco smoking is its primary cause, and yet the precise molecular alterations induced by smoking in lung tissue that lead to lung cancer and impact survival have remained obscure. A new framework of research is needed to address the challenges offered by this complex disease. We designed a large population-based case-control study that combines a traditional molecular epidemiology design with a more integrative approach to investigate the dynamic process that begins with smoking initiation, proceeds through dependency/smoking persistence, continues with lung cancer development and ends with progression to disseminated disease or response to therapy and survival. The study allows the integration of data from multiple sources in the same subjects (risk factors, germline variation, genomic alterations in tumors, and clinical endpoints) to tackle the disease etiology from different angles. Before beginning the study, we conducted a phone survey and pilot investigations to identify the best approach to ensure an acceptable participation in the study from cases and controls. Between 2002 and 2005, we enrolled 2101 incident primary lung cancer cases and 2120 population controls, with 86.6% and 72.4% participation rate, respectively, from a catchment area including 216 municipalities in the Lombardy region of Italy. Lung cancer cases were enrolled in 13 hospitals and population controls were randomly sampled from the area to match the cases by age, gender and residence. Detailed epidemiological information and biospecimens were collected from each participant, and clinical data and tissue specimens from the cases. Collection of follow-up data on treatment and survival is ongoing. EAGLE is a new population-based case-control study that explores the full spectrum of lung cancer etiology, from smoking addiction to lung cancer outcome, through examination of epidemiological, molecular, and clinical data. We have provided a detailed description of the study design, field activities, management, and opportunities for research following this integrative approach, which allows a sharper and more comprehensive vision of the complex nature of this disease. The study is poised to accelerate the emergence of new preventive and therapeutic strategies with potentially enormous impact on public health.

  14. Hypoxia-inducible factors promote alveolar development and regeneration.

    PubMed

    Vadivel, Arul; Alphonse, Rajesh S; Etches, Nicholas; van Haaften, Timothy; Collins, Jennifer J P; O'Reilly, Megan; Eaton, Farah; Thébaud, Bernard

    2014-01-01

    Understanding how alveoli and the underlying capillary network develop and how these mechanisms are disrupted in disease states is critical for developing effective therapies for lung regeneration. Recent evidence suggests that lung angiogenesis promotes lung development and repair. Vascular endothelial growth factor (VEGF) preserves lung angiogenesis and alveolarization in experimental O2-induced arrested alveolar growth in newborn rats, but combined VEGF+angiopoietin 1 treatment is necessary to correct VEGF-induced vessel leakiness. Hypoxia-inducible factors (HIFs) are transcription factors that activate multiple O2-sensitive genes, including those encoding for angiogenic growth factors, but their role during postnatal lung growth is incompletely understood. By inducing the expression of a range of angiogenic factors in a coordinated fashion, HIF may orchestrate efficient and safe angiogenesis superior to VEGF. We hypothesized that HIF inhibition impairs alveolarization and that HIF activation regenerates irreversible O2-induced arrested alveolar growth. HIF inhibition by intratracheal dominant-negative adenovirus (dnHIF-1α)-mediated gene transfer or chetomin decreased lung HIF-1α, HIF-2α, and VEGF expression and led to air space enlargement and arrested lung vascular growth. In experimental O2-induced arrested alveolar growth in newborn rats, the characteristic features of air space enlargement and loss of lung capillaries were associated with decreased lung HIF-1α and HIF-2α expression. Intratracheal administration of Ad.HIF-1α restored HIF-1α, endothelial nitric oxide synthase, VEGF, VEGFR2, and Tie2 expression and preserved and rescued alveolar growth and lung capillary formation in this model. HIFs promote normal alveolar development and may be useful targets for alveolar regeneration.

  15. Drug delivery strategies for chemoprevention of UVB-induced skin cancer: A review.

    PubMed

    Bagde, Arvind; Mondal, Arindam; Singh, Mandip

    2018-01-01

    Annually, more skin cancer cases are diagnosed than the collective incidence of the colon, lung, breast, and prostate cancer. Persistent contact with sunlight is a primary cause for all the skin malignancies. UVB radiation induces reactive oxygen species (ROS) production in the skin which eventually leads to DNA damage and mutation. Various delivery approaches for the skin cancer treatment/prevention have been evolving and are directed toward improvements in terms of delivery modes, therapeutic agents, and site-specificity of therapeutics delivery. The effective chemoprevention activity achieved is based on the efficiency of the delivery system used and the amount of the therapeutic molecule deposited in the skin. In this article, we have discussed different studies performed specifically for the chemoprevention of UVB-induced skin cancer. Ultra-flexible nanocarriers, transethosomes nanocarriers, silica nanoparticles, silver nanoparticles, nanocapsule suspensions, microemulsion, nanoemulsion, and polymeric nanoparticles which have been used so far to deliver the desired drug molecule for preventing the UVB-induced skin cancer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Pharmacological Targeting of Protease-Activated Receptor 2 Affords Protection from Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Lin, Cong; von der Thüsen, Jan; Daalhuisen, Joost; ten Brink, Marieke; Crestani, Bruno; van der Poll, Tom; Borensztajn, Keren; Spek, C Arnold

    2015-01-01

    Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease that remains refractory to therapy. Despite increasing evidence that protease-activated receptor 2 (PAR-2) contributes to fibrosis, its importance in pulmonary fibrosis is under debate. We addressed whether PAR-2 deficiency persistently reduces bleomycin-induced pulmonary fibrosis or merely delays disease progression and whether pharmacological PAR-2 inhibition limits experimental pulmonary fibrosis. Bleomycin was instilled intranasally into wild-type or PAR-2–deficient mice in the presence/absence of a specific PAR-2 antagonist (P2pal-18S). Pulmonary fibrosis was consistently reduced in PAR-2–deficient mice throughout the fibrotic phase, as evident from reduced Ashcroft scores (29%) and hydroxyproline levels (26%) at d 28. Moreover, P2pal-18S inhibited PAR-2–induced profibrotic responses in both murine and primary human pulmonary fibroblasts (p < 0.05). Once daily treatment with P2pal-18S reduced the severity and extent of fibrotic lesions in lungs of bleomycin-treated wild-type mice but did not further reduce fibrosis in PAR-2–deficient mice. Importantly, P2pal-18S treatment starting even 7 d after the onset of fibrosis limits pulmonary fibrosis as effectively as when treatment was started together with bleomycin instillation. Overall, PAR-2 contributes to the progression of pulmonary fibrosis, and targeting PAR-2 may be a promising therapeutic strategy for treating pulmonary fibrosis. PMID:26147947

  17. Unusual coexistence of opportunistic lung infections in a human immunodeficiency virus positive patient suffering from persistent Pneumocystis jirovecii pneumonia: a case report.

    PubMed

    Ponces Bento, D; Esteves, F; Matos, O; Miranda, A C; Ventura, F; Araújo, C; Mansinho, K

    2013-01-01

    It is well established that HIV patients are at high risk of opportunistic infections (OI), like the ones caused by Pneumocystis jirovecii, a worldwide pathogen implicated in interstitial pneumonia (PcP). We present a case of a newly diagnosed HIV-1 patient with multiple OI, including a persistent form of PcP, an invasive aspergillosis (IA), cytomegalovirus and Mycobacterium xenopi lung infection. We describe the combination of laboratorial screening, surgery and antimicrobial therapy that were crucial for patient recovery. Copyright © 2012 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  18. The transcription factor DREAM represses A20 and mediates inflammation

    PubMed Central

    Tiruppathi, Chinnaswamy; Soni, Dheeraj; Wang, Dong-Mei; Xue, Jiaping; Singh, Vandana; Thippegowda, Prabhakar B.; Cheppudira, Bopaiah P.; Mishra, Rakesh K.; DebRoy, Auditi; Qian, Zhijian; Bachmaier, Kurt; Zhao, Youyang; Christman, John W.; Vogel, Stephen M.; Ma, Averil; Malik, Asrar B.

    2014-01-01

    Here we show that the transcription-repressor DREAM binds to the A20 promoter to repress the expression of A20, the deubiquitinase suppressing inflammatory NF-κB signaling. DREAM-deficient (Dream−/−) mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, USF1 binding to the DRE-associated E-box domain activated A20 expression in response to inflammatory stimuli. These studies define the critical opposing functions of DREAM and USF1 in inhibiting and inducing A20 expression, respectively, and thereby the strength of NF-κB signaling. Targeting of DREAM to induce USF1-mediated A20 expression is therefore a potential anti-inflammatory strategy in diseases such as acute lung injury associated with unconstrained NF-κB activity. PMID:24487321

  19. Pathogenic TH17 inflammation is sustained in the lungs by conventional dendritic cells and Toll-like receptor 4 signaling.

    PubMed

    Shalaby, Karim H; Lyons-Cohen, Miranda R; Whitehead, Gregory S; Thomas, Seddon Y; Prinz, Immo; Nakano, Hideki; Cook, Donald N

    2017-11-14

    Mechanisms that elicit mucosal T H 17 cell responses have been described, yet how these cells are sustained in chronically inflamed tissues remains unclear. We sought to understand whether maintenance of lung T H 17 inflammation requires environmental agents in addition to antigen and to identify the lung antigen-presenting cell (APC) types that sustain the self-renewal of T H 17 cells. Animals were exposed repeatedly to aspiration of ovalbumin alone or together with environmental adjuvants, including common house dust extract (HDE), to test their role in maintaining lung inflammation. Alternatively, antigen-specific effector/memory T H 17 cells, generated in culture with CD4 + T cells from Il17a fate-mapping mice, were adoptively transferred to assess their persistence in genetically modified animals lacking distinct lung APC subsets or cell-specific Toll-like receptor (TLR) 4 signaling. T H 17 cells were also cocultured with lung APC subsets to determine which of these could revive their expansion and activation. T H 17 cells and the consequent neutrophilic inflammation were poorly sustained by inhaled antigen alone but were augmented by inhalation of antigen together with HDE. This was associated with weight loss and changes in lung physiology consistent with interstitial lung disease. The effect of HDE required TLR4 signaling predominantly in lung hematopoietic cells, including CD11c + cells. CD103 + and CD11b + conventional dendritic cells interacted directly with T H 17 cells in situ and revived the clonal expansion of T H 17 cells both ex vivo and in vivo, whereas lung macrophages and B cells could not. T H 17-dependent inflammation in the lungs can be sustained by persistent TLR4-mediated activation of lung conventional dendritic cells. Published by Elsevier Inc.

  20. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer.

    PubMed

    Yamada, Tadaaki; Takeuchi, Shinji; Kita, Kenji; Bando, Hideaki; Nakamura, Takahiro; Matsumoto, Kunio; Yano, Seiji

    2012-02-01

    Epidermal growth factor receptor (EGFR) is an attractive drug target in lung cancer, with several anti-EGFR antibodies and small-molecule inhibitors showing efficacy in lung cancer patients. Patients, however, may develop resistance to EGFR inhibitors. We demonstrated previously that hepatocyte growth factor (HGF) induced resistance to EGFR tyrosine kinase inhibitors in lung cancers harboring EGFR mutations. We therefore determined whether HGF could induce resistance to the anti-EGFR antibody (EGFR Ab) cetuximab in lung cancer cells, regardless of EGFR gene status. Cetuximab sensitivity and signal transduction in lung cancer cells were examined in the presence or absence of HGF, HGF-producing fibroblasts, and cells tranfected with the HGF gene in vitro and in vivo. HGF induced resistance to cetuximab in H292 (EGFR wild) and Ma-1(EGFR mutant) cells. Western blotting showed that HGF-induced resistance was mediated by the Met/Gab1/Akt signaling pathway. Resistance of H292 and Ma-1 cells to cetuximab was also induced by coculture with lung fibroblasts producing high levels of HGF and by cells stably transfected with the HGF gene. This resistance was abrogated by treatment with anti-HGF neutralizing antibody. HGF-mediated resistance is a novel mechanism of resistance to EGFR Ab in lung cancers, with fibroblast-derived HGF inducing cetuximab resistance in H292 tumors in vivo. The involvement of HGF-Met-mediated signaling should be assessed in acquired resistance to EGFR Ab in lung cancer, regardless of EGFR gene status.

  1. Agmatine attenuates silica-induced pulmonary fibrosis.

    PubMed

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p < 0.001) and reduced glutathione (p < 0.05) activities with significant decrease in the lung malondialdehyde (p < 0.001) content as compared to the silica group. Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  2. Substance P receptor blockade decreases stretch-induced lung cytokines and lung injury in rats.

    PubMed

    Brégeon, Fabienne; Steinberg, Jean Guillaume; Andreotti, Nicolas; Sabatier, Jean-Marc; Delpierre, Stéphane; Ravailhe, Sylvie; Jammes, Yves

    2010-04-15

    Overdistension of lung tissue during mechanical ventilation causes cytokine release, which may be facilitated by the autonomic nervous system. We used mechanical ventilation to cause lung injury in rats, and studied how cervical section of the vagus nerve, or substance P (SP) antagonism, affected the injury. The effects of 40 or 25 cmH(2)O high airway pressure injurious ventilation (HV(40) and HV(25)) were studied and compared with low airway pressure ventilation (LV) and spontaneous breathing (controls). Lung mechanics, lung weight, gas exchange, lung myeloperoxidase activity, lung concentrations of interleukin (IL)-1 beta and IL-6, and amounts of lung SP were measured. Control rats were intact, others were bivagotomized, and in some animals we administered the neurokinin-1 (NK-1) receptor blocking agent SR140333. We first determined the durations of HV(40) and HV(25) that induced the same levels of lung injury and increased lung contents of IL-1 beta and IL-6. They were 90 min and 120 min, respectively. Both HV(40) and HV(25) increased lung SP, IL-1 beta and IL-6 levels, these effects being markedly reduced by NK-1 receptor blockade. Bivagotomy reduced to a lesser extent the HV(40)- and HV(25)-induced increases in SP but significantly reduced cytokine production. Neither vagotomy nor NK-1 receptor blockade prevented HV(40)-induced lung injury but, in the HV(25) group, they made it possible to maintain lung injury indices close to those measured in the LV group. This study suggests that both neuronal and extra-neuronal SP might be involved in ventilator-induced lung inflammation and injury. NK-1 receptor blockade could be a pharmacological tool to minimize some adverse effects of mechanical ventilation.

  3. Esculin Inhibits the Inflammation of LPS-Induced Acute Lung Injury in Mice Via Regulation of TLR/NF-κB Pathways.

    PubMed

    Tianzhu, Zhang; Shumin, Wang

    2015-08-01

    In this study, we investigated anti-inflammatory effects of esculin (ESC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS, and ESC (20 and 40 mg/kg) was given orally 1 h prior to LPS administration. After 6 h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. ESC pretreatment decreased LPS-induced evident lung histopathological changes, lung wet-to-dry weight ratio, and lung myeloperoxidase activity. In addition, pretreatment with ESC inhibited inflammatory cells and proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β, and interleukin-6 in BALF. Furthermore, we demonstrated that ESC inhibited the Toll-like receptor-2 (TLR2), Toll-like receptor-4 (TLR4), myeloid differentiation primary response gene-88 (MyD88), and nuclear factor-κB (NF-κB) p65 in LPS-induced ALI. The results indicated that the ESC had a protective effect on LPS-induced ALI in mice.

  4. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer.

    PubMed

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.

  5. AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer

    PubMed Central

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676

  6. The effect of 6-methylthiohexyl isothiocyanate isolated from Wasabia japonica (wasabi) on 4-(methylnitrosamino)-1-(3-pyridyl)-1-buatnone-induced lung tumorigenesis in mice.

    PubMed

    Yano, T; Yajima, S; Virgona, N; Yano, Y; Otani, S; Kumagai, H; Sakurai, H; Kishimoto, M; Ichikawa, T

    2000-07-31

    The present study was undertaken to estimate the effect of 6-methylthiohexyl isothiocyanate (6MHITC) isolated from Wasabia japonica (wasabi) pretreatment on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone(NNK)-induced lung tumorigenesis in mice. Pretreatment with 6MHITC for 4 consecutive days at a daily dose of 5 micromol significantly inhibited NNK-induced O(6)-methylguanine formation in lungs at 4 h after the injection. In conjugation with this inhibitory effect, 6MHITC suppressed the increase in proliferating nuclear cell antigen level as well as ornithine decarboxylase activity at a promotion stage of NNK-induced lung tumorigenesis. Finally, this treatment of 6MHITC suppressed the NNK-induced lung tumorigenesis in mice. These results suggest that 6MHITC inhibits the development of lung tumors in mice treated with NNK, due to the suppression of initiation stage.

  7. Upregulation of endothelin receptors A and B in the nitrofen induced hypoplastic lung occurs early in gestation.

    PubMed

    Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem

    2010-01-01

    Pulmonary hypoplasia and persistent pulmonary hypertension (PPH) aggravate clinical courses in congenital diaphragmatic hernia (CDH). Endothelin 1 enhances PPH by vasoconstriction and proliferation of vessel walls. Up-regulation of pulmonary Endothelin Receptors A and B (EDNRA, EDNRB) has been reported in human CDH and animal models, but the onset of those alterations during lung development remains unclear. We hypothesized that pulmonary expression of EDNRA and EDNRB is up-regulated at early gestational stages in the nitrofen model. Pregnant rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Embryos were sacrificed on D15, D18 and D21 and divided into nitrofen- and control group. Pulmonary RNA was extracted and mRNA levels of EDNRA and EDNRB were determined by real-time PCR. Immunohistochemistry for protein expression of both receptors was performed. mRNA levels of EDNRA and EDNRB were significantly increased in the nitrofen group on D15, D18 and D21. Immunohistochemistry revealed increased pulmonary vascular expression of EDNRA and EDNRB compared to controls. Altered expression of EDNRA and EDNRB is an early event in lung morphogenesis in the nitrofen model. We speculate that pulmonary arteries in CDH become excessively muscularised in early fetal life, becoming unable to adapt normally at birth.

  8. Blocking the PI3K pathway enhances the efficacy of ALK-targeted therapy in EML4-ALK-positive nonsmall-cell lung cancer.

    PubMed

    Yang, Lin; Li, Guangchao; Zhao, Likun; Pan, Fei; Qiang, Jiankun; Han, Siqi

    2014-10-01

    Targeted therapy based on ALK tyrosine kinase inhibitors (ALK-TKIs) has made significant achievements in individuals with EML4-ALK (echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene) fusion positive nonsmall-cell lung cancer (NSCLC). However, a high fraction of patients receive inferior clinical response to such treatment in the initial therapy, and the exact mechanisms underlying this process need to be further investigated. In this study, we revealed a persistently activated PI3K/AKT signaling that mediates the drug ineffectiveness. We found that genetic or pharmacological inhibition of ALK markedly abrogated phosphorylated STAT3 and ERK, but it failed to suppress AKT activity or induce apoptosis, in EML4-ALK-positive H2228 cells. Furthermore, targeted RNA interference of PI3K pathway components restored sensitivity to TAE684 treatment at least partially due to increased apoptosis. Combined TAE684 with PI3K inhibitor synergistically inhibited the proliferation of EML4-ALK-positive cells in vitro and significantly suppressed the growth of H2228 xenografts in vivo, suggesting the potential clinical application of such combinatorial therapy regimens in patients with EML4-ALK positive lung cancer.

  9. Etiologic Aspect of Sarcoidosis as an Allergic Endogenous Infection Caused by Propionibacterium acnes

    PubMed Central

    2013-01-01

    Sarcoidosis is a systemic granulomatous disease of unknown etiology. Propionibacterium acnes is the only microorganism that has been isolated from sarcoid lesions. Many P. acnes have been detected in sarcoid lymph nodes using quantitative PCR and in sarcoid granulomas by in situ hybridization. P. acnes trigger factor protein causes a cellular immune response only in sarcoid patients and induces pulmonary granulomas in mice sensitized with the protein and adjuvant, but only those with latent P. acnes infection in their lungs. Eradication of P. acnes by antibiotics prevents the development of granulomas in this experimental model. Although P. acnes is the most common commensal bacterium in the lungs and lymph nodes, P. acnes-specific antibody detected the bacterium within sarcoid granulomas of these organs. P. acnes can cause latent infection in the lung and lymph node and persist in a cell-wall-deficient form. The dormant form is activated endogenously under certain conditions and proliferates at the site of latent infection. In patients with P. acnes hypersensitivity, granulomatous inflammation is triggered by intracellular proliferation of the bacterium. Proliferating bacteria may escape granulomatous isolation, spreading to other organs. Latent P. acnes infection in systemic organs can be reactivated by another triggering event, leading to systemic sarcoidosis. PMID:23844371

  10. RAGE deficiency attenuates the protective effect of Lidocaine against sepsis-induced acute lung injury.

    PubMed

    Zhang, Zhuo; Zhou, Jie; Liao, Changli; Li, Xiaobing; Liu, Minghua; Song, Daqiang; Jiang, Xian

    2017-04-01

    Lidocaine (Lido) is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of cecal ligation and puncture (CLP)-induced acute lung injury (ALI). The receptor for advanced glycation end product (RAGE) exerts pro-inflammatory effects by enhancing pro-inflammatory cytokine production. However, the precise mechanism by which Lido confers protection against ALI is not clear. ALI was induced in RAGE WT and RAGE knockout (KO) rats using cecal ligation and puncture (CLP) operations for 24 h. The results showed that Lido significantly inhibited CLP-induced lung inflammation and histopathological lung injury. Furthermore, Lido significantly reduced CLP-induced upregulation of HMGB1 and RAGE expression and activation of the NF-κB and MAPK signaling pathways. With the use of RAGE KO rats, we demonstrate here that RAGE deficiency attenuates the protective effect of Lido against CLP-induced lung inflammatory cell infiltration and histopathological lung injury. These results suggest that RAGE deficiency attenuates the protective effect of Lido against CLP-induced ALI by attenuating the pro-inflammatory cytokines production.

  11. Deficient Repair of Particulate Hexavalent chromium-Induced DNA Double Strand Breaks Leads To Neoplastic Transformation

    PubMed Central

    Xie, Hong; Wise, Sandra S.; Wise, John. P.

    2008-01-01

    Hexavalent chromium (Cr(VI)) is a potent respiratory toxicant and carcinogen. The most carcinogenic forms of Cr(VI) are the particulate salts such as lead chromate, which deposit and persist in the respiratory tract after inhalation. We demonstrate here that particulate chromate induces DNA double strand breaks in human lung cells with 0.1, 0.5, and 1 ug/cm2 lead chromate inducing 1.5, 2 and 5 relative increases in the percent of DNA in the comet tail, respectively. These lesions are repaired within 24 h and require Mre11 expression for their repair. Particulate chromate also caused Mre11 to co-localize with gamma-H2A.X and ATM. Failure to repair these breaks with Mre11 induced neoplastic transformation including loss of cell contact inhibition and anchorage independent growth. A 5-day exposure to lead chromate induced loss of cell contact inhibition in a concentration-dependent manner with 0, 0.1, 0.5 and 1 ug/cm2 lead chromate inducing 1, 78 and 103 foci in 20 dishes, respectively. These data indicate that Mre11 is critical to repairing particulate Cr(VI)-induced double strand breaks and preventing Cr(VI)-induced neoplastic transformation. PMID:18023605

  12. NEUTROPHIL DEPLETION ATTENUATES INTERLEUKIN-8 PRODUCTION IN MILD-OVERSTRETCHED VENTILATED NORMAL RABBIT LUNG

    EPA Science Inventory

    OBJECTIVE: Acute lung injury induced by lung overstretch is associated with neutrophil influx, but the pathogenic role of neutrophils in overstretch-induced lung injury remains unclear. DESIGN: To assess the contribution of neutrophils, we compared the effects of noninjurious lar...

  13. The BCGΔBCG1419c strain, which produces more pellicle in vitro, improves control of chronic tuberculosis in vivo.

    PubMed

    Pedroza-Roldán, César; Guapillo, Carolina; Barrios-Payán, Jorge; Mata-Espinosa, Dulce; Aceves-Sánchez, Michel de Jesús; Marquina-Castillo, Brenda; Hernández-Pando, Rogelio; Flores-Valdez, Mario Alberto

    2016-09-14

    Mycobacterium tuberculosis (Mtb) has been a threat to humans since ancient times, and it is the main causative agent of tuberculosis (TB). Until today, the only licensed vaccine against Mtb is the live attenuated M. bovis Bacillus Calmette-Guérin (BCG), which has variable levels of protection against the pulmonary form of infection. The quest for a new vaccine is a priority given the rise of multidrug-resistant Mtb around the world, as well as the tremendous burden imposed by latent TB. The objective of this study was to evaluate the immunogenicity and capacity of protection of a modified BCG strain (BCGΔBCG1419c) lacking the c-di-GMP phosphodiesterase gene BCG1419c, in diverse mice models. In a previous report, we have shown that BCGΔBCG1419c was capable of increasing biofilm production and after intravenous infection of immunocompetent mice; this strain persisted longer in lungs than parental BCG Pasteur. This led us to hypothesize that BCGΔBCG1419c might therefore possess some advantage as vaccine candidate. Our results in this report indicate that compared to conventional BCG, vaccination with BCGΔBCG1419c induced a better activation of specific T-lymphocytes population, was equally effective in preventing weight loss despite being used at lower dose, reduced tissue damage (pneumonic scores), increased local IFNγ(+) T cells, and diminished bacterial burden in lungs of BALB/c mice infected intratracheally with high dose Mtb H37Rv to induce progressive TB. Moreover, vaccination with BCGΔBCG1419c improved resistance to reactivation after immunosuppression induced by corticosterone in a murine model of chronic infection similar to latent TB. Furthermore, despite showing increased persistence in immunocompetent mice, BCGΔBCG1419c was as attenuated as parental BCG in nude mice. To our knowledge, this is the first demonstration that a modified BCG vaccine candidate with increased pellicle/biofilm production has the capacity to protect against Mtb challenge in chronic and reactivation models of infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Stressed lungs: unveiling the role of circulating stress hormones in ozone-induced lung injury and inflammation.

    EPA Science Inventory

    Ozone, a major component of smog generated through the interaction of light and anthropogenic emissions, induces adverse pulmonary, cardiovascular, and systemic health effects upon inhalation. It is generally accepted that ozone-induced lung injury is mediated by its interaction ...

  15. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study

    PubMed Central

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201’s cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201. PMID:27626799

  16. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study.

    PubMed

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201's cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201.

  17. Role of Nitric Oxide Isoforms in Vascular and Alveolar Development and Lung Injury in Vascular Endothelial Growth Factor Overexpressing Neonatal Mice Lungs.

    PubMed

    Syed, Mansoor A; Choo-Wing, Rayman; Homer, Robert J; Bhandari, Vineet

    2016-01-01

    The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2-/- and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung.

  18. Long-term overexpression of human granulocyte colony-stimulating factor in transgenic mice: persistent neutrophilia with no increased mortality for more than one year.

    PubMed

    Serizawa, I; Amano, K; Ishii, H; Ichikawa, T; Kusaka, M; Taguchi, T; Kiyokawa, N; Fujimoto, J

    2000-06-01

    To investigate possible adverse consequences of persistent neutrophil overproduction, mice transgenic for human granulocyte colony-stimulating factor (hG-CSF) were studied for more than 1 year. They showed marked granulocytopoiesis and neutrophilia. Continuous medullary and extramedullary granulocytopoiesis resulted in marked changes in bone and liver. In the liver, haemorrhage and focal necrosis and a few haemangiosarcomas were present, presumably caused by the destructive granulocytopoiesis. Despite the high incidence of lung infiltration by mature neutrophils, lung lesions rarely appeared. Although there was a persistent increase in neutrophils, mortality of the mice did not differ from that of non-transgenic littermates at least within 1 year after birth. Factors other than overproduction of G-CSF and extensive neutrophilia could be required for the development of neutrophil-mediated acute and chronic tissue damage. Copyright 2000 Academic Press.

  19. Effects of endotoxin induced lung injury and exercise in goats/sheep. Final report, 1 February 1992-2 June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundie, T.G.

    This study was designed the effects of exercise performed on animals already injured with E. coli endotoxin. This would tell us whether exercise makes the lung injury worse. It would also tell us how much exercise performance is impaired. These studies were designed to give further insights into the underlying causes of acute lung injury. Premature termination of the study prevented completion of the research project. It appeared from the limited experimentation conducted that maximal exercise was impaired by endotoxin-induced lung injury. Conclusions regarding exacerbation of endotoxin-induced lung injury cannot be made.... Acute lung injury, Maximal exercise, Endotoxin.

  20. Agmatine protects against zymosan-induced acute lung injury in mice by inhibiting NF-κB-mediated inflammatory response.

    PubMed

    Li, Xuanfei; Liu, Zheng; Jin, He; Fan, Xia; Yang, Xue; Tang, Wanqi; Yan, Jun; Liang, Huaping

    2014-01-01

    Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson's disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.

  1. The transcriptome of nitrofen-induced pulmonary hypoplasia in the rat model of congenital diaphragmatic hernia.

    PubMed

    Mahood, Thomas H; Johar, Dina R; Iwasiow, Barbara M; Xu, Wayne; Keijzer, Richard

    2016-05-01

    We currently do not know how the herbicide nitrofen induces lung hypoplasia and congenital diaphragmatic hernia in rats. Our aim was to compare the differentially expressed transcriptome of nitrofen-induced hypoplastic lungs to control lungs in embryonic day 13 rat embryos before the development of embryonic diaphragmatic defects. Using next-generation sequencing technology, we identified the expression profile of microRNA (miRNA) and mRNA genes. Once the dataset was validated by both RT-qPCR and digital-PCR, we conducted gene ontology, miRNA target analysis, and orthologous miRNA sequence matching for the deregulated miRNAs in silico. Our study identified 186 known mRNA and 100 miRNAs which were differentially expressed in nitrofen-induced hypoplastic lungs. Sixty-four rat miRNAs homologous to known human miRNAs were identified. A subset of these genes may promote lung hypoplasia in rat and/or human, and we discuss their associations. Potential miRNA pathways relevant to nitrofen-induced lung hypoplasia include PI3K, TGF-β, and cell cycle kinases. Nitrofen-induced hypoplastic lungs have an abnormal transcriptome that may lead to impaired development.

  2. Pulmonary atelectasis: a pathogenic perioperative entity.

    PubMed

    Duggan, Michelle; Kavanagh, Brian P

    2005-04-01

    Atelectasis occurs in the dependent parts of the lungs of most patients who are anesthetized. Development of atelectasis is associated with decreased lung compliance, impairment of oxygenation, increased pulmonary vascular resistance, and development of lung injury. The adverse effects of atelectasis persist into the postoperative period and can impact patient recovery. This review article focuses on the causes, nature, and diagnosis of atelectasis. The authors discuss the effects and implications of atelectasis in the perioperative period and illustrate how preventive measures may impact outcome. In addition, they examine the impact of atelectasis and its prevention in acute lung injury.

  3. Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice.

    PubMed

    Nemmar, Abderrahim; Al-Salam, Suhail; Yuvaraju, Priya; Beegam, Sumaya; Ali, Badreldin H

    2015-08-15

    Clinical and experimental studies have reported that short-term exposure to particulate air pollution is associated with inflammation, oxidative stress and impairment of lung function. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has a strong antioxidant and anti-inflammatory actions. Therefore, in the present study, we evaluated the possible ameliorative effect of emodin on diesel exhaust particles (DEP)-induced impairment of lung function, inflammation and oxidative stress in mice. Mice were intratracheally instilled with DEP (20 μg/mouse) or saline (control). Emodin was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty-four hours following DEP exposure, we evaluated airway resistance measured by forced oscillation technique, lung inflammation and oxidative stress. Emodin treatment abated the DEP-induced increase in airway resistance, and prevented the influx of neutrophils in bronchoalveolar lavage fluid. Similarly, lung histopathology confirmed the protective effect of emodin on DEP-induced lung inflammation. DEP induced a significant increase of proinflammatory cytokines in the lung including tumor necrosis factor α, interleukin 6 and interleukin 1β. The latter effect was significantly ameliorated by emodin. DEP caused a significant increase in lung lipid peroxidation, reactive oxygen species and a significant decrease of reduced glutathione concentration. These effects were significantly mitigated by emodin. We conclude that emodin significantly mitigated DEP-induced increase of airway resistance, lung inflammation and oxidative stress. Pending further pharmacological and toxicological studies, emodin may be considered a potentially useful pulmonary protective agent against particulate air pollution-induced lung toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis.

    PubMed

    Amin, Reshma; Dupuis, Annie; Aaron, Shawn D; Ratjen, Felix

    2010-01-01

    The relevance of Aspergillus fumigatus in patients with cystic fibrosis (CF) not affected by allergic bronchopulmonary aspergillosis is unclear. Our aim was to determine the effect of persistent infection with A fumigatus on pulmonary exacerbations and lung function in children with CF. This was a retrospective cohort study of patients with CF followed at The Hospital for Sick Children from 1999 to 2006. Persistent A fumigatus infection was defined as the presence of two or more positive sputum or bronchoalveolar cultures for A fumigatus in a given year. The primary outcome measure was the annual number of hospitalizations for pulmonary exacerbations. Two hundred thirty patients with CF were included in the analysis. The FEV(1) of patients persistently infected with A fumigatus was 3.61% (P< or =.0001) lower during the study period compared with uninfected patients. There was a significant interaction between A fumigatus and Pseudomonas aeruginosa on lung function (P=.0006). Patients not infected with either organism had the highest pulmonary function. Persistent A fumigatus infection (relative risk [RR]=1.94, P=.0002) and CF-related diabetes (RR=1.64, P=.028) were associated with an increased risk of pulmonary exacerbations requiring hospitalization, whereas there was no increased risk of pulmonary exacerbations among patients with allergic bronchopulmonary aspergillosis (RR=1.02, P=.94). When adjusted for baseline pulmonary function, none of these variables were associated with a significantly increased risk of pulmonary exacerbations, with only chronic A fumigatus infection trending toward significance (RR=1.40, P=.065). Persistent A fumigatus infection is an independent risk factor for hospital admissions in patients with CF.

  5. Immediate effects of lumacaftor/ivacaftor administration on lung function in patients with severe cystic fibrosis lung disease.

    PubMed

    Popowicz, Natalia; Wood, Jamie; Tai, Anna; Morey, Sue; Mulrennan, Siobhain

    2017-05-01

    Safety-data for lumacaftor/ivacaftor (LUM/IVA) combination therapy in patients with severe lung disease (percent predicted forced expiratory volume in 1s [ppFEV 1 ] <40) remain limited. We report immediate post-dose respiratory-related adverse events in 12 patients with severe cystic fibrosis (CF) lung disease (median [IQR] ppFEV 1 : 34 [31-36]) prescribed LUM/IVA. All patients experienced a decline in ppFEV 1 from baseline at 2-hours (median [IQR] relative change: -19 [-21 to -11]%, p<0.001) that persisted at 24-hours but recovered in most patients at 1-month. No pre- and post-differences in bronchodilator response were observed. Ten (83.3%) patients reported non-severe respiratory-related adverse events within 24-hours of LUM/IVA initiation. At 1-month, eight (67%) patients had persistent symptoms and six (50%) were treated for a pulmonary exacerbation. Our results highlight that LUM/IVA respiratory-related adverse events are common in patients with a ppFEV 1 <40. We recommend close assessment of adverse events. Further studies are required to evaluate the efficacy of LUM/IVA in patients with severe lung disease. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth.

    PubMed

    Satpathy, Shuchismita R; Jala, Venkatakrishna R; Bodduluri, Sobha R; Krishnan, Elangovan; Hegde, Bindu; Hoyle, Gary W; Fraig, Mostafa; Luster, Andrew D; Haribabu, Bodduluri

    2015-04-29

    Chronic exposure to crystalline silica (CS) causes silicosis, an irreversible lung inflammatory disease that may eventually lead to lung cancer. In this study, we demonstrate that in K-ras(LA1) mice, CS exposure markedly enhances the lung tumour burden and genetic deletion of leukotriene B4 receptor-1 (BLT1(-/-)) attenuates this increase. Pulmonary neutrophilic inflammation induced by CS is significantly reduced in BLT1(-/-)K-ras(LA1) mice. CS exposure induces LTB4 production by mast cells and macrophages independent of inflammasome activation. In an air-pouch model, CS-induced neutrophil recruitment is dependent on LTB4 production by mast cells and BLT1 expression on neutrophils. In an implantable lung tumour model, CS exposure results in rapid tumour growth and decreased survival that is attenuated in the absence of BLT1. These results suggest that the LTB4/BLT1 axis sets the pace of CS-induced sterile inflammation that promotes lung cancer progression. This knowledge may facilitate development of immunotherapeutic strategies to fight silicosis and lung cancer.

  7. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation

    PubMed Central

    Tauseef, Mohammad; Knezevic, Nebojsa; Chava, Koteswara R.; Smith, Monica; Sukriti, Sukriti; Gianaris, Nicholas; Obukhov, Alexander G.; Vogel, Stephen M.; Schraufnagel, Dean E.; Dietrich, Alexander; Birnbaumer, Lutz; Malik, Asrar B.

    2012-01-01

    Lung vascular endothelial barrier disruption and the accompanying inflammation are primary pathogenic features of acute lung injury (ALI); however, the basis for the development of both remains unclear. Studies have shown that activation of transient receptor potential canonical (TRPC) channels induces Ca2+ entry, which is essential for increased endothelial permeability. Here, we addressed the role of Toll-like receptor 4 (TLR4) intersection with TRPC6-dependent Ca2+ signaling in endothelial cells (ECs) in mediating lung vascular leakage and inflammation. We find that the endotoxin (lipopolysaccharide; LPS) induces Ca2+ entry in ECs in a TLR4-dependent manner. Moreover, deletion of TRPC6 renders mice resistant to endotoxin-induced barrier dysfunction and inflammation, and protects against sepsis-induced lethality. TRPC6 induces Ca2+ entry in ECs, which is secondary to the generation of diacylglycerol (DAG) induced by LPS. Ca2+ entry mediated by TRPC6, in turn, activates the nonmuscle myosin light chain kinase (MYLK), which not only increases lung vascular permeability but also serves as a scaffold to promote the interaction of myeloid differentiation factor 88 and IL-1R–associated kinase 4, which are required for NF-κB activation and lung inflammation. Our findings suggest that TRPC6-dependent Ca2+ entry into ECs, secondary to TLR4-induced DAG generation, participates in mediating both lung vascular barrier disruption and inflammation induced by endotoxin. PMID:23045603

  8. Biomass Smoke Exposure Enhances Rhinovirus-Induced Inflammation in Primary Lung Fibroblasts

    PubMed Central

    Capistrano, Sarah J.; Zakarya, Razia; Chen, Hui; Oliver, Brian G.

    2016-01-01

    Biomass smoke is one of the major air pollutants and contributors of household air pollution worldwide. More than 3 billion people use biomass fuels for cooking and heating, while other sources of exposure are from the occurrence of bushfires and occupational conditions. Persistent biomass smoke exposure has been associated with acute lower respiratory infection (ALRI) as a major environmental risk factor. Children under the age of five years are the most susceptible in developing severe ALRI, which accounts for 940,000 deaths globally. Around 90% of cases are attributed to viral infections, such as influenza, adenovirus, and rhinovirus. Although several epidemiological studies have generated substantial evidence of the association of biomass smoke and respiratory infections, the underlying mechanism is still unknown. Using an in vitro model, primary human lung fibroblasts were stimulated with biomass smoke extract (BME), specifically investigating hardwood and softwood types, and human rhinovirus-16 for 24 h. Production of pro-inflammatory mediators, such as IL-6 and IL-8, were measured via ELISA. Firstly, we found that hardwood and softwood smoke extract (1%) up-regulate IL-6 and IL-8 release (p ≤ 0.05). In addition, human rhinovirus-16 further increased biomass smoke-induced IL-8 in fibroblasts, in comparison to the two stimulatory agents alone. We also investigated the effect of biomass smoke on viral susceptibility by measuring viral load, and found no significant changes between BME exposed and non-exposed infected fibroblasts. Activated signaling pathways for IL-6 and IL-8 production by BME stimulation were examined using signaling pathway inhibitors. p38 MAPK inhibitor SB239063 significantly attenuated IL-6 and IL-8 release the most (p ≤ 0.05). This study demonstrated that biomass smoke can modulate rhinovirus-induced inflammation during infection, which can alter the severity of the disease. The mechanism by which biomass smoke exposure increases inflammation in the lungs can be targeted and inhibited via p38 MAP kinase pathway. PMID:27571064

  9. Biomass Smoke Exposure Enhances Rhinovirus-Induced Inflammation in Primary Lung Fibroblasts.

    PubMed

    Capistrano, Sarah J; Zakarya, Razia; Chen, Hui; Oliver, Brian G

    2016-08-25

    Biomass smoke is one of the major air pollutants and contributors of household air pollution worldwide. More than 3 billion people use biomass fuels for cooking and heating, while other sources of exposure are from the occurrence of bushfires and occupational conditions. Persistent biomass smoke exposure has been associated with acute lower respiratory infection (ALRI) as a major environmental risk factor. Children under the age of five years are the most susceptible in developing severe ALRI, which accounts for 940,000 deaths globally. Around 90% of cases are attributed to viral infections, such as influenza, adenovirus, and rhinovirus. Although several epidemiological studies have generated substantial evidence of the association of biomass smoke and respiratory infections, the underlying mechanism is still unknown. Using an in vitro model, primary human lung fibroblasts were stimulated with biomass smoke extract (BME), specifically investigating hardwood and softwood types, and human rhinovirus-16 for 24 h. Production of pro-inflammatory mediators, such as IL-6 and IL-8, were measured via ELISA. Firstly, we found that hardwood and softwood smoke extract (1%) up-regulate IL-6 and IL-8 release (p ≤ 0.05). In addition, human rhinovirus-16 further increased biomass smoke-induced IL-8 in fibroblasts, in comparison to the two stimulatory agents alone. We also investigated the effect of biomass smoke on viral susceptibility by measuring viral load, and found no significant changes between BME exposed and non-exposed infected fibroblasts. Activated signaling pathways for IL-6 and IL-8 production by BME stimulation were examined using signaling pathway inhibitors. p38 MAPK inhibitor SB239063 significantly attenuated IL-6 and IL-8 release the most (p ≤ 0.05). This study demonstrated that biomass smoke can modulate rhinovirus-induced inflammation during infection, which can alter the severity of the disease. The mechanism by which biomass smoke exposure increases inflammation in the lungs can be targeted and inhibited via p38 MAP kinase pathway.

  10. Toxicity of Mineral Dusts and a Proposed Mechanism for the Pathogenesis of Particle-Induced Lung Diseases

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; Zeidler-Erdely, P.; Scully, R.R.; Meyers, V.; Wallace, W.; Hunter, R.; Renne, R.; McCluskey, R.; Castranova, V.; Barger, M.; hide

    2015-01-01

    Humans will set foot on the moon again. The lunar surface has been bombarded for 4 billion years by micrometeoroids and cosmic radiation, creating a layer of fine dust having a potentially reactive particle surface. To investigate the impact of surface reactivity (SR) on the toxicity of particles, and in particular, lunar dust (LD), we ground 2 Apollo 14 LD samples to increase their SR and compare their toxicity with those of unground LD, TiO2 and quartz. Intratracheally instilled at 0, 1, 2.5, or 7.5 mg/rat, all dusts caused dose-dependent increases in pulmonary lesions, and enhancement of biomarkers of toxicity assessed in bronchoalveolar lavage fluids (BALF). The toxicity of LD was greater than that of TiO2 but less than that of quartz. Three LDs differed 14-fold in SR but were equally toxic; quartz had the lowest SR but was most toxic. These results show no correlation between particle SR and toxicity. Often pulmonary toxicity of a dust can be attributed to oxidative stress (OS). We further observed dose-dependent and dustcytotoxicity- dependent increases in neutrophils. The oxidative content per BALF cell was also directly proportional to both the dose and cytotoxicity of the dusts. Because neutrophils are short-lived and release of oxidative contents after they die could initiate and promote a spectrum of lesions, we postulate a general mechanism for the pathogenesis of particle-induced diseases in the lung that involves chiefly neutrophils, the source of persistent endogenous OS. This mechanism explains why one dust (e.g., quartz or nanoparticles) is more toxic than another (e.g., micrometer-sized TiO2), why dust-induced lesions progress with time, and why lung cancer occurs in rats but not in mice and hamsters exposed to the same duration and concentration of dust.

  11. Autophagy in pulmonary macrophages mediates lung inflammatory injury via NLRP3 inflammasome activation during mechanical ventilation

    PubMed Central

    Zhang, Yang; Liu, Gongjian; Dull, Randal O.; Schwartz, David E.

    2014-01-01

    The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 small interfering RNA were administered to alveolar macrophage-depleted mice via a jugular venous cannula 30 min before the start of the ventilation protocol. In some experiments, mice were ventilated in the absence and presence of autophagy inhibitors 3-methyladenine (15 mg/kg ip) or trichostatin A (1 mg/kg ip). Mechanical ventilation with a high tidal volume caused rapid (within minutes) activation of autophagy in the lung. Conventional transmission electron microscopic examination of lung sections showed that mechanical ventilation-induced autophagy activation mainly occurred in lung macrophages. Autophagy activation in the lungs during mechanical ventilation was dramatically attenuated in alveolar macrophage-depleted mice. Selective silencing of autophagy-related protein 5 in lung macrophages abolished mechanical ventilation-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and lung inflammatory injury. Pharmacological inhibition of autophagy also significantly attenuated the inflammatory responses caused by lung hyperinflation. The activation of autophagy in macrophages mediates early lung inflammation during mechanical ventilation via NLRP3 inflammasome signaling. Inhibition of autophagy activation in lung macrophages may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury. PMID:24838752

  12. Guanylyl cyclase activation reverses resistive breathing-induced lung injury and inflammation.

    PubMed

    Glynos, Constantinos; Toumpanakis, Dimitris; Loverdos, Konstantinos; Karavana, Vassiliki; Zhou, Zongmin; Magkou, Christina; Dettoraki, Maria; Perlikos, Fotis; Pavlidou, Athanasia; Kotsikoris, Vasilis; Topouzis, Stavros; Theocharis, Stamatios E; Brouckaert, Peter; Giannis, Athanassios; Papapetropoulos, Andreas; Vassilakopoulos, Theodoros

    2015-06-01

    Inspiratory resistive breathing (RB), encountered in obstructive lung diseases, induces lung injury. The soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway is down-regulated in chronic and acute animal models of RB, such as asthma, chronic obstructive pulmonary disease, and in endotoxin-induced acute lung injury. Our objectives were to: (1) characterize the effects of increased concurrent inspiratory and expiratory resistance in mice via tracheal banding; and (2) investigate the contribution of the sGC/cGMP pathway in RB-induced lung injury. Anesthetized C57BL/6 mice underwent RB achieved by restricting tracheal surface area to 50% (tracheal banding). RB for 24 hours resulted in increased bronchoalveolar lavage fluid cellularity and protein content, marked leukocyte infiltration in the lungs, and perturbed respiratory mechanics (increased tissue resistance and elasticity, shifted static pressure-volume curve right and downwards, decreased static compliance), consistent with the presence of acute lung injury. RB down-regulated sGC expression in the lung. All manifestations of lung injury caused by RB were exacerbated by the administration of the sGC inhibitor, 1H-[1,2,4]oxodiazolo[4,3-]quinoxalin-l-one, or when RB was performed using sGCα1 knockout mice. Conversely, restoration of sGC signaling by prior administration of the sGC activator BAY 58-2667 (Bayer, Leverkusen, Germany) prevented RB-induced lung injury. Strikingly, direct pharmacological activation of sGC with BAY 58-2667 24 hours after RB reversed, within 6 hours, the established lung injury. These findings raise the possibility that pharmacological targeting of the sGC-cGMP axis could be used to ameliorate lung dysfunction in obstructive lung diseases.

  13. Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway.

    PubMed

    Su, Jin; Yan, Yan; Qu, Jingkun; Xue, Xuewen; Liu, Zi; Cai, Hui

    2017-03-01

    Emodin is a phytochemical with potent anticancer activities against various human malignant cancer types, including lung cancer; however, the molecular mechanisms underlying the effects of emodin remain unclear. In the present study, the A549 and H1299 human non-small lung cancer cell lines were treated with emodin and the induced molecular effects were investigated. Changes in cell viability were evaluated by MTT assay, Hoechst staining was used to indicate the apoptotic cells, and western blotting was utilized to assess endoplasmic reticulum (ER) stress and signaling changes. RNA interference was also employed to further examine the role of tribbles homolog 3 (TRIB3) in the emodin-induced apoptosis of lung cancer cells. Emodin was found to reduce the viability of lung cancer cells and induce apoptosis in a concentration-dependent manner. Emodin-induced apoptosis was impaired by inhibition of ER stress using 4-phenylbutyrate (4-PBA). ER stress and TRIB3/nuclear factor-κB signaling was activated in emodin-treated lung cancer cells. Emodin-induced apoptosis was reduced by TRIB3 knockdown in A549 cells, whereas ER stress was not reduced. In vivo assays verified the significance of these results, revealing that emodin inhibited lung cancer growth and that the inhibitory effects were reduced by inhibition of ER stress with 4-PBA. In conclusion, the results suggest that TRIB3 signaling is associated with emodin-induced ER stress-mediated apoptosis in lung cancer cells.

  14. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751; Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissuesmore » that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron increased the levels of IL-1β, IL-6 and TNF-α in lung tissues at high altitudes. • Trolox alleviated the iron-induced histological and biochemical changes to the lungs.« less

  15. Niacinamide mitigated the acute lung injury induced by phorbol myristate acetate in isolated rat's lungs

    PubMed Central

    2012-01-01

    Background Phorbol myristate acetate (PMA) is a strong neutrophil activator and has been used to induce acute lung injury (ALI). Niacinamide (NAC) is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC) on the PMA-induced ALI and associated changes. Methods The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 μg/g), PMA 4 μg/g (lung weight), cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight). There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc) were determined in isolated lungs. ATP (adenotriphosphate) and PARP [poly(adenosine diphophate-ribose) polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS). The neutrophil-derived mediators in lung perfusate were determined. Results PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent. Conclusions Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental role in the PMA-induced lung injury. ATP is beneficial, while PARP plays a deteriorative effect on the PMA-induced ALI. NAC exerts protective effects on the inflammatory cascade leading to pulmonary injury. This B complex compound may be applied for clinical usage and therapeutic regimen. PMID:22375599

  16. Niacinamide mitigated the acute lung injury induced by phorbol myristate acetate in isolated rat's lungs.

    PubMed

    Lin, Chia-Chih; Hsieh, Nan-Kuang; Liou, Huey Ling; Chen, Hsing I

    2012-03-01

    Phorbol myristate acetate (PMA) is a strong neutrophil activator and has been used to induce acute lung injury (ALI). Niacinamide (NAC) is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC) on the PMA-induced ALI and associated changes. The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 μg/g), PMA 4 μg/g (lung weight), cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight). There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc) were determined in isolated lungs. ATP (adenotriphosphate) and PARP [poly(adenosine diphophate-ribose) polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS). The neutrophil-derived mediators in lung perfusate were determined. PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent. Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental role in the PMA-induced lung injury. ATP is beneficial, while PARP plays a deteriorative effect on the PMA-induced ALI. NAC exerts protective effects on the inflammatory cascade leading to pulmonary injury. This B complex compound may be applied for clinical usage and therapeutic regimen.

  17. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less

  18. Soluble tumor necrosis factor receptor-1 in preterm infants with chronic lung disease.

    PubMed

    Sato, Miho; Mori, Masaaki; Nishimaki, Shigeru; An, Hiromi; Naruto, Takuya; Sugai, Toshiyuki; Shima, Yoshio; Seki, Kazuo; Yokota, Shumpei

    2010-04-01

    It is clear that inflammation plays an important role in developing chronic lung disease in preterm infants. The purpose of the present study is to investigate changes of serum soluble tumor necrosis factor receptor-1 levels over time in infants with chronic lung disease. The serum levels of soluble tumor necrosis factor receptor-1 were measured after delivery, and at 7, 14, 21 and 28 days of age in 10 infants with chronic lung disease and in 18 infants without chronic lung disease. The serum level of soluble tumor necrosis factor receptor-1 was significantly higher in infants with chronic lung disease than in infants without chronic lung disease after delivery. The differences between these two groups remained up to 28 days of age. Prenatal inflammation with persistence into postnatal inflammation may be involved in the onset of chronic lung disease.

  19. Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction.

    PubMed

    Lu, Qing; Mundy, Miles; Chambers, Eboni; Lange, Thilo; Newton, Julie; Borgas, Diana; Yao, Hongwei; Choudhary, Gaurav; Basak, Rajshekhar; Oldham, Mahogany; Rounds, Sharon

    2017-12-01

    Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation.

  20. Pulmonary inflammation and tumor induction in lung tumor susceptible A/J and resistant C57BL/6J mice exposed to welding fume.

    PubMed

    Zeidler-Erdely, Patti C; Kashon, Michael L; Battelli, Lori A; Young, Shih-Houng; Erdely, Aaron; Roberts, Jenny R; Reynolds, Steven H; Antonini, James M

    2008-09-08

    Welding fume has been categorized as "possibly carcinogenic" to humans. Our objectives were to characterize the lung response to carcinogenic and non-carcinogenic metal-containing welding fumes and to determine if these fumes caused increased lung tumorigenicity in A/J mice, a lung tumor susceptible strain. We exposed male A/J and C57BL/6J, a lung tumor resistant strain, by pharyngeal aspiration four times (once every 3 days) to 85 mug of gas metal arc-mild steel (GMA-MS), GMA-stainless steel (SS), or manual metal arc-SS (MMA-SS) fume, or to 25.5 mug soluble hexavalent chromium (S-Cr). Shams were exposed to saline vehicle. Bronchoalveolar lavage (BAL) was done at 2, 7, and 28 days post-exposure. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 48 and 78 weeks post-exposure. BAL revealed notable strain-dependent differences with regards to the degree and resolution of the inflammatory response after exposure to the fumes. At 48 weeks, carcinogenic metal-containing GMA-SS fume caused the greatest increase in tumor multiplicity and incidence, but this was not different from sham. By 78 weeks, tumor incidence in the GMA-SS group versus sham approached significance (p = 0.057). A significant increase in perivascular/peribronchial lymphoid infiltrates for the GMA-SS group versus sham and an increased persistence of this fume in lung cells compared to the other welding fumes was found. The increased persistence of GMA-SS fume in combination with its metal composition may trigger a chronic, but mild, inflammatory state in the lung possibly enhancing tumorigenesis in this susceptible mouse strain.

  1. Pulmonary inflammation and tumor induction in lung tumor susceptible A/J and resistant C57BL/6J mice exposed to welding fume

    PubMed Central

    Zeidler-Erdely, Patti C; Kashon, Michael L; Battelli, Lori A; Young, Shih-Houng; Erdely, Aaron; Roberts, Jenny R; Reynolds, Steven H; Antonini, James M

    2008-01-01

    Background Welding fume has been categorized as "possibly carcinogenic" to humans. Our objectives were to characterize the lung response to carcinogenic and non-carcinogenic metal-containing welding fumes and to determine if these fumes caused increased lung tumorigenicity in A/J mice, a lung tumor susceptible strain. We exposed male A/J and C57BL/6J, a lung tumor resistant strain, by pharyngeal aspiration four times (once every 3 days) to 85 μg of gas metal arc-mild steel (GMA-MS), GMA-stainless steel (SS), or manual metal arc-SS (MMA-SS) fume, or to 25.5 μg soluble hexavalent chromium (S-Cr). Shams were exposed to saline vehicle. Bronchoalveolar lavage (BAL) was done at 2, 7, and 28 days post-exposure. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 48 and 78 weeks post-exposure. Results BAL revealed notable strain-dependent differences with regards to the degree and resolution of the inflammatory response after exposure to the fumes. At 48 weeks, carcinogenic metal-containing GMA-SS fume caused the greatest increase in tumor multiplicity and incidence, but this was not different from sham. By 78 weeks, tumor incidence in the GMA-SS group versus sham approached significance (p = 0.057). A significant increase in perivascular/peribronchial lymphoid infiltrates for the GMA-SS group versus sham and an increased persistence of this fume in lung cells compared to the other welding fumes was found. Conclusion The increased persistence of GMA-SS fume in combination with its metal composition may trigger a chronic, but mild, inflammatory state in the lung possibly enhancing tumorigenesis in this susceptible mouse strain. PMID:18778475

  2. Respiratory Syncytial Virus Infections Enhance Cigarette Smoke Induced COPD in Mice

    PubMed Central

    Foronjy, Robert F.; Dabo, Abdoulaye J.; Taggart, Clifford C.; Weldon, Sinead; Geraghty, Patrick

    2014-01-01

    Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1α, IL-17, IFN-γ, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression. PMID:24587397

  3. Nicaraven reduces cancer metastasis to irradiated lungs by decreasing CCL8 and macrophage recruitment.

    PubMed

    Yan, Chen; Luo, Lan; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng

    2018-04-01

    Radiotherapy for cancer patients damages normal tissues, thereby inducing an inflammatory response and promoting cancer metastasis. We investigated whether nicaraven, a compound with radioprotective and anti-inflammatory properties, could attenuate radiation-induced cancer metastasis to the lungs of mice. Nicaraven and amifostine, another commercial radioprotective agent, had limited effects on both the radiosensitivity of Lewis lung carcinoma cells in vitro and radiation-induced tumor growth inhibition in vivo. Using experimental and spontaneous metastasis models, we confirmed that thorax irradiation with 5 Gy X-rays dramatically increased the number of tumors in the lungs. Interestingly, the number of tumors in the lungs was significantly reduced by administering nicaraven but not by administering amifostine daily after radiation exposure. Furthermore, nicaraven administration effectively inhibited CCL8 expression and macrophage recruitment in the lungs 1 day after thorax irradiation. Our data suggest that nicaraven attenuates radiation-induced lung metastasis, likely by regulating the inflammatory response after radiation exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Induction of E-cadherin in lung cancer and interaction with growth suppression by histone deacetylase inhibition.

    PubMed

    Kakihana, Masatoshi; Ohira, Tatsuo; Chan, Daniel; Webster, Robin B; Kato, Harubumi; Drabkin, Harry A; Gemmill, Robert M

    2009-12-01

    Loss of E-cadherin confers a poor prognosis in lung cancer patients and is associated with in vitro resistance to endothelial growth factor receptor inhibitors. Zinc finger E box-binding homeobox (ZEB)-1, the predominant transcriptional suppressor of E-cadherin in lung tumor lines, recruits histone deacetylases (HDACs) as co-repressors. NSCLC cell lines were treated with HDAC inhibitors and analyzed for E-cadherin induction, growth inhibition and apoptosis. National Cancer Institute-H157 cells expressing ectopic E-cadherin were tested for tumorigenicity in murine xenografts. We found that treatment with MS-275, compared to vorinostat (SAHA), valproic acid or trichostatin A, was most effective in E-cadherin up-regulation and persistence in non-small cell lung cancers. As with other tumor types and HDAC inhibitors, MS-275 inhibited growth and induced apoptosis. Importantly, blocking E-cadherin induction by short hairpin RNA resulted in less inhibition by MS-275, implicating the epithelial to mesenchymal phenotype process as a contributing factor. In contrast to H460 and H661, H157 cells were resistant to E-cadherin up-regulation by HDAC inhibitors. However, E-cadherin was restored, in a synergistic manner, by combined knockdown of ZEB-1 and ZEB-2. In addition, H157 cells stably transfected with E-cadherin were markedly attenuated in their tumor forming ability. Lastly, combining MS-275 with the microtubule stabilizing agent, paclitaxel, or 17-(allylamino)-17-demethoxygeldanamycin, a heat shock protein 90 inhibitor, resulted in synergistic growth inhibition. Since MS-275 has no reported activity against HDAC6, which regulates both microtubule and heat shock protein 90 functions, other mechanisms of synergy are anticipated. These results support the role of ZEB proteins and HDAC inhibitors in the pathogenesis and treatment of lung cancer.

  5. [Anesthesia for thoracoscopic laser ablation of bullae in a patient with severe bullous emphysema].

    PubMed

    Saito, Y; Hayashida, M; Arita, H; Hanaoka, K

    1995-05-01

    A 46-year-old male underwent laser-ablation of emphysematous bullae of the right lung via thoracoscope. For almost a year he had been bedridden because of severe dyspnea on exertion, in spite of medication and oxygen therapy. He also complained of orthopnea at rest and had suffered from body weight loss of 10 kg during the preceding year. Radiologic examination revealed emphysemotous lung with bilateral giant bullae. In spirogram, forced vital capacity in 1 second was markedly low (0.45 l, corresponding to 19% in %FVC1.0), vital capacity moderately depressed (2.41 l, 64%) and residual volume markedly elevated (5.85 l, 387%). Anesthesia was induced and maintained using the combination of thoracic-epidural anesthesia and intravenous anesthesia (midazolam and fentanyl). One lung ventilation (OLV) was used to facilitate thoracoscopic procedure. Mechanical ventilation was conducted at first with an anesthesia ventilator. As the duration of OLV was prolonged, however, the peak airway pressure increased, the tidal volume decreased and the value of percutaneous arterial hemoglobin saturation (SpO2) declined. In order to keep adequate oxygenation, brief periods of two lung ventilation (TLV) became necessary, in addition to the application of continuous positive airway pressure to the non-dependent lung. When ventilation was changed from volume-cycled ventilation to pressure-cycled and from using an anesthesia ventilator to a critical care type ventilator (Servo 900C), sufficient tidal volume was achieved with lower peak airway pressure, producing reasonable Spo2 value with much less frequent TLV. At the end of the surgery bronchopleural fistulae still persisted, with resultant air leak of about 50% of inspired tidal volume.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Effect of hypothermic pulmonary artery flushing on capillary filtration coefficient.

    PubMed

    Andrade, R S; Wangensteen, O D; Jo, J K; Tsai, M Y; Bolman, R M

    2000-07-27

    We previously demonstrated that surfactant dilution and inhibition occur immediately after pulmonary artery flushing with hypothermic modified Euro-Collins solution. Consequently, we speculated that increased capillary permeability contributed to these surfactant changes. To test this hypothesis, we evaluated the effects of hypothermic pulmonary artery flushing on the pulmonary capillary filtration coefficient (Kfc), and additionally performed a biochemical analysis of surfactant. We used a murine isolated, perfused lung model to measure the pulmonary capillary filtration coefficient and hemodynamic parameters, to determine the wet to dry weight ratio, and to evaluate surfactant by biochemical analysis of lung lavage fluid. We defined three study groups. In group I (controls), we harvested lungs without hypothermic pulmonary artery flushing, and measured Kfc immediately. In group II (in situ flush), we harvested lungs after hypothermic pulmonary artery flushing with modified Euro-Collins solution, and then measured Kfc. Experiments in groups I and II were designed to evaluate persistent changes in Kfc after pulmonary artery flushing. In group III (ex vivo flush), we flushed lungs ex vivo to evaluate transient changes in Kfc during hypothermic pulmonary artery flushing. Groups I and II did not differ significantly in capillary filtration coefficient and hemodynamics. Group II showed significant alterations on biochemical surfactant analysis and a significant increase in wet-to-dry weight ratio, when compared with group I. In group III, we observed a significant transient increase in capillary filtration coefficient during pulmonary artery flushing. Hypothermic pulmonary artery flushing transiently increases the capillary filtration coefficient, leads to an increase in the wet to dry weight ratio, and induces biochemical surfactant changes. These findings could be explained by the effects of hypothermic modified Euro-Collins solution on pulmonary capillary permeability.

  7. Impulse oscillometry at preschool age is a strong predictor of lung function by flow-volume spirometry in adolescence.

    PubMed

    Lauhkonen, Eero; Riikonen, Riikka; Törmänen, Sari; Koponen, Petri; Nuolivirta, Kirsi; Helminen, Merja; Toikka, Jyri; Korppi, Matti

    2018-05-01

    The transition from early childhood wheezing to persistent asthma is linked to lung function impairment over time. Little is known how the methods used to study lung function at different ages correlate longitudinally. Sixty-four children with a history of hospitalization for bronchiolitis before 6 months of age were prospectively studied with impulse oscillometry (IOS) at the mean age of 6.3 years and these preschool IOS results were compared with flow-volume spirometry (FVS) measurements at mean age of 11.4 years. The baseline respiratory system resistance at 5 Hz (Rrs5) showed a modest statistically significant correlation with all baseline FVS parameters except FVC. The post-bronchodilator (post-BD) Rrs5 showed a modest statistically significant correlation with post-BD FEV 1 and FEV 1 /FVC. The bronchodilator-induced decrease in Rrs5 showed a modest statistically significant correlation with the percent increase in FEV 1 . Baseline and post-BD respiratory reactance at 5 Hz (Xrs5) showed a modest statistically significant correlation with baseline and post-BD FVS parameters except post-BD FEV 1 /FVC, respectively, and post-BD Xrs5 showed a strong correlation with post-BD FVC (ρ = 0.61) and post-BD FEV 1 (ρ = 0.59). In adjusted linear regression, preschool Xrs5 remained as a statistically significant independent predictor of FVS parameters in adolescence; the one-unit decrease in the Z-score of preschool post-BD Xrs5 predicted 9.6% lower post-BD FEV 1 , 9.3% lower post-BD FVC, and 9.7% lower post-BD MEF 50 when expressed as %-predicted parameters. Persistent post-BD small airway impairment in children with a history of bronchiolitis detected with IOS at preschool age predicted FVS results measured in early adolescence. © 2018 Wiley Periodicals, Inc.

  8. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  9. Targeting Interleukin-17 signalling in cigarette smoke-induced lung disease: Mechanistic concepts and therapeutic opportunities.

    PubMed

    Roos, Abraham B; Stampfli, Martin R

    2017-10-01

    It is widely accepted that compromised lung function in chronic obstructive pulmonary disease (COPD) is, at least in part, a consequence of persistent airway inflammation caused by particles and noxious gases present in cigarette smoke and indoor air pollution from burning biomass fuel. Currently, the World Health Organization estimates that 80 million people have moderate or severe COPD worldwide. While there is a global need for effective medical treatment, current therapeutic interventions have shown limited success in preventing disease pathology and progression. This is, in large part, due to the complexity and heterogeneity of COPD, and an incomplete understanding of the molecular mechanisms governing inflammatory processes in individual patients. This review discusses recent discoveries related to the pro-inflammatory cytokine interleukin (IL)-17A, and its potential role in the pathogenesis of COPD. We propose that an intervention strategy targeting IL-17 signalling offers an exciting opportunity to mitigate inflammatory processes, and prevent the progression of tissue pathologies associated with COPD. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer.

    PubMed

    Ali, Azhar; Levantini, Elena; Teo, Jun Ting; Goggi, Julian; Clohessy, John G; Wu, Chan Shuo; Chen, Leilei; Yang, Henry; Krishnan, Indira; Kocher, Olivier; Zhang, Junyan; Soo, Ross A; Bhakoo, Kishore; Chin, Tan Min; Tenen, Daniel G

    2018-02-15

    Metabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In this report, we describe a novel oncogenic signaling pathway exclusively acting in mutated epidermal growth factor receptor (EGFR) non-small cell lung cancer (NSCLC) with acquired tyrosine kinase inhibitor (TKI) resistance. Mutated EGFR mediates TKI resistance through regulation of the fatty acid synthase (FASN), which produces 16-C saturated fatty acid palmitate. Our work shows that the persistent signaling by mutated EGFR in TKI-resistant tumor cells relies on EGFR palmitoylation and can be targeted by Orlistat, an FDA-approved anti-obesity drug. Inhibition of FASN with Orlistat induces EGFR ubiquitination and abrogates EGFR mutant signaling, and reduces tumor growths both in culture systems and in vivo Together, our data provide compelling evidence on the functional interrelationship between mutated EGFR and FASN and that the fatty acid metabolism pathway is a candidate target for acquired TKI-resistant EGFR mutant NSCLC patients. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Inhibition of BTK protects lungs from trauma-hemorrhagic shock-induced injury in rats.

    PubMed

    Liu, Xinwei; Zhang, Jingdong; Han, Wenfeng; Wang, Yu; Liu, Yunen; Zhang, Yubiao; Zhou, Dapeng; Xiang, Liangbi

    2017-07-01

    The present study aimed to investigate the role of Bruton's tyrosine kinase (BTK) in the pathogenesis of lung injury induced by trauma‑hemorrhagic shock (THS), and to examine the pulmonary protective effects of BTK inhibition. Male Sprague‑Dawley rats were divided into four groups (n=12/group): i) A Sham group, which received surgery without induced trauma; ii) a THS‑induced injury group; iii) a THS‑induced injury group that also received treatment with the BTK inhibitor LFM‑A13 prior to trauma induction; and iv) a Sham group that was pretreated with LFM‑A13 prior to surgery but did not receive induced trauma. The expression of phosphorylated‑BTK protein in the lungs was measured by immunohistochemistry and western blot analysis. The bronchoalveolar lavage fluid (BALF) protein concentration, total leukocyte and eosinophil numbers, and the expression levels of peripheral blood proinflammatory factors were measured. Morphological alterations in the lungs were detected by hematoxylin and eosin staining. Pulmonary nitric oxide (NO) concentration and inducible NO synthase (iNOS) expression were also assessed. Activities of the nuclear factor (NF)‑κB and mitogen‑activated protein kinase (MAPK) signaling pathways were determined by western blotting or electrophoretic mobility shift assay. BTK was notably activated in lungs of THS rats. BALF protein concentration, total leukocytes and eosinophils, peripheral blood expression levels of tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6 and monocyte chemotactic protein 1 were significantly upregulated after THS induction, and each exhibited decreased expression upon LFM‑A13 treatment. THS‑induced interstitial hyperplasia, edema and neutrophilic infiltration in lungs were improved by the inhibition of BTK. In addition, THS‑induced NO release, iNOS overexpression, and NF‑κB and MAPK signaling were suppressed by BTK inhibition. Results from the present study demonstrate that BTK may serve a pivotal role in the pathogenesis of THS‑related lung injury, and the inhibition of BTK may significantly alleviate THS‑induced lung damage. These results provide a potential therapeutic application for the treatment of THS‑induced lung injury.

  12. Understanding the Lung Abscess Microbiome: Outcomes of Percutaneous Lung Parenchymal Abscess Drainage with Microbiologic Correlation.

    PubMed

    Duncan, Christopher; Nadolski, Gregory J; Gade, Terence; Hunt, Stephen

    2017-06-01

    Lung parenchymal abscesses represent an uncommon pathology with high mortality if untreated. Although most respond well to antibiotics, the optimal therapy for persistent abscesses is unknown. The purpose of this study was to review the outcomes of percutaneous lung parenchymal abscess catheter drainage after broad-spectrum antibiotic therapy failure and correlate with patient microbiologic samples. Retrospective review of patients who underwent percutaneous lung abscess drainage at a tertiary hospital system from 2005 to 2015 was performed. In total, 19 procedures were identified on 16 different patients; six females and ten males. Mean patient age was 55 years (range 22-81). Median follow-up time was 7 months (range <1-78). Technical success was 100%. There was one major complication, a pneumothorax. Follow-up was until tube removal or death in 100% of patients. Catheters were removed with resolution of the abscess cavity in 58% (11/19) or with non-draining abscess cavities in 21% (4/19) for a clinical success rate of 79%. Blood cultures demonstrated no growth in all cases, while 21% (4/19) of sputum or bronchoscopic cultures demonstrated growth. In comparison, the specimens from initial catheter placement isolated a causative organism in 95% (18/19) of case (p < 0.0001). In cases of persistent lung abscess after broad-spectrum antibiotics, percutaneous abscess drainage is highly sensitive for microbiologic sampling compared to sputum/bronchoscopic or blood cultures. Additionally, percutaneous drainage of lung parenchymal abscess cavities may promote resolution of the abscess with high rates of therapeutic success and low complications.

  13. Biopersistence of man-made vitreous fibers and crocidolite asbestos in the rat lung following inhalation.

    PubMed

    Hesterberg, T W; Miiller, W C; Musselman, R P; Kamstrup, O; Hamilton, R D; Thevenaz, P

    1996-02-01

    This study investigated possible relationships between fiber bio-persistence in the lung and previously observed differences in pulmonary toxicity between asbestos and man-made vitreous fibers (MMVF) following inhalation exposure. Fischer 344/N rats were exposed nose only, 6 hr/day for 5 days to 30 mg/m3 MMVF (two fiberglass compositions, rock wool, or slag wool) or to 10 mg/m3 crocidolite asbestos. At eight time points up to 1 year postexposure, lung fiber burdens were analyzed for number/lung and bivariate dimensions using scanning electron microscopy (SEM) and for chemical composition using SEM energy dispersive spectroscopy. After 365 days, > 95% of long (> 20 microns) MMVFs had disappeared from the lung compared to only 17% of long crocidolite fibers. Longer MMVFs disappeared more rapidly than short MMVFs, suggesting that long fibers were dissolving or breaking. Mean diameters and lengths of the MMVFs decreased with time, while the mean diameter of crocidolite remained unchanged and its mean length showed an apparent increase, probably related to macrophage-mediated clearance of short fibers. Leaching of oxides occurred in the fibrous glasses and slag wool and correlated with morphological changes in the fibers over time. No chemical or morphological changes were observed in crocidolite fibers. These changes in MMVF number, chemistry, and morphology over time in lung tissue compared to crocidolite asbestos demonstrate the relatively low biological persistence of some MMVFs in the lung and may explain why these MMVFs are not tumorigenic in rats, even after chronic exposure at high concentrations.

  14. Evaluation of Trigeminal Sensitivity to Ammonia in Asthmatics and Healthy Human Volunteers

    PubMed Central

    Petrova, Maja; Diamond, Jeanmarie; Schuster, Benno; Dalton, Pamela

    2009-01-01

    Background Asthmatics often report the triggering or exacerbation of respiratory symptoms following exposure to airborne irritants, which in some cases may result from stimulation of irritant receptors in the upper airways inducing reflexive broncho-constriction. Ammonia (NH3) is a common constituent of commercially available household products, and in high concentration has the potential to elicit sensory irritation in the eyes and upper respiratory tract of humans. The goal of the present study was to evaluate the irritation potential of ammonia in asthmatics and healthy volunteers and to determine whether differences in nasal or ocular irritant sensitivity to ammonia between these two groups could account for the exacerbation of symptoms reported by asthmatics following exposure to an irritant. Methods 25 healthy and 15 mild/moderate persistent asthmatic volunteers, with reported sensitivity to household cleaning products, were evaluated for their sensitivity to the ocular and nasal irritancy of NH3. Lung function was evaluated at baseline and multiple time points following exposure. Results Irritation thresholds did not differ between asthmatics and healthy controls, nor did ratings of odor intensity, annoyance and irritancy following exposure to NH3 concentrations at and above the irritant threshold for longer periods of time (30 sec).Importantly, no changes in lung function occurred following exposure to NH3 for any individuals in either group. Conclusion Despite heightened symptom reports to environmental irritants among asthmatics, the ocular and nasal trigeminal system of mild-moderate asthmatics does not appear to be more sensitive or more reactive than that of non-asthmatics, nor does short duration exposure to ammonia at irritant levels induce changes in lung function. At least in brief exposures, the basis for some asthmatics to experience adverse responses to volatile compounds in everyday life may arise from factors other than trigeminally-mediated reflexes. PMID:18728993

  15. TCDD and a putative endogenous AhR ligand, ITE, elicit the same immediate changes in gene expression in mouse lung fibroblasts.

    PubMed

    Henry, Ellen C; Welle, Stephen L; Gasiewicz, Thomas A

    2010-03-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1'H-indolo-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5muM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible.

  16. Experimental progressive emphysema in BALB/cJ mice as a model for chronic alveolar destruction in humans

    PubMed Central

    Limjunyawong, Nathachit; Craig, John M.; Lagassé, H. A. Daniel; Scott, Alan L.

    2015-01-01

    Emphysema, one of the major components of chronic obstructive pulmonary disease (COPD), is characterized by the progressive and irreversible loss of alveolar lung tissue. Even though >80% of COPD cases are associated with cigarette smoking, only a relatively small proportion of smokers develop emphysema, suggesting a potential role for genetic factors in determining individual susceptibility to emphysema. Although strain-dependent effects have been shown in animal models of emphysema, the molecular basis underlying this intrinsic susceptibility is not fully understood. In this present study, we investigated emphysema development using the elastase-induced experimental emphysema model in two commonly used mouse strains, C57BL/6J and BALB/cJ. The results demonstrate that mice with different genetic backgrounds show disparate susceptibility to the development of emphysema. BALB/cJ mice were found to be much more sensitive than C57BL/6J to elastase injury in both a dose-dependent and time-dependent manner, as measured by significantly higher mortality, greater body weight loss, greater decline in lung function, and a greater loss of alveolar tissue. The more susceptible BALB/cJ strain also showed the persistence of inflammatory cells in the lung, especially macrophages and lymphocytes. A comparative gene expression analysis following elastase-induced injury showed BALB/cJ mice had elevated levels of il17A mRNA and a number of classically (M1) and alternatively (M2) activated macrophage genes, whereas the C57BL/6J mice demonstrated augmented levels of interferon-γ. These findings suggest a possible role for these cellular and molecular mediators in modulating the severity of emphysema and highlight the possibility that they might contribute to the heterogeneity observed in clinical emphysema outcomes. PMID:26232300

  17. Experimental progressive emphysema in BALB/cJ mice as a model for chronic alveolar destruction in humans.

    PubMed

    Limjunyawong, Nathachit; Craig, John M; Lagassé, H A Daniel; Scott, Alan L; Mitzner, Wayne

    2015-10-01

    Emphysema, one of the major components of chronic obstructive pulmonary disease (COPD), is characterized by the progressive and irreversible loss of alveolar lung tissue. Even though >80% of COPD cases are associated with cigarette smoking, only a relatively small proportion of smokers develop emphysema, suggesting a potential role for genetic factors in determining individual susceptibility to emphysema. Although strain-dependent effects have been shown in animal models of emphysema, the molecular basis underlying this intrinsic susceptibility is not fully understood. In this present study, we investigated emphysema development using the elastase-induced experimental emphysema model in two commonly used mouse strains, C57BL/6J and BALB/cJ. The results demonstrate that mice with different genetic backgrounds show disparate susceptibility to the development of emphysema. BALB/cJ mice were found to be much more sensitive than C57BL/6J to elastase injury in both a dose-dependent and time-dependent manner, as measured by significantly higher mortality, greater body weight loss, greater decline in lung function, and a greater loss of alveolar tissue. The more susceptible BALB/cJ strain also showed the persistence of inflammatory cells in the lung, especially macrophages and lymphocytes. A comparative gene expression analysis following elastase-induced injury showed BALB/cJ mice had elevated levels of il17A mRNA and a number of classically (M1) and alternatively (M2) activated macrophage genes, whereas the C57BL/6J mice demonstrated augmented levels of interferon-γ. These findings suggest a possible role for these cellular and molecular mediators in modulating the severity of emphysema and highlight the possibility that they might contribute to the heterogeneity observed in clinical emphysema outcomes. Copyright © 2015 the American Physiological Society.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Li, Cuiying; Weng, Dong

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentagemore » of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung inflammation and fibrosis.« less

  19. Heme oxygenase-1 mediates the protective effects of ischemic preconditioning on mitigating lung injury induced by lower limb ischemia-reperfusion in rats.

    PubMed

    Peng, Tsui-Chin; Jan, Woan-Ching; Tsai, Pei-Shan; Huang, Chun-Jen

    2011-05-15

    Lower limb ischemia-reperfusion (I/R) imposes oxidative stress, elicits inflammatory response, and subsequently induces acute lung injury. Ischemic preconditioning (IP), a process of transient I/R, mitigates the acute lung injury induced by I/R. We sought to elucidate whether the protective effects of IP involve heme oxygenase-1 (HO-1). Adult male rats were randomized to receive I/R, I/R plus IP, I/R plus IP plus the HO-1 inhibitor tin protoporphyrin (SnPP) (n = 12 in each group). Control groups were run simultaneously. I/R was induced by applying rubber band tourniquet high around each thigh for 3 h followed by reperfusion for 3 h. To achieve IP, three cycles of bilateral lower limb I/R (i.e., ischemia for 10 min followed by reperfusion for 10 min) were performed. IP was performed immediately before I/R. After sacrifice, degree of lung injury was determined. Histologic findings, together with assays of leukocyte infiltration (polymorphonuclear leukocytes/alveoli ratio and myeloperoxidase activity) and lung water content (wet/dry weight ratio), confirmed that I/R induced acute lung injury. I/R also caused significant inflammatory response (increases in chemokine, cytokine, and prostaglandin E(2) concentrations), imposed significant oxidative stress (increases in nitric oxide and malondialdehyde concentrations), and up-regulated HO-1 expression in lung tissues. IP significantly enhanced HO-1 up-regulation and, in turn, mitigated oxidative stress, inflammatory response, and acute lung injury induced by I/R. In addition, the protective effects of IP were counteracted by SnPP. The protective effects of IP on mitigating acute lung injury induced by lower limb I/R are mediated by HO-1. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Agmatine Protects against Zymosan-Induced Acute Lung Injury in Mice by Inhibiting NF-κB-Mediated Inflammatory Response

    PubMed Central

    Liu, Zheng; Jin, He; Fan, Xia; Yang, Xue; Tang, Wanqi; Liang, Huaping

    2014-01-01

    Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson's disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI. PMID:25243152

  1. Transduced PEP-1-Heme Oxygenase-1 Fusion Protein Attenuates Lung Injury in Septic Shock Rats

    PubMed Central

    Yan, Xue-Tao; Wang, Yan-Lin; Zhang, Zong-Ze; Tang, Jun-Jiao

    2018-01-01

    Oxidative stress and inflammation have been identified to play a vital role in the pathogenesis of lung injury induced by septic shock. Heme oxygenase-1 (HO-1), an effective antioxidant and anti-inflammatory and antiapoptotic substance, has been used for the treatment of heart, lung, and liver diseases. Thus, we postulated that administration of exogenous HO-1 protein transduced by cell-penetrating peptide PEP-1 has a protective role against septic shock-induced lung injury. Septic shock produced by cecal ligation and puncture caused severe lung damage, manifested in the increase in the lung wet/dry ratio, oxidative stress, inflammation, and apoptosis. However, these changes were reversed by treatment with the PEP-1-HO-1 fusion protein, whereas lung injury in septic shock rats was alleviated. Furthermore, the septic shock upregulated the expression of Toll-like receptor 4 (TLR4) and transcription factor NF-κB, accompanied by the increase of lung injury. Administration of PEP-1-HO-1 fusion protein reversed septic shock-induced lung injury by downregulating the expression of TLR4 and NF-κB. Our study indicates that treatment with HO-1 protein transduced by PEP-1 confers protection against septic shock-induced lung injury by its antioxidant, anti-inflammatory, and antiapoptotic effects. PMID:29682161

  2. Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury.

    PubMed

    Wen, Shih-Tao; Chen, Wei; Chen, Hsiao-Ling; Lai, Cheng-Wei; Yen, Chih-Ching; Lee, Kun-Hsiung; Wu, Shinn-Chih; Chen, Chuan-Mu

    2013-01-01

    High concentrations of oxygen aggravate the severity of lung injury in patients requiring mechanical ventilation. Although mesenchymal stem cells have been shown to effectively attenuate various injured tissues, there is limited information regarding a role for amniotic fluid stem cells (AFSCs) in treating acute lung injury. We hypothesized that intravenous delivery of AFSCs would attenuate lung injury in an experimental model of hyperoxia-induced lung injury. AFSCs were isolated from EGFP transgenic mice. The in vitro differentiation, surface markers, and migration of the AFSCs were assessed by specific staining, flow cytometry, and a co-culture system, respectively. The in vivo therapeutic potential of AFSCs was evaluated in a model of acute hyperoxia-induced lung injury in mice. The administration of AFSCs significantly reduced the hyperoxia-induced pulmonary inflammation, as reflected by significant reductions in lung wet/dry ratio, neutrophil counts, and the level of apoptosis, as well as reducing the levels of inflammatory cytokine (IL-1β, IL-6, and TNF-α) and early-stage fibrosis in lung tissues. Moreover, EGFP-expressing AFSCs were detected and engrafted into a peripheral lung epithelial cell lineage by fluorescence microscopy and DAPI stain. Intravenous administration of AFSCs may offer a new therapeutic strategy for acute lung injury (ALI), for which efficient treatments are currently unavailable.

  3. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    PubMed

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of proinflammatory cytokines. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Effects of the Hematoregulatory Peptide SK&F 107647 Alone and in Combination with Amphotericin B against Disseminated Candidiasis in Persistently Neutropenic Rabbits

    PubMed Central

    Lyman, Caron A.; Gonzalez, Corina; Schneider, Mark; Lee, James; Walsh, Thomas J.

    1999-01-01

    The effects of the hematoregulatory peptide SK&F 107647 were examined in a persistently and profoundly neutropenic rabbit model of disseminated candidiasis in order to determine its potential to enhance resistance against infection and its role as an adjunct to conventional antifungal chemotherapy. In healthy animals, SK&F 107647 elicited a time-dependent increase in CD11b-positive monocytes and neutrophils. When administered to neutropenic rabbits infected with Candida albicans, no significant differences in the number of CFU per gram in any of the tissues tested compared with the number in untreated control rabbits were detected. However, when SK&F 107647 was administered in combination with low doses of amphotericin B, there was a significant reduction in organism burden in the lungs, liver, spleen, and kidneys compared with the burdens in the organs of untreated control animals and in the lungs and kidneys compared with the burdens in the lungs and kidneys of animals treated with amphotericin B alone. These data suggest a potential role for this peptide as adjunctive therapy in combination with conventional antifungal agents in the treatment of disseminated candidiasis in the setting of profound and persistent neutropenia. PMID:10471559

  5. The ameliorative effect of silibinin against radiation-induced lung injury: protection of normal tissue without decreasing therapeutic efficacy in lung cancer.

    PubMed

    Son, Yeonghoon; Lee, Hae June; Rho, Jin Kyung; Chung, Soo Young; Lee, Chang Geun; Yang, Kwangmo; Kim, Sung Ho; Lee, Minyoung; Shin, In Sik; Kim, Joong Sun

    2015-07-05

    Silibinin has been known for its role in anti-cancer and radio-protective effect. Radiation therapy for treating lung cancer might lead to late-phase pulmonary inflammation and fibrosis. Thus, this study aimed to investigate the effects of silibinin in radiation-induced lung injury with a mouse model. In this study, we examined the ability of silibinin to mitigate lung injury in, and improve survival of, C57BL/6 mice given 13 Gy thoracic irradiation and silibinin treatments orally at 100 mg/kg/day for seven days after irradiation. In addition, Lewis lung cancer (LLC) cells were injected intravenously in C57BL/6 mice to generate lung tumor nodules. Lung tumor-bearing mice were treated with lung radiation therapy at 13 Gy and with silibinin at a dose of 100 mg/day for seven days after irradiation. Silibinin was shown to increase mouse survival, to ameliorate radiation-induced hemorrhage, inflammation and fibrosis in lung tissue, to reduce the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and to reduce inflammatory cell infiltration in the respiratory tract. In LLC tumor injected mice, lung tissue from mice treated with both radiation and silibinin showed no differences compared to lung tissue from mice treated with radiation alone. Silibinin treatment mitigated the radiation-induced lung injury possibly by reducing inflammation and fibrosis, which might be related with the improved survival rate. Silibinin might be a useful agent for lung cancer patients as a non-toxic complementary approach to alleviate the side effects by thorax irradiation.

  6. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    PubMed Central

    2011-01-01

    Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90) and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs). Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2) of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1) as well as profibrotic (M2) phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model offers a time- and cost-effective platform to evaluate the potential of engineered high aspect ratio nanomaterials, including carbon nanotubes, nanofibers, nanorods and metallic nanowires, to induce granulomas following inhalation. PMID:21592387

  7. Synergistic role of HSP90α and HSP90β to promote myofibroblast persistence in lung fibrosis.

    PubMed

    Bellaye, Pierre-Simon; Shimbori, Chiko; Yanagihara, Toyoshi; Carlson, David A; Hughes, Philip; Upagupta, Chandak; Sato, Seidai; Wheildon, Nolan; Haystead, Timothy; Ask, Kjetil; Kolb, Martin

    2018-02-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the lung parenchyma, causing significant morbidity through worsening dyspnoea and overall functional decline. IPF is characterised by apoptosis-resistant myofibroblasts, which are a major source for the excessive production of extracellular matrix (ECM) overtaking normal lung tissue. We sought to study the role of heat shock protein (HSP) isoforms HSP90α and HSP90β, whose distinct roles in lung fibrogenesis remain elusive.We determined the level of circulating HSP90α in IPF patients (n=31) and age-matched healthy controls (n=9) by ELISA. The release of HSP90α and HSP90β was evaluated in vitro in primary IPF and control lung fibroblasts and ex vivo after mechanical stretch on fibrotic lung slices from rats receiving adenovector-mediated transforming growth factor-β1.We demonstrate that circulating HSP90α is upregulated in IPF patients in correlation with disease severity. The release of HSP90α is enhanced by the increase in mechanical stress of the fibrotic ECM. This increase in extracellular HSP90α signals through low-density lipoprotein receptor-related protein 1 (LRP1) to promote myofibroblast differentiation and persistence. In parallel, we demonstrate that the intracellular form of HSP90β stabilises LRP1, thus amplifying HSP90α extracellular action.We believe that the specific inhibition of extracellular HSP90α is a promising therapeutic strategy to reduce pro-fibrotic signalling in IPF. Copyright ©ERS 2018.

  8. Developmental Regulation of NO-Mediated VEGF-Induced Effects in the Lung

    PubMed Central

    Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G.; Yusuf, Kamran; Nedrelow, Jonathan H.; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J.; Elias, Jack A.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit. PMID:18441284

  9. Developmental regulation of NO-mediated VEGF-induced effects in the lung.

    PubMed

    Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G; Yusuf, Kamran; Nedrelow, Jonathan H; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J; Elias, Jack A

    2008-10-01

    Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit.

  10. Protective effects of grape seed and skin extract against high-fat-diet-induced lipotoxicity in rat lung.

    PubMed

    El Ayed, Mohamed; Kadri, Safwen; Smine, Selima; Elkahoui, Salem; Limam, Ferid; Aouani, Ezzedine

    2017-09-13

    Obesity is a public health problem characterized by increased fat accumulation in different tissues. Obesity is directly linked to breathing problems and medical complications with lung, including obstructive sleep apnea syndrome, obesity hypoventilation syndrome, chronic obstructive pulmonary disease, asthma….In the present work, we aimed to investigate the effect of high fat diet (HFD) on lung lipotoxicity, oxidative stress, fatty acid composition and proportions in lung and implication in asthma development. The likely protection provided by grape seed extract (GSSE) was also investigated. In order to assess HFD effect on lung and GSSE protection we used a rat model. We analyzed the lipid plasma profile, lung peroxidation and antioxidant activities (SOD, CAT and POD). We also analyzed transition metals (Ca2+, Mg2+, Zn2+ and iron) and lung free fatty acids using gas chromatography coupled to mass spectrometry (GC-MS). HFD induced lipid profile imbalance increasing cholesterol and VLDL-C. HFD also induced an oxidative stress assessed by elevated MDA level and the drop of antioxidant activities such as SOD, CAT and POD. Moreover, HFD induced mineral disturbances by decreasing magnesium level and increasing Calcium and iron levels. HFD induced also disturbances in lung fatty acid composition by increasing oleic, stearic and arachidonic acids. Interestingly, GSSE alleviated all these deleterious effects of HFD treatment. As a whole, GSSE had a significant preventive effect against HFD-induced obesity, and hence may be used as an anti-obesity agent, and a benefic agent with potential applications against damages in lung tissue.

  11. Profiling over 1500 lipids in induced lung sputum and the implications in studying lung diseases.

    PubMed

    t'Kindt, Ruben; Telenga, Eef D; Jorge, Lucie; Van Oosterhout, Antoon J M; Sandra, Pat; Ten Hacken, Nick H T; Sandra, Koen

    2015-01-01

    Induced lung sputum is a valuable matrix in the study of respiratory diseases. Although the methodology of sputum collection has evolved to a point where it is repeatable and responsive to inflammation, its use in molecular profiling studies is still limited. Here, an in-depth lipid profiling of induced lung sputum using high-resolution liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-Q-TOF MS) is described. An enormous complexity in lipid composition could be revealed. Over 1500 intact lipids, originating from 6 major lipid classes, have been accurately identified in 120 μL of induced sputum. By number and measured intensity, glycerophospholipids represent the largest lipid class, followed by sphingolipids, glycerolipids, fatty acyls, sterol lipids, and prenol lipids. Several prenol lipids, originating from tobacco, could be detected in the lung sputum of smokers. To illustrate the utility of the methodology in studying respiratory diseases, a comparative lipid screening was performed on lung sputum extracts in order to study the effect of Chronic Obstructive Pulmonary Disease (COPD) on the lung barrier lipidome. Results show that sphingolipid expression in induced sputum significantly differs between smokers with and without COPD.

  12. Extracellular adenosine production by ecto-5′-nucleotidase (CD73) enhances radiation-induced lung fibrosis

    PubMed Central

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena

    2016-01-01

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334

  13. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma

    PubMed Central

    Schneeberger, Valentina E.; Ren, Yuan; Luetteke, Noreen; Huang, Qingling; Chen, Liwei; Lawrence, Harshani R.; Lawrence, Nicholas J.; Haura, Eric B.; Koomen, John M.; Coppola, Domenico; Wu, Jie

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara cell secretory protein (CCSP)-rtTA-directed transgene expression in the type II lung pneumocytes of transgenic mice, we found that the Gab1-Shp2 pathway was activated by EGFRL858R in the lungs of transgenic mice. Consistently, the Gab1-Shp2 pathway was activated in human lung adenocarcinoma cells containing mutant EGFR. Importantly, Shp2CSDA inhibited EGFRL858R-induced lung adenocarcinoma in transgenic animals. Analysis of lung tissues showed that Shp2CSDA suppressed Gab1 tyrosine phosphorylation and Gab1-Shp2 association, suggesting that Shp2 modulates a positive feedback loop to regulate its own activity. These results show that inhibition of the Shp2 PTP activity impairs mutant EGFR signaling and suppresses EGFRL858R-driven lung adenocarcinoma. PMID:25730908

  14. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    PubMed

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung.

  15. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model

    PubMed Central

    Franzi, Lisa M.; Linderholm, Angela L.; Last, Jerold A.; Adams, Jason Y.; Harper, Richart W.

    2017-01-01

    Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency of recruitment maneuvers to help ameloriate ventilator-induced lung injury. PMID:29112971

  16. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu; Shen, Jianliang; Patel-Vayas, Kinal

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression ofmore » Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and altered lung functioning.« less

  17. Maternal diesel inhalation increases airway hyperreactivity in ozone-exposed offspring.

    PubMed

    Auten, Richard L; Gilmour, M Ian; Krantz, Q Todd; Potts, Erin N; Mason, S Nicholas; Foster, W Michael

    2012-04-01

    Air pollutant exposure is linked with childhood asthma incidence and exacerbations, and maternal exposure to airborne pollutants during pregnancy increases airway hyperreactivity (AHR) in offspring. To determine if exposure to diesel exhaust (DE) during pregnancy worsened postnatal ozone-induced AHR, timed pregnant C57BL/6 mice were exposed to DE (0.5 or 2.0 mg/m(3)) 4 hours daily from Gestation Day 9-17, or received twice-weekly oropharyngeal aspirations of the collected DE particles (DEPs). Placentas and fetal lungs were harvested on Gestation Day 18 for cytokine analysis. In other litters, pups born to dams exposed to air or DE, or to dams treated with aspirated diesel particles, were exposed to filtered air or 1 ppm ozone beginning the day after birth, for 3 hours per day, 3 days per week for 4 weeks. Additional pups were monitored after a 4-week recovery period. Diesel inhalation or aspiration during pregnancy increased levels of placental and fetal lung cytokines. There were no significant effects on airway leukocytes, but prenatal diesel augmented ozone-induced elevations of bronchoalveolar lavage cytokines at 4 weeks. Mice born to the high-concentration diesel-exposed dams had worse ozone-induced AHR, which persisted in the 4-week recovery animals. Prenatal diesel exposure combined with postnatal ozone exposure also worsened secondary alveolar crest development. We conclude that maternal inhalation of DE in pregnancy provokes a fetal inflammatory response that, combined with postnatal ozone exposure, impairs alveolar development, and causes a more severe and long-lasting AHR to ozone exposure.

  18. Glucose metabolism-targeted therapy and withaferin A are effective for epidermal growth factor receptor tyrosine kinase inhibitor-induced drug-tolerant persisters.

    PubMed

    Kunimasa, Kei; Nagano, Tatsuya; Shimono, Yohei; Dokuni, Ryota; Kiriu, Tatsunori; Tokunaga, Shuntaro; Tamura, Daisuke; Yamamoto, Masatsugu; Tachihara, Motoko; Kobayashi, Kazuyuki; Satouchi, Miyako; Nishimura, Yoshihiro

    2017-07-01

    In pathway-targeted cancer drug therapies, the relatively rapid emergence of drug-tolerant persisters (DTPs) substantially limits the overall therapeutic benefit. However, little is known about the roles of DTPs in drug resistance. In this study, we investigated the features of epidermal growth factor receptor-tyrosine kinase inhibitor-induced DTPs and explored a new treatment strategy to overcome the emergence of these DTPs. We used two EGFR-mutated lung adenocarcinoma cell lines, PC9 and II-18. They were treated with 2 μM gefitinib for 6, 12, or 24 days or 6 months. We analyzed the mRNA expression of the stem cell-related markers by quantitative RT-PCR and the expression of the cellular senescence-associated proteins. Then we sorted DTPs according to the expression pattern of CD133 and analyzed the features of sorted cells. Finally, we tried to ablate DTPs by glucose metabolism targeting therapies and a stem-like cell targeting drug, withaferin A. Drug-tolerant persisters were composed of at least two types of cells, one with the properties of cancer stem-like cells (CSCs) and the other with the properties of therapy-induced senescent (TIS) cells. The CD133 high cell population had CSC properties and the CD133 low cell population had TIS properties. The CD133 low cell population containing TIS cells showed a senescence-associated secretory phenotype that supported the emergence of the CD133 high cell population containing CSCs. Glucose metabolism inhibitors effectively eliminated the CD133 low cell population. Withaferin A effectively eliminated the CD133 high cell population. The combination of phloretin and withaferin A effectively suppressed gefitinib-resistant tumor growth. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. The use of a portable digital thoracic suction Thopaz drainage system for the management of a persistent spontaneous secondary pneumothorax in a patient with underlying interstitial lung disease

    PubMed Central

    Jenkins, William S A; Hall, David P; Dhaliwal, Kev; Hill, Adam T; Hirani, Nik

    2012-01-01

    We present the case of a 68-year-old woman who presented in extremis with a secondary pneumothorax with a past history of severe idiopathic pulmonary fibrosis. Following insertion of a 32F intercostal drain, she developed a persistent broncho-pleural fistula and became dependent on negative-pressure wall-mounted suction to prevent respiratory compromise. She declined definitive surgical intervention and was therefore managed conservatively. After adhering to the wall-mounted suction method for 49 days, we obtained for use a portable digital thoracic drainage system previously used only in the cardiothoracic postoperative patient. This electronically delivered, negative-pressure drainage system induced radiographic improvement within 24 h, and allowed the patient to mobilise for the first time since admission. The patient was discharged home with the Thopaz drain in situ 8 weeks after placing it, and the drain was removed successfully with a resolved pneumothorax 20 weeks  after her initial presentation. PMID:22684832

  20. Comparative Effects of Volutrauma and Atelectrauma on Lung Inflammation in Experimental Acute Respiratory Distress Syndrome

    PubMed Central

    Güldner, Andreas; Braune, Anja; Ball, Lorenzo; Silva, Pedro L.; Samary, Cynthia; Insorsi, Angelo; Huhle, Robert; Rentzsch, Ines; Becker, Claudia; Oehme, Liane; Andreeff, Michael; Vidal Melo, Marcos F.; Winkler, Tilo; Pelosi, Paolo; Rocco, Patricia R. M.; Kotzerke, Jörg; de Abreu, Marcelo Gama

    2016-01-01

    Objective Volutrauma and atelectrauma promote ventilator-induced lung injury, but their relative contribution to inflammation in ventilator-induced lung injury is not well established. The aim of this study was to determine the impact of volutrauma and atelectrauma on the distribution of lung inflammation in experimental acute respiratory distress syndrome. Design Laboratory investigation. Setting University-hospital research facility. Subjects Ten pigs (five per group; 34.7–49.9 kg) Interventions Animals were anesthetized and intubated, and saline lung lavage was performed. Lungs were separated with a double-lumen tube. Following lung recruitment and decremental positive end-expiratory pressure trial, animals were randomly assigned to 4 hours of ventilation of the left (ventilator-induced lung injury) lung with tidal volume of approximately 3 mL/kg and 1) high positive end-expiratory pressure set above the level where dynamic compliance increased more than 5% during positive end-expiratory pressure trial (volutrauma); or 2) low positive end-expiratory pressure to achieve driving pressure comparable with volutrauma (atelectrauma). The right (control) lung was kept on continuous positive airway pressure of 20 cm H2O, and Co2 was partially removed extracorporeally. Measurements and Main Results Regional lung aeration, specific [18F]fluorodeoxyglucose uptake rate, and perfusion were assessed using computed and positron emission tomography. Volutrauma yielded higher [18F]fluorodeoxyglucose uptake rate in the ventilated lung compared with atelectrauma (median [interquartile range], 0.017 [0.014–0.025] vs 0.013 min−1 [0.010–0.014min−1]; p < 0.01), mainly in central lung regions. Volutrauma yielded higher [18F]fluorodeoxyglucose uptake rate in ventilator-induced lung injury versus control lung (0.017 [0.014–0.025] vs 0.011 min−1 [0.010–0.016min−1]; p < 0.05), whereas atelectrauma did not. Volutrauma decreased blood fraction at similar perfusion and increased normally as well as hyper-aerated lung compartments and tidal hyperaeration. Atelectrauma yielded higher poorly and nonaerated lung compartments, and tidal recruitment. Driving pressure increased in atelectrauma. Conclusions In this model of acute respiratory distress syndrome, volutrauma promoted higher lung inflammation than atelectrauma at comparable low tidal volume and lower driving pressure, suggesting that static stress and strain are major determinants of ventilator-induced lung injury. PMID:27035236

  1. Curcumin protects the developing lung against long-term hyperoxic injury

    PubMed Central

    Sakurai, R.; Villarreal, P.; Husain, S.; Liu, Jie; Sakurai, T.; Tou, E.; Torday, J. S.

    2013-01-01

    Curcumin, a potent anti-inflammatory and antioxidant agent, modulates peroxisome proliferator-activated receptor-γ signaling, a key molecule in the etiology of bronchopulmonary dysplasia (BPD). We have previously shown curcumin's acute protection against neonatal hyperoxia-induced lung injury. However, its longer-term protection against BPD is not known. Hypothesizing that concurrent treatment with curcumin protects the developing lung against hyperoxia-induced lung injury long-term, we determined if curcumin protects against hyperoxic neonatal rat lung injury for the first 5 days of life, as determined at postnatal day (PND) 21. One-day-old rat pups were exposed to either 21 or 95% O2 for 5 days with or without curcumin treatment (5 mg/kg) administered intraperitoneally one time daily, following which the pups grew up to PND21 in room air. At PND21 lung development was determined, including gross and cellular structural and functional effects, and molecular mediators of inflammatory injury. To gain mechanistic insights, embryonic day 19 fetal rat lung fibroblasts were examined for markers of apoptosis and MAP kinase activation following in vitro exposure to hyperoxia for 24 h in the presence or absence of curcumin (5 μM). Curcumin effectively blocked hyperoxia-induced lung injury based on systematic analysis of markers for lung injury (apoptosis, Bcl-2/Bax, collagen III, fibronectin, vimentin, calponin, and elastin-related genes) and lung morphology (radial alveolar count and alveolar septal thickness). Mechanistically, curcumin prevented the hyperoxia-induced increases in cleaved caspase-3 and the phosphorylation of Erk1/2. Molecular effects of curcumin, both structural and cytoprotective, suggest that its actions against hyperoxia-induced lung injury are mediated via Erk1/2 activation and that it is a potential intervention against BPD. PMID:23812632

  2. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    PubMed

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats.

  3. Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury.

    PubMed

    Curley, Gerard F; Ansari, Bilal; Hayes, Mairead; Devaney, James; Masterson, Claire; Ryan, Aideen; Barry, Frank; O'Brien, Timothy; Toole, Daniel O'; Laffey, John G

    2013-04-01

    Mesenchymal stromal cells (MSCs) have been demonstrated to attenuate acute lung injury when delivered by intravenous or intratracheal routes. The authors aimed to determine the efficacy of and mechanism of action of intratracheal MSC therapy and to compare their efficacy in enhancing lung repair after ventilation-induced lung injury with intravenous MSC therapy. : After induction of anesthesia, rats were orotracheally intubated and subjected to ventilation-induced lung injury (respiratory rate 18(-1) min, P insp 35 cm H2O,) to produce severe lung injury. After recovery, animals were randomized to receive: (1) no therapy, n = 4; (2) intratracheal vehicle (phosphate-buffered saline, 300 µl, n = 8); (3) intratracheal fibroblasts (4 × 10 cells, n = 8); (4) intratracheal MSCs (4 × 10(6) cells, n = 8); (5) intratracheal conditioned medium (300 µl, n = 8); or (6) intravenous MSCs (4 × 10(6) cells, n = 4). The extent of recovery after acute lung injury and the inflammatory response was assessed after 48 h. Intratracheal MSC therapy enhanced repair after ventilation-induced lung injury, improving arterial oxygenation (mean ± SD, 146 ± 3.9 vs. 110.8 ± 21.5 mmHg), restoring lung compliance (1.04 ± 0.11 vs. 0.83 ± 0.06 ml · cm H2O(-1)), reducing total lung water, and decreasing lung inflammation and histologic injury compared with control. Intratracheal MSC therapy attenuated alveolar tumor necrosis factor-α (130 ± 43 vs. 488 ± 211 pg · ml(-1)) and interleukin-6 concentrations (138 ± 18 vs. 260 ± 82 pg · ml(-1)). The efficacy of intratracheal MSCs was comparable with intravenous MSC therapy. Intratracheal MSCs seemed to act via a paracine mechanism, with conditioned MSC medium also enhancing lung repair after injury. Intratracheal MSC therapy enhanced recovery after ventilation-induced lung injury via a paracrine mechanism, and was as effective as intravenous MSC therapy.

  4. Febuxostat protects rats against lipopolysaccharide-induced lung inflammation in a dose-dependent manner.

    PubMed

    Fahmi, Alaa N A; Shehatou, George S G; Shebl, Abdelhadi M; Salem, Hatem A

    2016-03-01

    The aim of the present work was to investigate possible protective effects of febuxostat, a highly potent xanthine oxidase inhibitor, against acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats. Male Sprague Dawley rats were randomly divided into six groups, as follows: (i) vehicle control group; (ii) and (iii) febuxostat 10 and febuxostat 15 groups, drug-treated controls; (iv) LPS group, receiving an intraperitoneal injection of LPS (7.5 mg/kg); (v) and (vi) febuxostat 10-LPS and febuxostat 15-LPS groups, receiving oral treatment of febuxostat (10 and 15 mg/kg/day, respectively) for 7 days before LPS. After 18 h administration of LPS, blood was collected for C-reactive protein (CRP) measurement. Bronchoalveolar lavage fluid (BALF) was examined for leukocyte infiltration, lactate dehydrogenase (LDH) activity, protein content, and total nitrate/nitrite. Lung weight gain was determined, and lung tissue homogenate was prepared and evaluated for oxidative stress. Tumor necrosis factor-α (TNF-α) was assessed in BALF and lung homogenate. Moreover, histological changes of lung tissues were evaluated. LPS elicited lung injury characterized by increased lung water content (by 1.2 fold), leukocyte infiltration (by 13 fold), inflammation and oxidative stress (indicated by increased malondialdehyde (MDA), by 3.4 fold), and reduced superoxide dismutase (SOD) activity (by 34 %). Febuxostat dose-dependently decreased LPS-induced lung edema and elevations in BALF protein content, infiltration of leukocytes, and LDH activity. Moreover, the elevated levels of TNF-α in BALF and lung tissue of LPS-treated rats were attenuated by febuxostat pretreatment. Febuxostat also displayed a potent antioxidant activity by decreasing lung tissue levels of MDA and enhancing SOD activity. Histological analysis of lung tissue further demonstrated that febuxostat dose-dependently reversed LPS-induced histopathological changes. These findings demonstrate a significant dose-dependent protection by febuxostat against LPS-induced lung inflammation in rats.

  5. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life.

    PubMed

    Bui, Dinh S; Lodge, Caroline J; Burgess, John A; Lowe, Adrian J; Perret, Jennifer; Bui, Minh Q; Bowatte, Gayan; Gurrin, Lyle; Johns, David P; Thompson, Bruce R; Hamilton, Garun S; Frith, Peter A; James, Alan L; Thomas, Paul S; Jarvis, Deborah; Svanes, Cecilie; Russell, Melissa; Morrison, Stephen C; Feather, Iain; Allen, Katrina J; Wood-Baker, Richard; Hopper, John; Giles, Graham G; Abramson, Michael J; Walters, Eugene H; Matheson, Melanie C; Dharmage, Shyamali C

    2018-04-05

    Lifetime lung function is related to quality of life and longevity. Over the lifespan, individuals follow different lung function trajectories. Identification of these trajectories, their determinants, and outcomes is important, but no study has done this beyond the fourth decade. We used six waves of the Tasmanian Longitudinal Health Study (TAHS) to model lung function trajectories measured at 7, 13, 18, 45, 50, and 53 years. We analysed pre-bronchodilator FEV 1 z-scores at the six timepoints using group-based trajectory modelling to identify distinct subgroups of individuals whose measurements followed a similar pattern over time. We related the trajectories identified to childhood factors and risk of chronic obstructive pulmonary disease (COPD) using logistic regression, and estimated population-attributable fractions of COPD. Of the 8583 participants in the original cohort, 2438 had at least two waves of lung function data at age 7 years and 53 years and comprised the study population. We identified six trajectories: early below average, accelerated decline (97 [4%] participants); persistently low (136 [6%] participants); early low, accelerated growth, normal decline (196 [8%] participants); persistently high (293 [12%] participants); below average (772 [32%] participants); and average (944 [39%] participants). The three trajectories early below average, accelerated decline; persistently low; and below average had increased risk of COPD at age 53 years compared with the average group (early below average, accelerated decline: odds ratio 35·0, 95% CI 19·5-64·0; persistently low: 9·5, 4·5-20·6; and below average: 3·7, 1·9-6·9). Early-life predictors of the three trajectories included childhood asthma, bronchitis, pneumonia, allergic rhinitis, eczema, parental asthma, and maternal smoking. Personal smoking and active adult asthma increased the impact of maternal smoking and childhood asthma, respectively, on the early below average, accelerated decline trajectory. We identified six potential FEV 1 trajectories, two of which were novel. Three trajectories contributed 75% of COPD burden and were associated with modifiable early-life exposures whose impact was aggravated by adult factors. We postulate that reducing maternal smoking, encouraging immunisation, and avoiding personal smoking, especially in those with smoking parents or low childhood lung function, might minimise COPD risk. Clinicians and patients with asthma should be made aware of the potential long-term implications of non-optimal asthma control for lung function trajectory throughout life, and the role and benefit of optimal asthma control on improving lung function should be investigated in future intervention trials. National Health and Medical Research Council of Australia; European Union's Horizon 2020; The University of Melbourne; Clifford Craig Medical Research Trust of Tasmania; The Victorian, Queensland & Tasmanian Asthma Foundations; The Royal Hobart Hospital; Helen MacPherson Smith Trust; and GlaxoSmithKline. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway

    PubMed Central

    2015-01-01

    In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to “digest” carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung. PMID:24871084

  7. REDUCTION IN INSPIRATORY FLOW ATTENUATES IL-8 RELEASE AND MAPK ACTIVATION OF LUNG OVERSTRETCH

    EPA Science Inventory

    Lung overstretch involves mechanical factors, including large tidal volumes (VT), which induce inflammatory responses. The current authors hypothesised that inspiratory flow contributes to ventilator-induced inflammation. Buffer-perfused rabbit lungs were ventilated for 2 h with ...

  8. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  9. Hyperoxia exacerbates postnatal inflammation-induced lung injury in neonatal BRP-39 null mutant mice promoting the M1 macrophage phenotype.

    PubMed

    Syed, Mansoor A; Bhandari, Vineet

    2013-01-01

    Hyperoxia exposure to developing lungs-critical in the pathogenesis of bronchopulmonary dysplasia-may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2) studies. For in vivo studies, wild-type (WT) and BRP-39(-/-) mice received continuous exposure to 21% O2 (control mice) or 100% O2 from postnatal (PN) 1 to PN7 days, along with intranasal lipopolysaccharide (LPS) administered on alternate days (PN2, -4, and -6). Lung histology, bronchoalveolar lavage (BAL) cell counts, BAL protein, and cytokines measurements were performed. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39(-/-) mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury.

  10. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John T.; McCluskey, Richard; Hunter, Robert L.

    2004-01-01

    Nanomaterials are part of an industrial revolution to develop lightweight but strong materials for a variety of purposes. Single-wall carbon nanotubes are an important member of this class of materials. They structurally resemble rolled-up graphite sheets, usually with one end capped; individually they are about 1 nm in diameter and several microns long, but they often pack tightly together to form rods or ropes of microscopic sizes. Carbon nanotubes possess unique electrical, mechanical, and thermal properties and have many potential applications in the electronics, computer, and aerospace industries. Unprocessed nanotubes are very light and could become airborne and potentially reach the lungs. Because the toxicity of nanotubes in the lung is not known, their pulmonary toxicity was investigated. The three products studied were made by different methods and contained different types and amounts of residual catalytic metals. Mice were intratracheally instilled with 0, 0.1, or 0.5 mg of carbon nanotubes, a carbon black negative control, or a quartz positive control and euthanized 7 d or 90 d after the single treatment for histopathological study of the lungs. All nanotube products induced dose-dependent epithelioid granulomas and, in some cases, interstitial inflammation in the animals of the 7-d groups. These lesions persisted and were more pronounced in the 90-d groups; the lungs of some animals also revealed peribronchial inflammation and necrosis that had extended into the alveolar septa. The lungs of mice treated with carbon black were normal, whereas those treated with high-dose quartz revealed mild to moderate inflammation. These results show that, for the test conditions described here and on an equal-weight basis, if carbon nanotubes reach the lungs, they are much more toxic than carbon black and can be more toxic than quartz, which is considered a serious occupational health hazard in chronic inhalation exposures.

  11. Studies on the inhalation toxicology of two fiberglasses and amosite asbestos in the syrian golden hamster. Part I. Results of a subchronic study and dose selection for a chronic study.

    PubMed

    Hesterberg, T W; Axten, C; McConnell, E E; Hart, G A; Miiller, W; Chevalier, J; Everitt, J; Thevenaz, P; Oberdörster, G

    1999-09-01

    A multidose, subchronic inhalation study was used to estimate the maximum tolerated dose (MTD) of 901 fiberglass (MMVF10.1) for a chronic inhalation study using hamsters. Subchronic study results indicated that 30 mg/m(3) [250-300 WHO fibers (>5 microm long)/cm(3) and 100-130 fibers/cm(3) >20 microm long] meets or exceeds the estimated MTD, and chronic study results confirmed this. For the subchronic study, hamsters were exposed 6 h/day, 5 days/wk, for 13 wk to MMVF10.1 at 3, 16, 30, 45, and 60 mg/m(3) (36, 206, 316, 552, or 714 WHO fibers/cm(3)), then monitored for 10 wk. Results demonstrating MTD were: inflammatory response (all fiber exposures); elevated lung cell proliferation with @ges;16 mg/m(3); lung lavage neutrophil elevations with @ges;16 mg/m(3) and lactate dehydrogenase (LDH) and protein elevations with > or = 30 mg/m(3); and persistent abnormal macrophage/fiber clumps in lungs exposed to 45 and 60 mg/m(3), which suggest overloading of clearance mechanisms. For the chronic study, hamsters were exposed for 78 wk to MMVF10a (901 fiber glass) or MMVF33 (special-application 475 fiberglass) at approximately 300 WHO fibers/cm(3) ( approximately 100 fibers/cm(3) @gt;20 @mu;m long), or to amosite asbestos at an equivalent concentration and 2 lower concentrations. All fiber-exposed animals had pulmonary inflammation, elevated lung lavage cells, and increased lung cell proliferation. Between 52 and 78 wk of exposure, lung burdens of all fibers increased at an accelerated rate, suggesting impairment of clearance mechanisms. MMVF33 and amosite induced fibrosis and pleural mesothelioma. These findings substantiate that exposures in the chronic study adequately tested the toxic potential of fiberglass.

  12. Arsenic is Cytotoxic and Genotoxic to Primary Human Lung Cells

    PubMed Central

    Xie, Hong; Huang, ShouPing; Martin, Sarah; Wise, John P.

    2014-01-01

    Arsenic originates from both geochemical and numerous anthropogenic activities. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to high levels of arsenic in drinking water have been linked to bladder, lung, kidney, liver, prostate, and skin cancer. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast and epithelial cells. Our data show that arsenic induces a concentration-dependent decrease in cell survival after short (24 h) or long (120 h) exposures. Arsenic induces concentration-dependent but not time-dependent increases in chromosome damage in fibroblasts. No chromosome damage is induced after either 24 h or 120 h arsenic exposure in epithelial cells. Using neutral comet assay and gamma-H2A.X foci forming assay, we found that 24 h or 120 h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells but lung fibroblasts are more sensitive to arsenic than epithelial cells. Further research is needed to understand the specific mechanisms involved in arsenic-induced genotoxicity in human lung cells. PMID:24291234

  13. Effects of perfluorooctanoic acid (PFOA) on expression of ...

    EPA Pesticide Factsheets

    PPARs regulate metabolism and can be activated by environmental contaminants such as perfluorooctanoic acid (PFOA). PFOA induces neonatal mortality, developmental delay, and growth deficits in mice. Studies in genetically altered mice showed that PPARa is required for PFOA-induced developmental toxicity. In this study, pregnant CD-1 mice were dosed orally from GD1-17 with water or 5 mg PFO/kg to examine PPARa, PPARß, and PPARy expression and profile the effects of PFOA on PPAR-regulated genes. Prenatal and postnatal liver, heart, adrenal, kidney, intestine, stomach, lung, spleen, and thymus were collected at various developmental ages. RNA and protein were examined using qPCR and Western blot analysis. PPAR expression varied with age in all tissues, and in liver PPARa and PPARy expression correlated with nutritional changes as the pups matured. As early as GD14, PFOA affected expression of genes involved in lipid and glucose homeostatic control. The metabolic disruption produced by PFOA may contribute to poor postnatal survival and persistent weight deficits of neonates This paper represents the continuing efforts at ORD, in response to the call for assistance from OPPTS, to investigate the potential developmental toxicities of perfluoroalkyl acids (PFAA). Perfluorooctanoic acid (PFOA) is a compound which persists and is found ubiquitously in the environment, wildlife and humans. Studies in our laboratory using an in vitro transfected cell model showed that PFO

  14. Intermedin Stabilized Endothelial Barrier Function and Attenuated Ventilator-induced Lung Injury in Mice

    PubMed Central

    Müller-Redetzky, Holger Christian; Kummer, Wolfgang; Pfeil, Uwe; Hellwig, Katharina; Will, Daniel; Paddenberg, Renate; Tabeling, Christoph; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2012-01-01

    Background Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. Methodology/Principal Findings Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1–3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. Conclusions/Significance IMD may possibly provide a new approach to attenuate VILI. PMID:22563471

  15. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 ofmore » 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.« less

  16. A preclinical rodent model of acute radiation-induced lung injury after ablative focal irradiation reflecting clinical stereotactic body radiotherapy.

    PubMed

    Hong, Zhen-Yu; Lee, Hae-June; Choi, Won Hoon; Lee, Yoon-Jin; Eun, Sung Ho; Lee, Jung Il; Park, Kwangwoo; Lee, Ji Min; Cho, Jaeho

    2014-07-01

    In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.

  17. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Wang; Chunhua, Ma, E-mail: machunhuabest@126.com; Shumin, Wang, E-mail: wangshuminch@126.com

    The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6)more » in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.« less

  18. Hemostasis and sealing of air leaks in the lung using high-intensity focused ultrasound.

    PubMed

    Vaezy, Shahram; Zderic, Vesna; Karmy-Jones, Riyad; Jurkovich, Gregory J; Cornejo, Carol; Martin, Roy W

    2007-06-01

    Operative management of parenchymal lung injury can be complicated by persistent hemorrhage and air leak, which might require resection. Techniques that preserve parenchyma are associated with improved survival. High-intensity focused ultrasound (HIFU) has been demonstrated as a useful method for hemostasis in experimental solid organ injuries. We wished to investigate whether this could be applied to lung injuries. An intraoperative HIFU device (frequency of 5.7 MHz, acoustic power of 65 W), equipped with a titanium coupler, was used. Incisions (average length of 2.5 cm, and depth of 5 mm) were made in the lungs of 11 pigs, which created both parenchymal hemorrhage and air leakage. In treatment experiments, 70 incisions were sealed with HIFU. The HIFU application started within 10 seconds of inducing the injury. Hemostasis was assessed by visual observation of sealed incisions. The possible air leakage was determined by submersing the sealed incision under the layer of water and observing for air bubble formation. In control experiments, five incisions were left untreated to monitor air leaks and bleeding for 2 minutes. Hemostasis and pneumostasis (sealing of air leaks) of the treated incisions were achieved in 51 +/- 37 seconds (mean +/- SD) (range of 10-210 seconds) of HIFU application time. Over 95% of incisions were hemostatic within 2 minutes of HIFU application. The treatment time was not dependent on the incision length or depth. In control experiments, the air leaking and bleeding were still present at 2 minutes after the injury. Intraoperative HIFU might provide an effective method of hemostasis and control of air leaks from lacerations caused by trauma.

  19. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung

    PubMed Central

    Cohen, Mitchell D.; Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Kodavanti, Urmila P.; Ward, William O.; Peltier, Richard E.; Zelikoff, Judith; Chen, Lung-chi

    2015-01-01

    First responders (FR) present at Ground Zero in the first 72 h after the World Trade Center (WTC) collapsed have progressively exhibited significant respiratory injuries. The few toxicology studies performed to date evaluated effects from just fine (<2.5 µm) WTC dusts; none examined health effects/toxicities from atmospheres bearing larger particle sizes, despite the fact the majority (496%) of dusts were >10µm and most FR likely entrained dusts by mouth breathing. Using a system that generated/delivered supercoarse (10–53 µm) WTC dusts to F344 rats (in a manner that mimicked FR exposures), this study sought to examine potential toxicities in the lungs. In this exploratory study, rats were exposed for 2 h to 100 mg WTC dust/m3 (while under isoflurane [ISO] anesthesia) or an air/ISO mixture; this dose conservatively modeled likely exposures by mouth-breathing FR facing ≈750–1000 mg WTC dust/m3. Lungs were harvested 2 h post-exposure and total RNA extracted for subsequent global gene expression analysis. Among the > 1000 genes affected by WTC dust (under ISO) or ISO alone, 166 were unique to the dust exposure. In many instances, genes maximally-induced by the WTC dust exposure (relative to in naïve rats) were unchanged/inhibited by ISO only; similarly, several genes maximally inhibited in WTC dust rats were largely induced/unchanged in rats that received ISO only. These outcomes reflect likely contrasting effects of ISO and the WTC dust on lung gene expression. Overall, the data show that lungs of rats exposed to WTC dust (under ISO) – after accounting for any impact from ISO alone – displayed increased expression of genes related to lung inflammation, oxidative stress, and cell cycle control, while several involved in anti-oxidant function were inhibited. These changes suggested acute inflammogenic effects and oxidative stress in the lungs of WTC dust-exposed rats. This study, thus, concludes that a single very high exposure to WTC dusts could potentially have adversely affected the respiratory system – in terms of early inflammatory and oxidative stress processes. As these changes were not compared with other types of dusts, the uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be determined if these effects might have any relevance to chronic lung pathologies that became evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will help to determine if effects seen here on genes were acute, reversible, or persistent, and associated with corresponding histopathologic/ biochemical changes in situ. PMID:24911330

  20. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    PubMed Central

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  1. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in this model. To determine whether TxA_2 was involved in toxicity induced by PMN and PMA, lungs were coperfused with the cyclooxygenase inhibitor, indomethacin or the thromboxane synthase inhibitor, Dazmegrel. Experiments were also performed using lungs and/or PMN that had been pretreated with aspirin. These drug treatments had little effect, if any, on the pressure increase; however, they protected lungs against edema development. These results suggest that TxA_2 may participate in the pathogenesis of edema by some other mechanism than by increasing vascular pressure. In conclusion, results from studies performed in this thesis suggest that both active oxygen species and thromboxane are involved in toxicity to the isolated rat lung induced by PMA and PMN. How both of these interact to produce lung injury is a question which remains to be answered.

  2. Understanding the Lung Abscess Microbiome: Outcomes of Percutaneous Lung Parenchymal Abscess Drainage with Microbiologic Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Christopher; Nadolski, Gregory J.; Gade, Terence

    IntroductionLung parenchymal abscesses represent an uncommon pathology with high mortality if untreated. Although most respond well to antibiotics, the optimal therapy for persistent abscesses is unknown. The purpose of this study was to review the outcomes of percutaneous lung parenchymal abscess catheter drainage after broad-spectrum antibiotic therapy failure and correlate with patient microbiologic samples.Materials and MethodsRetrospective review of patients who underwent percutaneous lung abscess drainage at a tertiary hospital system from 2005 to 2015 was performed. In total, 19 procedures were identified on 16 different patients; six females and ten males. Mean patient age was 55 years (range 22–81). Median follow-upmore » time was 7 months (range <1–78).ResultsTechnical success was 100%. There was one major complication, a pneumothorax. Follow-up was until tube removal or death in 100% of patients. Catheters were removed with resolution of the abscess cavity in 58% (11/19) or with non-draining abscess cavities in 21% (4/19) for a clinical success rate of 79%. Blood cultures demonstrated no growth in all cases, while 21% (4/19) of sputum or bronchoscopic cultures demonstrated growth. In comparison, the specimens from initial catheter placement isolated a causative organism in 95% (18/19) of case (p < 0.0001).ConclusionIn cases of persistent lung abscess after broad-spectrum antibiotics, percutaneous abscess drainage is highly sensitive for microbiologic sampling compared to sputum/bronchoscopic or blood cultures. Additionally, percutaneous drainage of lung parenchymal abscess cavities may promote resolution of the abscess with high rates of therapeutic success and low complications.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.

    Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adultmore » lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced following infection of both fetal and adult cells and many of the genes upregulated in both cell types were those involved in establishment of an antiviral state; this is the first demonstration of an interferon response at this early stage of human embryonic development. In both fetal and adult cells, interferon controlled but did not eliminate virus spread and apoptosis was not induced in infected fetal cells in the absence of interferon. In addition to the interferon response, chemokines were induced in both infected fetal and adult cells. Thus, it is possible that fetal damage following congenital RUB infection, which involves cell proliferation and differentiation, could be due to induction of the innate immune response as well as frank virus infection.« less

  4. Protective effects of edaravone combined puerarin on inhalation lung injury induced by black gunpowder smog.

    PubMed

    Wang, Zhengguan; Li, Ruibing; Liu, Yifan; Liu, Xiaoting; Chen, Wenyan; Xu, Shumin; Guo, Yuni; Duan, Jinyang; Chen, Yihong; Wang, Chengbin

    2015-05-01

    The present study aimed to investigate the combined effects of puerarin with edaravone on inhalation lung injury induced by black gunpowder smog. Male Wistar rats were divided into five groups (control group, edaravone group, puerarin group, edaravone combined with puerarin group and inhalation group). The severity of pulmonary injuries was evaluated after inducing acute lung injury. Arterial blood gas, inflammatory cytokines, biochemical, parameters, cell counting, W/D weight ratio and histopathology were analyzed. Results in lung tissues, either edaravone or puerarin treatment alone showed significant protective effects against neutrophil infiltration and tissue injury, as demonstrated by myeloperoxidase activity and histopathological analysis (all p<0.05). In addition, combined treatment with both edaravone and puerarin demonstrated additive protective effects on smog-induced lung injury, compared with single treatment. Combination of edaravone and puerarin shows promise as a new treatment option for acute lung injury/acute respiratory distress syndrome patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Functional genomics of chlorine-induced acute lung injury in mice.

    PubMed

    Leikauf, George D; Pope-Varsalona, Hannah; Concel, Vincent J; Liu, Pengyuan; Bein, Kiflai; Brant, Kelly A; Dopico, Richard A; Di, Y Peter; Jang, An-Soo; Dietsch, Maggie; Medvedovic, Mario; Li, Qian; Vuga, Louis J; Kaminski, Naftali; You, Ming; Prows, Daniel R

    2010-07-01

    Acute lung injury can be induced indirectly (e.g., sepsis) or directly (e.g., chlorine inhalation). Because treatment is still limited to supportive measures, mortality remains high ( approximately 74,500 deaths/yr). In the past, accidental (railroad derailments) and intentional (Iraq terrorism) chlorine exposures have led to deaths and hospitalizations from acute lung injury. To better understand the molecular events controlling chlorine-induced acute lung injury, we have developed a functional genomics approach using inbred mice strains. Various mouse strains were exposed to chlorine (45 ppm x 24 h) and survival was monitored. The most divergent strains varied by more than threefold in mean survival time, supporting the likelihood of an underlying genetic basis of susceptibility. These divergent strains are excellent models for additional genetic analysis to identify critical candidate genes controlling chlorine-induced acute lung injury. Gene-targeted mice then could be used to test the functional significance of susceptibility candidate genes, which could be valuable in revealing novel insights into the biology of acute lung injury.

  6. Successful prevention of scedosporiosis after lung transplantation in a cystic fibrosis patient by combined local and systemic triazole therapy☆

    PubMed Central

    Hartmann, Carolin; Müller, Carsten; Weißbrodt, Hartmut; Suerbaum, Sebastian; Tintelnot, Kathrin; Stolle, Stefan; Hansen, Gesine; Sedlacek, Ludwig

    2013-01-01

    A persistent colonization with Scedosporium apiospermum (S. apiospermum) often results in disseminated infection with a high mortality rate in immunosuppressed patients. We present the first case of successful prevention of scedosporiosis in an adolescent female cystic fibrosis patient post double lung transplant, with a combination of local and systemic voriconazole therapy and surgical intervention. PMID:24432232

  7. Environmental exposure and HPV infection may act synergistically to induce lung tumorigenesis in nonsmokers

    PubMed Central

    Cheng, Ya-Wen; Lin, Frank Cheau-Feng; Chen, Chih-Yi; Hsu, Nan-Yung

    2016-01-01

    Most studies of lung tumorigenesis have focused on smokers rather than nonsmokers. In this study, we used human papillomavirus (HPV)-positive and HPV-negative lung cancer cells to test the hypothesis that HPV infection synergistically increases DNA damage induced by exposure to the carcinogen benzo[a]pyrene (B[a]P), and contributes to lung tumorigenesis in nonsmokers. DNA adduct levels induced by B[a]P in HPV-positive cells were significantly higher than in HPV-negative cells. The DNA adduct formation was dependent on HPV E6 oncoprotein expression. Gene and protein expression of two DNA repair genes, XRCC3 and XRCC5, were lower in B[a]P-treated E6-positive cells than in E6-negative lung cancer cells. The reduced expression was also detected immunohistochemically and was caused by increased promoter hypermethylation. Moreover, mutations of p53 and epidermal growth factor receptor (EGFR) genes in lung cancer patients were associated with XRCC5 inactivation. In sum, our study indicates that HPV E6-induced promoter hypermethylation of the XRCC3 and XRCC5 DNA repair genes and the resultant decrease in their expression increases B[a]P-induced DNA adducts and contributes to lung tumorigenesis in nonsmokers. PMID:26918347

  8. Pulmonary toxicity of well-dispersed cerium oxide nanoparticles following intratracheal instillation and inhalation

    NASA Astrophysics Data System (ADS)

    Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Tomonaga, Taisuke; Oyabu, Takako; Myojo, Toshihiko; Kawai, Kazuaki; Yatera, Kazuhiro; Shimada, Manabu; Kubo, Masaru; Yamamoto, Kazuhiro; Kitajima, Shinichi; Kuroda, Etsushi; Kawaguchi, Kenji; Sasaki, Takeshi

    2015-11-01

    We performed inhalation and intratracheal instillation studies of cerium dioxide (CeO2) nanoparticles in order to investigate their pulmonary toxicity, and observed pulmonary inflammation not only in the acute and but also in the chronic phases. In the intratracheal instillation study, F344 rats were exposed to 0.2 mg or 1 mg of CeO2 nanoparticles. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed from 3 days to 6 months following the instillation. In the inhalation study, rats were exposed to the maximum concentration of inhaled CeO2 nanoparticles (2, 10 mg/m3, respectively) for 4 weeks (6 h/day, 5 days/week). The same endpoints as in the intratracheal instillation study were examined from 3 days to 3 months after the end of the exposure. The intratracheal instillation of CeO2 nanoparticles caused a persistent increase in the total and neutrophil number in BALF and in the concentration of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, chemokine for neutrophil, and heme oxygenase-1 (HO-1), an oxidative stress marker, in BALF during the observation time. The inhalation of CeO2 nanoparticles also induced a persistent influx of neutrophils and expression of CINC-1, CINC-2, and HO-1 in BALF. Pathological features revealed that inflammatory cells, including macrophages and neutrophils, invaded the alveolar space in both studies. Taken together, the CeO2 nanoparticles induced not only acute but also chronic inflammation in the lung, suggesting that CeO2 nanoparticles have a pulmonary toxicity that can lead to irreversible lesions.

  9. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin.

    PubMed

    Müller-Redetzky, Holger C; Will, Daniel; Hellwig, Katharina; Kummer, Wolfgang; Tschernig, Thomas; Pfeil, Uwe; Paddenberg, Renate; Menger, Michael D; Kershaw, Olivia; Gruber, Achim D; Weissmann, Norbert; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2014-04-14

    Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1-3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p < 0.01; prevention of pulmonary restriction) and against VILI-induced liver and gut injury in pneumonia (91% reduction of AST levels p < 0.05, 96% reduction of alanine aminotransaminase (ALT) levels p < 0.05, abrogation of histopathological changes and parenchymal apoptosis in liver and gut). MV paved the way for the progression of pneumonia towards ARDS and sepsis by aggravating lung injury and systemic hyperinflammation leading to liver, kidney and gut injury. AM may be a promising therapeutic option to protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia.

  10. T(reg) cells may regulate interlukin-17 production by modulating TH1 responses in 1,3-β-glucan-induced lung inflammation in mice.

    PubMed

    Chen, Ying; Liu, Fangwei; Weng, Dong; Song, Laiyu; Li, Cuiying; Tang, Wen; Yu, Ye; Dai, Wujing; Chen, Jie

    2013-01-01

    1,3-β-glucan is considered a fungal biomarker and exposure to this agent can induce lung inflammation. Complement activation plays an important role in early immune responses to β-glucan. Previous studies showed that T-regulatory cells (Tregs) regulated 1,3-β-glucan-induced lung inflammation by modulating the maintenance of immune homeostasis in the lung. Both interleukin (IL)-17 and TH17 cells play pivotal roles in inflammation associated with lung disease and share reciprocal developmental pathways with Tregs. However, the effect of Tregs on IL-17 and TH17 responses in 1,3-β-glucan-induced lung inflammation remains unclear. In this study, mice were exposed to 1,3-β-glucan by intratracheal instillation. To investigate the effects of Tregs on IL-17 and TH17 cells in the induced lung inflammation, a Treg-depleted mice model was generated by administration of anti-CD25 mAb. The results indicated that Treg-depleted mice showed more severe pathological inflammatory changes in lung tissues. Tregs depletion reduced IL-17 expression in these tissues, and increased those of TH1 cytokines. The expression of IL-17 increased at the early phase of the inflammation response. There were no significant effects of the Tregs on expression of RORγt and IL-6 or the amount of CD4(+)IL-17(+) cells in the lungs. When taken together, the late phase of the 1,3-β-glucan-induced inflammatory response in the mice was primarily mediated by TH1 cytokines rather than IL-17. In contrast, the early phase of the inflammatory response might be mediated in part by IL-17 along with activated complement. Tregs might be required for IL-17 expression during the late phase inflammatory response in mice. The increased IL-17 mRNA observed during the 1,3-β-glucan induced inflammatory response were attributed to cells other than TH17 cells.

  11. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ye-Ji; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul; Lee, Seung-Hae

    2012-08-15

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0more » increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.« less

  12. Hydrogen Gas Inhalation Attenuates Seawater Instillation-Induced Acute Lung Injury via the Nrf2 Pathway in Rabbits.

    PubMed

    Diao, Mengyuan; Zhang, Sheng; Wu, Lifeng; Huan, Le; Huang, Fenglou; Cui, Yunliang; Lin, Zhaofen

    2016-12-01

    Seawater instillation-induced acute lung injury involves oxidative stress and apoptosis. Although hydrogen gas inhalation is reportedly protective in multiple types of lung injury, the effect of hydrogen gas inhalation on seawater instillation-induced acute lung injury remains unknown. This study investigated the effect of hydrogen gas on seawater instillation-induced acute lung injury and explored the mechanisms involved. Rabbits were randomly assigned to control, hydrogen (2 % hydrogen gas inhalation), seawater (3 mL/kg seawater instillation), and seawater + hydrogen (3 mL/kg seawater instillation + 2 % hydrogen gas inhalation) groups. Arterial partial oxygen pressure and lung wet/dry weight ratio were detected. Protein content in bronchoalveolar lavage fluid (BALF) and serum as well as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were determined. Hematoxylin-eosin staining was used to monitor changes in lung specimens, and malondialdehyde (MDA) content and myeloperoxidase (MPO) activity were assayed. In addition, NF-E2-related factor (Nrf) 2 and heme oxygenase (HO)-1 mRNA and protein expression were measured, and apoptosis was assessed by measuring caspase-3 expression and using terminal deoxy-nucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. Hydrogen gas inhalation markedly improved lung endothelial permeability and decreased both MDA content and MPO activity in lung tissue; these changes were associated with decreases in TNF-α, IL-1β, and IL-6 in BALF. Hydrogen gas also alleviated histopathological changes and cell apoptosis. Moreover, Nrf2 and HO-1 expressions were significantly activated and caspase-3 expression was inhibited. These results demonstrate that hydrogen gas inhalation attenuates seawater instillation-induced acute lung injury in rabbits and that the protective effects observed may be related to the activation of the Nrf2 pathway.

  13. Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation

    PubMed Central

    Ziegler, Verena; Henninger, Christian; Simiantonakis, Ioannis; Buchholzer, Marcel; Ahmadian, Mohammad Reza; Budach, Wilfried; Fritz, Gerhard

    2017-01-01

    Thoracic radiotherapy causes damage of normal lung tissue, which limits the cumulative radiation dose and, hence, confines the anticancer efficacy of radiotherapy and impacts the quality of life of tumor patients. Ras-homologous (Rho) small GTPases regulate multiple stress responses and cell death. Therefore, we investigated whether pharmacological targeting of Rho signaling by the HMG-CoA-reductase inhibitor lovastatin influences ionizing radiation (IR)-induced toxicity in primary human lung fibroblasts, lung epithelial and lung microvascular endothelial cells in vitro and subchronic mouse lung tissue damage following hypo-fractionated irradiation (4x4 Gy). The statin improved the repair of radiation-induced DNA double-strand breaks (DSBs) in all cell types and, moreover, protected lung endothelial cells from IR-induced caspase-dependent apoptosis, likely involving p53-regulated mechanisms. Under the in vivo situation, treatment with lovastatin or the Rac1-specific small molecule inhibitor EHT1864 attenuated the IR-induced increase in breathing frequency and reduced the percentage of γH2AX and 53BP1-positive cells. This indicates that inhibition of Rac1 signaling lowers IR-induced residual DNA damage by promoting DNA repair. Moreover, lovastatin and EHT1864 protected lung tissue from IR-triggered apoptosis and mitigated the IR-stimulated increase in regenerative proliferation. Our data document beneficial anti-apoptotic and genoprotective effects of pharmacological targeting of Rho signaling following hypo-fractionated irradiation of lung cells in vitro and in vivo. Rac1-targeting drugs might be particular useful for supportive care in radiation oncology and, moreover, applicable to improve the anticancer efficacy of radiotherapy by widening the therapeutic window of thoracic radiation exposure. PMID:28796249

  14. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    PubMed

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    PubMed

    Feng, Guang; Jiang, Ze-Yu; Sun, Bo; Fu, Jie; Li, Tian-Zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.

  16. Integrating Lung Physiology, Immunology, and Tuberculosis.

    PubMed

    Torrelles, Jordi B; Schlesinger, Larry S

    2017-08-01

    Lungs are directly exposed to the air, have enormous surface area, and enable gas exchange in air-breathing animals. They are constantly 'attacked' by microbes from both outside and inside and thus possess a unique, highly regulated local immune defense system which efficiently allows for microbial clearance while minimizing damaging inflammatory responses. As a prototypic host-adapted airborne pathogen, Mycobacterium tuberculosis traverses the lung and has several 'interaction points' (IPs) which it must overcome to cause infection. These interactions are critical, not only from a pathogenesis perspective but also in considering the effectiveness of therapies and vaccines in the lungs. Here we discuss emerging views on immunologic interactions occurring in the lungs for M. tuberculosis and their impact on infection and persistence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of Maternal Electroacupuncture on Perinatal Nicotine Exposure-Induced Lung Phenotype in Offspring.

    PubMed

    Ji, Bo; Zhao, Guo-Zhen; Sakurai, Reiko; Cao, Yu; Zhang, Zi-Jian; Wang, Dan; Yan, Ming-Na; Rehan, Virender K

    2016-08-01

    Pregnant women exposed to tobacco smoke predispose the offspring to many adverse consequences including an altered lung development and function. There is no effective therapeutic intervention to block the effects of smoke exposure on the developing lung. Clinical and animal studies demonstrate that acupuncture can modulate a variety of pathophysiological processes, including those involving the respiratory system; however, whether acupuncture affects the lung damage caused by perinatal smoke exposure is not known. To determine the effect of acupuncture on perinatal nicotine exposure on the developing lung, pregnant rat dams were administered (1) saline, (2) nicotine, or (3) nicotine + electroacupuncture (EA). Nicotine was administered (1 mg/kg subcutaneously) once a day and EA was applied to both "Zusanli" (ST 36) points. Both interventions were administered from gestational day 6 to postnatal day 21 (PND21), following which pups were sacrificed. Lungs, blood, and brain were collected to examine markers of lung injury, repair, and hypothalamic pituitary adrenal (HPA) axis. Concomitant EA application blocked nicotine-induced changes in lung morphology, lung peroxisome proliferator-activated receptor γ and wingless-int signaling, two key lung developmental signaling pathways, hypothalamic pituitary adrenal axis (hypothalamic corticotropic releasing hormone and lung glucocorticoid receptor levels), and plasma β-endorphin levels. Electroacupuncture blocks the nicotine-induced changes in lung developmental signaling pathways and the resultant myogenic lung phenotype, known to be present in the affected offspring. We conclude that EA is a promising novel intervention against the smoke exposed lung damage to the developing lung.

  18. Osthole prevents intestinal ischemia-reperfusion-induced lung injury in a rodent model.

    PubMed

    Mo, Li-Qun; Chen, Ye; Song, Li; Wu, Gang-Ming; Tang, Ni; Zhang, Ying-Ying; Wang, Xiao-Bin; Liu, Ke-Xuan; Zhou, Jun

    2014-06-15

    Intestinal ischemia-reperfusion (II/R) is associated with high morbidity and mortality. The aim of this study was to investigate the effects of osthole on lung injury and mortality induced by II/R. A rat model of II/R was induced by clamping the superior mesenteric artery for 90 min followed by reperfusion for 240 min. Osthole was administrated intraperitoneally at 30 min before intestinal ischemia (10 or 50 mg/kg). The survival rate and mean arterial pressure were observed. Blood samples were obtained for blood gas analyses. Lung injury was assessed by the histopathologic changes (hematoxylin and eosin staining), lung wet-to-dry weight ratio, and pulmonary permeability index. The levels of reactive oxygen species, malondialdehyde, interleukin 6, and tumor necrosis factor α, as well as the activities of superoxide dismutase and myeloperoxidase in lung were measured. The survival rate, ratio of arterial oxygen tension to fraction of inspired oxygen, and mean arterial pressure decreased significantly after II/R. Results also indicated that II/R-induced severe lung injury evidenced by increase in pathologic scores, lung wet-to-dry weight ratio, and pulmonary permeability index, which was accompanied by increases in the levels of pulmonary reactive oxygen species, malondialdehyde, interleukin 6, tumor necrosis factor α, and the pulmonary myeloperoxidase activity and a decrease in superoxide dismutase activity. Osthole could significantly ameliorate lung injury and improve the previously mentioned variables. These findings indicated that osthole could attenuate the lung injury induced by II/R in rats, at least in part, by inhibiting inflammatory response and oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Effects of vascular flow and PEEP in a multiple hit model of lung injury in isolated perfused rabbit lungs.

    PubMed

    Piacentini, Enrique; López-Aguilar, Josefina; García-Martín, Carolina; Villagrá, Ana; Saenz-Valiente, Alicia; Murias, Gastón; Fernández-Segoviano, Pilar; Hotchkiss, John R; Blanch, Lluis

    2008-07-01

    High vascular flow aggravates lung damage in animal models of ventilator-induced lung injury. Positive end-expiratory pressure (PEEP) can attenuate ventilator-induced lung injury, but its continued effectiveness in the setting of antecedent lung injury is unclear. The objective of the present study was to evaluate whether the application of PEEP diminishes lung injury induced by concurrent high vascular flow and high alveolar pressures in normal lungs and in a preinjury lung model. Two series of experiments were performed. Fifteen sets of isolated rabbit lungs were randomized into three groups (n = 5): low vascular flow/low PEEP; high vascular flow/low PEEP, and high vascular flow/high PEEP. Subsequently, the same protocol was applied in an additional 15 sets of isolated rabbit lungs in which oleic acid was added to the vascular perfusate to produce mild to moderate lung injury. All lungs were ventilated with peak airway pressure of 30 cm H2O for 30 minutes. Outcome measures included frequency of gross structural failure, pulmonary hemorrhage, edema formation, changes in static compliance, pulmonary vascular resistance, and pulmonary ultrafiltration coefficient. In the context of high vascular flow, application of a moderate level of PEEP reduced pulmonary rupture, edema formation, and lung hemorrhage. The protective effects of PEEP were not observed in lungs concurrently injured with oleic acid. Under these experimental conditions, PEEP attenuates lung injury in the setting of high vascular flow. The protective effect of PEEP is lost in a two-hit model of lung injury.

  20. Ischemia and reperfusion of the lung tissues induced increase of lung permeability and lung edema is attenuated by dimethylthiourea (PP69).

    PubMed

    Chen, K H; Chao, D; Liu, C F; Chen, C F; Wang, D

    2010-04-01

    This study sought to determine whether oxygen radical scavengers of dimethylthiourea (DMTU), superoxide dismutase (SOD), or catalase (CAT) pretreatment attenuated ischemia-reperfusion (I/R)-induced lung injury. After isolation from a Sprague-Dawley rat, the lungs were perfused through the pulmonary artery cannula with rat whole blood diluted 1:1 with a physiological salt solution. An acute lung injury was induced by 10 minutes of hypoxia with 5% CO2-95% N2 followed by 65 minutes of ischemia and then 65 minutes of reperfusion. I/R significantly increased microvascular permeability as measured by the capillary filtration coefficient (Kfc), lung weight-to-body weight ratio (LW/BW), and protein concentration in bronchoalveolar lavage fluid (PCBAL). DMTU pretreatment significantly attenuated the acute lung injury. The capillary filtration coefficient (P<.01), LW/BW (P<.01) and PCBAL (P<.05) were significantly lower among the DMTU-treated rats than hosts pretreated with SOD or CAT. The possible mechanisms of the protective effect of DMTU in I/R-induced lung injury may relate to the permeability of the agent allowing it to scavenge intracellular hydroxyl radicals. However, whether superoxide dismutase or catalase antioxidants showed protective effects possibly due to their impermeability of the cell membrane not allowing scavenging of intracellular oxygen radicals. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Effects of Bisphenol A Metabolite 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on Lung Function and Type 2 Pulmonary Alveolar Epithelial Cell Growth

    PubMed Central

    Liu, Shing-Hwa; Su, Chin-Chuan; Lee, Kuan-I; Chen, Ya-Wen

    2016-01-01

    Bisphenol A (BPA) is recognized as a major pollutant worldwide. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a major active metabolite of BPA. The epidemiological and animal studies have reported that BPA is harmful to lung function. The role of MBP in lung dysfunction after BPA exposure still remains unclear. This study investigated whether MBP would induce lung alveolar cell damage and evaluated the role of MBP in the BPA exposure-induced lung dysfunction. An in vitro type 2 alveolar epithelial cell (L2) model and an ex vivo isolated reperfused rat lung model were used to determine the effects of BPA or MBP on cell growth and lung function. MBP, but not BPA, dose-dependently increased the mean artery pressure (Pa), pulmonary capillary pressure (Pc), pulmonary capillary filtration coefficient (Kfc), and wet/dry weight ratio in isolated reperfused rat lungs. MBP significantly reduced cell viability and induced caspases-3/7 cleavage and apoptosis and increased AMP-activated protein kinas (AMPK) phosphorylation and endoplasmic reticulum (ER) stress-related molecules expression in L2 cells, which could be reversed by AMPK-siRNA transfection. These findings demonstrated for the first time that MBP exposure induced type 2 alveolar cell apoptosis and lung dysfunction through an AMPK-regulated ER stress signaling pathway. PMID:27982077

  2. Effects of Bisphenol A Metabolite 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on Lung Function and Type 2 Pulmonary Alveolar Epithelial Cell Growth.

    PubMed

    Liu, Shing-Hwa; Su, Chin-Chuan; Lee, Kuan-I; Chen, Ya-Wen

    2016-12-16

    Bisphenol A (BPA) is recognized as a major pollutant worldwide. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a major active metabolite of BPA. The epidemiological and animal studies have reported that BPA is harmful to lung function. The role of MBP in lung dysfunction after BPA exposure still remains unclear. This study investigated whether MBP would induce lung alveolar cell damage and evaluated the role of MBP in the BPA exposure-induced lung dysfunction. An in vitro type 2 alveolar epithelial cell (L2) model and an ex vivo isolated reperfused rat lung model were used to determine the effects of BPA or MBP on cell growth and lung function. MBP, but not BPA, dose-dependently increased the mean artery pressure (Pa), pulmonary capillary pressure (Pc), pulmonary capillary filtration coefficient (K fc ), and wet/dry weight ratio in isolated reperfused rat lungs. MBP significantly reduced cell viability and induced caspases-3/7 cleavage and apoptosis and increased AMP-activated protein kinas (AMPK) phosphorylation and endoplasmic reticulum (ER) stress-related molecules expression in L2 cells, which could be reversed by AMPK-siRNA transfection. These findings demonstrated for the first time that MBP exposure induced type 2 alveolar cell apoptosis and lung dysfunction through an AMPK-regulated ER stress signaling pathway.

  3. Nilotinib ameliorates lipopolysaccharide-induced acute lung injury in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Agamy, Dina S., E-mail: dinaagamy1@yahoo.com

    The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10 mg/kg) by oral gavage twice daily for 1 week prior to exposure to aerosolized LPS. At 24 h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content,more » superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO{sub 2}{sup -}/NO{sub 3}{sup -}) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-{alpha} (TNF-{alpha}), transforming growth factor-{beta}{sub 1} (TGF-{beta}{sub 1}) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO{sub 2}{sup -}/NO{sub 3}{sup -} levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-{alpha}, TGF-{beta}{sub 1} and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells infiltration and hence ROS generation and regulate cytokine effects. - Research highlights: > The protective effects of nilotinib against LPS-induced ALI in rats were studied. > Nilotinib showed potent anti-inflammatory activity as it attenuated PMN infiltration and hence ROS generation. > In addition, nilotinib caused down-regulation of proinflammatory cytokine production.« less

  4. Atopy, but not obesity is associated with asthma severity among children with persistent asthma.

    PubMed

    Lu, Kim D; Phipatanakul, Wanda; Perzanowski, Matthew S; Balcer-Whaley, Susan; Matsui, Elizabeth C

    2016-12-01

    Obesity is associated with an increased risk of asthma in children. Atopic sensitization is a major risk factor for asthma including severe asthma in children. It is unclear if obesity is associated with worse asthma control or severity in children and how its effects compare to atopy. We sought to examine relationships of weight status and atopy to asthma control and severity among a population of predominantly low income, minority children and adolescents with persistent asthma. A cross-sectional analysis of 832 children and adolescents, age range 5-17 years, with persistent asthma was performed. Clinical assessments included asthma questionnaires of symptoms, asthma severity score, health care utilization and medication treatment step, lung function testing, and skin prick testing as well as measures of adiposity. Data were collected between December 2010 and August 2014 from Johns Hopkins Hospital in Baltimore, MD and Children's Hospital of Boston, MA. Obesity was not associated with worse asthma control or severity in this group of predominantly low income, minority children and adolescents with persistent asthma. However, a greater degree of atopy was associated with lower lung function, higher asthma severity score, and higher medication treatment step. Atopy may be a more important risk factor for asthma severity than obesity among low-income minority children and adolescents with persistent asthma living in Northeastern cities in the United States.

  5. Diesel exhaust particle promotes tumor lung metastasis via the induction of BLT1-mediated neutrophilic lung inflammation.

    PubMed

    Li, Wenjing; Liu, Ting; Xiong, Yingluo; Lv, Jiaoyan; Cui, Xinyi; He, Rui

    2018-06-05

    BLT1, the primary functional receptor of Leukotriene B4 (LTB4), is involved in tissue inflammation by mediating leukocyte recruitment, and recently LTB4-dependent inflammation was reported to promote lung tumor growth. Exposure to diesel exhaust particle (DEP), the major component of particulate matter 2.5 (PM 2.5 ), can elicit lung inflammation, which may increase the risk of lung cancer. However, it remains unknown about the critical factors mediating DEP-induced lung inflammation and the subsequent effect on tumor metastasis. In this study, we found that DEP exposure led to acute lung inflammation, characterized by abundant infiltration of neutrophils and elevated lung levels in LTB4, as well as several pro-inflammatory cytokines and chemokines, including IL-1β, IL-6, TNF-α, CXCL1/2. Furthermore, DEP exposure promoted lung metastasis of 3LL and 4T1 cells. BLT1 blockade by its specific antagonist U75302 significantly inhibited neutrophilic lung inflammation following DEP exposure. Importantly, BLT1 blockade before the onset of inflammation significantly reduced DEP-enhanced lung metastasis, which was associated with greatly decreased infiltrating neutrophils in lungs. Interestingly, BLT1 blockade after the occurrence of lung metastases had no effect on the magnitude of lung metastasis, suggesting that inhibition of BLT1-mediated lung inflammation was insufficient to suppress established metastatic tumor. Administration of BLT2 inhibitor LY255283 fails to inhibit DEP-induced lung inflammation and tumor metastasis. Collectively, our results demonstrate that DEP exposure causes BLT1-mediated lung neutrophilic inflammation, which is critical for tumor lung metastasis, and suggest that interruption of the LTB4-BLT1 axis could be useful for preventing PM 2.5 -induced inflammation and subsequent susceptible to lung metastasis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Alterations of peroxisome proliferator-activated receptor γ and monocyte chemoattractant protein 1 gene expression in the nitrofen-induced hypoplastic lung.

    PubMed

    Gosemann, Jan-Hendrik; Doi, Takashi; Kutasy, Balazs; Friedmacher, Florian; Dingemann, Jens; Puri, Prem

    2012-05-01

    Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in normal lung development. Peroxisome proliferator-activated receptor γ messenger RNA (mRNA) is detectable at 18 days of gestation in fetal rat lungs, and levels peak just before birth. Peroxisome proliferator-activated receptor γ agonists are reported to stimulate lung development, whereas inhibition of PPARγ disrupts postnatal lung maturation. Monocyte chemoattractant protein 1 (MCP-1), which is inhibited by PPARγ, is reported to disrupt late lung morphogenesis. This study was designed to investigate the hypothesis that PPARγ expression is downregulated and that MCP-1 expression is upregulated during the late stages of lung development in nitrofen-induced hypoplastic lungs. Pregnant rats were treated with nitrofen or vehicle on D9. RNA was extracted from fetal lungs (D18 and D21), and relative mRNA expression levels of PPARγ and MCP-1 were determined by reverse transcriptase-polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression/distribution of PPARγ and MCP-1. Relative mRNA expression levels of PPARγ were significantly downregulated in the nitrofen group compared with controls on D21, whereas MCP-1 levels were upregulated. Immunohistochemical study showed markedly decreased PPARγ and increased MCP-1 immunoreactivity in the nitrofen-induced hypoplastic lungs compared with controls on gestational day 21. Altered pulmonary gene expression of PPARγ and MCP-1 during late gestation may impair lung development and maturation, contributing to pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia model. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Enhancement of CD147 on M1 macrophages induces differentiation of Th17 cells in the lung interstitial fibrosis.

    PubMed

    Geng, Jie-jie; Zhang, Kui; Chen, Li-na; Miao, Jin-lin; Yao, Meng; Ren, Ying; Fu, Zhi-guang; Chen, Zhi-nan; Zhu, Ping

    2014-09-01

    Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1β, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Silica-induced Chronic Inflammation Promotes Lung Carcinogenesis in the Context of an Immunosuppressive Microenvironment12

    PubMed Central

    Freire, Javier; Ajona, Daniel; de Biurrun, Gabriel; Agorreta, Jackeline; Segura, Victor; Guruceaga, Elizabeth; Bleau, Anne-Marie; Pio, Ruben; Blanco, David; Montuenga, Luis M

    2013-01-01

    The association between inflammation and lung tumor development has been clearly demonstrated. However, little is known concerning the molecular events preceding the development of lung cancer. In this study, we characterize a chemically induced lung cancer mouse model in which lung cancer developed in the presence of silicotic chronic inflammation. Silica-induced lung inflammation increased the incidence and multiplicity of lung cancer in mice treated with N-nitrosodimethylamine, a carcinogen found in tobacco smoke. Histologic and molecular analysis revealed that concomitant chronic inflammation contributed to lung tumorigenesis through induction of preneoplastic changes in lung epithelial cells. In addition, silica-mediated inflammation generated an immunosuppressive microenvironment in which we observed increased expression of programmed cell death protein 1 (PD-1), transforming growth factor-β1, monocyte chemotactic protein 1 (MCP-1), lymphocyte-activation gene 3 (LAG3), and forkhead box P3 (FOXP3), as well as the presence of regulatory T cells. Finally, the K-RAS mutational profile of the tumors changed from Q61R to G12D mutations in the inflammatory milieu. In summary, we describe some of the early molecular changes associated to lung carcinogenesis in a chronic inflammatory microenvironment and provide novel information concerning the mechanisms underlying the formation and the fate of preneoplastic lesions in the silicotic lung. PMID:23908592

  9. Kras, Egfr, and Tp53 Mutations in B6C3F1/N Mouse and F344/NTac Rat Alveolar/Bronchiolar Carcinomas Resulting from Chronic Inhalation Exposure to Cobalt Metal

    PubMed Central

    Hong, Hue-Hua L.; Hoenerhoff, Mark J.; Ton, Thai-Vu; Herbert, Ronald A.; Kissling, Grace E.; Hooth, Michelle J.; Behl, Mamta; Witt, Kristine L.; Smith-Roe, Stephanie L.; Sills, Robert C.; Pandiri, Arun R.

    2015-01-01

    Rodent lung tumors are morphologically similar to a subtype of human lung adenocarcinomas. The objective of this study was to evaluate Kras, Egfr and Tp53 mutations, which are relevant to human lung cancer, in cobalt metal dust (CMD) induced alveolar/bronchiolar tumors of B6C3F1/N mice and F344/NTac rats. Kras mutations were detected in 67% (mice) and 31% (rats) of CMD-induced lung tumors, and were predominantly exon 1 codon 12 G to T transversions (80% in mice and 57% in rats). Egfr mutations were detected in 17% (both mice and rats) of CMD-induced lung tumors, and were predominantly in exon 20 with 50% G to A transitions (mice and rats). Tp53 mutations were detected in 19% (mice) and 23% (rats) of CMD-induced lung tumors and were predominantly in exon 5 (mice, 69% transversions) and exon 6 (rats, all transitions). No mutations were observed for these genes in spontaneous lung tumors or normal lungs from untreated controls. Ames assays indicated that CMD is mutagenic in the absence but not in the presence of S9 mix. Thus, the mutation data (G to T transversions) and Ames assay results suggest that oxidative damage to DNA may be a contributing factor in CMD-induced pulmonary carcinogenesis in rodents. PMID:26059825

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batal, Mohamed; Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex; Boudry, Isabelle

    Sulphur mustard (SM) is a chemical warfare agent that attacks mainly skin, eye and lungs. Due to its lipophilic properties, SM is also able to diffuse through the skin and reach internal organs. DNA represents one of the most critical molecular targets of this powerful alkylating agent which modifies DNA structure by forming monoadducts and biadducts. These DNA lesions are involved in the acute toxicity of SM as well as its long-term carcinogenicity. In the present work we studied the formation and persistence of guanine and adenine monoadducts and guanine biadducts in the DNA of brain, lungs, kidneys, spleen, andmore » liver of SKH-1 mice cutaneously exposed to 2, 6 and 60 mg/kg of SM. SM-DNA adducts were detected in all studied organs, except in liver at the two lowest doses. Brain and lungs were the organs with the highest level of SM-DNA adducts, followed by kidney, spleen and liver. Monitoring the level of adducts for three weeks after cutaneous exposure showed that the lifetime of adducts were not the same in all organs, lungs being the organ with the longest persistence. Diffusion from skin to internal organs was much more efficient at the highest compared to the lowest dose investigated as the result of the loss of the skin barrier function. These data provide novel information on the distribution of SM in tissues following cutaneous exposures and indicate that brain is an important target. - Highlights: • Sulphur mustard reaches internal organs after skin exposure • Adducts are detected in the DNA of internal organs • Brain is the organ with the highest level of DNA damage • The barrier function of skin is lost at high dose of sulphur mustard • DNA adducts persist in organs for 2 or 3 weeks.« less

  11. Abscess of residual lobe after pulmonary resection for lung cancer.

    PubMed

    Ligabue, Tommaso; Voltolini, Luca; Ghiribelli, Claudia; Luzzi, Luca; Rapicetta, Cristian; Gotti, Giuseppe

    2008-04-01

    Abscess of the residual lobe after lobectomy is a rare but potentially lethal complication. Between January 1975 and December 2006, 1,460 patients underwent elective pulmonary lobectomy for non-small-cell lung cancer at our institution. Abscess of the residual lung parenchyma occurred in 5 (0.3%) cases (4 bilobectomies and 1 lobectomy). Postoperative chest radiography showed incomplete expansion and consolidation of residual lung parenchyma. Flexible bronchoscopy revealed persistent bronchial occlusion from purulent secretions and/or bronchial collapse. Computed tomography in 3 patients demonstrated lung abscess foci. Surgical treatment included completion right pneumonectomy in 3 patients and a middle lobectomy in one. Complications after repeat thoracotomy comprised contralateral pneumonia and sepsis in 1 patient. Residual lobar abscess after lobectomy should be suspected in patients presenting with fever, leukocytosis, bronchial obstruction and lung consolidation despite antibiotic therapy, physiotherapy and bronchoscopy. Computed tomography is mandatory for early diagnosis. Surgical resection of the affected lobe is recommended.

  12. Unusual progression and subsequent improvement in cystic lung disease in a child with radiation-induced lung injury

    PubMed Central

    Wolf, Michael S.; Chadha, Ashley D.; Carroll, Clinton M.; Borinstein, Scott C.

    2014-01-01

    Radiation-induced lung disease is a known complication of therapeutic lung irradiation, but the features have not been well described in children. We report the clinical, radiologic and histologic features of interstitial lung disease (ILD) in a 4-year-old child who had previously received lung irradiation as part of successful treatment for metastatic Wilms tumor. Her radiologic abnormalities and clinical symptoms developed in an indolent manner. Clinical improvement gradually occurred with corticosteroid therapy. However, the observed radiologic progression from interstitial and reticulonodular opacities to diffuse cystic lung disease, with subsequent improvement, is striking and has not been previously described in children. PMID:25434733

  13. Protective effect of magnolol on lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Ni, Yun Feng; Jiang, Tao; Cheng, Qing Shu; Gu, Zhong Ping; Zhu, Yi Fang; Zhang, Zhi Pei; Wang, Jian; Yan, Xiao Long; Wang, Wu Ping; Ke, Chang Kang; Han, Yong; Li, Xiao Fei

    2012-12-01

    Magnolol, a tradition Chinese herb, displays an array of activities including antifungal, antibacterial, and antioxidant effects. To investigate the protective effect of magnolol on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg). The mice received intratracheal instillation of magnolol (5 μg/kg) 30 min before LPS administration. Pulmonary histological changes were evaluated by hematoxylin-eosin stain and lung wet/dry weight ratios were observed. Concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and myeloperoxidase (MPO) activity were measured by enzyme-linked immunosorbent assay. Expression of cyclooxygenase (COX)-2 in lung tissues was determined by Western blot analysis. Magnolol pretreatment significantly attenuated the severity of lung injury and inhibited the production of TNF-α and IL-1β in mice with ALI. After LPS administration, the lung wet/dry weight ratios, as an index of lung edema, and MPO activity were also markedly reduced by magnolol pretreatment. The expression of COX-2 was significantly suppressed by magnolol pretreatment. Magnolol potently protected against LPS-induced ALI and the protective effects of magnolol may attribute partly to the suppression of COX-2 expression.

  14. Acute effects of pentobarbital, thiopental and urethane on lung oedema induced by alpha-naphthythiourea (ANTU).

    PubMed

    Sipahi, Emine; Ustün, Hüseyin; Niyazi Ayoglu, Ferruh

    2002-03-01

    This study was designed to investigate the possible participation of urethane, pentobarbital sodium and thiopental sodium anaesthesia in the lung oedema induced by alpha-naphthylthiourea (ANTU), which is a well known noxious chemical agent in the lung. ANTU when injected intraperitoneally (i.p.) into rats (10 mg x kg (-1) i.p.) produced lung oedema as indicated by an increase in lung weight/body weight (LW/BW) ratio and pleural effusion (PE) reaching a maximum within 4 h. Administration of urethane prior to ANTU, at doses of 100 and 200mg(100g)(-1), elicited a significant and dose-dependent inhibition in LW/BW ratio and PE. Thiopental sodium at doses of 25, 50 mg x kg (-1), also produced a significant and dose-dependent inhibition of both parameters. Prior i.p. injection of pentobarbital sodium at a dose of 40 mg x kg (-1) elicited a significant inhibition in both parameters. These results suggest that i.p. urethane, thiopental sodium and pentobarbital sodium pretreatment have a prophylactic effect on ANTU-induced lung injury in rats. The possible role of the anaesthetics in lung oedema induced by ANTU and the possible underlying mechanisms are discussed. Copyright 2002 Elsevier Science Ltd.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu; Chen, Jing; Schlueter, Connie F.

    Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposedmore » mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Countermeasures for treatment of chlorine-induced acute lung injury are needed. • Formulations containing rolipram, triptolide, or budesonide were produced. • Formulations with a wide range of release properties were developed. • Countermeasure formulations inhibited chlorine-induced lung injury in mice.« less

  16. Natural Antioxidant Betanin Protects Rats from Paraquat-Induced Acute Lung Injury Interstitial Pneumonia

    PubMed Central

    Ma, Deshun; Zhang, Miao; Yang, Xuelian; Tan, Dehong

    2015-01-01

    The effect of betanin on a rat paraquat-induced acute lung injury (ALI) model was investigated. Paraquat was injected intraperitoneally at a single dose of 20 mg/kg body weight, and betanin (25 and 100 mg/kg/d) was orally administered 3 days before and 2 days after paraquat administration. Rats were sacrificed 24 hours after the last betanin dosage, and lung tissue and bronchoalveolar lavage fluid (BALF) were collected. In rats treated only with paraquat, extensive lung injury characteristic of ALI was observed, including histological changes, elevation of lung : body weight ratio, increased lung permeability, increased lung neutrophilia infiltration, increased malondialdehyde (MDA) and myeloperoxidase (MPO) activity, reduced superoxide dismutase (SOD) activity, reduced claudin-4 and zonula occluden-1 protein levels, increased BALF interleukin (IL-1) and tumor necrosis factor (TNF)-α levels, reduced BALF IL-10 levels, and increased lung nuclear factor kappa (NF-κB) activity. In rats treated with betanin, paraquat-induced ALI was attenuated in a dose-dependent manner. In conclusion, our results indicate that betanin attenuates paraquat-induced ALI possibly via antioxidant and anti-inflammatory mechanisms. Thus, the potential for using betanin as an auxilliary therapy for ALI should be explored further. PMID:25861636

  17. Overview of ultrasound-induced lung hemorrhage

    NASA Astrophysics Data System (ADS)

    O'Brien, William D.; Simpson, Douglas G.; Frizzell, Leon A.; Oelze, Michael L.; Zachary, James F.

    2003-10-01

    It is well documented that ultrasound-induced lung hemorrhage can occur in mice, rats, rabbits, pigs, and monkeys. Our own experimental studies have focused on mice, rats, and pigs as animal models. The characteristics of the lesions produced in mice, rats and pigs were similar to those described in studies by our research group and others, suggesting a common pathogenesis for the initiation and propagation of the lesions at the macroscopic and microscopic levels. Five experimental in vivo studies have been conducted to evaluate whether cavitation is responsible for ultrasound-induced lung hemorrhage. The studies evaluated the dependencies of hydrostatic pressure, frequency, pulse polarity, contrast agents and lung inflation, and the results of each study appeared inconsistent with the hypothesis that the mechanism for the production of a lung hemorrhage was inertial cavitation. Other dependencies evaluated included beam width, pulse repetition frequency, pulse duration, exposure duration, and animal species and age. The thresholds for producing ultrasound-induced lung hemorrhage, in general, were less than the FDA's regulatory limit of a Mechanical Index (MI) of 1.9. Further, the MI does not appear to provide a risk-based index for lung hemorrhage. [Work supported by NIH Grant No. R01EB02641.

  18. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  19. Emphysema induced by elastase enhances acute inflammatory pulmonary response to intraperitoneal LPS in rats.

    PubMed

    da Fonseca, Lídia Maria Carneiro; Reboredo, Maycon Moura; Lucinda, Leda Marília Fonseca; Fazza, Thaís Fernanda; Rabelo, Maria Aparecida Esteves; Fonseca, Adenilson Souza; de Paoli, Flavia; Pinheiro, Bruno Valle

    2016-12-01

    Abnormalities in lungs caused by emphysema might alter their response to sepsis and the occurrence of acute lung injury (ALI). This study compared the extension of ALI in response to intraperitoneal lipopolysaccharide (LPS) injection in Wistar rats with and without emphysema induced by elastase. Adult male Wistar rats were randomized into four groups: control, emphysema without sepsis, normal lung with sepsis and emphysema with sepsis. Sepsis was induced, and 24 h later the rats were euthanised. The following analysis was performed: blood gas measurements, bronchoalveolar lavage (BAL), lung permeability and histology. Animals that received LPS showed significant increase in a lung injury scoring system, inflammatory cells in bronchoalveolar lavage (BAL) and IL-6, TNF-α and CXCL2 mRNA expression in lung tissue. Animals with emphysema and sepsis showed increased alveolocapillary membrane permeability, demonstrated by higher BAL/serum albumin ratio. In conclusion, the presence of emphysema induced by elastase increases the inflammatory response in the lungs to a systemic stimulus, represented in this model by the intraperitoneal injection of LPS. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  20. Effects of Physalis peruviana L on Toxicity and Lung Cancer Induction by Nicotine Derived Nitrosamine Ketone in Rats.

    PubMed

    El-Kenawy, Ayman El-Meghawry; Elshama, Said Said; Osman, Hosam-Eldin Hussein

    2015-01-01

    Nicotine-derived nitrosamine ketone (NNK) is considered a key tobacco smoke carcinogen inducing lung tumors. Physalis peruviana L (harankash) is considered one plant with marked health benefits. This study aimed to evaluate Physalis peruviana L effect on the toxic effect of NNK induced lung cancer in the rats by using pulmonary histopathological, immunohistochemical and DNA flow cytometric analyses. Sixty adult male rats were divided into four groups, each consisting of fifteen animals. The first group received saline, the second received two successive toxic doses of NNK only while the third received two successive toxic doses of NNK with a single daily dose of Physalis peruviana L. The fourth group received a single daily dose of Physalis peruviana L only. Toxic doses of NNK induced hyperplasia and adenocarcinoma in the lung and positive immunoreactivity for Ki-67 and p53 staining with disturbance of the lung DNA content. Administration of Physalis peruviana L with NNK led to a mild pulmonary hyperplasia and weak expression of Ki-67 and p53 with an improvement in the lung DNA content. Physalis peruviana L may protect against NNK induced lung carcinogenesis due to its antioxidant and anti-proliferative effects.

  1. Genetic Modification of the Lung Directed Toward Treatment of Human Disease.

    PubMed

    Sondhi, Dolan; Stiles, Katie M; De, Bishnu P; Crystal, Ronald G

    2017-01-01

    Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.

  2. Hypercapnic acidosis attenuates ventilation-induced lung injury by a nuclear factor-κB-dependent mechanism.

    PubMed

    Contreras, Maya; Ansari, Bilal; Curley, Gerard; Higgins, Brendan D; Hassett, Patrick; O'Toole, Daniel; Laffey, John G

    2012-09-01

    Hypercapnic acidosis protects against ventilation-induced lung injury. We wished to determine whether the beneficial effects of hypercapnic acidosis in reducing stretch-induced injury were mediated via inhibition of nuclear factor-κB, a key transcriptional regulator in inflammation, injury, and repair. Prospective randomized animal study. University research laboratory. Adult male Sprague-Dawley rats. In separate experimental series, the potential for hypercapnic acidosis to attenuate moderate and severe ventilation-induced lung injury was determined. In each series, following induction of anesthesia and tracheostomy, Sprague-Dawley rats were randomized to (normocapnia; FICO2 0.00) or (hypercapnic acidosis; FICO2 0.05), subjected to high stretch ventilation, and the severity of lung injury and indices of activation of the nuclear factor-κB pathway were assessed. Subsequent in vitro experiments examined the potential for hypercapnic acidosis to reduce pulmonary epithelial inflammation and injury induced by cyclic mechanical stretch. The role of the nuclear factor-κB pathway in hypercapnic acidosis-mediated protection from stretch injury was then determined. Hypercapnic acidosis attenuated moderate and severe ventilation-induced lung injury, as evidenced by improved oxygenation, compliance, and reduced histologic injury compared to normocapnic conditions. Hypercapnic acidosis reduced indices of inflammation such as interleukin-6 and bronchoalveolar lavage neutrophil infiltration. Hypercapnic acidosis reduced the decrement of the nuclear factor-κB inhibitor IκBα and reduced the generation of cytokine-induced neutrophil chemoattractant-1. Hypercapnic acidosis reduced cyclic mechanical stretch-induced nuclear factor-κB activation, reduced interleukin-8 production, and decreased epithelial injury and cell death compared to normocapnia. Hypercapnic acidosis attenuated ventilation-induced lung injury independent of injury severity and decreased mechanical stretch-induced epithelial injury and death, via a nuclear factor-κB-dependent mechanism.

  3. Problem on the State of the Bronchopulmonary System in Patients with Chronic Allergic Rhinosinusopathy,

    DTIC Science & Technology

    By means of meticulous evaluation of the pulmonary anamnesis , auscultation of the lungs, spirography, pneumotachometry and histamine aerosol...asthma was established in 8 patients. The lungs proved to be healthy only in 2 patients with a short-term allergological anamnesis . In the...overwhelming majority of cases bronchial, asthma was found in persons with a protracted allergological anamnesis suffering from persistent, often irreversible

  4. [Pulmonary atelectasis in patients with neurological or muscular disease; gravity-related lung compression by the heart and intra-abdominal organs on persistent supine position].

    PubMed

    Toyoshima, Mitsuo; Maeoka, Yukinori; Kawahara, Hitoshi; Maegaki, Yoshihiro; Ohno, Kousaku

    2006-11-01

    We report 10 cases of pulmonary atelectasis diagnosed by chest computed tomography in patients with neurological or muscular disease. Atelectasis was frequently seen in hypotonic patients who could not roll over on their own. The atelectases located mostly in the dorsal bronchopulmonary segments, adjacent to the heart or diaphragm. Atelectasis diminished in two patients after they became able to roll themselves over. Gravity-related lung compression by the heart and intra-abdominal organs on persistent supine position can cause pulmonary atelectasis in patients with neurological or muscular disease who can not roll over by their own power. To confirm that the prone position reduces compression of the lungs, chest computed tomography was performed in both the supine and the prone position in three patients. Sagittal images with three-dimensional computed tomographic reconstruction revealed significant sternad displacements of the heart and caudal displacements of the dorsal portion of the diaphragm on prone position compared with supine position. The prone position, motor exercises for rolling over, and biphasic cuirass ventilation are effective in reducing gravity-related lung compression. Some patients with intellectual disabilities were also able to cooperate in chest physiotherapy. Chest physiotherapy is useful in preventing atelectasis in patients with neurological or muscular disease.

  5. Pneumotoxicity and pulmonary clearance of different welding fumes after intratracheal instillation in the rat.

    PubMed

    Antonini, J M; Krishna Murthy, G G; Rogers, R A; Albert, R; Ulrich, G D; Brain, J D

    1996-09-01

    The objectives of this study were to compare different welding fumes in regard to their potential to elicit lung inflammation or injury and to examine possible mechanisms whereby welding fumes may damage the lungs. Fume was collected on filters from conventional spray [mild steel (MS-SPRAY) or stainless steel (SS-SPRAY) electrode wire] or pulsed current [mild steel (MS-PULSE) electrode wire] gas-shielded metal arc welding. Rats were given one of the three welding fume samples by intratracheal instillation (1.0 mg/100 g body wt). Other rats received a relatively inert dust (iron oxide), a pneumotoxic dust (crystalline silica), or a vehicle control (saline). Bronchoalveolar lavage (BAL) was performed 1, 7, 14, and 35 days postinstillation, and indicators of pulmonary damage [cellular differential, albumin, as well as, tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), lactate dehydrogenase, and beta-n-acetyl glucosaminidase release] were assessed. One day postinstillation, some evidence of lung inflammation (more neutrophils) was observed for all particle groups, while increased BAL TNF-alpha and IL-1 beta were observed only in the SS-SPRAY and silica groups. By 14 days, lungs appeared normal among the MS-SPRAY, MS-PULSE, and iron oxide groups. At 14 and 35 days postinstillation, elevated pulmonary responses persisted for the animals exposed to silica and the SS-SPRAY welding fume. By 35 days, however, the SS-SPRAY group approached control levels, while the injury induced by silica increased. Using magnetometric estimates of welding fumes, we observed that MS-SPRAY fume was cleared from the lungs at a faster rate than the SS-SPRAY particles. We have demonstrated that the SS-SPRAY fume has more pneumotoxicity than MS fumes. This difference may reflect a greater retention of the SS-SPRAY particles in the lungs and different elemental composition of the fume. The SS-SPRAY fume also had enhanced release of TNF-alpha and IL-1 beta from lung cells soon after fume instillation. In contrast, we saw no influence of the power supply on particle size, composition, or toxicity.

  6. Identification of periplakin as a major regulator of lung injury and repair in mice

    PubMed Central

    Besnard, Valérie; Dagher, Rania; Madjer, Tania; Joannes, Audrey; Jaillet, Madeleine; Kolb, Martin; Bonniaud, Philippe; Murray, Lynne A.; Sleeman, Matthew A.

    2018-01-01

    Periplakin is a component of the desmosomes that acts as a cytolinker between intermediate filament scaffolding and the desmosomal plaque. Periplakin is strongly expressed by epithelial cells in the lung and is a target antigen for autoimmunity in idiopathic pulmonary fibrosis. The aim of this study was to determine the role of periplakin during lung injury and remodeling in a mouse model of lung fibrosis induced by bleomycin. We found that periplakin expression was downregulated in the whole lung and in alveolar epithelial cells following bleomycin-induced injury. Deletion of the Ppl gene in mice improved survival and reduced lung fibrosis development after bleomycin-induced injury. Notably, Ppl deletion promoted an antiinflammatory alveolar environment linked to profound changes in type 2 alveolar epithelial cells, including overexpression of antiinflammatory cytokines, decreased expression of profibrotic mediators, and altered cell signaling with a reduced response to TGF-β1. These results identify periplakin as a previously unidentified regulator of the response to injury in the lung. PMID:29515024

  7. Real-time imaging of inflation-induced ATP release in the ex vivo rat lung.

    PubMed

    Furuya, Kishio; Tan, Ju Jing; Boudreault, Francis; Sokabe, Masahiro; Berthiaume, Yves; Grygorczyk, Ryszard

    2016-11-01

    Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that regulate diverse processes critical for lung function, including mucociliary clearance, surfactant secretion, and local blood flow. Cellular ATP release is mechanosensitive; however, the impact of physical stimuli on ATP release during breathing has never been tested in intact lungs in real time and remains elusive. In this pilot study, we investigated inflation-induced ATP release in rat lungs ex vivo by real-time luciferin-luciferase (LL) bioluminescence imaging coupled with simultaneous infrared tissue imaging to identify ATP-releasing sites. With LL solution introduced into air spaces, brief inflation of such edematous lung (1 s, ∼20 cmH 2 O) induced transient (<30 s) ATP release in a limited number of air-inflated alveolar sacs during their recruitment/opening. Released ATP reached concentrations of ∼10 -6 M, relevant for autocrine/paracrine signaling, but it remained spatially restricted to single alveolar sacs or their clusters. ATP release was stimulus dependent: prolonged (100 s) inflation evoked long-lasting ATP release that terminated upon alveoli deflation/derecruitment while cyclic inflation/suction produced cyclic ATP release. With LL introduced into blood vessels, inflation induced transient ATP release in many small patchlike areas the size of alveolar sacs. Findings suggest that inflation induces ATP release in both alveoli and the surrounding blood capillary network; the functional units of ATP release presumably consist of alveolar sacs or their clusters. Our study demonstrates the feasibility of real-time ATP release imaging in ex vivo lungs and provides the first direct evidence of inflation-induced ATP release in lung air spaces and in pulmonary blood capillaries, highlighting the importance of purinergic signaling in lung function. Copyright © 2016 the American Physiological Society.

  8. Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation.

    PubMed

    Zhang, Yao; Jia, Yanfei; Li, Ping; Li, Huanjie; Xiao, Dongjie; Wang, Yunshan; Ma, Xiaoli

    2017-07-20

    Cigarette smoking is the top environmental risk factor for lung cancer. Nicotine, the addictive component of cigarettes, induces lung cancer cell proliferation, invasion and migration via the activation of nicotinic acetylcholine receptors (nAChRs). Genome-wide association studies (GWAS) show that CHRNA5 gene encoding α5-nAChR is especially relevant to lung cancer. However, the mechanism of this subunit in lung cancer is not clear. In the present study, we demonstrate that the expression of α5-nAChR is correlated with phosphorylated STAT3 (pSTAT3) expression, smoking history and lower survival of non-small cell lung cancer (NSCLC) samples. Nicotine increased the levels of α5-nAChR mRNA and protein in NSCLC cell lines and activated the JAK2/STAT3 signaling cascade. Nicotine-induced activation of JAK2/STAT3 signaling was inhibited by the silencing of α5-nAChR. Characterization of the CHRNA5 promoter revealed four STAT3-response elements. ChIP assays confirmed that the CHRNA5 promoter contains STAT3 binding sites. By silencing STAT3 expression, nicotine-induced upregulation of α5-nAChR was suppressed. Downregulation of α5-nAChR and/or STAT3 expression inhibited nicotine-induced lung cancer cell proliferation. These results suggest that there is a feedback loop between α5-nAChR and STAT3 that contributes to the nicotine-induced tumor cell proliferation, which indicates that α5-nAChR is an important therapeutic target involved in tobacco-associated lung carcinogenesis. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  9. Effect of nuclear factor kappa B on intercellular adhesion molecule-1 expression and neutrophil infiltration in lung injury induced by intestinal ischemia/reperfusion in rats

    PubMed Central

    Tian, Xiao-Feng; Yao, Ji-Hong; Li, Ying-Hua; Zhang, Xue-Song; Feng, Bing-An; Yang, Chun-Ming; Zheng, Shu-Sen

    2006-01-01

    AIM: To investigate the role of nuclear factor kappa B (NF-κB) in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R), and its effect on intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil infiltration. METHODS: Twenty-four Wistar rats were divided randomly into control, I/R and pyrrolidine dithiocarbamate (PDTC) treatment groups, n = 8 in each. I/R group and PDTC treatment group received superior mysenteric artery (SMA) occluding for 1 h and reperfusion for 2 h. PDTC group was administrated with intraperitoneal injection of 2% 100 mg/kg PDTC 1 h before surgery. Lung histology and bronchia alveolus lung fluid (BALF) protein were assayed. Serum IL-6, lung malondialdehyde (MDA) and myeloperoxidase (MPO) as well as the expression level of NF-κB and ICAM-1 were measured. RESULTS: Lung injury induced by intestinal I/R, was characterized by edema, hemorrhage and neutrophil infiltration as well as by the significant rising of BALF protein. Compared to control group, the levels of serum IL-6 and lung MDA and MPO increased significantly in I/R group (P = 0.001). Strong positive expression of NF-κB p65 and ICAM-1 was observed. After the administration of PDTC, the level of serum IL-6, lung MDA and MPO as well as NF-κB and ICAM-1 decreased significantly (P < 0.05) when compared to I/R group. CONCLUSION: The activation of NF-κB plays an important role in the pathogenesis of lung injury induced by intestinal I/R through upregulating the neutrophil infiltration and lung ICAM-1 expression. PDTC as an inhibitor of NF-κB can prevent lung injury induced by intestinal I/R through inhibiting the activity of NF-κB. PMID:16489637

  10. Prenatal retinoic acid upregulates pulmonary gene expression of PI3K and AKT in nitrofen-induced pulmonary hypoplasia.

    PubMed

    Doi, Takashi; Sugimoto, Kaoru; Ruttenstock, Elke; Dingemann, Jens; Puri, Prem

    2010-10-01

    The precise mechanism of pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH) still remains unclear. Recently, prenatal treatment with retinoic acid (RA) has been reported to stimulate alveologenesis in hypoplastic lungs in the nitrofen model of CDH. The serine/threonine protein kinase B (AKT) plays a key role in lung morphogenesis through epithelial-mesenchymal interaction in phosphatidylinositide 3-kinase (PI3K)-dependent manner. It has been reported that the lung morphogenesis in explants in mice is interfered by inhibitors of PI3K-AKT signaling pathway. Furthermore, we have recently shown that nitrofen inhibits PI3K-AKT signaling during mid-to-late lung morphogenesis in the nitrofen-induced hypoplastic lung. We hypothesized that prenatal administration of RA upregulates pulmonary gene expression of PI3K and AKT in the nitrofen-induced hypoplastic lung. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). 5 mg/kg of RA was given on D18, D19 and D20. The fetuses were harvested on D21, and fetal lungs were obtained and divided into four groups: control, control + RA, nitrofen, nitrofen + RA. The mRNA expression levels of PI3K and AKT were analyzed in each lung by real-time RT-PCR and statistically analyzed. Immunohistochemistry was also performed to evaluate protein expression of PI3K and AKT in the fetal lungs at D21. The pulmonary gene expression levels of PI3K and AKT were significantly upregulated in nitrofen + RA group compared to nitrofen group and control + RA group (p < 0.05), whereas there were no significant differences between controls and control + RA group. Immunoreactivity of PI3K and AKT was markedly increased in nitrofen + RA lungs compared to nitrofen-induced hypoplastic lungs. Upregulation of PI3K and AKT genes after prenatal treatment with RA in the nitrofen-induced hypoplastic lung suggests that RA may have a therapeutic potential in modulating lung alveologenesis by stimulating epithelial-mesenchymal interaction via PI3K-AKT signaling.

  11. Endoplasmic reticulum-Golgi intermediate compartment protein 3 knockdown suppresses lung cancer through endoplasmic reticulum stress-induced autophagy.

    PubMed

    Hong, Seong-Ho; Chang, Seung-Hee; Cho, Kyung-Cho; Kim, Sanghwa; Park, Sungjin; Lee, Ah Young; Jiang, Hu-Lin; Kim, Hyeon-Jeong; Lee, Somin; Yu, Kyeong-Nam; Seo, Hwi Won; Chae, Chanhee; Kim, Kwang Pyo; Park, Jongsun; Cho, Myung-Haing

    2016-10-04

    Trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus is elevated in cancer cells. Therefore, proteins of the ER-Golgi intermediate compartment (ERGIC) attract significant attention as targets for cancer treatment. Enhanced cancer cell growth and epithelial-mesenchymal transition by ERGICs correlates with poor-prognosis of lung cancer. This prompted us to assess whether knockdown of ERGIC3 may decrease lung cancer growth. To test the hypothesis, the effects of ERGIC3 short hairpin RNA (shERGIC3) on ER stress-induced cell death and lung tumorigenesis were investigated both in vitro and in vivo. Knockdown of ERGIC3 led to ER stress-induced autophagic cell death and suppression of proliferation in the A549 human lung cancer cell-line. Moreover, non-invasive aerosol-delivery of shERGIC3 using the biocompatible carrier glycerol propoxylate triacrylate and spermine (GPT-SPE) inhibited lung tumorigenesis in the K-rasLA1 murine model of lung cancer. Our data suggest that suppression of ERGIC3 could provide a framework for the development of effective lung cancer therapies.

  12. The Nitrated Fatty Acid 10-Nitro-oleate Diminishes Severity of LPS-Induced Acute Lung Injury in Mice

    PubMed Central

    Reddy, Aravind T.; Lakshmi, Sowmya P.; Reddy, Raju C.

    2012-01-01

    Acute lung injury (ALI) is an inflammatory condition culminating in respiratory failure. There is currently no effective pharmacological treatment. Nitrated fatty acids (NFAs) have been shown to exert anti-inflammatory effects. We therefore hypothesized that delivery of NFAs directly to the site of inflammation would reduce the severity of ALI. Pulmonary delivery of 10-nitro-oleate following endotoxin-induced ALI in mice reduced markers of lung inflammation and injury, including capillary leakage, lung edema, infiltration of neutrophils into the lung, and oxidant stress, as well as plasma levels of proinflammatory cytokines. Nitro-oleate delivery likewise downregulated expression of proinflammatory genes by alveolar macrophages, key cells in regulation of lung inflammation. These effects may be accounted for by the observed increases in the activity of PPAR-γ and the PPAR-γ-induced antioxidant transcription factor Nrf2, together with the decreased activity of NF-κB. Our results demonstrate that pulmonary delivery of NFAs reduces severity of acute lung injury and suggest potential utility of these molecules in other inflammatory lung diseases. PMID:22919366

  13. Osthole protects lipopolysaccharide-induced acute lung injury in mice by preventing down-regulation of angiotensin-converting enzyme 2.

    PubMed

    Shi, Yun; Zhang, Bo; Chen, Xiang-Jun; Xu, Dun-Quan; Wang, Yan-Xia; Dong, Hai-Ying; Ma, Shi-Rong; Sun, Ri-He; Hui, Yan-Ping; Li, Zhi-Chao

    2013-03-12

    The renin-angiotensin-aldosterone system (RAAS) plays an important role in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Angiotensin converting enzyme 2 (ACE2) plays a protective role in acute lung injury. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to have anti-inflammatory effect, but the effect of osthole on the ALI is largely unknown. The aim of this study is to explore whether and by what mechanisms osthole protects lipopolysaccharide(LPS)-induced acute lung injury. Herein, we found that osthole had a beneficial effect on LPS-induced ALI in mice. As revealed by survival study, pretreatment with high doses of osthole reduced the mortality of mice from ALI. Osthole pretreatment significantly improved LPS-induced lung pathological changes, reduced lung wet/dry weight ratios and total protein in BALF. Osthole also inhibited the release of inflammatory mediators TNF-α and IL-6. Meanwhile, osthole markedly prevented the loss of ACE2 and Ang1-7 in lung tissue of ALI mice. ACE2 inhibitor blocked the protective effect of osthole in NR 8383 cell lines. Taken together, our study showed that osthole improved survival rate and attenuated LPS-induced ALI and ACE2 may play a role in it. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants.

    PubMed

    Yoshida, S; Haque, A; Mizobuchi, T; Iwata, T; Chiyo, M; Webb, T J; Baldridge, L A; Heidler, K M; Cummings, O W; Fujisawa, T; Blum, J S; Brand, D D; Wilkes, D S

    2006-04-01

    Immunity to collagen V [col(V)] contributes to lung 'rejection.' We hypothesized that ischemia reperfusion injury (IRI) associated with lung transplantation unmasks antigenic col(V) such that fresh and well-healed lung grafts have differential susceptibility to anti-col(V)-mediated injury; and expression of the autoimmune cytokines, IL-17 and IL-23, are associated with this process. Adoptive transfer of col(V)-reactive lymphocytes to WKY rats induced grade 2 rejection in fresh isografts, but induced worse pathology (grade 3) when transferred to isograft recipients 30 days post-transplantation. Immunhistochemistry detected col(V) in fresh and well-healed isografts but not native lungs. Hen egg lysozyme-reactive lymphocytes (HEL, control) did not induce lung disease in any group. Col(V), but not HEL, immunization induced transcripts for IL-17 and IL-23 (p19) in the cells utilized for adoptive transfer. Transcripts for IL-17 were upregulated in fresh, but not well-healed isografts after transfer of col(V)-reactive cells. These data show that IRI predisposes to anti-col(V)-mediated pathology; col(V)-reactive lymphocytes express IL-17 and IL-23; and anti-col(V)-mediated lung disease is associated with local expression of IL-17. Finally, because of similar histologic patterns, the pathology of clinical rejection may reflect the activity of autoimmunity to col(V) and/or alloimmunity.

  15. Taraxacum officinale protects against lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Liu, Liben; Xiong, Huanzhang; Ping, Jiaqi; Ju, Yulin; Zhang, Xuemei

    2010-07-20

    Taraxacum officinale has been frequently used as a remedy for inflammatory diseases. In the present study, we investigated the in vivo protective effect of Taraxacum officinale on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in mice. Taraxacum officinale at 2.5, 5 and 10 mg/kg was orally administered once per day for 5 days consecutively, followed by 500 microg/kg LPS was instilled intranasally. The lung wet/dry weight (W/D) ratio, protein concentration and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) were determined. Superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities, and histological change in the lungs were examined. The levels of inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in the BALF were measured using ELISA. We found that Taraxacum officinale decreased the lung W/D ratio, protein concentration and the number of neutrophils in the BALF at 24 h after LPS challenge. Taraxacum officinale decreased LPS-induced MPO activity and increased SOD activity in the lungs. In addition, histopathological examination indicated that Taraxacum officinale attenuated tissue injury of the lungs in LPS-induced ALI. Furthermore, Taraxacum officinale also inhibited the production of inflammatory cytokines TNF-alpha and IL-6 in the BALF at 6h after LPS challenge in a dose-dependent manner. These results suggest that Taraxacum officinale protects against LPS-induced ALI in mice. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Thermal degradation events as health hazards: Particle vs gas phase effects, mechanistic studies with particles

    NASA Astrophysics Data System (ADS)

    Oberdörster, G.; Ferin, J.; Finkelstein, J.; Soderholm, S.

    Exposure to thermal degradation products arising from fire or smoke could be a major concern for manned space missions. Severe acute lung damage has been reported in people after accidental exposure to fumes from plastic materials, and animal studies revealed the extremely high toxicity of freshly generated fumes whereas a decrease in toxicity of aged fumes has been found. This and the fact that toxicity of the freshly generated fumes can be prevented with filters raises the question whether the toxicity may be due to the particulate rather than the gas phase components of the thermodegradation products. Indeed, results from recent studies implicate ultrafine particles (particle diameter in the nm range) as potential severe pulmonary toxicants. We have conducted a number of in vivo (inhalation and instillation studies in rats) and in vitro studies to test the hypothesis that ultrafine particles possess an increased potential to injure the lung compared to larger-sized particles. We used as surrogate particles ultrafine TiO 2 particles (12 and 20 nm diameter). Results in exposed rats showed that the ultrafine TiO 2 particles not only induce a greater acute inflammatory reaction in the lung than larger-sized TiO 2 particles, but can also lead to persistent chronic effects, as indicated by an adverse effect on alveolar macrophage mediated clearance function of particles. Release of mediators from alveolar macrophages during phagocytosis of the ultrafine particles and an increased access of the ultrafine particles to the pulmonary interstitium are likely factors contributing to their pulmonary toxicity. In vitro studies with lung cells (alveolar macrophages) showed, in addition, that ultrafine TiO 2 particles have a greater potential to induce cytokines than larger-sized particles. We conclude from our present studies that ultrafine particles have a significant potential to injure the lung and that their occurrence in thermal degradation events can play a major role in the highly acute toxicity of fumes. Future studies will include adsorption of typical gas phase components (HCl, HF) on surrogate particles to differentiate between gas and particle phase effects and to perform mechanistic studies aimed at introducing therapeutic/preventive measures. These studies will be complemented by a comparison with actual thermal degradation products.

  17. [Effects of sodium aescinate on the apoptosis-related genes in lung injury induced by intestinal ischemia reperfusion in rats].

    PubMed

    Wang, Yan-Lei; Jing, You-Ling; Cai, Qing-Yan; Cui, Guo-Jin; Zhang, Yi-Bing; Zhang, Feng-Yu

    2012-03-01

    To investigate the relationship between apoptosis-related genes and lung injury induced by intestinal ischemia reperfusion and to explore the effects and its possible mechanism of sodium aescinate. Rat model of intestinal I/R injury was established with clamping of the superior mesenteric artery for 60 min and then clamping was relieved for 60 min. Twenty-four SD rats were randomly divided into three groups with eight rats in each: sham group, intestinal ischemia/reperfusion group (I/R group) and sodium aescinate group (SA + I/R group). Lung wet/dry weight ratio, lung coefficient and Superoxide dismutase (SOD), malondialdehyde (MDA) in plasma and lung tissue were measured, as well as the expression levels of Bcl-2 and Bax proteins in lung tissue were examined using immunohistochemical method. Compared with sham group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly increased, and while the activity of SOD in plasma and lung tissue were decreased significantly in I/R group. At the same time, the protein expression level of Bcl-2 and Bax were significantly increased. But Bax protein expression was much greater than that of Bcl-2, the ratio of Bcl-2 to Bax was decreased significantly in I/R group than that in sham group. Compared with I/R group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly decreased, and while the activity of SOD in serum and lung tissue were significantly increased in SA + I/R group. At the same time, Bax protein expression was significantly decreased, both Bcl-2 protein expression and the ratio of Bcl-2 to Bax were significantly increased in SA + I/R group than that in I/R group. Lung injury induced by intestinal ischemia reperfusion is correlated with abnormal expression levels of Bcl-2 and Bax protein which is caused by oxidative injury. Sodium aescinate can protect the lung injury induced by intestinal ischemia/reperfusion (I/R), which may be mediated by inhibiting lipid peroxidation, upregulating Bcl-2 gene protein expression, improving the ratio of Bcl-2/ Bax to inhibit lung apoptosis.

  18. Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Feiye, E-mail: zhizi0269@doc.medic.mie-u.ac.jp; Ma, Ning, E-mail: maning@suzuka-u.ac.jp; Horibe, Yoshiteru, E-mail: violinteru@yahoo.co.jp

    Carbon nanotube (CNT) has a promising usage in the field of material science for industrial purposes because of its unique physicochemical property. However, intraperitoneal administration of CNT was reported to cause mesothelioma in experimental animals. Chronic inflammation may contribute to carcinogenesis induced by fibrous materials. 8-Nitroguanine is a mutagenic DNA lesion formed during inflammation and may play a role in CNT-induced carcinogenesis. In this study, we examined 8-nitroguanine formation in A549 human lung alveolar epithelial cells treated with multi-walled CNT (MWCNT) by fluorescent immunocytochemistry. Both MWCNTs with diameter of 20–30 nm (CNT20) and 40–70 nm (CNT40) significantly induced 8-nitroguanine formationmore » at 5 and 10 μg/ml (p < 0.05), which persisted for 24 h, although there was no significant difference in DNA-damaging abilities of these MWCNTs. MWCNTs significantly induced the expression of inducible nitric oxide synthase (iNOS) for 24 h (p < 0.05). MWCNTs also significantly increased the level of nitrite, a hydrolysis product of oxidized NO, in the culture supernatant at 4 and 8 h (p < 0.05). MWCNT-induced 8-nitroguanine formation and iNOS expression were largely suppressed by inhibitors of iNOS (1400 W), nuclear factor-κB (Bay11-7082), actin polymerization (cytochalasin D), caveolae-mediated endocytosis (methyl-β-cyclodextrin, MBCD) and clathrin-mediated endocytosis (monodansylcadaverine, MDC). Electron microscopy revealed that MWCNT was mainly located in vesicular structures in the cytoplasm, and its cellular internalization was reduced by MBCD and MDC. These results suggest that MWCNT is internalized into cells via clathrin- and caveolae-mediated endocytosis, leading to inflammatory reactions including iNOS expression and resulting nitrative DNA damage, which may contribute to carcinogenesis. Highlights: ►Multi-walled carbon nanotube (MWCNT) caused DNA damage in A549 cells. ►MWCNT formed 8-nitroguanine, a DNA lesion associated with inflammatory response. ►MWCNT was internalized into cells via caveolin- and clathrin-mediated endocytosis. ►8-Nitroguanine formation and iNOS expression involved these types of endocytosis. ►Internalized MWCNT plays a key role in inflammatory response and DNA damage.« less

  19. Combined alpha-tocopherol and ascorbic acid protects against smoke-induced lung squamous metaplasia in ferrets

    USDA-ARS?s Scientific Manuscript database

    Many epidemiological studies show the benefit of fruits and vegetables on reducing risk of lung cancer, the leading cause of cancer death in the United States. Previously, we demonstrated that cigarette smoke exposure (SM)-induced lung lesions in ferrets were prevented by a combination of carotene,...

  20. Beta-Cryptoxanthin supplementation prevents cigarette smoke-induced lung inflammation, oxidative damage and squamous metaplasia in ferrets

    USDA-ARS?s Scientific Manuscript database

    In epidemiologic studies, high intake of beta-cryptoxanthin has been associated with a decreased risk of lung cancer, particularly among current smokers. However, data are not available from well-controlled animal studies to examine the effects of beta-cryptoxanthin on cigarette smoke-induced lung ...

  1. AMD3100 ameliorates cigarette smoke-induced emphysema-like manifestations in mice.

    PubMed

    Barwinska, Daria; Oueini, Houssam; Poirier, Christophe; Albrecht, Marjorie E; Bogatcheva, Natalia V; Justice, Matthew J; Saliba, Jacob; Schweitzer, Kelly S; Broxmeyer, Hal E; March, Keith L; Petrache, Irina

    2018-05-10

    We have shown that cigarette smoke (CS)-induced pulmonary emphysema-like manifestations are preceded by marked suppression of the number and function of bone marrow hematopoietic progenitor cells (HPC). To investigate if a limited availability of HPC may contribute to CS-induced lung injury, we used an FDA-approved antagonist of the interactions of SDF-1 with its receptor CXCR4 to promote intermittent HPC mobilization and tested its ability to limit emphysema-like injury following chronic CS. We administered AMD3100 (5mg/kg) to mice during a chronic CS exposure protocol of up to 24 weeks. AMD3100 treatment did not affect either lung SDF-1 levels, which were reduced by CS, or lung inflammatory cell counts. However, AMD3100 markedly improved CS-induced bone marrow HPC suppression and significantly ameliorated emphysema-like endpoints such as alveolar airspace size, lung volumes, and lung static compliance. These results suggest that antagonism of SDF-1 binding to CXCR4 is associated with protection of both bone marrow and lungs during chronic CS exposure, thus encouraging future studies of potential therapeutic benefit of AMD3100 in emphysema.

  2. Health risk of chrysotile revisited

    PubMed Central

    Dunnigan, Jacques; Hesterberg, Thomas; Brown, Robert; Velasco, Juan Antonio Legaspi; Barrera, Raúl; Hoskins, John; Gibbs, Allen

    2013-01-01

    This review provides a basis for substantiating both kinetically and pathologically the differences between chrysotile and amphibole asbestos. Chrysotile, which is rapidly attacked by the acid environment of the macrophage, falls apart in the lung into short fibers and particles, while the amphibole asbestos persist creating a response to the fibrous structure of this mineral. Inhalation toxicity studies of chrysotile at non-lung overload conditions demonstrate that the long (>20 µm) fibers are rapidly cleared from the lung, are not translocated to the pleural cavity and do not initiate fibrogenic response. In contrast, long amphibole asbestos fibers persist, are quickly (within 7 d) translocated to the pleural cavity and result in interstitial fibrosis and pleural inflammation. Quantitative reviews of epidemiological studies of mineral fibers have determined the potency of chrysotile and amphibole asbestos for causing lung cancer and mesothelioma in relation to fiber type and have also differentiated between these two minerals. These studies have been reviewed in light of the frequent use of amphibole asbestos. As with other respirable particulates, there is evidence that heavy and prolonged exposure to chrysotile can produce lung cancer. The importance of the present and other similar reviews is that the studies they report show that low exposures to chrysotile do not present a detectable risk to health. Since total dose over time decides the likelihood of disease occurrence and progression, they also suggest that the risk of an adverse outcome may be low with even high exposures experienced over a short duration. PMID:23346982

  3. Chronic Aspergillus fumigatus colonization of the pediatric cystic fibrosis airway is common and may be associated with a more rapid decline in lung function.

    PubMed

    Saunders, Rosalind V; Modha, Deborah E; Claydon, Alison; Gaillard, Erol A

    2016-07-01

    Filamentous fungi are commonly isolated from the respiratory tract of CF patients, but their clinical significance is uncertain and the reported incidence variable. We report on the degree of Aspergillus fumigatus airway colonization in a tertiary pediatric CF cohort, evaluate the sensitivity of routine clinical sampling at detecting A. fumigatus, and compare lung function of A. fumigatus-colonized and non-colonized children.We carried out an 8-year retrospective cohort analysis using local databases, examining 1024 respiratory microbiological specimens from 45 children. Nineteen (42%) had a positive A. fumigatus culture at least once during the 8-year period, with 10 (22%) children persistently colonized. Overall, 29% of 48 bronchoalveolar lavage (BAL) samples tested positive for A. fumigatus, compared with 14% of 976 sputum samples. Of 33 children for whom lung function data were available during the study period, seven were classed as having severe lung disease, of whom four (57%) were persistently colonized with A. fumigatus.We conclude that chronic A. fumigatus colonization of the CF airway is common, and may be associated with worse lung function. In our practice, BAL appears superior at detecting lower airway A. fumigatus compared to sputum samples. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Comparative microscopic study of human and rat lungs after overexposure to welding fume.

    PubMed

    Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R

    2013-11-01

    Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable.

  5. Effects of HIFU induced cavitation on flooded lung parenchyma.

    PubMed

    Wolfram, Frank; Dietrich, Georg; Boltze, Carsten; Jenderka, Klaus Vitold; Lesser, Thomas Günther

    2017-01-01

    High intensity focused ultrasound (HIFU) has gained clinical interest as a non-invasive local tumour therapy in many organs. In addition, it has been shown that lung cancer can be targeted by HIFU using One-Lung Flooding (OLF). OLF generates a gas free saline-lung compound in one lung wing and therefore acoustic access to central lung tumours. It can be assumed that lung parenchyma is exposed to ultrasound intensities in the pre-focal path and in cases of misguiding. If so, cavitation might be induced in the saline fraction of flooded lung and cause tissue damage. Therefore this study was aimed to determine the thresholds of HIFU induced cavitation and tissue erosion in flooded lung. Resected human lung lobes were flooded ex-vivo. HIFU (1,1 MHz) was targeted under sonographic guidance into flooded lung parenchyma. Cavitation events were counted using subharmonic passive cavitation detection (PCD). B-Mode imaging was used to detect cavitation and erosion sonographically. Tissue samples out of the focal zone were analysed histologically. In flooded lung, a PCD and a sonographic cavitation detection threshold of 625  Wcm - 2 ( p r  = 4, 3  MPa ) and 3.600  Wcm - 2 ( p r  = 8, 3  MPa ) was found. Cavitation in flooded lung appears as blurred hyperechoic focal region, which enhances echogenity with insonation time. Lung parenchyma erosion was detected at intensities above 7.200  Wcm - 2 ( p r  = 10, 9  MPa ). Cavitation occurs in flooded lung parenchyma, which can be detected passively and by B-Mode imaging. Focal intensities required for lung tumour ablation are below levels where erosive events occur. Therefore focal cavitation events can be monitored and potential risk from tissue erosion in flooded lung avoided.

  6. Modulation by metformin of molecular and histopathological alterations in the lung of cigarette smoke-exposed mice

    PubMed Central

    Izzotti, Alberto; Balansky, Roumen; D'Agostini, Francesco; Longobardi, Mariagrazia; Cartiglia, Cristina; Micale, Rosanna T; La Maestra, Sebastiano; Camoirano, Anna; Ganchev, Gancho; Iltcheva, Marietta; Steele, Vernon E; De Flora, Silvio

    2014-01-01

    The anti-diabetic drug metformin is endowed with anti-cancer properties. Epidemiological and experimental studies, however, did not provide univocal results regarding its role in pulmonary carcinogenesis. We used Swiss H mice of both genders in order to detect early molecular alterations and tumors induced by mainstream cigarette smoke. Based on a subchronic toxicity study, oral metformin was used at a dose of 800 mg/kg diet, which is 3.2 times higher than the therapeutic dose in humans. Exposure of mice to smoke for 4 months, starting at birth, induced a systemic clastogenic damage, formation of DNA adducts, oxidative DNA damage, and extensive downregulation of microRNAs in lung after 10 weeks. Preneoplastic lesions were detectable after 7.5 months in both lung and urinary tract along with lung tumors, both benign and malignant. Modulation by metformin of 42 of 1281 pulmonary microRNAs in smoke-free mice highlighted a variety of mechanisms, including modulation of AMPK, stress response, inflammation, NFκB, Tlr9, Tgf, p53, cell cycle, apoptosis, antioxidant pathways, Ras, Myc, Dicer, angiogenesis, stem cell recruitment, and angiogenesis. In smoke-exposed mice, metformin considerably decreased DNA adduct levels and oxidative DNA damage, and normalized the expression of several microRNAs. It did not prevent smoke-induced lung tumors but inhibited preneoplastic lesions in both lung and kidney. In conclusion, metformin was able to protect the mouse lung from smoke-induced DNA and microRNA alterations and to inhibit preneoplastic lesions in lung and kidney but failed to prevent lung adenomas and malignant tumors induced by this complex mixture. PMID:24683044

  7. Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair

    PubMed Central

    MacKenzie, BreAnne; Henneke, Ingrid; Hezel, Stefanie; Al Alam, Denise; El Agha, Elie; Chao, Cho-Ming; Quantius, Jennifer; Wilhelm, Jochen; Jones, Matthew; Goth, Kerstin; Li, Xiaokun; Seeger, Werner; Königshoff, Melanie; Herold, Susanne; Rizvanov, Albert A.; Günther, Andreas

    2015-01-01

    Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26rtTA/+;tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0–11; days 0–28) or during later stages (days 6–28 and 14–28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice. PMID:25820524

  8. Blocking the 4-1BB Pathway Ameliorates Crystalline Silica-induced Lung Inflammation and Fibrosis in Mice

    PubMed Central

    Li, Chao; Du, Sitong; Lu, Yiping; Lu, Xiaowei; Liu, Fangwei; Chen, Ying; Weng, Dong; Chen, Jie

    2016-01-01

    Long term pulmonary exposure to crystalline silica leads to silicosis that manifests progressive interstitial fibrosis, eventually leading to respiratory failure and death. Despite efforts to eliminate silicosis, clinical cases continue to occur in both developing and developed countries. The exact mechanisms of crystalline silica-induced pulmonary fibrosis remain elusive. Herein, we find that 4-1BB is induced in response to crystalline silica injury in lungs and that it is highly expressed during development of experimental silicosis. Therefore, we explore the role of 4-1BB pathway during crystalline silica-induced lung injury and find that a specific inhibitor blocking the pathway could effectively alleviate crystalline silica-induced lung inflammation and subsequent pulmonary fibrosis in vivo. Compared to controls, the treated mice exhibited reduced Th1 and Th17 responses. The concentrations of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17A following crystalline silica challenge were also reduced in inhibitor-treated mice. Although there was no significant alteration in Th2 cytokines of IL-4 and IL-13, another type of pro-fibrogenic cell, regulatory T cell (Treg) was significantly affected. In addition, one of the major participants in fibrogenesis, fibrocyte recruited less due to the blockade. Furthermore, we demonstrated the decreased fibrocyte recruitment was associated with chemokine reductions in lung. Our study discovers the 4-1BB pathway signaling enhances inflammatory response and promotes pulmonary fibrosis induced by crystalline silica. The findings here provide novel insights into the molecular events that control crystalline silica-induced lung inflammation and fibrosis through regulating Th responses and the recruitment of fibrocytes in crystalline silica-exposed lung. PMID:27698940

  9. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer.

    PubMed

    Takeuchi, Shinji; Wang, Wei; Li, Qi; Yamada, Tadaaki; Kita, Kenji; Donev, Ivan S; Nakamura, Takahiro; Matsumoto, Kunio; Shimizu, Eiji; Nishioka, Yasuhiko; Sone, Saburo; Nakagawa, Takayuki; Uenaka, Toshimitsu; Yano, Seiji

    2012-09-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a serious problem in the management of EGFR mutant lung cancer. We recently reported that hepatocyte growth factor (HGF) induces resistance to EGFR-TKIs by activating the Met/PI3K pathway. HGF is also known to induce angiogenesis in cooperation with vascular endothelial growth factor (VEGF), which is an important therapeutic target in lung cancer. Therefore, we hypothesized that dual inhibition of HGF and VEGF may be therapeutically useful for controlling HGF-induced EGFR-TKI-resistant lung cancer. We found that a dual Met/VEGF receptor 2 kinase inhibitor, E7050, circumvented HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer cell lines by inhibiting the Met/Gab1/PI3K/Akt pathway in vitro. HGF stimulated VEGF production by activation of the Met/Gab1 signaling pathway in EGFR mutant lung cancer cell lines, and E7050 showed an inhibitory effect. In a xenograft model, tumors produced by HGF-transfected Ma-1 (Ma-1/HGF) cells were more angiogenic than vector control tumors and showed resistance to gefitinib. E7050 alone inhibited angiogenesis and retarded growth of Ma-1/HGF tumors. E7050 combined with gefitinib induced marked regression of tumor growth. Moreover, dual inhibition of HGF and VEGF by neutralizing antibodies combined with gefitinib also markedly regressed tumor growth. These results indicate the therapeutic rationale of dual targeting of HGF-Met and VEGF-VEGF receptor 2 for overcoming HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Alveolar macrophages have a dual role in a rat model for trimellitic anhydride-induced occupational asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valstar, Dingena L.; Schijf, Marcel A.; Nijkamp, Frans P.

    2006-02-15

    Occupational exposure to low molecular weight chemicals, like trimellitic anhydride (TMA), can result in occupational asthma. Alveolar macrophages (AMs) are among the first cells to encounter inhaled compounds. These cells can produce many different mediators that have a putative role in asthma. In this study, we examined the role of AMs in lung function and airway inflammation of rats exposed to TMA. Female Brown Norway rats were sensitized by dermal application of TMA or received vehicle alone on days 0 and 7. One day before challenge, rats received intratracheally either empty or clodronate-containing liposomes to deplete the lungs of AMs.more » On day 21, all rats were challenged by inhalation of TMA in air. Lung function parameters were measured before, during, within 1 h after, and 24 h after challenge. IgE levels and parameters of inflammation and tissue damage were assessed 24 h after challenge. Sensitization with TMA led to decreased lung function parameters during and within 1 h after challenge as compared to non-sensitized rats. AM depletion alleviated the TMA-induced drop in lung function parameters and induced a faster recovery compared to sham-depleted TMA-sensitized rats. It also decreased the levels of serum IgE 24 h after challenge, but did not affect the sensitization-dependent increase in lung lavage fluid IL-6 and tissue TNF-{alpha} levels. In contrast, AM depletion augmented the TMA-induced tissue damage and inflammation 24 h after challenge. AMs seem to have a dual role in this model for TMA-induced occupational asthma since they potentiate the immediate TMA-induced decrease in lung function but tended to dampen the TMA-induced inflammatory reaction 24 h later.« less

  11. Blocking the 4-1BB Pathway Ameliorates Crystalline Silica-induced Lung Inflammation and Fibrosis in Mice.

    PubMed

    Li, Chao; Du, Sitong; Lu, Yiping; Lu, Xiaowei; Liu, Fangwei; Chen, Ying; Weng, Dong; Chen, Jie

    2016-01-01

    Long term pulmonary exposure to crystalline silica leads to silicosis that manifests progressive interstitial fibrosis, eventually leading to respiratory failure and death. Despite efforts to eliminate silicosis, clinical cases continue to occur in both developing and developed countries. The exact mechanisms of crystalline silica-induced pulmonary fibrosis remain elusive. Herein, we find that 4-1BB is induced in response to crystalline silica injury in lungs and that it is highly expressed during development of experimental silicosis. Therefore, we explore the role of 4-1BB pathway during crystalline silica-induced lung injury and find that a specific inhibitor blocking the pathway could effectively alleviate crystalline silica-induced lung inflammation and subsequent pulmonary fibrosis in vivo. Compared to controls, the treated mice exhibited reduced Th1 and Th17 responses. The concentrations of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17A following crystalline silica challenge were also reduced in inhibitor-treated mice. Although there was no significant alteration in Th2 cytokines of IL-4 and IL-13, another type of pro-fibrogenic cell, regulatory T cell (Treg) was significantly affected. In addition, one of the major participants in fibrogenesis, fibrocyte recruited less due to the blockade. Furthermore, we demonstrated the decreased fibrocyte recruitment was associated with chemokine reductions in lung. Our study discovers the 4-1BB pathway signaling enhances inflammatory response and promotes pulmonary fibrosis induced by crystalline silica. The findings here provide novel insights into the molecular events that control crystalline silica-induced lung inflammation and fibrosis through regulating Th responses and the recruitment of fibrocytes in crystalline silica-exposed lung.

  12. The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome

    PubMed Central

    Manabe, Yukari C.; Kesavan, Anup K.; Lopez-Molina, Javier; Hatem, Christine L.; Brooks, Megan; Fujiwara, Ricardo; Hochstein, Karl; Pitt, M. Louise M.; Tufariello, JoAnn; Chan, John; McMurray, David N.; Bishai, William R.; Dannenberg, Arthur M.; Mendez, Susana

    2015-01-01

    The large reservoir of human latent tuberculosis (TB) contributes to the global success of the pathogen, Mycobacterium tuberculosis (Mtb). We sought to test whether aerosol infection of rabbits with Mtb H37Rv could model paucibacillary human latent TB. The lung burden of infection peaked at 5 weeks after aerosol infection followed by host containment of infection that was achieved in all rabbits. One-third of rabbits had at least one caseous granuloma with culturable bacilli at 36 weeks after infection suggesting persistent paucibacillary infection. Corticosteroid-induced immunosuppression initiated after disease containment resulted in reactivation of disease. Seventy-two percent of rabbits had culturable bacilli in the right upper lung lobe homogenates compared to none of the untreated controls. Discontinuation of dexamethasone led to predictable lymphoid recovery, with a proportion of rabbits developing multicentric large caseous granuloma. The development and severity of the immune reconstitution inflammatory syndrome (IRIS) was dependent on the antigen load at the time of immunosuppression and subsequent bacillary replication during corticosteroid-induced immunosuppression. Clinically, many aspects were similar to IRIS in severely immunosuppressed HIV-infected patients who have functional restoration of T cells in response to effective (highly active) antiretroviral therapy. This corticosteroid model is the only animal model of the IRIS. Further study of the rabbit model of TB latency, reactivation and IRIS may be important in understanding the immunopathogenesis of these poorly modeled states as well as for improved diagnostics for specific stages of disease. PMID:18068491

  13. Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells.

    PubMed

    Libalova, Helena; Rossner, Pavel; Vrbova, Kristyna; Brzicova, Tana; Sikorova, Jitka; Vojtisek-Lom, Michal; Beranek, Vit; Klema, Jiri; Ciganek, Miroslav; Neca, Jiri; Machala, Miroslav; Topinka, Jan

    2018-04-01

    Modern vehicles equipped with Gasoline Direct Injection (GDI) engine have emerged as an important source of particulate emissions potentially harmful to human health. We collected and characterized gasoline exhaust particles (GEPs) produced by neat gasoline fuel (E0) and its blends with 15% ethanol (E15), 25% n-butanol (n-But25) and 25% isobutanol (i-But25). To study the toxic effects of organic compounds extracted from GEPs, we analyzed gene expression profiles in human lung BEAS-2B cells. Despite the lowest GEP mass, n-But25 extract contained the highest concentration of polycyclic aromatic hydrocarbons (PAHs), while i-But25 extract the lowest. Gene expression analysis identified activation of the DNA damage response and other subsequent events (cell cycle arrest, modulation of extracellular matrix, cell adhesion, inhibition of cholesterol biosynthesis) following 4 h exposure to all GEP extracts. The i-But25 extract induced the most distinctive gene expression pattern particularly after 24 h exposure. Whereas E0, E15 and n-But25 extract treatments resulted in persistent stress signaling including DNA damage response, MAPK signaling, oxidative stress, metabolism of PAHs or pro-inflammatory response, i-But25 induced changes related to the metabolism of the cellular nutrients required for cell recovery. Our results indicate that i-But25 extract possessed the weakest genotoxic potency possibly due to the low PAH content. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Lung fibrosis-associated soluble mediators and bronchoalveolar lavage from idiopathic pulmonary fibrosis patients promote the expression of fibrogenic factors in subepithelial lung myofibroblasts.

    PubMed

    Bouros, Evangelos; Filidou, Eirini; Arvanitidis, Konstantinos; Mikroulis, Dimitrios; Steiropoulos, Paschalis; Bamias, George; Bouros, Demosthenes; Kolios, George

    2017-10-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by infiltration of inflammatory cells, excessive collagen production and accumulation of myofibroblasts. We explored the possible role of subepithelial lung myofibroblasts (SELMs) in the development of fibrosis in IPF. SELMs, isolated from surgical specimens of healthy lung tissue, were cultured with pro-inflammatory factors or bronchoalveolar lavage fluid (BALF) from patients with IPF or idiopathic non-specific interstitial pneumonia (iNSIP) and their fibrotic activity was assessed. Stimulation of SELMs with pro-inflammatory factors induced a significant increase of Tissue Factor (TF) and Tumor necrosis factor-Like cytokine 1 A (TL1A) expression and collagen production in culture supernatants. Stimulation with BALF from IPF patients with mild to moderate, but not severe disease, and from iNSIP patients induced a significant increase of TF expression. BALF from all IPF patients induced a significant increase of TL1A expression and collagen production, while BALF from iNSIP patients induced a significant increase of TL1A, but not of collagen production. Interestingly, TGF-β1 and BALF from all IPF, but not iNSIP patients, induced a significant increase in SELMs migration. In conclusion, BALF from IPF patients induces fibrotic activity in lung myofibroblasts, similar to mediators associated with lung fibrosis, indicating a key role of SELMs in IPF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomousmore » growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a valuable model for arsenic-induced lung cancer.« less

  16. Anti-inflammatory effect of thalidomide in paraquat-induced pulmonary injury in mice.

    PubMed

    Amirshahrokhi, Keyvan

    2013-10-01

    Thalidomide has been used in inflammatory and autoimmune disorders due to its anti-inflammatory activity. Paraquat (PQ) poisoning causes severe lung injury. PQ-induced pulmonary inflammation and fibrosis are due to its ability to induce oxidative stress, inflammatory and fibrotic reactions. This study was designed to evaluate the anti-inflammatory and anti-fibrotic effect of thalidomide on PQ-induced lung damage in a mouse model. Mice were injected with a single dose of PQ (20mg/kg, i.p.), and treated with thalidomide (25 and 50mg/kg/day, i.p.) for six days. Lung tissues were dissected six days after PQ injection. The results showed that thalidomide ameliorated the biochemical and histological lung alterations induced by PQ. Thalidomide decreased production of inflammatory and fibrogenic cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β1. In addition thalidomide reduced myeloperoxidase (MPO), nitric oxide (NO), and hydroxyproline content in lung tissue. Taken together, the results of this study suggest that thalidomide might be a valuable therapeutic drug in preventing the progression of PQ-induced pulmonary injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome.

    PubMed

    Hagawane, T N; Gaikwad, R V; Kshirsagar, N A

    2016-05-01

    Despite advances in therapy and overall medical care, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) management remains a problem. Hence the objective of this study was to develop a rat model that mimics human ALI/ARDS. Four groups of Wistar rats, 48 per group were treated with (i) intratracheal (IT) lipopolysaccharide (LPS) (5 mg/kg) dissolved in normal saline (NS), (ii) intravenous (iv) oleic acid (OA) (250 μl/kg) suspension in bovine serum albumin (BSA), (iii) dual hit: IT LPS (2 mg/kg) dissolved in NS and iv OA (100 μl/kg) and (iv) control group: IT NS and iv BSA. From each group at set periods of time various investigations like chest x-rays, respiratory rate (RR), tidal volume (TV), total cell count, differential cell count, total protein count and cytokine levels in bronchoalveolar lavage fluid (BALF), lung wet/dry weight ratio and histopathological examination were done. It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α) levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6) levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals) group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury.

  18. Pathogenesis of duck circovirus genotype 1 in experimentally infected Pekin ducks.

    PubMed

    Hong, Y-T; Kang, M; Jang, H-K

    2018-05-17

    Ducks infected with duck circovirus (DuCV) exhibit feathering disorder, growth retardation, and low body weight. The virus can induce immunosuppression and increase rates of infection caused by other pathogens. The purpose of the present study was to investigate the pathogenesis of DuCV in experimentally infected Pekin ducks. At postmortem examination, gross lesions were observed in the immune organs including bursa of Fabricius (BF), thymus, and spleen. Hemorrhage, lymphocytic depletion, necrosis, and degeneration were observed in the bursal tissues by histological examination. The TUNEL assay was performed with bursal tissue. There was a significant difference of the apoptosis rate between the negative and DuCV-infected ducks. The earliest time point for detection of DuCV DNA in sera, cloacal swabs, and organs was 1 wk post-infection (WPI). Viral shedding was persistent and detectable at the end of the experiment (10 WPI). The findings provide evidence that horizontal transmission and persistent infection are the characteristics of DuCV. The organ with the highest mean viral load was the spleen, followed by BF, cecal tonsil, lung, thymus, liver, and kidney. We successfully established an experimental DuCV genotype 1 (DuCV-1) infection in Pekin ducks and demonstrated the pathogenicity and persistence of DuCV-1. In conclusion, DuCV-1 caused extensive damage to the immune organs that may have resulted in immunosuppression. Pathobiological characteristics of DuCV-1 include systemic infection, persistent infection, and horizontal transmission. These features allow DuCV-1 to circulate more easily in farms and increase the susceptibility of ducks to other diseases.

  19. Experimental induction of pulmonary fibrosis in horses with the gammaherpesvirus equine herpesvirus 5.

    PubMed

    Williams, Kurt J; Robinson, N Edward; Lim, Ailam; Brandenberger, Christina; Maes, Roger; Behan, Ashley; Bolin, Steven R

    2013-01-01

    Gammaherpesviruses (γHV) are implicated in the pathogenesis of pulmonary fibrosis in humans and murine models of lung fibrosis, however there is little direct experimental evidence that such viruses induce lung fibrosis in the natural host. The equine γHV EHV 5 is associated with equine multinodular pulmonary fibrosis (EMPF), a progressive fibrosing lung disease in its natural host, the horse. Experimental reproduction of EMPF has not been attempted to date. We hypothesized that inoculation of EHV 5 isolated from cases of EMPF into the lungs of clinically normal horses would induce lung fibrosis similar to EMPF. Neutralizing antibody titers were measured in the horses before and after inoculation with EHV 5. PCR and virus isolation was used to detect EHV 5 in antemortem blood and BAL samples, and in tissues collected postmortem. Nodular pulmonary fibrosis and induction of myofibroblasts occurred in EHV 5 inoculated horses. Mean lung collagen in EHV 5 inoculated horses (80 µg/mg) was significantly increased compared to control horses (26 µg/mg) (p < 0.5), as was interstitial collagen (32.6% ± 1.2% vs 23% ± 1.4%) (mean ± SEM; p < 0.001). Virus was difficult to detect in infected horses throughout the experiment, although EHV 5 antigen was detected in the lung by immunohistochemistry. We conclude that the γHV EHV 5 can induce lung fibrosis in the horse, and hypothesize that induction of fibrosis occurs while the virus is latent within the lung. This is the first example of a γHV inducing lung fibrosis in the natural host.

  20. Experimental Induction of Pulmonary Fibrosis in Horses with the Gammaherpesvirus Equine Herpesvirus 5

    PubMed Central

    Williams, Kurt J.; Robinson, N. Edward; Lim, Ailam; Brandenberger, Christina; Maes, Roger; Behan, Ashley; Bolin, Steven R.

    2013-01-01

    Gammaherpesviruses (γHV) are implicated in the pathogenesis of pulmonary fibrosis in humans and murine models of lung fibrosis, however there is little direct experimental evidence that such viruses induce lung fibrosis in the natural host. The equine γHV EHV 5 is associated with equine multinodular pulmonary fibrosis (EMPF), a progressive fibrosing lung disease in its natural host, the horse. Experimental reproduction of EMPF has not been attempted to date. We hypothesized that inoculation of EHV 5 isolated from cases of EMPF into the lungs of clinically normal horses would induce lung fibrosis similar to EMPF. Neutralizing antibody titers were measured in the horses before and after inoculation with EHV 5. PCR and virus isolation was used to detect EHV 5 in antemortem blood and BAL samples, and in tissues collected postmortem. Nodular pulmonary fibrosis and induction of myofibroblasts occurred in EHV 5 inoculated horses. Mean lung collagen in EHV 5 inoculated horses (80 µg/mg) was significantly increased compared to control horses (26 µg/mg) (p < 0.5), as was interstitial collagen (32.6% ± 1.2% vs 23% ± 1.4%) (mean ± SEM; p < 0.001). Virus was difficult to detect in infected horses throughout the experiment, although EHV 5 antigen was detected in the lung by immunohistochemistry. We conclude that the γHV EHV 5 can induce lung fibrosis in the horse, and hypothesize that induction of fibrosis occurs while the virus is latent within the lung. This is the first example of a γHV inducing lung fibrosis in the natural host. PMID:24147074

  1. Lung Cancer Workshop XI: Tobacco-Induced Disease: Advances in Policy, Early Detection and Management.

    PubMed

    Mulshine, James L; Avila, Rick; Yankelevitz, David; Baer, Thomas M; Estépar, Raul San Jose; Ambrose, Laurie Fenton; Aldigé, Carolyn R

    2015-05-01

    The Prevent Cancer Foundation Lung Cancer Workshop XI: Tobacco-Induced Disease: Advances in Policy, Early Detection and Management was held in New York, NY on May 16 and 17, 2014. The two goals of the Workshop were to define strategies to drive innovation in precompetitive quantitative research on the use of imaging to assess new therapies for management of early lung cancer and to discuss a process to implement a national program to provide high quality computed tomography imaging for lung cancer and other tobacco-induced disease. With the central importance of computed tomography imaging for both early detection and volumetric lung cancer assessment, strategic issues around the development of imaging and ensuring its quality are critical to ensure continued progress against this most lethal cancer.

  2. K-ras mutations in benzotrichloride-induced lung tumors of A/J mice.

    PubMed

    You, M; Wang, Y; Nash, B; Stoner, G D

    1993-06-01

    Benzotrichloride (BTC) is used extensively as a chemical intermediate in the synthesis of benzoyl chloride and benzoyl peroxide. Epidemiological data suggest that BTC is a human lung carcinogen. BTC is also a carcinogen in the A/J mouse lung tumor bioassay. Activated K-ras protooncogenes were detected in BTC-induced lung tumors from A/J mice. The polymerase chain reaction was used to amplify specific DNA segments likely to contain activating mutations, and the amplified DNAs were sequenced to identify the mutation. The activating mutation present in the K-ras gene from all BTC-induced lung tumors (24/24) was a GC-->AT transition in codon 12. Thus, BTC may exert its carcinogenic action by activation of the K-ras protooncogene through a genotoxic mechanism.

  3. Lung tumorigenesis promoted by anti-apoptotic effects of cotinine, a nicotine metabolite through activation of PI3K/Akt pathway.

    PubMed

    Nakada, Tomohisa; Kiyotani, Kazuma; Iwano, Shunsuke; Uno, Takahiko; Yokohira, Masanao; Yamakawa, Keiko; Fujieda, Masaki; Saito, Tetsuya; Yamazaki, Hiroshi; Imaida, Katsumi; Kamataki, Tetsuya

    2012-01-01

    We previously found that genetic polymorphism in cytochrome P450 2A6 (CYP2A6) is one of the potential determinants of tobacco-related lung cancer risk. It has been reported that the plasma concentration of cotinine, a major metabolite of nicotine, in carriers of wild-type alleles of CYP2A6 is considerably higher than that in carriers of null or reduced-function alleles of CYP2A6, raising the possibility that cotinine plays an important role in the development of lung cancer. As a novel mechanism of lung tumorigenesis mediated by CYP2A6, we investigated the effects of cotinine on the suppression of apoptosis and promotion of lung tumor growth. In human lung adenocarcinoma A549 cells, cotinine inhibited doxorubicin-induced cell death by suppressing caspase-mediated apoptosis. Enhanced phosphorylation of Akt, a key factor responsible for cell survival and inhibition of apoptosis, was detected after cotinine treatment. These data suggest that cotinine suppresses caspase-mediated apoptosis induced by doxorubicin through activation of the PI3K/Akt pathway. Furthermore, we clarified that cotinine significantly facilitated tumor growth in the Lewis lung cancer model and accelerated development of lung adenomas induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mice. We herein propose that cotinine induces tumor promotion by inhibiting apoptosis and enhancing cellular proliferation, thus underlining the importance of CYP2A6 in tobacco-related lung tumorigenesis.

  4. Valproic acid attenuates acute lung injury induced by ischemia-reperfusion in rats.

    PubMed

    Wu, Shu-Yu; Tang, Shih-En; Ko, Fu-Chang; Wu, Geng-Chin; Huang, Kun-Lun; Chu, Shi-Jye

    2015-06-01

    Evidence reveals that histone deacetylase (HDAC) inhibition has potential for the treatment of inflammatory diseases. The protective effect of HDAC inhibition involves multiple mechanisms. Heme oxygenase-1 (HO-1) is protective in lung injury as a key regulator of antioxidant response. The authors examined whether HDAC inhibition provided protection against ischemia-reperfusion (I/R) lung injury in rats by up-regulating HO-1 activity. Acute lung injury was induced by producing 40 min of ischemia followed by 60 min of reperfusion in isolated perfused rat lungs. The rats were randomly allotted to control group, I/R group, or I/R + valproic acid (VPA) group with or without an HO-1 activity inhibitor (zinc protoporphyrin IX) (n = 6 per group). I/R caused significant increases in the lung edema, pulmonary arterial pressure, lung injury scores, tumor necrosis factor-α, and cytokine-induced neutrophil chemoattractant-1 concentrations in bronchoalveolar lavage fluid. Malondialdehyde levels, carbonyl contents, and myeloperoxidase-positive cells in lung tissue were also significantly increased. I/R stimulated the degradation of inhibitor of nuclear factor-κB-α, nuclear translocation of nuclear factor-κB, and up-regulation of HO-1 activity. Furthermore, I/R decreased B-cell lymphoma-2, heat shock protein 70, acetylated histone H3 protein expression, and increased the caspase-3 activity in the rat lungs. In contrast, VPA treatment significantly attenuated all the parameters of lung injury, oxidative stress, apoptosis, and inflammation. In addition, VPA treatment also enhanced HO-1 activity. Treatment with zinc protoporphyrin IX blocked the protective effect of VPA. VPA protected against I/R-induced lung injury. The protective mechanism may be partly due to enhanced HO-1 activity following HDAC inhibition.

  5. Emodin Attenuates Cigarette Smoke Induced Lung Injury in a Mouse Model via Suppression of Reactive Oxygen Species Production.

    PubMed

    Xue, Wen-Hua; Shi, Xiu-Qin; Liang, Shu-Hong; Zhou, Lin; Liu, Ke-Feng; Zhao, Jie

    2015-11-01

    Emodin has antioxidative activities. Here, we investigated the effects of emodin on cigarette smoke (CS)-induced acute lung inflammation. Mice (C57BL/6) were exposed to CS. Emodin was administrated with intraperitoneal bolus injection of emodin (20 or 40 mg/kg) daily 1 h before CS exposure. Emodin inhibited CS-induced inflammatory cells infiltration in mouse lungs, especially at 40 mg/kg. Moreover, emodin resulted in significant reductions in total bronchoalveolar lavage fluid (BALF) cells, as compared with air exposure control, coupled with decreases in BALF cytokines. The activities of superoxide dismutase, catalase, and glutathione peroxidase were remarkably enhanced by emodin in CS-exposed mice. Emodin enhanced CS-induced expression of heme oxygenase-1 and nuclear factor-erythroid 2-related factor-2 (both are antioxidative genes) at both mRNA and protein levels, and profoundly promoted their activities in CS-treated mice. Collectively, our results suggested that emodin protects mouse lung from CS-induced lung inflammation and oxidative damage, most likely through its antioxidant activity. © 2015 Wiley Periodicals, Inc.

  6. Effects of budesonide on the lung functions, inflammation and apoptosis in a saline-lavage model of acute lung injury.

    PubMed

    Mokra, D; Kosutova, P; Balentova, S; Adamkov, M; Mikolka, P; Mokry, J; Antosova, M; Calkovska, A

    2016-12-01

    Diffuse alveolar injury, edema, and inflammation are fundamental signs of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Whereas the systemic administration of corticosteroids previously led to controversial results, this study evaluated if corticosteroids given intratracheally may improve lung functions and reduce edema formation, migration of cells into the lung and their activation in experimentally-induced ALI. In oxygen-ventilated rabbits, ALI was induced by repetitive saline lung lavage, until PaO2 decreased to < 26.7 kPa in FiO 2 1.0. Then, one group of animals was treated with corticosteroid budesonide (Pulmicort susp inh, AstraZeneca; 0.25 mg/kg) given intratracheally by means of inpulsion regime of high-frequency jet ventilation, while another group was non-treated, and both groups were oxygen-ventilated for following 5 hours. Another group of animals served as healthy controls. After sacrifice of animals, left lung was saline-lavaged and protein content was measured and cells in the lavage fluid were determined microscopically. Right lung tissue was used for estimation of edema formation (expressed as wet/dry weight ratio), for histomorphological investigation, immunohistochemical determination of apoptosis of lung cells, and for determination of markers of inflammation and lung injury (IL-1β, IL-6, IL-8, TNF-α, IFNγ, esRAGE, caspase-3) by ELISA methods. Levels of several cytokines were estimated also in plasma. Repetitive lung lavage worsened gas exchange, induced lung injury, inflammation and lung edema and increased apoptosis of lung epithelial cells. Budesonide reduced lung edema, cell infiltration into the lung and apoptosis of epithelial cells and decreased concentrations of proinflammatory markers in the lung and blood. These changes resulted in improved ventilation. Concluding, curative intratracheal treatment with budesonide alleviated lung injury, inflammation, apoptosis of lung epithelial cells and lung edema and improved lung functions in a lavage model of ALI. These findings suggest a potential of therapy with inhaled budesonide also for patients with ARDS.

  7. Non-intubated video-assisted thoracic surgery management of secondary spontaneous pneumothorax

    PubMed Central

    Bolufer, Sergio; Navarro-Martinez, Jose; Lirio, Francisco; Corcoles, Juan Manuel; Rodriguez-Paniagua, Jose Manuel

    2015-01-01

    Secondary spontaneous pneumothorax (SSP) is serious entity, usually due to underlying disease, mainly chronic obstructive pulmonary disease (COPD). Its morbidity and mortality is high due to the pulmonary compromised status of these patients, and the recurrence rate is almost 50%, increasing mortality with each episode. For persistent or recurrent SSP, surgery under general anesthesia (GA) and mechanical ventilation (MV) with lung isolation is the gold standard, but ventilator-induced damages and dependency, and postoperative pulmonary complications are frequent. In the last two decades, several groups have reported successful results with non-intubated video-assisted thoracic surgery (NI-VATS) with thoracic epidural anesthesia (TEA) and/or local anesthesia under spontaneous breathing. Main benefits reported are operative time, operation room time and hospital stay reduction, and postoperative respiratory complications decrease when comparing to GA, thus encouraging for further research in these moderate to high risk patients many times rejected for the standard regimen. There are also reports of special situations with satisfactory results, as in contralateral pneumonectomy and lung transplantation. The aim of this review is to collect, analyze and discuss all the available evidence, and seek for future lines of investigation. PMID:26046045

  8. Non-intubated video-assisted thoracic surgery management of secondary spontaneous pneumothorax.

    PubMed

    Galvez, Carlos; Bolufer, Sergio; Navarro-Martinez, Jose; Lirio, Francisco; Corcoles, Juan Manuel; Rodriguez-Paniagua, Jose Manuel

    2015-05-01

    Secondary spontaneous pneumothorax (SSP) is serious entity, usually due to underlying disease, mainly chronic obstructive pulmonary disease (COPD). Its morbidity and mortality is high due to the pulmonary compromised status of these patients, and the recurrence rate is almost 50%, increasing mortality with each episode. For persistent or recurrent SSP, surgery under general anesthesia (GA) and mechanical ventilation (MV) with lung isolation is the gold standard, but ventilator-induced damages and dependency, and postoperative pulmonary complications are frequent. In the last two decades, several groups have reported successful results with non-intubated video-assisted thoracic surgery (NI-VATS) with thoracic epidural anesthesia (TEA) and/or local anesthesia under spontaneous breathing. Main benefits reported are operative time, operation room time and hospital stay reduction, and postoperative respiratory complications decrease when comparing to GA, thus encouraging for further research in these moderate to high risk patients many times rejected for the standard regimen. There are also reports of special situations with satisfactory results, as in contralateral pneumonectomy and lung transplantation. The aim of this review is to collect, analyze and discuss all the available evidence, and seek for future lines of investigation.

  9. Investigation of the enhanced antimicrobial activity of combination dry powder inhaler formulations of lactoferrin.

    PubMed

    Marshall, Lindsay J; Oguejiofor, Wilson; Price, Robert; Shur, Jagdeep

    2016-12-05

    The airways of most people with cystic fibrosis are colonized with biofilms of the Gram-negative, opportunistic pathogen Pseudomonas aeruginosa. Delivery of antibiotics directly to the lung in the form of dry powder aerosols offers the potential to achieve high local concentrations directly to the biofilms. Unfortunately, current aerosolised antibiotic regimes are unable to efficiently eradicate these biofilms from the airways. We investigated the ability of the innate antimicrobial, lactoferrin, to enhance the activity of two aminoglycoside antibiotics (tobramycin and gentamicin) against biofilms of P. aeruginosa strain PAO1. Biofilms were prepared in 96 well polystyrene plates. Combinations of the antibiotics and various lactoferrin preparations were spray dried. The bacterial cell viability of the various spray dried combinations was determined. Iron-free lactoferrin (apo lactoferrin) induced a 3-log reduction in the killing of planktonic cell by the aminoglycoside antibiotics (p<0.01) and also reduced both the formation and persistence of P. aeruginosa biofilms (p<0.01). Combinations of lactoferrin and an aminoglycoside displays potential as an effective new therapeutic strategy in the treatment of P. aeruginosa biofilms infections such as those typical of the CF lungs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Burkholderia cenocepacia K56-2 trimeric autotransporter adhesin BcaA binds TNFR1 and contributes to induce airway inflammation.

    PubMed

    Mil-Homens, Dalila; Pinto, Sandra N; Matos, Rute G; Arraiano, Cecília; Fialho, Arsenio M

    2017-04-01

    Chronic lung disease caused by persistent bacterial infections is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). CF pathogens acquire antibiotic resistance, overcome host defenses, and impose uncontrolled inflammation that ultimately may cause permanent damage of lungs' airways. Among the multiple CF-associated pathogens, Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria have become prominent contributors of disease progression. Here, we demonstrate that BcaA, a trimeric autotransporter adhesin (TAA) from the epidemic strain B. cenocepacia K56-2, is a tumor necrosis factor receptor 1-interacting protein able to regulate components of the tumor necrosis factor signaling pathway and ultimately leading to a significant production of the proinflammatory cytokine IL-8. Notably, this study is the first to demonstrate that a protein belonging to the TAA family is involved in the induction of the inflammatory response during B. cenocepacia infections, contributing to the success of the pathogen. Moreover, our results reinforce the relevance of the TAA BcaA as a multifunctional protein with a major role in B. cenocepacia virulence. © 2016 John Wiley & Sons Ltd.

  11. Mannitol Enhances Antibiotic Sensitivity of Persister Bacteria in Pseudomonas aeruginosa Biofilms

    PubMed Central

    Barraud, Nicolas; Buson, Alberto; Jarolimek, Wolfgang; Rice, Scott A.

    2013-01-01

    The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF) patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF), suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10–40 mM) increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response. PMID:24349568

  12. Inhibition of nuclear factor-κB signal by pyrrolidine dithiocarbamate alleviates lipopolysaccharide-induced acute lung injury

    PubMed Central

    Yang, Hongfu; Sun, Rongqing; Ma, Ning; Liu, Qilong; Sun, Xiaoge; Zi, Panpan; Wang, Junsheng; Chao, Ke; Yu, Lei

    2017-01-01

    This study mainly studied the effect of inhibition of nuclear factor-κB (NF-κB) signal by pyrrolidine dithiocarbamate (PDTC) on lipopolysaccharide (LPS)-induced inflammatory response, oxidative stress, and mitochondrial dysfunction in a murine acute lung injury model. The results showed that LPS exposure activated NF-κB and its upstream proteins and caused lung inflammation, oxidative stress, and mitochondrial dysfunction in mice. While inhibition of NF-κB by PDTC adminstration alleviated LPS-induced generation of lymphocytes, IL-1β, and TNF-α. Malondialdehyde, a common oxidative product, was markedly reduced after PDTC treatment in LPS-challenged mice. Furthermore, PDTC alleviated LPS-induced mitochondrial dysfunction via improving ATP synthesis and uncoupling protein 2 expression. In conclusion, inhibition of NF-κB by PDTC alleviated LPS-induced acute lung injury via maintaining inflammatory status, oxidative balance, and mitochondrial function in mice. PMID:28521300

  13. Osthole Alleviates Bleomycin-Induced Pulmonary Fibrosis via Modulating Angiotensin-Converting Enzyme 2/Angiotensin-(1-7) Axis and Decreasing Inflammation Responses in Rats.

    PubMed

    Hao, Yuewen; Liu, Yan

    2016-01-01

    Studies have shown that angiotensin-converting enzyme 2 (ACE2) plays modulating roles in lung pathophysiology, including pulmonary fibrosis (PF) and acute lung injury. Pulmonary fibrosis is a common complication in these interstitial lung diseases, and PF always has a poor prognosis and short survival. To date, there are few promising methods for treating PF, and they are invariably accompanied by severe side effects. Recent studies have showed that the traditional Chinese herbal extract, osthole, had beneficial effects on lipopolysaccharide (LPS) induced acute lung injury (ALI) via an ACE2 pathway. Here we further investigated the protective effects of osthole on bleomycin induced pulmonary fibrosis and attempted to determine the underlying mechanism. PF mode rats were induced by bleomycin (BLM) and then subsequently administered osthole. Histopathological analyses were employed to identify PF changes. The results showed that BLM resulted in severe PF and diffuse lung inflammation, together with significant elevation of inflammatory factors and a marked increase in expression of angiotensin II (ANG II) and transforming growth factor-beta 1 (TGF-β1). ACE2 and angiotensin-(1-7) [ANG-(1-7)] were both greatly reduced after BLM administration. Meanwhile, osthole treatment attenuated BLM induced PF and inflammation, decreased the expression of these inflammatory mediators, ANG II, and TGF-β1, and reversed ACE2 and ANG-(1-7) production in rat lungs. We conclude that osthole may exert beneficial effects on BLM induced PF in rats, perhaps via modulating the ACE2/ANG-(1-7) axis and inhibiting lung inflammation pathways.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu; Patel-Vayas, Kinal, E-mail: kinalv5@gmail.com; Shen, Jianliang, E-mail: jianliangs@gmail.com

    Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratracheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxidemore » synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNF{alpha} (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNF{alpha} mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNF{alpha} signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.« less

  15. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.

    PubMed

    Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M

    2016-06-01

    Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.

  16. Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells

    PubMed Central

    Park, Soyoung; Li, Cen; Zhao, Hong; Darzynkiewicz, Zbigniew; Xu, Dazhong

    2016-01-01

    Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI). PMID:26760771

  17. Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles.

    PubMed

    Xu, Jiegou; Futakuchi, Mitsuru; Alexander, David B; Fukamachi, Katsumi; Numano, Takamasa; Suzui, Masumi; Shimizu, Hideo; Omori, Toyonori; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki

    2014-01-01

    Zinc oxide (ZnO) is known to induce lung toxicity, including terminal bronchiolar epithelial hyperplasia, which gives rise to concerns that nanosized ZnO (nZnO) might lead to lung carcinogenesis. We studied the tumor promoting activity of nZnO by an initiation-promotion protocol using human c-Ha-ras proto-oncogene transgenic rats (Hras128 rats). The rats were given 0.2 % N-nitrosobis(2-hydroxypropyl)amine (DHPN) in the drinking water for 2 weeks and then treated with 0.5 ml of 250 or 500 μg/ml nZnO suspension by intra-pulmonary spraying once every 2 weeks for a total of 7 times. Treatment with nZnO particles did not promote DHPN-induced lung carcinogenesis. However, nZnO dose-dependently caused epithelial hyperplasia of terminal bronchioles (EHTB) and fibrosis-associated interstitial pneumonitis (FAIP) that were independent of DHPN treatment. Tracing the fate of EHTB lesions in wild-type rats indicated that the hyperplastic lesions almost completely disappeared within 12 weeks after the last nZnO treatment. Since nZnO particles were not found in the lung and ZnCl2 solution induced similar lung lesions and gene expression profiles, the observed lesions were most likely caused by dissolved Zn(2+). In summary, nZnO did not promote carcinogenesis in the lung and induced EHTB and FAIP lesions that regressed rapidly, probably due to clearance of surplus Zn(2+) from the lung.

  18. Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study.

    PubMed

    Jiang, Cheng-Lan; He, Shui-Wang; Zhang, Yun-Dong; Duan, He-Xian; Huang, Tao; Huang, Yun-Chao; Li, Gao-Feng; Wang, Ping; Ma, Li-Ju; Zhou, Guang-Biao; Cao, Yi

    2017-01-03

    The lung cancer incidence in the Xuanwei and neighboring region, Yunnan, China, is among the highest in China and is attributed to severe air pollution with high benzo(a)pyrene levels. We systematically and comparatively analyzed DNA methylation alterations at genome and gene levels in Xuanwei lung cancer tissues and cell lines, as well as benzo(a)pyrene-treated cells and mouse samples. We obtained a comprehensive dataset of genome-wide cytosine-phosphate-guanine island methylation in air pollution-related lung cancer samples. Benzo(a)pyrene exposure induced multiple alterations in DNA methylation and in mRNA expressions of DNA methyltransferases and ten-11 translocation proteins; these alterations partially occurred in Xuanwei lung cancer. Furthermore, benzo(a)pyrene-induced DKK2 and EN1 promoter hypermethylation and LPAR2 promoter hypomethylation led to down-regulation and up-regulation of the genes, respectively; the down-regulation of DKK2 and EN1 promoted the cellular proliferation. Thus, DNA methylation alterations induced by benzo(a)pyrene contribute partially to abnormal DNA methylation in air pollution-related lung cancer, and these DNA methylation alterations may affect the development and progression of lung cancer. Additionally, vitamin C and B6 can reduce benzo(a)pyrene-induced DNA methylation alterations and may be used as chemopreventive agents for air pollution-related lung cancer.

  19. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20more » lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.« less

  20. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Lu; Xue, Jian-Xin; Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy formore » lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1/3 signaling system is involved in the development of RLF through promoting fibroblast proliferation in a CTGF-dependent manner. The LPA-LPAR1/3-CTGF pathway may be a potential target for RLF therapy.« less

  1. Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection

    PubMed Central

    Gordon, Claire L.; Thome, Joseph J.C.; Igarashi, Suzu

    2017-01-01

    T cell responses to viruses are initiated and maintained in tissue sites; however, knowledge of human antiviral T cells is largely derived from blood. Cytomegalovirus (CMV) persists in most humans, requires T cell immunity to control, yet tissue immune responses remain undefined. Here, we investigated human CMV-specific T cells, virus persistence and CMV-associated T cell homeostasis in blood, lymphoid, mucosal and secretory tissues of 44 CMV seropositive and 28 seronegative donors. CMV-specific T cells were maintained in distinct distribution patterns, highest in blood, bone marrow (BM), or lymph nodes (LN), with the frequency and function in blood distinct from tissues. CMV genomes were detected predominantly in lung and also in spleen, BM, blood and LN. High frequencies of activated CMV-specific T cells were found in blood and BM samples with low virus detection, whereas in lung, CMV-specific T cells were present along with detectable virus. In LNs, CMV-specific T cells exhibited quiescent phenotypes independent of virus. Overall, T cell differentiation was enhanced in sites of viral persistence with age. Together, our results suggest tissue T cell reservoirs for CMV control shaped by both viral and tissue-intrinsic factors, with global effects on homeostasis of tissue T cells over the lifespan. PMID:28130404

  2. Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection.

    PubMed

    Gordon, Claire L; Miron, Michelle; Thome, Joseph J C; Matsuoka, Nobuhide; Weiner, Joshua; Rak, Michael A; Igarashi, Suzu; Granot, Tomer; Lerner, Harvey; Goodrum, Felicia; Farber, Donna L

    2017-03-06

    T cell responses to viruses are initiated and maintained in tissue sites; however, knowledge of human antiviral T cells is largely derived from blood. Cytomegalovirus (CMV) persists in most humans, requires T cell immunity to control, yet tissue immune responses remain undefined. Here, we investigated human CMV-specific T cells, virus persistence and CMV-associated T cell homeostasis in blood, lymphoid, mucosal and secretory tissues of 44 CMV seropositive and 28 seronegative donors. CMV-specific T cells were maintained in distinct distribution patterns, highest in blood, bone marrow (BM), or lymph nodes (LN), with the frequency and function in blood distinct from tissues. CMV genomes were detected predominantly in lung and also in spleen, BM, blood and LN. High frequencies of activated CMV-specific T cells were found in blood and BM samples with low virus detection, whereas in lung, CMV-specific T cells were present along with detectable virus. In LNs, CMV-specific T cells exhibited quiescent phenotypes independent of virus. Overall, T cell differentiation was enhanced in sites of viral persistence with age. Together, our results suggest tissue T cell reservoirs for CMV control shaped by both viral and tissue-intrinsic factors, with global effects on homeostasis of tissue T cells over the lifespan. @Gordon et al.

  3. Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury

    PubMed Central

    Jing, Xigang; Michalkiewicz, Teresa; Afolayan, Adeleye J.; Wu, Tzong-Jin; Konduri, Girija G.

    2017-01-01

    Rodent pups exposed to hyperoxia develop lung changes similar to bronchopulmonary dysplasia (BPD) in extremely premature infants. Oxidative stress from hyperoxia can injure developing lungs through endoplasmic reticulum (ER) stress. Early caffeine treatment decreases the rate of BPD, but the mechanisms remain unclear. We hypothesized that caffeine attenuates hyperoxia-induced lung injury through its chemical chaperone property. Sprague-Dawley rat pups were raised either in 90 (hyperoxia) or 21% (normoxia) oxygen from postnatal day 1 (P1) to postnatal day 10 (P10) and then recovered in 21% oxygen until P21. Caffeine (20 mg/kg) or normal saline (control) was administered intraperitoneally daily starting from P2. Lungs were inflation-fixed for histology or snap-frozen for immunoblots. Blood caffeine levels were measured in treated pups at euthanasia and were found to be 18.4 ± 4.9 μg/ml. Hyperoxia impaired alveolar formation and increased ER stress markers and downstream effectors; caffeine treatment attenuated these changes at P10. Caffeine also attenuated the hyperoxia-induced activation of cyclooxygenase-2 and markers of apoptosis. In conclusion, hyperoxia-induced alveolar growth impairment is mediated, in part, by ER stress. Early caffeine treatment protects developing lungs from hyperoxia-induced injury by attenuating ER stress. PMID:28213471

  4. Role of Eotaxin-1 (CCL11) and CC chemokine receptor 3 (CCR3) in bleomycin-induced lung injury and fibrosis.

    PubMed

    Huaux, Francois; Gharaee-Kermani, M; Liu, Tianju; Morel, Valérie; McGarry, Bridget; Ullenbruch, Matt; Kunkel, Steven L; Wang, Jun; Xing, Zhou; Phan, Sem H

    2005-12-01

    Eotaxin-1/CCL11 and its receptor CCR3 are involved in recruitment of eosinophils to diverse tissues, but their role in eosinophil recruitment in pulmonary fibrosis is unclear. The present study examined the pulmonary expression of CCL11 and CCR3 during bleomycin (blm)-induced lung injury and determined their importance in the recruitment of inflammatory cells and the development of lung fibrosis. In mice, blm induced a marked pulmonary expression of CCL11 and CCR3. Immunostaining for CCR3 revealed that this receptor was not only expressed by eosinophils but also by neutrophils. CCL11-deficient (CCL11(-/-)) mice developed significantly reduced pulmonary fibrosis. Expression of profibrotic cytokines such as transforming growth factor-beta1 was diminished in the absence of CCL11. Furthermore, increased lung expression of CCL11 significantly enhanced blm-induced lung fibrosis and production of profibrotic cytokines. These effects were also associated with an increase of eosinophil and neutrophil pulmonary infiltration. In contrast, mice treated with neutralizing CCR3 antibodies developed significantly reduced pulmonary fibrosis, eosinophilia, neutrophilia, and expression of profibrotic cytokines. Together, these data suggest that CCL11 and CCR3 are important in the pulmonary recruitment of granulocytes and play significant pathogenic roles in blm-induced lung fibrosis.

  5. Role of Eotaxin-1 (CCL11) and CC Chemokine Receptor 3 (CCR3) in Bleomycin-Induced Lung Injury and Fibrosis

    PubMed Central

    Huaux, Francois; Gharaee-Kermani, M.; Liu, Tianju; Morel, Valérie; McGarry, Bridget; Ullenbruch, Matt; Kunkel, Steven L.; Wang, Jun; Xing, Zhou; Phan, Sem H.

    2005-01-01

    Eotaxin-1/CCL11 and its receptor CCR3 are involved in recruitment of eosinophils to diverse tissues, but their role in eosinophil recruitment in pulmonary fibrosis is unclear. The present study examined the pulmonary expression of CCL11 and CCR3 during bleomycin (blm)-induced lung injury and determined their importance in the recruitment of inflammatory cells and the development of lung fibrosis. In mice, blm induced a marked pulmonary expression of CCL11 and CCR3. Immunostaining for CCR3 revealed that this receptor was not only expressed by eosinophils but also by neutrophils. CCL11-deficient (CCL11−/−) mice developed significantly reduced pulmonary fibrosis. Expression of profibrotic cytokines such as transforming growth factor-β1 was diminished in the absence of CCL11. Furthermore, increased lung expression of CCL11 significantly enhanced blm-induced lung fibrosis and production of profibrotic cytokines. These effects were also associated with an increase of eosinophil and neutrophil pulmonary infiltration. In contrast, mice treated with neutralizing CCR3 antibodies developed significantly reduced pulmonary fibrosis, eosinophilia, neutrophilia, and expression of profibrotic cytokines. Together, these data suggest that CCL11 and CCR3 are important in the pulmonary recruitment of granulocytes and play significant pathogenic roles in blm-induced lung fibrosis. PMID:16314464

  6. Inducible Lung Epithelial Resistance Requires Multisource Reactive Oxygen Species Generation To Protect against Viral Infections

    PubMed Central

    2018-01-01

    ABSTRACT Viral pneumonias cause profound worldwide morbidity, necessitating novel strategies to prevent and treat these potentially lethal infections. Stimulation of intrinsic lung defenses via inhalation of synergistically acting Toll-like receptor (TLR) agonists protects mice broadly against pneumonia, including otherwise-lethal viral infections, providing a potential opportunity to mitigate infectious threats. As intact lung epithelial TLR signaling is required for the inducible resistance and as these cells are the principal targets of many respiratory viruses, the capacity of lung epithelial cells to be therapeutically manipulated to function as autonomous antiviral effectors was investigated. Our work revealed that mouse and human lung epithelial cells could be stimulated to generate robust antiviral responses that both reduce viral burden and enhance survival of isolated cells and intact animals. The antiviral protection required concurrent induction of epithelial reactive oxygen species (ROS) from both mitochondrial and dual oxidase sources, although neither type I interferon enrichment nor type I interferon signaling was required for the inducible protection. Taken together, these findings establish the sufficiency of lung epithelial cells to generate therapeutically inducible antiviral responses, reveal novel antiviral roles for ROS, provide mechanistic insights into inducible resistance, and may provide an opportunity to protect patients from viral pneumonia during periods of peak vulnerability. PMID:29764948

  7. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  8. CHARACTERIZATION OF NORMAL HUMAN LUNG LYMPHOCYTES AND INTERLEUKIN-2-INDUCED LUNG T CELL LINES

    EPA Science Inventory

    Lymphocytes from the lower respiratory tract were obtained by bronchoalveolar lavage of healthy, non-smoking individuals. arious monoclonal antibodies characterizing activated T cells, helper-inducer and suppressor-inducer T cell subsets, and naive versus memory cells were used t...

  9. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension.

    PubMed

    Afolayan, Adeleye J; Eis, Annie; Alexander, Maxwell; Michalkiewicz, Teresa; Teng, Ru-Jeng; Lakshminrusimha, Satyan; Konduri, Girija G

    2016-01-01

    Impaired vasodilation in persistent pulmonary hypertension of the newborn (PPHN) is characterized by mitochondrial dysfunction. We investigated the hypothesis that a decreased endothelial nitric oxide synthase level leads to impaired mitochondrial biogenesis and function in a lamb model of PPHN induced by prenatal ductus arteriosus constriction. We ventilated PPHN lambs with 100% O2 alone or with inhaled nitric oxide (iNO). We treated pulmonary artery endothelial cells (PAECs) from normal and PPHN lambs with detaNONOate, an NO donor. We observed decreased mitochondrial (mt) DNA copy number, electron transport chain (ETC) complex subunit levels, and ATP levels in PAECs and lung tissue of PPHN fetal lambs at baseline compared with gestation matched controls. Phosphorylation of AMP-activated kinase (AMPK) and levels of peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) and sirtuin-1, which facilitate mitochondrial biogenesis, were decreased in PPHN. Ventilation with 100% O2 was associated with larger decreases in ETC subunits in the lungs of PPHN lambs compared with unventilated PPHN lambs. iNO administration, which facilitated weaning of FiO2 , partly restored mtDNA copy number, ETC subunit levels, and ATP levels. DetaNONOate increased eNOS phosphorylation and its interaction with heat shock protein 90 (HSP90); increased levels of superoxide dismutase 2 (SOD2) mRNA, protein, and activity; and decreased the mitochondrial superoxide levels in PPHN-PAECs. Knockdown of eNOS decreased ETC protein levels in control PAECs. We conclude that ventilation with 100% O2 amplifies oxidative stress and mitochondrial dysfunction in PPHN, which are partly improved by iNO and weaning of oxygen. Copyright © 2016 the American Physiological Society.

  10. An Interesting Case of Retropharyngeal Lymph Nodal Metastases in a Case of Iodine-Refractory Thyroid Cancer.

    PubMed

    Harisankar, Chidambaram Natrajan Balasubramanian; Vijayabhaskar, Ramakrishnan

    2018-01-01

    Metastases to cervical lymph node are fairly common in differentiated thyroid cancer. In iodine-refractory disease, the disease may persist in the thyroid bed, cervical lymph nodes, lungs, or the bones commonly. Retropharyngeal lymph nodal involvement in thyroid cancer is unusual and may even be the presenting complaint. We represent a case of iodine-refractory thyroid cancer with retropharyngeal lymph nodal involvement in addition to lung metastases.

  11. Proton Pump Inhibitors Independently Protect Against Early Allograft Injury or Chronic Rejection After Lung Transplantation.

    PubMed

    Lo, Wai-Kit; Goldberg, Hilary J; Boukedes, Steve; Burakoff, Robert; Chan, Walter W

    2018-02-01

    Acid reflux has been associated with poor outcomes following lung transplantation. Unlike surgical fundoplication, the role of noninvasive, pharmacologic acid suppression remains uncertain. To assess the relationship between post-transplant acid suppression with proton pump inhibitors (PPI) or histamine-2 receptor antagonists (H2RA) and onset of early allograft injury or chronic rejection following lung transplantation. This was a retrospective cohort study of lung transplant recipients at a tertiary center in 2007-2014. Patients with pre-transplant antireflux surgery were excluded. Time-to-event analysis using the Cox proportional hazards model was applied to assess acid suppression therapy and onset of acute or chronic rejection, defined histologically and clinically. Subgroup analyses were performed to assess PPI versus H2RA use. A total of 188 subjects (60% men, mean age 54, follow-up 554 person-years) met inclusion criteria. During follow-up, 115 subjects (61.5%) developed rejection, with all-cause mortality of 27.6%. On univariate analyses, acid suppression and BMI, but not other patient demographics, were associated with rejection. The Kaplan-Meier curve demonstrated decreased rejection with use of acid suppression therapy (log-rank p = 0.03). On multivariate analyses, acid suppression (HR 0.39, p = 0.04) and lower BMI (HR 0.67, p = 0.04) were independently predicted against rejection. Subgroup analyses demonstrated that persistent PPI use was more protective than H2RA or no antireflux medications. Post-lung transplant exposure to persistent PPI therapy results in the greatest protection against rejection in lung transplant recipients, independent of other clinical predictors including BMI, suggesting that PPI may have antireflux or anti-inflammatory effects in enhancing allograft protection.

  12. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by Pseudomonas aeruginosa: Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis.

    PubMed

    Marteyn, Benoît S; Burgel, Pierre-Régis; Meijer, Laurent; Witko-Sarsat, Véronique

    2017-01-01

    More than two decades after cloning the cystic fibrosis transmembrane regulator (CFTR) gene, the defective gene in cystic fibrosis (CF), we still do not understand how dysfunction of this ion channel causes lung disease and the tremendous neutrophil burden which persists within the airways; nor why chronic colonization by Pseudomonas aeruginosa develops in CF patients who are thought to be immunocompetent. It appears that the microenvironment within the lung of CF patients provides favorable conditions for both P. aeruginosa colonization and neutrophil survival. In this context, the ability of bacteria to induce hypoxia, which in turn affects neutrophil survival is an additional level of complexity that needs to be accounted for when controlling neutrophil fate in CF. Recent studies have underscored the importance of neutrophils in innate immunity and their functions appear to extend far beyond their well-described role in antibacterial defense. Perhaps a disturbance in neutrophil reprogramming during the course of an infection severely modulates the inflammatory response in CF. Furthermore there is an emerging concept that the CFTR itself may be an immune modulator and stimulating CFTR function in CF patients could promote neutrophil and macrophages antimicrobial function. Fostering the resolution of inflammation by favoring neutrophil apoptosis could preserve their microbicidal activities but decrease their proinflammatory potential. In this context, triggering neutrophil apoptosis with roscovitine may be a potential therapeutic option and this is currently being evaluated in CF patients. In the present review we discuss how neutrophils functions are disturbed in CF and how this may relate to chronic infection with P. aeuginosa and we propose novel research directions aimed at modulating neutrophil survival, dampening lung inflammation and ultimately leading to an amelioration of the lung disease.

  13. The lung in paracoccidioidomycosis: new insights into old problems

    PubMed Central

    Costa, Andre Nathan; Benard, Gil; Albuquerque, Andre Luis Pereira; Fujita, Carmem Lucia; Magri, Adriana Satie Kono; Salge, João Marcos; Shikanai-Yasuda, Maria Aparecida; Carvalho, Carlos Roberto Ribeiro

    2013-01-01

    OBJECTIVES: Chronic paracoccidioidomycosis can diffusely affect the lungs. Even after antifungal therapy, patients may present with residual respiratory abnormalities due to fungus-induced lung fibrosis. METHODS: A cross-sectional analysis of 50 consecutive inactive, chronic paracoccidioidomycosis patients was performed using high resolution computed tomography, pulmonary function tests, ergospirometry, the six-minute walk test and health-related quality of life questionnaires. RESULTS: Radiological abnormalities were present in 98% of cases, the most frequent of which were architectural distortion (90%), reticulate and septal thickening (88%), centrilobular and paraseptal emphysema (84%) and parenchymal bands (74%). Patients typically presented with a mild obstructive disorder and a mild reduction in diffusion capacity with preserved exercise capacity, including VO2max and six-minute walking distance. Patient evaluation with the Saint-George Respiratory Questionnaire showed low impairment in the health-related quality of life, and the Medical Research Council questionnaire indicated a low dyspnea index. There were, however, patients with significant oxygen desaturation upon exercise that was associated with respiratory distress compared with the non-desaturated patients. The initial counterimmunoelectrophoresis of these patients was higher and lung emphysema was more prominent; however, there were no differences in the interstitial fibrotic tomographic abnormalities, tobacco exposure, functional responses, exercise capacity or quality of life. CONCLUSIONS: Inactive, chronic paracoccidioidomycosis patients show persistent and disseminated radiological abnormalities by high resolution computed tomography, short impairments in pulmonary function and low impacts on aerobic capacity and quality of life. However, there was a subset of individuals whose functional impairment was more severe. These patients present with higher initial serology and more severe emphysema, stressing the importance of adequate treatment associated with tobacco exposure cessation. PMID:23778339

  14. Open and closed-circuit endotracheal suctioning in acute lung injury: efficiency and effects on gas exchange.

    PubMed

    Lasocki, Sigismond; Lu, Qin; Sartorius, Alfonso; Fouillat, Dominique; Remerand, Francis; Rouby, Jean-Jacques

    2006-01-01

    Closed-circuit endotracheal suctioning (CES) is advocated for preventing hypoxemia caused by the loss of lung volume resulting from open endotracheal suctioning (OES). However, the efficiency of CES and OES on tracheal secretion removal has never been compared in patients with acute lung injury. The authors designed a two-part study aimed at comparing gas exchange and efficiency between OES and CES performed at two levels of negative pressure. Among 18 patients with acute lung injury, 9 underwent CES and OES at 3-h intervals in a random order using a negative pressure of -200 mmHg. Nine other patients underwent CES twice using two levels of negative pressure (-200 and -400 mmHg) applied in a random order. After each CES, a recruitment maneuver was performed using 20 consecutive hyperinflations. Tracheal aspirates were weighed after each suctioning procedure. Arterial blood gases were continuously recorded using an intravascular sensor. Open endotracheal suctioning induced a significant 18% decrease in arterial oxygen tension (Pa(O2)) (range, +13 to -71%) and an 8% increase in arterial carbon dioxide tension (Pa(CO2)) (range, -2 to +16%) that persisted 15 min after the end of the procedure. CES using -200 cm H2O did not change Pa(O2), but tracheal aspirate mass was lower compared with OES (0.6 +/- 1.0 vs. 3.2 +/- 5.1 g; P = 0.03). Increasing negative pressure to -400 cm H2O during CES did not change Pa(O2) but increased the tracheal aspirate mass (1.7 +/- 1.6 vs. 1.0 +/- 1.3 g; P = 0.02). Closed-circuit endotracheal suctioning followed by a recruitment maneuver prevents hypoxemia resulting from OES but decreases secretion removal. Increasing suctioning pressure enhances suctioning efficiency without impairing gas exchange.

  15. Induction of Pulmonary Granuloma Formation by Propionibacterium acnes Is Regulated by MyD88 and Nox2.

    PubMed

    Werner, Jessica L; Escolero, Sylvia G; Hewlett, Jeff T; Mak, Tim N; Williams, Brian P; Eishi, Yoshinobu; Núñez, Gabriel

    2017-01-01

    Sarcoidosis is characterized by noncaseating granulomas with an unknown cause that present primarily in the lung. Propionibacterium acnes, an immunogenic commensal skin bacterium involved in acne vulgaris, has been implicated as a possible causative agent of sarcoidosis. Here, we demonstrate that a viable strain of P. acnes isolated from a patient with sarcoidosis and instilled intratracheally into wild-type mice can generate pulmonary granulomas similar to those observed in patients with sarcoidosis. The formation of these granulomas is dependent on the administration of viable P. acnes. We also found that mice deficient in the innate immunity adapter protein MyD88 had a greater number and a larger area of granuloma lesions compared with wild-type mice administered P. acnes. Early after P. acnes administration, wild-type mice produced proinflammatory mediators and recruited neutrophils into the lung, a response that is dependent on MyD88. In addition, there was an increase in granuloma number and size after instillation with P. acnes in mice deficient in CybB, a critical component of nicotinamide adenine dinucleotide phosphate oxidase required for the production of reactive oxygen species in the phagosome. Myd88 -/- or Cybb -/- mice both had increased persistence of P. acnes in the lung, together with enhanced granuloma formation. In conclusion, we have generated a mouse model of early granuloma formation induced by a clinically relevant strain of P. acnes isolated from a patient with sarcoidosis, and, using this model, we have shown that a deficiency in MyD88 or CybB is associated with impaired bacterial clearance and increased granuloma formation in the lung.

  16. Induction of Pulmonary Granuloma Formation by Propionibacterium acnes Is Regulated by MyD88 and Nox2

    PubMed Central

    Werner, Jessica L.; Escolero, Sylvia G.; Hewlett, Jeff T.; Mak, Tim N.; Williams, Brian P.; Eishi, Yoshinobu

    2017-01-01

    Sarcoidosis is characterized by noncaseating granulomas with an unknown cause that present primarily in the lung. Propionibacterium acnes, an immunogenic commensal skin bacterium involved in acne vulgaris, has been implicated as a possible causative agent of sarcoidosis. Here, we demonstrate that a viable strain of P. acnes isolated from a patient with sarcoidosis and instilled intratracheally into wild-type mice can generate pulmonary granulomas similar to those observed in patients with sarcoidosis. The formation of these granulomas is dependent on the administration of viable P. acnes. We also found that mice deficient in the innate immunity adapter protein MyD88 had a greater number and a larger area of granuloma lesions compared with wild-type mice administered P. acnes. Early after P. acnes administration, wild-type mice produced proinflammatory mediators and recruited neutrophils into the lung, a response that is dependent on MyD88. In addition, there was an increase in granuloma number and size after instillation with P. acnes in mice deficient in CybB, a critical component of nicotinamide adenine dinucleotide phosphate oxidase required for the production of reactive oxygen species in the phagosome. Myd88−/− or Cybb−/− mice both had increased persistence of P. acnes in the lung, together with enhanced granuloma formation. In conclusion, we have generated a mouse model of early granuloma formation induced by a clinically relevant strain of P. acnes isolated from a patient with sarcoidosis, and, using this model, we have shown that a deficiency in MyD88 or CybB is associated with impaired bacterial clearance and increased granuloma formation in the lung. PMID:27607191

  17. The Effects of Maternal Exposure to Bisphenol A on Allergic Lung Inflammation into Adulthood

    PubMed Central

    Lawrence, B. Paige

    2012-01-01

    Bisphenol A (BPA) is a high–production volume chemical classified as an environmental estrogen and used primarily in the plastics industry. BPA’s increased usage correlates with rising BPA levels in people and a corresponding increase in the incidence of asthma. Due to limited studies, the contribution of maternal BPA exposure to allergic asthma pathogenesis is unclear. Using two established mouse models of allergic asthma, we examined whether developmental exposure to BPA alters hallmarks of allergic lung inflammation in adult offspring. Pregnant C57BL/6 dams were gavaged with 0, 0.5, 5, 50, or 500 μg BPA/kg/day from gestational day 6 until postnatal day 21. To induce allergic inflammation, adult offspring were mucosally sensitized with inhaled ovalbumin containing low-dose lipopolysaccharide or ip sensitized using ovalbumin with alum followed by ovalbumin aerosol challenge. In the mucosal sensitization model, female offspring that were maternally exposed to ≥ 50 μg BPA/kg/day displayed enhanced airway lymphocytic and lung inflammation, compared with offspring of control dams. Peritoneally sensitized, female offspring exposed to ≤ 50 μg BPA/kg/day presented dampened lung eosinophilia, compared with vehicle controls. Male offspring did not exhibit these differences in either sensitization model. Our data demonstrate that maternal exposure to BPA has subtle and qualitatively different effects on allergic inflammation, which are critically dependent upon route of allergen sensitization and sex. However, these subtle, yet persistent changes due to developmental exposure to BPA did not lead to significant differences in overall airway responsiveness, suggesting that early life exposure to BPA does not exacerbate allergic inflammation into adulthood. PMID:22821851

  18. Stressed lungs: unveiling the role of circulating stress ...

    EPA Pesticide Factsheets

    Ozone, a major component of smog generated through the interaction of light and anthropogenic emissions, induces adverse pulmonary, cardiovascular, and systemic health effects upon inhalation. It is generally accepted that ozone-induced lung injury is mediated by its interaction with lung lining components causing local oxidative changes, which then leads to cell damage and recruitment of inflammatory cells. It is postulated that the spillover of reactive intermediates and pro-inflammatory molecules from lung to systemic circulation mediates extra-pulmonary effects. However, recent work from our laboratory supports an alternative hypothesis that circulating stress hormones, such as epinephrine and corticosterone/cortisol, are involved in mediating ozone pulmonary effects. We have shown in rats and humans that ozone increases the levels of circulating stress hormones through activation of the hypothalamus- pituitary-adrenal (HPA) axis before any measurable effects are observed in the lung. The surgical removal of adrenals diminishes circulating stress hormones and at the same time, the pulmonary effects of ozone suggesting a significant contribution of these hormones in ozone-induced lung injury and inflammation. While ozone effects in the lung have been extensively studied, the contribution of central nervous system -mediated hormonal stress response has not been examined. In order to understand the signaling pathways that might be involved in ozone-induced lun

  19. Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability.

    PubMed

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R

    2007-03-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.

  20. Clostridium sordellii Lethal Toxin Kills Mice by Inducing a Major Increase in Lung Vascular Permeability

    PubMed Central

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R.

    2007-01-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication. PMID:17322384

  1. Venom present in sea anemone (Heteractis magnifica) induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-mediated pathway.

    PubMed

    Ramezanpour, Mahnaz; da Silva, Karen Burke; Sanderson, Barbara J S

    2014-03-01

    Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer.

  2. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.

    PubMed

    Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang

    2017-02-01

    Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.

  3. Ginsenoside Rb1 Treatment Attenuates Pulmonary Inflammatory Cytokine Release and Tissue Injury following Intestinal Ischemia Reperfusion Injury in Mice

    PubMed Central

    Zhou, Zhen; Meng, Qing-tao; Sun, Qian; Su, Wating; Xia, Zhengyuan; Xia, Zhong-yuan

    2015-01-01

    Objective. Intestinal ischemia reperfusion (II/R) injury plays a critical role in remote organ dysfunction, such as lung injury, which is associated with nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In the present study, we tested whether ginsenoside Rb1 attenuated II/R induced lung injury by Nrf2/HO-1 pathway. Methods. II/R injury was induced in male C57BL/6J mice by 45 min of superior mesenteric artery (SMA) occlusion followed by 2 hours of reperfusion. Ginsenoside Rb1 was administrated prior to reperfusion with or without ATRA (all-transretinoic acid, the inhibitor of Nrf2/ARE signaling pathway) administration before II/R. Results. II/R induced lung histological injury, which is accompanied with increased levels of malondialdehyde (MDA), interleukin- (IL-) 6, and tumor necrosis factor- (TNF-) α but decreased levels of superoxide dismutase (SOD) and IL-10 in the lung tissues. Ginsenoside Rb1 reduced lung histological injury and the levels of TNF-α and MDA, as well as wet/dry weight ratio. Interestingly, the increased Nrf2 and HO-1 expression induced by II/R in the lung tissues was promoted by ginsenoside Rb1 treatment. All these changes could be inhibited or prevented by ATRA. Conclusion. Ginsenoside Rb1 is capable of ameliorating II/R induced lung injuries by activating Nrf2/HO-1 pathway. PMID:26161243

  4. CXCR3 Signaling Is Required for Restricted Homing of Parenteral Tuberculosis Vaccine-Induced T Cells to Both the Lung Parenchyma and Airway.

    PubMed

    Jeyanathan, Mangalakumari; Afkhami, Sam; Khera, Amandeep; Mandur, Talveer; Damjanovic, Daniela; Yao, Yushi; Lai, Rocky; Haddadi, Siamak; Dvorkin-Gheva, Anna; Jordana, Manel; Kunkel, Steven L; Xing, Zhou

    2017-10-01

    Although most novel tuberculosis (TB) vaccines are designed for delivery via the muscle or skin for enhanced protection in the lung, it has remained poorly understood whether systemic vaccine-induced memory T cells can readily home to the lung mucosa prior to and shortly after pathogen exposure. We have investigated this issue by using a model of parenteral TB immunization and intravascular immunostaining. We find that systemically induced memory T cells are restricted to the blood vessels in the lung, unable to populate either the lung parenchymal tissue or the airway under homeostatic conditions. We further find that after pulmonary TB infection, it still takes many days before such T cells can enter the lung parenchymal tissue and airway. We have identified the acquisition of CXCR3 expression by circulating T cells to be critical for their entry to these lung mucosal compartments. Our findings offer new insights into mucosal T cell biology and have important implications in vaccine strategies against pulmonary TB and other intracellular infections in the lung. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress.

    PubMed

    Lu, Jun; Chen, Jian; Xu, Nianjun; Wu, Jun; Kang, Yani; Shen, Tingting; Kong, Hualei; Ma, Chao; Cheng, Ming; Shao, Zhifeng; Xu, Ling; Zhao, Xiaodong

    2016-09-06

    Application of cisplatin (DDP) for treating lung cancer is restricted due to its toxicity and lung cancer's drug resistance. In this study, we examined the effect of Jinfukang (JFK), an effective herbal medicine against lung cancer, on DDP-induced cytotoxicity in lung cancer cells. Morphologically, we observed that JFK increases DDP-induced pro-apoptosis in A549 cells in a synergistic manner. Transcriptome profiling analysis indicated that the combination of JFK and DDP regulates genes involved in apoptosis-related signaling pathways. Moreover, we found that the combination of JFK and DDP produces synergistic pro-apoptosis effect in other lung cancer cell lines, such as NCI-H1975, NCI-H1650, and NCI-H2228. Particularly, we demonstrated that AIFM2 is activated by the combined treatment of JFK and DDP and partially mediates the synergistic pro-apoptosis effect. Collectively, this study not only offered the first evidence that JFK promotes DDP-induced cytotoxicity, and activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress, but also provided a novel insight for improving cytotoxicity by combining JFK with DDP to treat lung cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Thalidomide alleviates acute pancreatitis-associated lung injury via down-regulation of NFκB induced TNF-α.

    PubMed

    Lv, Peng; Li, Hong-Yun; Ji, Shu-Sheng; Li, Wen; Fan, Li-Juan

    2014-09-01

    We studied the effect of thalidomide on NFκB-induced TNF-α in acute pancreatitis-associated lung injury in the rat. Rats were intragastrically administered thalidomide (100mg/kg) daily for 8 days and then acute pancreatitis was induced by retrograde infusion of 5% sodium taurocholate into the rat biliopancreatic duct. Serum amylase (AMY), blood oxygen partial pressure (PaO2), ratios of lung wet/dry weight, and cytoplasmic IκBα and TNF-α protein and nuclear NFκBp65 protein were measured. Also, lung NFκBp65 and TNF-α mRNA were measured. Compared with the model group, the pathological score of the pancreas and lung, serum AMY, ratios of lung wet/dry weight, and lung NFκBp65 and TNF-α mRNA and protein of rats given thalidomide were decreased significantly (P<0.01), but PaO2 and IκBα protein was elevated significantly (P<0.01). Thalidomide may inhibit TNF-α expression via down-regulation of the NFκB signaling pathway to alleviate acute pancreatitis-associated lung injury in rats. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Chemically-induced Mouse Lung Tumors: Applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan

  8. Longitudinal follow-up study of smoking-induced emphysema progression in low-dose CT screening of lung cancer

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, Masahiro; Moriyama, N.

    2014-03-01

    Chronic obstructive pulmonary disease is a major public health problem that is predicted to be third leading cause of death in 2030. Although spirometry is traditionally used to quantify emphysema progression, it is difficult to detect the loss of pulmonary function by emphysema in early stage, and to assess the susceptibility to smoking. This study presents quantification method of smoking-induced emphysema progression based on annual changes of low attenuation volume (LAV) by each lung lobe acquired from low-dose CT images in lung cancer screening. The method consists of three steps. First, lung lobes are segmented using extracted interlobar fissures by enhancement filter based on fourdimensional curvature. Second, LAV of each lung lobe is segmented. Finally, smoking-induced emphysema progression is assessed by statistical analysis of the annual changes represented by linear regression of LAV percentage in each lung lobe. This method was applied to 140 participants in lung cancer CT screening for six years. The results showed that LAV progressions of nonsmokers, past smokers, and current smokers are different in terms of pack-year and smoking cessation duration. This study demonstrates effectiveness in diagnosis and prognosis of early emphysema in lung cancer CT screening.

  9. THE NEOPLASTIC POTENTIALITIES OF MOUSE EMBRYO TISSUES

    PubMed Central

    Smith, William E.

    1950-01-01

    The lung tissue of mouse embryos of the C strain proliferates to some extent after implantation in adult hosts of the same breed and rapidly differentiates, forming a parenchyma remarkably like the normal. The grafts persist long. When methylcholanthrene dissolved in olive oil has been introduced with them much more growth of them occurs. The carcinogen induces a pronounced metaplasia of the epithelium of the bronchial tree, and the altered cells are often aggressive, multiplying, invading, and largely replacing the parenchyma about them. So closely do they resemble malignant elements in aspect and behavior that it is frequently difficult to tell whether carcinomatous change is not actually present. Genuine tumors soon arise, multiple benign adenomas sometimes appearing within 3 weeks, and indubitable carcinomas a few weeks later. Not a few of the cancers are of transitional cell type, that is to say are expressive of an intermediate stage in the metaplasia. Under the influence of methylcholanthrene the cells lining the alveolar spaces of the graft sometimes undergo metaplasia also, with result in stratified squamous epithelium. It follows that there is reason to doubt the current assumption that all squamous cell carcinomas of the lung necessarily arise from the bronchial tree. The findings, taken with others previously reported, make it difficult to suppose, furthermore, that the generality of lung tumors can be due to neoplastic viruses entering the organism in postnatal life and having no broader scope than those thus far discovered. PMID:15395575

  10. Chapter 17: Occupational immunologic lung disease.

    PubMed

    Sabin, Bradley R; Grammer, Leslie C

    2012-01-01

    Occupational immunologic lung disease is characterized by an immunologic response in the lung to an airborne agent inhaled in the work environment and can be subdivided into immunologically mediated occupational asthma (OA) and hypersensitivity pneumonitis (HP). Irritant-induced OA, a separate nonimmunologic entity, can be caused by chronic exposure to inhaled irritants or reactive airways dysfunction syndrome, defined as an asthma-like syndrome that persists for >3 months and occurs abruptly after a single exposure to a high concentration of an irritating industrial agent. High-risk fields for OA include farmers, printers, woodworkers, painters, plastic workers, cleaners, spray painters, electrical workers, and health care workers. OA can be triggered by high molecular weight (HMW) proteins that act as complete allergens or low molecular weight (LMW) sensitizers that act as haptens. HMW proteins (>10 kDa) are generally derived from microorganisms (such as molds and bacteria, including thermophilic actinomycetes), plants (such as latex antigens and flour proteins), or animals (such as animal dander, avian proteins, and insect scales) and are not specifically regulated by the Occupational Safety and Health Administration (OSHA). LMW haptens that bind to proteins in the respiratory mucosa include some OSHA-regulated substances such as isocyanates, anhydrides, and platinum. HP can present in an acute, a chronic, or a subacute form. The acute, subacute, and early chronic form is characterized by a CD4(+) T(H)1 and CD8(+) lymphocyte alveolitis. Classically, the bronchoalveolar lavage will show a CD4/CD8 ratio of <1.

  11. The role of Legionella pneumophila-infected Hartmannella vermiformis as an infectious particle in a murine model of Legionnaire's disease.

    PubMed

    Brieland, J K; Fantone, J C; Remick, D G; LeGendre, M; McClain, M; Engleberg, N C

    1997-12-01

    Legionella pneumophila is a bacterial parasite of many species of freshwater protozoa and occasionally an intracellular pathogen of humans. While protozoa are known to play a key role in the persistence of L. pneumophila in the environment, there has been limited research addressing the potential role of L. pneumophila-infected protozoa in the pathogenesis of human infection. In this report, the potential role of an L. pneumophila-infected amoeba as an infectious particle in replicative L. pneumophila lung infection was investigated in vivo with the amoeba Hartmannella vermiformis, a natural reservoir of L. pneumophila in the environment. L. pneumophila-infected H. vermiformis organisms were prepared by coculture of the amoebae and virulent L. pneumophila cells in vitro. A/J mice, which are susceptible to replicative L. pneumophila lung infection, were subsequently inoculated intratracheally with L. pneumophila-infected H. vermiformis organisms (10(6) amoebae containing 10(5) bacteria), and intrapulmonary growth of the bacteria was assessed. A/J mice inoculated intratracheally with L. pneumophila-infected H. vermiformis organisms developed replicative L. pneumophila lung infections. Furthermore, L. pneumophila-infected H. vermiformis organisms were more pathogenic than an equivalent number of bacteria or a coinoculum of L. pneumophila cells and uninfected amoebae. These results demonstrate that L. pneumophila-infected amoebae are infectious particles in replicative L. pneumophila infections in vivo and support the hypothesis that inhaled protozoa may serve as cofactors in the pathogenesis of pulmonary disease induced by inhaled respiratory pathogens.

  12. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    PubMed

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.

  13. Reversible Lipid Accumulation and Associated Division Arrest of Mycobacterium avium in Lipoprotein-Induced Foamy Macrophages May Resemble Key Events during Latency and Reactivation of Tuberculosis

    PubMed Central

    Caire-Brändli, Irène; Papadopoulos, Alexia; Malaga, Wladimir; Marais, David; Canaan, Stéphane; Thilo, Lutz

    2014-01-01

    During the dormant phase of tuberculosis, Mycobacterium tuberculosis persists in lung granulomas by residing in foamy macrophages (FM) that contain abundant lipid bodies (LB) in their cytoplasm, allowing bacilli to accumulate lipids as intracytoplasmic lipid inclusions (ILI). An experimental model of FM is presented where bone marrow-derived mouse macrophages are infected with M. avium and exposed to very-low-density lipoprotein (VLDL) as a lipid source. Quantitative analysis of detailed electron microscope observations showed the following results. (i) Macrophages became foamy, and mycobacteria formed ILI, for which host triacylglycerides, rather than cholesterol, was essential. (ii) Lipid transfer occurred via mycobacterium-induced fusion between LB and phagosomes. (iii) Mycobacteria showed a thinned cell wall and became elongated but did not divide. (iv) Upon removal of VLDL, LB and ILI declined within hours, and simultaneous resumption of mycobacterial division restored the number of mycobacteria to the same level as that found in untreated control macrophages. This showed that the presence of ILI resulted in a reversible block of division without causing a change in the mycobacterial replication rate. Fluctuation between ILI either partially or fully extending throughout the mycobacterial cytoplasm was suggestive of bacterial cell cycle events. We propose that VLDL-driven FM constitute a well-defined cellular system in which to study changed metabolic states of intracellular mycobacteria that may relate to persistence and reactivation of tuberculosis. PMID:24478064

  14. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  15. Adrenaline stimulates the proliferation and migration of mesenchymal stem cells towards the LPS-induced lung injury

    PubMed Central

    Wu, Xiaodan; Wang, Zhiming; Qian, Mengjia; Wang, Lingyan; Bai, Chunxue; Wang, Xiangdong

    2014-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) could modulate inflammation in experimental lung injury. On the other hand, adrenergic receptor agonists could increase DNA synthesis of stem cells. Therefore, we investigated the therapeutic role of adrenaline-stimulated BMSCs on lipopolysaccharide (LPS)-induced lung injury. BMSCs were cultured with adrenergic receptor agonists or antagonists. Suspensions of lung cells or sliced lung tissue from animals with or without LPS-induced injury were co-cultured with BMSCs. LPS-stimulated alveolar macrophages were co-cultured with BMSCs (with adrenaline stimulation or not) in Transwell for 6 hrs. A preliminary animal experiment was conducted to validate the findings in ex vivo study. We found that adrenaline at 10 μM enhanced proliferation of BMSCs through both α- and β-adrenergic receptors. Adrenaline promoted the migration of BMSCs towards LPS-injured lung cells or lung tissue. Adrenaline-stimulated BMSCs decreased the inflammation of LPS-stimulated macrophages, probably through the expression and secretion of several paracrine factors. Adrenaline reduced the extent of injury in LPS-injured rats. Our data indicate that adrenaline-stimulated BMSCs might contribute to the prevention from acute lung injury through the activation of adrenergic receptors, promotion of proliferation and migration towards injured lung, and modulation of inflammation. PMID:24684532

  16. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene.

    PubMed

    Minami, Kosuke; Okamoto, Koji; Doi, Kent; Harano, Koji; Noiri, Eisei; Nakamura, Eiichi

    2014-05-12

    The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications.

  17. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene

    NASA Astrophysics Data System (ADS)

    Minami, Kosuke; Okamoto, Koji; Doi, Kent; Harano, Koji; Noiri, Eisei; Nakamura, Eiichi

    2014-05-01

    The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications.

  18. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene

    PubMed Central

    MINAMI, Kosuke; OKAMOTO, Koji; DOI, Kent; HARANO, Koji; NOIRI, Eisei; NAKAMURA, Eiichi

    2014-01-01

    The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications. PMID:24814863

  19. Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney.

    PubMed

    Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio

    2011-01-01

    It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.

  20. Acute lung injury following inhalation exposure to nerve agent VX in guinea pigs.

    PubMed

    Wright, Benjamin S; Rezk, Peter E; Graham, Jacob R; Steele, Keith E; Gordon, Richard K; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2006-05-01

    A microinstillation technique of inhalation exposure was utilized to assess lung injury following chemical warfare nerve agent VX [methylphosphonothioic acid S-(2-[bis(1-methylethyl)amino]ethyl) O-ethyl ester] exposure in guinea pigs. Animals were anesthetized using Telazol-meditomidine, gently intubated, and VX was aerosolized using a microcatheter placed 2 cm above the bifurcation of the trachea. Different doses (50.4 microg/m3, 70.4 micro g/m(m3), 90.4 microg/m(m3)) of VX were administered at 40 pulses/min for 5 min. Dosing of VX was calculated by the volume of aerosol produced per 200 pulses and diluting the agent accordingly. Although the survival rate of animals exposed to different doses of VX was similar to the controls, nearly a 20% weight reduction was observed in exposed animals. After 24 h of recovery, the animals were euthanized and bronchoalveolar lavage (BAL) was performed with oxygen free saline. BAL was centrifuged and separated into BAL fluid (BALF) and BAL cells (BALC) and analyzed for indication of lung injury. The edema by dry/wet weight ratio of the accessory lobe increased 11% in VX-treated animals. BAL cell number was increased in VX-treated animals compared to controls, independent of dosage. Trypan blue viability assay indicated an increase in BAL cell death in 70.4 microg/m(m3) and 90.4 microg/m(m3) VX-exposed animals. Differential cell counting of BALC indicated a decrease in macrophage/monocytes in VX-exposed animals. The total amount of BAL protein increased gradually with the exposed dose of VX and was highest in animals exposed to 90.4 microg/m(m3), indicating that this dose of VX caused lung injury that persisted at 24 h. In addition, histopathology results also suggest that inhalation exposure to VX induces acute lung injury.

  1. Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells.

    PubMed

    Huang, Haishan; Zhu, Junlan; Li, Yang; Zhang, Liping; Gu, Jiayan; Xie, Qipeng; Jin, Honglei; Che, Xun; Li, Jingxia; Huang, Chao; Chen, Lung-Chi; Lyu, Jianxin; Gao, Jimin; Huang, Chuanshu

    2016-10-02

    Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.

  2. Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells

    PubMed Central

    Huang, Haishan; Zhu, Junlan; Li, Yang; Zhang, Liping; Gu, Jiayan; Xie, Qipeng; Jin, Honglei; Che, Xun; Li, Jingxia; Huang, Chao; Chen, Lung-Chi; Lyu, Jianxin; Gao, Jimin; Huang, Chuanshu

    2016-01-01

    ABSTRACT Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure. PMID:27467530

  3. Pseudomonas aeruginosa lipopolysaccharide induces CF-like alteration of protein secretion by human tracheal gland cells.

    PubMed

    Kammouni, W; Figarella, C; Baeza, N; Marchand, S; Merten, M D

    1997-12-18

    Human tracheal gland (HTG) serous cells are now believed to play a major role in the physiopathology of cystic fibrosis. Because of the persistent inflammation and the specific infection by Pseudomonas aeruginosa in the lung, we looked for the action of the lipopolysaccharide (LPS) of this bacteria on human tracheal gland cells in culture by studying the secretion of the secretory leukocyte proteinase inhibitor (SLPI) which is a specific serous secretory marker of these cells. Treatment with Pseudomonas aeruginosa LPS resulted in a significant dose-dependent increase in the basal production of SLPI (+ 250 +/- 25%) whilst the SLPI transcript mRNA levels remained unchanged. This LPS-induced increase in secretion was inhibited by glucocorticoides. Furthermore, LPS treatment of HTG cells induces a loss of responsiveness to carbachol and isoproterenol but not to adenosine triphosphate. These findings indicate that HTG cells treated by Pseudomonas aeruginosa LPS have the same behavior as those previously observed with CF-HTG cells. Exploration by using reverse transcriptase polymerase chain reaction amplification showed that LPS downregulated cystic fibrosis transmembrane conductance regulator (CFTR) mRNA expression in HTG cells indicative of a link between CFTR function and consequent CF-like alteration in protein secretory process.

  4. Cough-induced rib fractures.

    PubMed

    Sano, Atsushi; Tashiro, Ken; Fukuda, Tsutomu

    2015-10-01

    Occasionally, patients who complain of chest pain after the onset of coughing are diagnosed with rib fractures. We investigated the characteristics of cough-induced rib fractures. Between April 2008 and December 2013, 17 patients were referred to our hospital with chest pain after the onset of coughing. Rib radiography was performed, focusing on the location of the chest pain. When the patient had other signs and symptoms such as fever or persistent cough, computed tomography of the chest was carried out. We analyzed the data retrospectively. Rib fractures were found in 14 of the 17 patients. The age of the patients ranged from 14 to 86 years (median 39.5 years). Ten patients were female and 4 were male. Three patients had chronic lung disease. There was a single rib fracture in 9 patients, and 5 had two or more fractures. The middle and lower ribs were the most commonly involved; the 10th rib was fractured most frequently. Cough-induced rib fractures occur in every age group regardless of the presence or absence of underlying disease. Since rib fractures often occur in the lower and middle ribs, rib radiography is useful for diagnosis. © The Author(s) 2015.

  5. Overexpression of IL-38 protein in anticancer drug-induced lung injury and acute exacerbation of idiopathic pulmonary fibrosis.

    PubMed

    Tominaga, Masaki; Okamoto, Masaki; Kawayama, Tomotaka; Matsuoka, Masanobu; Kaieda, Shinjiro; Sakazaki, Yuki; Kinoshita, Takashi; Mori, Daisuke; Inoue, Akira; Hoshino, Tomoaki

    2017-09-01

    Interleukin (IL)-38, a member of the IL-1 family, shows high homology to IL-1 receptor antagonist (IL-1Ra) and IL-36 receptor antagonist (IL-36Ra). Its function in interstitial lung disease (ILD) is still unknown. To determine the expression pattern of IL-38 mRNA, a panel of cDNAs derived from various tissues was analyzed by quantitative real-time PCR. Immunohistochemical reactivity with anti-human IL-38 monoclonal antibody (clone H127C) was evaluated semi-quantitatively in lung tissue samples from 12 patients with idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP), 5 with acute exacerbation of IPF, and 10 with anticancer drug-induced ILD (bleomycin in 5 and epidermal growth factor receptor-tyrosine kinase inhibitor in 5). Control lung tissues were obtained from areas of normal lung in 22 lung cancer patients who underwent extirpation surgery. IL-38 transcripts were strongly expressed in the lung, spleen, synoviocytes, and peripheral blood mononuclear cells, and at a lower level in pancreas and muscle. IL-38 protein was not strongly expressed in normal pulmonary alveolar tissues in all 22 control lungs. In contrast, IL-38 was overexpressed in the lungs of 4 of 5 (80%) patients with acute IPF exacerbation and 100% (10/10) of the patients with drug-induced ILD. IL-38 overexpression was limited to hyperplastic type II pneumocytes, which are considered to reflect regenerative change following diffuse alveolar damage in ILD. IL-38 may play an important role in acute and/or chronic inflammation in anticancer drug-induced lung injury and acute exacerbation of IPF. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  6. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung.

    PubMed

    Cohen, Mitchell D; Vaughan, Joshua M; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Kodavanti, Urmila P; Ward, William O; Peltier, Richard E; Zelikoff, Judith; Chen, Lung-chi

    2015-01-01

    First responders (FR) present at Ground Zero in the first 72 h after the World Trade Center (WTC) collapsed have progressively exhibited significant respiratory injuries. The few toxicology studies performed to date evaluated effects from just fine (< 2.5 µm) WTC dusts; none examined health effects/toxicities from atmospheres bearing larger particle sizes, despite the fact the majority (> 96%) of dusts were > 10 µm and most FR likely entrained dusts by mouth breathing. Using a system that generated/delivered supercoarse (10-53 µm) WTC dusts to F344 rats (in a manner that mimicked FR exposures), this study sought to examine potential toxicities in the lungs. In this exploratory study, rats were exposed for 2 h to 100 mg WTC dust/m(3) (while under isoflurane [ISO] anesthesia) or an air/ISO mixture; this dose conservatively modeled likely exposures by mouth-breathing FR facing ≈750-1000 mg WTC dust/m(3). Lungs were harvested 2 h post-exposure and total RNA extracted for subsequent global gene expression analysis. Among the >  1000 genes affected by WTC dust (under ISO) or ISO alone, 166 were unique to the dust exposure. In many instances, genes maximally-induced by the WTC dust exposure (relative to in naïve rats) were unchanged/inhibited by ISO only; similarly, several genes maximally inhibited in WTC dust rats were largely induced/unchanged in rats that received ISO only. These outcomes reflect likely contrasting effects of ISO and the WTC dust on lung gene expression. Overall, the data show that lungs of rats exposed to WTC dust (under ISO) - after accounting for any impact from ISO alone - displayed increased expression of genes related to lung inflammation, oxidative stress, and cell cycle control, while several involved in anti-oxidant function were inhibited. These changes suggested acute inflammogenic effects and oxidative stress in the lungs of WTC dust-exposed rats. This study, thus, concludes that a single very high exposure to WTC dusts could potentially have adversely affected the respiratory system - in terms of early inflammatory and oxidative stress processes. As these changes were not compared with other types of dusts, the uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be determined if these effects might have any relevance to chronic lung pathologies that became evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will help to determine if effects seen here on genes were acute, reversible, or persistent, and associated with corresponding histopathologic/biochemical changes in situ.

  7. Airway inflammation in iron ore miners exposed to dust and diesel exhaust.

    PubMed

    Adelroth, E; Hedlund, U; Blomberg, A; Helleday, R; Ledin, M-C; Levin, J O; Pourazar, J; Sandström, T; Järvholm, B

    2006-04-01

    The aim of the present study was to investigate if underground miners exposed to dust and diesel exhaust in an iron ore mine would show signs of airway inflammation as reflected in induced sputum. In total, 22 miners were studied, once after a holiday of at least 2 weeks and the second time after 3 months of regular work. Control subjects were 21 "white-collar" workers. All subjects completed a questionnaire regarding medical and occupational history, and underwent lung function testing and induced sputum collection. Total and differential cell counts and analyses of the fluid phase of the induced sputum were performed. Sampling of personal exposure to elemental carbon, nitrogen dioxide and inhalable dust was recorded. The average concentrations of inhalable dust, nitrogen dioxide and elemental carbon were 3.2 mg.m-3, 0.28 mg.m-3 and 27 microg.m-3, respectively. Miners had increased numbers of inflammatory cells, mainly alveolar macrophages and neutrophils, and increased concentrations of fibronectin, metalloproteinase-9 and interleukin-10 in induced sputum compared with controls. In conclusion, miners in an underground iron ore mine demonstrated persistent airway inflammation that was as pronounced after a 4-week holiday as after a 3-month period of work underground in the mine.

  8. Curcumin alone and in combination with augmentin protects against pulmonary inflammation and acute lung injury generated during Klebsiella pneumoniae B5055-induced lung infection in BALB/c mice.

    PubMed

    Bansal, Shruti; Chhibber, Sanjay

    2010-04-01

    Acute lung injuries due to acute lung infections remain a major cause of mortality. Thus a combination of an antibiotic and a compound with immunomodulatory and anti-inflammatory activities can help to overcome acute lung infection-induced injuries. Curcumin derived from the rhizome of turmeric has been used for decades and it exhibits anti-inflammatory, anti-carcinogenic, immunomodulatory properties by downregulation of various inflammatory mediators. Keeping these properties in mind, we investigated the anti-inflammatory properties of curcumin in a mouse model of acute inflammation by introducing Klebsiella pneumoniae B5055 into BALB/c mice via the intranasal route. Intranasal instillation of bacteria in this mouse model of acute pneumonia-induced inflammation resulted in a significant increase in neutrophil infiltration in the lungs along with increased production of various inflammatory mediators [i.e. malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), tumour necrosis factor (TNF)-alpha] in the lung tissue. The animals that received curcumin alone orally or in combination with augmentin, 15 days prior to bacterial instillation into the lungs via the intranasal route, showed a significant (P <0.05) decrease in neutrophil influx into the lungs and a significant (P <0.05) decrease in the production of MDA, NO, MPO activity and TNF-alpha levels. Augmentin treatment alone did not decrease the MDA, MPO, NO and TNF-alpha levels significantly (P >0.05) as compared to the control group. We therefore conclude that curcumin ameliorates lung inflammation induced by K. pneumoniae B5055 without significantly (P <0.05) decreasing the bacterial load in the lung tissue whereas augmentin takes care of bacterial proliferation. Hence, curcumin can be used as an adjunct therapy along with antibiotics as an anti-inflammatory or an immunomodulatory agent in the case of acute lung infection.

  9. Update on flavoring-induced lung disease.

    PubMed

    Holden, Van K; Hines, Stella E

    2016-03-01

    Since the initial report of bronchiolitis obliterans in microwave popcorn workers, exposures to flavoring substances have been identified in a variety of food and flavor manufacturing facilities and in the consumer market. Attempts to decrease the risk of lung disease have included the use of flavoring substitutes; however, these chemicals may cause similar injury. This article reviews recent flavoring exposures and data on the pathogenesis, clinical characteristics, and surveillance of flavoring-induced lung disease. Diacetyl and 2,3-pentanedione exposures have occurred in food production facilities that make cookies, cereal, chocolate, and coffee. Airborne levels often exceed proposed occupational exposure limits. Cases of biopsy-proven bronchiolitis obliterans in heavy popcorn consumers have also been reported. New data demonstrate the presence of diacetyl and 2,3-pentanedione in flavored nicotine liquids used in electronic nicotine delivery systems. Diacetyl substitutes cause similar peri-bronchiolar fibrotic lesions in animal studies. Their use may continue to place workers at risk for flavoring-induced lung disease, which may present in forms beyond that of fixed airflow obstruction, contributing to delays in identifying and treating patients with flavoring-induced lung disease. Engineering controls, medical surveillance and personal protective equipment can limit flavorings exposure and risk for lung disease.

  10. Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice

    PubMed Central

    Chai, Y; Calaf, G M; Zhou, H; Ghandhi, S A; Elliston, C D; Wen, G; Nohmi, T; Amundson, S A; Hei, T K

    2013-01-01

    Background: Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. Methods: A 1-cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. Results: Compared with sham-treated controls, the Spi− mutation frequency increased 2.4-fold in non-targeted lung tissues at 24 h after partial body irradiation (PBIR). Consistent with dramatic Cyclooxygenase 2 (COX-2) induction in the non-targeted bronchial epithelial cells, increasing levels of prostaglandin, together with 8-hydroxydeoxyguanosine, in the out-of-field lung tissues were observed after PBIR. In addition, DNA double-strand breaks and apoptosis were induced in bystander lung tissues after PBIR. Conclusion: The PBIR induces DNA damage and mutagenesis in non-targeted lung tissues, especially in bronchial epithelial cells, and COX-2 has an essential role in bystander mutagenesis. PMID:23321513

  11. Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xingqi; Ouyang, Zijun; You, Qian

    Idiopathic pulmonary fibrosis is a progressive, degenerative and almost irreversible disease. There is hardly an effective cure for lung damage due to pulmonary fibrosis. The purpose of this study was to evaluate the role of obaculactone in an already-assessed model of idiopathic pulmonary fibrosis induced by bleomycin administration. Mice were subjected to intratracheal instillation of bleomycin, and obaculactone was given orally after bleomycin instillation daily for 23 days. Treatment with obaculactone ameliorated body weight loss, lung histopathology abnormalities and pulmonary collagen deposition, with a decrease of the inflammatory cell number and the cytokine level in bronchoalveolar lavage fluid. Moreover, obaculactonemore » inhibited the expression of icam1, vcam1, inos and cox2, and attenuated oxidative stress in bleomycin-treated lungs. Importantly, the production of collagen I and α-SMA in lung tissues as well as the levels of TGF-β1, ALK5, p-Smad2 and p-Smad3 in lung homogenates was also reduced after obaculactone treatment. Finally, the TGF-β1-induced epithelial-mesenchymal transition via Smad-dependent and Smad-independent pathways was reversed by obaculactone. Collectively, these data suggest that obaculactone may be a promising drug candidate for the treatment of idiopathic pulmonary fibrosis. - Highlights: • Obaculactone ameliorates bleomycin-induced pulmonary fibrosis in mice. • Obaculactone mitigates bleomycin-induced inflammatory response in lungs. • Obaculactone exerts inhibitory effects on TGF-β1 signaling and TGF-β1-induced EMT progress.« less

  12. Hyperoxia Exacerbates Postnatal Inflammation-Induced Lung Injury in Neonatal BRP-39 Null Mutant Mice Promoting the M1 Macrophage Phenotype

    PubMed Central

    Syed, Mansoor A.

    2013-01-01

    Rationale. Hyperoxia exposure to developing lungs—critical in the pathogenesis of bronchopulmonary dysplasia—may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. Objective. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. Methods. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2) studies. For in vivo studies, wild-type (WT) and BRP-39−/− mice received continuous exposure to 21% O2 (control mice) or 100% O2 from postnatal (PN) 1 to PN7 days, along with intranasal lipopolysaccharide (LPS) administered on alternate days (PN2, -4, and -6). Lung histology, bronchoalveolar lavage (BAL) cell counts, BAL protein, and cytokines measurements were performed. Measurements and Main Results. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39−/− mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. Conclusions. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury. PMID:24347826

  13. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain.more » Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.« less

  14. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition.

    PubMed

    Cabrera-Benítez, Nuria E; Parotto, Matteo; Post, Martin; Han, Bing; Spieth, Peter M; Cheng, Wei-Erh; Valladares, Francisco; Villar, Jesús; Liu, Mingayo; Sato, Masaaki; Zhang, Haibo; Slutsky, Arthur S

    2012-02-01

    Many mechanically ventilated patients with acute respiratory distress syndrome develop pulmonary fibrosis. Stresses induced by mechanical ventilation may explain the development of fibrosis by a number of mechanisms (e.g., damage the alveolar epithelium, biotrauma). The objective of this study was t test the hypothesis that mechanical ventilation plays an important role in the pathogenesis of lung fibrosis. C57BL/6 mice were randomized into four groups: healthy controls; hydrochloric acid aspiration alone; vehicle control solution followed 24 hrs later by mechanical ventilation (peak inspiratory pressure 22 cm H(2)O and positive end-expiratory pressure 2 cm H(2)O for 2 hrs); and acid aspiration followed 24 hrs later by mechanical ventilation. The animals were monitored for up to 15 days after acid aspiration. To explore the direct effects of mechanical stress on lung fibrotic formation, human lung epithelial cells (BEAS-2B) were exposed to mechanical stretch for up to 48 hrs. Impaired lung mechanics after mechanical ventilation was associated with increased lung hydroxyproline content, and increased expression of transforming growth factor-β, β-catenin, and mesenchymal markers (α-smooth muscle actin and vimentin) at both the gene and protein levels. Expression of epithelial markers including cytokeratin-8, E-cadherin, and prosurfactant protein B decreased. Lung histology demonstrated fibrosis formation and potential epithelia-mesenchymal transition. In vitro direct mechanical stretch of BEAS-2B cells resulted in similar fibrotic and epithelia-mesenchymal transition formation. Mechanical stress induces lung fibrosis, and epithelia-mesenchymal transition may play an important role in mediating the ventilator-induced lung fibrosis.

  15. Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.

    PubMed

    Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T

    2001-05-01

    Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.

  16. Metyrapone Alleviates Deleterious Effects of Maternal Food Restriction on Lung Development and Growth of Rat Offspring

    PubMed Central

    Paek, David S.; Sakurai, Reiko; Saraswat, Aditi; Li, Yishi; Khorram, Omid; Torday, John S.

    2015-01-01

    Maternal food restriction (MFR) causes intrauterine growth restriction, a known risk factor for developing chronic lung disease. However, it is unknown whether this negative outcome is gender specific or preventable by blocking the MFR-induced hyperglucocorticoidism. Using a well-established rat model, we used metyrapone (MTP), an inhibitor of glucocorticoid synthesis, to study the MFR-induced lung changes on postnatal day (p) 21 in a gender-specific manner. From embryonic day 10 until delivery, pregnant dams were fed either an ad libitum diet or a 50% caloric restricted diet with or without MTP supplementation. Postnatally, the offspring were fed ad libitum from healthy dams until p21. Morphometric, Western blot, and immunohistochemical analysis of the lungs demonstrated that MTP mitigated the MFR-mediated decrease in alveolar count, decrease in adipogenic protein peroxisome proliferator-activated receptor γ, increase in myogenic proteins (fibronectin, α-smooth muscle actin, and calponin), increase in Wnt signaling intermediates (lymphoid enhancer-binding factor 1 and β-catenin), and increase in glucocorticoid receptor (GR) levels. The MFR-induced lung phenotype and the effects of MTP were similar in both genders. To elucidate the mechanism of MFR-induced shift of the adipogenic-to-myogenic phenotype, lung fibroblasts were used to independently study the effects of (1) nutrient restriction and (2) excess steroid exposure. Nutrient deprivation increased myogenic proteins, Wnt signaling intermediates, and GR, all changes blocked by protein supplementation. MTP also blocked, likely by normalizing nicotinamide adenine dinucleotide phosphate levels, the corticosterone-induced increase in myogenic proteins, but had no effect on GR levels. In summary, protein restriction and increased glucocorticoid levels appear to be the key players in MFR-induced lung disease, affecting both genders. PMID:24916330

  17. Metyrapone alleviates deleterious effects of maternal food restriction on lung development and growth of rat offspring.

    PubMed

    Paek, David S; Sakurai, Reiko; Saraswat, Aditi; Li, Yishi; Khorram, Omid; Torday, John S; Rehan, Virender K

    2015-02-01

    Maternal food restriction (MFR) causes intrauterine growth restriction, a known risk factor for developing chronic lung disease. However, it is unknown whether this negative outcome is gender specific or preventable by blocking the MFR-induced hyperglucocorticoidism. Using a well-established rat model, we used metyrapone (MTP), an inhibitor of glucocorticoid synthesis, to study the MFR-induced lung changes on postnatal day (p) 21 in a gender-specific manner. From embryonic day 10 until delivery, pregnant dams were fed either an ad libitum diet or a 50% caloric restricted diet with or without MTP supplementation. Postnatally, the offspring were fed ad libitum from healthy dams until p21. Morphometric, Western blot, and immunohistochemical analysis of the lungs demonstrated that MTP mitigated the MFR-mediated decrease in alveolar count, decrease in adipogenic protein peroxisome proliferator-activated receptor γ, increase in myogenic proteins (fibronectin, α-smooth muscle actin, and calponin), increase in Wnt signaling intermediates (lymphoid enhancer-binding factor 1 and β-catenin), and increase in glucocorticoid receptor (GR) levels. The MFR-induced lung phenotype and the effects of MTP were similar in both genders. To elucidate the mechanism of MFR-induced shift of the adipogenic-to-myogenic phenotype, lung fibroblasts were used to independently study the effects of (1) nutrient restriction and (2) excess steroid exposure. Nutrient deprivation increased myogenic proteins, Wnt signaling intermediates, and GR, all changes blocked by protein supplementation. MTP also blocked, likely by normalizing nicotinamide adenine dinucleotide phosphate levels, the corticosterone-induced increase in myogenic proteins, but had no effect on GR levels. In summary, protein restriction and increased glucocorticoid levels appear to be the key players in MFR-induced lung disease, affecting both genders. © The Author(s) 2014.

  18. Activation of rho is involved in the mechanism of hydrogen-peroxide-induced lung edema in isolated perfused rabbit lung.

    PubMed

    Chiba, Y; Ishii, Y; Kitamura, S; Sugiyama, Y

    2001-09-01

    Acute lung injury is attributed primarily to increased vascular permeability caused by reactive oxygen species derived from neutrophils, such as hydrogen peroxide (H2O2). Increased permeability is accompanied by the contraction and cytoskeleton reorganization of endothelial cells, resulting in intercellular gap formation. The Rho family of Ras-like GTPases is implicated in the regulation of the cytoskeleton and cell contraction. We examined the role of Rho in H2O2-induced pulmonary edema with the use of isolated perfused rabbit lungs. To our knowledge, this is the first study to examine the role of Rho in increased vascular permeability induced by H2O2 in perfused lungs. Vascular permeability was evaluated on the basis of the capillary filtration coefficient (Kfc, ml/min/cm H2O/100 g). We found that H2O2 (300 microM) increased lung weight, Kfc, and pulmonary capillary pressure. These effects of H2O2 were abolished by treatment with Y-27632 (50 microM), an inhibitor of the Rho effector p160 ROCK. In contrast, the muscular relaxant papaverine inhibited the H2O2-induced rise in pulmonary capillary pressure, but did not suppress the increases in lung weight and Kfc. These findings indicate that H2O2 causes pulmonary edema by elevating hydrostatic pressure and increasing vascular permeability. Y-27632 inhibited the formation of pulmonary edema by blocking both of these H2O2-induced effects. Our results suggest that Rho-related pathways have a part in the mechanism of H2O2-induced pulmonary edema. Copyright 2001 Academic Press.

  19. Grape seed extract ameliorates bleomycin-induced mouse pulmonary fibrosis.

    PubMed

    Liu, Qi; Jiang, Jun-Xia; Liu, Ya-Nan; Ge, Ling-Tian; Guan, Yan; Zhao, Wei; Jia, Yong-Liang; Dong, Xin-Wei; Sun, Yun; Xie, Qiang-Min

    2017-05-05

    Pulmonary fibrosis is common in a variety of inflammatory lung diseases, such as interstitial pneumonia, chronic obstructive pulmonary disease, and silicosis. There is currently no effective clinical drug treatment. It has been reported that grape seed extracts (GSE) has extensive pharmacological effects with minimal toxicity. Although it has been found that GSE can improve the lung collagen deposition and fibrosis pathology induced by bleomycin in rat, its effects on pulmonary function, inflammation, growth factors, matrix metalloproteinases and epithelial-mesenchymal transition remain to be researched. In the present study, we studied whether GSE provided protection against bleomycin (BLM)-induced mouse pulmonary fibrosis. ICR strain mice were treated with BLM in order to establish pulmonary fibrosis models. GSE was given daily via intragastric administration for three weeks starting at one day after intratracheal instillation. GSE at 50 or 100mg/kg significantly reduced BLM-induced inflammatory cells infiltration, proinflammatory factor protein expression, and hydroxyproline in lung tissues, and improved pulmonary function in mice. Additionally, treatment with GSE also significantly impaired BLM-induced increases in lung fibrotic marker expression (collagen type I alpha 1 and fibronectin 1) and decreases in an anti-fibrotic marker (E-cadherin). Further investigation indicated that the possible molecular targets of GSE are matrix metalloproteinases-9 (MMP-9) and TGF-β1, given that treatment with GSE significantly prevented BLM-induced increases in MMP-9 and TGF-β1 expression in the lungs. Together, these results suggest that supplementation with GSE may improve the quality of life of lung fibrosis patients by inhibiting MMP-9 and TGF-β1 expression in the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spatiotemporal alterations in Sprouty-2 expression and tyrosine phosphorylation in nitrofen-induced pulmonary hypoplasia.

    PubMed

    Friedmacher, Florian; Gosemann, Jan-Hendrik; Fujiwara, Naho; Alvarez, Luis A J; Corcionivoschi, Nicolae; Puri, Prem

    2013-11-01

    Pulmonary hypoplasia (PH) is a life-threatening condition of newborns presenting with congenital diaphragmatic hernia (CDH). Sprouty-2 functions as a key regulator of fibroblast growth factor receptor (FGFR) signalling in developing foetal lungs. It has been reported that FGFR-mediated alveolarization is disrupted in nitrofen-induced PH. Sprouty-2 knockouts show severe defects in lung morphogenesis similar to nitrofen-induced PH. Upon FGFR stimulation, Sprouty-2 is tyrosine-phosphorylated, which is essential for its physiological function during foetal lung development. We hypothesized that Sprouty-2 expression and tyrosine phosphorylation are altered in nitrofen-induced PH. Time-pregnant rats received either nitrofen or vehicle on gestation day 9 (D9). Foetal lungs were dissected on D18 and D21. Pulmonary Sprouty-2 gene and protein expression levels were analyzed by qRT-PCR, Western blotting and immunohistochemical staining. Relative mRNA expression of Sprouty-2 was significantly decreased in hypoplastic lungs without CDH (0.1050±0.01 vs. 0.3125±0.01; P<.0001) and with CDH (0.1671±0.01 vs. 0.3125±0.01; P<.0001) compared to controls on D18. Protein levels of Sprouty-2 were markedly decreased in hypoplastic lungs on D18 with decreased tyrosine phosphorylation levels on D18 and D21 detected at the molecular weight of Sprouty-2 consistent with Sprouty-2 tyrosine phosphorylation. Sprouty-2 immunoreactivity was markedly decreased in hypoplastic lungs on D18 and D21. Spatiotemporal alterations in pulmonary Sprouty-2 expression and tyrosine phosphorylation during the late stages of foetal lung development may interfere with FGFR-mediated alveolarization in nitrofen-induced PH. © 2013.

  1. Nedocromil sodium inhibits antigen-induced contraction of human lung parenchymal and bronchial strips, and the release of sulphidopeptide-leukotriene and histamine from human lung fragments.

    PubMed Central

    Napier, F. E.; Shearer, M. A.; Temple, D. M.

    1990-01-01

    1. The effects of nedocromil sodium on antigen-induced release of sulphidopeptide-leukotrienes and histamine from passively sensitized fragments of human lung, and on antigen-induced contraction of sensitized strips of human lung parenchyma and bronchus, have been studied. 2. Nedocromil sodium 0.1 and 1 microM inhibited leukotriene release from fragments of human lung by 30% and 38% respectively, and histamine release by 43% for both concentrations, but 10 microM was ineffective. The lung fragments, which were passively sensitized to house dust mite, Dermataphagoides pteronyssinus, in control experiments released leukotrienes (6.58 +/- 0.12 nmol equiv. leukotriene C4 per g, n = 6) and histamine (10.3 +/- 1.8 of total tissue histamine, n = 5) when challenged with house dust mite extract. 3. Isolated strips of human lung parenchyma, passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 40% of the maximal histamine response for each strip. Nedocromil sodium 0.1 and 1 microM inhibited these contractions by 50% and 70% of the control response, but 10 microM had no inhibitory effect. 4. Isolated rings from human bronchus, also passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 86% of the maximal histamine response. Nedocromil sodium 1 microM, but not 0.1 or 10 microM, inhibited contractions by 48% of the control response. 5. The therapeutic effects of nedocromil sodium in allergic asthma may depend, partly, on its inhibition of antigen-induced release of leukotrienes and histamine in human lung and its consequent inhibition of antigen-induced contractions of parenchymal and bronchial tissue. PMID:1696152

  2. Down-regulation of let-7 microRNA increased K-ras expression in lung damage induced by radon.

    PubMed

    Chen, Zhihai; Wang, Dapeng; Gu, Chao; Liu, Xing; Pei, Weiwei; Li, Jianxiang; Cao, Yi; Jiao, Yang; Tong, Jian; Nie, Jihua

    2015-09-01

    Radon has long been recognized as a human carcinogen leading to lung cancer, but the underlying mechanisms remain obscure. Recent studies have shown that the let-7 microRNA and K-ras play an important role in the development of various cancers. However, the exact role between let-7 and K-ras in radon induced lung damage has not been explored so far. In the present study, wistar rats and human bronchial epithelial (HBE) cells were long-term exposed to radon, and then alterations in histological pathology of rat lung tissue, ROS, antioxidant enzymes activities and clonogenic formation in HBE cells, as well as changes in let-7 and K-ras expression were determined to observe the adverse effects induced by radon. The results showed that long-term exposure to radon produced severe lung damage in rats, significantly increased ROS production and clonogenic formation ratios and decreased SOD activities in HBE cells. In addition, an obvious down-regulation of let-7 and up-regulation of K-ras were also revealed both in mRNA and in protein level in lung tissue of rats and HBE cells exposed to radon. Furthermore, a significant down-regulation of K-ras was then confirmed in both let-7b-3p and let-7a-2-3p transfected HBE cells. Taken together, the present results propose an involvement of let-7 microRNA and K-ras in radon induced lung damage both in vivo and in vitro, which may thus be of potential value in early diagnosis and therapy of radon-induced lung tumorgenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of lungeing on head and pelvic movement asymmetry in horses with induced lameness.

    PubMed

    Rhodin, M; Pfau, T; Roepstorff, L; Egenvall, A

    2013-12-01

    Lungeing is an important part of lameness examinations, since the circular path enforced during lungeing is thought to accentuate low grade lameness. However, during lungeing the movement of sound horses becomes naturally asymmetric, which may mimic lameness. Also, compensatory movements in the opposite half of the body may mimic lameness. The aim of this study was to objectively study the presence of circle-dependent and compensatory movement asymmetries in horses with induced lameness. Ten horses were trotted in a straight line and lunged in both directions on a hard surface. Lameness was induced (reversible hoof pressure) in each limb, one at a time, in random order. Vertical head and pelvic movements were measured with body-mounted, uni-axial accelerometers. Differences between maximum and minimum height observed during/after left and right stance phases for the head (HDmax, HDmin) and pelvis (PDmax, PDmin) were measured. Mixed models were constructed to study the effect of lungeing direction and induction, and to quantify secondary compensatory asymmetry mechanisms in the forelimbs and hind limbs. Head and pelvic movement symmetries were affected by lungeing. Minimum pelvic height difference (PDmin) changed markedly, increasing significantly during lungeing, giving the impression of inner hind limb lameness. Primary hind limb lameness induced compensatory head movement, which mimicked an ipsilateral forelimb lameness of almost equal magnitude to the primary hind limb lameness. This could contribute to difficulty in correctly detecting hind limb lameness. Induced forelimb lameness caused both a compensatory contralateral (change in PDmax) and an ipsilateral (change in PDmin) hind limb asymmetry, potentially mimicking hind limb lameness, but of smaller magnitude. Both circle-dependent and compensatory movement mechanisms must be taken into account when evaluating lameness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice.

    PubMed

    Wakayama, Hirotaka; Hashimoto, Naozumi; Matsushita, Yoshihiro; Matsubara, Kohki; Yamamoto, Noriyuki; Hasegawa, Yoshinori; Ueda, Minoru; Yamamoto, Akihito

    2015-08-01

    Acute respiratory distress syndrome (ARDS) is a severe inflammatory disorder characterized by acute respiratory failure, resulting from severe, destructive lung inflammation and irreversible lung fibrosis. We evaluated the use of stem cells derived from human exfoliated deciduous teeth (SHEDs) or SHED-derived serum-free conditioned medium (SHED-CM) as treatments for bleomycin (BLM)-induced mice acute lung injury (ALI), exhibiting several pathogenic features associated with the human disease ARDS. Mice with BLM-induced ALI with or without SHED or SHED-CM treatment were examined for weight loss and survival. The lung tissue was characterized by histological and real-time quantitative polymerase chain reaction analysis. The effects of SHED-CM on macrophage differentiation in vitro were also assessed. A single intravenous administration of either SHEDs or SHED-CM attenuated the lung injury and weight loss in BLM-treated mice and improved their survival rate. Similar recovery levels were seen in the SHEDs and SHED-CM treatment groups, suggesting that SHED improves ALI by paracrine mechanisms. SHED-CM contained multiple therapeutic factors involved in lung-regenerative mechanisms. Importantly, SHED-CM attenuated the BLM-induced pro-inflammatory response and generated an anti-inflammatory/tissue-regenerating environment, accompanied by the induction of anti-inflammatory M2-like lung macrophages. Furthermore, SHED-CM promoted the in vitro differentiation of bone marrow-derived macrophages into M2-like cells, which expressed high levels of Arginase1, CD206 and Ym-1. Our results suggest that SHED-secreted factors provide multifaceted therapeutic effects, including a strong M2-inducing activity, for treating BLM-induced ALI. This work may open new avenues for research on stem cell-based ARDS therapies. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Combined α-tocopherol and ascorbic acid protects against smoke-induced lung squamous metaplasia in ferrets.

    PubMed

    Kim, Yuri; Chongviriyaphan, Nalinee; Liu, Chun; Russell, Robert M; Wang, Xiang-Dong

    2012-01-01

    Many epidemiological studies show the benefit of fruits and vegetables on reducing risk of lung cancer, the leading cause of cancer death in the United States. Previously, we demonstrated that cigarette smoke exposure (SM)-induced lung lesions in ferrets were prevented by a combination of low dose of β-carotene, α-tocopherol (AT), and ascorbic acid (AA). However, the role of a combination of AT and AA alone in the protective effect on lung carcinogenesis remains to be examined. In the present study, we investigated whether the combined AT (equivalent to ∼100 mg/day in the human) and AA (equivalent to ∼210 mg/day) supplementation prevents against SM (equivalent to 1.5 packs of cigarettes/day) induced lung squamous metaplasia in ferrets. Ferrets were treated for 6 weeks in the following three groups (9 ferrets/group): (i) Control (no SM, no AT+AA), (ii) SM alone, and (iii) SM+AT+AA. Results showed that SM significantly decreased concentrations of retinoic acid, AT, and reduced form of AA, not total AA, retinol and retinyl palmitate, in the lungs of ferrets. Combined AT+AA treatment partially restored the lowered concentrations of AT, reduced AA and retinoic acid in the lungs of SM-exposed ferrets to the levels in the control group. Furthermore, the combined AT+AA supplementation prevented SM-induced squamous metaplasia [0 positive/9 total ferrets (0%) vs. 5/8 (62%); p<0.05] and cyclin D1 expression (p<0.05) in the ferret lungs, in which both were positively correlated with expression of c-Jun expression. Although there were no significant differences in lung microsomal malondialdehyde (MDA) levels among the three groups, we found a positive correlation between MDA levels and cyclin D1, as well as c-Jun expressions in the lungs of ferrets. These data indicate that the combination of antioxidant AT+AA alone exerts protective effects against SM-induced lung lesions through inhibiting cyclin D1 expression and partially restoring retinoic acid levels to normal. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. The alpha2-adrenoreceptor agonist dexmedetomidine protects against lipopolysaccharide-induced apoptosis via inhibition of gap junctions in lung fibroblasts.

    PubMed

    Zhang, Yuan; Tan, Xiaoming; Xue, Lianfang

    2018-01-01

    The α2-adrenoceptor inducer dexmedetomidine protects against acute lung injury (ALI), but the mechanism of this effect is largely unknown. The present study investigated the effect of dexmedetomidine on apoptosis induced by lipopolysaccharide (LPS) and the relationship between this effect and gap junction intercellular communication in human lung fibroblast cell line. Flow cytometry was used to detect apoptosis induced by LPS. Parachute dye coupling assay was used to measure gap junction function, and western blot analysis was used to determine the expression levels of connexin43 (Cx43). The results revealed that exposure of human lung fibroblast cell line to LPS for 24 h increased the apoptosis, and pretreatment of dexmedetomidine and 18α-GA significantly reduced LPS-induced apoptosis. Dexmedetomidine exposure for 1 h inhibited gap junction function mainly via a decrease in Cx43 protein levels in human lung fibroblast cell line. These results demonstrated that the inhibition of gap junction intercellular communication by dexmedetomidine affected the LPS-induced apoptosis through inhibition of gap junction function by reducing Cx43 protein levels. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Neutral endopeptidase determines the severity of pancreatitis-associated lung injury.

    PubMed

    Day, Amy Lightner; Wick, Elizabeth; Jordan, Thomas H; Jaffray, Colleen E; Bunnett, Nigel W; Grady, Eileen F; Kirkwood, Kimberly S

    2005-09-01

    Neutral endopeptidase (NEP) is a cell-surface metalloprotease that degrades proinflammatory peptides such as substance P, neurokinin A, and bradykinin. Inhibition of NEP exacerbates both experimental pancreatitis and the associated lung injury. It is unclear if worsened lung injury is the indirect result of more severe pancreatitis or if it is a direct effect of NEP inhibition in the lung. We used a model of pancreatitis-associated lung injury (PALI) to test the hypothesis that antagonism or genetic deletion of NEP augments PALI inflammation and pulmonary damage irregardless of the degree of pancreatitic inflammation. In NEP(+/+) mice, intraperitoneal injection of porcine pancreatic elastase (elastase, 0.085 U/g at t = 0 h and t = 1 h) caused a 7-fold increase in lung myeloperoxidase (MPO) activity and marked pulmonary edema, neutrophil infiltration, and hemorrhage at 4 h as compared to control animals. The pattern of lung injury induced by elastase mimicked that observed among a separate group of animals with PALI induced by cerulein but was not associated with pancreatitis. Both NEP(-/-) mice and NEP(+/+) mice pretreated with the NEP antagonist phosphoramidon (10 mg/kg s.c.) had significant elevations of lung MPO and worsened lung histology compared to NEP(+/+) mice given elastase alone. Antagonism of either the vanilloid receptor transient receptor vanilloid 1 or the substance P receptor NK1-R had no effect on elastase-mediated lung injury in NEP-deficient mice. NEP is an inhibitor of pancreatic elastase-induced lung injury, presumably via degradation of proinflammatory mediators.

  8. Approaches to chemoprevention of lung cancer based on carcinogens in tobacco smoke.

    PubMed Central

    Hecht, S S

    1997-01-01

    Chemoprevention may be one way to prevent lung cancer in smokers who are motivated to quit but cannot stop. The approach to chemoprevention of lung cancer described in this article is based on an understanding of the lung carcinogens present in tobacco smoke. The available data indicate that the compounds in cigarette smoke most likely involved in the induction of lung cancer in humans are the complex of polynuclear aromatic hydrocarbons typified by benzo[a]pyrene (B[a]P) and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). A large number of compounds are now available that inhibit lung tumorigenesis by B[a]P or NNK in rodents. Inhibition of NNK-induced lung carcinogenesis by phenethyl isothiocyanate (PEITC) and inhibition of B[a]P-induced lung carcinogenesis by benzyl isothiocyanate (BITC) are discussed as examples. Studies with PEITC in rodents clearly demonstrate that it inhibits NNK-induced lung tumorigenesis by inhibiting the metabolic activation of NNK. Similar changes appear to occur in humans according to data generated in smokers who ate watercress, a source of PEITC. It is likely that mixtures of chemopreventive agents with activity against carcinogens in tobacco smoke, such as NNK and B[a]P, will be useful in chemoprevention of lung cancer in smokers. Furthermore, there is a need to develop suppressing agents for lung cancer that might be applicable in both smokers and ex-smokers. PMID:9255587

  9. Role of elevated plasma soluble ICAM-1 and bronchial lavage fluid IL-8 levels as markers of chronic lung disease in premature infants.

    PubMed Central

    Little, S.; Dean, T.; Bevin, S.; Hall, M.; Ashton, M.; Church, M.; Warner, J.; Shute, J.

    1995-01-01

    BACKGROUND--Pulmonary neutrophilia characterises both the relatively transient inflammation associated with infant respiratory distress syndrome (IRDS) and the persistent inflammation of chronic lung disease. The possibility that persistently raised markers of inflammation indicate the development of chronic lung disease in low birth weight (< 1730 g) preterm (< 31 weeks) infants was therefore investigated. METHODS--Soluble ICAM-1 (sICAM-1) levels in plasma, and interleukin (IL)-8 and myeloperoxidase (MPO) levels in bronchial lavage fluid (BLF) obtained from 17 infants on days 1, 5, and 14 following birth were measured and correlations with the number of neutrophils in BLF sought. Peripheral neutrophils were isolated on Polymorphoprep and chemotactic responsiveness to IL-8 was assessed using micro Boyden chambers. RESULTS--Sixteen infants developed IRDS and, of these, 10 infants subsequently developed chronic lung disease. Levels of IL-8 in BLF at 14 days of age correlated with the long term requirement for intermittent positive pressure ventilation (IPPV). Interleukin 8 levels in BLF correlated with neutrophil numbers and MPO concentration, suggesting both recruitment and activation in response to this cytokine. Antibody depletion studies showed that approximately 50% of total neutrophil chemotactic activity in BLF was due to IL-8. No difference in peripheral neutrophil chemotactic responsiveness at any age was observed for infants with IRDS or chronic lung disease. Plasma soluble intercellular adhesion molecule (sICAM-1) was higher at 14 days of age in infants who developed chronic lung disease than in those with resolving IRDS, and correlated with severity of disease, as indicated by duration of IPPV. CONCLUSIONS--The results indicate that high levels of plasma sICAM-1 and IL-8 in BLF at day 14 correlate with the development of chronic lung disease and indicate the severity of disease. PMID:7491556

  10. Bisphenol A stimulates human lung cancer cell migration via upregulation of matrix metalloproteinases by GPER/EGFR/ERK1/2 signal pathway.

    PubMed

    Zhang, Kun-Shui; Chen, Hui-Qing; Chen, Yi-Shen; Qiu, Kai-Feng; Zheng, Xiao-Bin; Li, Guo-Cheng; Yang, Hai-Di; Wen, Cui-Ju

    2014-10-01

    Lung cancer is one of the leading causes of cancer deaths worldwide. Recent evidences indicated that bisphenol A (BPA), a wide contaminant with endocrine disrupting activity, could enhance the susceptibility of carcinogenesis. Although there are increasing opportunities for lung cells exposure to BPA via inhalation, there is no study concerning the effects of BPA on the development of lung cancer. The present study revealed that BPA less than 10(-4)M had limited effects on the proliferation of lung cancer A549 cells, however, BPA treatment significantly stimulated the in vitro migration and invasion of cells combing with the morphological changes and up regulation of matrix metalloproteinase-2 (MMP-2) and MMP-9. G-protein-coupled estrogen receptor (GPER), while not estrogen receptor α/β (ERα/β), mediated the BPA induced up regulation of MMPs. Further, BPA treatment induced rapid activation of ERK1/2 via GPER/EGFR. GPER/ERFR/ERK1/2 mediated the BPA induced upregulation of MMPs and in vitro migration of lung cancer A549 cells. In summary, our data presented here revealed for the first time that BPA can promote the in vitro migration and invasion of lung cancer cells via upregulation of MMPs and GPER/EGFR/ERK1/2 signals, which mediated these effects. This study suggested that more attention should be paid on the BPA and other possible environmental estrogens induced development of lung cancer. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. CYP3A-mediated apoptosis of dauricine in cultured human bronchial epithelial cells and in lungs of CD-1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hua; Shen, Shuijie; Chen, Xiaoyan

    2012-06-15

    Dauricine is the major bioactive component isolated from the root of Menispermum dauricum DC and has shown promising pharmacologic activities with a great potential for clinical use. Recently, we found that intraperitoneal exposure of dauricine produced selective pulmonary injury in mice. A quinone methide metabolite of dauricine was identified and is suggested to be associated with the pulmonary toxicity of dauricine. The present study evaluated the apoptotic effect of dauricine in cultured cells and mice, determined the change in cellular glutathione (GSH) contents after exposure to dauricine, investigated the role of GSH depletion in dauricine-induced cytotoxicity and apoptosis, and examinedmore » the role of CYP3A in dauricine-induced GSH depletion and apoptosis. Dauricine was found to induce apoptosis in NL-20 cells. Additionally, intraperitoneal administration of dauricine caused GSH depletion and apoptosis in lungs of mice. Treatment with ketoconazole, an inhibitor of CYP3A, reversed cellular GSH depletion in lungs of mice given dauricine and showed protective effect on dauricine-induced apoptosis in lungs of mice. This indicates that metabolic activation is involved in dauricine-induced GSH-depletion, cytotoxicity and apoptosis. The glutathione depletor L-buthionine sulfoximine showed potentiating effect on cytotoxicity and apoptosis induced by dauricine. We propose that dauricine is metabolized to a quinone methide intermediate which depletes cellular GSH, and the depletion of GSH may trigger and/or intensify the cytotoxicity and apoptosis induced by dauricine. -- Highlights: ► Dauricine induced apoptosis in lungs in mice and in cultured human pulmonary cells. ► Dauricine depleted cellular GSH in lungs of mice and in the human pulmonary cells. ► CYP3A subfamily mediated GSH depletion and apoptosis induced by dauricine. ► L-Buthionine sulfoximine potentiated dauricine-induced GSH depletion and apoptosis.« less

  12. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com; Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536; Yang, Yu-Xiu

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology.more » Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and transformation.« less

  13. High Levels of S100A8/A9 Proteins Aggravate Ventilator-Induced Lung Injury via TLR4 Signaling

    PubMed Central

    Aslami, Hamid; Jongsma, Geartsje; van den Berg, Elske; Vlaar, Alexander P. J.; Roelofs, Joris J. T. H.; Juffermans, Nicole P.; Schultz, Marcus J.; van der Poll, Tom; Roth, Johannes; Wieland, Catharina W.

    2013-01-01

    Background Bacterial products add to mechanical ventilation in enhancing lung injury. The role of endogenous triggers of innate immunity herein is less well understood. S100A8/A9 proteins are released by phagocytes during inflammation. The present study investigates the role of S100A8/A9 proteins in ventilator-induced lung injury. Methods Pulmonary S100A8/A9 levels were measured in samples obtained from patients with and without lung injury. Furthermore, wild-type and S100A9 knock-out mice, naive and with lipopolysaccharide-induced injured lungs, were randomized to 5 hours of spontaneously breathing or mechanical ventilation with low or high tidal volume (VT). In addition, healthy spontaneously breathing and high VT ventilated mice received S100A8/A9, S100A8 or vehicle intratracheal. Furthermore, the role of Toll-like receptor 4 herein was investigated. Results S100A8/A9 protein levels were elevated in patients and mice with lung injury. S100A8/A9 levels synergistically increased upon the lipopolysaccharide/high VT MV double hit. Markers of alveolar barrier dysfunction, cytokine and chemokine levels, and histology scores were attenuated in S100A9 knockout mice undergoing the double-hit. Exogenous S100A8/A9 and S100A8 induced neutrophil influx in spontaneously breathing mice. In ventilated mice, these proteins clearly amplified inflammation: neutrophil influx, cytokine, and chemokine levels were increased compared to ventilated vehicle-treated mice. In contrast, administration of S100A8/A9 to ventilated Toll-like receptor 4 mutant mice did not augment inflammation. Conclusion S100A8/A9 proteins increase during lung injury and contribute to inflammation induced by HVT MV combined with lipopolysaccharide. In the absence of lipopolysaccharide, high levels of extracellular S100A8/A9 still amplify ventilator-induced lung injury via Toll-like receptor 4. PMID:23874727

  14. Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signaling pathway.

    PubMed

    Sui, Yuxia; Yao, Hong; Li, Shaoguang; Jin, Long; Shi, Peiying; Li, Zhijun; Wang, Gang; Lin, Shilan; Wu, Youjia; Li, Yuxiang; Huang, Liying; Liu, Qicai; Lin, Xinhua

    2017-03-01

    Searching for potential anticancer agents from natural sources is an effective strategy for developing novel chemotherapeutic agents. In this study, data supporting the in vitro and in vivo anticancer effects of delicaflavone, a rarely occurring biflavonoid from Selaginella doederleinii, were reported. Delicaflavone exhibited favorable anticancer properties, as shown by the MTT assay and xenograft model of human non-small cell lung cancer in male BALB/c nude mice without observable adverse effect. By transmission electron microscopy with acridine orange and Cyto-ID®Autophagy detection dyes, Western blot analysis, and RT-PCR assay, we confirmed that delicaflavone induces autophagic cell death by increasing the ratio of LC3-II to LC3-I, which are autophagy-related proteins, and promoting the generation of acidic vesicular organelles and autolysosomes in the cytoplasm of human lung cancer A549 and PC-9 cells in a time- and dose-dependent manner. Delicaflavone downregulated the expression of phospho-Akt, phospho-mTOR, and phospho-p70S6K in a time- and dose-dependent manner, suggesting that it induced autophagy by inhibiting the Akt/mTOR/p70S6K pathway in A549 and PC-9 cells. Delicaflavone is a potential anticancer agent that can induce autophagic cell death in human non-small cell lung cancer via the Akt/mTOR/p70S6K signaling pathway. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer.

  15. TCDD and a Putative Endogenous AhR Ligand, ITE, Elicit the Same Immediate Changes in Gene Expression in Mouse Lung Fibroblasts

    PubMed Central

    Henry, Ellen C.; Welle, Stephen L.; Gasiewicz, Thomas A.

    2010-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1′H-indolo-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5μM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible. PMID:19933214

  16. Intranasal bacille Calmette–Guérin (BCG) vaccine dosage needs balancing between protection and lung pathology

    PubMed Central

    TREE, J A; WILLIAMS, A; CLARK, S; HALL, G; MARSH, P D; IVANYI, J

    2004-01-01

    Intranasal vaccination may offer practical benefits and better protection against respiratory infections, including tuberculosis. In this paper, we investigated the persistence of the Mycobacterium bovis-strain bacille Calmette–Guérin (BCG) Pasteur, lung granuloma formation and protection against pathogenic tuberculous challenge in mice. A pronounced BCG dose-dependent granulomatous infiltration of the lungs was observed following intranasal, but not after subcutaneous, vaccination. Corresponding doses of BCG, over a 100-fold range, imparted similar protection against H37Rv challenge when comparing the intranasal and subcutaneous vaccination routes. Interestingly, a BCG dose-dependent reduction of the H37Rv challenge infection was observed in the lungs, but not in the spleens, following both intranasal and subcutaneous vaccination. In the light of the observed concurrence between the extent of granuloma formation and the level of protection of the lungs, we conclude that intranasal vaccination leading to best protective efficacy needs to be balanced with an acceptable safety margin avoiding undue pathology in the lungs. PMID:15544615

  17. The fate of mesenchymal stem cells transplanted into immunocompetent neonatal mice: implications for skeletal gene therapy via stem cells.

    PubMed

    Niyibizi, Christopher; Wang, Sujing; Mi, Zhibao; Robbins, Paul D

    2004-06-01

    To explore the feasibility of skeletal gene and cell therapies, we transduced murine bone marrow-derived mesenchymal stem cells (MSCs) with a retrovirus carrying the enhanced green fluorescent protein and zeocin-resistance genes prior to transplantation into 2-day-old immunocompetent neonatal mice. Whole-body imaging of the recipient mice at 7 days post-systemic cell injection demonstrated a wide distribution of the cells in vivo. Twenty-five days posttransplantation, most of the infused cells were present in the lung as assessed by examination of the cells cultured from the lungs of the recipient mice. The cells persisted in lung and maintained a high level of gene expression and could be recovered from the recipient mice at 150 days after cell transplantation. A significant number of GFP-positive cells were also present in the bones of the recipient mice at 35 days post-cell transplantation. Recycling of the cells recovered from femurs of the recipient mice at 25 days posttransplantation by repeated injections into different neonatal mice resulted in the isolation of a clone of cells that was detected in bone and cartilage, but not in lung and liver after systemic injection. These data demonstrate that MSCs persist in immunocompetent neonatal mice, maintain a high level of gene expression, and may participate in skeletal growth and development of the recipient animals.

  18. Lung Cancer: Posttreatment Imaging: Radiation Therapy and Imaging Findings.

    PubMed

    Benveniste, Marcelo F; Welsh, James; Viswanathan, Chitra; Shroff, Girish S; Betancourt Cuellar, Sonia L; Carter, Brett W; Marom, Edith M

    2018-05-01

    In this review, we discuss the different radiation delivery techniques available to treat non-small cell lung cancer, typical radiologic manifestations of conventional radiotherapy, and different patterns of lung injury and temporal evolution of the newer radiotherapy techniques. More sophisticated techniques include intensity-modulated radiotherapy, stereotactic body radiotherapy, proton therapy, and respiration-correlated computed tomography or 4-dimensional computed tomography for radiotherapy planning. Knowledge of the radiation treatment plan and technique, the completion date of radiotherapy, and the temporal evolution of radiation-induced lung injury is important to identify expected manifestations of radiation-induced lung injury and differentiate them from tumor recurrence or infection. Published by Elsevier Inc.

  19. Suppression of RAGE and TLR9 by Ketamine Contributes to Attenuation of Lipopolysaccharide-Induced Acute Lung Injury.

    PubMed

    Yang, Chunyan; Song, Yulong; Wang, Hui

    2017-06-01

    The present study aimed to investigate the protective role of ketamine in lipopolysaccharide (LPS)-induced acute lung injury (ALI) by the inhibition of the receptor for advanced glycation end products (RAGE) and toll-like receptor 9 (TLR9). ALI was induced in rats by intratracheal instillation of LPS (5 mg/kg), and ketamine (5, 7.5, and 10 mg/kg) was injected intraperitoneally 1 h after LPS administration. Meanwhile, A549 alveolar epithelial cells were incubated with LPS in the presence or absence of ketamine. After 24 h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. Ketamine posttreatment at doses of 5, 7.5, and 10 mg/kg decreased LPS-induced evident lung histopathological changes, lung wet-to-dry weight ratio, and lung myeloperoxidase activity. In addition, posttreatment with ketamine-inhibited inflammatory cells and inflammatory mediators including tumor necrosis factor-α, interleukin-6, and high-mobility group box 1 in BALF. Furthermore, we demonstrated that ketamine-inhibited LPS-induced RAGE and TLR9 protein up-expressions and the phosphorylation of I-κB-α and nuclear factor-κB (NF-κB) p65 in vivo and in vitro. The results presented here suggest that the protective mechanism of ketamine may be attributed partly to decreased production of inflammatory mediators through the inhibition of RAGE/TLR9-NF-κB pathway.

  20. Downregulated Smad4 Affects Extracellular Matrix Remodeling in Ventilator-induced Lung Injury.

    PubMed

    Huang, Xiaofang; Zhou, Wei; Ding, Shifang

    2016-09-01

    To explore the effect of Smad4 on the extracellular matrix remodeling in ventilator-induced lung injury (VILI). We randomized 24 C57BL/6 mice to 4 groups for treatment (n=6/group): control, ventilation, non-targeted (scramble) lentivirus transfection plus ventilation, and Smad4 small interfering RNA (siRNA) lentivirus transfection plus ventilation. Lentivirus was delivered by intranasal instillation. Four weeks later, the 3 ventilated groups underwent high tidal volume (VT 40mL/kg) ventilation to induce lung injury. After 72 hours, lungs were collected from the anesthetized live mice. Histological changes in lungs were evaluated by hematoxylin and eosin and Masson's staining. The expression of α-smooth muscle actin (α-SMA) was determined by immunohistochemistry, and the mRNA and protein levels of Smad4, α-SMA, and collagen I and III were detected by quantitative real-time PCR and western blotting analysis. Smad4 siRNAs significantly knocked down Smad4 expression (P<.05), which was increased with ventilation, thereby alleviating inflammatory cell infiltration. It also inhibited accumulation of α-SMA-positive myofibroblasts and pulmonary fibrosis, as seen by reduced collagen I and III expression (P<.05), induced by ventilation. Scramble siRNA treatment had no effect (P>.05). Smad4 gene silencing may be a therapeutic target for treating ventilator-induced lung injury and pulmonary fibrosis. © 2016 by the Association of Clinical Scientists, Inc.

  1. The effects of S-nitrosoglutathione on intestinal ischemia reperfusion injury and acute lung injury in rats: Roles of oxidative stress and NF-κB.

    PubMed

    Turan, Inci; Sayan Ozacmak, Hale; Ozacmak, V Haktan; Barut, Figen; Ozacmak, I Diler

    2018-06-01

    Intestinal ischemia and reperfusion (I/R) induces oxidative stress, inflammatory response, and acute lung injury. S-nitrosoglutathione (GSNO), a nitric oxide donor, has been documented to have protective effects on experimental ischemia models. The aim of this study was to examine the effect of GSNO on I/R-induced intestine and lung damage and detect the potential mechanisms emphasizing the protective role of GSNO. Intestinal I/R was induced by occluding the superior mesenteric artery for 30 min followed by reperfusion for 180 min. GSNO was administered intravenously before reperfusion period (0.25 mg/kg). The levels of lipid peroxidation, reduced glutathione, and myeloperoxidase (MPO), histopathological evaluation and immunohistochemical expressions of both nuclear factor KappaB (NF-κB) and inducible nitric oxide (iNOS) in intestine and lung tissues were assessed. Histolopathologic evaluation demonstrated that intestinal I/R induced severe damages in the intestine and the lung tissues. Histopathological scores decreased with GSNO treatment. GSNO treatment reduced lipid peroxidation and MPO levels and inhibited expression of NF-κB and iNOS in the intestine. Our results suggest that GSNO treatment may ameliorate the intestinal and lung injury in rats, at least in part, by inhibiting inflammatory response and oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Treatment of acute lung injury by targeting MG53-mediated cell membrane repair

    PubMed Central

    Lieber, Gissela; Nishi, Miyuki; Yan, Rosalie; Wang, Zhen; Yao, Yonggang; Li, Yu; Whitson, Bryan A.; Duann, Pu; Li, Haichang; Zhou, Xinyu; Zhu, Hua; Takeshima, Hiroshi; Hunter, John C.; McLeod, Robbie L.; Weisleder, Noah; Zeng, Chunyu; Ma, Jianjie

    2014-01-01

    Injury to lung epithelial cells has a role in multiple lung diseases. We previously identified mitsugumin 53 (MG53) as a component of the cell membrane repair machinery in striated muscle cells. Here we show that MG53 also has a physiological role in the lung and may be used as a treatment in animal models of acute lung injury. Mice lacking MG53 show increased susceptibility to ischemia-reperfusion and over-ventilation induced injury to the lung when compared with wild type mice. Extracellular application of recombinant human MG53 (rhMG53) protein protects cultured lung epithelial cells against anoxia/reoxygenation-induced injuries. Intravenous delivery or inhalation of rhMG53 reduces symptoms in rodent models of acute lung injury and emphysema. Repetitive administration of rhMG53 improves pulmonary structure associated with chronic lung injury in mice. Our data indicate a physiological function for MG53 in the lung and suggest that targeting membrane repair may be an effective means for treatment or prevention of lung diseases. PMID:25034454

  3. The problem of the treatment of sarcoidosis: Report of the Subcommittee on Therapy.

    PubMed

    Turiaf, J; Johns, C J; Terstein, A S; Tsuji, S; Wurm, K

    1976-01-01

    Stage I: Hilar Adenopathy With normal lung function observe, as it often resolves. With reduced lung function observe for 6-12 months. Treat if there is progression or persistence. With erythema nodosum use mild anti-inflammatory agents such as salicylates or like drugs. Stage II: Adenopathy + Pulmonar Infiltrates With normal or slightly reduced lung function observe; treat if it worsens. Treat if there is no remission in 6-12 months. With reduced lung function treat, possibly for many years or a lifetime. Stage III: Pulmonary Infiltrates +/- Fibrosis Without Adenopathy There is reduced lung function. Treat, demonstrate improvement, follow patients with serial measurements of vital capacity at least. Other Indications for Treatment Other indications for treatment include myocardial sarcoidosis, cerebral sarcoidosis (although the outcome is less certain), serious hepatic or renal sarcoidosis, hypercalcemia, persistent systemic symptoms, or other serious organ or functional impairment. Assess each patient individually and completely. Use good clinical judgement. It is clear that treatment that is too little or too late is of little benefit. Even the statistical results form a perfectly controlled study cannot provide absolute direction for the individual patient. As clinicians we are frequently called upon to apply considered judgements without hard data to predict the outcome. We also maintain the flexibility to change our therapeutic programs when circumstances change, either in the patient or in our knowledge. We can be grateful we have a treatment as good as corticosteroids and must try to exercise our best judgement as to when it should be instituted.

  4. Preemptive hemodynamic intervention restricting the administration of fluids attenuates lung edema progression in oleic acid-induced lung injury.

    PubMed

    Gil Cano, A; Gracia Romero, M; Monge García, M I; Guijo González, P; Ruiz Campos, J

    2017-04-01

    A study is made of the influence of preemptive hemodynamic intervention restricting fluid administration upon the development of oleic acid-induced lung injury. A randomized in vivo study in rabbits was carried out. University research laboratory. Sixteen anesthetized, mechanically ventilated rabbits. Hemodynamic measurements obtained by transesophageal Doppler signal. Respiratory mechanics computed by a least square fitting method. Lung edema assessed by the ratio of wet weight to dry weight of the right lung. Histological examination of the left lung. Animals were randomly assigned to either the early protective lung strategy (EPLS) (n=8) or the early protective hemodynamic strategy (EPHS) (n=8). In both groups, lung injury was induced by the intravenous infusion of oleic acid (OA) (0.133mlkg -1 h -1 for 2h). At the same time, the EPLS group received 15mlkg -1 h -1 of Ringer lactate solution, while the EPHS group received 30mlkg -1 h -1 . Measurements were obtained at baseline and 1 and 2h after starting OA infusion. After 2h, the cardiac index decreased in the EPLS group (p<0.05), whereas in the EPHS group it remained unchanged. Lung compliance decreased significantly only in the EPHS group (p<0.05). Lung edema was greater in the EPHS group (p<0.05). Histological damage proved similar in both groups (p=0.4). In this experimental model of early lung injury, lung edema progression was attenuated by preemptively restricting the administration of fluids. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  5. Maternal high-fat diet is associated with impaired fetal lung development

    PubMed Central

    Mayor, Reina S.; Finch, Katelyn E.; Zehr, Jordan; Morselli, Eugenia; Neinast, Michael D.; Frank, Aaron P.; Hahner, Lisa D.; Wang, Jason; Rakheja, Dinesh; Palmer, Biff F.; Rosenfeld, Charles R.; Savani, Rashmin C.

    2015-01-01

    Maternal nutrition has a profound long-term impact on infant health. Poor maternal nutrition influences placental development and fetal growth, resulting in low birth weight, which is strongly associated with the risk of developing chronic diseases, including heart disease, hypertension, asthma, and type 2 diabetes, later in life. Few studies have delineated the mechanisms by which maternal nutrition affects fetal lung development. Here, we report that maternal exposure to a diet high in fat (HFD) causes placental inflammation, resulting in placental insufficiency, fetal growth restriction (FGR), and inhibition of fetal lung development. Notably, pre- and postnatal exposure to maternal HFD also results in persistent alveolar simplification in the postnatal period. Our novel findings provide a strong association between maternal diet and fetal lung development. PMID:26092997

  6. Osthole attenuates the development of carrageenan-induced lung inflammation in rats.

    PubMed

    Li, Zhipeng; Ji, Haijie; Song, Xiuyun; Hu, Jinfeng; Han, Ning; Chen, Naihong

    2014-05-01

    Osthole has been reported to possess a variety of pharmacological activities, such as antiinflammatory effect. In the present study, we have investigated the effect of osthole on lung inflammation associated with carrageenan-induced pleurisy in rats. The result showed that osthole could inhibit significantly pleural exudates formation and PMNs infiltration. Histological examination revealed osthole could reduce lung inflammation in rats treated with carrageenan. The myeloperoxidase (MPO) level was examined in pleural exudates. The result showed that osthole could attenuate MPO level in pleural exudates. Further studies showed osthole could decrease tumor necrosis factor alpha (TNF-α) and interleukin 1beta (IL-1β) levels in the lungs. Taken together, the present results suggested that osthole could inhibit lung inflammation on carrageenan-induced pleurisy in rats and that could be related to a reduction of PMNs infiltration and release of inflammatory factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Role of (18)F-FDG PET-CT in Monitoring the Cyclophosphamide Induced Pulmonary Toxicity in Patients with Breast Cancer - 2 Case Reports.

    PubMed

    Taywade, Sameer Kamalakar; Kumar, Rakesh; Bhethanabhotla, Sainath; Bal, Chandrasekhar

    2016-09-01

    Drug induced pulmonary toxicity is not uncommon with the use of various chemotherapeutic agents. Cyclophosphamide is a widely used chemotherapeutic drug in the treatment of breast cancer. Although rare, lung toxicity has been reported with cyclophosphamide use. Detection of bleomycin induced pulmonary toxicity and pattern of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in lungs on fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG PET-CT) has been elicited in literature in relation to lymphoma. However, limited data is available regarding the role of (18)F-FDG PET-CT in monitoring drug induced pulmonary toxicity in breast cancer. We here present two cases of cyclophosphamide induced drug toxicity. Interim (18)F-FDG PET-CT demonstrated diffusely increased tracer uptake in bilateral lung fields in both these patients. Subsequently there was resolution of lung uptake on (18)F-FDG PET-CT scan post completion of chemotherapy. These patients did not develop significant respiratory symptoms during chemotherapy treatment and in follow up.

  8. Beyond Tryptophan Synthase: Identification of Genes That Contribute to Chlamydia trachomatis Survival during Gamma Interferon-Induced Persistence and Reactivation

    PubMed Central

    Muramatsu, Matthew K.; Brothwell, Julie A.; Stein, Barry D.; Putman, Timothy E.; Rockey, Daniel D.

    2016-01-01

    Chlamydia trachomatis can enter a viable but nonculturable state in vitro termed persistence. A common feature of C. trachomatis persistence models is that reticulate bodies fail to divide and make few infectious progeny until the persistence-inducing stressor is removed. One model of persistence that has relevance to human disease involves tryptophan limitation mediated by the host enzyme indoleamine 2,3-dioxygenase, which converts l-tryptophan to N-formylkynurenine. Genital C. trachomatis strains can counter tryptophan limitation because they encode a tryptophan-synthesizing enzyme. Tryptophan synthase is the only enzyme that has been confirmed to play a role in interferon gamma (IFN-γ)-induced persistence, although profound changes in chlamydial physiology and gene expression occur in the presence of persistence-inducing stressors. Thus, we screened a population of mutagenized C. trachomatis strains for mutants that failed to reactivate from IFN-γ-induced persistence. Six mutants were identified, and the mutations linked to the persistence phenotype in three of these were successfully mapped. One mutant had a missense mutation in tryptophan synthase; however, this mutant behaved differently from previously described synthase null mutants. Two hypothetical genes of unknown function, ctl0225 and ctl0694, were also identified and may be involved in amino acid transport and DNA damage repair, respectively. Our results indicate that C. trachomatis utilizes functionally diverse genes to mediate survival during and reactivation from persistence in HeLa cells. PMID:27430273

  9. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development.

    PubMed

    Mosconi, E; Rekima, A; Seitz-Polski, B; Kanda, A; Fleury, S; Tissandie, E; Monteiro, R; Dombrowicz, D D; Julia, V; Glaichenhaus, N; Verhasselt, V

    2010-09-01

    Allergic asthma is a chronic lung disease resulting from an inappropriate T helper (Th)-2 response to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. Here, we found that breastfeeding by antigen-sensitized mothers exposed to antigen aerosols during lactation induced a robust and long-lasting antigen-specific protection from asthma. Protection was more profound and persistent than the one induced by antigen-exposed non-sensitized mothers. Milk from antigen-exposed sensitized mothers contained antigen-immunoglobulin (Ig) G immune complexes that were transferred to the newborn through the neonatal Fc receptor resulting in the induction of antigen-specific FoxP3(+) CD25(+) regulatory T cells. The induction of oral tolerance by milk immune complexes did not require the presence of transforming growth factor-beta in milk in contrast to tolerance induced by milk-borne free antigen. Furthermore, neither the presence of IgA in milk nor the expression of the inhibitory FcgammaRIIb in the newborn was required for tolerance induction. This study provides new insights on the mechanisms of tolerance induction in neonates and highlights that IgG immune complexes found in breast milk are potent inducers of oral tolerance. These observations may pave the way for the identification of key factors for primary prevention of immune-mediated diseases such as asthma.

  10. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury.

    PubMed

    Rizzo, Alicia N; Sammani, Saad; Esquinca, Adilene E; Jacobson, Jeffrey R; Garcia, Joe G N; Letsiou, Eleftheria; Dudek, Steven M

    2015-12-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak. Copyright © 2015 the American Physiological Society.

  11. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    PubMed Central

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W.

    2013-01-01

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. PMID:23800689

  12. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide.

    PubMed

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F; Hoyle, Gary W

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. © 2013.

  13. Nontypeable Haemophilus influenzae Induces Sustained Lung Oxidative Stress and Protease Expression

    PubMed Central

    King, Paul T.; Sharma, Roleen; O’Sullivan, Kim; Selemidis, Stavros; Lim, Steven; Radhakrishna, Naghmeh; Lo, Camden; Prasad, Jyotika; Callaghan, Judy; McLaughlin, Peter; Farmer, Michael; Steinfort, Daniel; Jennings, Barton; Ngui, James; Broughton, Bradley R. S.; Thomas, Belinda; Essilfie, Ama-Tawiah; Hickey, Michael; Holmes, Peter W.; Hansbro, Philip; Bardin, Philip G.; Holdsworth, Stephen R.

    2015-01-01

    Nontypeable Haemophilus influenzae (NTHi) is a prevalent bacterium found in a variety of chronic respiratory diseases. The role of this bacterium in the pathogenesis of lung inflammation is not well defined. In this study we examined the effect of NTHi on two important lung inflammatory processes 1), oxidative stress and 2), protease expression. Bronchoalveolar macrophages were obtained from 121 human subjects, blood neutrophils from 15 subjects, and human-lung fibroblast and epithelial cell lines from 16 subjects. Cells were stimulated with NTHi to measure the effect on reactive oxygen species (ROS) production and extracellular trap formation. We also measured the production of the oxidant, 3-nitrotyrosine (3-NT) in the lungs of mice infected with this bacterium. NTHi induced widespread production of 3-NT in mouse lungs. This bacterium induced significantly increased ROS production in human fibroblasts, epithelial cells, macrophages and neutrophils; with the highest levels in the phagocytic cells. In human macrophages NTHi caused a sustained, extracellular production of ROS that increased over time. The production of ROS was associated with the formation of macrophage extracellular trap-like structures which co-expressed the protease metalloproteinase-12. The formation of the macrophage extracellular trap-like structures was markedly inhibited by the addition of DNase. In this study we have demonstrated that NTHi induces lung oxidative stress with macrophage extracellular trap formation and associated protease expression. DNase inhibited the formation of extracellular traps. PMID:25793977

  14. Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis.

    PubMed

    Dong, Jie; Ma, Qiang

    2018-01-01

    T helper (Th) 2-dependent type 2 immune pathways have been recognized as an important driver for the development of fibrosis. Upon stimulation, activated Th2 immune cells and type 2 cytokines interact with inflammatory and tissue repair functions to stimulate an overzealous reparative response to tissue damage, leading to organ fibrosis and destruction. In this connection, type 2 pathways are activated by a variety of insults and pathological conditions to modulate the response. Carbon nanotubes (CNTs) are nanomaterials with a wide range of applications. However, pulmonary exposure to CNTs causes a number of pathologic outcomes in animal lungs, dominated by inflammation and fibrosis. These findings, alongside the rapidly expanding production and commercialization of CNTs and CNT-containing materials in recent years, have raised concerns on the health risk of CNT exposure in humans. The CNT-induced pulmonary fibrotic lesions resemble those of human fibrotic lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis, to a certain extent with regard to disease development and pathological features. In fibrotic scenarios, immune cells are activated including varying immune pathways, ranging from innate immune cell activation to autoimmune disease. These events often precede and/or accompany the occurrence of fibrosis. Upon CNT exposure, significant induction and activation of Th2 cells and type 2 cytokines in the lungs are observed. Moreover, type 2 pathways are shown to play important roles in promoting CNT-induced lung fibrosis by producing type 2 pro-fibrotic factors and inducing the reparative phenotypes of macrophages in response to CNTs. In light of the vastly increased demand for nanosafety and the apparent induction and multiple roles of type 2 immune pathways in lung fibrosis, we review the current literature on CNT-induced lung fibrosis, with a focus on the induction and activation of type 2 responses by CNTs and the stimulating function of type 2 signaling on pulmonary fibrosis development. These analyses provide new insights into the mechanistic understanding of CNT-induced lung fibrosis, as well as the potential of using type 2 responses as a monitoring target and therapeutic strategy for human fibrotic lung disease.

  15. Mitogen-activated protein kinase phosphatase-1 modulates regional effects of injurious mechanical ventilation in rodent lungs.

    PubMed

    Park, Moo Suk; He, Qianbin; Edwards, Michael G; Sergew, Amen; Riches, David W H; Albert, Richard K; Douglas, Ivor S

    2012-07-01

    Mechanical ventilation induces heterogeneous lung injury by mitogen-activated protein kinase (MAPK) and nuclear factor-κB. Mechanisms regulating regional injury and protective effects of prone positioning are unclear. To determine the key regulators of the lung regional protective effects of prone positioning in rodent lungs exposed to injurious ventilation. Adult rats were ventilated with high (18 ml/kg, positive end-expiratory pressure [PEEP] 0) or low Vt (6 ml/kg; PEEP 3 cm H(2)O; 3 h) in supine or prone position. Dorsal-caudal lung mRNA was analyzed by microarray and MAPK phosphatases (MKP)-1 quantitative polymerase chain reaction. MKP-1(-/-) or wild-type mice were ventilated with very high (24 ml/kg; PEEP 0) or low Vt (6-7 ml/kg; PEEP 3 cm H(2)O). The MKP-1 regulator PG490-88 (MRx-108; 0.75 mg/kg) or phosphate-buffered saline was administered preventilation. Injury was assessed by lung mechanics, bronchioalveolar lavage cell counts, protein content, and lung injury scoring. Immunoblotting for MKP-1, and IκBα and cytokine ELISAs were performed on lung lysates. Prone positioning was protective against injurious ventilation in rats. Expression profiling demonstrated MKP-1 20-fold higher in rats ventilated prone rather than supine and regional reduction in p38 and c-jun N-terminal kinase activation. MKP-1(-/-) mice experienced amplified injury. PG490-88 improved static lung compliance and injury scores, reduced bronchioalveolar lavage cell counts and cytokine levels, and induced MKP-1 and IκBα. Injurious ventilation induces MAPK in an MKP-1-dependent fashion. Prone positioning is protective and induces MKP-1. PG490-88 induced MKP-1 and was protective against high Vt in a nuclear factor-κB-dependent manner. MKP-1 is a potential target for modulating regional effects of injurious ventilation.

  16. [Protective effect of curcumin on oleic-induced acute lung injury in rats].

    PubMed

    Zhu, Rui-fang; Zhou, Min; He, Jian-lin; Ding, Fu-yun; Yu, Shu-qin; Xu, Guang-lin

    2008-09-01

    To investigate the effect of curcumine on acute lung injury induced by oleic acid in rat and the possible mechanism of action. The rats were divided into 6 groups randomly: normal group, control group, curcumine groups (5, 10, 20 mg x kg(-1)) and dexamethasone group (1 mg x kg(-1)). During the experiment, acute lung injury was induced by oleic acid in rat. The changes of dynamic lung compliance were recorded by anrise 2005 pulmonary function test apparatus, light microscope was used to examine histological changes and lung index as well as wet to dry weight ratio was calculated by weighting method. Lung vascular permeability and protein level in BALF were detected by ultraviolet spectrophotometry, and the concentrations of TNF-alpha, IL-6 and IL-10 in BALF were measured by enzyme linked immunosorbent assay (ELISA). The result showed that the changes of pulmonary compliance were inhibited and pulmonary function was improved by curcumine. The OA-induced elevation of lung index was restrained, as well as wet to dry weight ratio, lung vascular permeability, protein level, TNF-alpha (250.4 +/- 21.6 vs. 172.53 +/- 14.88, 122.2 +/- 10.98, 108.69 +/- 3.39) ng x L(-1), IL-6 (763.6 +/- 88.33 vs. 207.41 +/- 15.55, 172.13 +/- 21.91, 142.92 +/- 4.32) ng x L(-1) in BALF in curcumine groups, IL-10 (98.90 +/- 2.99 vs. 208.44 +/- 16.30, 218.43 +/- 6.23, 252.70 +/- 20.58) ng x L(-1) in BALF was increased, respectively significantly. Light microscope findings shown that the impairment in curcumine groups was far less severe than that in model groups. Pretreatment of curcumine showed beneficial effect on acute lung injury induced by oleic acid in rats. The mediation of both proinflammatory factor and anti-inflammatory factor by curcumine may be involved in mechanism of action of curcumine effects.

  17. Aromatase inhibitors decrease radiation-induced lung fibrosis: Results of an experimental study.

    PubMed

    Altinok, A Y; Yildirim, S; Altug, T; Sut, N; Ober, A; Ozsahin, E M; Azria, D; Bese, N S

    2016-08-01

    In experimental and clinical trials, tamoxifen (TAM) has been shown to increase radiation-induced lung fibrosis (RILF). Furthermore, aromatase inhibitors (AI) have been shown to be superior to TAM in the adjuvant setting and preclinical data suggest that letrozole (LET) sensitizes breast cancer cells to ionizing radiation in other studies. In this experimental study, we evaluated whether AI have any impact on the development of RILF in rats. 60 female wistar- albino rats were divided into 6 groups: Control (group A), RT alone (group B), RT + TAM (group C), RT + anastrozole (ANA group D), RT + LET (group E), and RT + exemestane (EXE, group F). RT consisted of 30 Gy in 10 fractions to both lungs with an anterior field at 2 cm depth. Equivalent doses for 60 kg adult dose per day of TAM, ANA, LET, and EXE were calculated according to the mean weight of rats and orally administrated with a feeding tube. Percentage of lung with fibrosis was quantified with image analysis of histological sections of the lung. The mean score values were calculated for each group. the significance of the differences among groups were calculated using one way ANOVA test and Tukey HSD post-hoc test. Mean values of fibrosis were 1.7, 5.9, 6.7, 2.5, 2 and 2.2 for groups A, B, C, D, E, and F, respectively (p = 0.000). TAM increased RT-induced lung fibrosis but without statistical significance. Groups treated with RT + AI showed significantly less lung fibrosis than groups treated with RT alone or RT + TAM (p = 0.000). RT + AI groups showed nearly similar RT-induced lung fibrosis than control group. In this study, we found that AI decreased RT-induced lung fibrosis to the control group level suggesting protective effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Homogentisate 1-2-Dioxygenase Downregulation in the Chronic Persistence of Pseudomonas aeruginosa Australian Epidemic Strain-1 in the CF Lung

    PubMed Central

    Harmer, Christopher J.; Wynn, Matthew; Pinto, Rachel; Cordwell, Stuart; Rose, Barbara R.; Harbour, Colin; Triccas, James A.; Manos, Jim

    2015-01-01

    Some Pseudomonas aeruginosa strains including Australian Epidemic Strain-1 (AES-1 or AUS-01) cause persistent chronic infection in cystic fibrosis (CF) patients, with greater morbidity and mortality. Factors conferring persistence are largely unknown. Previously we analysed the transcriptomes of AES-1 grown in Luria broth, nematode growth medium for Caenorhabditis elegans assay (both aerobic) and artificial sputum medium (mainly hypoxic). Transcriptional comparisons included chronic AES-1 strains against PAO1 and acute AES-1 (AES-1R) against its chronic isogen (AES-1M), isolated 10.5 years apart from a CF patient and not eradicated in the meantime. Prominent amongst genes downregulated in AES-1M in all comparisons was homogentisate-1-2-dioxygenase (hmgA); an oxygen-dependent gene known to be mutationally deactivated in many chronic infection strains of P. aeruginosa. To investigate if hmgA downregulation and deactivation gave similar virulence persistence profiles, a hmgA mutant made in UCBPP-PA14 utilising RedS-recombinase and AES-1M were assessed in the C. elegans virulence assay, and the C57BL/6 mouse for pulmonary colonisation and TNF-α response. In C. elegans, hmgA deactivation resulted in significantly increased PA14 virulence while hmgA downregulation reduced AES-1M virulence. AES-1M was significantly more persistent in mouse lung and showed a significant increase in TNF-α (p<0.0001), sustained even with no detectable bacteria. PA14ΔhmgA did not show increased TNF-α. This study suggests that hmgA may have a role in P. aeruginosa persistence in chronic infection and the results provide a starting point for clarifying the role of hmgA in chronic AES-1. PMID:26252386

  19. Inhibition of EphA2/EphrinA1 signal attenuates lipopolysaccharide-induced lung injury.

    PubMed

    Hong, Ji Young; Shin, Mi Hwa; Douglas, Ivor S; Chung, Kyung Soo; Kim, Eun Young; Jung, Ji Ye; Kang, Young Ae; Kim, Se Kyu; Chang, Joon; Kim, Young Sam; Park, Moo Suk

    2016-11-01

    Eph-Ephrin signalling mediates various cellular processes, including vasculogenesis, angiogenesis, cell migration, axon guidance, fluid homoeostasis and repair after injury. Although previous studies have demonstrated that stimulation of the EphA receptor induces increased vascular permeability and inflammatory response in lung injury, the detailed mechanisms of EphA2 signalling are unknown. In the present study, we evaluated the role of EphA2 signalling in mice with lipopolysaccharide (LPS)-induced lung injury. Acute LPS exposure significantly up-regulated EphA2 and EphrinA1 expression. Compared with LPS+IgG mice (IgG instillation after LPS exposure), LPS+EphA2 mAb mice [EphA2 monoclonal antibody (mAb) instillation posttreatment after LPS exposure] had attenuated lung injury and reduced cell counts and protein concentration of bronchoalveolar lavage fluid (BALF). EphA2 mAb posttreatment down-regulated the expression of phosphoinositide 3-kinases (PI3K) 110γ, phospho-Akt, phospho-NF-κB p65, phospho-Src and phospho-S6K in lung lysates. In addition, inhibiting the EphA2 receptor augmented the expression of E-cadherin, which is involved in cell-cell adhesion. Our study identified EphA2 receptor as an unrecognized modulator of several signalling pathways-including PI3K-Akt-NF-kB, Src-NF-κB, E-cadherin and mTOR-in LPS-induced lung injury. These results suggest that EphA2 receptor inhibitors may function as novel therapeutic agents for LPS-induced lung injury. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  20. Endothelial FoxM1 Mediates Bone Marrow Progenitor Cell-Induced Vascular Repair and Resolution of Inflammation following Inflammatory Lung Injury

    PubMed Central

    Zhao, Yidan D.; Huang, Xiaojia; Yi, Fan; Dai, Zhiyu; Qian, Zhijian; Tiruppathi, Chinnaswamy; Tran, Khiem; Zhao, You-Yang

    2015-01-01

    Adult stem cell treatment is a potential novel therapeutic approach for acute respiratory distress syndrome. Given the extremely low rate of cell engraftment, it is believed that these cells exert their beneficial effects via paracrine mechanisms. However, the endogenous mediator(s) in the pulmonary vasculature remains unclear. Employing the mouse model with endothelial cell (EC)-restricted disruption of FoxM1 (FoxM1 CKO), here we show that endothelial expression of the reparative transcriptional factor FoxM1 is required for the protective effects of bone marrow progenitor cells (BMPC) against LPS-induced inflammatory lung injury and mortality. BMPC treatment resulted in rapid induction of FoxM1 expression in WT but not FoxM1 CKO lungs. BMPC-induced inhibition of lung vascular injury, resolution of lung inflammation, and survival, as seen in WT mice, were abrogated in FoxM1 CKO mice following LPS challenge. Mechanistically, BMPC treatment failed to induce lung EC proliferation in FoxM1 CKO mice, which was associated with impaired expression of FoxM1 target genes essential for cell cycle progression. We also observed that BMPC treatment enhanced endothelial barrier function in WT, but not in FoxM1-deficient EC monolayers. Restoration of β-catenin expression in FoxM1-deficient ECs normalized endothelial barrier enhancement in response to BMPC treatment. These data demonstrate the requisite role of endothelial FoxM1 in the mechanism of BMPC-induced vascular repair to restore vascular integrity and accelerate resolution of inflammation, thereby promoting survival following inflammatory lung injury. PMID:24578354

Top