Science.gov

Sample records for induces pigment production

  1. Ultraviolet radiation directly induces pigment production by cultured human melanocytes

    SciTech Connect

    Friedmann, P.S.; Gilchrest, B.A.

    1987-10-01

    In humans the major stimulus for cutaneous pigmentation is ultraviolet radiation (UVR). Little is known about the mechanism underlying this response, in part because of the complexity of interactions in whole epidermis. Using a recently developed culture system, human melanocytes were exposed daily to a physiologic range of UVR doses from a solar simulator. Responses were determined 24 hours after the last exposure. There was a dose-related increase in melanin content per cell and uptake of /sup 14/C-DOPA, accompanied by growth inhibition. Cells from donors of different racial origin gave proportionately similar increases in melanin, although there were approximately tenfold differences in basal values. Light and electron microscopy revealed UVR-stimulated increases in dendricity as well as melanosome number and degree of melanization, analogous to the well-recognized melanocyte changes following sun exposure of intact skin. Similar responses were seen with Cloudman S91 melanoma cells, although this murine cell line required lower UVR dosages and fewer exposures for maximal stimulation. These data establish that UVR is capable of directly stimulating melanogenesis. Because cyclic AMP elevation has been associated in some settings with increased pigment production by cultured melanocytes, preliminary experiments were conducted to see if the effects of UVR were mediated by cAMP. Both alpha-MSH and isobutylmethylxanthine (IBMX), as positive controls, caused a fourfold increase in cAMP level in human melanocytes and/or S91 cells, but following a dose of UVR sufficient to stimulate pigment production there was no change in cAMP level up to 4 hours after exposure. Thus, it appears that the UVR-induced melanogenesis is mediated by cAMP-independent mechanisms.

  2. Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus

    PubMed Central

    Antonic, Vlado; Stojadinovic, Alexander; Zhang, Binxue; Izadjoo, Mina J; Alavi, Mohammad

    2013-01-01

    Staphyloxanthin is a virulence factor which protects Staphylococcus aureus in stress conditions. We isolated two pigment variants of S. aureus and one strain of Pseudomonas aeruginosa from a single wound infection. S. aureus variants displayed white and yellow colony phenotypes. The sequence of the operons for staphyloxanthin synthesis indicated that coding and promoter regions were identical between the two pigment variants. Quorum sensing controls pigment synthesis in some bacteria. It is also shown that P. aeruginosa quorum-sensing molecules affect S. aureus transcription. We explored whether the co-infecting P. aeruginosa can affect pigment production in the white S. aureus variant. In co-culture experiments between the white variants and a selected number of Gram-positive and Gram-negative bacteria, only P. aeruginosa induced pigment production in the white variant. Gene expression analysis of the white variant did not indicate upregulation of the crtM and other genes known to be involved in pigment production (sigB, sarA, farnesyl pyrophosphate synthase gene [FPP-synthase], hfq). In contrast, transcription of the catalase gene was significantly upregulated after co-culture. P. aeruginosa-induced pigment synthesis and catalase upregulation correlated with increased resistance to polymyxin B, hydrogen peroxide, and the intracellular environment of macrophages. Our data indicate the presence of silent but functional staphyloxanthin synthesis machinery in a white phenotypic variant of S. aureus which is activated by a co-infecting P. aeruginosa via inter-species communication. Another S. aureus virulence factor, catalase is also induced by this co-infecting bacterium. The resulting phenotypic changes are directly correlated with resistance of the white variant to stressful conditions. PMID:24232573

  3. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential

    PubMed Central

    Adini, Irit; Adini, Avner; Bazinet, Lauren; Watnick, Randolph S.; Bielenberg, Diane R.; D’Amato, Robert J.

    2015-01-01

    The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases.—Adini, I., Adini, A., Bazinet, L., Watnick, R. S., Bielenberg, D. R., and D’Amato, R. J. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential. PMID:25406462

  4. Black tattoo inks induce reactive oxygen species production correlating with aggregation of pigment nanoparticles and product brand but not with the polycyclic aromatic hydrocarbon content.

    PubMed

    Høgsberg, Trine; Jacobsen, Nicklas Raun; Clausen, Per Axel; Serup, Jørgen

    2013-07-01

    Black tattoo inks are composed of carbon nanoparticles, additives and water and may contain polycyclic aromatic hydrocarbons (PAHs). We aimed to clarify whether reactive oxygen species (ROS) induced by black inks in vitro is related to pigment chemistry, physico-chemical properties of the ink particles and the content of chemical additives and contaminants including PAHs. The study included nine brands of tattoo inks of six colours each (black, red, yellow, blue, green and white) and two additional black inks of different brands (n = 56). The ROS formation potential was determined by the dichlorofluorescein (DCFH) assay. A semiquantitative method was developed for screening extractable organic compounds in tattoo ink based on gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Two black inks produced high amounts of ROS. Peroxyl radicals accounted for up to 72% of the free radicals generated, whereas hydroxyl radicals and H₂O₂ accounted for <14% and 16%, respectively. The same two inks aggregated strongly in water in contrast to the other black inks. They did not exhibit any shared pattern in PAHs and other organic substances. Aggregation was exclusively shared by all ink colours belonging to the same two brands. Ten of 11 black inks had PAH concentrations exceeding the European Council's recommended level, and all 11 exceeded the recommended level for benzo(a)pyrene. It is a new finding that aggregation of tattoo pigment particles correlates with ROS production and brand, independently of chemical composition including PAHs. ROS is hypothesized to be implicated in minor clinical symptoms.

  5. Clofazimine-induced Hair Pigmentation.

    PubMed

    Philip, Mariam; Samson, Joan Felicita; Simi, Puthenveedu Salahudeen

    2012-07-01

    A 45-year-old man was treated with WHO multibacillary multidrug therapy for borderline leprosy and high dose daily Clofazimine for lepra reaction. Along with the expected side effect of skin pigmentation, the patient also noticed darkening of previously grey hair. This colour persisted eight months after completing multibacillary multidrug therapy.

  6. Light-induced vegetative anthocyanin pigmentation in Petunia.

    PubMed

    Albert, Nick W; Lewis, David H; Zhang, Huaibi; Irving, Louis J; Jameson, Paula E; Davies, Kevin M

    2009-01-01

    The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins and flavonols, as well as the activation of the early and late flavonoid biosynthetic genes required for flavonol and anthocyanin production. Pigmentation in Lc petunia only occurred under conditions which normally induce a modest amount of anthocyanin to accumulate in wild-type Mitchell petunia [Petunia axillaris x (Petunia axillaris x Petunia hybrida cv. 'Rose of Heaven')]. Anthocyanin pigmentation in Lc petunia leaves appears to screen underlying photosynthetic tissues, increasing light saturation and light compensation points, without reducing the maximal photosynthetic assimilation rate (A(max)). In the Lc petunia system, where the bHLH factor Leaf colour is constitutively expressed, expression of the bHLH (Lc) and WD40 (An11) components of the anthocyanin regulatory system were not limited, suggesting that the high-light-induced anthocyanin pigmentation is regulated by endogenous MYB transcription factors.

  7. Prostaglandin-induced iridial pigmentation in primates.

    PubMed

    Selén, G; Stjernschantz, J; Resul, B

    1997-02-01

    Latanoprost, a new ocular hypotensive prostaglandin F2 alpha analogue prodrug, was found to induce increased pigmentation of monkey irides in chronic toxicity studies. This prompted us to investigate the effect of naturally occurring prostaglandins on the monkey iris to determine whether this pigmentary effect is unique for latanoprost or whether it is a class effect of prostaglandins. PGF2 alpha-isopropyl ester (IE), PGE2-IE and latanoprost were applied topically to cynomolgus monkey eyes for 18-44 weeks. One eye of each animal was treated, while the other served as control. In addition, latanoprost was applied to sympathectomized monkey eyes. PGF2 alpha-IE, PGE2-IE, as well as latanoprost, induced increased pigmentation in the monkey eye. The first signs of this effect were seen after about two months of treatment. Latanoprost also induced increased pigmentation in sympathectomized eyes. It is concluded that both naturally occurring prostaglandins and their synthetic analogues can induce increased iridial pigmentation in cynomolgus monkeys, and that the effect does not require the presence of sympathetic nerves.

  8. Photosynthetic pigments: perplexing persistent prevalence of 'superfluous' pigment production.

    PubMed

    Beale, Samuel I

    2008-04-22

    Phycobilins function as light-harvesting pigments in most cyanobacteria and red algae. Although green cyanobacteria of the genus Prochlorococcus express genes encoding enzymes that direct the synthesis of phycobilins, these pigments do not appear to play a role in light harvesting in Prochlorococcus. Now, it is shown that cyanophages infecting Prochlorococcus also contain genes for phycobilin-synthesizing enzymes, and these are expressed in Prochlorococcus, raising further questions as to the role of phycobilins in the host and the virus.

  9. Chlorpromazine-induced skin pigmentation with corneal and lens opacities.

    PubMed

    Huff, Laura S; Prado, Renata; Pederson, Jon F; Dunnick, Cory A; Lucas, Lisa M

    2014-05-01

    Chlorpromazine is known to cause abnormal oculocutaneous pigmentation in sun-exposed areas. We present the case of a psychiatric patient who developed blue-gray pigmentation of the skin as well as corneal and lens opacities following 7 years of chlorpromazine treatment. Ten months after discontinuation of chlorpromazine, the skin discoloration and anterior lens deposits showed partial improvement, but the corneal deposits remained unchanged. A review of the literature on the reversibility of chlorpromazine-induced abnormal oculocutaneous pigmentation also is provided.

  10. Production and chemical characterization of pigments in filamentous fungi.

    PubMed

    Souza, Patrícia Nirlane da Costa; Grigoletto, Tahuana Luiza Bim; de Moraes, Luiz Alberto Beraldo; Abreu, Lucas M; Guimarães, Luís Henrique Souza; Santos, Cledir; Galvão, Luciano Ribeiro; Cardoso, Patrícia Gomes

    2016-01-01

    Production of pigments by filamentous fungi is gaining interest owing to their use as food colourants, in cosmetics and textiles, and because of the important biological activities of these compounds. In this context, the objectives of this study were to select pigment-producing fungi, identify these fungi based on internal transcribed spacer sequences, evaluate the growth and pigment production of the selected strains on four different media, and characterize the major coloured metabolites in their extracts. Of the selected fungal strains, eight were identified as Aspergillus sydowii (CML2967), Aspergillus aureolatus (CML2964), Aspergillus keveii (CML2968), Penicillium flavigenum (CML2965), Penicillium chermesinum (CML2966), Epicoccum nigrum (CML2971), Lecanicillium aphanocladii (CML2970) and Fusarium sp. (CML2969). Fungal pigment production was influenced by medium composition. Complex media, such as potato dextrose and malt extract, favoured increased pigment production. The coloured compounds oosporein, orevactaene and dihydrotrichodimerol were identified in extracts of L. aphanocladii (CML2970), E. nigrum (CML2971), and P. flavigenum (CML2965), respectively. These results indicate that the selected fungal strains can serve as novel sources of pigments that have important industrial applications.

  11. Mechanism and clinical significance of prostaglandin-induced iris pigmentation.

    PubMed

    Stjernschantz, Johan W; Albert, Daniel M; Hu, Dan-Ning; Drago, Filippo; Wistrand, Per J

    2002-08-01

    The new glaucoma drugs latanoprost, isopropyl unoprostone, travoprost, and bimatoprost cause increased pigmentation of the iris in some patients. The purpose of the present article is to survey the available preclinical and clinical data on prostaglandin-induced iris pigmentation and to assess the phenomenon from a clinical perspective. Most of the data have been obtained with latanoprost, and it appears that there is a predisposition to latanoprost-induced iris pigmentation in individuals with hazel or heterochromic eye color. As latanoprost and travoprost are selective agonists for the prostaglandin F(2alpha) receptor, it is likely that the phenomenon is mediated by this receptor. Several studies indicate that latanoprost stimulates melanogenesis in iridial melanocytes, and transcription of the tyrosinase gene is upregulated. The safety aspects of latanoprost-induced iris pigmentation have been addressed in histopathologic studies, and no evidence of harmful consequences of the side effect has been found. Although a final assessment of the clinical significance of prostaglandin-induced iris pigmentation currently is impossible to make, it appears that the only clear-cut disadvantage is a potential heterochromia between the eyes in unilaterally treated patients because the heterochromia is likely to be permanent, or very slowly reversible.

  12. Production of diagnostic pigment by phenoloxidase activity of cryptococcus neoformans.

    PubMed

    Shaw, C E; Kapica, L

    1972-11-01

    Cryptococcus neoformans produces brown pigmented colonies when grown on agar media made from an extract of potatoes and carrots, broad beans (Vicia faba), or Guizotia abyssinica seeds. Since other yeasts do not produce the pigment, these media are useful as differential isolation media for C. neoformans. Similar specific pigment was produced by C. neoformans on chemically defined agar media which contained six different substrates of phenoloxidase (o-diphenol: oxygen oxidoreductase EC 1.10.3.1) an enzyme which catalyses the oxidation of o-diphenols to melanin. Substrates were incorporated singly into the media and included L-3, 4-dihydroxyphenylalanine (L-DOPA), chlorogenic acid, protocatechuic acid, catechol, norepinephrine, and 3-hydroxytyramine hydrochloride (dopamine). No pigment was produced on media without substrate. Phenoloxidase activity in (NH(4))(2)SO(4) precipitates of C. neoformans cell-free extract was assayed by measuring increases in absorbance at 480 nm produced in solutions of L-DOPA. This reaction showed oxygen uptake and was effectively inhibited by copper chelators, but not by catalase. The enzyme also oxidized the five other substrates which induced pigment formation. Electron micrographs of cells incubated in L-DOPA showed deposition of the pigment in the cell wall.

  13. Ion beam induced luminescence analysis of painting pigments

    NASA Astrophysics Data System (ADS)

    Quaranta, A.; Salomon, J.; Dran, J. C.; Tonezzer, M.; Della Mea, G.

    2007-01-01

    Ion beam induced luminescence (IBIL) has been exploited for the first time in the analysis of inorganic painting pigments. The elemental constituents of the different compounds have been determined by particle induced X-ray emission (PIXE). The acquisition time of each spectrum ranges from 100 ms to a few seconds, depending on the luminescence intensity. The luminescence features are fingerprints of the different compounds, thus identifying the provenience of pigments of the same nominal composition. Organic varnish layers do not affect the IBIL features, allowing the identification of pigments, like lapis-lazuli, whose identification with PIXE is hindered by the varnish. IBIL proved to be a technique complementary to PIXE in the archeometry and cultural heritage analysis fields.

  14. Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light.

    PubMed

    Mohsenpour, Seyedeh Fatemeh; Willoughby, Nik

    2013-08-01

    Growth characteristics of two strains of microalgae in bubble column photobioreactors were investigated under different cultivation conditions. Chlorella vulgaris and Gloeothece membranacea were cultivated in luminescent acrylic photobioreactors at different seed culture densities. Luminescent acrylic photobioreactors in blue, green, yellow, orange, and red colours capable of spectral conversion of light were used. The results indicated that the red luminescent photobioreactor enhanced biomass production in both strains of microalgae while pigmentation was induced under different light colours. Green light promoted chlorophyll production in C. vulgaris however chlorophyll production in G. membranacea cultures was less influenced by the light condition or culture density. Phycobiliproteins were the dominant pigments in G. membranacea and red light favoured synthesis of these pigments.

  15. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  16. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  17. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  18. 40 CFR 415.640 - Applicability; description of the cadmium pigments and salts production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cadmium pigments and salts production subcategory. 415.640 Section 415.640 Protection of Environment... POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.640 Applicability; description of the cadmium pigments and salts production subcategory. The provisions of this subpart...

  19. 40 CFR 415.640 - Applicability; description of the cadmium pigments and salts production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cadmium pigments and salts production subcategory. 415.640 Section 415.640 Protection of Environment... POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.640 Applicability; description of the cadmium pigments and salts production subcategory. The provisions of this subpart...

  20. 40 CFR 415.640 - Applicability; description of the cadmium pigments and salts production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cadmium pigments and salts production subcategory. 415.640 Section 415.640 Protection of Environment... POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.640 Applicability; description of the cadmium pigments and salts production subcategory. The provisions of this subpart...

  1. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  2. 40 CFR 415.640 - Applicability; description of the cadmium pigments and salts production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cadmium pigments and salts production subcategory. 415.640 Section 415.640 Protection of Environment... POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.640 Applicability; description of the cadmium pigments and salts production subcategory. The provisions of this subpart...

  3. 40 CFR 415.640 - Applicability; description of the cadmium pigments and salts production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cadmium pigments and salts production subcategory. 415.640 Section 415.640 Protection of Environment... POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.640 Applicability; description of the cadmium pigments and salts production subcategory. The provisions of this subpart...

  4. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  5. MALARIAL PIGMENT (SO-CALLED MELANIN): ITS NATURE AND MODE OF PRODUCTION.

    PubMed

    Brown, W H

    1911-02-01

    1. Two important methods for the study of malarial pigment are described. (a) A method for obtaining a solution of malarial pigment from fixed tissues without the removal of a trace of hemoglobin from the red blood corpuscles. (b) A method for obtaining an iron reaction in malarial pigment. 2. By comparing the bleach reactions and solubility of melanins and malarial pigment, the dissimilarity of the two classes of pigments has been demonstrated. 3. The spectroscopic examination of a solution of malarial pigment proves conclusively that the pigment is hematin. 4. It is suggested that the action of a proteolytic enzyme of the malarial parasite upon the hemoglobin of the red blood corpuscle is the most probable mode of elaboration of malarial pigment. 5. The difficulty with which the human organism disposes of malarial pigment indicates that the production of hematin cannot be considered as a normal intermediate process in the formation of bile pigments from hemoglobin.

  6. Production and biological activities of yellow pigments from Monascus fungi.

    PubMed

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed.

  7. Pigment production on L-tryptophan medium by Cryptococcus gattii and Cryptococcus neoformans.

    PubMed

    Chaskes, Stuart; Cammer, Michael; Nieves, Edward; Casadevall, Arturo

    2014-01-01

    In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin.

  8. The effect of nanosilver on pigments production by Fusarium culmorum (W. G. Sm.) Sacc.

    PubMed

    Kasprowicz, Marek J; Gorczyca, Anna; Frandsen, Rasmus J N

    2013-01-01

    A disk-diffusion method experiment assessed the impact of nanosilver on production of secondary metabolites (pigments) by the Fusarium culmorum fungus. Nanosilver colloidal particles in water have been obtained by the use of a method based on high voltage electric arcs between silver electrodes. The silver nanoparticles size in colloid ranged between 15 and 100 nm and 7, 35 and 70 ppm concentration. Nanosilver modifies the metabolism of the researched F. culmorum strain. Coming into contact with nanosilver colloids induces more intensive mycelia pigmentation correlated with nanosilver concentration levels. The performed analysis of metabolites indicates that under the influence of nanosilver fungi biosynthesise aurofusarin more intensively and the conversion of rubrofusarin to aurofusarin is intensified as compared to the control culture. Under the influence of nanosilver F. culmorum intensively biosynthesises an unidentified dye which shares structural features with aurofusarin but which is not produced by fungi in standard cultures.

  9. Vinpocetine inhibits amyloid-beta induced activation of NF-κB, NLRP3 inflammasome and cytokine production in retinal pigment epithelial cells

    PubMed Central

    Liu, Ruozhou Tom; Wang, Aikun; To, Eleanor; Gao, Jiangyuan; Cao, Sijia; Cui, Jing Z.; Matsubara, Joanne A.

    2015-01-01

    Chronic inflammation is a key pathogenic process in age-related macular degeneration (AMD). Amyloid-beta (Aβ) is a constituent of AMD drusen and promotes the activation of NLRP3 inflammasome which facilitates the production of cytokines. We investigated the role of transcription factor NF-κB in the activation of inflammasome in the RPE and the effect of vinpocetine, a dietary supplement with inhibitory effect on NF-κB. ARPE19/NF-κB-luciferase reporter cells treated with Aβ demonstrated enhanced NF-κB activation that was significantly suppressed by vinpocetine. Intraperitoneal injection of vinpocetine (15 mg/kg) inhibited NF-κB nuclear translocation and reduced the expression and activation of NLRP3, caspase-1, IL-1β, IL-18, and TNF-α in the RPE of adult rats that received intraocular Aβ, as measured by retinal immunohistochemistry and Western blot. Cytokine level in the vitreous was assayed using multiplex suspension arrays and revealed significantly lower concentration of MIP-3α, IL-6, IL-1α, IL-1β, IL-18, and TNF-α in vinpocetine treated animals. These results suggest that the NF-κB pathway is activated by Aβ in the RPE and signals the priming of NLRP3 inflammasome and the expression of pro-inflammatory cytokines including the inflammasome substrates IL-1β and IL-18. NF-κB inhibition may be an effective approach to stem the chronic inflammatory milieu that underlies the development of AMD. Vinpocetine is a potentially useful anti-inflammatory agent that is well-tolerated in long term use. PMID:25041941

  10. New Blue Pigment Produced by Pantoea agglomerans and Its Production Characteristics at Various Temperatures ▿

    PubMed Central

    Fujikawa, Hiroshi; Akimoto, Ryo

    2011-01-01

    A bacterium capable of producing a deep blue pigment was isolated from the environment and identified as Pantoea agglomerans. The pigment production characteristics of the bacterium under various conditions were studied. The optimal agar plate ingredients for pigment production by the bacterium were first studied: the optimal ingredients were 5 g/liter glucose, 10 g/liter tryptic soy broth, and 40 g/liter glycerol at pH 6.4. Bacterial cells grew on the agar plate during the incubation, while the pigment spread into the agar plate, meaning that it is water soluble. Pigment production was affected by the initial cell density. Namely, at higher initial cell densities ranging from 106.3 to 108.2 CFU/cm2 on the agar plate, faster pigment production was observed, but no blue pigment was produced at a very high initial density of 109.1 CFU/cm2. Thus, the cell population of 108.2 CFU/cm2 was used for subsequent study. Although the bacterium was capable of growing at temperatures above and below 10°C, it could produce the pigment only at temperatures of ≥10°C. Moreover, the pigment production was faster at higher temperatures in the range of 10 to 20°C. Pigment production at various temperature patterns was well described by a new logistic model. These results suggested that the bacterium could be used in the development of a microbial temperature indicator for the low-temperature-storage management of foods and clinical materials. To our knowledge, there is no other P. agglomerans strain capable of producing a blue pigment and the pigment is a new one of microbial origin. PMID:20971865

  11. Production of luteoskyrin, a hepatotoxic pigment, by Penicillium islandicum Sopp.

    PubMed

    Ueno, Y; Ishikawa, I

    1969-09-01

    Various factors affecting the yields of luteoskyrin, a hepatotoxic mycotoxin, and related pigments in the liquid medium were studied. Maximal yields of luteoskyrin (0.13% by isolation) and of other pigments were attained in the late phase of the cultivation. The yield of the pigment was increased by supplying malt extract, malonic acid, glutamic acid, or asparagine. A useful material for preparation of (14)C-labeled luteoskyrin was 2-(14)C-malonate.

  12. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective...

  13. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective...

  14. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective...

  15. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective...

  16. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective...

  17. Transient ectopic overexpression of agouti-signalling protein 1 (asip1) induces pigment anomalies in flatfish.

    PubMed

    Guillot, Raúl; Ceinos, Rosa Maria; Cal, Rosa; Rotllant, Josep; Cerdá-Reverter, José Miguel

    2012-01-01

    While flatfish in the wild exhibit a pronounced countershading of the dorso-ventral pigment pattern, malpigmentation is commonly observed in reared animals. In fish, the dorso-ventral pigment polarity is achieved because a melanization inhibition factor (MIF) inhibits melanoblast differentiation and encourages iridophore proliferation in the ventrum. A previous work of our group suggested that asip1 is the uncharacterized MIF concerned. In order to further support this hypothesis, we have characterized asip1 mRNAs in both turbot and sole and used deduced peptide alignments to analyze the evolutionary history of the agouti-family of peptides. The putative asip precursors have the characteristics of a secreted protein, displaying a putative hydrophobic signal. Processing of the potential signal peptide produces mature proteins that include an N-terminal region, a basic central domain with a high proportion of lysine residues as well as a proline-rich region that immediately precedes the C-terminal poly-cysteine domain. The expression of asip1 mRNA in the ventral area was significantly higher than in the dorsal region. Similarly, the expression of asip1 within the unpigmented patches in the dorsal skin of pseudoalbino fish was higher than in the pigmented dorsal regions but similar to those levels observed in the ventral skin. In addition, the injection/electroporation of asip1 capped mRNA in both species induced long term dorsal skin paling, suggesting the inhibition of the melanogenic pathways. The data suggest that fish asip1 is involved in the dorsal-ventral pigment patterning in adult fish, where it induces the regulatory asymmetry involved in precursor differentiation into mature chromatophore. Adult dorsal pseudoalbinism seems to be the consequence of the expression of normal developmental pathways in an inaccurate position that results in unbalanced asip1 production levels. This, in turn, generates a ventral-like differentiation environment in dorsal regions.

  18. Violacein: Properties and Production of a Versatile Bacterial Pigment

    PubMed Central

    Choi, Seong Yeol; Yoon, Kyoung-hye; Lee, Jin Il; Mitchell, Robert J.

    2015-01-01

    Violacein-producing bacteria, with their striking purple hues, have undoubtedly piqued the curiosity of scientists since their first discovery. The bisindole violacein is formed by the condensation of two tryptophan molecules through the action of five proteins. The genes required for its production, vioABCDE, and the regulatory mechanisms employed have been studied within a small number of violacein-producing strains. As a compound, violacein is known to have diverse biological activities, including being an anticancer agent and being an antibiotic against Staphylococcus aureus and other Gram-positive pathogens. Identifying the biological roles of this pigmented molecule is of particular interest, and understanding violacein's function and mechanism of action has relevance to those unmasking any of its commercial or therapeutic benefits. Unfortunately, the production of violacein and its related derivatives is not easy and so various groups are also seeking to improve the fermentative yields of violacein through genetic engineering and synthetic biology. This review discusses the recent trends in the research and production of violacein by both natural and genetically modified bacterial strains. PMID:26339614

  19. Lipopolysaccharides induce changes in the visceral pigmentation of Eupemphix nattereri (Anura: Leiuperidae).

    PubMed

    Franco-Belussi, Lilian; de Oliveira, Classius

    2011-10-01

    Amphibians have an extracutaneous pigmentary system composed of melanin-containing cells in various tissues and organs. The functional role of these pigment cells in visceral organs has not yet been determined, although several hypotheses have been proposed. Our aim was to describe the visceral pigmentation in the frog Eupemphix nattereri under conditions of endotoxemia induced experimentally with lipopolysaccharides (LPS) from Escherichia coli and to analyze the pigmentation on the organs' surface. We used 60 adult males of E. nattereri and analyzed the visceral pigmentation 2 (LPS 2h), 6 (LPS 6h), 12 (LPS 12h), 24 (LPS 24h) or 48 h (LPS 48 h) after the LPS inoculation. We observed pigmentation on the surface of several abdominal organs. The highest degree of pigmentation was found only on the testes of the animals in the LPS 2h, LPS 6h and LPS 12h groups. The pigmentation decreased in the animals of the LPS 24h and LPS 48 h groups. The LPS administration produced no changes in the pigmentation of the cardio-respiratory and digestive systems. Thus, the cells appear to have responded to LPS intoxication, producing a rapid increase of pigmentation on the surface of the testes and a subsequent decrease in the pigmentation. These changes are most likely related to the bactericidal role of melanin, which neutralizes the effects of LPS.

  20. Pigment Production by Streptococcus agalactiae in Quasi-Defined Media

    PubMed Central

    Rosa-Fraile, Manuel; Sampedro, Antonio; Rodríguez-Granger, Javier; García-Peña, Maria Luisa; Ruiz-Bravo, Alfonso; Haïdour, Ali

    2001-01-01

    A quasi-defined medium that supports the growth of Streptococcus agalactiae as pigmented colonies has been developed. The medium contains starch, a peptic digest of albumin, amino acids, nucleosides, vitamins, and salts. The presence of free cysteine, which could be replaced with other sulphur-containing compounds and to a lesser degree by reducing agents, was required for pigment formation. PMID:11133484

  1. Kinetic of orange pigment production from Monascus ruber on submerged fermentation.

    PubMed

    Vendruscolo, Francielo; Schmidell, Willibaldo; de Oliveira, Débora; Ninow, Jorge Luiz

    2017-01-01

    Pigments produced by species of Monascus have been used to coloring rice, meat, sauces, wines and beers in East Asian countries. Monascus can produce orange (precursor), yellow and red pigments. Orange pigments have low solubility in culture media and when react with amino groups they become red and largely soluble. The orange pigments are an alternative to industrial pigment production because the low solubility facilitates the downstream operations. The aim of this work was to study the kinetic on the production of orange pigments by Monascus ruber CCT 3802. The shaking frequency of 300 rpm was favorable to production, whereas higher shaking frequencies showed negative effect. Pigment production was partially associated with cell growth, the critical dissolved oxygen concentration was between 0.894 and 1.388 mgO2 L(-1) at 30 °C, and limiting conditions of dissolved oxygen decreased the production of orange pigments. The maintenance coefficient (mo) and the conversion factor of oxygen in biomass (Yo) were 18.603 mgO2 g x(-1)  h(-1) and 3.133 gx gO 2(-1) and the consideration of these parameters in the oxygen balance to estimate the biomass concentration provided good fits to the experimental data.

  2. Deletion of pigR gene in Monascus ruber leads to loss of pigment production.

    PubMed

    Xie, Nana; Liu, Qingpei; Chen, Fusheng

    2013-09-01

    Pigments produced by Monascus are traditional food colorants and are widely used as dietary supplements. Since genes involving in pigment biosynthesis have not been reported, we describe the identification of a putative pigment-regulatory gene (pigR) obtained by molecular analysis of an albino strain of Monascus ruber M7. In the pigR-deleted strain (ΔpigR), neither the pigments nor pigR expression were detected by HPLC or reverse-transcription PCR, respectively, whereas the introduction of the pigR, together with a constitutive trpC promoter into ΔpigR, caused it to produce 5.4 U of red pigments/g dry mycelia, about 12-fold higher than Monascus ruber M7 (0.46 U/g dry mycelia). Thus pigR up-regulates pigment production in Monascus ruber M7.

  3. Monascus: a Reality on the Production and Application of Microbial Pigments.

    PubMed

    Vendruscolo, Francielo; Meinicke Bühler, Rose Marie; Cesar de Carvalho, Júlio; de Oliveira, Débora; Moritz, Denise Estevez; Schmidell, Willibaldo; Ninow, Jorge Luiz

    2016-01-01

    Monascus species can produce yellow, orange, and red pigments, depending on the employed cultivation conditions. They are classified as natural pigments and can be applied for coloration of meat, fishes, cheese, beer, and pates, besides their use in inks for printer and dyes for textile, cosmetic, and pharmaceutical industries. These natural pigments also present antimicrobial activity on pathogenic microorganisms and other beneficial effects to the health as antioxidant and anticholesterol activities. Depending on the substrates, the operational conditions (temperature, pH, dissolved oxygen), and fermentation mode (state solid fermentation or submerged fermentation), the production can be directed for one specific color dye. This review has a main objective to present an approach of Monascus pigments as a reality to obtaining and application of natural pigments by microorganisms, as to highlight properties that makes this pigment as promising for worldwide industrial applications.

  4. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    PubMed

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  5. Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative.

    PubMed

    Lopes, Fernanda Cortez; Tichota, Deise Michele; Pereira, Jamile Queiroz; Segalin, Jéferson; Rios, Alessandro de Oliveira; Brandelli, Adriano

    2013-10-01

    The search for new sources of natural pigments has increased, mainly because of the toxic effects caused by synthetic dyes used in food, pharmaceutical, textile, and cosmetic industries. Fungi provide a readily available alternative source of natural pigments. In this context, the fungi Penicillium chrysogenum IFL1 and IFL2, Fusarium graminearum IFL3, Monascus purpureus NRRL 1992, and Penicillium vasconiae IFL4 were selected as pigments producers. The fungal identification was performed using ITS and part of the β-tubulin gene sequencing. Almost all fungi were able to grow and produce water-soluble pigments on agro-industrial residues, with the exception of P. vasconiae that produced pigments only on potato dextrose broth. The production of yellow pigments was predominant and the two strains of P. chrysogenum were the largest producers. In addition, the production of pigments and mycotoxins were evaluated in potato dextrose agar using TOF-MS and TOF-MS/MS. Metabolites as roquefortine C, chrysogine were found in both extracts of P. chrysogenum, as well fusarenone X, diacetoxyscirpenol, and neosolaniol in F. graminearum extract. In the M. purpureus extract, the pigments monascorubrin, rubropunctatin, and the mycotoxin citrinin were found. The crude filtrates have potential to be used in the textile industry; nevertheless, additional pigment purification is required for food and pharmaceutical applications.

  6. Effect of Monascus purpureus inoculum concentration on pigment production in jackfruit seed flour substrate

    NASA Astrophysics Data System (ADS)

    Hamdiyati, Yanti; Kusnadi, Yuliani, Lia Amelia

    2016-02-01

    The used of synthetic dyes have various negative effects on human health. Roomates pigment produced by Monascus purpureus mold can be used as an alternative natural food coloring. The research on the effect of inoculum concentration's M. purpureus to pigment production on the jackfruit seed flour has been done. The objective of research to is to investigate the effect of inoculum concentration's M. purpureus to the production of red, yellow and orange pigment on the jackfruit seed flour. The concentrations used were 0%, 5%, 10%, and 15% (v/w). The result of the data analysed using One-Way ANOVA showed that the inoculum concentration affected the production of red pigment M. purpureus, as well as the data analysis using the Kruskal-Wallis showed that inoculum concentration has influence on the production of yellow and orange pigments. Inoculum concentration of 15% is the optimum concentration for the production of red, yellow and orange pigments with 0:10, 0:50 and 0:20 absorbance units per gram of sample respectively. Based on the results of the research, it can be concluded that inoculum concentration of M. purpureus influenced the production of red, yellow and orange pigments.

  7. Macrophage preconditioning with synthetic malaria pigment reduces cytokine production via heme iron-dependent oxidative stress.

    PubMed

    Taramelli, D; Recalcati, S; Basilico, N; Olliaro, P; Cairo, G

    2000-12-01

    Hemozoin (malaria pigment), a polymer of hematin (ferri-protoporphyrin IX) derived from hemoglobin ingested by intraerythrocytic plasmodia, modulates cytokine production by phagocytes. Mouse peritoneal macrophages (PM) fed with synthetic beta-hematin (BH), structurally identical to native hemozoin, no longer produce tumor necrosis factor alpha (TNFalpha) and nitric oxide (NO) in response to lipopolysaccharide (LPS). Impairment of NO synthesis is due to inhibition of inducible nitric oxide synthase (iNOS) production. BH-mediated inhibition of PM functions cannot be ascribed to iron release from BH because neither prevention by iron chelators nor down-regulation of iron-regulatory protein activity was detected. Inhibition appears to be related to pigment-induced oxidative stress because (a) thiol compounds partially restored PM functions, (b) heme oxygenase (HO-1) and catalase mRNA levels were up-regulated, and (c) free radicals production increased in BH-treated cells. The antioxidant defenses of the cells determine the response to BH: microglia cells, which show a lower extent of induction of HO-1 and catalase mRNAs and lower accumulation of oxygen radicals, are less sensitive to the inhibitory effect of BH on cytokine production. Results indicate that BH is resistant to degradation by HO-1 and that heme-iron mediated oxidative stress may contribute to malaria-induced immunosuppression. This study may help correlate the different clinical manifestations of malaria, ranging from uncomplicated to severe disease, with dysregulation of phagocyte functions and promote better therapeutic strategies to counteract the effects of hemozoin accumulation.

  8. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    PubMed

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source.

  9. Inhibition of autophagy induces retinal pigment epithelial cell damage by the lipofuscin fluorophore A2E

    PubMed Central

    Saadat, Khandakar A.S.M.; Murakami, Yusuke; Tan, Xue; Nomura, Yoko; Yasukawa, Tsutomu; Okada, Eiichi; Ikeda, Yasuhiro; Yanagi, Yasuo

    2014-01-01

    In this study, we show augmented autophagy in the retinal pigment epithelial cell line ARPE-19 when cultured in the presence of the lipofuscin pigment A2E. A2E alone does not induce RPE cell death, but cell death was induced in the presence of A2E with the autophagy inhibitor 3-methyladenine (3MA), with a concomitant increase in the generation of mitochondrial reactive oxygen species. On the other hand, the ATP production capacity of mitochondria was decreased in the presence of A2E, and pharmacological inhibition of autophagy had no additional effects. The altered mRNA expression level of mitochondrial function markers was confirmed by real-time polymerase chain reaction, which showed that the antioxidant enzymes SOD1 and SOD2 were not reduced in the presence of A2E alone, but significantly suppressed with the addition of 3MA. Furthermore, transmission electron micrography revealed autophagic vacuole formation in the presence of A2E, and inhibition of autophagy resulted in the accumulation of abnormal mitochondria with loss of cristae. Spheroid culture of human RPE cells demonstrated debris accumulation in the presence of A2E, and this accumulation was accelerated in the presence of 3MA. These results indicate that autophagy in RPE cells is a vital cytoprotective process that prevents the accumulation of damaged cellular molecules. PMID:25473597

  10. Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus.

    PubMed

    Zhang, Liang; Li, Zhiqiang; Dai, Bing; Zhang, Wenxue; Yuan, Yongjun

    2013-09-01

    Monascus pigments, which are produced by various species of Monascus, often have been used as a natural colourant and as traditional natural food additives, especially in Southern China, Japan and Southeastern Asia. The limitation of wide using Monascus pigment is attributed to one of its secondary metabolites named citrinin. The aim of this study was to investigate the influence of pigment and citrinin production via submerged fermentation (SmF) and solid-state fermentation (SF) from rice (Oryza sativa L.) by Monascus purpureus AS3.531. The optimal fermentation temperature and pH were significantly different for pigment production through different fermentation mode (35 °C, pH 5.0 for SF and 32 °C, pH 5.5 for SmF, respectively). Adding 2% (w/v) of glycerol in the medium could enhance the pigment production. On the optimized condition, although the concentration of citrinin produced by SmF (19.02 ug/g) increased more than 100 times than that by SF (0.018 ug/g), the pigment yield by SmF (7.93 U/g/g) could be comparable to that by SF (6.63 U/g/g). Those indicate us that fermentation mode seems to be the primary factor which influence the citrinin yield and secondary factor for pigment production.

  11. Induced pigmentation in zooplankton: a trade-off between threats from predation and ultraviolet radiation.

    PubMed Central

    Hansson, L A

    2000-01-01

    Ultraviolet (UV) radiation is harmful to all life, and the ongoing depletion of the ozone layer is likely to affect interactions among both terrestrial and aquatic organisms. Some organisms have evolved adaptations to reduce radiation damage, such as the various types of protective pigmentation of freshwater zooplankton. However, strong pigmentation also increases vulnerability to visually hunting predators. Hence, where both UV radiation and predation are intense, zooplankton may be sandwiched between conflicting selective pressures: to be pigmented and to be transparent at the same time. Here, I show that the level of pigmentation in copepods is up to ten times higher in lakes without predatory fishes than where fishes are present. Moreover, animals from the same population exposed to either UV light or predator scent showed a 10% difference in pigmentation after only four days, suggesting that pigmentation is an inducible trait. Hence, individual copepods are not passive victims of selective predation or radiation damage, but adjust the level of pigmentation according to the prevailing threat. The ability to adjust pigmentation level rapidly may be especially useful in situations where risk assessment is difficult due to strong seasonal and spatial variation in risk variables, such as in Arctic regions. With progressive thinning of the ozone layer, the ability of some but not other organisms to adjust protection against UV radiation may lead to counter-intuitive, large-scale alterations in freshwater food webs. PMID:11413651

  12. Pigment production by a new thermotolerant microalga Coelastrella sp. F50.

    PubMed

    Hu, Che-Wei; Chuang, Lu-Te; Yu, Po-Chien; Chen, Ching-Nen Nathan

    2013-06-15

    Microalgae are good crops to produce natural pigments because of their high growth rates. Tropical zones are better locations than temperate areas for microalgal cultivation because they have longer duration of daylight and more stable temperatures throughout the year, but the high temperatures pose a challenge to microalgal cultivation. A newly isolated thermotolerant microalga produces reddish pigments under environmental stress. Morphological and molecular evidence including meridional ribs on the cell wall, pigment production, and its 18S rDNA sequence suggests that this microalga belongs to the genus Coelastrella. Salt stress and high light intensity accelerated biosynthesis of the pigments, and significant quantities of oil accumulated as the cells experienced stress due to nutrient deficiency. This microalga could withstand temperature of 50°C for more than 8h, which is a necessary trait for outdoor cultivation in tropical areas. The pigments contain astaxanthin, lutein, canthaxanthin, and β-carotene as analysed by using HPLC.

  13. Light-inducible pigmentation in Portulaca callus; selection of a high betalain producing cell line.

    PubMed

    Kishima, Y; Nozaki, K; Akashi, R; Adachi, T

    1991-09-01

    We have established a unique betalain pigmentation system in callus cultures that originated from seedlings of Portulaca sp. 'Jewel'. Within three different 'Jewel' lines examined, one line (JR) was clearly superior with regard to callus growth rate and pigment formation. Furthermore, after ten cycles of selection of deeply colored callus patches, the selected clones contained on an average four times the amount of betalain as compared to the non-selected mother line. The colorization was induced by light, but disappeared in the dark. Pigment synthesis was detectable within 30 h after irradiation and showed positive correlation with irradiation periods.

  14. Solid-state fermentation for the production of Monascus pigments from jackfruit seed.

    PubMed

    Babitha, Sumathy; Soccol, Carlos R; Pandey, Ashok

    2007-05-01

    The aim of the present work was to investigate the feasibility of jackfruit seed powder as a substrate for the production of pigments by Monascus purpureus in solid-state fermentation (SSF). A pigment yield of 25ODUnits/g dry fermented substrate was achieved by employing jackfruit seed powder with optimized process parameters such as 50% initial moisture content, incubation temperature 30 degrees C, 9x10(4)spores/g dry substrate inoculum and an incubation period of seven days. The color of the pigments was stable over a wide range of pH, apparently due to the buffering nature of the substrate, which could be a significant point for its scope in food applications. To the best of our knowledge this is the first report on pigment production using jackfruit seed powder in solid-state fermentation (SSF).

  15. Identification of a Peptide from Mammal Albumins Responsible for Enhanced Pigment Production by Group B Streptococci

    PubMed Central

    Rosa-Fraile, Manuel; Sampedro, Antonio; Varela, Javier; Garcia-Peña, Marisa; Gimenez-Gallego, Guillermo

    1999-01-01

    The peptide from peptones responsible for enhanced pigment production by Streptococcus agalactiae in culture media has been isolated from a peptic digest of human albumin and has been identified as Ile-Ala-Arg-Arg-His-Pro-Tyr-Phe. The related heptapeptide lacking the N-terminal Ile also had pigment-enhancing activity. A sequence similarity search showed that these sequences are present only in mammal albumins. PMID:10225848

  16. Influence of Light Intensity on Growth and Pigment Production by Monascus ruber in Submerged Fermentation.

    PubMed

    Bühler, Rose Marie Meinicke; Müller, Bruna Luíse; Moritz, Denise Esteves; Vendruscolo, Francielo; de Oliveira, Debora; Ninow, Jorge Luiz

    2015-07-01

    To reduce environmental problems caused by glycerine accumulation and to make the production of biodiesel more profitable, crude glycerin without treatment was used as substrate for obtaining higher value-added bioproducts. Monascus ruber is a filamentous fungus that produces pigments, particularly red ones, which are used for coloring foods (rice wine and meat products). The interest in developing pigments from natural sources is increasing due to the restriction of using synthetic dyes. The effects of temperature, pH, microorganism morphology, aeration, nitrogen source, and substrates have been studied in the cultivation of M. ruber. In this work, it was observed that light intensity is also an important factor that should be considered for understanding the metabolism of the fungus. In M. ruber cultivation, inhibition of growth and pigment production was observed in Petri dishes and blaffed flasks exposed to direct illumination. Growth and pigment production were higher in Petri dishes and flasks exposed to red light and in the absence of light. Radial growth rate of M. ruber in plates in darkness was 1.50 mm day(-1) and in plates exposed to direct illumination was 0.59 mm day(-1). Maximum production of red pigments (8.32 UA) and biomass (8.82 g L(-1)) were obtained in baffled flasks covered with red film and 7.17 UA of red pigments, and 7.40 g L(-1) of biomass was obtained in flasks incubated in darkness. Under conditions of 1248 lux of luminance, the maximum pigment production was 4.48 UA, with production of 6.94 g L(-1) of biomass, indicating that the fungus has photoreceptors which influence the physiological responses.

  17. Pigment production by Bacteroides species with reference to sub-classification.

    PubMed

    Duerden, B I

    1975-02-01

    All six reference strains of Bacteroides species, 36 laboratory isolates conforming to this group, and individual strains of Escherichia coli, Proteus mirabilis, Salmonella typhimurium and Clostridum welchii produced a dense black pigment, identified as ferrus sulphide, when grown in cooked-meat media containing cystine and ferrous sulphate. This was an indicator effect resulting from the production of H2S by the bacteria in the presence of ferrous ions and was unrelated to the characteristic pigment produced by strains of B. melaninogenicus when grown on blood agar. A pigment was extracted by ultrasonic disintegration of washed cells of three reference strains of B. melanino-genicus grown for 1 week in horse-blood broth and on human-blood agar. It was intracellular or cell-associated, soluble in water and had the spectrophotometric characteristics of a derivative of haemoglobin. No such pigment was extracted from strains of B. fragilis or B. necrophorus by similar procedures. Pigment production is a stable characteristic of those strains of Bacteroides called B. melaninogenicus and it is a significant property in the classification of the Bacteroides group. However, the pigment-producing strains are not a homogenous species, and there were considerable differences between the results of biochemical tests and antibograms obtained with the three strains of B. melaninogenicus.

  18. Melissa Officinalis L. Extracts Protect Human Retinal Pigment Epithelial Cells against Oxidative Stress-Induced Apoptosis

    PubMed Central

    Jeung, In Cheul; Jee, Donghyun; Rho, Chang-Rae; Kang, Seungbum

    2016-01-01

    Background: We evaluated the protective effect of ALS-L1023, an extract of Melissa officinalis L. (Labiatae; lemon balm) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells (ARPE-19 cells). Methods: ARPE-19 cells were incubated with ALS-L1023 for 24 h and then treated with hydrogen peroxide (H2O2). Oxidative stress-induced apoptosis and intracellular generation of reactive oxygen species (ROS) were assessed by flow cytometry. Caspase-3/7 activation and cleaved poly ADP-ribose polymerase (PARP) were measured to investigate the protective role of ALS-L1023 against apoptosis. The protective effect of ALS-L1023 against oxidative stress through activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) was evaluated by Western blot analysis. Results: ALS-L1023 clearly reduced H2O2-induced cell apoptosis and intracellular production of ROS. H2O2-induced oxidative stress increased caspase-3/7 activity and apoptotic PARP cleavage, which were significantly inhibited by ALS-L1023. Activation of the PI3K/Akt pathway was associated with the protective effect of ALS-L1023 on ARPE-19 cells. Conclusions: ALS-L1023 protected human RPE cells against oxidative damage. This suggests that ALS-L1023 has therapeutic potential for the prevention of dry age-related macular degeneration. PMID:26941573

  19. Production of citrinin-free Monascus pigments by submerged culture at low pH.

    PubMed

    Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Wang, Zhilong; Park, Sunghoon

    2014-02-05

    Microbial fermentation of citrinin-free Monascus pigments is of great interest to meet the demand of food safety. In the present work, the effect of various nitrogen sources, such as monosodium glutamate (MSG), cornmeal, (NH4)₂SO₄, and NaNO₃, on Monascus fermentation was examined under different initial pH conditions. The composition of Monascus pigments and the final pH of fermentation broth after Monascus fermentation were determined. It was found that nitrogen source was directly related to the final pH and the final pH regulated the composition of Monascus pigments and the biosynthesis of citrinin. Thus, an ideal nitrogen source can be selected to control the final pH and then the citrinin biosynthesis. Citrinin-free orange pigments were produced at extremely low initial pH in the medium with (NH4)₂SO₄ or MSG as nitrogen source. No citrinin biosynthesis at extremely low pH was further confirmed by extractive fermentation of intracellular pigments in the nonionic surfactant Triton X-100 micelle aqueous solution. This is the first report about the production of citrinin-free Monascus pigments at extremely low pH.

  20. Vibrio sp. DSM 14379 pigment production--a competitive advantage in the environment?

    PubMed

    Starič, Nejc; Danevčič, Tjaša; Stopar, David

    2010-10-01

    The ability to produce several antibacterial agents greatly increases the chance of producer's survival. In this study, red-pigmented Vibrio sp. DSM 14379 and Bacillus sp., both isolated from the same sampling volume from estuarine waters of the Northern Adriatic Sea, were grown in a co-culture. The antibacterial activity of the red pigment extract was tested on Bacillus sp. in microtiter plates. The MIC(50) for Bacillus sp. was estimated to be around 10⁻⁵ mg/L. The extract prepared form the nonpigmented mutant of Vibrio sp. had no antibacterial effect. The pigment production of Vibrio sp. was studied under different physicochemical conditions. There was no pigment production at high or low temperatures, high or low salt concentrations in peptone yeast extract (PYE) medium, low glucose concentration in mineral growth medium or high glucose concentration in PYE medium. This indicates that the red pigment production is a luxurious good that Vibrio sp. makes only under favorable conditions. The Malthusian fitness of Bacillus sp. in a co-culture with Vibrio sp. under optimal environmental conditions dropped from 4.0 to -7.6, which corresponds to three orders of magnitude decrease in the number of CFU relative to the monoculture. The nonpigmented mutant of Vibrio sp. in a co-culture with Bacillus sp. had a significant antibacterial activity. This result shows that studying antibacterial properties in isolation (i.e. pigment extract only) may not reveal full antibacterial potential of the bacterial strain. The red pigment is a redundant antibacterial agent of Vibrio sp.

  1. AGEs Promote Oxidative Stress and Induce Apoptosis in Retinal Pigmented Epithelium Cells RAGE-dependently.

    PubMed

    Wang, Xin-Ling; Yu, Tao; Yan, Qi-Chang; Wang, Wei; Meng, Nan; Li, Xue-Jiao; Luo, Ya-Hong

    2015-06-01

    Advanced glycation end products (AGEs) are extremely accumulated in diabetes mellitus, particularly in retinal vascular and epithelium cells, and are confirmed to contribute to diabetic retinopathy (DR). In the present study, we determined the promotion by AGEs to the oxidative stress and mitochondrial dysfunction in retinal pigmented epithelium ARPE-19 cells and investigated the influence by the knockdown or the overexpression of receptor for AGEs (RAGE) on the AGE-promoted oxidative stress and mitochondrial dysfunction. Furthermore, we determined the induction by AGEs to the cell apoptosis and to the activation of B-cell lymphoma 2 (Bcl-2) families in the AGE-BSA-induced apoptosis, and examined the RAGE-dependence in such induction. Results demonstrated that AGE-BSA upregulated the hydrogen peroxide production and induced mitochondrial dysfunction in ARPE-19 cells, dose-dependently. And the further investigation indicated that the AGE-RAGE interaction was required for the induction of oxidative stress and mitochondrial dysfunction. Moreover, the AGE-BSA treatment promoted a significantly high level of apoptotic cells, and the Bcl-2 family was implicated in the AGE-BSA-induced apoptosis, there was a significant high level of Cyt c release, Bcl-2-associated X protein (Bax) induction, Bcl-2 reduction, and caspase 9 activation in the AGE-BSA-treated cells. In conclusion, the present study recognized the apoptosis induction by AGE-BSAs in the retinal epithelium ARPE-19 cells, RAGE-dependently. The mitochondrial dysfunction was induced, and the Bcl-2 family was deregulated during the AGE-BSA-induced ARPE-19 cell apoptosis.

  2. Photostability and breakdown products of pigments currently used in tattoo inks.

    PubMed

    Hauri, Urs; Hohl, Christopher

    2015-01-01

    Tattoos fade with time. Part of this fading can be attributed to the photodegradation of pigments. When people get tired of their tattoos, removal by laser irradiation is the method of choice. In vivo laser irradiation of tattoos on mice has shown that the degradation of pigments can result in toxic compounds. Various in vitro studies on photodegradation by sunlight or laser have shown similar degradation products for both irradiations. Even visible light was shown to be able to decompose some pigments to toxic degradation products in vitro. Whereas the investigated phthalocyanins (C.I. 74160, 74260), quinacridones (C.I. 73915) or dioxazines (C.I. 51319) were fairly photostable in vitro, all azo pigments exposed to sunlight or laser were degraded into a variety of products, some of which were toxic or even carcinogenic, such as 2-amino-4-nitrotoluene, 3,3'-dichlorobenzidine and o-toluidine. Up to now, the absence of specific toxicological data is the reason why legal restrictions for tattoo inks are derived from those for cosmetics, toys and textiles. Photodegradation has not been considered. In light of the present analytical findings, even with their possible shortcomings, the evidence weighs heavily enough to consider banning azo pigments containing carcinogenic aromatic amines or allergens in their structure from use in tattoo inks.

  3. Laser and sunlight-induced fluorescence from chlorophyll pigments

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Brown, K. S.

    1986-01-01

    Fluorescence properties of chlorophyll pigment bearing plant foliage utilizing a 337 nm nitrogen laser and integrating sphere were studied. Measured yields, in terms of number of photons emitted per 100 photons absorbed, range from 1.5 to 0.1 for the 685 nm peak, and from 4.2 to 0.2 for the 730 nm peak. Decreasing order of magnitude puts herbaceous leaves ahead of all others followed by broad leaves of hardwoods and coniferous needles. Meaningful quantization for the fluorescence peaks at 430 and 530 nm could not be attained. Passive monitoring of these fluorescence peaks is successful only for the 685 nm from the ocean surface. Field data show the reflectance changes at 685 nm due to the algae presence amounts to 1% at most.

  4. PP-O and PP-V, Monascus pigment homologues, production, and phylogenetic analysis in Penicillium purpurogenum.

    PubMed

    Arai, Teppei; Kojima, Ryo; Motegi, Yoshiki; Kato, Jun; Kasumi, Takafumi; Ogihara, Jun

    2015-12-01

    The production of pigments as secondary metabolites by microbes is known to vary by species and by physiological conditions within a single strain. The fungus strain Penicillium purpurogenum IAM15392 has been found to produce violet pigment (PP-V) and orange pigment (PP-O),Monascus azaphilone pigment homologues, when grown under specific culture conditions. In this study, we analysed PP-V and PP-O production capability in seven strains of P. purpurogenum in addition to strain IAM15392 under specific culture conditions. The pigment production pattern of five strains cultivated in PP-V production medium was similar to that of strain IAM15392, and all violet pigments produced by these five strains were confirmed to be PP-V. Strains that did not produce pigment were also identified. In addition, two strains cultivated in PP-O production medium produced a violet pigment identified as PP-V. The ribosomal DNA (rDNA) internal transcribed spacer (ITS) region sequences from the eight P. purpurogenum strains were sequenced and used to construct a neighbor-joining phylogenetic tree. PP-O and PP-V production of P. purpurogenum was shown to be related to phylogenetic placement based on rDNA ITS sequence. Based on these results, two hypotheses for the alteration of pigment production of P. purpurogenum in evolution were proposed.

  5. Green pigment from Bacillus cereus M(1)(16) (MTCC 5521): production parameters and antibacterial activity.

    PubMed

    Banerjee, Debopam; Chatterjee, Sandipan; Banerjee, U C; Guha, Arun K; Ray, Lalitagauri

    2011-07-01

    A bacterial strain, Bacillus cereus M(1)(16) (MTCC 5521), isolated and identified in our laboratory produces a green pigment when grown in nutrient broth at stationary condition. Optimum fermentation parameters for maximum pigment production are pH 7.0, temperature 30°C, time of incubation 72 h and inoculum volume 1% from 20 h grown cell suspension. Magnesium ion enhances pigment production whereas calcium and zinc ions inhibit the process. The pigment is better extracted from the fermented broth with chloroform in comparison with diethyl ether, ethyl acetate, and butanol. The extracted crude pigment consists of three fractions as revealed from thin layer chromatogram on silica gel GF254 using ethyl acetate and hexane (1:1) solvent system. The major fraction C(3) shows antibacterial activity against different gram positive bacteria. The proposed structure of C(3) is 9-methyl-1,4,5,8-tetra-azaphenanthrene obtained by elemental analysis, GC-MS, and NMR spectra studies.

  6. Geldanamycin and its analog induce cytotoxicity in cultured human retinal pigment epithelial cells.

    PubMed

    Wu, Wen-Chuan; Wu, Meng-Hsien; Chang, Yo-Chen; Hsieh, Ming-Chu; Wu, Horng-Jiun; Cheng, Kai-Chun; Lai, Yu-Hung; Kao, Ying-Hsien

    2010-08-01

    Geldanamycin (GA), a benzoquinone ansamycin, was originally isolated as a natural product with anti-fungal activity. GA and its analogs, including 17-allylamino-demethoxy geldanamycin (17-AAG), are also known to block the function of a molecular chaperone, heat shock protein 90 (Hsp90). In light of their anti-tumor properties through direct cytotoxicity and anti-angiogenicity, GA has been previously demonstrated to suppress hypoxia-induced VEGF production in retinal pigment epithelium (RPE) cells, implicating its applicability in treating intraocular neovascularization. This study aimed at investigating the effectiveness of Hsp90 inhibitor treatment in suppressing proliferation of cultured human RPE cells and elucidating its underlying mechanism. Cultured RPE cells were treated with GA or 17-AAG and subjected for cell proliferation assay and cell cycle analysis. Expression of apoptotic regulators and survival signaling activity were monitored by Western blotting. The results showed that both GA and 17-AAG significantly inhibited RPE cell proliferation at micromolar levels. Treatment with GA and 17-AAG led to growth arrests in G1 and S phases, increased sub-G1 hypodipoid cell population, induced apoptotic cell death, and upregulated P53 and P21 expression, although the drug-induced Bcl-2 upregulation cannot prevent cell death. Additionally, GA and 17-AAG significantly suppressed constitutive contents of phosphorylated ERK1/2 and total Akt proteins, and completely abrogated wortmannin-sensitized Akt phosphorylation. In conclusion, GA and 17-AAG inhibit RPE cell proliferation and induce cytotoxicity, possibly through downregulating Akt- and ERK1/2-mediated signaling activities. They might potentially constitute a therapeutic agent for ocular disorders with RPE over proliferation, such as proliferative vitreoretinopathy.

  7. Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation.

    PubMed

    Zhou, Zhongxin; Yin, Zheng; Hu, Xiaoqing

    2014-01-01

    Monascus pigment has traditionally been produced by the fermentation of Monascus using rice powder or glucose as a culture substrate. Submerged fermentation can produce stable Monascus pigment yield and control the accumulation of the by-product, citrinin, which can then be more easily removed. To reduce the cost of Monascus submerged fermentation, the feasibility of corncob hydrolysate as an alternative substrate was investigated. Results showed that, when compared with a conventional glucose medium, the corncob hydrolysate medium produced an equivalent pigment yield without stimulating citrinin accumulation. Furthermore, the corncob hydrolysate medium and cultivation conditions were optimized to enhance pigment production and decrease citrinin synthesis. When Monascus sp. was cultured under dark conditions in the presence of caprylic acid, pigment production was increased to 25.8 ± 0.8 UA500 /mL, which was higher than that achieved in a glucose medium (24.0 ± 0.9 UA500 /mL), and those obtained in previously reported Monascus submerged fermentations using the same yield unit; on the other hand, citrinin accumulation was decreased to 26.2 ± 1.9 µg/L, which was significantly lower than that generated in the glucose control (44.3 ± 2.2 µg/L) and in those previously reported fermentations. Thus, corncob hydrolysate was proved to be an efficient alternative substrate for Monascus pigment production through submerged fermentation, which showed significant advantages over a conventional glucose substrate.

  8. Tunicamycin-induced Endoplasmic Reticulum Stress Upregulates the Expression of Pentraxin 3 in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Hwang, Narae; Kwon, Min-Young; Cha, Jae Bong; Chung, Su Wol

    2016-01-01

    Purpose To investigate the production of long pentraxin 3 (PTX3) in response to tunicamycin-induced endoplasmic reticulum (ER) stress and its role in ER stress-associated cell death, PTX3 expression was evaluated in the human retinal pigment epithelial cell line, ARPE-19. Methods PTX3 production in ARPE-19 cells was analyzed in the absence or presence of tunicamycin treatment by enzyme-linked immunosorbent assay. PTX3 protein and mRNA levels were estimated using western blot analysis and real-time reverse transcription-polymerase chain reaction, respectively. Protein and mRNA levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and ARPE-19 cell viability were measured in the presence of tunicamycin-induced ER stress in control or PTX3 small hairpin RNA (shRNA)-transfected ARPE-19 cells. Results The protein and mRNA levels of PTX3 were found to be significantly increased by tunicamycin treatment. PTX3 production was significantly decreased in inositol-requiring enzyme 1α shRNA-transfected ARPE-19 cells compared to control shRNA-transfected cells. Furthermore, pretreatment with the NF-κB inhibitor abolished tunicamycin-induced PTX3 production. Decreased cell viability and prolonged protein and mRNA expression of CHOP were observed under tunicamycin-induced ER stress in PTX3 shRNA transfected ARPE-19 cells. Conclusions These results suggest that PTX3 production increased in the presence of tunicamycin-induced ER stress. Therefore, PTX3 could be an important protector of ER stress-induced cell death in human retinal pigment epithelial cells. Inositol-requiring enzyme 1α and the NF-κB signaling pathway may serve as potential targets for regulation of PTX3 expression in the retina. Therefore, their role in PTX3 expression needs to be further investigated. PMID:27980366

  9. Lack of photoprotection against UVB-induced erythema by immediate pigmentation induced by 382 nm radiation

    SciTech Connect

    Black, G.; Matzinger, E.; Gange, R.W.

    1985-11-01

    Immediate pigment darkening (IPD) was induced on the backs of 11 human volunteers of skin types III and IV by exposing the skin to UVA radiation (382 nm). The minimum erythema dose (MED) of UVB radiation was also determined by exposing sites to graduated doses of 304 nm radiation. The order of exposure of distinct anatomic areas was as follow: UVB followed by IPD induction; IPD induction followed by UVB; IPD induction followed 3 h later by UVB; and UVB only. Erythema responses induced by UVB were graded by inspection 24 h later and the MEDs in the 4 areas were compared. The induction of IPD before UVB exposure caused no significant change in the MED compared to sites receiving UVB only, or receiving UVA radiation after UVB, confirming that the IPD reaction does not protect against UVB-induced erythema. There was also no evidence of photorecovery, i.e., an increase in the MED of UVB resulting from exposure to longer wavelength, UV or visible radiation following UVB exposure.

  10. Statistical optimization of pigment production by Monascus sanguineus under stress condition.

    PubMed

    Dikshit, Rashmi; Tallapragada, Padmavathi

    2014-01-01

    Natural pigments are produced by the Monascus sp., which are used for coloring food substances. The intent of this study was to optimize the pigment yield and biomass produced from the unexplored Monascus sanguineus in submerged culture under stress conditions. For inducing thermal stress, the spores were incubated at various temperatures at higher ranges. For inducing osmotic stress, varied concentrations of NaCl, glycerol, and peptone were used. The medium components were optimized by response surface methodology (RSM). The combined effects of the four medium constituents mentioned were studied using a 2⁴ full factorial central composite design (CCD). The relationships between the predicted values and actual values, independent variable, and the response were calculated according to a second-order quadratic model. It was deduced that the variable with the leading effect was the linear effect of glycerol concentration. Furthermore, the quadratic effects of peptone and the interactive effects of temperature and glycerol were more noteworthy than other factors. The optimum values for the test variables in coded factors were found to be spores treated with 70°C for temperature, 0.25 M for glycerol, 0.51% (w/v) for peptone, and 1.25% (w/v) for NaCl, corresponding to a maximum red pigment yield of 55.67 color value units (CVU)/mL. With optimized conditions, the pigment yield was almost three times the yield observed with the control.

  11. Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation.

    PubMed

    Yang, Jian; Chen, Qi; Wang, Weiping; Hu, Jiajun; Hu, Chuan

    2015-05-01

    The influence of oxygen supply on Monascus pigments and citrinin production by Monascus ruber HS.4000 in submerged fermentation was studied. For Monascus cultivation with high pigments and low citrinin production, the initial growth phase, mid-stage phase, and later-stage production phase were separated by shifting oxygen supply. The optimal condition for the fermentation process in shake-flask fermentation was a three-stage rotating rate controlled strategy (0-48 h at 150 rpm, 48-108 h at 250 rpm, 108-120 h at 200 rpm) with medium volume of 100 mL added to 250 mL Erlenmeyer flasks at 30°C for 120 h cultivation. Compared to constant one-stage cultivation (medium volume of 100 mL, rotating rate of 250 rpm), the pigments were reduced by 40.4%, but citrinin was reduced by 64.2%. The most appropriate condition for the fermentation process in a 10 L fermentor is also a three-stage aeration process (0-48 h at 300 L/h, 48-96 h at 500 L/h, 96-120 h at 200 L/h) with agitation of 300 rpm at 30°C for 120 h cultivation, and 237.3 ± 5.7 U/mL pigments were produced in 120 h with 6.05 ± 0.19 mg/L citrinin in a 10 L fermentor. Compared to aeration-constant (500 L/h) cultivation, pigment production was increased by 29.6% and citrinin concentration was reduced by 79.5%.

  12. Optimal C:N ratio for the production of red pigments by Monascus ruber.

    PubMed

    Said, Farhan M; Brooks, John; Chisti, Yusuf

    2014-09-01

    The carbon-to-nitrogen (C:N) ratio in the biomass of microfungi tends to be quite different (e.g. 10-15) compared with the C:N ratio in the red pigments (e.g. >20) of the fungus Monascus ruber. Therefore, determining an optimal C:N ratio in the culture medium for maximizing the production of the pigments is important. A culture medium composition is established for maximizing the production of the red pigment by the fungus M. ruber ICMP 15220 in submerged culture. The highest volumetric productivity of the red pigment was 0.023 AU L(-1) h(-1) in a batch culture (30 °C, initial pH of 6.5) with a defined medium of the following composition (g L(-1)): glucose (10), monosodium glutamate (MSG) (10), MgSO4·7H2O (0.5), KH2PO4 (5), K2HPO4 (5), ZnSO4·7H2O (0.01), FeSO4·7H2O (0.01), CaCl2 (0.1), MnSO4·H2O (0.03). This medium formulation had a C:N mole ratio of 9:1. Under these conditions, the specific growth rate of the fungus was 0.043 h(-1) and the peak biomass concentration was 6.7 g L(-1) in a 7-day culture. The biomass specific productivity of the red pigment was 1.06 AU g(-1) h(-1). The best nitrogen source proved to be MSG although four other inorganic nitrogen sources were evaluated.

  13. Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod.

    PubMed

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming; Peng, Meng

    2015-08-01

    This study aimed at enhancing the bacterial biomass and pigments production in together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via using different photoperiods. Different light/dark cycles and light/dark cycle frequencies were examined. Results showed that PSB had the highest biomass production, COD removal and biomass yield, and light energy efficiency with light/dark cycle of 2h/1h. The corresponding biomass, COD removal and biomass yield reached 2068mg/L, 90.3%, and 0.38mg-biomass/mg-COD-removal, respectively. PSB showed higher biomass production and biomass yield with higher light/dark cycle frequency. Mechanism analysis showed within a light/dark cycle from 1h/2h to 2h/1h, the carotenoid and bacteriochlorophyll production increased with an increase in light/dark cycle. Moreover, the pigment contents were much higher with lower frequency of 2-4 times/d.

  14. Golden Pigment Production and Virulence Gene Expression Are Affected by Metabolisms in Staphylococcus aureus▿ †

    PubMed Central

    Lan, Lefu; Cheng, Alice; Dunman, Paul M.; Missiakas, Dominique; He, Chuan

    2010-01-01

    The pathogenesis of staphylococcal infections is multifactorial. Golden pigment is an eponymous feature of the human pathogen Staphylococcus aureus that shields the microbe from oxidation-based clearance, an innate host immune response to infection. Here, we screened a collection of S. aureus transposon mutants for pigment production variants. A total of 15 previously unidentified genes were discovered. Notably, disrupting metabolic pathways such as the tricarboxylic acid cycle, purine biosynthesis, and oxidative phosphorylation yields mutants with enhanced pigmentation. The dramatic effect on pigment production seems to correlate with altered expression of virulence determinants. Microarray analysis further indicates that purine biosynthesis impacts the expression of ∼400 genes involved in a broad spectrum of functions including virulence. The purine biosynthesis mutant and oxidative phosphorylation mutant strains exhibit significantly attenuated virulence in a murine abscess model of infection. Inhibition of purine biosynthesis with a known small-molecule inhibitor results in altered virulence gene expression and virulence attenuation during infection. Taken together, these results suggest an intimate link between metabolic processes and virulence gene expression in S. aureus. This study also establishes the importance of purine biosynthesis and oxidative phosphorylation for in vivo survival. PMID:20400547

  15. A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission

    SciTech Connect

    Fang, Zhigang Zak

    2013-11-05

    The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called chloride process. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant proved to

  16. PKA regulatory subunit 1A inactivating mutation induces serotonin signaling in primary pigmented nodular adrenal disease

    PubMed Central

    Bram, Zakariae; Louiset, Estelle; Renouf, Sylvie; Duparc, Céline; Boutelet, Isabelle; Rizk-Rabin, Marthe; Libé, Rossella; Young, Jacques; Carson, Dennis; Vantyghem, Marie-Christine; Szarek, Eva; Martinez, Antoine; Stratakis, Constantine A.; Bertherat, Jérôme

    2016-01-01

    Primary pigmented nodular adrenocortical disease (PPNAD) is a rare cause of ACTH-independent hypercortisolism. The disease is primarily caused by germline mutations of the protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene, which induces constitutive activation of PKA in adrenocortical cells. Hypercortisolism is thought to result from PKA hyperactivity, but PPNAD tissues exhibit features of neuroendocrine differentiation, which may lead to stimulation of steroidogenesis by abnormally expressed neurotransmitters. We hypothesized that serotonin (5-HT) may participate in the pathophysiology of PPNAD-associated hypercortisolism. We show that PPNAD tissues overexpress the 5-HT synthesizing enzyme tryptophan hydroxylase type 2 (Tph2) and the serotonin receptors types 4, 6, and 7, leading to formation of an illicit stimulatory serotonergic loop whose pharmacological inhibition in vitro decreases cortisol production. In the human PPNAD cell line CAR47, the PKA inhibitor H-89 decreases 5-HT4 and 5-HT7 receptor expression. Moreover, in the human adrenocortical cell line H295R, inhibition of PRKAR1A expression increases the expression of Tph2 and 5-HT4/6/7 receptors, an effect that is blocked by H-89. These findings show that the serotonergic process observed in PPNAD tissues results from PKA activation by PRKAR1A mutations. They also suggest that Tph inhibitors may represent efficient treatments of hypercortisolism in patients with PPNAD. PMID:27699247

  17. PKA regulatory subunit 1A inactivating mutation induces serotonin signaling in primary pigmented nodular adrenal disease.

    PubMed

    Bram, Zakariae; Louiset, Estelle; Ragazzon, Bruno; Renouf, Sylvie; Wils, Julien; Duparc, Céline; Boutelet, Isabelle; Rizk-Rabin, Marthe; Libé, Rossella; Young, Jacques; Carson, Dennis; Vantyghem, Marie-Christine; Szarek, Eva; Martinez, Antoine; Stratakis, Constantine A; Bertherat, Jérôme; Lefebvre, Hervé

    2016-09-22

    Primary pigmented nodular adrenocortical disease (PPNAD) is a rare cause of ACTH-independent hypercortisolism. The disease is primarily caused by germline mutations of the protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene, which induces constitutive activation of PKA in adrenocortical cells. Hypercortisolism is thought to result from PKA hyperactivity, but PPNAD tissues exhibit features of neuroendocrine differentiation, which may lead to stimulation of steroidogenesis by abnormally expressed neurotransmitters. We hypothesized that serotonin (5-HT) may participate in the pathophysiology of PPNAD-associated hypercortisolism. We show that PPNAD tissues overexpress the 5-HT synthesizing enzyme tryptophan hydroxylase type 2 (Tph2) and the serotonin receptors types 4, 6, and 7, leading to formation of an illicit stimulatory serotonergic loop whose pharmacological inhibition in vitro decreases cortisol production. In the human PPNAD cell line CAR47, the PKA inhibitor H-89 decreases 5-HT4 and 5-HT7 receptor expression. Moreover, in the human adrenocortical cell line H295R, inhibition of PRKAR1A expression increases the expression of Tph2 and 5-HT4/6/7 receptors, an effect that is blocked by H-89. These findings show that the serotonergic process observed in PPNAD tissues results from PKA activation by PRKAR1A mutations. They also suggest that Tph inhibitors may represent efficient treatments of hypercortisolism in patients with PPNAD.

  18. Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration

    PubMed Central

    Kurihara, Toshihide; Westenskow, Peter D; Gantner, Marin L; Usui, Yoshihiko; Schultz, Andrew; Bravo, Stephen; Aguilar, Edith; Wittgrove, Carli; Friedlander, Mollie SH; Paris, Liliana P; Chew, Emily; Siuzdak, Gary; Friedlander, Martin

    2016-01-01

    Photoreceptors are the most numerous and metabolically demanding cells in the retina. Their primary nutrient source is the choriocapillaris, and both the choriocapillaris and photoreceptors require trophic and functional support from retinal pigment epithelium (RPE) cells. Defects in RPE, photoreceptors, and the choriocapillaris are characteristic of age-related macular degeneration (AMD), a common vision-threatening disease. RPE dysfunction or death is a primary event in AMD, but the combination(s) of cellular stresses that affect the function and survival of RPE are incompletely understood. Here, using mouse models in which hypoxia can be genetically triggered in RPE, we show that hypoxia-induced metabolic stress alone leads to photoreceptor atrophy. Glucose and lipid metabolism are radically altered in hypoxic RPE cells; these changes impact nutrient availability for the sensory retina and promote progressive photoreceptor degeneration. Understanding the molecular pathways that control these responses may provide important clues about AMD pathogenesis and inform future therapies. DOI: http://dx.doi.org/10.7554/eLife.14319.001 PMID:26978795

  19. Algal pigments record shifts in dominant primary productivity through the Holocene in an arctic lake

    NASA Astrophysics Data System (ADS)

    Florian, C.; Miller, G. H.; Fogel, M. L.

    2011-12-01

    The character and magnitude of primary productivity in arctic lakes is largely controlled by climate. Organic compounds derived from pigments and preserved in lake sediments allow reconstruction of past abundances of algae that do not leave silicious microfossils. Fossil algal pigments are abundant in lake sediment and can be accurately quantified using High Pressure Liquid Chromatography (HPLC). Several groups of algae produce unique pigments that can be used to reconstruct their past abundance. In Qivitu Highlands Lake, eastern central Baffin Island, the ratio of pigments diatoxantin and lutein exhibits coherent changes through the Holocene. Diatoxanthin is produced by diatoms and chrysophytes, whereas lutein is produced by green algae and higher plants. Because these pigments are the dominant carotenoids in the sediment, they serve as proxies for the dominant group of primary producers. During the Holocene Thermal Maximum and the past century, lutein is much more abundant than diatoxanthin. During Neoglacial cooling and into the Little Ice Age, diatoxanthin becomes the dominant carotenoid. This shift reveals that there was a change in not only the magnitude of algal production, but also the most abundant type. The adaptation of aquatic algal assemblages to changing climate suggests that gross changes in primary productivity may not be suitable to track the abundance of one type of algal microfossil (such as diatoms) without considering the other algal groups. Higher plants also produce lutein, and its abundance is additionally influenced by the presence of terrestrial organic matter as well as aquatic macrophyte plants. We hypothesize that the prevalence of lutein during warm summers is due to a longer ice-free season, allowing the development of a greater biomass of green algae and macrophyte plants as well as possible increases of terrestrial higher plant communities. This is part of a larger study where the lutein to diatoxanthin ratio is compared to organic

  20. Isolation, characterization, and production of red pigment from Cercospora piaropi a biocontrol agent for waterhyacinth.

    PubMed

    Jiménez, Maricela Martínez; Bahena, Selenia Miranda; Espinoza, César; Trigos, Angel

    2010-04-01

    A red pigment produced by a Mexican isolate of Cercospora piaropi (waterhyacinth pathogen) has been isolated and identified as cercosporin. The kinetic of cercosporin production in culture media during dark/light regimes was evaluated. When C. piaropi was cultivated in continuous light and potato dextrose broth culture, a maximum of cercosporin production was observed (72.59 mg/l). Despite other reports, C piaropi Mexican isolate produce cercosporin in dark conditions (25.70 mg/l). The results suggest that production of cercosporin in C. piaropi-waterhyacinth pathogenesis is an important factor to take into account in biocontrol strategies.

  1. Experimentally induced pigment changes in small African 'Barbus' (Teleostei: Cyprinidae): Synonymy of 'Barbus' amphigramma and 'Barbus' taitensis with 'Barbus' paludinosus

    USGS Publications Warehouse

    Farm, Brian P.

    2001-01-01

    Pigmentation in fishes is known to be variable both among individuals of a species and within individuals over time. Use of pigment characters for taxonomic diagnoses must, therefore, be carefully considered. I present experimental evidence showing that pigment characters previously considered diagnostic for three small African 'Barbus' species may differ between living and preserved specimens and that lasting changes in these characters can be induced experimentally by placing fishes in a different, less turbid environment. Lateral line pigmentation and presence of a spot on the caudal peduncle showed significant changes that resulted in different species identifications before and after the experiment. These pigment patterns are thereby shown to be labile, nontrenchant characters having little or no diagnostic utility. 'Barbus' amphigramma Boulenger, 1903, and 'Barbus' taitensis Gu??nther, 1894, are thus shown to be junior synonyms of 'Barbus' paludinosus Peters, 1852.

  2. Imatinib induced melasma-like pigmentation: Report of five cases and review of literature.

    PubMed

    Ghunawat, Sneha; Sarkar, Rashmi; Garg, Vijay Kumar

    2016-01-01

    Imatinib mesylate is a cytotoxic agent that targets tyrosine kinase. Common side effects of this drug include nausea, edema and maculopapular rash. Hypopigmentation is a commonly reported side effect of this drug while hyperpigmentation has rarely been described. We describe five cases of melasma-like pigmentation induced by this anti-cancer drug. Four of the patients were diagnosed with gastrointestinal stromal tumor while one had chronic myeloid leukemia. Patients received imatinib mesylate in a dose of 400 mg daily. Over an average period of 3 months, well defined hyperpigmented macules appeared over the convexities of the face. One of the patients also developed similar pigmentation on the forearm. Other causes of hyperpigmentation were excluded in each patient.

  3. Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom)

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Bartha, Richard; Aksoy, M.; Weissman, Joseph C.; Benemann, John

    2008-07-03

    Microalgae are expected to play a significant role in greenhouse gas mitigation because they can utilize CO2 from powerplant flue gases directly while producing a variety of renewable carbon-neutral biofuels. In order for such a microalgal climate change mitigation strategy to become economically feasible, it will be necessary to significantly improve biomass productivities. One approach to achieve this objective is to reduce, via mutagenesis, the number of light harvesting pigments, which, according to theory, should significantly improve the light utilization efficiency, primarily by increasing the light intensity at which photosynthesis saturates (Is). Employing chemical (ethylmethylsulfonate, EMS) and UV mutagenesis of a wild type strain of the diatom Cyclotella, approximately 10,000 pigment mutants were generated, and two of the most promising ones (CM1 and CM1-1) were subjected to further testing in both laboratory cultures and outdoor ponds. Measurements of photosynthetic oxygen production rates as a function of light intensity (i.e., P-I curves) of samples taken from laboratory batch cultures during the exponential and linear growth phase indicated that the light intensity at which photosynthesis saturates (Is) was two to three times greater in the pigment mutant CM1-1 than in the wild type, i.e., 355-443 versus 116-169 μmole/m2∙sec, respectively. While theory, i.e., the Bush equation, predicts that such a significant gain in Is should increase light utilization efficiencies and thus biomass productivities, particularly at high light intensities, no improvements in biomass productivities were observed in either semi-continuous laboratory cultures or outdoor ponds. In fact, the maximum biomass productivity in semi-continuous laboratory culture was always greater in the wild type than in the mutant, namely 883 versus 725 mg/L∙d, respectively at low light intensity (200 μmole/m2∙sec) and 1229 versus 1043 mg/L∙d, respectively at high light intensity

  4. Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stress-induced apoptosis

    PubMed Central

    Liu, Lian; Lao, Wei; Ji, Qing-Shan; Yang, Zhi-Hao; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2015-01-01

    AIM To investigate the protective effect and its mechanism of lycium barbarum polysaccharides (LBP) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells. METHODS ARPE-19 cells, a human retinal pigment epithelial cell lines, were exposed to different concentrations of H2O2 for 24h, then cell viability was measured by Cell Counting Kit-8 (CCK-8) assay to get the properly concentration of H2O2 which can induce half apoptosis of APRE-19. With different concentrations of LBP pretreatment, the ARPE-19 cells were then exposed to appropriate concentration of H2O2, cell apoptosis was detected by flow cytometric analysis. Expression levels of Bcl-2 and Bax were measured by real time quantitative polymerase chain reaction (RT-PCR) technique. RSULTS LBP significantly reduced the H2O2-induced ARPE-19 cells' apoptosis. LBP inhibited the H2O2-induced down-regulation of Bcl-2 and up-regulation of Bax. CONCLUSION LBP could protect ARPE-19 cells from H2O2-induced apoptosis. The Bcl-2 family had relationship with the protective effects of LBP. PMID:25709900

  5. Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal

    PubMed Central

    Flores-Bellver, M; Bonet-Ponce, L; Barcia, J M; Garcia-Verdugo, J M; Martinez-Gil, N; Saez-Atienzar, S; Sancho-Pelluz, J; Jordan, J; Galindo, M F; Romero, F J

    2014-01-01

    Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2′,7′-dichlorofluorescein fluorescence and accumulation of lipid peroxidation products, such as 4-hydroxy-nonenal (4-HNE), among others were confirmed. The characterization of these structures confirmed their nature as aggresomes. Hence, autophagy seems to have a cytoprotective role in ARPE-19 cells under EtOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by EtOH, with possible implications for other conditions and diseases. PMID:25032851

  6. The functional significance of black-pigmented leaves: photosynthesis, photoprotection and productivity in Ophiopogon planiscapus 'Nigrescens'.

    PubMed

    Hatier, Jean-Hugues B; Clearwater, Michael J; Gould, Kevin S

    2013-01-01

    Black pigmented leaves are common among horticultural cultivars, yet are extremely rare across natural plant populations. We hypothesised that black pigmentation would disadvantage a plant by reducing photosynthesis and therefore shoot productivity, but that this trait might also confer protective benefits by shielding chloroplasts against photo-oxidative stress. CO2 assimilation, chlorophyll a fluorescence, shoot biomass, and pigment concentrations were compared for near isogenic green- and black-leafed Ophiopogonplaniscapus 'Nigrescens'. The black leaves had lower maximum CO2 assimilation rates, higher light saturation points and higher quantum efficiencies of photosystem II (PSII) than green leaves. Under saturating light, PSII photochemistry was inactivated less and recovered more completely in the black leaves. In full sunlight, green plants branched more abundantly and accumulated shoot biomass quicker than the black plants; in the shade, productivities of the two morphs were comparable. The data indicate a light-screening, photoprotective role of foliar anthocyanins. However, limitations to photosynthetic carbon assimilation are relatively small, insufficient to explain the natural scarcity of black-leafed plants.

  7. TBARs distillation method: revision to minimize the interference from yellow pigments in meat products.

    PubMed

    Díaz, P; Linares, M B; Egea, M; Auqui, S M; Garrido, M D

    2014-12-01

    The aim was to study the effect of the incubation method and TBA reagent (concentration/solvent) on yellow pigment interference in meat products. Distillates from red sausage, sucrose, malondialdehyde and a mixture of sucrose-malondialdehyde were reacted with four different TBA solutions at five different temperature/time relations. Two TBA solutions were prepared at 20mM using 90% glacial acetic acid or 3.86% perchloric acid. In addition, an 80mM TBA solution was prepared using distilled water adjusted to pH4 and another using 0.8% TBA in distilled water. The temperature/time relations were: (1) 35min in a boiling water bath; (2) 70°C/30min; (3) 40°C/90min; (4) room temperature (r.t.) (24°C) in dark conditions for 20h; and (5) 60min in a boiling water bath. The results showed that aqueous or diluted acid solutions of TBA reagent and the application of 100°C for less than 1h provided the best conditions to minimize the presence of yellow pigments and maximize pink pigment formation in meat products.

  8. Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective

    NASA Astrophysics Data System (ADS)

    Murphy, Thomas E.; Berberoğlu, Halil

    2011-12-01

    This paper reports a numerical study coupling light transfer with photosynthetic rate models to determine the size and microorganism concentration of photobioreactors based on the pigmentation of algae to achieve maximum productivity. The wild strain Chlamydomonas reinhardtii and its transformant tla1 with 63% lower pigmentation are used as exemplary algae. First, empirical models of the specific photosynthetic rates were obtained from experimental data as a function of local irradiance using inverse methods. Then, these models were coupled with the radiative transfer equation (RTE) to predict both the local and total photosynthetic rates in a planar photobioreactor (PBR). The optical thickness was identified as the proper scaling parameter. The results indicated that under full sunlight corresponding to about 400 W/m2 photosynthetically active irradiation, enhancement of PBR productivity up to 30% was possible with tla1. Moreover, under similar irradiation, optical thicknesses above 169 and 275 for the wild strain and tla1, respectively, did not further enhance PBR productivity. Based on these results guidelines are provided for maximizing PBR productivity from a light transport perspective.

  9. MicroRNA-29 regulates high-glucose-induced apoptosis in human retinal pigment epithelial cells through PTEN.

    PubMed

    Lin, Xiaohui; Zhou, Xiyuan; Liu, Danning; Yun, Lixia; Zhang, Lina; Chen, Xiaohai; Chai, Qinghe; Li, Langen

    2016-04-01

    Hyperglycemia or high-glucose (HG)-induced apoptosis in human retinal pigment epithelial (RPE) cells is a characteristic process in diabetic retinopathy. In our study, we examined whether microRNA-29 (miR-29) may regulate HG-induced RPE cell apoptosis. Human RPE cell line, ARPE-19 cells, was treated with various high concentration of glucose in vitro. HG-induced RPE cell apoptosis was examined by terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay and miR-29 gene expression by quantitative RT-PCR (qRT-PCR). miR-29 was then downregulated in RPE cells, and its effect on HG-induced apoptosis was examined by TUNEL assay and western blot assay on caspase-7 protein. Association of miR-29 on its downstream target, PTEN, in HG-induced RPE cell apoptosis was evaluated by dual-luciferase assay and qRT-PCR. PTEN was silenced in RPE cells. The effects of PTEN downregulation on miR-29-mediated HG-induced RPE cell apoptosis were also examined by TUNEL and western blot assays. HG induced significant apoptosis in RPE cells in a dose-dependent manner. miR-29 was upregulated by HG in RPE cells. miR-29 downregulation protected HG-induced apoptosis and reduced the production of caspase-7 protein in RPE cells. PTEN was shown to be directly downregulated by HG and then upregulated by miR-29 downregulation in RPE cells. Small interfering RNA (siRNA)-mediated PTEN downregulation reversed the protective effect of miR-29 downregulation on HG-induced RPE cell apoptosis. This study demonstrates that miR-29, through inverse association of PTEN, plays an important role in the process of HG-induced apoptosis in RPE cells.

  10. Strain Diversity of Pseudomonas fluorescens Group with Potential Blue Pigment Phenotype Isolated from Dairy Products.

    PubMed

    Chierici, Margherita; Picozzi, Claudia; La Spina, Marisa Grazia; Orsi, Carla; Vigentini, Ileana; Zambrini, Vittorio; Foschino, Roberto

    2016-08-01

    The blue discoloration in Mozzarella cheese comes from bacterial spoilage due to contamination with Pseudomonas. Fourteen Pseudomonas fluorescens strains from international collections and 55 new isolates of dominant bacterial populations from spoiled fresh cheese samples were examined to assess genotypic and phenotypic strain diversity. Isolates were identified by 16S rRNA gene sequencing and tested for the production of the blue pigment at various temperatures on Mascarpone agar and in Mozzarella preserving fluid (the salty water in which the cheese is conserved, which becomes enriched by cheese minerals and peptides during storage). Pulsed-field gel electrophoresis analysis after treatment with the endonuclease SpeI separated the isolates into 42 genotypes at a similarity level of 80%. Based on the pulsotype clustering, 12 representative strains producing the blue discoloration were chosen for the multilocus sequence typing targeting the gyrB, glnS, ileS, nuoD, recA, rpoB, and rpoD genes. Four new sequence typing profiles were discovered, and the concatenated sequences of the investigated loci grouped the tested strains into the so-called ''blue branch'' of the P. fluorescens phylogenetic tree, confirming the linkage between pigment production and a specific genomic cluster. Growth temperature affected pigment production; the blue discoloration appeared at 4 and 14°C but not at 30°C. Similarly, the carbon source influenced the phenomenon; the blue phenotype was generated in the presence of glucose but not in the presence of galactose, sodium succinate, sodium citrate, or sodium lactate.

  11. Fading of alizarin and related artists's pigments by atmospheric ozone: reaction products and mechanisms

    SciTech Connect

    Grosjean, D.; Whitmore, P.M.; De Moor, C.P.; Cass, G.R.; Druzik, J.R.

    1987-07-01

    The colorants alizarin and Alizarin Crimson (a calcium-aluminum lake pigment) and their simple structural homologue anthraquinone were deposited on silica gel, cellulose, and Teflon substrates and exposed in the dark to ozone in purified air (approx.0.4 ppm O/sub 3/ for 95 days and approx.10 ppm O/sub 3/ for 18-80 h). Exposed and control samples were analyzed by mass spectrometry. Alizarin Crimson reacted with ozone on all substrates, yielding phthalic acid (major), benzoic acid (minor), and other minor and unidentified products. Anthraquinone did not react with ozone irrespective of conditions. Alizarin did not react on Teflon or cellulose but reacted on silica gel to yield phthalic acid (major) and other products. A chemical mechanism responsible for the fading of these alizarin-related colorants by ozone is suggested that is consistent with the products distribution, the observed reactivity sequence, and the observed substrate-specific effects. The possible application of this work to predicting the ozone fastness of other alizarin-related pigments is discussed briefly. 33 references, 5 figures.

  12. Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus.

    PubMed

    Di Luccia, Blanda; Riccio, Antonio; Vanacore, Adele; Baccigalupi, Loredana; Molinaro, Antonio; Ricca, Ezio

    2015-10-21

    The ability to produce an extracellular matrix and form multicellular communities is an adaptive behavior shared by many bacteria. In Bacillus subtilis, the model system for spore-forming bacteria, matrix production is one of the possible differentiation pathways that a cell can follow when vegetative growth is no longer feasible. While in B. subtilis the genetic system controlling matrix production has been studied in detail, it is still unclear whether other spore formers utilize similar mechanisms. We report that SF214, a pigmented strain of Bacillus pumilus isolated from the marine environment, can produce an extracellular matrix relying on orthologs of many of the genes known to be important for matrix synthesis in B. subtilis. We also report a characterization of the carbohydrates forming the extracellular matrix of strain SF214. The isolation and characterization of mutants altered in matrix synthesis, pigmentation, and spore formation suggest that in strain SF214 the three processes are strictly interconnected and regulated by a common molecular mechanism.

  13. CO2-induced ion and fluid transport in human retinal pigment epithelium.

    PubMed

    Adijanto, Jeffrey; Banzon, Tina; Jalickee, Stephen; Wang, Nam S; Miller, Sheldon S

    2009-06-01

    In the intact eye, the transition from light to dark alters pH, [Ca2+], and [K] in the subretinal space (SRS) separating the photoreceptor outer segments and the apical membrane of the retinal pigment epithelium (RPE). In addition to these changes, oxygen consumption in the retina increases with a concomitant release of CO2 and H2O into the SRS. The RPE maintains SRS pH and volume homeostasis by transporting these metabolic byproducts to the choroidal blood supply. In vitro, we mimicked the transition from light to dark by increasing apical bath CO2 from 5 to 13%; this maneuver decreased cell pH from 7.37 +/- 0.05 to 7.14 +/- 0.06 (n = 13). Our analysis of native and cultured fetal human RPE shows that the apical membrane is significantly more permeable (approximately 10-fold; n = 7) to CO2 than the basolateral membrane, perhaps due to its larger exposed surface area. The limited CO2 diffusion at the basolateral membrane promotes carbonic anhydrase-mediated HCO3 transport by a basolateral membrane Na/nHCO3 cotransporter. The activity of this transporter was increased by elevating apical bath CO2 and was reduced by dorzolamide. Increasing apical bath CO2 also increased intracellular Na from 15.7 +/- 3.3 to 24.0 +/- 5.3 mM (n = 6; P < 0.05) by increasing apical membrane Na uptake. The CO2-induced acidification also inhibited the basolateral membrane Cl/HCO3 exchanger and increased net steady-state fluid absorption from 2.8 +/- 1.6 to 6.7 +/- 2.3 microl x cm(-2) x hr(-1) (n = 5; P < 0.05). The present experiments show how the RPE can accommodate the increased retinal production of CO2 and H(2)O in the dark, thus preventing acidosis in the SRS. This homeostatic process would preserve the close anatomical relationship between photoreceptor outer segments and RPE in the dark and light, thus protecting the health of the photoreceptors.

  14. Transcriptome analysis of the exocarp of apple fruit identifies light-induced genes involved in red color pigmentation.

    PubMed

    Vimolmangkang, Sornkanok; Zheng, Danman; Han, Yuepeng; Khan, M Awais; Soria-Guerra, Ruth Elena; Korban, Schuyler S

    2014-01-15

    Although the mechanism of light regulation of color pigmentation of apple fruit is not fully understood, it has been shown that light can regulate expression of genes in the anthocyanin biosynthesis pathway by inducing transcription factors (TFs). Moreover, expression of genes encoding enzymes involved in this pathway may be coordinately regulated by multiple TFs. In this study, fruits on trees of apple cv. Red Delicious were covered with paper bags during early stages of fruit development and then removed prior to maturation to analyze the transcriptome in the exocarp of apple fruit. Comparisons of gene expression profiles of fruit covered with paper bags (dark-grown treatment) and those subjected to 14 h light treatment, following removal of paper bags, were investigated using an apple microarray of 40,000 sequences. Expression profiles were investigated over three time points, at one week intervals, during fruit development. Overall, 736 genes with expression values greater than two-fold were found to be modulated by light treatment. Light-induced products were classified into 19 categories with highest scores in primary metabolism (17%) and transcription (12%). Based on the Arabidopsis gene ontology annotation, 18 genes were identified as TFs. To further confirm expression patterns of flavonoid-related genes, these were subjected to quantitative RT-PCR (qRT-PCR) using fruit of red-skinned apple cv. Red Delicious and yellow-skinned apple cv. Golden Delicious. Of these, two genes showed higher levels of expression in 'Red Delicious' than in 'Golden Delicious', and were likely involved in the regulation of fruit red color pigmentation.

  15. Air pollution induced changes in the photosynthetic pigments of selected plant species.

    PubMed

    Joshi, P C; Swami, Abhishek

    2009-03-01

    Changes in the concentration of different photosynthetic pigments (Chlorophyll and carotenoids) were determined in the leaves of six tree species exposed to air pollution due to vehicular emissions. The six tree species, which are all economically important because of their being fruit bearers, used for timber fodder and as road side trees on the basis of their air pollution tolerance index. These included Mangifera indica L., Tectona grandis Linn.f , Shorea robusta Gaertn.f., Holoptelea integrifolia (Roxb.) Planch, Eucalyptus citridora Hook. Syn. and Mallotus philippinensis Muell-Arg. Reduction in chlorophyll 'a', 'b' and carotenoid was recorded in the leaf samples collected from polluted areas when compared with samples from control areas. The highest reduction in total chlorophyll was observed in Holoptelea integrifolia (Roxb.) (48.73%) Planch whereas, the lowest reduction (17.84 %) was recorded in Mallotus philippinensis Muell-Arg. Similarly in case of carotenoid contents, highest reduction (43.02%) was observed in Eucalyptus citridora, and lowest in Mallotus philippinensis Muell-Arg (19.31%). The data obtained were further analyzed using one-way ANOVA and a significant change was recorded in the studied parameters. These studies clearly indicate that the vehicular induced air pollution reduces the concentration of photosynthetic pigments in the trees exposed to road side pollution.

  16. Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy

    SciTech Connect

    Borisova, E; Avramov, L; Troyanova, P; Pavlova, P

    2008-06-30

    Results of investigation of cutaneous benign and malignant pigmented lesions by laser-induced autofluorescence spectroscopy (LIAFS) and diffuse reflectance spectroscopy (DRS) are presented. The autofluorescence of human skin was excited by a 337-nm nitrogen laser. A broadband halogen lamp (400-900 nm) was used for diffuse reflectance measurements. A microspectrometer detected in vivo the fluorescence and reflectance signals from human skin. The main spectral features of benign (dermal nevi, compound nevi, dysplastic nevi) and malignant (melanoma) lesions are discussed. The combined usage of the fluorescence and reflectance spectral methods to determine the type of the lesion, which increases the total diagnostic accuracy, is compared with the usage of LIAFS or DRS only. We also applied colorimetric transformation of the reflectance spectra detected and received additional evaluation criteria for determination of type of the lesion under study. Spectra from healthy skin areas near the lesion were detected and changes between healthy and lesion skin spectra were revealed. The influence of the main skin pigments on the detected spectra is discussed and evaluation of possibilities for differentiation between malignant and benign lesions is performed based on their spectral properties. This research shows that the non-invasive and high-sensitive in vivo detection by means of appropriate light sources and detectors should be possible, related to the real-time determination of existing pathological conditions. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  17. Necrosis-Induced Sterile Inflammation Mediated by Interleukin-1α in Retinal Pigment Epithelial Cells

    PubMed Central

    Liu, Yang; Kimura, Kazuhiro; Orita, Tomoko; Sonoda, Koh-Hei

    2015-01-01

    Endogenous danger signals released from necrotic cells contribute to retinal inflammation. We have now investigated the effects of necrotic cell extracts prepared from ARPE-19 human retinal pigment epithelial cells (ANCE) on the release of proinflammatory cytokines and chemokines by healthy ARPE-19 cells. ANCE were prepared by subjection of ARPE-19 cells to freeze-thaw cycles. The release of various cytokines and chemokines from ARPE-19 cells was measured with a multiplex assay system or enzyme-linked immunosorbent assays. The expression of interleukin (IL)–1α and the phosphorylation and degradation of the endogenous nuclear factor–κB (NF-κB) inhibitor IκB-α were examined by immunoblot analysis. Among the various cytokines and chemokines examined, we found that ANCE markedly stimulated the release of the proinflammatory cytokine IL-6 and the chemokines IL-8 and monocyte chemoattractant protein (MCP)–1 by ARPE-19 cells. ANCE-induced IL-6, IL-8, and MCP-1 release was inhibited by IL-1 receptor antagonist and by an IKK2 inhibitor (a blocker of NF-κB signaling) in a concentration-dependent manner, but was not affected by a pan-caspase inhibitor (Z-VAD-FMK). Recombinant IL-1α also induced the secretion of IL-6, IL-8, and MCP-1 from ARPE-19 cells, and IL-1α was detected in ANCE. Furthermore, ANCE induced the phosphorylation and degradation of IκB-α in ARPE-19 cells. Our findings thus suggest that IL-1α is an important danger signal that is released from necrotic retinal pigment epithelial cells and triggers proinflammatory cytokine and chemokine secretion from intact cells in a manner dependent on NF-κB signaling. IL-1α is therefore a potential therapeutic target for amelioration of sterile inflammation in the retina. PMID:26641100

  18. A case of isotretinoin-induced purpura annularis telangiectodes of Majocchi and review of substance-induced pigmented purpuric dermatosis.

    PubMed

    Kaplan, Rachel; Meehan, Shane A; Leger, Marie

    2014-02-01

    IMPORTANCE Medications as well as chemical and food exposures have been causally linked to the development of pigmented purpuric dermatosis (PPD). We describe herein what is to our knowledge the first reported case of isotretinoin-induced PPD. OBSERVATIONS A woman in her 30s presented with purpura annularis telangiectodes of Majocchi on the lower extremities 2 months after initiating isotretinoin for the treatment of refractory nodulocystic acne. CONCLUSIONS AND RELEVANCE We believe isotretinoin was the most likely causative agent in this case because the lesions began after initiation of isotretinoin treatment and resolved shortly after its termination, and the pathologic findings were consistent with other described cases of drug-induced PPD. The lesions have continued to fade, and no new lesions have developed in a 3-month follow-up period. Drug-induced PPD is distinct from idiopathic PPD, and it is important to consider isotretinoin as a potential inciting agent.

  19. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production.

    PubMed

    Mohsenpour, Seyedeh Fatemeh; Richards, Bryce; Willoughby, Nik

    2012-12-01

    The effect of light conditions on the growth of green algae Chlorella vulgaris and cyanobacteria Gloeothece membranacea was investigated by filtering different wavelengths of visible light and comparing against a model daylight source as a control. Luminescent acrylic sheets containing violet, green, orange or red dyes illuminated by a solar simulator produced the desired wavelengths of light for this study. From the experimental results the highest specific growth rate for C. vulgaris was achieved using the orange range whereas violet light promoted the growth of G. membranacea. Red light exhibited the least efficiency in conversion of light energy into biomass in both strains of microalgae. Photosynthetic pigment formation was examined and maximum chlorophyll-a production in C. vulgaris was obtained by red light illumination. Green light yielded the best chlorophyll-a production in G. membranacea. The proposed illumination strategy offers improved microalgae growth without resorting to artificial light sources, reducing energy use and costs of cultivation.

  20. Pigment production and isotopic fractionations in continuous culture: okenone producing purple sulfur bacteria Part II.

    PubMed

    Smith, D A; Steele, A; Fogel, M L

    2015-05-01

    Okenone is a carotenoid pigment unique to certain members of Chromatiaceae, the dominant family of purple sulfur bacteria (PSB) found in euxinic photic zones. Diagenetic alteration of okenone produces okenane, the only recognized molecular fossil unique to PSB. The in vivo concentrations of okenone and bacteriochlorophyll a (Bchl a) on a per cell basis were monitored and quantified as a function of light intensity in continuous cultures of the purple sulfur bacterium Marichromatium purpuratum (Mpurp1591). We show that okenone-producing PSB have constant bacteriochlorophyll to carotenoid ratios in light-harvesting antenna complexes. The in vivo concentrations of Bchl a, 0.151 ± 0.012 fmol cell(-1), and okenone, 0.103 ± 0.012 fmol cell(-1), were not dependent on average light intensity (10-225 Lux) at both steady and non-steady states. This observation revealed that in autotrophic continuous cultures of Mpurp1591, there was a constant ratio for okenone to Bchl a of 1:1.5. Okenone was therefore constitutively produced in planktonic cultures of PSB, regardless of light intensity. This confirms the legitimacy of okenone as a signature for autotrophic planktonic PSB and by extrapolation water column euxinia. We measured the δ(13)C, δ(15)N, and δ(34)S bulk biomass values from cells collected daily and determined the isotopic fractionations of Mpurp1591. There was no statistical relationship in the bulk isotope measurements or stable isotope fractionations to light intensity or cell density under steady and non-steady-state conditions. The carbon isotope fractionation between okenone and Bchl a with respect to overall bulk biomass ((13)ε pigment - biomass) was 2.2 ± 0.4‰ and -4.1 ± 0.9‰, respectively. The carbon isotopic fractionation (13ε pigment-CO2) for the production of pigments in PSB is more variable than previously thought with our reported values for okenone at -15.5 ± 1.2‰ and -21.8 ± 1.7‰ for Bchl a.

  1. The Aspergillus fumigatus Transcription Factor Ace2 Governs Pigment Production, Conidiation and Virulence

    PubMed Central

    Ejzykowicz, Daniele E.; Cunha, Marcel M.; Rozental, Sonia; Solis, Norma V.; Gravelat, Fabrice N.; Sheppard, Donald C.; Filler, Scott G.

    2009-01-01

    Summary Aspergillus fumigatus causes serious and frequently fatal infections in immunocompromised patients. To investigate the regulation of virulence of this fungus, we constructed and analyzed an A. fumigatus mutant that lacked the transcription factor Ace2, which influences virulence in other fungi. The Δace2 mutant had dysmorphic conidiophores, reduced conidia production, and abnormal conidial cell wall architecture. This mutant produced an orange pigment when grown on solid media, although its conidia had normal pigmentation. Conidia of the Δace2 mutant were larger and had accelerated germination. The resulting germlings were resistant to hydrogen peroxide, but not other stressors. Non-neutropenic mice that were immunosuppressed with cortisone acetate and infected with the Δace2 mutant had accelerated mortality, greater pulmonary fungal burden, and increased pulmonary inflammatory responses compared to mice infected with the wild-type or Δace2∷ace2 complemented strains. The Δace2 mutant had reduced ppoC, ecm33, and ags3 mRNA expression. It is known that A. fumigatus mutants with absent or reduced expression of these genes have increased virulence in mice, as well as other phenotypic similarities to the Δace2 mutant. Therefore, reduced expression of these genes likely contributes to the increased virulence of the Δace2 mutant. PMID:19220748

  2. Simultaneous determination of red and yellow artificial food colourants and carotenoid pigments in food products.

    PubMed

    Shen, Yixiao; Zhang, Xiumei; Prinyawiwatkul, Witoon; Xu, Zhimin

    2014-08-15

    A method for simultaneously determining four artificial food colourants [Red Nos. 2 (R2) and 40 (R40), Yellow Nos. 5 (Y5) and 6 (Y6)] and three carotenoids [lycopene, lutein, and β-carotene] was developed. They were successfully separated by the developed high pressure liquid chromatography (HPLC) method combined with a photo diode array detector. The detection limit (at signal to noise>4) was from the lowest of 0.2 ng/mL for lutein to the highest of 50.0 ng/mL for R40. With a two-phase solvent and ultrasound-assisted extraction, the recoveries of the artificial and natural pigments in fifteen different types of food products were between 80.5-97.2% and 80.1-98.4%, respectively. This HPLC method with the ultrasound-assisted extraction protocol could be used as a sensitive and reliable analysis technique in simultaneously identifying and quantifying the reddish and yellowish pigments in different foods regardless of they are artificial food colourants or/and natural carotenoids.

  3. Investigating the influence of pH, temperature and agitation speed on yellow pigment production by Penicillium aculeatum ATCC 10409.

    PubMed

    Afshari, Majid; Shahidi, Fakhri; Mortazavi, Seyed Ali; Tabatabai, Farideh; Es'haghi, Zarin

    2015-01-01

    In this study, the combined effect of pH, temperature and agitation speed on yellow pigment production and mycelial growth of Penicillium aculeatum ATCC 10409 was investigated in whey media. Different pH levels (5, 6.5 and 8), temperatures (25, 30 and 35°C) and agitation speed levels (100 and 150 rpm) were tested to determine the best conditions to produce a fungal yellow pigment under submerged fermentation. The best production of yellow pigment (1.38 g/L) was obtained with a pH value of 6.5, a temperature of 30°C and an agitation speed of 150 rpm. In contrast, the maximal biomass concentration (11.12 g/L) was obtained at pH value of 8, a temperature of 30°C and an agitation speed of 100 rpm. These results demonstrated that biomass and yellow pigment production were not directly associated. The identification of the structure of unknown P. aculeatum yellow pigment was detected using UV absorption spectrum and FT-IR spectroscopy.

  4. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.

    PubMed

    Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru

    2014-04-01

    Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species.

  5. The comparison of laser surface designing and pigment printing methods for the product quality

    NASA Astrophysics Data System (ADS)

    Ozguney, Arif Taner

    2007-07-01

    Developing new designs by using the computer and transferring the designs that are obtained to textile surfaces will not only increase and facilitate the production in a more practical manner, but also help you create identical designs. This means serial manufacturing of the products at standard quality and increasing their added values. Moreover, creating textile designs using the laser will also contribute to the value of the product as far as the consumer is concerned because it will not cause any wearing off and deformation in the texture of the fabric unlike the other methods. In the system that has been designed, the laser beam at selected wavelength and intensity was directed onto a selected textile surface and a computer-controlled laser beam source was used to change the colour substances on the textile surface. Pigment printing is also used for designing in textile and apparel sector. In this method, designs are transferred to the fabric manually by using dyestuff. In this study, the denim fabric used for the surfacing trial was 100% cotton, with a weft count per centimeter of 20 and a warp count per centimeter of 27, with fabric weight of 458 g/m 2. The first step was to prepare 40 pieces of denim samples, half of which were prepared manually pigment printing and the other half by using the laser beam. After this, some test applications were done. The tensile strength, tensile extension and some fastness values of designed pieces with two methods were compared according to the international standards.

  6. A dominant-negative mutation within AtMYB90 blocks flower pigment production in transgenic tobacco.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During de novo shoot induction in cultured transgenic tobacco callus a spontaneous mutation within the coding region of a AtMYB90 transgene produced a plant line in which the original transgene-induced over-pigmented phenotype (dark red/purple from anthocyanin overproduction in most tissues) was los...

  7. 2-Phenyl-APB-144-Induced Retinal Pigment Epithelium Degeneration and Its Underlying Mechanisms

    PubMed Central

    Kurashima, Hiroaki; Nakamura, Daisuke; Komatsu, Tomoko; Yasuda, Yuki; Habashita-Obata, Sayo; Ichikawa, Sanae; Katsuta, Osamu; Iwawaki, Takao; Kohno, Kenji

    2015-01-01

    Abstract Purpose: To investigate the efficacy of 2-phenyl-APB-144 (APB)-induced retinopathy in a rat model and its underlying mechanisms, with a particular focus on retinal pigment epithelium (RPE) degeneration. Methods: Electroretinograms (ERGs) were evaluated in APB-administered rats. In ARPE-19 cells, cathepsin, and autophagy marker LC3 were analyzed by western blotting or immunohistochemistry. Organelle pH alterations were detected by Acridine Orange Staining. Endoplasmic reticulum stress-dependent or -independent cell death signaling was analyzed by reporter gene assays of activating transcription factor 4 (ATF4), immunoglobulin heavy-chain binding protein (BiP), inositol-requiring enzyme 1α (IRE1α), quantitative reverse transcription-polymerase chain reaction of CHOP mRNA, and the effects of pharmacological eukaryotic initiation factor 2α (eIF2α) dephosphorylation inhibitor, Salubrinal. The pharmacological effects of Salubrinal were examined by fluorophotometry, electrophysiology, and histopathology. Results: APB-induced ERG amplitude reduction and fluorescein permeability enhancement into the vitreous body of rats were determined. In ARPE-19 cells, APB-induced organelle pH alterations, imbalances of procathepsin and cathepsin expression, the time-dependent accumulation of LC3-II, and the translational activation of ATF4 were determined. Salubrinal protected against APB-induced cell death and inhibited ATF4 downstream factor CHOP mRNA induction. In APB-induced rat retinopathy, systemic Salubrinal alleviated the enhanced fluorescein permeability into the vitreous body from the RPE, the reductions in ERG amplitudes, and RPE degeneration. Conclusions: Organelle pH alterations and autophagy impairments are involved in APB-induced RPE cell death. Inhibition of eIF2α dephosphorylation protected the RPE in vivo and in vitro. These findings suggested that APB-induced retinopathy is a valuable animal model for exploring the mechanism of RPE-driven retinopathy

  8. SCF/c-kit signaling is required in 12-O-tetradecanoylphorbol-13-acetate-induced migration and differentiation of hair follicle melanocytes for epidermal pigmentation.

    PubMed

    Qiu, Weiming; Yang, Ke; Lei, Mingxing; Yan, Hongtao; Tang, Hui; Bai, Xiufeng; Yang, Guihong; Lian, Xiaohua; Wu, Jinjin

    2015-05-01

    Hair follicle melanocyte stem cells (McSCs) are responsible for hair pigmentation and also function as a major melanocyte reservoir for epidermal pigmentation. However, the molecular mechanism promoting McSCs for epidermal pigmentation remains elusive. 12-O-tetradecanoylphorbol-13-acetate (TPA) mimics key signaling involved in melanocyte growth, migration and differentiation. We therefore investigated the molecular basis for the contribution of hair follicle McSCs to epidermal pigmentation using the TPA induction model. We found that repetitive TPA treatment of female C57BL/6 mouse dorsal skin induced epidermal pigmentation by increasing the number of epidermal melanocytes. Particularly, TPA treatment induced McSCs to initiate proliferation, exit the stem cell niche and differentiate. We also demonstrated that TPA promotes melanoblast migration and differentiation in vitro. At the molecular level, TPA treatment induced robust expression of stem cell factor (SCF) in keratinocytes and c-kit in melanoblasts and melanocytes. Administration of ACK2, a neutralizing antibody against the Kit receptor, suppressed mouse epidermal pigmentation, decreased the number of epidermal melanocytes, and inhibited melanoblast migration. Taken together, our data demonstrate that TPA promotes the expansion, migration and differentiation of hair follicle McSCs for mouse epidermal pigmentation. SCF/c-kit signaling was required for TPA-induced migration and differentiation of hair follicle melanocytes. Our findings may provide an excellent model to investigate the signaling mechanisms regulating epidermal pigmentation from mouse hair follicle McSCs, and a potential therapeutic option for skin pigmentation disorders.

  9. Media optimization for elevated molecular weight and mass production of pigment-free pullulan.

    PubMed

    Yu, Xiaoliu; Wang, Yulei; Wei, Gongyuan; Dong, Yingying

    2012-07-01

    In this study, an Aureobasidium pullulans SZU 1001 mutant, deficient in pigment production, was screened by complex UV and γ-ray mutagenesis. Medium composition optimization for increased pullulan molecular weight and production was conducted using this mutant. Six nutrients: yeast extract, (NH4)2SO4, K2HPO4, NaCl, MgSO4·7H2O and CaCl2 were detected within pullulan production in flasks. It is shown that NaCl and K2HPO4 have significant influences on molecular weight of pullulan, while yeast extract and (NH4)2SO4 significantly affect pullulan yield. To achieve a higher molecular weight and more efficient pullulan production, a response surface methodology approach was introduced to predict an optimal nutrient combination. A molecular weight of 5.74 × 10(6) and pullulan yield on glucose of 51.30% were obtained under batch pullulan fermentation with the optimized media, which increased molecular weight and pullulan production by 97.25% and 11.04%, respectively compared with the control media.

  10. Formation of naturally occurring pigments during the production of nitrite-free dry fermented sausages.

    PubMed

    De Maere, Hannelore; Fraeye, Ilse; De Mey, Eveline; Dewulf, Lore; Michiels, Chris; Paelinck, Hubert; Chollet, Sylvie

    2016-04-01

    This study investigates the potential of producing red coloured dry fermented sausages without the addition of nitrite and/or nitrate. Therefore, the formation of zinc protoporphyrin IX (Zn(II)PPIX) as naturally occurring pigment, and the interrelated protoporphyrin IX (PPIX) and heme content were evaluated during nitrite-free dry fermented sausage production at different pH conditions. Zn(II)PPIX was only able to form in dry fermented sausages at pH conditions higher than approximately 4.9. Additionally, the presence of Zn(II)PPIX increased drastically at the later phase of the production process (up to day 177), confirming that in addition to pH, time is also a crucial factor for its formation. Similarly, PPIX also accumulated in the meat products at increased pH conditions and production times. In contrast, a breakdown of heme was observed. This breakdown was more gradual and independent of pH and showed no clear relationship with the formed amounts of Zn(II)PPIX and PPIX. A statistically significant relationship between Zn(II)PPIX formation and product redness was established.

  11. Pigment Epithelium Derived Factor Peptide Protects Murine Hepatocytes from Carbon Tetrachloride-Induced Injury

    PubMed Central

    Shih, Shou-Chuan; Ho, Tsung-Chuan; Chen, Show-Li; Tsao, Yeou-Ping

    2016-01-01

    Fibrogenesis is induced by repeated injury to the liver and reactive regeneration and leads eventually to liver cirrhosis. Pigment epithelium derived factor (PEDF) has been shown to prevent liver fibrosis induced by carbon tetrachloride (CCl4). A 44 amino acid domain of PEDF (44-mer) was found to have a protective effect against various insults to several cell types. In this study, we investigated the capability of synthetic 44-mer to protect against liver injury in mice and in primary cultured hepatocytes. Acute liver injury, induced by CCl4, was evident from histological changes, such as cell necrosis, inflammation and apoptosis, and a concomitant reduction of glutathione (GSH) and GSH redox enzyme activities in the liver. Intraperitoneal injection of the 44-mer into CCl4-treated mice abolished the induction of AST and ALT and markedly reduced histological signs of liver injury. The 44-mer treatment can reduce hepatic oxidative stress as evident from lower levels of lipid hydroperoxide, and higher levels of GSH. CCl4 caused a reduction of Bcl-xL, PEDF and PPARγ, which was markedly restored by the 44-mer treatment. Consequently, the 44-mer suppressed liver fibrosis induced by repeated CCl4 injury. Furthermore, our observations in primary culture of rat hepatocytes showed that PEDF and the 44-mer protected primary rat hepatocytes against apoptosis induced by serum deprivation and TGF-β1. PEDF/44-mer induced cell protective STAT3 phosphorylation. Pharmacological STAT3 inhibition prevented the antiapoptotic action of PEDF/44-mer. Among several PEDF receptor candidates that may be responsible for hepatocyte protection, we demonstrated that PNPLA2 was essential for PEDF/44-mer-mediated STAT3 phosphorylation and antiapoptotic activity by using siRNA to selectively knockdown PNPLA2. In conclusion, the PEDF 44-mer protects hepatocytes from single and repeated CCl4 injury. This protective effect may stem from strengthening the counter oxidative stress capacity and

  12. Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bicchieri, M.; Nardone, M.; Russo, P. A.; Sodo, A.; Corsi, M.; Cristoforetti, G.; Palleschi, V.; Salvetti, A.; Tognoni, E.

    2001-06-01

    The most commonly used blue pigments in medieval manuscripts are azurite and lapis-lazuli. The first one is a copper-based pigment; the coloring compound of the latter is lazurite, a sodium silicoaluminate in a sulfur matrix. Knowledge of the chemical composition of the materials is essential for the study of illuminated manuscripts. In this paper, micro-Raman and LIBS have been used for the study of azurite and lapis-lazuli, as well as different mixtures of these pigments applied to parchment to simulate an illuminated manuscript. The results of our work show the importance of using more than one technique for a good comprehension of a manuscript. In particular, the opportunity of combining elemental information (obtained from laser induced breakdown spectroscopy) and vibrational spectroscopy information (obtained from Raman) will be fully exploited.

  13. Pigment Epithelium-Derived Factor Alleviates Tamoxifen-Induced Endometrial Hyperplasia.

    PubMed

    Goldberg, Keren; Bar-Joseph, Hadas; Grossman, Hadas; Hasky, Noa; Uri-Belapolsky, Shiri; Stemmer, Salomon M; Chuderland, Dana; Shalgi, Ruth; Ben-Aharon, Irit

    2015-12-01

    Tamoxifen is a cornerstone component of adjuvant endocrine therapy for patients with hormone-receptor-positive breast cancer. Its significant adverse effects include uterine hyperplasia, polyps, and increased risk of endometrial cancer. However, the underlying molecular mechanism remains unclear. Excessive angiogenesis, a hallmark of tumorigenesis, is a result of disrupted balance between pro- and anti-angiogenic factors. VEGF is a pro-angiogenic factor shown to be elevated by tamoxifen in the uterus. Pigment epithelium-derived factor (PEDF) is a potent anti-angiogenic factor that suppresses strong pro-angiogenic factors, such as VEGF. Our aim was to investigate whether angiogenic balance plays a role in tamoxifen-induced uterine pathologies, elucidate the molecular impairment in that network, and explore potential intervention to offset the proposed imbalance elicited by tamoxifen. Using in vivo mouse models, we demonstrated that tamoxifen induced a dose-dependent shift in endogenous uterine angiogenic balance favoring VEGF over PEDF. Treatment with recombinant PEDF (rPEDF) abrogated tamoxifen-induced uterine hyperplasia and VEGF elevation, resulting in reduction of blood vessels density. Exploring the molecular mechanism revealed that tamoxifen promoted survival and malignant transformation pathways, whereas rPEDF treatment prevents these changes. Activation of survival pathways was decreased, demonstrated by reduction in AKT phosphorylation concomitant with elevation in JNK phosphorylation. Estrogen receptor-α and c-Myc oncoprotein levels were reduced. Our findings provide novel insight into the molecular mechanisms tamoxifen induces in the uterus, which may become the precursor events of subsequent endometrial hyperplasia and cancer. We demonstrate that rPEDF may serve as a useful intervention to alleviate the risk of tamoxifen-induced endometrial pathologies.

  14. Influence of Climate, Variety and Production Process on Tocopherols, Plastochromanol-8 and Pigments in Flaxseed Oil

    PubMed Central

    Škevin, Dubravka; Kraljić, Klara; Pospišil, Milan; Neđeral, Sandra; Blekić, Monika

    2015-01-01

    Summary The objective of this study is to compare the influence of genotype, environmental conditions and processing methods after maturation and harvesting of four varieties of flaxseed (Altess, Biltstar, Niagara and Oliwin) on the levels of tocochromanols, carotenoids and chlorophyll in flaxseed oil. Samples were produced by cold pressing of dry seeds and seeds heated for 30 min at 60 °C. Temperature, sunshine and rainfall were primary environmental conditions included. Grand mean of mass fraction of γ-tocopherol was (522±29), of plastochromanol-8 (305±2) and total tocochromanols (831±3) mg per kg of oil. The highest levels of these compounds and strongest antioxidant activity were found in cold- -pressed oil of Biltstar variety. During seed maturation, levels of γ-tocopherol and plastochromanol-8 increased with average temperature and total sunshine and decreased with total rainfall. Fifth week after flowering was identified as the maturation period with best climate conditions to achieve optimal tocochromanol content. Grand mean of mass fraction of carotenoids expressed as β-carotene was (1.83±0.01) and of chlorophyll expressed as pheophytin a (0.43±0.10) mg per kg of oil. Altess variety had the highest levels of pigments. Antioxidant activity decreased with the increase of chlorophyll, while correlations with carotenoids were not determined. Generally, oil obtained by cold pressing had higher levels of tocochromanols and lower levels of pigments but similar antioxidant activity to the oil after seed conditioning. The results of this study contribute to identifying the flaxseed variety that is the best for oil production with the highest antioxidant activity and nutritive value, and provide better understanding of tocochromanol biosynthesis depending on different climate conditions. PMID:27904385

  15. Continuous exposure to non-lethal doses of sodium iodate induces retinal pigment epithelial cell dysfunction

    PubMed Central

    Zhang, Xiao-Yu; Ng, Tsz Kin; Brelén, Mårten Erik; Wu, Di; Wang, Jian Xiong; Chan, Kwok Ping; Yung, Jasmine Sum Yee; Cao, Di; Wang, Yumeng; Zhang, Shaodan; Chan, Sun On; Pang, Chi Pui

    2016-01-01

    Age-related macular degeneration (AMD), characterized by progressive degeneration of retinal pigment epithelium (RPE), is the major cause of irreversible blindness and visual impairment in elderly population. We previously established a RPE degeneration model using an acute high dose sodium iodate to induce oxidative stress. Here we report findings on a prolonged treatment of low doses of sodium iodate on human RPE cells (ARPE-19). RPE cells were treated continuously with low doses (2–10 mM) of sodium iodate for 5 days. Low doses (2–5 mM) of sodium iodate did not reduce RPE cell viability, which is contrasting to cell apoptosis in 10 mM treatment. These low doses are sufficient to retard RPE cell migration and reduced expression of cell junction protein ZO-1. Phagocytotic activity of RPE cells was attenuated by sodium iodate dose-dependently. Sodium iodate also increased expression of FGF-2, but suppressed expression of IL-8, PDGF, TIMP-2 and VEGF. Furthermore, HTRA1 and epithelial-to-mesenchymal transition marker proteins were downregulated, whereas PERK and LC3B-II proteins were upregulated after sodium iodate treatment. These results suggested that prolonged exposure to non-lethal doses of oxidative stress induces RPE cell dysfunctions that resemble conditions in AMD. This model can be used for future drug/treatment investigation on AMD. PMID:27849035

  16. Hyperosmotic stress induces cell cycle arrest in retinal pigmented epithelial cells

    PubMed Central

    Arsenijevic, T; Vujovic, A; Libert, F; Op de Beeck, A; Hébrant, A; Janssens, S; Grégoire, F; Lefort, A; Bolaky, N; Perret, J; Caspers, L; Willermain, F; Delporte, C

    2013-01-01

    Osmotic changes occur in many tissues and profoundly influence cell function. Herein, we investigated the effect of hyperosmotic stress on retinal pigmented epithelial (RPE) cells using a microarray approach. Upon 4-h exposure to 100 mM NaCl or 200 mM sucrose, 79 genes were downregulated and 72 upregulated. Three gene ontology categories were significantly modulated: cell proliferation, transcription from RNA polymerase II promoter and response to abiotic stimulus. Fluorescent-activated cell sorting analysis further demonstrated that owing to hyperosmotic stimulation for 24 h, cell count and cell proliferation, as well as the percentage of cells in G0/G1 and S phases were significantly decreased, whereas the percentage of cells in G2/M phases increased, and apoptosis and necrosis remained unaffected. Accordingly, hyperosmotic conditions induced a decrease of cyclin B1 and D1 expression, and an activation of the p38 mitogen-activated protein kinase. In conclusion, our results demonstrate that hypertonic conditions profoundly affect RPE cell gene transcription regulating cell proliferation by downregulation cyclin D1 and cyclin B1 protein expression. PMID:23744362

  17. Geldanamycin increases 4-hydroxynonenal (HNE)-induced cell death in human retinal pigment epithelial cells.

    PubMed

    Kaarniranta, Kai; Ryhänen, Tuomas; Karjalainen, Hannu M; Lammi, Mikko J; Suuronen, Tiina; Huhtala, Anne; Kontkanen, Matti; Teräsvirta, Markku; Uusitalo, Hannu; Salminen, Antero

    Development of age-related macular degeneration (AMD) is associated with functional abnormalities and cell death in retinal pigment epithelial (RPE) cells attributable to oxidative stress. To minimize the adverse effects of oxidative stress, cells activate their defence systems, e.g., via increased expression of heat shock protein (Hsp), activation of stress sensitive AP-1 and NF-kappaB transcription factors. In this study, we examined the accumulation of Hsp70 protein, activation of AP-1 and NF-kappaB transcription factors in human ARPE-19 cells subjected to a 4-hydroxynonenal (HNE)-induced oxidative stress. In addition, the influence of Hsp90 inhibitor geldanamycin (GA) was studied in HNE-treated cells. Mitochondrial metabolic activity and apoptosis were determined to evaluate cell death in the ARPE-19 cells. The ARPE-19 cells showed increased accumulation of Hsp70 protein before of the cytotoxic hallmarks appearing in response to HNE. In contrast, increased DNA-binding activities of AP-1 or NF-kappaB transcription factors were not seen under HNE insults. Interestingly, GA significantly increased cell death in the HNE-treated cells, which was involved in caspase-3 independent apoptosis. This study reveals that the Hsps have an important role in the cytoprotection of RPE cells subjected to HNE-derived oxidative stress.

  18. Phase II enzyme-inducing and antioxidant activities of beetroot (Beta vulgaris L.) extracts from phenotypes of different pigmentation.

    PubMed

    Wettasinghe, Mahinda; Bolling, Bradley; Plhak, Leslie; Xiao, Hang; Parkin, Kirk

    2002-11-06

    Free-radical scavenging, reducing, and phase II enzyme-inducing activities of aqueous and 5% aqueous ethanol extracts of freeze-dried root tissue of four beet (Beta vulgaris L.) strains (red, white, orange, and high-pigment (red) phenotypes) were determined. Aqueous and ethanolic tissue extracts of the regular and high-pigment red phenotypes were most capable of inhibiting metmyoglobin/H(2)O(2)-mediated oxidation of 2-2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH)-mediated bleaching of beta-carotene. These same extracts were also most efficient at reducing ABTS radical cation and inducing quinone reductase in murine hepatoma (Hepa 1c1c7) cells in vitro.

  19. Induction of Yellow Pigmentation in Serratia marcescens

    PubMed Central

    Trias, Joaquim; Viñas, Miquel; Guinea, Jesús; Lorén, José G.

    1988-01-01

    The appearance of yellow pigmentation in nonpigmented strains of Serratia sp. has been demonstrated to be due to the production of a muconic acid, 2-hydroxy-5-carboxymethylmuconic acid semialdehyde. The 3,4-dihydroxyphenylacetate 2,3-dioxygenase responsible for the synthesis of this muconic acid was induced in all strains tested. Another muconic acid, the β-cis-cis-carboxymuconic acid, could also be synthesized from 3,4-dihydroxybenzoate, but this product was not colored. Mutants that were unable to grow on tyrosine and produced yellow pigment were isolated from nonpigmented strains. These mutants had properties similar to those of the yellow-pigmented strains. The ability to produce pigment may be more widespread among Serratia marcescens strains than is currently known. PMID:16347803

  20. Nutrient availability affects pigment production but not growth in lichens of biological soil crusts

    USGS Publications Warehouse

    Bowker, M.A.; Koch, G.W.; Belnap, J.; Johnson, N.C.

    2008-01-01

    Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily P, K, and Zn) had a suppressive effect on gross photosynthesis (P = 0.05). We also monitored the growth and physiological status of our microcosms and found that other nutrients increased the production of scytonemin, an important sunscreen pigment, but only when not added with Mn (P = 0.01). A structural equation model indicated that this effect was independent of any photosynthesis-related variable. We propose two alternative hypotheses to account for this pattern: (1) Mn suppresses processes needed to produce scytonemin; and (2) Mn is required to suppress scytonemin production at low light, when it is an unnecessary photosynthate sink. Although Mn fertilization does not appear likely to increase photosynthesis or growth of Collema, it could have a role in survivorship during environmentally stressful periods due to modification of scytonemin production. Thus, Mn enrichment should be studied further for its potential to facilitate BSC rehabilitation. ?? 2008 Elsevier Ltd.

  1. Pigment colors printing on cotton fabrics by surface coating induced by electron beam and thermal curing

    NASA Astrophysics Data System (ADS)

    El-Naggar, Abdel Wahab M.; Zohdy, Maged H.; Said, Hossam M.; El-Din, Mahmoud S.; Noval, Dalia M.

    2005-03-01

    Cotton fabrics were coated from one surface with different pigment colors incorporated in formulations containing ethylene glycol (EG), methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) oligomer as a base material. The coated fabrics were exposed to various doses of accelerated electrons generated from the 1.5 MeV (25 kW) electron beam accelerator machine. In order to find the suitable conditions that afford the highest performance of pigment printing, the effect of irradiation dose and formulation composition on the color strength of the printed fabrics was investigated. The durability of the printed fabrics in terms of color fastness, tensile mechanical, crease resistance and water absorption was also studied. The results of pigment printing by electron beam irradiation was compared with the conventional thermal printing method with the same pigment colors involving the use of pastes containing binder and thickener systems. It was found that cotton fabrics printed with the pigment colors under the effect of electron beam irradiation displayed higher color strength than those fabrics printed by the conventional thermal fixation at equal pigment color ratios. In this regard, the color strength on cotton fabrics printed with the Imperon violet, blue and yellow pigment colors was 85.2, 75.4 and 91.3 in the case of printing with electron beam and 63.5, 46.0 and 50.2 in the case of thermal curing, respectively. The results showed that the pigment printing by electron beam or thermal curing improves the crease recovery and mechanical properties of cotton fabrics and exhibited comparable durability properties in terms of washing, rubbing and handling.

  2. Influence of hydration on dihydroxyacetone-induced pigmentation of stratum corneum.

    PubMed

    Nguyen, Bach-Cuc; Kochevar, Irene E

    2003-04-01

    Dihydroxyacetone, the browning ingredient in sunless tanning formulations, reacts with amino acids in the outer stratum corneum to form a mixture of high molecular weight pigments. Our initial observations indicated that high hydration of dihydroxyacetone-treated skin completely inhibited development of pigmentation. To investigate the mechanism underlying this effect, studies were carried out in isolated murine epidermis, polyvinyl alcohol/lysine films, and lysine in glycerol/water solvent. Murine epidermis treated with dihydroxyacetone showed a biphasic dependence on relative humidity: maximum pigmentation developed at 84% relative humidity and minimum pigmentation at 0% and 100% relative humidity. Filaggrin proteolysis, which shows a similar dependence on relative humidity and provides free amino acids in the outer stratum corneum, did not account for the relative humidity dependence of dihydroxyacetone pigmentation. A similar biphasic pigmentation response was obtained when polyvinyl alcohol film containing lysine was treated with dihydroxyacetone and incubated at various relative humidities, indicating that the structure of the stratum corneum was not a major factor. To remove the influence of the matrix, the reaction of dihydroxyacetone with lysine was followed at varying concentrations of water in mixed glycerol/buffer solvent. Again, greater pigment formation was found at an intermediate level of water (6% vol/vol) and little pigmentation at 0% and 100% water content. These results are consistent with a requirement for water at low relative humidity, which facilitates formation of free amine groups needed for the initial reaction with dihydroxyacetone, and with inhibition of the dehydration reactions by water through the law of mass action at high relative humidity.

  3. Intercellular Ca(2+) wave propagation in human retinal pigment epithelium cells induced by mechanical stimulation.

    PubMed

    Abu Khamidakh, A E; Juuti-Uusitalo, K; Larsson, K; Skottman, H; Hyttinen, J

    2013-03-01

    Ca(2+) signaling is vitally important in cellular physiological processes and various drugs also affect Ca(2+) signaling. Thus, knowledge of Ca(2+) dynamics is important toward understanding cell biology, as well as the development of drug-testing assays. ARPE-19 cells are widely used for modeling human retinal pigment epithelium functions and drug-testing, but intercellular communication has not been assessed in these cells. In this study, we investigated intercellular Ca(2+) communication induced by mechanical stimulation in ARPE-19 cells. An intercellular Ca(2+) wave was induced in ARPE-19 monolayer by point mechanical stimulation of a single cell. Dynamic changes of intracellular Ca(2+) concentration ([Ca(2+)](i)) in the monolayer were tracked with fluorescence microscopy imaging using Ca(2+)-sensitive fluorescent dye fura-2 in presence and absence of extracellular Ca(2+), after depletion of intracellular Ca(2+) stores with thapsigargin, and after application of gap junction blocker α-glycyrrhetinic acid and P2-receptor blocker suramin. Normalized fluorescence values, reflecting amplitude of [Ca(2+)](i) increase, and percentage of responsive cells were calculated to quantitatively characterize Ca(2+) wave propagation. Mechanical stimulation of a single cell within a confluent monolayer of ARPE-19 cells initiated an increase in [Ca(2+)](i), which propagated to neighboring cells in a wave-like manner. Ca(2+) wave propagated to up to 14 cell tiers in control conditions. The absence of extracellular Ca(2+) reduced [Ca(2+)](i) increase in the cells close to the site of mechanical stimulation, whereas the depletion of intracellular Ca(2+) stores with thapsigargin blocked the wave spreading to distant cells. The gap junction blocker α-glycyrrhetinic acid reduced [Ca(2+)](i) increase in the cell tiers close to the site of mechanical stimulation, indicating involvement of gap junctions in Ca(2+) wave propagation. The P2-receptor blocker suramin reduced the percentage

  4. Production of phycocyanin--a pigment with applications in biology, biotechnology, foods and medicine.

    PubMed

    Eriksen, Niels T

    2008-08-01

    C-phycocyanin (C-PC) is a blue pigment in cyanobacteria, rhodophytes and cryptophytes with fluorescent and antioxidative properties. C-PC is presently extracted from open pond cultures of the cyanobacterium Arthrospira platensis although these cultures are not very productive and open for contaminating organisms. C-PC is considered a healthy ingredient in cyanobacterial-based foods and health foods while its colouring, fluorescent or antioxidant properties are utilised only to a minor extent. However, recent research and developments in C-PC synthesis and functionality have expanded the potential applications of C-PC in biotechnology, diagnostics, foods and medicine: The productivity of C-PC has been increased in heterotrophic, high cell density cultures of the rhodophyte Galdieria sulphuraria that are grown under well-controlled and axenic conditions. C-PC purification protocols based on various chromatographic principles or novel two-phase aqueous extraction methods have expanded in numbers and improved in performance. The functionality of C-PC as a fluorescent dye has been improved by chemical stabilisation of C-PC complexes, while protein engineering has also introduced increased stability and novel biospecific binding sites into C-PC fusion proteins. Finally, our understanding of the physiological functions of C-PC in humans has been improved by a mechanistic hypothesis that links the chemical properties of the phycocyanobilin chromophores of C-PC to the natural antioxidant, bilirubin, and may explain the observed health benefits of C-PC intake. This review outlines how C-PC is produced and utilised and discusses the novel C-PC synthesis procedures and applications.

  5. Importance of the ammonia assimilation by Penicillium purpurogenum in amino derivative Monascus pigment, PP-V, production.

    PubMed

    Arai, Teppei; Koganei, Kasumi; Umemura, Sara; Kojima, Ryo; Kato, Jun; Kasumi, Takafumi; Ogihara, Jun

    2013-03-28

    A fungal strain, Penicillium purpurogenum IAM 15392, produced the azaphilone Monascus pigment homolog when cultured in a medium composed of soluble starch, ammonium nitrate, yeast extract, and citrate buffer, pH 5.0. One of the typical features of violet pigment PP-V [(10Z)-12- carboxyl-monascorubramine] is that pyranoid oxygen is replaced with nitrogen. In this study, we found that glutamine synthetase (glnB) and glutamate dehydrogenase (gdh1) genes were expressed in the culture conditions conducive to PP-V production. Gln and Glu both support PP-V biosynthesis, but PP-V biosynthesis was much more efficient with Gln. We determined that synthesis of Gln by glutamine synthetase from ammonium is important for PP-V production.

  6. Detection of oxidative stress biomarker-induced assembly of gold nanoparticles in retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Yasmin, Z.; Lee, Y.; Maswadi, S.; Glickman, R.; Nash, K. L.

    2013-02-01

    Oxidative stress (OS) is increasingly implicated as an underlying pathogenic mechanism in a wide range of diseases, resulting from an imbalance between the production of reactive oxygen species (ROS) and the system's ability to detoxify the reactive intermediates or repair the resulting damage. ROS can be difficult to detect directly; however, they can be detected indirectly from the effects on oxidative stress biomarkers (OSB), such as glutathione (GSH), 3-nitrotyrosine, homocysteine, and cysteine. Moreover the reaction of transition metals with thiol-containing amino acids (for example GSH) oxidized by ROS can yield reactive products that accumulate with time and contribute to aging and diseases. The study of the interaction between OSB using functionalized nanoparticles (fNPs) has attracted interest because of potential applications in bio-sensors and biomedical diagnostics. A goal of the present work is to use fNPs to detect and ultimately quantitate OS in retinal pigment epithelial (RPE) cells subjected to external stressors, e.g. nonionizing (light) and ionizing (gamma) radiation. Specifically, we are investigating the assembly of gold fNPs mediated by the oxidation of GSH in irradiated RPE cells. The dynamic interparticle interactions had been characterized in previously reported work by monitoring the evolution of the surface plasmon resonance band using spectroscopic analysis (UV-VIS absorption). Here we are comparing the dynamic evolution of fNP assembly using photoacoustic spectroscopy (PAS). We expect that PAS will provide a more sensitive measure allowing these fNP sensors to measure OS in cell-based models without the artifacts limiting the use of current methods, such as fluorescent indicators.

  7. Influence of growth regulators and elicitors on cell growth and α-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L.

    PubMed

    Chavan, Smita P; Lokhande, Vinayak H; Nitnaware, Kirti M; Nikam, Tukaram D

    2011-03-01

    The present study examined the effects of plant growth hormones, incubation period, biotic (Trametes versicolor, Mucor sp., Penicillium notatum, Rhizopus stolonifer, and Fusarium oxysporum) and abiotic (NaCl, MgSO(4), FeSO(4), ZnSO(4), and FeCl(3)) elicitors on cell growth and α-tocopherol and pigment (red and yellow) productions in Carthamus tinctorius cell cultures. The cell growth and α-tocopherol and pigment contents improved significantly on Murashige and Skoog (MS) liquid medium containing 50.0 μM α-naphthalene acetic acid (NAA) and 2.5 μM 6-Benzyladenine (BA) at 28 days of incubation period. Incorporation of T. versicolor (50 mg l(-1)) significantly enhanced the production of α-tocopherol (12.7-fold) and red pigment (4.24-fold). Similarly, supplementation of 30 mg l(-1) T. versicolor (7.54-fold) and 70 mg l(-1) Mucor sp. (7.40-fold) significantly increased the production of yellow pigment. Among abiotic elicitors, NaCl (50-70 mg l(-1)) and MgSO(4) (10-30 mg l(-1)) significantly improved production of α-tocopherol (1.24-fold) and red pigment (20-fold), whereas yellow pigment content increased considerably by all the abiotic elicitor treatments. Taken together, the present study reports improved productions of α-tocopherol and the pigment as a stress response of safflower cell cultures exposed to these elicitors.

  8. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    PubMed Central

    Youn, Hyun-Yi; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated with UV radiations at various energy levels with and without filter protections. Cell viability after exposure was determined using the metabolic dye alamarBlue and by evaluating for changes in the nuclei, mitochondria, membrane permeability, and cell membranes of the cells using the fluorescent dyes Hoechst 33342, rhodamine 123, calcein AM, ethidium homodimer-1, and annexin V. High-resolution images of the cells were taken with a Zeiss 510 confocal laser scanning microscope. Results The alamarBlue assay results of UV-exposed cells without filters showed energy level-dependent decreases in cellular viability. However, UV treated cells with 400 nm LP filter protection showed the equivalent viability to untreated control cells at all energy levels. Also, UV irradiated cells with 320 nm LP filter showed lower cell viability than the unexposed control cells, yet higher viability than UV-exposed cells without filters in an energy level-dependent manner. The confocal microscopy results also showed that UV radiation can cause significant dose-dependent degradations of nuclei and mitochondria in ocular cells. The annexin V staining also showed an increased number of apoptotic cells after UV irradiation. Conclusions The findings suggest that UV-induced HCEC, HLEC, and ARPE-19 cell damage can be evaluated by bioassays that measure changes in the cell nuclei, mitochondria, cell membranes, and cell metabolism, and these assay methods provide a valuable in vitro model for evaluating the

  9. Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium.

    PubMed

    Yao, Jingyu; Jia, Lin; Khan, Naheed; Lin, Chengmao; Mitter, Sayak K; Boulton, Michael E; Dunaief, Joshua L; Klionsky, Daniel J; Guan, Jun-Lin; Thompson, Debra A; Zacks, David N

    2015-01-01

    Autophagy regulates cellular homeostasis and response to environmental stress. Within the retinal pigment epithelium (RPE) of the eye, the level of autophagy can change with both age and disease. The purpose of this study is to determine the relationship between reduced autophagy and age-related degeneration of the RPE. The gene encoding RB1CC1/FIP200 (RB1-inducible coiled-coil 1), a protein essential for induction of autophagy, was selectively knocked out in the RPE by crossing Best1-Cre mice with mice in which the Rb1cc1 gene was flanked with Lox-P sites (Rb1cc1(flox/flox)). Ex vivo and in vivo analyses, including western blot, immunohistochemistry, transmission electron microscopy, fundus photography, optical coherence tomography, fluorescein angiography, and electroretinography were performed to assess the structure and function of the retina as a function of age. Deletion of Rb1cc1 resulted in multiple autophagy defects within the RPE including decreased conversion of LC3-I to LC3-II, accumulation of autophagy-targeted precursors, and increased numbers of mitochondria. Age-dependent degeneration of the RPE occurred, with formation of atrophic patches, subretinal migration of activated microglial cells, subRPE deposition of inflammatory and oxidatively damaged proteins, subretinal drusenoid deposits, and occasional foci of choroidal neovascularization. There was secondary loss of photoreceptors overlying the degenerated RPE and reduction in the electroretinogram. These observations are consistent with a critical role of autophagy in the maintenance of normal homeostasis in the aging RPE, and indicate that disruption of autophagy leads to retinal phenotypes associated with age-related degeneration.

  10. Effect of Various Compounds Blocking the Colony Pigmentation on the Aflatoxin B1 Production by Aspergillus flavus

    PubMed Central

    Dzhavakhiya, Vitaly G.; Voinova, Tatiana M.; Popletaeva, Sofya B.; Statsyuk, Natalia V.; Limantseva, Lyudmila A.; Shcherbakova, Larisa A.

    2016-01-01

    Aflatoxins and melanins are the products of a polyketide biosynthesis. In this study, the search of potential inhibitors of the aflatoxin B1 (AFB1) biosynthesis was performed among compounds blocking the pigmentation in fungi. Four compounds—three natural (thymol, 3-hydroxybenzaldehyde, compactin) and one synthetic (fluconazole)—were examined for their ability to block the pigmentation and AFB1 production in Aspergillus flavus. All compounds inhibited the mycelium pigmentation of a fungus growing on solid medium. At the same time, thymol, fluconazole, and 3-hydroxybenzaldehyde stimulated AFB1 accumulation in culture broth of A. flavus under submerged fermentation, whereas the addition of 2.5 μg/mL of compactin resulted in a 50× reduction in AFB1 production. Moreover, compactin also suppressed the sporulation of A. flavus on solid medium. In vivo treatment of corn and wheat grain with compactin (50 μg/g of grain) reduced the level of AFB1 accumulation 14 and 15 times, respectively. Further prospects of the compactin study as potential AFB1 inhibitor are discussed. PMID:27801823

  11. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    PubMed

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.

  12. Ionizing radiation induced changes in phenotype, photosynthetic pigments and free polyamine levels in Vigna radiata (L.) Wilczek.

    PubMed

    Sengupta, Mandar; Chakraborty, Anindita; Raychaudhuri, Sarmistha Sen

    2013-05-01

    Effects of gamma rays on the free polyamine (PA) levels were studied in Vigna radiata (L.) Wilczek. Seeds exposed to different doses of gamma rays were checked for damage on phenotype, germination frequency and alteration in photosynthetic pigments. Free polyamine levels were estimated from seeds irradiated in dry and water imbibed conditions. Polyamine levels of seedlings grown from irradiated seeds, and irradiated seedlings from unexposed seeds were also measured. Damage caused by gamma irradiation resulted in decrease in final germination percentage and seedling height. Photosynthetic pigments decreased in a dose dependent manner as marker of stress. Polyamines decreased in irradiated dry seeds and in seedlings grown from irradiated seeds. Radiation stress induced increase in free polyamines was seen in irradiated imbibed seeds and irradiated seedlings. Response of polyamines towards gamma rays is dependent on the stage of the life cycle of the plant.

  13. Characterization of the Xanthophyll Cycle and Other Photosynthetic Pigment Changes Induced by Iron Deficiency in Sugar Beet (Beta vulgaris L.).

    PubMed

    Morales, F; Abadía, A; Abadía, J

    1990-10-01

    In this work we characterize the changes induced by iron deficiency in the pigment composition of sugar beet (Beta vulgaris L.) leaves. When sugar beet plants were grown hydroponically under limited iron supply, neoxanthin and beta-carotene decreased concomitantly with chlorophyll a, whereas lutein and the carotenoids within the xanthophyll cycle were less affected. Iron deficiency caused major increases in the lutein/chlorophyll a and xanthophyll cycle pigments/chlorophyll a molar ratios. Xanthophyll cycle carotenoids in Fe-deficient plants underwent epoxidations and de-epoxidations in response to ambient light conditions. In dark adapted Fe-deficient plants most of the xanthophyll cycle pigment pool was in the epoxidated form violaxanthin. We show, both by HPLC and by in vivo 505 nanometers absorbance changes, that in Fe deficient plants and in response to light, the de-epoxidated forms antheraxanthin and zeaxanthin were rapidly formed at the expense of violaxanthin. Several hours after returning to dark, the xanthophyll cycle was shifted again toward violaxanthin. The ratio of variable to maximum chlorophyll fluorescence from intact leaves was decreased by iron deficiency. However, in iron deficient leaves this ratio was little affected by light conditions which displace the xanthophyll cycle toward epoxidation or de-epoxidation. This suggests that the functioning of the xanthophyll cycle is not necessarily linked to protection against excess light input.

  14. Antioxidant activity of wine pigments derived from anthocyanins: hydrogen transfer reactions to the dpph radical and inhibition of the heme-induced peroxidation of linoleic acid.

    PubMed

    Goupy, Pascale; Bautista-Ortin, Ana-Belen; Fulcrand, Helene; Dangles, Olivier

    2009-07-08

    The consumption of red wine can provide substantial concentrations of antioxidant polyphenols, in particular grape anthocyanins (e.g., malvidin-3-O-beta-d-glucoside (1)) and specific red wine pigments formed by reaction between anthocyanins and other wine components such as catechin (3), ethanol, and hydroxycinnamic acids. In this work, the antioxidant properties of red wine pigments (RWPs) are evaluated by the DPPH assay and by inhibition of the heme-induced peroxidation of linoleic acid in acidic conditions (a model of antioxidant action in the gastric compartment). RWPs having a 1 and 3 moieties linked via a CH(3)-CH bridge appear more potent than the pigment with a direct 1-3 linkage. Pyranoanthocyanins derived from 1 reduce more DPPH radicals than 1 irrespective of the substitution of their additional aromatic ring. Pyranoanthocyanins are also efficient inhibitors of the heme-induced lipid peroxidation, although the highly hydrophilic pigment derived from pyruvic acid appears less active.

  15. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.

    PubMed

    Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2017-04-01

    This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H2SO4) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light.

  16. The effects of topical and oral L-selenomethionine on pigmentation and skin cancer induced by ultraviolet irradiation.

    PubMed

    Burke, K E; Combs, G F; Gross, E G; Bhuyan, K C; Abu-Libdeh, H

    1992-01-01

    This study was conducted to determine whether oral and/or topical selenium (Se) supplementation can reduce the incidence of acute and/or chronic damage to the skin (i.e., sunburn and pigmentation and/or skin cancer, respectively) induced by ultraviolet (UV) irradiation in mice. Groups of 38 BALB:c female mice or 16 Skh:2 hairless pigmented mice were treated with 1) lotion vehicle, 2) 0.02% L-selenomethionine (SeMet) lotion, or 3) vehicle and 1.5 ppm SeMet in the drinking water. Within each group, 30 BALB:c mice or 12 Skh:2 mice were given UV irradiation (Westinghouse FS 40 bulbs) three times per week in doses of 0.575 and 0.24 J/cm2, respectively. The animals' weights and food intakes and the Se concentrations of skin and liver were measured. Skin biopsies were taken from the backs and abdomens of all animals to evaluate the relative amounts of Se and the damage by UV irradiation. Skin pigmentation was scored, and the total number of clinically detectable skin tumors per animal was counted weekly. Results showed that the skin Se concentrations in areas of application of the lotion containing SeMet were greater than those of animals given comparable oral doses, while the Se concentrations of untreated skin and liver were similar to those of animals receiving oral Se. Mice treated with Se showed no signs of toxicity and had significantly less skin damage by UV irradiation, as indicated by reduced inflammation and pigmentation and by later onset and lesser incidence of skin cancer.

  17. A new, simple method for the production of meat-curing pigment under optimised conditions using response surface methodology.

    PubMed

    Soltanizadeh, Nafiseh; Kadivar, Mahdi

    2012-12-01

    The production of cured meat pigment using nitrite and ascorbate in acidic conditions was evaluated. HCl, ascorbate and nitrite concentrations were optimised at three levels using the response surface method (RSM). The effects of process variables on the nitrosoheme yield, the wavelength of maximum absorbance (λ(max)), and L*, a* and b* values were evaluated. The response surface equations indicate that variables exerted a significant effect on all dependent factors. The optimum combinations for the reaction were HCl=-0.8, ascorbate=0.46 and nitrite=1.00 as coded values for conversion of 1mM hemin to nitrosoheme, by which a pigment yield of 100%, which was similar to the predicted value of 99.5%, was obtained. Likewise, the other parameters were not significantly different from predicted values as the λ(max), L*, a* and b* values were 558 nm, 47.03, 45.17 and 17.20, respectively. The structure of the pigment was identified using FTIR and ESI/MS.

  18. Determination of pigments in vegetables.

    PubMed

    Schoefs, Benoît

    2004-10-29

    Plant pigments are responsible for the shining color of plant tissues. They are also found in animal tissues and, eventually in transformed food products as additives. These pigments have an important impact on the commercial value of products, because the colors establish the first contact with the consumer. In addition plant pigments may have an influence on the health of the consumers. Pigments are labile: they can be easily altered, and even destroyed. Analytical processes have been developed to determine pigment composition. The aim of this paper is to provide a brief overview of these methods.

  19. [Study of blue light induced DNA damage of retinal pigment epithelium(RPE) cells and the protection of vitamin C].

    PubMed

    Zhou, Jian Wei; Ren, Guo Liang; Zhang, Xiao Ming; Zhu, Xi; Lin, Hai Yan; Zhou, Ji Lin

    2003-10-01

    To evaluate protection of vitamin C on blue light-induced DNA damage of human retinal pigment epithelium (RPE) cells. The cultured RPE cells were divided into 3 groups: Control group (no blue light exposure), blue light exposure group (blue light exposure for 20 minutes) and blue light exposure + vitamin C group (blue light exposure + 100 mumol/L vitamin C). Travigen's comet assay kit and Euclid comet assay software were used to assay the DNA damage levels. The DNA percentage in the tail of electrophoretogram in the three groups were 18.44%, 54.42% and 32.43% respectively (p < 0.01). Tail moments were 8.2, 48.3, and 18.4 respectively (p < 0.01). Blue light could induce DNA damage to RPE cells but vitamin C could protect the RPE cells from the blue light-induced DNA damage.

  20. Endogenous circadian rhythms in pigment composition induce changes in photochemical efficiency in plant canopies.

    PubMed

    García-Plazaola, José Ignacio; Fernández-Marín, Beatriz; Ferrio, Juan Pedro; Alday, Josu G; Hoch, Günter; Landais, Damien; Milcu, Alexandru; Tissue, David T; Voltas, Jordi; Gessler, Arthur; Roy, Jacques; Resco de Dios, Víctor

    2017-01-18

    There is increasing evidence that the circadian clock is a significant driver of photosynthesis that becomes apparent when environmental cues are experimentally held constant. We studied whether the composition of photosynthetic pigments is under circadian regulation, and whether pigment oscillations lead to rhythmic changes in photochemical efficiency. To address these questions, canopies of bean and cotton were maintained, after an entrainment phase, under constant (light or darkness) conditions for 30-48 h. Photosynthesis and quantum yield peaked at subjective noon and non-photochemical quenching peaked at night. These oscillations were not associated to parallel changes in carbohydrate content or xanthophyll cycle activity. We observed robust oscillations of Chla/b during constant light in both species, and also under constant darkness in bean, peaking when it would have been night during the entrainment (subjective nights). These oscillations could be attributed to the synthesis and/or degradation of trimeric light-harvesting complex II (reflected by the rhythmic changes in Chla/b), with the antenna size minimal at night and maximal around subjective noon. Considering together the oscillations of pigments and photochemistry, the observed pattern of changes is counterintuitive if we assume that the plant strategy is to avoid photo-damage, but consistent with a strategy where non-stressed plants maximize photosynthesis.

  1. Monascus pigments.

    PubMed

    Feng, Yanli; Shao, Yanchun; Chen, Fusheng

    2012-12-01

    Monascus pigments (MPs) as natural food colorants have been widely utilized in food industries in the world, especially in China and Japan. Moreover, MPs possess a range of biological activities, such as anti-mutagenic and anticancer properties, antimicrobial activities, potential anti-obesity activities, and so on. So, in the past two decades, more and more attention has been paid to MPs. Up to now, more than 50 MPs have been identified and studied. However, there have been some reviews about red fermented rice and the secondary metabolites produced by Monascus, but no monograph or review of MPs has been published. This review covers the categories and structures, biosynthetic pathway, production, properties, detection methods, functions, and molecular biology of MPs.

  2. Acerola (Malpighia emarginata DC.) Juice Intake Suppresses UVB-Induced Skin Pigmentation in SMP30/GNL Knockout Hairless Mice

    PubMed Central

    Sato, Yasunori; Uchida, Eriko; Aoki, Hitoshi; Hanamura, Takayuki; Nagamine, Kenichi; Kato, Hisanori; Koizumi, Takeshi

    2017-01-01

    Background/Aims Acerola (Malpighia emarginata DC.) is a fruit that is known to contain high amounts of ascorbic acid (AA) and various phytochemicals. We have previously reported that AA deficiency leads to ultraviolet B (UVB)-induced skin pigmentation in senescence marker protein 30 (SMP30)/gluconolactonase (GNL) knockout (KO) hairless mice. The present study was undertaken to investigate the effects of acerola juice (AJ) intake on the skin of UVB-irradiated SMP30/GNL KO mice. Research design/Principal findings Five-week old hairless mice were given drinking water containing physiologically sufficient AA (1.5 g/L) [AA (+)], no AA [AA (-)] or 1.67% acerola juice [AJ]. All mice were exposed to UVB irradiation for 6 weeks. UVB irradiation was performed three times per week. The dorsal skin color and stratum corneum water content were measured every weekly, and finally, the AA contents of the skin was determined. The skin AA and stratum corneum water content was similar between the AA (+) and AJ groups. The L* value of the AA (+) group was significantly decreased by UVB irradiation, whereas AJ intake suppressed the decrease in the L* value throughout the experiment. Moreover, in the AJ group, there was a significant decrease in the expression level of dopachrome tautomerase, an enzyme that is involved in melanin biosynthesis. Conclusion These results indicate that AJ intake is effective in suppressing UVB-induced skin pigmentation by inhibiting melanogenesis-related genes. PMID:28114343

  3. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway.

    PubMed

    Eidet, J R; Reppe, S; Pasovic, L; Olstad, O K; Lyberg, T; Khan, A Z; Fostad, I G; Chen, D F; Utheim, T P

    2016-03-04

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin's potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated.

  4. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway

    PubMed Central

    Eidet, J. R.; Reppe, S.; Pasovic, L.; Olstad, O. K.; Lyberg, T.; Khan, A. Z.; Fostad, I. G.; Chen, D. F.; Utheim, T. P.

    2016-01-01

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated. PMID:26940175

  5. Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations

    NASA Astrophysics Data System (ADS)

    Antoine, David; Morel, André; André, Jean-Michel

    1995-08-01

    About 300 coastal zone color scanner (CZCS) scenes, gathered over the eastern Mediterranean basin mostly during the years 1979-1981, have been processed from level 1 by using improved pixel-by-pixel procedures for the atmospheric correction and pigment retrieval. The seasonal evolution of the upper ocean pigment concentration is described and analyzed within the whole basin and its subbasins. From the chlorophyll concentration in the top layer, and by using statistical relationships, the depth-integrated pigment content is estimated and used in conjunction with a light-photosynthesis model to estimate the carbon fixation. The model relies on a set of physiological parameters, selected after the validation of the light-photosynthesis model and not on locally measured parameters. Additional information needed in the modeling are the photosynthetically available radiation (computed from astronomic and atmospheric parameters, combined with a cloud climatology), sea temperature and mixed-layer depth (taken from Levitus (1982)). Actually, the model is used to generate look-up tables in such a way that all possible situations (concerning available radiation, chlorophyll concentration, and temperature) are covered. The appropriate situation associated with any pixel is selected from these tables to generate primary production maps. Despite a relatively good spatial coverage, studying the interannual variability of the pigment distribution and primary production appeared to be impossible. Therefore 12 "climatological" monthly chlorophyll maps have been produced by merging the data corresponding to several years. The carbon fixation rates in each of the subbasins have been computed on a monthly basis, and annual mean values derived thereafter. The primary production values are compared with sparse field determinations. They are also compared with those previously derived for the Western basin, also by using CZCS data (Morel and André, 1991). When put together, these

  6. Releasing intracellular product to prepare whole cell biocatalyst for biosynthesis of Monascus pigments in water-edible oil two-phase system.

    PubMed

    Hu, Minglue; Zhang, Xuehong; Wang, Zhilong

    2016-11-01

    Selective releasing intracellular product in Triton X-100 micelle aqueous solution to prepare whole cell biocatalyst is a novel strategy for biosynthesis of Monascus pigments, in which cell suspension culture exhibits some advantages comparing with the corresponding growing cell submerged culture. In the present work, the nonionic surfactant Triton X-100 was successfully replaced by edible plant oils for releasing intracellular Monascus pigments. High concentration of Monascus pigments (with absorbance nearly 710 AU at 470 nm in the oil phase, normalized to the aqueous phase volume approximately 142 AU) was achieved by cell suspension culture in peanut oil-water two-phase system. Furthermore, the utilization of edible oil as extractant also fulfills the demand for application of Monascus pigments as natural food colorant.

  7. Persistence of Pigment Production by Yeast Isolates Grown on CHROMagar Candida Medium

    PubMed Central

    Hospenthal, Duane R.; Murray, Clinton K.; Beckius, Miriam L.; Green, Judith A.; Dooley, David P.

    2002-01-01

    We evaluated the persistence of pigmentation in yeast isolates grown on the chromogenic medium CHROMagar Candida over 7 days. Candida, Cryptococcus, and Trichosporon isolates were inoculated alone or mixed onto duplicate sets of plates and incubated at 30 and 35°C. Candida albicans and Candida krusei were readily identified throughout the reading period, but Candida glabrata was difficult to differentiate from other species until the 3- or 4-day time point. Candida tropicalis produced colonies similar to those of rare Cryptococcus and Trichosporon species, and mixed cultures were often difficult to identify as such. PMID:12454192

  8. Absence of Protoheme IX Farnesyltransferase CtaB Causes Virulence Attenuation but Enhances Pigment Production and Persister Survival in MRSA

    PubMed Central

    Xu, Tao; Han, Jian; Zhang, Jia; Chen, Jiazhen; Wu, Nan; Zhang, Wenhong; Zhang, Ying

    2016-01-01

    The membrane protein CtaB in S. aureus is a protoheme IX farnesyltransferase involved in the synthesis of the heme containing terminal oxidases of bacterial respiratory chain. In this study, to assess the role of CtaB in S. aureus virulence, pigment production, and persister formation, we constructed a ctaB mutant in the methicillin-resistant Staphylococcus aureus (MRSA) strain USA500. We found that deletion of ctaB attenuated growth and virulence in mice but enhanced pigment production and formation of quinolone tolerant persister cells in stationary phase. RNA-seq analysis showed that deletion of ctaB caused decreased transcription of several virulence genes including RNAIII which is consistent with its virulence attenuation. In addition, transcription of 20 ribosomal genes and 24 genes involved in amino acid biosynthesis was significantly down-regulated in the ctaB knockout mutant compared with the parent strain. These findings suggest the importance of heme biosynthesis in virulence and persister formation of S. aureus. PMID:27822202

  9. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species.

    PubMed

    Benavente-Valdés, Juan Roberto; Aguilar, Cristóbal; Contreras-Esquivel, Juan Carlos; Méndez-Zavala, Alejandro; Montañez, Julio

    2016-06-01

    Microalgae are a major natural source for a vast array of valuable compounds as lipids, proteins, carbohydrates, pigments among others. Despite many applications, only a few species of microalgae are cultured commercially because of poorly developed of cultivation process. Nowadays some strategies of culture have been used for enhancing biomass and value compounds yield. The most strategies applied to microalgae are classified into two groups: nutrimental and physical. The nutrimental are considered as change in media composition as nitrogen and phosphorous limitation and changes in carbon source, while physical are described as manipulation in operational conditions and external factors such as application of high-light intensities, medium salinity and electromagnetic fields. The exposition to electromagnetic field is a promising technique that can improve the pigments and biomass yield in microalgae culture. Therefore, is important to describe the advantages and applications of the overall process. The aim of this review was to describe the main culture strategies used to improve the photosynthetic and lipids content in chlorophyceae species.

  10. Injury-induced biosynthesis of methyl-branched polyene pigments in a white-rotting basidiomycete.

    PubMed

    Schwenk, Daniel; Nett, Markus; Dahse, Hans-Martin; Horn, Uwe; Blanchette, Robert A; Hoffmeister, Dirk

    2014-12-26

    A stereaceous basidiomycete was investigated with regard to its capacity to produce yellow pigments after physical injury of the mycelium. Two pigments were isolated from mycelial extracts, and their structures were elucidated by ESIMS and one- and two-dimensional NMR methods. The structures were identified as the previously undescribed polyenes (3Z,5E,7E,9E,11E,13Z,15E,17E)-18-methyl-19-oxoicosa-3,5,7,9,11,13,15,17-octaenoic acid (1) and (3E,5Z,7E,9E,11E,13E,15Z,17E,19E)-20-methyl-21-oxodocosa-3,5,7,9,11,13,15,17,19-nonaenoic acid (2). Stable-isotope feeding with [1-(13)C]acetate and l-[methyl-(13)C]methionine demonstrated a polyketide backbone and that the introduction of the sole methyl branch is most likely S-adenosyl-l-methionine-dependent. Dose-dependent inhibition of Drosophila melanogaster larval development was observed with both polyenes in concentrations between 12.5 and 100 μM. GI50 values for 1 and 2 against HUVEC (K-562 cells) were 71.6 and 17.4 μM (15.4 and 1.1 μM), respectively, whereas CC50 values for HeLa cells were virtually identical (44.1 and 45.1 μM).

  11. Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells.

    PubMed

    Merl-Pham, Juliane; Gruhn, Fabian; Hauck, Stefanie M

    2016-01-01

    Age-related macular degeneration (AMD) is a medical condition usually affecting older adults and resulting in a loss of vision in the macula, the center of the visual field. The dry form of this disease presents with atrophy of the retinal pigment epithelium, resulting in the detachment of the retina and loss of photoreceptors. Cigarette smoke is one main risk factor for dry AMD and increases the risk of developing the disease by three times. In order to understand the influence of cigarette smoke on retinal pigment epithelial cells, cultured human ARPE-19 cells were treated with cigarette smoke extract for 24 h. Using quantitative mass spectrometry more than 3000 proteins were identified and their respective abundances were compared between cigarette smoke-treated and untreated cells. Altogether 1932 proteins were quantified with at least two unique peptides, with 686 proteins found to be significantly differentially abundant with p > 0.05. Of these proteins the abundance of 64 proteins was at least 2-fold down-regulated after cigarette smoke treatment while 120 proteins were 2-fold up-regulated. The analysis of associated biological processes revealed an alteration of proteins involved in RNA processing and transport as well as extracellular matrix remodelling in response to cigarette smoke treatment.

  12. Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool

    PubMed Central

    Iwasaki, Yuko; Sugita, Sunao; Mandai, Michiko; Yonemura, Shigenobu; Onishi, Akishi; Ito, Shin-ichiro; Mochizuki, Manabu; Ohno-Matsui, Kyoko; Takahashi, Masayo

    2016-01-01

    Purpose To establish a novel protocol for differentiation of retinal pigment epithelium (RPE) with high purity from mouse induced pluripotent stem cells (iPSC). Methods Retinal progenitor cells were differentiated from mouse iPSC, and RPE differentiation was then enhanced by activation of the Wnt signaling pathway, inhibition of the fibroblast growth factor signaling pathway, and inhibition of the Rho-associated, coiled-coil containing protein kinase signaling pathway. Expanded pigmented cells were purified by plate adhesion after Accutase® treatment. Enriched cells were cultured until they developed a cobblestone appearance with cuboidal shape. The characteristics of iPS-RPE were confirmed by gene expression, immunocytochemistry, and electron microscopy. Functions and immunologic features of the iPS-RPE were also evaluated. Results We obtained iPS-RPE at high purity (approximately 98%). The iPS-RPE showed apical-basal polarity and cellular structure characteristic of RPE. Expression levels of several RPE markers were lower than those of freshly isolated mouse RPE but comparable to those of primary cultured RPE. The iPS-RPE could form tight junctions, phagocytose photoreceptor outer segments, express immune antigens, and suppress lymphocyte proliferation. Conclusion We successfully developed a differentiation/purification protocol to obtain mouse iPS-RPE. The mouse iPS-RPE can serve as an attractive tool for functional and morphological studies of RPE. PMID:27385038

  13. Ultraviolet B-induced tumors in pigmented hairless mice, with an unsuccessful attempt to induce cutaneous melanoma.

    PubMed

    van Weelden, H; van der Putte, S C; Toonstra, J; van der Leun, J C

    1990-04-01

    An animal experiment is presented in which pigmented hairless mice were exposed once per fortnight to high doses of ultraviolet B (UVB) to study tumorigenesis. The aim of the study was to confirm a causal relationship between cutaneous melanoma and UV radiation, and to find an animal model to study it. The experiment was based on the hypothesis that the risk of developing a melanoma is increased by a history of severe sunburns. Pigmented hairless mice, Skh-hr2, were exposed once every fortnight to high doses of UVB radiation from fluorescent sunlamps, Westinghouse FS40 T12. Heavy actinic damage was observed for several days after each exposure. Seventeen of the 24 animals eventually developed tumors. Histopathologically, 80% of the tumors were squamous cell carcinomas. Depositions of melanophages were observed, but no melanomas. In this mouse experiment no causal relationship between cutaneous melanomas and UV radiation could be established.

  14. Characterization of major betalain pigments -gomphrenin, betanin and isobetanin from Basella rubra L. fruit and evaluation of efficacy as a natural colourant in product (ice cream) development.

    PubMed

    Kumar, S Sravan; Manoj, P; Shetty, N P; Prakash, Maya; Giridhar, P

    2015-08-01

    Basella rubra L. (Basellaceae) commonly known as Malabar spinach is a leafy vegetable which accumulates pigments in its fruits. To find out the feasibility of utilizing pigment rich extracts of its fruit as natural food colourant, fruits at different stages were analysed for pigment profiling, carbohydrate content, physical dimensions and weight. Total betalains content increased rapidly from early (green) through intermediate (half-done red-violet) to matured stage (red-violet). Maximum pigment content was observed in ripened fruits (143.76 mg/100 g fresh weight). The major betalain pigment characterized was gomphrenin I in ripened fruits (26.06 mg), followed by intermediate fruits (2.15 mg) and least in early fruits (0.23 mg) in 100 g of fresh deseeded fruits. Total carbohydrates content and the chroma values (redness) were also increased during ontogeny of B. rubra fruits. The textural characters of developing fruits showed the smoothness of green fruits with lower rupture force (0.16 N/s) than ripe ones (0.38 N/s). The pigment-rich fruit extract was used as natural colourant in ice-cream, to evaluate its effect on physicochemical properties and acceptability of the product. After six months of storage at -20 °C, 86.63 % colour was retained in ice-cream. The ice-cream had good overall sensorial quality and was liked by consumers indicating that addition of B. rubra fruit extract did not alter the sensory quality of the product. The colour values also indicate that there was no significant decrease of this pigment-rich extracts of fruits for its incorporation in food products.

  15. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy

    NASA Astrophysics Data System (ADS)

    Osticioli, I.; Mendes, N. F. C.; Nevin, A.; Gil, Francisco P. S. C.; Becucci, M.; Castellucci, E.

    2009-08-01

    Pulsed laser induced breakdown spectroscopy (LIBS) and Raman spectroscopy were performed using a novel laboratory setup employing the same Nd:YAG laser emission at 532 nm for the analysis of five commercially available pigments collectively known as "ultramarine blue", a sodium silicate material of either mineral origin or an artificially produced glass. LIBS and Raman spectroscopy have provided information regarding the elemental and molecular composition of the samples; additionally, an analytical protocol for the differentiation between natural (lapis lazuli) and artificial ultramarine blue pigments is proposed. In particular LIBS analysis has allowed the discrimination between pigments on the basis of peaks ascribed to calcium. The presence of calcite in the natural blue pigments has been confirmed following Raman spectroscopy in specific areas of the samples, and micro-Raman and optical microscopy have further corroborated the presence of calcite inclusions in the samples of natural origin. Finally multivariate analysis of Laser induced breakdown spectra using principal component analysis (PCA) further enhanced the differentiation between natural and artificial ultramarine blue pigments.

  16. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy.

    PubMed

    Osticioli, I; Mendes, N F C; Nevin, A; Gil, Francisco P S C; Becucci, M; Castellucci, E

    2009-08-01

    Pulsed laser induced breakdown spectroscopy (LIBS) and Raman spectroscopy were performed using a novel laboratory setup employing the same Nd:YAG laser emission at 532 nm for the analysis of five commercially available pigments collectively known as "ultramarine blue", a sodium silicate material of either mineral origin or an artificially produced glass. LIBS and Raman spectroscopy have provided information regarding the elemental and molecular composition of the samples; additionally, an analytical protocol for the differentiation between natural (lapis lazuli) and artificial ultramarine blue pigments is proposed. In particular LIBS analysis has allowed the discrimination between pigments on the basis of peaks ascribed to calcium. The presence of calcite in the natural blue pigments has been confirmed following Raman spectroscopy in specific areas of the samples, and micro-Raman and optical microscopy have further corroborated the presence of calcite inclusions in the samples of natural origin. Finally multivariate analysis of Laser induced breakdown spectra using principal component analysis (PCA) further enhanced the differentiation between natural and artificial ultramarine blue pigments.

  17. Phase shifts of the circadian locomotor rhythm induced by pigment-dispersing factor in the cricket Gryllus bimaculatus.

    PubMed

    Singaravel, Muniyandi; Fujisawa, Yuko; Hisada, Miki; Saifullah, A S M; Tomioka, Kenji

    2003-11-01

    Pigment-dispersing factors (PDFs) are octadeca-peptides widely distributed in insect optic lobes and brain. In this study, we have purified PDF and determined its amino acid sequence in the cricket Gryllus bimaculatus. Its primary structure was NSEIINSLLGLPKVLNDA-NH(2), homologous to other PDH family members so far reported. When injected into the optic lobe of experimentally blinded adult male crickets, Gryllus-PDF induced phase shifts in their activity rhythms in a phase dependent and dose dependent manner. The resulted phase response curve (PRC) showed delays during the late subjective night to early subjective day and advances during the mid subjective day to mid subjective night. The PRC was different in shape from those for light, serotonin and temperature. These results suggest that PDF plays a role in phase regulation of the circadian clock through a separate pathway from those of other known phase regulating agents.

  18. Pigment distribution and primary production in the western Mediterranean as derived and modeled from coastal zone color scanner observations

    NASA Astrophysics Data System (ADS)

    Morel, André; André, Jean-Michel

    1991-07-01

    A set of 114 coastal zone color scanner (CZCS) images of the western Mediterranean (mainly in the year 1981) have been processed and analyzed to describe the algal biomass evolution and estimate its potential carbon fixation. For that, the pigment concentration in the top layer, Csat, is used through empirical relationships to infer the depth-integrated pigment content of the productive column, tot. A spectral light-photosynthesis model driven by tot is operated with additional information, namely, about sea temperature and photosynthetically available radiation (computed from astronomical and atmospherical parameters then combined with a cloud climatology). This model also includes a standard set of physiological parameters which account for the light capture by algae and for the use of this radiant energy in photosynthesis. This model allows a climatology of ψ* the cross section for photosynthesis per unit of areal chlorophyll, to be produced and then convoluted with the biomass maps after they have been averaged and composited. On average and for the whole western Mediterranean, the pigment concentration in the upper layer is about 0.25 mg Chl m-3, leading to an areal mean concentration of 21 mg Chl m-2. The maximum (bloom) occurs in early May in all zones. Seasonal variations in algal biomass are much more marked in the northern part than in the southern part (apart from Alboran Sea); the south Tyrrhenian basin and the central part of the Algerian basin are steadily oligotrophic. The mean annual carbon fixation rate for the whole basin is about 94 g C m-2 yr-1, or 106 and 87, for the northern and southern basins when separately considered. The seasonality is expressed by a six-fold change in the production rate (between February and May) within the northern zone, whereas only a two-fold change occurs in the southern zone between the same months. These estimates, which compare well with previous episodic field data, considerably extend our knowledge of

  19. Impaired cholecystokinin-induced gallbladder emptying incriminated in spontaneous "black" pigment gallstone formation in germfree Swiss Webster mice.

    PubMed

    Woods, Stephanie E; Leonard, Monika R; Hayden, Joshua A; Brophy, Megan Brunjes; Bernert, Kara R; Lavoie, Brigitte; Muthupalani, Sureshkumar; Whary, Mark T; Mawe, Gary M; Nolan, Elizabeth M; Carey, Martin C; Fox, James G

    2015-02-15

    "Black" pigment gallstones form in sterile gallbladder bile in the presence of excess bilirubin conjugates ("hyperbilirubinbilia") from ineffective erythropoiesis, hemolysis, or induced enterohepatic cycling (EHC) of unconjugated bilirubin. Impaired gallbladder motility is a less well-studied risk factor. We evaluated the spontaneous occurrence of gallstones in adult germfree (GF) and conventionally housed specific pathogen-free (SPF) Swiss Webster (SW) mice. GF SW mice were more likely to have gallstones than SPF SW mice, with 75% and 23% prevalence, respectively. In GF SW mice, gallstones were observed predominately in heavier, older females. Gallbladders of GF SW mice were markedly enlarged, contained sterile black gallstones composed of calcium bilirubinate and <1% cholesterol, and had low-grade inflammation, edema, and epithelial hyperplasia. Hemograms were normal, but serum cholesterol was elevated in GF compared with SPF SW mice, and serum glucose levels were positively related to increasing age. Aged GF and SPF SW mice had deficits in gallbladder smooth muscle activity. In response to cholecystokinin (CCK), gallbladders of fasted GF SW mice showed impaired emptying (females: 29%; males: 1% emptying), whereas SPF SW females and males emptied 89% and 53% of volume, respectively. Bilirubin secretion rates of GF SW mice were not greater than SPF SW mice, repudiating an induced EHC. Gallstones likely developed in GF SW mice because of gallbladder hypomotility, enabled by features of GF physiology, including decreased intestinal CCK concentration and delayed intestinal transit, as well as an apparent genetic predisposition of the SW stock. GF SW mice may provide a valuable model to study gallbladder stasis as a cause of black pigment gallstones.

  20. Pigment Epithelium-Derived Factor (PEDF) Protects Osteoblastic Cell Line from Glucocorticoid-Induced Apoptosis via PEDF-R

    PubMed Central

    Yao, Shengcheng; Zhang, Yingnan; Wang, Xiaoyu; Zhao, Fengchao; Sun, Maji; Zheng, Xin; Dong, Hongyan; Guo, Kaijin

    2016-01-01

    Pigment epithelial-derived factor (PEDF) is known as a widely expressed multifunctional secreted glycoprotein whose biological actions are cell-type dependent. Recent studies demonstrated that PEDF displays cytoprotective activity in several cell types. However, it remains unknown whether PEDF is involved in glucocorticoid-induced osteoblast death. The aim of this study was to examine the role of PEDF in osteoblast survival in response to dexamethasone, an active glucocorticoid analogue, and explore the underlying mechanism. In the present study, dexamethasone (DEX) was used to induce MC3T3-E1 pre-osteoblast apoptosis. PEDF mRNA and protein levels and cell apoptosis were determined respectively. Then PEDF receptor (PEDF-R)- and lysophosphatidic acid (LPA)-related signal transductions were assessed. Here we show that DEX down-regulates PEDF expression, which contributes to osteoblast apoptosis. As a result, exogenous recombinant PEDF (rPEDF) inhibited DEX-induced cell apoptosis. We confirmed that PEDF-R was expressed on MC3T3-E1 pre-osteoblast membrane and could bind to PEDF which increased the level of LPA and activated the phosphorylation of Akt. Our results suggest that PEDF attenuated DEX-induced apoptosis in MC3T3-E1 pre-osteoblasts through LPA-dependent Akt activation via PEDF-R. PMID:27187377

  1. Pigment Epithelium-Derived Factor (PEDF) Protects Osteoblastic Cell Line from Glucocorticoid-Induced Apoptosis via PEDF-R.

    PubMed

    Yao, Shengcheng; Zhang, Yingnan; Wang, Xiaoyu; Zhao, Fengchao; Sun, Maji; Zheng, Xin; Dong, Hongyan; Guo, Kaijin

    2016-05-13

    Pigment epithelial-derived factor (PEDF) is known as a widely expressed multifunctional secreted glycoprotein whose biological actions are cell-type dependent. Recent studies demonstrated that PEDF displays cytoprotective activity in several cell types. However, it remains unknown whether PEDF is involved in glucocorticoid-induced osteoblast death. The aim of this study was to examine the role of PEDF in osteoblast survival in response to dexamethasone, an active glucocorticoid analogue, and explore the underlying mechanism. In the present study, dexamethasone (DEX) was used to induce MC3T3-E1 pre-osteoblast apoptosis. PEDF mRNA and protein levels and cell apoptosis were determined respectively. Then PEDF receptor (PEDF-R)- and lysophosphatidic acid (LPA)-related signal transductions were assessed. Here we show that DEX down-regulates PEDF expression, which contributes to osteoblast apoptosis. As a result, exogenous recombinant PEDF (rPEDF) inhibited DEX-induced cell apoptosis. We confirmed that PEDF-R was expressed on MC3T3-E1 pre-osteoblast membrane and could bind to PEDF which increased the level of LPA and activated the phosphorylation of Akt. Our results suggest that PEDF attenuated DEX-induced apoptosis in MC3T3-E1 pre-osteoblasts through LPA-dependent Akt activation via PEDF-R.

  2. Photosynthetic Pigments in Diatoms

    PubMed Central

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. PMID:26389924

  3. Photosynthetic Pigments in Diatoms.

    PubMed

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  4. Hyperglycemia induces apoptosis via CB1 activation through the decrease of FAAH 1 in retinal pigment epithelial cells.

    PubMed

    Lim, Seul Ki; Park, Min Jung; Lim, Jae Cheong; Kim, Jong Choon; Han, Ho Jae; Kim, Gye-Yeop; Cravatt, Benjamin F; Woo, Chang Hoon; Ma, Seung Jin; Yoon, Kyung Cheol; Park, Soo Hyun

    2012-02-01

    Fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the main endocannabinoid, anandamide, and related fatty acid amides, has emerged as a regulator of endocannabinoid signaling. Retinal pigment epithelial (RPE) cells are believed to be important cells in the pathogenesis of diabetic retinopathy. However, the pathophysiology of FAAH in diabetic retinopathy has not been determined. Thus, we examined the effect of high glucose (HG) on the expression of FAAH and CB(1)R in the ARPE-19 human RPE cells. We found that HG downregulated the expression of FAAH 1 mRNA and protein in ARPE-19 cells. In contrast, it upregulated the expression of CB(1)R mRNA and protein. HG-induced internalization of CB(1)R in HEK 293 cells and ARPE-19 cells was blocked by overexpression of FAAH 1 and treatment with the CB(1)R blocker, AM 251. HG-induced generation of reactive oxygen species and lipid peroxide formation were blocked by the overexpression of FAAH 1. FAAH 1 overexpression also blocked HG-induced expression of CB(1)R in the cytosolic fraction. We also investigated whether the overexpression of FAAH 1 protected against HG-induced apoptosis. High glucose increased the Bax/Bcl-2 ratio and levels of cleaved PARP, cleaved caspase-9 and caspase-3, and reduced cell viability. HG-induced apoptotic effects were reduced by the overexpression of FAAH 1, treatment with the CB(1)R-specific antagonist AM 251 and CB(1)R siRNA transfection. In conclusion, HG-induced apoptosis in ARPE-19 cells by inducing CB(1)R expression through the downregulation of FAAH 1 expression. Our results provide evidence that CB(1)R blockade through the recovery of FAAH 1 expression may be a potential anti-diabetic therapy for the treatment of diabetic retinopathy.

  5. Bacterial production of sunscreen pigments increase arid land soil surface temperature

    NASA Astrophysics Data System (ADS)

    Couradeau, Estelle; Karaoz, Ulas; Lim, HsiaoChien; Nunes da Rocha, Ulisses; Northern, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2015-04-01

    Biological Soil Crusts (BSCs) are desert top soils formations built by complex microbial communities and dominated by the filamentous cyanobacterium Microcoleus sp. BSCs cover extensive desert areas where they correspond to millimeters size mantles responsible of soil stability and fertility. Despite their ecological importance, little is known about how these communities will endure climate change. It has been shown in North America that different species of Microcoleus showed distinct temperature preferences and that their continental biogeography may be susceptible to small changes in temperature with unknown consequences for the ecosystem function. Using a combination of physical, biochemical and microbiological analyses to characterize a successional gradient of crust maturity from light to dark BSCs (Moab, Utah) we found that the concentration of scytonemin (a cyanobacterial sunscreen pigment) increased with crust maturity. We also confirmed that scytonemin was by far the major pigment responsible of light absorption in the visible spectrum in BSCs, and is then responsible of the darkening of the BSCs (i.e decrease of albedo) with maturity. We measured the surface temperature and albedo and found, as predicted, a negative linear relationship between these two parameters. The decrease in albedo across the gradient of crust maturity corresponded to an increase in surface temperature up to 10° C. Upon investigation of microbial community composition using SSU rRNA gene analysis, we demonstrate that warmer crust surface temperatures (decreased albedo) are associated with a replacement of the dominant cyanobacterium; the thermosensitive Microcoleus sp. being replaced by a thermotolerant Microcoleus sp. in darker BSCs. This study supports at the local scale a finding previously made at the continental scale, but also sheds light on the importance of scytonemin as a significant warmer of soils with important consequences for BSC composition and function. Based on

  6. Phloroglucinol protects retinal pigment epithelium and photoreceptor against all-trans-retinal-induced toxicity and inhibits A2E formation.

    PubMed

    Cia, David; Cubizolle, Aurélie; Crauste, Céline; Jacquemot, Nathalie; Guillou, Laurent; Vigor, Claire; Angebault, Claire; Hamel, Christian P; Vercauteren, Joseph; Brabet, Philippe

    2016-09-01

    Among retinal macular diseases, the juvenile recessive Stargardt disease and the age-related degenerative disease arise from carbonyl and oxidative stresses (COS). Both stresses originate from an accumulation of all-trans-retinal (atRAL) and are involved in bisretinoid formation by condensation of atRAL with phosphatidylethanolamine (carbonyl stress) in the photoreceptor and its transformation into lipofuscin bisretinoids (oxidative stress) in the retinal pigment epithelium (RPE). As atRAL and bisretinoid accumulation contribute to RPE and photoreceptor cell death, our goal is to select powerful chemical inhibitors of COS. Here, we describe that phloroglucinol, a natural phenolic compound having anti-COS properties, protects both rat RPE and mouse photoreceptor primary cultures from atRAL-induced cell death and reduces hydrogen peroxide (H2 O2 )-induced damage in RPE in a dose-dependent manner. Mechanistic analyses demonstrate that the protective effect encompasses decrease in atRAL-induced intracellular reactive oxygen species and free atRAL levels. Moreover, we show that phloroglucinol reacts with atRAL to form a chromene adduct which prevents bisretinoid A2E synthesis in vitro. Taken together, these data show that the protective effect of phloroglucinol correlates with its ability to trap atRAL and to prevent its further transformation into deleterious bisretinoids. Phloroglucinol might be a good basis to develop efficient therapeutic derivatives in the treatment of retinal macular diseases.

  7. Maize Purple Plant Pigment Protects Against Fluoride-Induced Oxidative Damage of Liver and Kidney in Rats

    PubMed Central

    Zhang, Zhuo; Zhou, Bo; Wang, Hiaohong; Wang, Fei; Song, Yingli; Liu, Shengnan; Xi, Shuhua

    2014-01-01

    Anthocyanins are polyphenols and well known for their biological antioxidative benefits. Maize purple plant pigment (MPPP) extracted and separated from maize purple plant is rich in anthocyanins. In the present study, MPPP was used to alleviate the adverse effects generated by fluoride on liver and kidney in rats. The results showed that the ultrastructure of the liver and kidney in fluoride treated rats displayed shrinkage of nuclear and cell volume, swollen mitochondria and endoplasmic reticulum and vacuols formation in the liver and kidney cells. MPPP significantly attenuated these fluoride-induced pathological changes. The MDA levels in serum and liver tissue of fluoride alone treated group were significantly higher than those of the control group (p < 0.05). The presence of 5 g/kg MPPP in the diet reduced the elevation of MDA levels in blood and liver, and increased the SOD and GSH-Px activities in kidney and GSH level in liver and kidney compared with the fluoride alone treated group (p < 0.05). In addition, MPPP alleviated the decrease of Bcl-2 protein expression and the increase of Bax protein expression induced by fluoride. This study demonstrated the protective role of MPPP against fluoride-induced oxidative stress in liver and kidney of rats. PMID:24419046

  8. Light-induced damage and its diagnosis in two-photon excited autofluorescence imaging of retinal pigment epithelium cells

    NASA Astrophysics Data System (ADS)

    Chen, Danni; Qu, Junle; Xu, Gaixia; Zhao, Lingling; Niu, Hanben

    2007-05-01

    In this paper, a novel method for the differentiation of the retinal pigment epithelium (RPE) cells after light-induced damage by two-photon excitation is presented. Fresh samples of RPE cells of pig eyes are obtained from local slaughterhouse. Light-induced damage is produced by the output from Ti: sapphire laser which is focused onto the RPE layer. We study the change of the autofluorescence properties of RPE after two-photon excitation with the same wavelength. Preliminary results show that after two-photon excitation, there are two clear changes in the emission spectrum. The first change is the blue-shift of the emission peak. The emission peak of the intact RPE is located at 592nm, and after excitation, it shifts to 540nm. It is supposed that the excitation has led to the increased autofluorescence of flavin whose emission peak is located at 540nm. The second change is the increased intensity of the emission peak, which might be caused by the accelerated aging because the autofluorescence of RPE would increase during aging process. Experimental results indicate that two-photon excitation could not only lead to the damage of the RPE cells in multiphoton RPE imaging, but also provide an evaluation of the light-induced damage.

  9. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation

    PubMed Central

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-01-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD. PMID:26619957

  10. Quantification of UV-induced erythema and pigmentation using computer-assisted digital image evaluation.

    PubMed

    Coelho, Sergio G; Miller, Sharon A; Zmudzka, Barbara Z; Beer, Janusz Z

    2006-01-01

    Photography has been used in human skin research for some time. With the advent of digital photography in recent years, its use has increased. However, the focus has now turned from documentation to actual analysis and quantification of skin color changes. The advantages of digital photography outweigh any shortcomings as long as consistent, standardized procedures are followed and quality control is implemented. We present a simple procedure to standardize images and discuss a computer-assisted digital image evaluation (CADIE) technique to quantify skin color changes following UV exposure. The CADIE approach is illustrated with examples from two different studies on UV responses in human skin. Using the Commission Internationale de l'Eclairage L*a*b* color coordinate system in combination with a personal computer and image-editing software, we analyzed digital images obtained in these two studies. We demonstrate the feasibility of using digital photography for objective evaluation of UV erythema in different racial/ethnic groups and for measuring pigmentation changes caused by repeated exposures over a period of several weeks. Our results indicate how objective assessment using CADIE can be an adjunct to visual and optical observation in clinical and scientific evaluations.

  11. Dynamics and detection of laser induced microbubbles in the retinal pigment epithelium (RPE)

    NASA Astrophysics Data System (ADS)

    Fritz, Andreas; Ptaszynski, Lars; Stoehr, Hardo; Brinkmann, Ralf

    2007-07-01

    Selective Retina Treatment (SRT) is a new method to treat eye diseases associated with disorders of the RPE. Selective RPE cell damage is achieved by applying a train of 1.7 μs laser pulses at 527 nm. The treatment of retinal diseases as e.g. diabetic maculopathy (DMP), is currently investigated within clinical studies, however 200 ns pulse durations are under investigation. Transient micro bubbles in the retinal pigment epithelium (RPE) are expected to be the origin of cell damage due to irradiation with laser pulses shorter than 50 μs. The bubbles emerge at the strongly absorbing RPE melanosomes. Cell membrane disruption caused by the transient associated volume increase is expected to be the origin of the angiographically observed RPE leakage. We investigate micro bubble formation and dynamics in porcine RPE using pulse durations of 150 ns. A laser interferometry system at 830 nm with the aim of an online dosimetry control for SRT was developed. Bubble formation was detected interferometrically and by fast flash photography. A correlation to cell damage observed with a vitality stain is found. A bubble detection algorithm is presented.

  12. Paprika Pigments Attenuate Obesity-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Maeda, Hayato; Saito, Shuuichi; Nakamura, Nozomi; Maoka, Takashi

    2013-01-01

    Obesity is related to various diseases, such as diabetes, hyperlipidemia, and hypertension. Adipocytokine, which is released from adipocyte cells, affects insulin resistance and blood lipid level disorders. Further, adipocytokine is related to chronic inflammation in obesity condition adipocyte cells. Paprika pigments (PPs) contain large amounts of capsanthin and capsorubin. These carotenoids affect the liver and improve lipid disorders of the blood. However, how these carotenoids affect adipocyte cells remains unknown. Present study examined the effects of PP on adipocytokine secretion, which is related to improvement of metabolic syndrome. In addition, suppressive effects of PP on chronic inflammation in adipocyte cells were analyzed using 3T3-L1 adipocyte cells and macrophage cell coculture experiments. PP promoted 3T3-L1 adipocyte cells differentiation upregulated adiponectin mRNA expression and secretion. Further, coculture of adipocyte and macrophage cells treated with PP showed suppressed interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), and resistin mRNA expression, similarly to treatment with troglitazone, which is a PPARγ ligand medicine. Conclusion. These results suggest that PP ameliorates chronic inflammation in adipocytes caused by obesity. PP adjusts adipocytokine secretion and might, therefore, affect antimetabolic syndrome diseases. PMID:24049664

  13. Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos.

    PubMed Central

    Lin, S; Long, W; Chen, J; Hopkins, N

    1992-01-01

    To determine whether embryonic cells transplanted from one zebrafish embryo to another can contribute to the germ line of the recipient, and to determine whether pigmentation can be used as a dominant visible marker to monitor cell transplants, we introduced cells from genetically pigmented (donor) embryos to albino recipients at midblastula stage. By 48 hr many of the resulting chimeras expressed dark pigment in their eyes and bodies, characteristics of donor but not albino embryos. By 4-6 weeks of age pigmentation was observed on the body of 23 of 70 chimeras. In contrast to fully pigmented wild-type fish, pigmentation in chimeras appeared within transverse bands running from dorsal to ventral. Pigmentation patterns differed from one fish to another and in almost every case were different on each side of a single fish. At 2-3 months of age chimeras were mated to albino fish to determine whether pigmented donor cells had contributed to the germ line. Of 28 chimeric fish that have yielded at least 50 offspring each, 5 have given rise to pigmented progeny at frequencies of 1-40%. The donor cells for some chimeras were derived from embryos that, in addition to being pigmented, were transgenic for a lacZ plasmid. Pigmented offspring of some germ-line chimeras inherited the transgene, confirming that they descended from transplanted donor cells. Our ability to make germ-line chimeras suggests that it is possible to introduce genetically engineered cells into zebrafish embryos and to identify the offspring of these cells by pigmentation at 2 days of age. Images PMID:1584786

  14. miRNA-141 attenuates UV-induced oxidative stress via activating Keap1-Nrf2 signaling in human retinal pigment epithelium cells and retinal ganglion cells.

    PubMed

    Cheng, Li-Bo; Li, Ke-Ran; Yi, Nan; Li, Xiu-Miao; Wang, Feng; Xue, Bo; Pan, Ying-Shun; Yao, Jin; Jiang, Qin; Wu, Zhi-Feng

    2017-01-04

    Activation of NF-E2-related factor 2 (Nrf2) signaling could protect cells from ultra violet (UV) radiation. We aim to provoke Nrf2 activation via downregulating its inhibitor Keap1 by microRNA-141 ("miR-141"). In both human retinal pigment epithelium cells (RPEs) and retinal ganglion cells (RGCs), forced-expression of miR-141 downregulated Keap1, causing Nrf2 stabilization, accumulation and nuclear translocation, which led to transcription of multiple antioxidant-responsive element (ARE) genes (HO1, NOQ1 and GCLC). Further, UV-induced reactive oxygen species (ROS) production and cell death were significantly attenuated in miR-141-expressing RPEs and RGCs. On the other hand, depletion of miR-141 via expressing its inhibitor antagomiR-141 led to Keap1 upregulation and Nrf2 degradation, which aggravated UV-induced death of RPEs and RGCs. Significantly, Nrf2 shRNA knockdown almost abolished miR-141-mediated cytoprotection against UV in RPEs. These results demonstrate that miR-141 targets Keap1 to activate Nrf2 signaling, which protects RPEs and RGCs from UV radiation.

  15. Neutrino-Induced Meson Productions

    NASA Astrophysics Data System (ADS)

    Nakamura, Satoshi X.

    We develop a dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region, by extending the DCC model that we have previously developed through an analysis of π N,γ N to π N,η N,KΛ ,KΣ reaction data for W ≤ 2.1 GeV. We analyze electron-induced reaction data for both proton and neutron targets to determine the vector current form factors up to Q2 ≤ 3.0 (GeV/c)2. Axial-current matrix elements are derived in accordance with the Partially Conserved Axial Current (PCAC) relation to the πN interactions of the DCC model. As a result, we can uniquely determine the interference pattern between resonant and non-resonant amplitudes. Our calculated cross sections for neutrino-induced single-pion productions are compared with available data, and are found to be in reasonable agreement with the data. We also calculate the double-pion production cross sections in the resonance region, for the first time, with relevant resonance contributions and channel couplings. The result is compared with the double-pion production data. For a future development of a neutrino-nucleus reaction model and/or a neutrino event generator for analyses of neutrino experiments, the DCC model presented here can give a useful input.

  16. Enhancement of yellow pigment production by intraspecific protoplast fusion of Monascus spp. yellow mutant (ade(-)) and white mutant (prototroph).

    PubMed

    Klinsupa, Worawan; Phansiri, Salak; Thongpradis, Panida; Yongsmith, Busaba; Pothiratana, Chetsada

    2016-01-10

    To breed industrially useful strains of a slow-growing, yellow pigment producing strain of Monascus sp., protoplasts of Monascus purpureus yellow mutant (ade(-)) and rapid-growing M. purpureus white mutant (prototroph) were fused and fusants were selected on minimal medium (MM). Preliminary conventional protoplast fusion of the two strains was performed and the result showed that only white colonies were detected on MM. It was not able to differentiate the fusants from the white parental prototroph. To solve this problem, the white parental prototroph was thus pretreated with 20mM iodoacetamide (IOA) for cytoplasm inactivation and subsequently taken into protoplast fusion with slow-growing Monascus yellow mutant. Under this development technique, only the fusants, with viable cytoplasm from Monascus yellow mutant (ade(-)), could thus grow on MM, whereas neither IOA pretreated white parental prototroph nor yellow auxotroph (ade(-)) could survive. Fifty-three fusants isolated from yellow colonies obtained through this developed technique were subsequently inoculated on complete medium (MY agar). Fifteen distinguished yellow colonies from their parental yellow mutant were then selected for biochemical, morphological and fermentative properties in cassava starch and soybean flour (SS) broth. Finally, three most stable fusants (F7, F10 and F43) were then selected and compared in rice solid culture. Enhancement of yellow pigment production over the parental yellow auxotroph was found in F7 and F10, while enhanced glucoamylase activity was found in F43. The formation of fusants was further confirmed by monacolin K content, which was intermediate between the two parents (monacolin K-producing yellow auxotroph and non-monacolin K producing white prototroph).

  17. Evaluation of lipofuscin-like pigments as an index of lead-induced oxidative damage in the brain.

    PubMed

    Patková, Jana; Vojtíšek, Max; Tůma, Jan; Vožeh, František; Knotková, Jana; Santorová, Pavlína; Wilhelm, Jiří

    2012-01-01

    This study was carried out to investigate the role of lead in the development of oxidative stress in the brain. We examined the rate of lipid peroxidation and we determined lipid fluorescence products (lipofuscin-like pigments - LFP) as a marker of lipid peroxidation after short in vitro incubation of rat brain homogenates with lead acetate (10(-2), 10(-4), 10(-6) M lead acetate, 2 h). Simultaneously we examined by the same method in vivo indices of oxidative stress in brains of mice exposed for 12 weeks to 0.2% lead acetate in drinking water. The results show that the concentration of LFP in rat brain homogenates increased significantly after 2 h incubation with 10(-2) M lead acetate as compared to controls (P<0.0001). This effect was not observed in lower doses of lead acetate (10(-4) and 10(-6) M). After the long-term exposure of mice to 0.2% lead acetate, pronounced accumulation of lead and significantly increased concentration of LFP (P<0.004) in the brains of exposed animals as compared to controls were observed. The evidence for the formation of specific fluorophores originating from oxidative damage was shown also in qualitative changes in 3D spectral arrays and synchronous spectra. The presented results proved the influence of lead on the activation of radical reactions in the brain after short in vitro exposure of rat brain as well as within long-term in vivo exposure in mice using lipofuscin-like pigments as an indicator of oxidative stress.

  18. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species.

    PubMed

    Onaka, Hiroyasu; Mori, Yukiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2011-01-01

    Natural products produced by microorganisms are important starting compounds for drug discovery. Secondary metabolites, including antibiotics, have been isolated from different Streptomyces species. The production of these metabolites depends on the culture conditions. Therefore, the development of a new culture method can facilitate the discovery of new natural products. Here, we show that mycolic acid-containing bacteria can influence the biosynthesis of cryptic natural products in Streptomyces species. The production of red pigment by Streptomyces lividans TK23 was induced by coculture with Tsukamurella pulmonis TP-B0596, which is a mycolic acid-containing bacterium. Only living cells induced this pigment production, which was not mediated by any substances. T. pulmonis could induce natural-product synthesis in other Streptomyces strains too: it altered natural-product biosynthesis in 88.4% of the Streptomyces strains isolated from soil. The other mycolic acid-containing bacteria, Rhodococcus erythropolis and Corynebacterium glutamicum, altered biosynthesis in 87.5 and 90.2% of the Streptomyces strains, respectively. The coculture broth of T. pulmonis and Streptomyces endus S-522 contained a novel antibiotic, which we named alchivemycin A. We concluded that the mycolic acid localized in the outer cell layer of the inducer bacterium influences secondary metabolism in Streptomyces, and this activity is a result of the direct interaction between the mycolic acid-containing bacteria and Streptomyces. We used these results to develop a new coculture method, called the combined-culture method, which facilitates the screening of natural products.

  19. Pigment Epithelium-derived Factor (PEDF) Blocks Wnt3a Protein-induced Autophagy in Pancreatic Intraepithelial Neoplasms.

    PubMed

    Gong, Jingjing; Belinsky, Glenn; Sagheer, Usman; Zhang, Xuchen; Grippo, Paul J; Chung, Chuhan

    2016-10-14

    An increase in autophagy characterizes pancreatic carcinogenesis, but the signals that regulate this process are incompletely understood. Because canonical Wnt/β-catenin signaling is necessary for the transition from early to advanced pancreatic intraepithelial neoplasia (PanIN) lesions, we assessed whether Wnt ligands and endogenous inhibitors of Wnt signaling modulate autophagy. In this study, canonical Wnt3a ligand induced autophagy markers and vacuoles in murine PanIN cells. Furthermore, pigment epithelium-derived factor (PEDF), a secreted glycoprotein known for its anti-tumor properties, blocked Wnt3a-directed induction of autophagy proteins. Autophagy inhibition was complemented by reciprocal regulation of the oxidative stress enzymes, superoxide dismutase 2 (SOD2) and catalase. Transcriptional control of Sod2 expression was mediated by PEDF-induced NFκB nuclear translocation. PEDF-dependent SOD2 expression in PanIN lesions was recapitulated in a murine model of PanIN formation where PEDF was deleted. In human PanIN lesions, co-expression of PEDF and SOD2 was observed in the majority of early PanIN lesions (47/50, 94%), whereas PEDF and SOD2 immunolocalization in high-grade human PanIN-2/3 was uncommon (7/50, 14%). These results indicate that PEDF regulates autophagy through coordinate Wnt signaling blockade and NFκB activation.

  20. Protective Effect of Total Flavones from Hippophae rhamnoides L. against Visible Light-Induced Retinal Degeneration in Pigmented Rabbits.

    PubMed

    Wang, Yong; Huang, Fenghong; Zhao, Liang; Zhang, Di; Wang, Ou; Guo, Xiaoxuan; Lu, Feng; Yang, Xue; Ji, Baoping; Deng, Qianchun

    2016-01-13

    Sea buckthorn (Hippophae rhamnoides L.) flavones have been used as candidate functional food ingredients because of their bioactivities, such as treating cardiovascular disorders, lowering plasma cholesterol level, and regulating immune function. However, the protective effects of sea buckthorn flavones against retinal degeneration remain unclear to date. This study investigated the protective effects of total flavones from H. rhamnoides (TFH) against visible light-induced retinal damage and explored the related mechanisms in pigmented rabbits. Rabbits were treated with TFH (250 and 500 mg/kg) for 2 weeks pre-illumination and 1 week post-illumination until sacrifice. Retinal function was quantified by performing electroretinography 1 day before and 1, 3, and 7 days after light exposure (18000 lx for 2 h). Retinal degeneration was evaluated by measuring the thickness of the outer nuclear layer (ONL) and performing the TUNEL assay 7 days after light exposure. Enzyme-linked immunosorbent assay, Western blot analysis, and immunohistochemistry were used to explore the antioxidant, anti-inflammatory, and anti-apoptotic mechanisms of TFH during visible light-induced retinal degeneration. Light exposure produced a degenerative effect primarily on the ONL, inner nuclear layer (INL), and ganglion cell layer (GCL). TFH significantly attenuated the destruction of electroretinograms caused by light damage, maintained ONL thickness, and decreased the number of TUNEL-positive cells in the INL and GCL. TFH ameliorated the retinal oxidative stress (GSH-Px, CAT, T-AOC, and MDA), inflammation (IL-1β and IL-6), angiogenesis (VEGF), and apoptosis (Bax, Bcl2, and caspase-3) induced by light exposure. Therefore, TFH exhibited protective effects against light-induced retinal degeneration by increasing the antioxidant defense mechanisms, suppressing pro-inflammatory and angiogenic cytokines, and inhibiting retinal cell apoptosis.

  1. Somatic embryogenesis, pigment accumulation, and synthetic seed production in Digitalis davisiana Heywood.

    PubMed

    Verma, Sandeep Kumar; Sahin, Gunce; Gurel, Ekrem

    2016-04-01

    Digitalis davisiana, commonly called Alanya foxglove, from Turkey, is an important medicinal herb as the main source of cardiac glycosides, cardenolides, anthraquinones, etc. It is also known in the Indian Medicine for treatment of wounds and burns. It has ornamental value as well. Overexploitation of D. davisiana has led this species to be declared protected, and thereby encouraged various methods for its propagation. In this study, an optimized and efficient plant tissue culture protocol was established using cotyledonary leaf, hypocotyl and root explants of D. davisiana. Callus tissues were obtained from the cotyledonary leaf, hypocotyl and root segments cultured on Murashige and Skoog's (MS) medium containing different plant growth regulators. The maximum number of somatic embryos were achieved by the MS medium containing 6-benzyladenine (1.0 mg/L BAP) or 2,4-dichlorophenoxy acetic acids (0.1 mg/L 2,4-D), which produced an average of 8.3 ± 1.5 or 5.3 ± 1.5 embryos per cotyledonary leaf, respectively. After 3 wk of culture in MS medium supplemented with 1.0 mg/L 2,4-D, callus showed a clear accumulation of orange pigmentation. Shoot regeneration was remarkably higher (14.3 indirect shoots) in a combination of α-naphthalene acetic acid (0.25 mg/L NAA) plus 3.0 mg/L BAP than 2.0 mg/L zeatin (10.3 ± 0.5 direct shoots) alone. The shoots were successfully rooted on MS medium supplemented with NAA (0.1-1.0 mg/L). In addition, synthetic seeds were produced by encapsulating shoot tips in 4% sodium alginate solution. Maximum conversion frequency of 76.6% was noted from encapsulated shoot tips cultured on 0.25 mg/L NAA with 1.0 mg/L BAP. The encapsulated shoot tips could be stored up to 60 days at 4 °C. Regenerated plantlets of D. davisiana were successfully acclimatized and transferred to soil. This study has demonstrated successful preservation of elite genotypes of D. davisiana.

  2. Effect of different ripening conditions on pigments of pepper for paprika production at green stage of maturity.

    PubMed

    Kevrešan, Žarko S; Mastilović, Jasna S; Mandić, Anamarija I; Torbica, Aleksandra M

    2013-09-25

    The content and composition of pigments and CIELab color properties in fruits ripened in the field were compared with those obtained in ground paprika produced from green pepper fruits after postharvest ripening for 15 days in a greenhouse under different conditions. Obtained data for pigment content, composition, and esterification rate have shown that the processes of pigment biosynthesis in fruits ripened under greenhouse conditions are different from those occurring in fruits naturally matured in the field: the red/yellow pigment ratio (3:1) in greenhouse-ripened fruits is much higher than in naturally ripened pepper in breaker (1:1) and also in faint red (2:1) ripening stages from the field. Additionally, during the postharvest ripening of green pepper in the greenhouse esterification processes are less expressed than during the ripening of the fruits in the field. Postharvest ripening under natural daylight resulted in higher content of red pigments, followed by higher ASTA value.

  3. Two light-activated neuroendocrine circuits arising in the eye trigger physiological and morphological pigmentation.

    PubMed

    Bertolesi, Gabriel E; Hehr, Carrie L; Munn, Hayden; McFarlane, Sarah

    2016-11-01

    Two biological processes regulate light-induced skin colour change. A fast 'physiological pigmentation change' (i.e. circadian variations or camouflage) involves alterations in the distribution of pigment containing granules in the cytoplasm of chromatophores, while a slower 'morphological pigmentation change' (i.e. seasonal variations) entails changes in the number of pigment cells or pigment type. Although linked processes, the neuroendocrine coordination triggering each response remains largely obscure. By evaluating both events in Xenopus laevis embryos, we show that morphological pigmentation initiates by inhibiting the activity of the classical retinal ganglion cells. Morphological pigmentation is always accompanied by physiological pigmentation, and a melatonin receptor antagonist prevents both responses. Physiological pigmentation also initiates in the eye, but with repression of melanopsin-expressing retinal ganglion cell activity that leads to secretion of alpha-melanocyte-stimulating hormone (α-MSH). Our findings suggest a model in which eye photoperception links physiological and morphological pigmentation by altering α-MSH and melatonin production, respectively.

  4. Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Fusarium is of concern to agricultural production and food/feed safety because of its ability to cause crop disease and to produce mycotoxins, secondary metabolites (SMs) that are toxic to humans and other animals. Understanding the genetic basis for production of mycotoxins and other SMs ...

  5. New approaches to the measurement of chlorophyll, related pigments and productivity in the sea

    NASA Technical Reports Server (NTRS)

    Booth, C. R.; Keifer, D. A.

    1989-01-01

    In the 1984 SBIR Call for Proposals, NASA solicited new methods to measure primary production and chlorophyll in the ocean. Biospherical Instruments Inc. responded to this call with a proposal first to study a variety of approaches to this problem. A second phase of research was then funded to pursue instrumentation to measure the sunlight stimulated naturally occurring fluorescence of chlorophyll in marine phytoplankton. The monitoring of global productivity, global fisheries resources, application of above surface-to-underwater optical communications systems, submarine detection applications, correlation, and calibration of remote sensing systems are but some of the reasons for developing inexpensive sensors to measure chlorophyll and productivity. Normally, productivity measurements are manpower and cost intensive and, with the exception of a very few expensive multiship research experiments, provide no contemporaneous data. We feel that the patented, simple sensors that we have designed will provide a cost effective method for large scale, synoptic, optical measurements in the ocean. This document is the final project report for a NASA sponsored SBIR Phase 2 effort to develop new methods for the measurements of primary production in the ocean. This project has been successfully completed, a U.S. patent was issued covering the methodology and sensors, and the first production run of instrumentation developed under this contract has sold out and been delivered.

  6. Positive association of circulating levels of advanced glycation end products (AGEs) with pigment epithelium-derived factor (PEDF) in a general population.

    PubMed

    Yamagishi, Sho-Ichi; Matsui, Takanori; Adachi, Hisashi; Takeuchi, Masayoshi

    2010-02-01

    We have recently found that serum levels of pigment epithelium-derived factor (PEDF), a glycoprotein with anti-oxidative and anti-inflammatory properties, are elevated in proportion to the accumulation of the number of the components of the metabolic syndrome. Since formation and accumulation of advanced glycation end products (AGEs) progress under the metabolic syndrome and that PEDF could inhibit the AGE-elicited tissue damage, it is conceivable that PEDF levels may be increased as a counter-system against AGEs in patients with the metabolic syndrome. However, correlation between circulating levels of AGEs and PEDF in humans remains to be elucidated. In this study, we investigated the relationship between serum AGE and PEDF levels in a general population and examined the effects of AGEs on PEDF gene expression in vitro. One hundred ninety-six Japanese subjects in a general population underwent a complete history and physical examination, determination of blood chemistries, including serum levels of AGEs and PEDF. In multiple regression analyses, creatinine, body mass index, triglycerides, AGEs and insulin were independently correlated with serum PEDF levels. AGEs dose-dependently increased PEDF gene expression in cultured adipocytes and liver cells. Our present study demonstrated first that circulating AGEs were one of the independent correlates of serum levels of PEDF. Adipose tissue and liver may be target organs for the AGE-induced PEDF overexpression in humans. Serum PEDF levels may be elevated in response to circulating AGEs as a counter-system against the AGE-elicited tissue damage.

  7. Pigment epithelium-derived factor (PEDF) promotes tumor cell death by inducing macrophage membrane tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    PubMed

    Ho, Tsung-Chuan; Chen, Show-Li; Shih, Shou-Chuan; Chang, Shing-Jyh; Yang, Su-Lin; Hsieh, Jui-Wen; Cheng, Huey-Chuan; Chen, Lee-Jen; Tsao, Yeou-Ping

    2011-10-14

    Pigment epithelium-derived factor (PEDF) is an intrinsic anti-angiogenic factor and a potential anti-tumor agent. The tumoricidal mechanism of PEDF, however, has not been fully elucidated. Here we report that PEDF induces the apoptosis of TC-1 and SK-Hep-1 tumor cells when they are cocultured with bone marrow-derived macrophages (BMDMs). This macrophage-mediated tumor killing is prevented by blockage of TNF-related apoptosis-inducing ligand (TRAIL) following treatment with the soluble TRAIL receptor. PEDF also increases the amount of membrane-bound TRAIL on cultured mouse BMDMs and on macrophages surrounding subcutaneous tumors. PEDF-induced tumor killing and TRAIL induction are abrogated by peroxisome proliferator-activated receptor γ (PPARγ) antagonists or small interfering RNAs targeting PPARγ. PEDF also induces PPARγ in BMDMs. Furthermore, the activity of the TRAIL promoter in human macrophages is increased by PEDF stimulation. Chromatin immunoprecipitation and DNA pull-down assays confirmed that endogenous PPARγ binds to a functional PPAR-response element (PPRE) in the TRAIL promoter, and mutation of this PPRE abolishes the binding of the PPARγ-RXRα heterodimer. Also, PPARγ-dependent transactivation and PPARγ-RXRα binding to this PPRE are prevented by PPARγ antagonists. Our results provide a novel mechanism for the tumoricidal activity of PEDF, which involves tumor cell killing via PPARγ-mediated TRAIL induction in macrophages.

  8. 21 CFR 178.3725 - Pigment dispersants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Pigment dispersants. 178.3725 Section 178.3725... Certain Adjuvants and Production Aids § 178.3725 Pigment dispersants. Subject to the provisions of this regulation, the substances listed in this section may be safely used as pigment dispersants in...

  9. 21 CFR 178.3725 - Pigment dispersants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Pigment dispersants. 178.3725 Section 178.3725... Certain Adjuvants and Production Aids § 178.3725 Pigment dispersants. Subject to the provisions of this regulation, the substances listed in this section may be safely used as pigment dispersants in...

  10. 21 CFR 178.3725 - Pigment dispersants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Pigment dispersants. 178.3725 Section 178.3725... Certain Adjuvants and Production Aids § 178.3725 Pigment dispersants. Subject to the provisions of this regulation, the substances listed in this section may be safely used as pigment dispersants in...

  11. 21 CFR 178.3725 - Pigment dispersants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pigment dispersants. 178.3725 Section 178.3725 Food... Certain Adjuvants and Production Aids § 178.3725 Pigment dispersants. Subject to the provisions of this regulation, the substances listed in this section may be safely used as pigment dispersants in...

  12. Gene expression regulation in retinal pigment epithelial cells induced by viral RNA and viral/bacterial DNA

    PubMed Central

    Brosig, Anton; Kuhrt, Heidrun; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2015-01-01

    Purpose The pathogenesis of age-related macular degeneration (AMD) is associated with systemic and local inflammation. Various studies suggested that viral or bacterial infection may aggravate retinal inflammation in the aged retina. We compared the effects of synthetic viral RNA (poly(I:C)) and viral/bacterial DNA (CpG-ODN) on the expression of genes known to be involved in the development of AMD in retinal pigment epithelial (RPE) cells. Methods Cultured human RPE cells were stimulated with poly(I:C; 500 µg/ml) or CpG-ODN (500 nM). Alterations in gene expression and protein secretion were determined with real-time RT–PCR and ELISA, respectively. Phosphorylation of signal transduction molecules was revealed by western blotting. Results Poly(I:C) induced gene expression of the pattern recognition receptor TLR3, transcription factors (HIF-1α, p65/NF-κB), the angiogenic factor bFGF, inflammatory factors (IL-1β, IL-6, TNFα, MCP-1, MIP-2), and complement factors (C5, C9, CFB). Poly(I:C) also induced phosphorylation of ERK1/2 and p38 MAPK proteins, and the secretion of bFGF and TNFα from the cells. CpG-ODN induced moderate gene expression of transcription factors (p65/NF-κB, NFAT5) and complement factors (C5, C9), while it had no effect on the expression of various TLR, angiogenic factor, and inflammatory factor genes. The activities of various signal transduction pathways and transcription factors were differentially involved in mediating the poly(I:C)-induced transcriptional activation of distinct genes. Conclusions The widespread effects of viral RNA, and the restricted effects of viral/bacterial DNA, on the gene expression pattern of RPE cells may suggest that viral RNA rather than viral/bacterial DNA induces physiologic alterations of RPE cells, which may aggravate inflammation in the aged retina. The data also suggest that selective inhibition of distinct signal transduction pathways or individual transcription factors may not be effective to inhibit

  13. Portuguese tin-glazed earthenware from the 17th century. Part 2: A spectroscopic characterization of pigments, glazes and pastes of the three main production centers.

    PubMed

    Vieira Ferreira, L F; Ferreira, D P; Conceição, D S; Santos, L F; Pereira, M F C; Casimiro, T M; Ferreira Machado, I

    2015-01-01

    Sherds representative of the three Portuguese faience production centers of the 17th century - Lisbon, Coimbra and Vila Nova were studied with the use of mostly non-invasive spectroscopies, namely: ground state diffuse reflectance absorption (GSDR), micro-Raman, Fourier-transform infrared (FT-IR) and proton induced X-ray (PIXE) or X-ray fluorescence emission (XRF). X-ray diffraction (XRD) experiments were also performed. The obtained results evidence a clear similarity in the pastes of the pottery produced Vila Nova and some of the ceramic pastes from Lisbon, in accordance with documental sources that described the use of Lisbon clays by Vila Nova potters, at least since mid 17th century. Quartz and Gehlenite are the main components of the Lisbon's pastes, but differences between the ceramic pastes were detected pointing out to the use of several clay sources. The spectroscopic trend exhibited Coimbra's pottery is remarkably different, Quartz and Diopside being the major components of these pastes, enabling one to well define a pattern for these ceramic bodies. The blue pigment from the Lisbon samples is a cobalt oxide that exists in the silicate glassy matrix, which enables the formation of detectable cobalt silicate microcrystals in most productions of the second half of the 17th century. No micro-Raman cobalt blue signature could be detected in the Vila Nova and Coimbra blue glazes. This is in accordance with the lower kiln temperatures in these two production centers and with Co(2+) ions dispersed in the silicate matrix. In all cases the white glaze is obtained with the use of tin oxide. Hausmannite was detected as the manganese oxide mineral used to produce the purple glaze (wine color "vinoso") in Lisbon.

  14. Intronic Sequence Regulates Sugar-Dependent Expression of Arabidopsis thaliana Production of Anthocyanin Pigment-1/MYB75

    PubMed Central

    Broeckling, Bettina E.; Watson, Ruth A.; Steinwand, Blaire; Bush, Daniel R.

    2016-01-01

    Sucrose-specific regulation of gene expression is recognized as an important signaling response, distinct from glucose, which serves to modulate plant growth, metabolism, and physiology. The Arabidopsis MYB transcription factor Production of Anthocyanin Pigment-1 (PAP1) plays a key role in anthocyanin biosynthesis and expression of PAP1 is known to be regulated by sucrose. Sucrose treatment of Arabidopsis seedlings led to a 20-fold induction of PAP1 transcript, which represented a 6-fold increase over levels in glucose-treated seedlings. The PAP1 promoter was not sufficient for conferring a sucrose response to a reporter gene and did not correctly report expression of PAP1 in plants. Although we identified 3 putative sucrose response elements in the PAP1 gene, none were found to be necessary for this response. Using deletion analysis, we identified a 90 bp sequence within intron 1 of PAP1 that is necessary for the sucrose response. This sequence was sufficient for conferring a sucrose response to a minimal promoter: luciferase reporter when present in multiple copies upstream of the promoter. This work lays the foundation for dissecting the sucrose signaling pathway of PAP1 and contributes to understanding the interplay between sucrose signaling, anthocyanin biosynthesis, and stress responses. PMID:27248141

  15. The Lack of Lutein Accelerates the Extent of Light-induced Bleaching of Photosynthetic Pigments in Thylakoid Membranes of Arabidopsis thaliana.

    PubMed

    Dobrev, Konstantin; Stanoeva, Daniela; Velitchkova, Maya; Popova, Antoaneta V

    2016-05-01

    The high light-induced bleaching of photosynthetic pigments and the degradation of proteins of light-harvesting complexes of PSI and PSII were investigated in isolated thylakoid membranes of Arabidopsis thaliana, wt and lutein-deficient mutant lut2, with the aim of unraveling the role of lutein for the degree of bleaching and degradation. By the means of absorption spectroscopy and western blot analysis, we show that the lack of lutein leads to a higher extent of pigment photobleaching and protein degradation in mutant thylakoid membranes in comparison with wt. The highest extent of bleaching is suffered by chlorophyll a and carotenoids, while chlorophyll b is bleached in lut2 thylakoids during long periods at high illumination. The high light-induced degradation of Lhca1, Lhcb2 proteins and PsbS was followed and it is shown that Lhca1 is more damaged than Lhcb2. The degradation of analyzed proteins is more pronounced in lut2 mutant thylakoid membranes. The lack of lutein influences the high light-induced alterations in organization of pigment-protein complexes as revealed by 77 K fluorescence.

  16. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    SciTech Connect

    Huang, Xionggao; Wei, Yantao; Ma, Haizhi; Zhang, Shaochong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  17. Screening of industrial wastewaters as feedstock for the microbial production of oils for biodiesel production and high-quality pigments

    SciTech Connect

    Schneider, Teresa; Graeff-Honninger, Simone; French, William Todd; Hernandez, Rafael; Claupein, Wilhelm; Holmes, William E.; Merkt, Nikolaus

    2012-01-01

    The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeast Rhodotorula glutinis was tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-value by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. Lastly, the screening of feedstocks should be extended to other wastewaters.

  18. Screening of industrial wastewaters as feedstock for the microbial production of oils for biodiesel production and high-quality pigments

    DOE PAGES

    Schneider, Teresa; Graeff-Honninger, Simone; French, William Todd; ...

    2012-01-01

    The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeast Rhodotorula glutinis was tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-valuemore » by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. Lastly, the screening of feedstocks should be extended to other wastewaters.« less

  19. Pseudocyanotic pigmentation of the skin induced by amiodarone: a light and electron microscopic study.

    PubMed Central

    Delage, C.; Lagacé, R.; Huard, J.

    1975-01-01

    An unusual bluish discolouration of the nose was noticed in a woman 9 months after she had begun treatment with a coronary vasodilator, amiodarone hydrochloride. Cutaneous biopsies of the nose were obtained 6 and 9 months later for light and electron microscopic studies. In the dermis were histiocytes containing cytoplasmic yellow-brown granules with histochemical properties of melanin and lipofuscin. Ultrastructurally the granules appeared as lysosomal membrane-bound dense bodies similar to lipofuscin. Similar granules were observed at diascopy in both corneas. The pathogenesis is obscure. A storage disease involving the drug or its metabolites cannot be ruled out. Another possibility is that amiodarone accelerates the normal cellular autophagocytosis, resulting in increased production of lipofuscin, which then accumulates in lysosomes because of a deficiency in lipolytic enzymes. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 PMID:47784

  20. Pigment epithelium-derived factor and its phosphomimetic mutant induce JNK-dependent apoptosis and p38-mediated migration arrest.

    PubMed

    Konson, Alexander; Pradeep, Sunila; D'Acunto, Cosimo Walter; Seger, Rony

    2011-02-04

    Pigment epithelium-derived factor (PEDF) is a potent endogenous inhibitor of angiogenesis and a promising anticancer agent. We have previously shown that PEDF can be phosphorylated and that distinct phosphorylations differentially regulate its physiological functions. We also demonstrated that triple phosphomimetic mutant (EEE-PEDF), has significantly increased antiangiogenic activity and is much more efficient than WT-PEDF in inhibiting neovascularization and tumor growth. The enhanced antiangiogenic effect was associated with a direct ability to facilitate apoptosis of tumor-residing endothelial cells (ECs), and subsequently, disruption of intratumoral vascularization. In the present report, we elucidated the molecular mechanism by which EEE-PEDF exerts more profound effects at the cellular level. We found that EEE-PEDF suppresses EC proliferation due to caspase-3-dependent apoptosis and also inhibits migration of the EC much better than WT-PEDF. Although WT-PEDF and EEE-PEDF did not affect proliferation and did not induce apoptosis of cancer cells, these agents efficiently inhibited cancer cell motility, with EEE-PEDF showing a stronger effect. The stronger activity of EEE-PEDF was correlated with a better binding to laminin receptors. Furthermore, the proapoptotic and antimigratory activities of WT-PEDF and EEE-PEDF were found regulated by differential activation of two distinct MAPK pathways, namely JNK and p38, respectively. We show that JNK and p38 phosphorylation is much higher in cells treated with EEE-PEDF. JNK leads to apoptosis of ECs, whereas p38 leads to anti-migratory effect in both EC and cancer cells. These results reveal the molecular signaling mechanism by which the phosphorylated PEDF exerts its stronger antiangiogenic, antitumor activities.

  1. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes

    PubMed Central

    Boitet, Evan R.; Turner, Ashley N.; Johnson, Larry W.; Kennedy, Daniel; Downs, Ethan R.; Hymel, Katherine M.; Gross, Alecia K.; Kesterson, Robert A.

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene. PMID:27224051

  2. Assessment Of The Production Of Antiquity Pigments Through Experimental Treatment Of Ochres And Other Iron Based Precursors.

    NASA Astrophysics Data System (ADS)

    Matrotheodoros, G.; Beltsios, K. G.; Zacharias., N.

    In this work we explore the effects of various grinding and thermal-oxidative treatments applied to natural and artificial iron-based materials available (or related to those available) during GraecoRoman antiquity. The raw materials examined are: (a) commercial natural iron pigments (ochres, natrojarosite, caput mortum), (b) artificial melanterite (FeSO4.7H2O), (c) mineral pyrite (FeS2) and mineral metallic hematite. Additionally explored are: (a) the non-attested in surviving sources, yet highly probable during antiquity, route of pigment preparation from iron (or steel) plates exposed to vinegar vapors, (b) a Vitruvius recipe for purplish pigment via vinegar quenching of hot ochre. We obtain oxide pigments with colors ranging from yellowish and red to brownish and purplish. The puzzling variation of colors obtained by subjecting iron-oxide containing materials to identical oxidative heat treatments is found to be explainable on the basis of starting grain size and possible size modifications. We also show, by using highly purity starting materials, that purplish colors obtainable in certain cases by heat treatment do not necessitate, as often claimed, the presence of impurities such as manganese etc. A framework of antiquity color possibilities for iron-oxide based pigments obtainable under the conditions explored is included. All samples prepared are examined via scanning electron microscopy for micromorphology coupled with EDAX for composition, and X-Rays Diffraction for mineralogy.

  3. Benzo(a)pyrene and X-rays induce reversions of the pink-eyed unstable mutation in the retinal pigment epithelium of mice.

    PubMed

    Bishop, A J; Kosaras, B; Sidman, R L; Schiestl, R H

    2000-12-20

    The pink-eyed unstable (p(un)) mutation is the result of a 70kb tandem duplication within the murine p gene. Homologous deletion/recombination of the locus to wild-type occurs spontaneously in embryos and results in pigmented spots in the fur and eye that persist for life. Such deletion events are also inducible by a variety of DNA damaging agents, as we have observed previously with the fur spot assay. Here, we describe the use of the retinal pigment epithelium (RPE) of the eye to detect reversion events induced with two differently acting agents. Benzo(a)pyrene (B(a)P) induces a high frequency, and X-ray exposure a more modest increase, of p(un) reversion in both the fur and the eye. The eye-spot assay requires fewer mice for significant results than the fur spot assay. Previous work had elucidated the cell proliferation pattern in the RPE and a position effect variegation phenotype in the pattern of p(un) reversions, which we have confirmed. Acute exposure to B(a)P or X-rays resulted in an increased frequency of reversion events. The majority of the spontaneous reversions lie toward the periphery of the RPE whereas induced events are found more centrally, closer to the optic nerve head. The induced distribution corresponds to the major sites of cell proliferation in the RPE at the time of exposure, and further advocates the proposal that dividing cells are at highest risk to develop deletions.

  4. [Synthesis and characterization of mixed metal oxide pigments].

    PubMed

    Ding, Jie; Yue, Shi-juan; Liu, Cui-ge; Wei, Yong-ju; Meng, Tao; Jiang, Han-jie; Shi, Yong-zheng; Xu, Yi-zhuang; Yu, Jiang; Wu, Jin-guang

    2012-03-01

    In the present work, aluminum chloride and various soluble salts of doping ions were dissolved in water. In addition, urea and polyvinyl pyrrolidone (PVP) were also dissolved in the above aqueous solution under supersonic treatments. Then the solutions were heated to induce the hydrolysis of urea so that soluble aluminum and doping ions convert into insoluble hydroxide or carbonate gels. After calcinations, the obtained gels change to mixed metal oxide pigments whose color is related to type and concentrations of the doping ions. XRD characterization demonstrates that the diffraction patterns of the products are the same as that of alpha-alumina. Diffuse reflectance spectra of samples of the samples in UV-Vis regions show that the absorption bands for d-d transitions of the doping ions undergo considerable change as the coordinate environments change. In addition, L*, a* and b* values of the pigments were measured by using UV-Vis densitometer. SEM results indicate that the size of the pigment powders is in the range 200-300 nm. The pigments are quite stable since no evidence of dissolution was observed after the synthesized pigment is soaked for 24 hours. ICP test shows that very little amount of doped metal occurs in the corresponding filtrate. The above results suggest that these new kinds of mixed metal oxide pigments are stable, non-toxic, environmental friendly and they may be applicable in molten spinning process and provide a new chance for non-aqueous printing and dyeing industry.

  5. Hesperetin induces melanin production in adult human epidermal melanocytes.

    PubMed

    Usach, Iris; Taléns-Visconti, Raquel; Magraner-Pardo, Lorena; Peris, José-Esteban

    2015-06-01

    One of the major sources of flavonoids for humans are citrus fruits, hesperidin being the predominant flavonoid. Hesperetin (HSP), the aglycon of hesperidin, has been reported to provide health benefits such as antioxidant, anti-inflammatory and anticarcinogenic effects. However, the effect of HSP on skin pigmentation is not clear. Some authors have found that HSP induces melanogenesis in murine B16-F10 melanoma cells, which, if extrapolated to in vivo conditions, might protect skin against photodamage. Since the effect of HSP on normal melanocytes could be different to that observed on melanoma cells, the described effect of HSP on murine melanoma cells has been compared to the effect obtained using normal human melanocytes. HSP concentrations of 25 and 50 µM induced melanin synthesis and tyrosinase activity in human melanocytes in a concentration-dependent manner. Compared to control melanocytes, 25 µM HSP increased melanin production and tyrosinase activity 1.4-fold (p < 0.01) and 1.1-fold (p < 0.01), respectively, and the corresponding increases in the case of 50 µM HSP were 1.9-fold (p < 0.001) and 1.3-fold (p < 0.001). Therefore, HSP could be considered a valuable photoprotective substance if its capacity to increase melanin production in human melanocyte cultures could be reproduced on human skin.

  6. Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection

    PubMed Central

    Lan, Lefu; Murray, Thomas S.; Kazmierczak, Barbara I.; He, Chuan

    2010-01-01

    Summary Oxidative stress is one of the main challenges bacteria must cope with during infection. Here, we identify a new oxidative stress sensing and response ospR (oxidative stress response and pigment production Regulator) gene in Pseudomonas aeruginosa. Deletion of ospR leads to a significant induction in H2O2 resistance. This effect is mediated by de-repression of PA2826, which lies immediately upstream of ospR and encodes a glutathione peroxidase. Constitutive expression of ospR alters pigment production and β-lactam resistance in P. aeruginosa via a PA2826-independent manner. We further discovered that OspR regulates additional genes involved in quorum sensing and tyrosine metabolism. These regulatory effects are redox-mediated as addition of H2O2 or cumene hydroperoxide leads to the dissociation of OspR from promoter DNA. A conserved Cys residue, Cys-24, plays the major role of oxidative stress sensing in OspR. The serine substitution mutant of Cys-24 is less susceptible to oxidation in vitro and exhibits altered pigmentation and β-lactam resistance. Lastly, we show that an ospR null mutant strain displays a greater capacity for dissemination than wild-type MPAO1 strain in a murine model of acute pneumonia. Thus, OspR is a global regulator that senses oxidative stress and regulates multiple pathways to enhance the survival of P. aeruginosa inside host. PMID:19943895

  7. Availability and Utilization of Pigments from Microalgae.

    PubMed

    Begum, Hasina; Yusoff, Fatimah Md; Banerjee, Sanjoy; Khatoon, Helena; Shariff, Mohamed

    2016-10-02

    Microalgae are the major photosynthesizers on earth and produce important pigments that include chlorophyll a, b and c, β-carotene, astaxanthin, xanthophylls, and phycobiliproteins. Presently, synthetic colorants are used in food, cosmetic, nutraceutical, and pharmaceutical industries. However, due to problems associated with the harmful effects of synthetic colorants, exploitation of microalgal pigments as a source of natural colors becomes an attractive option. There are various factors such as nutrient availability, salinity, pH, temperature, light wavelength, and light intensity that affect pigment production in microalgae. This paper reviews the availability and characteristics of microalgal pigments, factors affecting pigment production, and the application of pigments produced from microalgae. The potential of microalgal pigments as a source of natural colors is enormous as an alternative to synthetic coloring agents, which has limited applications due to regulatory practice for health reasons.

  8. Analysis of differentially expressed genes associated with tryptophan-dependent pigment synthesis in M. furfur by cDNA subtraction technology.

    PubMed

    Hort, W; Lang, S; Brunke, S; Mayser, P; Hube, B

    2009-05-01

    Malassezia species are associated with pityriasis versicolor (PV) and its depigmented variant pityriasis versicolor alba (PVa), widespread fungal skin infections in humans. The pathogenesis of PV and PVa remains unclear, including their clinical and histological symptoms such as hyper- and depigmentation, reduced responsiveness to ultraviolet radiation and lack of inflammatory reaction despite high fungal load. Pigments produced by M. furfur are possibly involved in the pathogenesis of PV. In vitro, M. furfur produces a wide range of pigments and fluorochromes when cultured with tryptophan as the sole nitrogen source. We have begun to analyse the molecular basis of pigment production by searching for genes associated with tryptophan-based pigment production. A suppression subtractive hybridization (SSH) protocol was used to identify genes expressed in M. furfur cells producing pigments, but not in non-induced cells. SSH was performed 3 and 5 h after onset of pigment induction. Up-regulation of genes in the pigment-producing cells was confirmed by reverse northern analysis. More than 1,500 cDNA sequences of both the indicated time points were analysed. We identified a wide variety of genes associated with metabolism and several genes with unknown function are specifically expressed during pigment production. Furthermore, a fraction of genes possibly involved in different steps of the newly discovered indolic pathway of M. furfur were expressed in pigment producing cells. These data provide the first molecular insight into pigment production of M. furfur.

  9. Formation of primary production in the reservoirs of the Volga chain of hydroelectric stations under present conditions: Phytoplankton pigments

    SciTech Connect

    Mineeva, N.M.

    1995-11-01

    Data of field observations of 1989-1991 on the content of photosynthetic pigments in the reservoirs of the Volga chain of hydroelectric stations are given. The effect of biogenic elements on the development of the Volga River phytoplankton is discussed. The present state of the water bodies is assessed in terms of chlorophyll content.

  10. Organ-specific radiation-induced cancer risk estimates due to radiotherapy for benign pigmented villonodular synovitis

    NASA Astrophysics Data System (ADS)

    Mazonakis, Michalis; Tzedakis, Antonis; Lyraraki, Efrossyni; Damilakis, John

    2016-09-01

    Pigmented villonodular synovitis (PVNS) is a benign disease affecting synovial membranes of young and middle-aged adults. The aggressive treatment of this disorder often involves external-beam irradiation. This study was motivated by the lack of data relating to the radiation exposure of healthy tissues and radiotherapy-induced cancer risk. Monte Carlo methodology was employed to simulate a patient’s irradiation for PVNS in the knee and hip joints with a 6 MV photon beam. The average radiation dose received by twenty-two out-of-field critical organs of the human body was calculated. These calculations were combined with the appropriate organ-, age- and gender-specific risk coefficients of the BEIR-VII model to estimate the lifetime probability of cancer development. The risk for carcinogenesis to colon, which was partly included in the treatment fields used for hip irradiation, was determined with a non-linear mechanistic model and differential dose-volume histograms obtained by CT-based 3D radiotherapy planning. Risk assessments were compared with the nominal lifetime intrinsic risk (LIR) values. Knee irradiation to 36 Gy resulted in out-of-field organ doses of 0.2-24.6 mGy. The corresponding range from hip radiotherapy was 1.2-455.1 mGy whereas the organ equivalent dose for the colon was up to 654.9 mGy. The organ-specific cancer risks from knee irradiation for PVNS were found to be inconsequential since they were at least 161.5 times lower than the LIRs irrespective of the patient’s age and gender. The bladder and colon cancer risk from radiotherapy in the hip joint was up to 3.2 and 6.6 times smaller than the LIR, respectively. These cancer risks may slightly elevate the nominal incidence rates and they should not be ignored during the patient’s treatment planning and follow-up. The probabilities for developing any other solid tumor were more than 20 times lower than the LIRs and, therefore, they may be considered as small.

  11. Skin Pigmentation Disorders

    MedlinePlus

    Pigmentation means coloring. Skin pigmentation disorders affect the color of your skin. Your skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or ...

  12. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    PubMed Central

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  13. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The airborne laser-induced spectral emission bands obtained simultaneously from water Raman backscatter and the fluorescence of chlorophyll and other naturally occurring waterborne pigments are reported here for the first time. The importance of this type data lies not only in its single-shot multispectral character but also in the application of the Raman line for correction or calibration of the spatial variation of the laser penetration depth without the need for in situ water attenuation measurements. The entire laser-induced fluorescence and Raman scatter emissions resulting from each separate 532-nm 10-nsec laser pulse are collected and spectrally dispersed in a diffraction grating spectrometer having forty photomultiplier tube detectors. Results from field experiments conducted in the North Sea and the Chesapeake Bay/Potomac River are presented. Difficulties involving the multispectral resolution of the induced emissions are addressed, and feasible solutions are suggested together with new instrument configurations and future research directions.

  14. Neutrino induced coherent pion production

    SciTech Connect

    Hernandez, E.; Nieves, J.; Valverde, M.; Vicente-Vacas, M. J.

    2010-03-30

    We discuss different parameterizations of the C{sub 5}{sup A}(q{sup 2}) NDELTA form factor, fitted to the old Argonne bubble chamber data for pion production by neutrinos, and we use coherent pion production to test their low q{sup 2} behavior. We find moderate effects that will be difficult to observe with the accuracy of present experiments. We also discuss the use of the Rein-Sehgal model for low energy coherent pion production. By comparison to a microscopic calculation, we show the weaknesses some of the approximations in that model that lead to very large cross sections as well as to the wrong shapes for differential ones. Finally we show that models based on the partial conservation of the axial current hypothesis are not fully reliable for differential cross sections that depend on the angle formed by the pion and the incident neutrino.

  15. The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (Maize) under drought stress

    NASA Astrophysics Data System (ADS)

    Rajasekar, Mahalingam; Rabert, Gabriel Amalan; Manivannan, Paramasivam

    2016-06-01

    In this investigation, pot culture experiment was carried out to estimate the ameliorating effect of triazole compounds, namely Triadimefon (TDM), Tebuconazole (TBZ), and Propiconazole (PCZ) on drought stress, photosynthetic pigments, and biochemical constituents of Zea mays L. (Maize). From 30 days after sowing (DAS), the plants were subjected to 4 days interval drought (DID) stress and drought with TDM at 15 mg l-1, TBZ at 10 mg l-1, and PCZ at 15 mg l-1. Irrigation at 1-day interval was kept as control. Irrigation performed on alternative day. The plant samples were collected on 40, 50, and 60 DAS and separated into root, stem, and leaf for estimating the photosynthetic pigments and biochemical constituents. Drought and drought with triazole compounds treatment increased the biochemical glycine betaine content, whereas the protein and the pigments contents chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and anthocyanin decreased when compared to control. The triazole treatment mitigated the adverse effects of drought stress by increasing the biochemical potentials and paved the way to overcome drought stress in corn plant.

  16. Efficiency Assessment of Using Flammable Compounds from Water Treatment and Methanol Production Waste for Plasma Synthesis of Iron-Containing Pigments

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, Anastasia P.; Karengin, Alexander G.

    2016-08-01

    This article describes the possibility of applying the low-temperature plasma for obtaining iron-containing pigments from water purification and flammable methanol production waste. In this paper were calculated combustion parameters of water-saltorganic compositions (WSOC) with different consists. Authors determined the modes of energy- efficient processing of the previously mentioned waste in an air plasma. Having considered the obtained results there were carried out experiments with flammable dispersed water-saltorganic compositions on laboratory plasma stand. All the experimental results are confirmed by calculations.

  17. Identification of anthocyanin components of wild Chinese blueberries and amelioration of light-induced retinal damage in pigmented rabbit using whole berries.

    PubMed

    Liu, Yixiang; Song, Xue; Han, Yong; Zhou, Feng; Zhang, Di; Ji, Baoping; Hu, Jimei; Lv, Yechun; Cai, Shengbao; Wei, Ying; Gao, Fengyi; Jia, Xiaonan

    2011-01-12

    Studies suggest that the consumption of berry fruits rich in anthocyanins may have beneficial effects on improving visual function. This study determined the total polyphenol and total anthocyanin contents in wild Chinese blueberries using the Folin-Ciocalteu reagent method and a pH differential method. Anthocyanin composition and quantity were characterized by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry coupled with mass selective detection. Total polyphenol and anthocyanin contents were 602.9 ± 9.2 and 177.8 ± 8.3 mg/100 g, respectively. Seventeen anthocyanins were discovered, and only 13 were tentatively identified in the wild blueberries. Anthocyanins of malvidin glycosylated with hexose or pentose accounted for >46% of total anthocyanin content. Furthermore, the effect of whole blueberries on retinal damage in pigmented rabbits upon light exposure was investigated, and the retinal functions were evaluated by electroretinogram (ERG). Pigmented rabbits were chosen for this experiment because of their large eyes, which facilitated the operative procedure and observation, and the similarity of their eyes to the human eye structure. Light-induced retinal damage was induced by exposure to white light at 15000 ± 1000 lx for 2 h. Feeding the rabbits with blueberries at a dosage of 1.2 or 4.9 g/kg/day for 4 weeks prior to light exposure effectively reduced photodamage to the retinas. This study adds to the growing body of data supporting the bioactivity of blueberries in improving mammal vision.

  18. Pigment Epithelium-Derived Factor (PEDF) Expression Induced by EGFRvIII Promotes Self-renewal and Tumor Progression of Glioma Stem Cells.

    PubMed

    Yin, Jinlong; Park, Gunwoo; Kim, Tae Hoon; Hong, Jun Hee; Kim, Youn-Jae; Jin, Xiong; Kang, Sangjo; Jung, Ji-Eun; Kim, Jeong-Yub; Yun, Hyeongsun; Lee, Jeong Eun; Kim, Minkyung; Chung, Junho; Kim, Hyunggee; Nakano, Ichiro; Gwak, Ho-Shin; Yoo, Heon; Yoo, Byong Chul; Kim, Jong Heon; Hur, Eun-Mi; Lee, Jeongwu; Lee, Seung-Hoon; Park, Myung-Jin; Park, Jong Bae

    2015-05-01

    Epidermal growth factor receptor variant III (EGFRvIII) has been associated with glioma stemness, but the direct molecular mechanism linking the two is largely unknown. Here, we show that EGFRvIII induces the expression and secretion of pigment epithelium-derived factor (PEDF) via activation of signal transducer and activator of transcription 3 (STAT3), thereby promoting self-renewal and tumor progression of glioma stem cells (GSCs). Mechanistically, PEDF sustained GSC self-renewal by Notch1 cleavage, and the generated intracellular domain of Notch1 (NICD) induced the expression of Sox2 through interaction with its promoter region. Furthermore, a subpopulation with high levels of PEDF was capable of infiltration along corpus callosum. Inhibition of PEDF diminished GSC self-renewal and increased survival of orthotopic tumor-bearing mice. Together, these data indicate the novel role of PEDF as a key regulator of GSC and suggest clinical implications.

  19. Effect of some commonly used pesticides on seed germination, biomass production and photosynthetic pigments in tomato (Lycopersicon esculentum).

    PubMed

    Shakir, Shakirullah Khan; Kanwal, Memoona; Murad, Waheed; Zia ur Rehman; Shafiq ur Rehman; Daud, M K; Azizullah, Azizullah

    2016-03-01

    Pesticides are highly toxic substances. Their toxicity may not be absolutely specific to the target organisms but can adversely affect different processes in the non-target host plants. In the present study, the effect of over application of four commonly used pesticides (emamectin benzoate, alpha-cypermethrin, lambda-cyhalothrin and imidacloprid) was evaluated on the germination, seedling vigor and photosynthetic pigments in tomato. The obtained results revealed that seed germination was decreased by the pesticides and this effect was more prominent at early stages of exposure. All the tested pesticides reduced the growth of tomato when applied in higher concentration than the recommended dose, but at lower doses the pesticides had some stimulatory effects on growth as compared to the control. A similar effect of pesticides was observed on the photosynthetic pigments, i.e. a decrease in pigments concentrations was caused at higher doses but an increase was observed at lower doses of pesticides. The calculation of EC50 values for different parameters revealed the lowest EC50 values for emamectin (ranged as 51-181 mg/L) followed by alpha-cypermethrin (191.74-374.39), lambda-cyhalothrin (102.43-354.28) and imidacloprid (430.29-1979.66 mg/L). A comparison of the obtained EC50 values for different parameters of tomato with the recommended doses revealed that over application of these pesticides can be harmful to tomato crop. In a few cases these pesticides were found toxic even at the recommended doses. However, a field based study in this regard should be conducted to further verify these results.

  20. Regulation of the pigment optical density of an algal cell: filling the gap between photosynthetic productivity in the laboratory and in mass culture.

    PubMed

    Formighieri, Cinzia; Franck, Fabrice; Bassi, Roberto

    2012-11-30

    An increasing number of investors is looking at algae as a viable source of biofuels, beside cultivation for human/animal feeding or to extract high-value chemicals and pharmaceuticals. However, present biomass productivities are far below theoretical estimations implying that a large part of the available photosynthetically active radiation is not used in photosynthesis. Light utilisation inefficiency and rapid light attenuation within a mass culture due to high pigment optical density of wild type strains have been proposed as major limiting factors reducing solar-to-biomass conversion efficiency. Analysis of growth yields of mutants with reduced light-harvesting antennae and/or reduced overall pigment concentration per cell, generated by either mutagenesis or genetic engineering, could help understanding limiting factors for biomass accumulation in photobioreactor. Meanwhile, studies on photo-acclimation can provide additional information on the average status of algal cells in a photobioreactor to be used in modelling-based predictions. Identifying limiting factors in solar-to-biomass conversion efficiency is the first step for planning strategies of genetic improvement and domestication of algae to finally fill the gap between theoretical and industrial photosynthetic productivity.

  1. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger

    SciTech Connect

    Dai, Ziyu; Aryal, Uma K.; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D.; Magnuson, Jon K.; Adney, William S.; Beckham, Gregg T.; Brunecky, Roman; Himmel, Michael E.; Decker, Stephen R.; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E.

    2013-12-01

    ALG3 is a Family 58 glycosyltransferase enzyme involved in early N-linked glycan synthesis. Here, we investigated the effect of the alg3 gene disruption on growth, development, metabolism, and protein secretion in Aspergillus niger. The alg3 gene deletion resulted in a significant reduction of growth on complete (CM) and potato dextrose agar (PDA) media and a substantial reduction of spore production on CM. It also delayed spore germination in the liquid cultures of both CM and PDA media, but led to a significant accumulation of red pigment on both CM and liquid modified minimal medium (MM) supplemented with yeast extract. The relative abundance of 55 proteins of the total 190 proteins identified in the secretome was significantly different as a result of alg3 gene deletion. Comparison of a Trichoderma reesei cellobiohydrolase (Cel7A) heterologously expressed in A. niger parental and Δalg3 strains showed that the recombinant Cel7A expressed in the mutant background was smaller in size than that from the parental strains. This study suggests that ALG3 is critical for growth and development, pigment production, and protein secretion in A. niger. Functional analysis of recombinant Cel7A with aberrant glycosylation demonstrates the feasibility of this alternative approach to evaluate the role of N-linked glycosylation in glycoprotein secretion and function.

  2. Kinetic analysis of growth rate, ATP, and pigmentation suggests an energy-spilling function for the pigment prodigiosin of Serratia marcescens.

    PubMed

    Haddix, Pryce L; Jones, Sarah; Patel, Pratik; Burnham, Sarah; Knights, Kaori; Powell, Joan N; LaForm, Amber

    2008-11-01

    Serratia marcescens is a gram-negative environmental bacterium and opportunistic pathogen. S. marcescens expresses prodigiosin, a bright red and cell-associated pigment which has no known biological function for producing cells. We present here a kinetic model relating cell, ATP, and prodigiosin concentration changes for S. marcescens during cultivation in batch culture. Cells were grown in a variety of complex broth media at temperatures which either promoted or essentially prevented pigmentation. High growth rates were accompanied by large decreases in cellular prodigiosin concentration; low growth rates were associated with rapid pigmentation. Prodigiosin was induced most strongly during limited growth as the population transitioned to stationary phase, suggesting a negative effect of this pigment on biomass production. Mathematically, the combined rate of formation of biomass and bioenergy (as ATP) was shown to be equivalent to the rate of prodigiosin production. Studies with cyanide inhibition of both oxidative phosphorylation and pigment production indicated that rates of biomass and net ATP synthesis were actually higher in the presence of cyanide, further suggesting a negative regulatory role for prodigiosin in cell and energy production under aerobic growth conditions. Considered in the context of the literature, these results suggest that prodigiosin reduces ATP production by a process termed energy spilling. This process may protect the cell by limiting production of reactive oxygen compounds. Other possible functions for prodigiosin as a mediator of cell death at population stationary phase are discussed.

  3. Linoleic acid-induced expression of inducible nitric oxide synthase and cyclooxygenase II via p42/44 mitogen-activated protein kinase and nuclear factor-kappaB pathway in retinal pigment epithelial cells.

    PubMed

    Fang, I-Mo; Yang, Chang-Hao; Yang, Chung-May; Chen, Muh-Shy

    2007-11-01

    High linoleic acid (LA) intake is known to correlate with age-related macular degeneration (AMD), but the molecular mechanisms remain unclear. This study was conducted to investigate the effects of LA on expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase II (COX-2) and their associated signaling pathways in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were treated with different concentrations of LA. Expressions of iNOS and COX-2 were examined using semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Concentrations of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in the culture medium were determined by enzyme-link immunosorbent assay (ELISA). Activation of p42/44, p38, JNK mitogen-activated protein kinase (MAPK) and nuclear factors (NF)-kappaB were evaluated by Western blot analysis and electrophoretic mobility shift assay (EMSA). We found that LA induced expression of iNOS and COX-2 in RPE cells at the mRNA and protein levels in a time-and dose-dependent manner. Upregulation of iNOS and COX-2 resulted in increased production of NO and PGE(2). Moreover, LA caused degradation of IkappaB and increased NF-kappaB DNA binding activity. Effects of LA-induced iNOS and COX-2 expression were inhibited by a NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). LA activated p42/44, but not p38 or JNK MAPK. Inhibition of p42/44 activity by PD98059 significantly reduced LA-induced activation of NF-kappaB. Linoleic acid-induced expression of iNOS and COX-2 as well as PGE(2) and NO release in RPE cells were sequentially mediated through activation of p42/p44, MAPK, then NF-kappaB. These results may provide new insights into both mechanisms of LA action on RPE cells and pathogenesis of age-related macular degeneration.

  4. Role of the Talaromyces marneffei (Penicillium marneffei) sakA gene in nitrosative stress response, conidiation and red pigment production.

    PubMed

    Nimmanee, Panjaphorn; Tam, Emily W T; Woo, Patrick C Y; Vanittanakom, Pramote; Vanittanakom, Nongnuch

    2016-12-22

    Stress-activated MAPK (SAPK) pathways are systems used to regulate the stress adaptation of most fungi. It has been shown that in Talaromyces marneffei (Penicillium marneffei), a pathogenic dimorphic fungus, the sakA gene is involved, not only in tolerance against oxidative and heat stresses, but also in playing a role in asexual development, yeast cell generation in vitro and survival inside macrophage cell lines. In this study, the role of the T. marneffei sakA gene on the nitrosative stress response, and the regulation of gene expression were investigated. The susceptibility of the sakA mutant to NaNO2 was investigated using drop dilution assay and the expression of genes of interest were determined by RT-PCR, comparing them to the wild type and complemented strains. The results demonstrated that the T. marneffei sakA gene played a role in the stress response to NaNO2, the expression of genes functioning in conidial development (brlA, abaA and wetA) and red pigment biosynthesis (pks3, rp1, rp2 and rp3). These findings suggest that T. marneffei sakA is broadly involved in a wide variety of cell activities, including stress response, cell morphogenesis, asexual development and pigmentation.

  5. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells.

    PubMed

    Johansson, Ida; Monsen, Vivi Talstad; Pettersen, Kristine; Mildenberger, Jennifer; Misund, Kristine; Kaarniranta, Kai; Schønberg, Svanhild; Bjørkøy, Geir

    2015-01-01

    Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD.

  6. Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies.

    PubMed

    Thawechai, Tipawan; Cheirsilp, Benjamas; Louhasakul, Yasmi; Boonsawang, Piyarat; Prasertsan, Poonsuk

    2016-11-01

    Oleaginous microalgae Nannochloropsis sp. was selected as potential strain for CO2 mitigation into lipids and pigments. The synergistic effects of light intensity and photoperiod were evaluated to provide the adequate light energy for this strain. The saturation light intensity was 60μmol·photon·m(-2)s(-1). With full illumination, the biomass obtained was 0.850±0.16g·L(-1) with a lipid content of 44.7±1.2%. The pigments content increased with increasing light energy supply. Three main operating factors including initial cell concentration, CO2 content and gas flow rate were optimized through Response Surface Methodology. The feedings with low CO2 content at high gas flow rate gave the maximum biomass but with low lipid content. After optimization, the biomass and lipid production were increased up to 1.30±0.103g·L(-1) and 0.515±0.010g·L(-1), respectively. The CO2 fixation rate was as high as 0.729±0.04g·L(-1)d(-1). The fatty acids of Nannochloropsis sp. lipids were mainly C16-C18 indicating its potential use as biodiesel feedstocks.

  7. Modulation of yellow expression contributes to thermal plasticity of female abdominal pigmentation in Drosophila melanogaster

    PubMed Central

    Gibert, Jean-Michel; Mouchel-Vielh, Emmanuèle; Peronnet, Frédérique

    2017-01-01

    Phenotypic plasticity describes the ability of a given genotype to produce distinct phenotypes in different environments. We use the temperature sensitivity of abdominal pigmentation in Drosophila melanogaster females as a model to analyse the effect of the environment on development. We reported previously that thermal plasticity of abdominal pigmentation in females involves the pigmentation gene tan (t). However, the expression of the pigmentation gene yellow (y) was also modulated by temperature in the abdominal epidermis of pharate females. We investigate here the contribution of y to female abdominal pigmentation plasticity. First, we show that y is required for the production of black Dopamine-melanin. Then, using in situ hybridization, we show that the expression of y is strongly modulated by temperature in the abdominal epidermis of pharate females but not in bristles. Interestingly, these two expression patterns are known to be controlled by distinct enhancers. However, the activity of the y-wing-body epidermal enhancer only partially mediates the effect of temperature suggesting that additional regulatory sequences are involved. In addition, we show that y and t co-expression is needed to induce strong black pigmentation indicating that y contributes to female abdominal pigmentation plasticity. PMID:28230190

  8. Microscopic mammalian retinal pigment epithelium lesions induce widespread proliferation with differences in magnitude between center and periphery

    PubMed Central

    Lundh von Leithner, Peter; Ciurtin, Coziana

    2010-01-01

    Purpose The vertebrate retina develops from the center to the periphery. In amphibians and fish the retinal margin continues to proliferate throughout life, resulting in retinal expansion. This does not happen in mammals. However, some mammalian peripheral retinal pigment epithelial (RPE) cells continue to divide, perhaps as a vestige of this mechanism. The RPE cells are adjacent to the ciliary margin, a known stem cell source. Here we test the hypothesis that peripheral RPE is fundamentally different from central RPE by challenging different regions with microscopic laser burns and charting differential responses in terms of levels of proliferation and the regions over which this proliferation occurs. Methods Microscopic RPE lesions were undertaken in rats at different eccentricities and the tissue stained for proliferative markers Ki67 and bromodeoxyuridine (BrdU) and the remodeling metalloproteinase marker 2 (MMP2). Results All lesions produced local RPE proliferation and tissue remodeling. Significantly more mitosis resulted from peripheral than central lesions. Unexpectedly, single lesions also resulted in RPE cells proliferating across the entire retina. Their number did not increase linearly with lesion number, indicating that they may be a specific population. All lesions repaired and formed apparently normal relations with the neural retina. Repaired RPE was albino. Conclusions These results highlight regional RPE differences, revealing an enhanced peripheral repair capacity. Further, all lesions have a marked impact on both local and distant RPE cells, demonstrating a pan retinal signaling mechanism triggering proliferation across the tissue plane. The RPE cells may represent a distinct population as their number did not increase with multiple lesions. The fact that repairing cells were hypopigmented is of interest because reduced pigment is associated with enhanced proliferative capacities in the developing neural retina. PMID:20360994

  9. High glucose-induced barrier impairment of human retinal pigment epithelium is ameliorated by treatment with Goji berry extracts through modulation of cAMP levels.

    PubMed

    Pavan, Barbara; Capuzzo, Antonio; Forlani, Giuseppe

    2014-03-01

    Human retinal pigment epithelium cells were used to investigate the mechanisms underlying blood-retinal barrier disruption under conditions of chronic hyperglycemia. The treatment with 25 mM glucose caused a rapid drop in the transepithelial electrical resistance (TEER), which was reversed by the addition of either a methanolic extract from Goji (Lycium barbarum L.) berries or its main component, taurine. Intracellular cAMP levels increased concurrently with the high glucose-induced TEER decrease, and were correlated to an increased activity of the cytosolic isoform of the enzyme adenylyl cyclase. The treatment with plant extract or taurine restored control levels. Data are discussed in view of a possible prevention approach for diabetic retinopathy.

  10. Surfactant-induced hydrogen production in cyanobacteria

    SciTech Connect

    Famiglietti, M.; Luisi, P.L. ); Hochkoeppler, A. . Dept. di Biologia)

    1993-10-01

    Addition of Tween 85 to aqueous suspensions of Anabaena variabilis induced photosynthetic evolution of hydrogen over a time span of several weeks: as much as 148 nmol H[sub 2]/h [center dot] mg dry weight was produced in the first week by a suspension containing 4.2 mg dry weight of cells and 77 mM Tween 85. The chemical structure of Tween 85 was a necessary prerequisite for inducing hydrogen production, as compounds such as Tween 20, 60, and 80 had a quite different effect. There was a coupling between photosynthetic oxygen evolution and hydrogen evolution: Hydrogen evolution started to be effective only when oxygen evolution subdued. The presence of heterocysts in A. variabilis was also required for the Tween-induced hydrogen production. Based on these observations, possible mechanisms for the photosynthetic effect of Tween 85 are advanced and discussed.

  11. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger.

    PubMed

    Dai, Ziyu; Aryal, Uma K; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D; Magnuson, Jon K; Adney, William S; Beckham, Gregg T; Brunecky, Roman; Himmel, Michael E; Decker, Stephen R; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E

    2013-12-01

    Dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl α-1,3-mannosyltransferase (also known as "asparagine-linked glycosylation 3", or ALG3) is involved in early N-linked glycan synthesis and thus is essential for formation of N-linked protein glycosylation. In this study, we examined the effects of alg3 gene deletion (alg3Δ) on growth, development, pigment production, protein secretion and recombinant Trichoderma reesei cellobiohydrolase (rCel7A) expressed in Aspergillus niger. The alg3Δ delayed spore germination in liquid cultures of complete medium (CM), potato dextrose (PD), minimal medium (MM) and CM with addition of cAMP (CM+cAMP), and resulted in significant reduction of hyphal growth on CM, potato dextrose agar (PDA), and CM+cAMP and spore production on CM. The alg3Δ also led to a significant accumulation of red pigment on both liquid and solid CM cultures. The relative abundances of 54 of the total 215 proteins identified in the secretome were significantly altered as a result of alg3Δ, 63% of which were secreted at higher levels in alg3Δ strain than the parent. The rCel7A expressed in the alg3Δ mutant was smaller in size than that expressed in both wild-type and parental strains, but still larger than T. reesei Cel7A. The circular dichroism (CD)-melt scans indicated that change in glycosylation of rCel7A does not appear to impact the secondary structure or folding. Enzyme assays of Cel7A and rCel7A on nanocrystalline cellulose and bleached kraft pulp demonstrated that the rCel7As have improved activities on hydrolyzing the nanocrystalline cellulose. Overall, the results suggest that alg3 is critical for growth, sporulation, pigment production, and protein secretion in A. niger, and demonstrate the feasibility of this alternative approach to evaluate the roles of N-linked glycosylation in glycoprotein secretion and function.

  12. Anti-inflammatory properties of yellow and orange pigments from Monascus purpureus NTU 568.

    PubMed

    Hsu, Li-Chuan; Liang, Yu-Han; Hsu, Ya-Wen; Kuo, Yao-Haur; Pan, Tzu-Ming

    2013-03-20

    The Monascus species has been used in foods for thousands of years in China. In this study, 10 azaphilone pigments, including four yellow and six orange pigments, were isolated from the fermented rice and dioscorea of Monascus purpureus NTU 568. By employing lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells, we determined the inhibitory activities of these pigments on nitric oxide (NO) production. As a result, four orange pigments, monaphilols A-D, showed the highest activities (IC50 = 1.0-3.8 μM), compared with the other two orange pigments, monascorubrin (IC50 > 40 μM) and rubropunctatin (IC50 = 21.2 μM), and the four yellow pigments ankaflavin (IC50 = 21.8 μM), monascin (IC50 = 29.1 μM), monaphilone A (IC50 = 19.3 μM), and monaphilone B (IC50 = 22.6 μM). Using Western blot and ELISA kits, we found that treatments with 30 μM of the yellow pigments and 5 μM of the orange pigments could down-regulate the protein expression of inducible nitric oxide synthase (iNOS) and suppress the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). We also used two animal experiments to evaluate the anti-inflammatory effects of these pigments. In a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema model, eight of these pigments (0.5 mg/ear) could prevent ear edema against TPA administrations on the ears of BALB/c mice. In an LPS-injection mice model, several of these pigments (10 mg/kg) could inhibit the NO, TNF-α, IL-1β, and IL-6 levels in the plasma of BALB/c mice. As concluded from the in vitro and in vivo studies, six azaphilonoid pigments, namely, ankaflavin, monaphilone A, and monaphilols A-D, showed high potential to be developed into chemopreventive foods or drugs against inflammation-associated diseases.

  13. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways

    SciTech Connect

    Chan, Chi-Ming; Fang, Jia-You; Lin, Hsin-Huang; Yang, Chi-Yea; Hung, Chi-Feng

    2009-10-09

    Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.

  14. Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells.

    PubMed

    Wang, Yiping; Wong, Matthew Man-Kin; Zhang, Xiaojian; Chiu, Sung-Kay

    2015-11-15

    When cells are grown to confluence, cell-cell contact inhibition occurs and drives the cells to enter reversible quiescence rather than senescence. Confluent retinal pigment epithelial (RPE) cells exhibiting contact inhibition was used as a model in this study to examine the role of overexpression of transcription factor AP4, a highly expressed transcription factor in many types of cancer, in these cells during long-term culture. We generated stable inducible RPE cell clones expressing AP4 or AP4 without the DNA binding domain (DN-AP4) and observed that, when cultured for 24 days, RPE cells with a high level of AP4 exhibit a large, flattened morphology and even cease proliferating; these changes were not observed in DN-AP4-expressing cells or non-induced cells. In addition, AP4-expressing cells exhibited senescence-associated β-galactosidase activity and the senescence-associated secretory phenotype. We demonstrated that the induced cellular senescence was mediated by enhanced p53 expression and that AP4 regulates the p53 gene by binding directly to two of the three E-boxes present on the promoter of the p53 gene. Moreover, we showed that serum is essential for AP4 in inducing p53-associated cellular senescence. Collectively, we showed that overexpression of AP4 mediates cellular senescence involving in activation of p53 in long-term post-confluent RPE cells.

  15. Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium.

    PubMed

    Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W; Song, Wenchao; Dunaief, Joshua L

    2015-05-08

    Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation.

  16. Oral pigmentation: A review.

    PubMed

    Sreeja, C; Ramakrishnan, K; Vijayalakshmi, D; Devi, M; Aesha, I; Vijayabanu, B

    2015-08-01

    Pigmentations are commonly found in the mouth. They represent in various clinical patterns that can range from just physiologic changes to oral manifestations of systemic diseases and malignancies. Color changes in the oral mucosa can be attributed to the deposition of either endogenous or exogenous pigments as a result of various mucosal diseases. The various pigmentations can be in the form of blue/purple vascular lesions, brown melanotic lesions, brown heme-associated lesions, gray/black pigmentations.

  17. Oral pigmentation: A review

    PubMed Central

    Sreeja, C.; Ramakrishnan, K.; Vijayalakshmi, D.; Devi, M.; Aesha, I.; Vijayabanu, B.

    2015-01-01

    Pigmentations are commonly found in the mouth. They represent in various clinical patterns that can range from just physiologic changes to oral manifestations of systemic diseases and malignancies. Color changes in the oral mucosa can be attributed to the deposition of either endogenous or exogenous pigments as a result of various mucosal diseases. The various pigmentations can be in the form of blue/purple vascular lesions, brown melanotic lesions, brown heme-associated lesions, gray/black pigmentations. PMID:26538887

  18. Overview of plant pigments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorophylls, carotenoids, flavonoids and betalains are four major classes of biological pigments produced in plants. Chlorophylls are the primary pigments responsible for plant green and photosynthesis. The other three are accessary pigments and secondary metabolites that yield non-green colors and...

  19. [Radiolucent pigment gallstones (author's transl)].

    PubMed

    Wosiewitz, U; Wolpers, C; Quint, P

    1978-12-01

    Pigment gallstones may be subdivided into three different types: radiolucent and radioopaque stones in the gallbladder and radiolucent stones in the common bile duct. 35 of our patients had radiolucent pigment stones in the gallbladder; 21 of these were followed for years by repeated X-ray examination. There is only little enlargement of these stones as time passes by, however the number of these stones increases continuously. Chemical analysis could be done on such stones in 24 cases. The stones were composed of granular calcium bilirubinate and of asphalt-like products derived from abnormal bilirubin degradation. 5 patients had pigment stones in the common bile duct. These stones contained little cholesterol and exhibited a spongy microstructure characterized by small tubules with a diameter of 1 micrometer. They contained more lipids and bilirubin than the stones collected from the gallbladder and on extraction with organic solvents no asphalt-like residues could be obtained.

  20. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    SciTech Connect

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  1. Nuclear Factor (Erythroid-Derived)-Related Factor 2-Associated Retinal Pigment Epithelial Cell Protection under Blue Light-Induced Oxidative Stress

    PubMed Central

    Kataoka, Keiko; Kimoto, Reona; Hwang, Shiang-Jyi; Nagasaka, Yosuke; Tsunekawa, Taichi; Nonobe, Norie; Ito, Yasuki; Terasaki, Hiroko

    2016-01-01

    Purpose. It is a matter of increasing concern that exposure to light-emitting diodes (LED), particularly blue light (BL), damages retinal cells. This study aimed to investigate the retinal pigment epithelium (RPE) damage caused by BL and to elucidate the role of nuclear factor (erythroid-derived)-related factor 2 (Nrf2) in the pathogenesis of BL-induced RPE damage. Methods. ARPE-19, a human RPE cell line, and mouse primary RPE cells from wild-type and Nrf2 knockout (Nrf2−/−) mice were cultured under blue LED exposure (intermediate wavelength, 450 nm). Cell death rate and reactive oxygen species (ROS) generation were measured. TUNEL staining was performed to detect apoptosis. Real-time polymerase chain reaction was performed on NRF2 mRNA, and western blotting was performed to detect Nrf2 proteins in the nucleus or cytoplasm of RPE cells. Results. BL exposure increased cell death rate and ROS generation in ARPE-19 cells in a time-dependent manner; cell death was caused by apoptosis. Moreover, BL exposure induced NRF2 mRNA upregulation and Nrf2 nuclear translocation in RPE. Cell death rate was significantly higher in RPE cells from Nrf2−/− mice than from wild-type mice. Conclusions. The Nrf2 pathway plays an important role in protecting RPE cells against BL-induced oxidative stress. PMID:27774118

  2. Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1).

    PubMed

    Liu, Xiaobin; Xavier, Christy; Jann, Jamieson; Wu, Hongli

    2016-11-03

    Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H₂O₂-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H₂O₂-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage.

  3. Suppression of the proliferation of hypoxia-Induced retinal pigment epithelial cell by rapamycin through the /mTOR/HIF-1α/VEGF/ signaling.

    PubMed

    Liu, Ning-Ning; Zhao, Ning; Cai, Na

    2015-06-01

    Rapamycin, a highly specific inhibitor of mammalian target of rapamycin (mTOR), exhibits significant antitumor/antiangiogenic activity in human cancer cells. Its effect on the retinal pigment epithelial (RPE) cells was rarely investigated. This study assessed the proliferation of hypoxia-induced RPE and the inhibitory effects of rapamycin using 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and examined the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in RPE cells with or without rapamycin under normoxic and hypoxic conditions using real-time PCR and Western blot. We found that hypoxia increased the levels of mTOR, HIF-1α, and VEGF. The suppression of HIF-1α and VEGF by rapamycin was associated with dephosphorylation of mTOR and the downstream effector ribosomal protein S6 kinase (P70S6K) and 4E-binding protein-1 (4E-BP1) of mTORC1. Rapamycin only inhibited the protein levels and did not change the mRNA expression of HIF-1α. No cytotoxicity to the RPE cells by rapamycin was caused under either normoxia or hypoxia. Our data suggest that rapamycin suppresses hypoxia-induced RPE cell proliferation through a mechanism related to the targeting of mTOR/HIF-1α/VEGF signaling. Rapamycin may potentially provide a safe and effective novel treatment for choroidal vascular disease.

  4. Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1)

    PubMed Central

    Liu, Xiaobin; Xavier, Christy; Jann, Jamieson; Wu, Hongli

    2016-01-01

    Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H2O2-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H2O2-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage. PMID:27827892

  5. Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana.

    PubMed

    Sakuraba, Yasuhito; Yokono, Makio; Akimoto, Seiji; Tanaka, Ryouichi; Tanaka, Ayumi

    2010-06-01

    Chl b is one of the major light-harvesting pigments in land plants. The synthesis of Chl b is strictly regulated in response to light conditions in order to control the antenna size of photosystems. Regulation of Chl b also affects its distribution as it occurs preferentially in the peripheral antenna complexes. However, it has not been experimentally shown how plants respond to environmental conditions when they accumulate excess Chl b. Previously, we produced an Arabidopsis transgenic plant (referred to as the BC plant) in which Chl b biosynthesis was enhanced. In this study, we analyzed the photosynthetic properties and genome-wide gene expression in this plant under high light conditions in order to understand the effects of deregulated Chl b biosynthesis. The energy transfer rates between Chl a molecules in PSII decreased and H(2)O(2) accumulated extensively in the BC plant. Microarray analysis revealed that a group of genes involved in anthocyanin biosynthesis was down-regulated and that another group of genes, reported to be sensitive to H(2)O(2), was up-regulated in the BC plant. We also found that anthocyanin levels were low, which was consistent with the results of the microarray analysis. These results indicate that deregulation of Chl b caused severe photodamage and altered gene expression profiles under strong illumination. The importance of the regulation of Chl b synthesis is discussed in relation to the correct localization of Chl b and gene expression.

  6. Novel Application of the Masson-Fontana Stain for Demonstrating Malassezia Species Melanin-Like Pigment Production In Vitro and in Clinical Specimens

    PubMed Central

    Gaitanis, George; Chasapi, Vassiliki; Velegraki, Aristea

    2005-01-01

    Melanin-like pigment produced in vitro and in vivo by Malassezia yeasts has not been described before. Masson-Fontana staining confirmed accumulation of black pigment on the cell walls of l-dihydroxyphenylalaline (l-DOPA)-cultured Malassezia species. Black pigment was also observed in cells and hyphae from hyperpigmented patient lesions with culture-confirmed pityriasis versicolor and seborrheic dermatitis. PMID:16081962

  7. Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids.

    PubMed

    Solovchenko, Alexei; Khozin-Goldberg, Inna; Recht, Lee; Boussiba, Sammy

    2011-06-01

    In order to develop a practical approach for fast and non-destructive assay of total fatty acid (TFA) and pigments in the biomass of the marine microalga Nannochloropsis sp. changes in TFA, chlorophyll, and carotenoid contents were monitored in parallel with the cell suspension absorbance. The experiments were conducted with the cultures grown under normal (complete nutrient f/2 medium at 75 μmol PAR photons/(m(2) s)) or stressful (nitrogen-lacking media at 350 μmol PAR photons/(m(2) s)) conditions. The reliable measurement of the cell suspension absorbance using a spectrophotometer without integrating sphere was achieved by deposition of cells on glass-fiber filters in the chlorophyll content range of 3-13 mg/L. Under stressful conditions, a 30-50% decline in biomass and chlorophyll, retention of carotenoids and a build-up of TFA (15-45 % of dry weight) were recorded. Spectral regions sensitive to widely ranging changes in carotenoid-to-chlorophyll ratio and correlated changes of TFA content were revealed. Employing the tight inter-correlation of stress-induced changes in lipid metabolism and rearrangement of the pigment apparatus, the spectral indices were constructed for non-destructive assessment of carotenoid-to-chlorophyll ratio (range 0.3-0.6; root mean square error (RMSE) = 0.03; r (2) = 0.93) as well as TFA content of Nannochloropsis sp. biomass (range 5.0-45%; RMSE = 3.23 %; r (2) = 0.89) in the broad band 400-550 nm normalized to that in chlorophyll absorption band (centered at 678 nm). The findings are discussed in the context of real-time monitoring of the TFA accumulation by Nannochloropsis cultures under stressful conditions.

  8. Enhanced production of prodigiosin-like pigment from Serratia marcescens SMdeltaR by medium improvement and oil-supplementation strategies.

    PubMed

    Wei, Yu-Hong; Chen, Wei-Chuan

    2005-06-01

    Serratia marcescens SMdeltaR, an SpnR-defective isogenic mutant of S. marcescens SS-1, was used to produce a prodigiosin-like pigment (PLP). Luria-Bertani (LB) broth, frequently used for prodigiosin biosynthesis with S. marcescens strains, was modified by increasing the concentrations of tryptone and yeast extract while completely removing NaCl from the medium. The resulting modified LB (MLB) medium achieved an almost 3.0-fold increase in PLP yield (152 mg l(-1)) when compared with the original LB broth. The addition of vegetable oils (2-6% [v/v]) to the fermentation broth markedly enhanced PLP production. PLP yields of 525, 579, and 790 mg l(-1) were obtained when the MLB medium was supplemented with 4% soybean oil, 4% olive oil and 6% sunflower oil, respectively. PLP production was found to be positively correlated with extracellular surface emulsification activity, suggesting a link between the PLP production and the presence of biosurfactant. This work shows that the optimal medium for PLP yield was sunflower oil (6%)-supplemented MLB medium, which resulted in an approximately 14-fold higher PLP yield than that in LB broth. Mass spectrometry and NMR analysis indicated that the PLP product is a prodigiosin derivative, called undecylprodigiosin.

  9. Tattooing of skin results in transportation and light-induced decomposition of tattoo pigments--a first quantification in vivo using a mouse model.

    PubMed

    Engel, Eva; Vasold, Rudolf; Santarelli, Francesco; Maisch, Tim; Gopee, Neera V; Howard, Paul C; Landthaler, Michael; Bäumler, Wolfgang

    2010-01-01

    Millions of people are tattooed with inks that contain azo pigments. The pigments contained in tattoo inks are manufactured for other uses with no established history of safe use in humans and are injected into the skin at high densities (2.5 mg/cm(2)). Tattoo pigments disseminate after tattooing throughout the human body and although some may photodecompose at the injection site by solar or laser light exposure, the extent of transport or photodecomposition under in vivo conditions remains currently unknown. We investigated the transport and photodecomposition of the widely used tattoo Pigment Red 22 (PR 22) following tattooing into SKH-1 mice. The pigment was extracted quantitatively at different times after tattooing. One day after tattooing, the pigment concentration was 186 microg/cm(2) skin. After 42 days, the amount of PR 22 in the skin has decreased by about 32% of the initial value. Exposure of the tattooed skin, 42 days after tattooing, to laser light reduced the amount of PR 22 by about 51% as compared to skin not exposed to laser light. A part of this reduction is as a result of photodecomposition of PR 22 as shown by the detection of corresponding hazardous aromatic amines. Irradiation with solar radiation simulator for 32 days caused a pigment reduction of about 60% and we again assume pigment decomposition in the skin. This study is the first quantitative estimate of the amount of tattoo pigments transported from the skin into the body or decomposed by solar or laser radiation.

  10. Epigallocatechin-gallate (EGCG) regulates autophagy in human retinal pigment epithelial cells: A potential role for reducing UVB light-induced retinal damage

    SciTech Connect

    Li, Chao-Peng; Yao, Jin; Tao, Zhi-Fu; Li, Xiu-Miao; Jiang, Qin Yan, Biao

    2013-09-06

    Highlights: •UVB irradiation induces RPE autophagy. •EGCG treatment represses UVB-mediated autophagy. •EGCG regulates UVB-mediated autophagy through mTOR signaling pathway. •EGCG sensitizes RPE cells to UVB-induced damage in an autophagy-dependent manner. -- Abstract: Autophagy is an intracellular catabolic process involved in protein and organelle degradation via the lysosomal pathway that has been linked in the pathogenesis of age-related macular degeneration (AMD). UVB irradiation-mediated degeneration of the macular retinal pigment epithelial (RPE) cells is an important hallmark of AMD, which is along with the change in RPE autophagy. Thus, pharmacological manipulation of RPE autophagy may offer an alternative therapeutic target in AMD. Here, we found that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, plays a regulatory role in UVB irradiation-induced autophagy in RPE cells. UVB irradiation results in a marked increase in the amount of LC3-II protein in a dose-dependent manner. EGCG administration leads to a significant reduction in the formation of LC3-II and autophagosomes. mTOR signaling activation is required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation is significantly impaired by rapamycin administration. Moreover, EGCG significantly alleviates the toxic effects of UVB irradiation on RPE cells in an autophagy-dependent manner. Collectively, our study reveals a novel role of EGCG in RPE autophagy. EGCG may be exploited as a potential therapeutic reagent for the treatment of pathological conditions associated with abnormal autophagy.

  11. Developing fungal pigments for "painting" vascular plants.

    PubMed

    Robinson, Sara C

    2012-02-01

    The use of fungal pigments as color additives to wood as a method to increase forest revenue is a relatively new, but quickly developing field. Sugar maple (Acer saccharum) is currently the primary utilized hardwood for spalting and appears to be the best suited North American hardwood for such purposes. The combination of Trametes versicolor and Bjerkandera adusta has been identified in several instances as a strong fungal pairing for zone line production; however, Xylaria polymorpha is capable of creating zone lines without the antagonism of a secondary fungus. Few fungal pigments have been developed for reliable use; Scytalidium cuboideum is capable of producing a penetrating pink/red stain, as well as a blue pigment after extended incubation, and Chlorociboria sp. produces a blue/green pigment if grown on aspen (Populus tremuloides). Several opportunities exist for stimulation of fungal pigments including the use of copper sulfate and changes in wood pH.

  12. A Multi-Decadal 11.5 ka Sedimentary Pigment Record of Aquatic Productivity and Landscape Stability from Torfadalsvatn, North Iceland.

    NASA Astrophysics Data System (ADS)

    Florian, C. R.; Miller, G. H.; Geirsdottir, A.

    2014-12-01

    North Iceland is located in a climatically sensitive region at the interface between the warm Irminger Current and the cold East Greenland Current. Torfadalsvatn (66° 3'41.73"N, 20°23'14.26"W) is a relatively small (0.4 km2) and shallow (z=5.8 m) lake that lies on the Skagi peninsula of northern Iceland approximately 0.5 km from the modern coastline and is ideally situated to compare with regional climate records of nearby marine cores from the North Iceland Shelf. We have employed a multi-proxy approach to reconstruct Holocene terrestrial climate from an 8.4 m sediment core at 15-30 year resolution using sedimentary pigments, organic carbon flux, C:N and their stable isotopes, and biogenic silica measured by Fourier Transform Infrared Spectroscopy. Several proxies show peak values shortly after 8 ka suggesting peak Holocene warmth may have occurred at this time. Elevated canthaxanthin, produced by cyanobacteria, and lutein (green algae and higher plants), along with less negative δ13C and high C:N suggest a productive aquatic environment with abundant aquatic macrophytes. The mid Holocene is characterized by elevated diatom pigment concentration, reduced C:N and lutein concentration suggesting a shift toward a diatom dominated system with continued high aquatic productivity. At ~1.5 ka influx of terrestrial organic matter increases associated with a decrease in aquatic productivity. Terrestrial organic matter continues to increase during the late Holocene, peaking at ~1750 AD potentially associated with minimum local Little Ice Age temperatures. Aquatic productivity, however, continues to decrease until ~1900 AD suggesting that the landscape destabilization signal may have become saturated before minimum temperatures occurred. A comparison of the data from this core with other high-resolution regional climate records will not only increase our understanding of differences in climate histories between north and south Iceland, but will also allow for a better

  13. Inhibition of DNA methyltransferase or histone deacetylase protects retinal pigment epithelial cells from DNA damage induced by oxidative stress by the stimulation of antioxidant enzymes.

    PubMed

    Tokarz, Paulina; Kaarniranta, Kai; Blasiak, Janusz

    2016-04-05

    Epigenetic modifications influence DNA damage response (DDR). In this study we explored the role of DNA methylation and histone acetylation in DDR in cells challenged with acute or chronic oxidative stress. We used retinal pigment epithelial cells (ARPE-19), which natively are exposed to oxidative stress due to permanent exposure to light and high blood flow. We employed a DNA methyltransferase inhibitor - RG108 (RG), or a histone deacetylase inhibitor - valproic acid (VA). ARPE-19 cells were exposed to tert-butyl hydroperoxide, an acute oxidative stress inducer, or glucose oxidase, which slowly liberates low-doses of hydrogen peroxide in the presence of glucose, creating chronic conditions. VA and RG reduced level of intracellular reactive oxygen species and DNA damage in ARPE-19 cells in normal condition and in oxidative stress. This protective effect of VA and RG was associated with the up-regulated expression of antioxidant enzyme genes: CAT, GPx1, GPx4, SOD1 and SOD2. RG decreased the number of cells in G2/M checkpoint in response to chronic oxidative stress. Neither RG nor VA changed the DNA repair or apoptosis induced by oxidative stress. Therefore, certain epigenetic manipulations may protect ARPE-19 cells from detrimental effects of oxidative stress by modulation of antioxidative enzyme gene expression, which may be further explored in pharmacological studies on oxidative stress-related eye diseases.

  14. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays).

    PubMed

    Marcu, Delia; Damian, Grigore; Cosma, Constantin; Cristea, Victoria

    2013-09-01

    The effects of gamma radiation are investigated by studying plant germination, growth and development, and biochemical characteristics of maize. Maize dry seeds are exposed to a gamma source at doses ranging from 0.1 to 1 kGy. Our results show that the germination potential, expressed through the final germination percentage and the germination index, as well as the physiological parameters of maize seedlings (root and shoot lengths) decreased by increasing the irradiation dose. Moreover, plants derived from seeds exposed at higher doses (≤0.5 kGy) did not survive more than 10 days. Biochemical differences based on photosynthetic pigment (chlorophyll a, chlorophyll b, carotenoids) content revealed an inversely proportional relationship to doses of exposure. Furthermore, the concentration of chlorophyll a was higher than chlorophyll b in both irradiated and non-irradiated seedlings. Electron spin resonance spectroscopy used to evaluate the amount of free radicals induced by gamma ray treatment demonstrates that the relative concentration of radiation-induced free radicals depends linearly on the absorbed doses.

  15. MicroRNA-182 Suppresses HGF/SF-Induced Increases in Retinal Pigment Epithelial Cell Proliferation and Migration through Targeting c-Met

    PubMed Central

    Wang, Lihua; Dong, Feng; Reinach, Peter S.; He, Dandan; Zhao, Xiaoting; Chen, Xiaoyan; Hu, Dan-Ning

    2016-01-01

    As increases in hepatocyte growth factor/scatter factor (HGF/SF) induce retinal pigment epithelial (RPE) migration and proliferation into the vitreous cavity and contribute to proliferative vitreoretinopathy (PVR) development, we determined if changes in miR-182 expression affect such behavioral changes. We found that miR-182 expression was less in PVR clinical samples than in primary RPE cells whereas c-Met was upregulated. Ectopic miR-182 inhibited RPE cell proliferation, cell cycle, and migration. Bioinformatic analysis identified c-Met as a miR-182 target, which was confirmed with the luciferase reporter assay. Transfection of miR-182 into RPE cells induced c-Met downregulation, which led to reduced cell proliferation and migration through declines in p-Akt formation. MiR-182 downregulation along with c-Met upregulation in PVR tissues suggest that these two opposing effects play important roles in PVR development. As ectopic miR-182 expression suppressed RPE cell proliferation and migration, strategies to selectively upregulate miR-182 expression in a clinical setting may provide a novel option to treat this disease. PMID:27936052

  16. BACILLUS PYOCYANEUS AND ITS PIGMENTS

    PubMed Central

    Jordan, Edwin O.

    1899-01-01

    The principal conclusions that seem to me justified are as follows: 1. The fluorescent pigment formed by some varieties of B. pyocyaneus is produced under conditions identical with those governing the production of the pigment by other "fluorescent bacteria." 2. The production of pyocyanin is not dependent upon the presence of either phosphate or sulfate in the culture medium. It is formed in non-proteid as well as in proteid media, but is not a necessary accompaniment of the metabolic activities of the organism (e. g. tartrate solution). 3. The power of producing pyocyanin under conditions of artificial cultivation is lost sooner than the fluorescigenic power. 4. There are greater natural and acquired differences in pyocyanigenic power than in fluorescigenic. 5. The fluorescent pigment may be oxidized slowly by the action of light and air as well as by reagents into a yellow pigment, and pyocyanin may be similarly oxidized into a black pigment. 6. A convenient separation of B. pyocyaneus into four varieties would be the following: var. α, pyocyanigenic and fluorescigenic (most common); var. β, pyocyanigenic only (rare); var. γ, fluorescigenic only (not uncommon, closely related to "B. fluorescens liquefaciens"); var. δ, non-chromogenic. 7. Except for the occasional loss of one or another function the different varieties are not so plastic as sometimes assumed, and cannot be readily converted into one another by subjection to varying conditions of life. 8. The signification and correlation of the almost countless physiological variations among the members of this group in respect to growth in gelatin, behavior to temperature, indol production, etc., remain to be determined. It is not yet clear that the variations in chromogenic power can be in any way correlated with the presence or absence of other physiological functions. PMID:19866929

  17. A dominant negative mutant of an Arabidopsis R2R3 Myb (AtMyb90) blocks flower pigment production in tobacco

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A spontaneous mutation converted a hyper-pigmented (anthocyanins), CaMV-35S-pro::AtMYB90 containing, transgenic tobacco line into one displaying wild-type pigmentation in all tissues except for flower petals, which, counter-intuitively, showed anthocyanin levels dramatically below wild-type in the p...

  18. DOSE-RESPONSE FOR UV-INDUCED IMMUNE SUPPRESSION IN PEOPLE OF COLOR: DIFFERENCES BASED ON ERYTHEMAL REACTIVITY RATHER THAN SKIN PIGMENTATION

    EPA Science Inventory

    Ultraviolet radiation (UVR) is known to suppress immune responses in human subjects. The purpose of this study was to develop dose responses across a broad range of skin pigmentation in order to facilitate risk assessment. UVR was administered using FS 20 bulbs. Skin pigmentation...

  19. P2Y1 Receptor Signaling Contributes to High Salt-Induced Priming of the NLRP3 Inflammasome in Retinal Pigment Epithelial Cells

    PubMed Central

    Prager, Philipp; Hollborn, Margrit; Steffen, Anja; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2016-01-01

    Background Systemic hypertension is a risk factor of age-related macular degeneration (AMD), a chronic inflammatory disease. Acute hypertension is caused by increased extracellular osmolarity after intake of dietary salt (NaCl). We determined in cultured human retinal pigment epithelial (RPE) cells whether high extracellular NaCl alters the gene expression of inflammasome-associated proteins, and whether autocrine/paracrine purinergic (P2) receptor signaling contributes to the NaCl-induced NLRP3 gene expression. Methodology/Principal Findings Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Gene and protein expression levels were determined with real-time RT-PCR and Western blot analysis, respectively. IL-1β and IL-18 levels were evaluated with ELISA. Nuclear factor of activated T cell 5 (NFAT5) expression was knocked down with siRNA. High extracellular NaCl induced NLRP3 and pro-IL-1β gene expression, while the gene expression of further inflammasome-associated proteins (NLRP1, NLRP2, NLRP6, NLRP7, NLRP12, NLRC4, AIM2, ASC, procaspase-1, pro-IL-18) was not altered or below the detection threshold. The NaCl-induced NLRP3 gene expression was partially dependent on the activities of phospholipase C, IP3 receptors, protein kinase C, the serum and glucocorticoid-regulated kinase, p38 MAPK, ERK1/2, JNK, PI3K, and the transcription factors HIF-1 and NFAT5. Pannexin-dependent ATP release and P2Y1 receptor activation is required for the full induction of NLRP3 gene expression. High NaCl induced a transient increase of the NLRP3 protein level and a moderate NLRP3 inflammasome activation, as indicated by the transient increase of the cytosolic level of mature IL-1β. High NaCl also induced secretion of IL-18. Conclusion High extracellular NaCl induces priming of the NLRP3 inflammasome in RPE cells, in part via P2Y1 receptor signaling. The inflammasome priming effect of NaCl suggests that high intake of dietary salt may promote

  20. Regulation of production of the blue pigment indigoidine by the pseudo γ-butyrolactone receptor FarR2 in Streptomyces lavendulae FRI-5.

    PubMed

    Kurniawan, Yohanes Novi; Kitani, Shigeru; Iida, Aya; Maeda, Asa; Lycklama a Nijeholt, Jelger; Lee, Yong Jik; Nihira, Takuya

    2016-04-01

    The γ-butyrolactone autoregulator signaling cascade is widely distributed among Streptomyces species as an important regulatory system of secondary metabolism. In Streptomyces lavendulae FRI-5, a γ-butyrolactone autoregulator IM-2 and the IM-2 specific receptor FarA control production of the blue pigment indigoidine together with two types of antibiotics: d-cycloserine and the nucleoside antibiotics. Here, we demonstrated by in silico analysis that farR2 (a farA homologue), which is located in a cluster of regulatory genes including farA, belongs to the family of pseudoreceptor regulator genes, and that the expression of farR2 is controlled by the IM-2/FarA regulatory system. Disruption of farR2 resulted in delayed production of indigoidine and in transcriptional derepression of the clustered far regulatory genes. Moreover, FarR2 bound to the FarA-binding sequences in the promoter regions of the regulatory genes that were downregulated by FarR2.

  1. Gremlin promotes retinal pigmentation epithelial (RPE) cell proliferation, migration and VEGF production via activating VEGFR2-Akt-mTORC2 signaling

    PubMed Central

    Liu, Yuan; Chen, Zhijun; Cheng, Haixia; Chen, Juan; Qian, Jing

    2017-01-01

    Retinopathy of prematurity (ROP) is characterized by late-phase pathologic retinal vasoproliferation. Gremlin is a novel vascular endothelial growth factors (VEGF) receptor 2 (VEGFR2) agonist and promotes angiogenic response. We demonstrated that gremlin expression was significantly increased in retinas of ROP model mice, which was correlated with VEGF upregulation. In retinal pigmentation epithelial (RPE) cells, gremlin activated VEGFR2-Akt-mTORC2 (mammalian target of rapamycin complex 2) signaling, and promoted cell proliferation, migration and VEGF production. VEGFR inhibition (by SU5416) or shRNA knockdown almost abolished gremlin-mediated pleiotropic functions in RPE cells. Further, pharmacological inhibition of Akt-mTOR, or shRNA knockdown of key mTORC2 component (Rictor or Sin1) also attenuated gremlin-exerted activities in RPE cells. We conclude that gremlin promotes RPE cell proliferation, migration and VEGF production possibly via activating VEGFR2-Akt-mTORC2 signaling. Gremlin could be a novel therapeutic target of ROP or other retinal vasoproliferation diseases. PMID:27894090

  2. Green tea polyphenol epigallocatechin-3-gallate attenuates TNF-α-induced intercellular adhesion molecule-1 expression and monocyte adhesion to retinal pigment epithelial cells.

    PubMed

    Thichanpiang, Peeradech; Wongprasert, Kanokpan

    2015-01-01

    Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea (Camellia sinensis) and demonstrates anti-oxidant, anticancer and anti-inflammatory properties. EGCG has been shown to protect retinal pigment epithelium (RPE) against oxidative stress-induced cell death. The pathogenesis of diseases in the retina is usually initiated by local inflammation at the RPE cell layer, and inflammation is mostly associated with leukocyte migration and the secretion of pro-inflammatory cytokines. Whether EGCG can modulate the cytokine-induced inflammatory response of RPE, particularly leukocyte migration, has not been clearly elucidated, and was therefore the objective of this study. ARPE-19 cells were cultured with different concentrations of TNF-α in the presence or absence of EGCG to different time points. Intracellular reactive oxygen species (ROS) levels were determined. Intercellular adhesion molecule (ICAM)-1 and phosphor-NF-κB and IκB expression were determined by Western blot analysis. Phosphor-NF-κB nuclear translocation and monocyte-RPE adhesion were investigated using immunofluorescence confocal laser scanning microscopy. Scanning electron microscopy (SEM) was carried out to further determine the ultrastructure of monocyte-RPE adhesion. The results demonstrated that TNF-α modulated inflammatory effects in ARPE-19 by induction of ROS and up-regulation of ICAM-1 expression. Moreover, TNF-α-induced phosphor-NF-κB nuclear translocation, increased phosphor-NF-κB expression and IκB degradation, and increased the degree of monocyte-RPE adhesion. Pretreating the cells with EGCG ameliorated the inflammatory effects of TNF-α. The results indicated that EGCG significantly exerts anti-inflammatory effects in ARPE-19 cells, partly as a suppressor of TNF-α signaling and that the inhibition was mediated via the NF-κB pathway.

  3. Diversity, community composition, and dynamics of nonpigmented and late-pigmenting rapidly growing mycobacteria in an urban tap water production and distribution system.

    PubMed

    Dubrou, S; Konjek, J; Macheras, E; Welté, B; Guidicelli, L; Chignon, E; Joyeux, M; Gaillard, J L; Heym, B; Tully, T; Sapriel, G

    2013-09-01

    Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) have been reported to commonly colonize water production and distribution systems. However, there is little information about the nature and distribution of RGM species within the different parts of such complex networks or about their clustering into specific RGM species communities. We conducted a large-scale survey between 2007 and 2009 in the Parisian urban tap water production and distribution system. We analyzed 1,418 water samples from 36 sites, covering all production units, water storage tanks, and distribution units; RGM isolates were identified by using rpoB gene sequencing. We detected 18 RGM species and putative new species, with most isolates being Mycobacterium chelonae and Mycobacterium llatzerense. Using hierarchical clustering and principal-component analysis, we found that RGM were organized into various communities correlating with water origin (groundwater or surface water) and location within the distribution network. Water treatment plants were more specifically associated with species of the Mycobacterium septicum group. On average, M. chelonae dominated network sites fed by surface water, and M. llatzerense dominated those fed by groundwater. Overall, the M. chelonae prevalence index increased along the distribution network and was associated with a correlative decrease in the prevalence index of M. llatzerense, suggesting competitive or niche exclusion between these two dominant species. Our data describe the great diversity and complexity of RGM species living in the interconnected environments that constitute the water production and distribution system of a large city and highlight the prevalence index of the potentially pathogenic species M. chelonae in the distribution network.

  4. Diversity, Community Composition, and Dynamics of Nonpigmented and Late-Pigmenting Rapidly Growing Mycobacteria in an Urban Tap Water Production and Distribution System

    PubMed Central

    Dubrou, S.; Konjek, J.; Macheras, E.; Welté, B.; Guidicelli, L.; Chignon, E.; Joyeux, M.; Gaillard, J. L.; Heym, B.; Tully, T.

    2013-01-01

    Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) have been reported to commonly colonize water production and distribution systems. However, there is little information about the nature and distribution of RGM species within the different parts of such complex networks or about their clustering into specific RGM species communities. We conducted a large-scale survey between 2007 and 2009 in the Parisian urban tap water production and distribution system. We analyzed 1,418 water samples from 36 sites, covering all production units, water storage tanks, and distribution units; RGM isolates were identified by using rpoB gene sequencing. We detected 18 RGM species and putative new species, with most isolates being Mycobacterium chelonae and Mycobacterium llatzerense. Using hierarchical clustering and principal-component analysis, we found that RGM were organized into various communities correlating with water origin (groundwater or surface water) and location within the distribution network. Water treatment plants were more specifically associated with species of the Mycobacterium septicum group. On average, M. chelonae dominated network sites fed by surface water, and M. llatzerense dominated those fed by groundwater. Overall, the M. chelonae prevalence index increased along the distribution network and was associated with a correlative decrease in the prevalence index of M. llatzerense, suggesting competitive or niche exclusion between these two dominant species. Our data describe the great diversity and complexity of RGM species living in the interconnected environments that constitute the water production and distribution system of a large city and highlight the prevalence index of the potentially pathogenic species M. chelonae in the distribution network. PMID:23835173

  5. Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy.

    PubMed

    Zieger, Marina; Punzo, Claudio

    2016-03-01

    Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die.

  6. Melanogenesis inhibition by an oolong tea extract in b16 mouse melanoma cells and UV-induced skin pigmentation in brownish guinea pigs.

    PubMed

    Aoki, Yumi; Tanigawa, Tomoko; Abe, Hiroko; Fujiwara, Yoko

    2007-08-01

    To investigate the new physiological functions of oolong tea, the effects on melanogenesis were studied. An oolong tea extract inhibited melanogenesis without affecting cell growth in B16 mouse melanoma cells. However, the oolong tea extract hardly showed any inhibitory effect on mushroom tyrosinase in a cell-free system. The effects of an oolong tea extract on the intracellular tyrosinase level in B16 cells were therefore studied. All the levels of activity, protein and mRNA were decreased in the oolong tea extract-treated cells. We also investigated the inhibitory effects of oolong tea on the pigmentation induced by ultraviolet B (UVB) by using brownish guinea pigs in vivo. The number of 3,4-dihydroxyphenylalanine (DOPA)-positive melanocytes increased by UVB was repressed by an oral administration of oolong tea. These results imply that oolong tea might be effective in whitening and that its inhibitory effect on melanogenesis was involved in the decrease of intracellular tyrosinase at the mRNA level.

  7. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    PubMed

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices.

  8. Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy

    PubMed Central

    Zieger, Marina; Punzo, Claudio

    2016-01-01

    Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die. PMID:26883199

  9. Basis for the gain and subsequent dilution of epidermal pigmentation during human evolution: The barrier and metabolic conservation hypotheses revisited.

    PubMed

    Elias, Peter M; Williams, Mary L

    2016-10-01

    The evolution of human skin pigmentation must address both the initial evolution of intense epidermal pigmentation in hominins, and its subsequent dilution in modern humans. While many authorities believe that epidermal pigmentation evolved to protect against either ultraviolet B (UV-B) irradiation-induced mutagenesis or folic acid photolysis, we hypothesize that pigmentation augmented the epidermal barriers by shifting the UV-B dose-response curve from toxic to beneficial. Whereas erythemogenic UV-B doses produce apoptosis and cell death, suberythemogenic doses benefit permeability and antimicrobial function. Heavily melanized melanocytes acidify the outer epidermis and emit paracrine signals that augment barrier competence. Modern humans, residing in the cooler, wetter climes of south-central Europe and Asia, initially retained substantial pigmentation. While their outdoor lifestyles still permitted sufficient cutaneous vitamin D3 (VD3) synthesis, their marginal nutritional status, coupled with cold-induced caloric needs, selected for moderate pigment reductions that diverted limited nutritional resources towards more urgent priorities (=metabolic conservation). The further pigment-dilution that evolved as humans reached north-central Europe (i.e., northern France, Germany), likely facilitated cutaneous VD3 synthesis, while also supporting ongoing, nutritional requirements. But at still higher European latitudes where little UV-B breaches the atmosphere (i.e., present-day UK, Scandinavia, Baltic States), pigment dilution alone could not suffice. There, other nonpigment-related mutations evolved to facilitate VD3 production; for example, in the epidermal protein, filaggrin, resulting in reduced levels of its distal metabolite, trans-urocanic acid, a potent UV-B chromophore. Thus, changes in human pigmentation reflect a complex interplay between latitude, climate, diet, lifestyle, and shifting metabolic priorities.

  10. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening

    NASA Astrophysics Data System (ADS)

    Dinh, Thanh-Chung; Renger, Thomas

    2016-07-01

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures

  11. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening.

    PubMed

    Dinh, Thanh-Chung; Renger, Thomas

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures

  12. The antiproliferative function of violacein-like purple violet pigment (PVP) from an Antarctic Janthinobacterium sp. Ant5-2 in UV-induced 2237 fibrosarcoma

    PubMed Central

    Mojib, Nazia; Nasti, Tahseen H.; Andersen, Dale T.; Attigada, Venkatram R.; Hoover, Richard B.; Yusuf, Nabiha; Bej, Asim K.

    2013-01-01

    Background In this study, we have investigated the chemotherapeutic potential of a purple violet pigment (PVP), which was isolated from a previously undescribed Antarctic Janthinobacterium sp. (Ant5-2), against murine UV-induced 2237 fibrosarcoma and B16F10 melanoma cells. Methods The 2237, B16F10, C50, and NIH3T3 cells were treated with PVP at different doses and for different times, and their proliferation and viability were detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle arrest induced by PVP in 2237 fibrosarcoma cells was assessed by flow cytometry and expression analysis of cell cycle regulatory proteins were done by Western blot. Apoptosis induced by PVP in 2237 cells was observed by annexin-V/propidium iodide double staining flow cytometry assay and fluorescence microscopy. To further determine the molecular mechanism of apoptosis induced by PVP, the changes in expression of Bcl-2, Bax and cytochrome c were detected by Western blot. The loss of mitochondrial membrane potential in PVP treated 2237 cells was assessed by staining with JC-1 dye following flow cytometry. Caspase-3, Caspase-9 and PARP cleavage were analyzed by Western blot and Caspase-3 and -9 activities were measured by colorimetric assays. Results In vitro treatment of murine 2237 cells with the PVP resulted in decreased cell viability (13–79%) in a time (24–72 h) and dose (0.1–1 μM)-dependent manner. The PVP-induced growth inhibition in 2237 cells was associated with both G0/G1 and G2/M phase arrest accompanied with decrease in the expression of cyclin dependent kinases (Cdks) and simultaneous increase in the expression of cyclin dependent kinase inhibitors (Cdki) – Cip1/p21 and Kip1/p27. Further, we observed a significant increase in the apoptosis of the 2237 fibrosarcoma cells which was associated with an increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic proteins Bcl-2, disruption of

  13. L-dihidroxyphenylalanine induces melanin production by members of the genus Trichosporon

    PubMed Central

    de Carvalho, Maria Helena Galdino Figueiredo; dos Santos, Fábio Brito; Nosanchuk, Joshua D.; Zancope-Oliveira, Rosely M.; Almeida-Paes, Rodrigo

    2014-01-01

    Melanization of members of the genus Trichosporon is poorly described. In the present study six strains, including two clinical isolates, from four different species (T. asahii, T. asteroides, T. inkin, and T. mucoides) were grown in culture media with or without L-dihydroxyphenilalanine (L-DOPA). Each strain produced a brownish pigment compatible with melanin when cultured in presence of L-DOPA, suggesting that these species are able to produce eumelanin. L-tyrosine was not able to elicit any type of pigment production on cultures. Since eumelanin is produced by several fungi during parasitism, this pigment may contribute to Trichosporon virulence. PMID:24920288

  14. A Novel Inhibitor of 5-Lipoxygenase (5-LOX) Prevents Oxidative Stress–Induced Cell Death of Retinal Pigment Epithelium (RPE) Cells

    PubMed Central

    Subramanian, Preeti; Mendez, Emily F.; Becerra, S. Patricia

    2016-01-01

    Purpose 5-Lipoxygenase (5-LOX) oxygenates arachidonic acid to form 5-hydroperoxyeicosatetraenoic acid, which is further converted into biologically detrimental leukotrienes, such as leukotriene B4 (LTB4). The RPE and retina express the PNPLA2 gene for pigment epithelium–derived factor receptor (PEDF-R), a lipase involved in cell survival. The purpose here was to investigate the role of PEDF-R on the 5-LOX pathway in oxidative stress of RPE. Methods Lipoxygenase activity assays were performed with soybean and potato lipoxygenase. Binding was evaluated by peptide-affinity chromatography and pull-down assays with PEDF-R–derived synthetic peptides or recombinant protein. Oxidative stress was induced in human ARPE-19 and primary pig RPE cells with indicated concentrations of H2O2/TNF-α. Reverse transcription–PCR of ALOX5 and PNPLA2 genes was performed. Cell viability and death rates were determined using respective biomarkers. Leukotriene B4 levels were measured by ELISA. Results Among five peptides spanning between positions Leu159 and Met325 of human PEDF-R polypeptide, only two overlapping peptides, E5b and P1, bound and inhibited lipoxygenase activity. Human recombinant 5-LOX bound specifically to peptide P1 and to His6/Xpress-tagged PEDF-R via ionic interactions. The two inhibitor peptides E5b and P1 promoted cell viability and decreased cell death of RPE cells undergoing oxidative stress. Oxidative stress decreased the levels of PNPLA2 transcripts with no effect on ALOX5 expression. Exogenous additions of P1 peptide or overexpression of the PNPLA2 gene decreased both LTB4 levels and death of RPE cells undergoing oxidative stress. Conclusions A novel peptide region of PEDF-R inhibits 5-LOX, which intersects with RPE cell death pathways induced by oxidative stress. PMID:27635633

  15. Enhanced in vitro regeneration and change in photosynthetic pigments, biomass and proline content in Withania somnifera L. (Dunal) induced by copper and zinc ions.

    PubMed

    Fatima, Nigar; Ahmad, Naseem; Anis, Mohammad

    2011-12-01

    In the present study the effect of inorganic nutrients (CuSO₄ & ZnSO₄) on morphogenic and biochemical responses from nodal explants in Withania somnifera L. was investigated. Incorporation of either Copper sulphate (25-200 μM) or Zinc sulphate (50-500 μM) in the optimized Murashige and Skoog (MS) medium highly influenced the shoot bud formation and subsequent elongation, which induced maximum percentage (95%) regeneration, number (61.7 ± 0.25) of shoots with shoot length (5.46 ± 0.16 cm) on CuSO₄ (100 μM) and maximum percentage regeneration (100%), number of shoots (66.1 ± 0.96) with shoot length (6.24 ± 0.21 cm) on ZnSO₄ (300 μM) after 12 weeks of culture. Healthy growing in vitro microshoots rooted efficiently on ½ MS medium supplemented with NAA (0.5 μM), which induced (16.2 ± 0.12) roots with root length (3.30 ± 0.12 cm) after 4 weeks. Pigment content increased with increasing concentration of Cu and Zn and the maximum Chl. a (0.47), (0.41); Chl. b (0.52), (0.42); total Chl. (0.99), (0.83) and Carotenoid (0.16), (0.16) mg/g FW contents in regenerants were found on CuSO₄ (100 μM) and ZnSO₄ (300 μM), respectively. Maximum proline content (0.17), (0.16) μg/g FW was observed on high concentrations of CuSO₄ (200 μM) and ZnSO₄ (500 μM) respectively, in the basal medium. Regenerated plantlets were acclimatized successfully in soilrite with a survival rate of 95%. No morphological variations were detected among the micropropagated plants when compared with seedling raised plants of the same age.

  16. [Present status on studies of differentiation into retinal neurons and pigmented cell from induced pluripotent stem cells].

    PubMed

    Meng, Feng-xi; Guo, Wen-yi

    2010-12-01

    Somatic cells could be induced into pluripotent stem (iPS) cells through transferring special genes (Oct4, Sox2, c-myc and Klf4). This has brought a revolutionary change in stem cell study and application. The generation of iPS cells has great potential and enormous significance as it can resolve some insurmountable problems in stem cells research, such as ethical dilemma, immune rejection, etc. Because of these characteristics, it plays an important role in the repair of various tissues and organs. Rapid progress in this field during the past 3 years convinced us that iPS cells will be more and more applicable in tissue engineering. The present paper reviews the progress of pre-clinical study on iPS cells in the treatment of retinal and optic nerve diseases.

  17. Elevated amyloid β production in senescent retinal pigment epithelium, a possible mechanism of subretinal deposition of amyloid β in age-related macular degeneration.

    PubMed

    Wang, Jiying; Ohno-Matsui, Kyoko; Morita, Ikuo

    2012-06-22

    Age-related macular degeneration (AMD) is the most common cause of legal blindness in the elderly individuals in developed countries. Subretinally-deposited amyloid β (Aβ) is a main contributor of developing AMD. However, the mechanism causing Aβ deposition in AMD eyes is unknown. Aging is the most significant risk of AMD, thus, we examined the effect of aging on subretinal Aβ deposition. mRNAs and cell lysates were isolated from retinal pigment epithelial (RPE) cells derived from 24-month-old (24M RPE) and 2-month-old (2M RPE) C57BL/6 mice. Aβ concentration in culture supernatants was measured by ELISA. Activity and expression of proteins that regulate Aβ level were examined by activity assay and real time PCR. Effect of β-secretase (BACE) on Aβ production was examined by siRNA silencing. Aβ amounts in supernatants of 24M RPE were significantly higher than 2M RPE. Activity and mRNA levels of neprilysin, an Aβ degrading enzyme, were significantly decreased in 24M RPE compared to 2M RPE. PCR analysis found that BACE2 was significantly more abundantly expressed than BACE1 in RPE cells, however, inactivation of BACE2 gene did not affect Aβ production. BACE1 protein amounts did not differ between 24M and 2M RPE, however, BACE1 activity was significantly higher in 24M RPE compared to 2M RPE. There were no significant changes in the activities of α- or γ-secretase between 2M and 24M RPE. In conclusion, RPE cells produce more amounts of Aβ when they are senescent, and this is probably caused by a decrease in Aβ degradation due to a reduction in the expression and activity of neprilysin and an increase in Aβ synthesis due to increased activity of BACE1.

  18. Carotenoid stability during production and storage of tomato juice made from tomatoes with diverse pigment profiles measured by infrared spectroscopy.

    PubMed

    Rubio-Diaz, Daniel E; Santos, Alejandra; Francis, David M; Rodriguez-Saona, Luis E

    2010-08-11

    Chemical changes in carotenoids and lipids were studied during production and storage of canned tomato juice using ATR infrared spectroscopy and HPLC. Samples from 10 groups of tomatoes with different carotenoid profiles were analyzed fresh, after hot-break and screening, after canning, and at five different time points during 1 year of storage. An apparent increase of carotenoids was observed after hot-break due to improved extraction efficiency. This increase was accompanied by some degree of lipid oxidation and carotenoid isomerization. Canning produced the most intense changes in the lipid profile with breakdown of triglycerides ( approximately 1743 cm(-1)), formation of fatty acids ( approximately 1712 cm(-1)), and degradation and isomerization of trans-carotenoids ( approximately 960 and approximately 3006 cm(-1)). Isomerization was corroborated by the relative increase of HPLC areas corresponding to carotenoid cis isomers. Canning reduced trans-lycopene, trans-delta-carotene, trans-beta-carotene, and trans-lutein by 30, 34, 43, and 67%, respectively. HPLC data indicate that canning causes a drastic reduction of tetra-cis-lycopene and promotes its isomerization to other geometric forms, including all-trans-lycopene. Infrared spectra of tomato juice lipid fractions correlated well with the number of days in storage (SECV < 11 days, r values > 0.99), demonstrating continuous degradation of lipids. Results demonstrated that individual carotenoids and their isomeric forms behave differently during production and storage of canned tomato juice. Information collected by infrared spectroscopy complemented well that of HPLC, providing marker bands to further the understanding of chemical changes taking place during processing and storage of tomato juice.

  19. Ion transport in pigmentation

    PubMed Central

    Bellono, Nicholas W.; Oancea, Elena V.

    2014-01-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system,, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis. PMID:25034214

  20. Ion transport in pigmentation.

    PubMed

    Bellono, Nicholas W; Oancea, Elena V

    2014-12-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis.

  1. A Multiplex High-Throughput Gene Expression Assay to Simultaneously Detect Disease and Functional Markers in Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium

    PubMed Central

    Ferrer, Marc; Corneo, Barbara; Davis, Janine; Wan, Qin; Miyagishima, Kiyoharu Joshua; King, Rebecca; Maminishkis, Arvydas; Marugan, Juan; Sharma, Ruchi; Shure, Michael; Temple, Sally; Miller, Sheldon

    2014-01-01

    There is continuing interest in the development of lineage-specific cells from induced pluripotent stem (iPS) cells for use in cell therapies and drug discovery. Although in most cases differentiated cells show features of the desired lineage, they retain fetal gene expression and do not fully mature into “adult-like” cells. Such cells may not serve as an effective therapy because, once implanted, immature cells pose the risk of uncontrolled growth. Therefore, there is a need to optimize lineage-specific stem cell differentiation protocols to produce cells that no longer express fetal genes and have attained “adult-like” phenotypes. Toward that goal, it is critical to develop assays that simultaneously measure cell function and disease markers in high-throughput format. Here, we use a multiplex high-throughput gene expression assay that simultaneously detects endogenous expression of multiple developmental, functional, and disease markers in iPS cell-derived retinal pigment epithelium (RPE). We optimized protocols to differentiate iPS cell-derived RPE that was then grown in 96- and 384-well plates. As a proof of principle, we demonstrate differential expression of eight genes in iPS cells, iPS cell-derived RPE at two different differentiation stages, and primary human RPE using this multiplex assay. The data obtained from the multiplex gene expression assay are significantly correlated with standard quantitative reverse transcription-polymerase chain reaction-based measurements, confirming the ability of this high-throughput assay to measure relevant gene expression changes. This assay provides the basis to screen for compounds that improve RPE function and maturation and target disease pathways, thus providing the basis for effective treatments of several retinal degenerative diseases. PMID:24873859

  2. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells.

    PubMed

    Yun, Jung-Mi; Afaq, Farrukh; Khan, Naghma; Mukhtar, Hasan

    2009-03-01

    Because of unsatisfactory treatment options for colon cancer, there is a need to develop novel preventive approaches for this malignancy. One such strategy is through chemoprevention by the use of non-toxic dietary substances and botanical products. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, possesses strong anti-oxidant and anti-inflammatory properties. In the present study, we investigated the antiproliferative and proapoptotic properties of delphinidin in human colon cancer HCT116 cells. We found that treatment of cells with delphinidin (30-240 microM; 48 h) resulted in (i) decrease in cell viability (ii) induction of apoptosis, (iii) cleavage of PARP, (iv) activation of caspases-3, -8, and -9, (v) increase in Bax with a concomitant decrease in Bcl-2 protein, and (vi) G2/M phase cell cycle arrest. NF-kappaB provides a mechanistic link between inflammation and cancer, and is a major factor controlling the ability of both pre-neoplastic and malignant cells to resist apoptosis-based tumor surveillance mechanisms. We therefore, determined the effect of delphinidin on NF-kappaB signaling pathway. The immunoblot, ELISA and EMSA analysis demonstrated that the treatment of HCT116 cells with delphinidin resulted in the inhibition of (i) IKKalpha, (ii) phosphorylation and degradation of IkappaBalpha, (iii) phosphorylation of NF-kappaB/p65 at Ser(536), (iv) nuclear translocation of NF-kappaB/p65, (v) NF-kappaB/p65 DNA binding activity, and (vi) transcriptional activation of NF-kappaB. Our results suggest that delphinidin treatment of HCT116 cells suppressed NF-kappaB pathway, resulting in G2/M phase arrest and apoptosis. We suggest that delphinidin could have potential in inhibiting colon cancer growth.

  3. Pion Induced Pion Production on Deuterium.

    NASA Astrophysics Data System (ADS)

    Sossi, Vesna

    This thesis describes measurements of the pion induced pion production reaction pi^+ d to pi^{+} pi^{-}p p performed with a 280 MeV incident pi^{+} beam at TRIUMF. The data are compared with an improved version of the Oset and Vicente-Vacas theoretical model (12). The goal of the experiment and of the analysis was to provide a larger body of data for the free reaction and to test the validity of theoretical models. In the process, the ability to determine the values of the coupling constants C, f_Delta, g _{N*Delta_tau} within such a model framework would be explored. The knowledge of the precise value of these coupling constants would constrain N^* decay branching ratios and other pion induced reaction mechanisms like Double Charge Exchange. A previous experiment (23) had indicated that the pion induced pion production on deuterium is essentially a quasifree process with the reaction occurring on the neutron leaving the proton merely a spectator. The main difference with respect to the free reaction is the effect of Fermi motion of the neutron. Although we were interested in studying the free reaction (pi^ {-}p to pi^ {+}pi^{-}n), we chose a deuterium target so that the experiment could be run with a pi^+beam, since the pi^- beam flux is about 6 times lower than the flux of the positive pion beam at 280 MeV, the energy at which our experiment was performed. Such a flux would have required a much longer running time for the experiment in order to achieve the same statistical accuracy. The quasifree nature of the process was also confirmed in our experiment. This experiment involved a coincidence measurement of the quasifree process and as such provided four-fold differential cross section spectra of the reaction thus allowing for a microscopic comparison between data and theoretical models. In the theoretical description we incorporated additional amplitudes for the N^* to N(pipi)_{p-wave} diagrams required to describe the reaction cross section at T_pi = 280 Me

  4. Production-induced changes in reservoir geomechanics

    NASA Astrophysics Data System (ADS)

    Amoyedo, Sunday O.

    Sand production remains a source of concern in both conventional and heavy oil production. Porosity increase and changes in local stress magnitude, which often enhance permeability, have been associated with severe sanding. On the other hand, sand production has been linked to a large number of field incidences involving loss of well integrity, casing collapse and corrosion of down-hole systems. It also poses problems for separators and transport facilities. Numerous factors such as reservoir consolidation, well deviation angle through the reservoir, perforation size, grain size, capillary forces associated with water cut, flow rate and most importantly reservoir strain resulting from pore pressure depletion contribute to reservoir sanding. Understanding field-specific sand production patterns in mature fields and poorly consolidated reservoirs is vital in identifying sand-prone wells and guiding remedial activities. Reservoir strain analysis of Forties Field, located in the UK sector of the North Sea, shows that the magnitude of the production-induced strain, part of which is propagated to the base of the reservoir, is of the order of 0.2 %, which is significant enough to impact the geomechanical properties of the reservoir. Sand production analysis in the field shows that in addition to poor reservoir consolidation, a combined effect of repeated perforation, high well deviation, reservoir strain and high fluid flow rate have contributed significantly to reservoir sanding. Knowledge of reservoir saturation variation is vital for in-fill well drilling, while information on reservoir stress variation provides a useful guide for sand production management, casing design, injector placement and production management. Interpreting time-lapse difference is enhanced by decomposing time-lapse difference into saturation, pressure effects and changes in rock properties (e.g. porosity) especially in highly compacting reservoirs. Analyzing the stress and saturation

  5. Oral pigmented lesions: Clinicopathologic features and review of the literature

    PubMed Central

    da Silva-Jorge, Rogério; Jorge, Jacks; Lopes, Márcio A.; Vargas, Pablo A.

    2012-01-01

    Diagnosis of pigmented lesions of the oral cavity and perioral tissues is challenging. Even though epidemiology may be of some help in orientating the clinician and even though some lesions may confidently be diagnosed on clinical grounds alone, the definitive diagnosis usually requires histopathologic evaluation. Oral pigmentation can be physiological or pathological, and exogenous or endogenous. Color, location, distribution, and duration as well as drugs use, family history, and change in pattern are important for the differential diagnosis. Dark or black pigmented lesions can be focal, multifocal or diffuse macules, including entities such as racial pigmentation, melanotic macule, melanocytic nevus, blue nevus, smoker’s melanosis, oral melanoacanthoma, pigmentation by foreign bodies or induced by drugs, Peutz-Jeghers syndrome, Addison´s disease and oral melanoma. The aim of this review is to present the main oral black lesions contributing to better approach of the patients. Key words:Pigmentation, melanin, oral, diagnosis, management. PMID:22549672

  6. Production of Tuber-Inducing Factor

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W.; Yorio, Neil C.

    2006-01-01

    A process for making a substance that regulates the growth of potatoes and some other economically important plants has been developed. The process also yields an economically important by-product: potatoes. The particular growth-regulating substance, denoted tuber-inducing factor (TIF), is made naturally by, and acts naturally on, potato plants. The primary effects of TIF on potato plants are reducing the lengths of the main shoots, reducing the numbers of nodes on the main stems, reducing the total biomass, accelerating the initiation of potatoes, and increasing the edible fraction (potatoes) of the overall biomass. To some extent, these effects of TIF can override environmental effects that typically inhibit the formation of tubers. TIF can be used in the potato industry to reduce growth time and increase harvest efficiency. Other plants that have been observed to be affected by TIF include tomatoes, peppers, radishes, eggplants, marigolds, and morning glories. In the present process, potatoes are grown with their roots and stolons immersed in a nutrient solution in a recirculating hydroponic system. From time to time, a nutrient replenishment solution is added to the recirculating nutrient solution to maintain the required nutrient concentration, water is added to replace water lost from the recirculating solution through transpiration, and an acid or base is added, as needed, to maintain the recirculating solution at a desired pH level. The growing potato plants secrete TIF into the recirculating solution. The concentration of TIF in the solution gradually increases to a range in which the TIF regulates the growth of the plants.

  7. Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction.

    PubMed

    Choi, Hyemin; Lee, Dong Gun

    2015-08-01

    Lycopene, a well-known carotenoid pigment found in tomatoes, has shown various biological functions. In our previous report, we showed that lycopene induces two apoptotic hallmarks, plasma membrane depolarization and G2/M cell cycle arrest, in Candida albicans. In this study, we investigated the ability of lycopene to induce apoptosis, and the mechanism by which it regulates apoptosis. FITC-Annexin V staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis, and 4',6-diamidino-2-phenylindole (DAPI) assay showed that lycopene exerted its antifungal activity during the early and late stages of apoptosis in C. albicans. During apoptosis, intracellular reactive oxygen species (ROS) were increased, and specifically the hydroxyl radicals contributed to the fungal cell death. Furthermore, lycopene treatment caused intracellular Ca(2+) overload and mitochondrial dysfunction, such as mitochondrial depolarization and cytochrome c release from the mitochondria to the cytoplasm. At last caspase activation was triggered. In summary, lycopene exerted its antifungal effects against C. albicans by inducing apoptosis via ROS production and mitochondrial dysfunction.

  8. Abnormal pigmentation within cutaneous scars: A complication of wound healing

    PubMed Central

    Chadwick, Sarah; Heath, Rebecca; Shah, Mamta

    2012-01-01

    Abnormally pigmented scars are an undesirable consequence of cutaneous wound healing and are a complication every single individual worldwide is at risk of. They present a challenge for clinicians, as there are currently no definitive treatment options available, and render scars much more noticeable making them highly distressing for patients. Despite extensive research into both wound healing and the pigment cell, there remains a scarcity of knowledge surrounding the repigmentation of cutaneous scars. Pigment production is complex and under the control of many extrinsic and intrinsic factors and patterns of scar repigmentation are unpredictable. This article gives an overview of human skin pigmentation, repigmentation following wounding and current treatment options. PMID:23162241

  9. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation.

    PubMed

    Shi, Kan; Song, Da; Chen, Gong; Pistolozzi, Marco; Wu, Zhenqiang; Quan, Lei

    2015-08-01

    Submerged fermentations of Monascus anka were performed with different nitrogen sources at different pH in 3 L bioreactors. The results revealed that the Monascus pigments dominated by different color components (yellow pigments, orange pigments or red pigments) could be selectively produced through pH control and nitrogen source selection. A large amount of intracellular pigments dominated by orange pigments and a small amount of water-soluble extracellular yellow pigments were produced at low pH (pH 2.5 and 4.0), independently of the nitrogen source employed. At higher pH (pH 6.5), the role of the nitrogen source became more significant. In particular, when ammonium sulfate was used as nitrogen source, the intracellular pigments were dominated by red pigments with a small amount of yellow pigments. Conversely, when peptone was used, intracellular pigments were dominated by yellow pigments with a few red pigments derivatives. Neither the presence of peptone nor ammonium sulfate promoted the production of intracellular orange pigments while extracellular pigments with an orangish red color were observed in both cases, with a higher yield when peptone was used. Two-stage pH control fermentation was then performed to improve desirable pigments yield and further investigate the effect of pH and nitrogen sources on pigments composition. These results provide a useful strategy to produce Monascus pigments with different composition and different color characteristics.

  10. Pigmented central neurocytoma.

    PubMed

    Kiehl, Tim-Rasmus; Kalkanis, Steven N; Louis, David N

    2004-06-01

    Central neurocytoma is a low-grade neuronal neoplasm that occurs most often within the lateral ventricles. We report the case of a 60-year-old woman who presented with gait problems, headache and memory loss. Preoperative evaluation demonstrated a heterogeneous, hypervascular and partially cystic mass in the left lateral ventricle. Histopathological examination revealed characteristic features of central neurocytoma, including immunoreactivity for synaptophysin, as well as the unusual feature of abundant pigment in the cytoplasm of tumor cells. Special stains revealed iron, consistent with hemosiderin, but found no evidence of melanin or melanosomes. Previous reports of pigmented central neurocytoma have described the presence of lipofuscin or neuromelanin. To our knowledge, the present case represents the first example of pigmented central neurocytoma secondary to hemosiderin deposition.

  11. Biology of pigmentation

    SciTech Connect

    Parker, F.

    1981-01-01

    The many factors involved in the normal pigmentation of human skin are highly complex involving anatomic, biochemical, and genetic aspects of melanocytes in the skin and the influence of UV light and various hormones on the melanocytes. It is probably more than just coincidence that the melanocytes, which are of neurogenic origin, are so responsive to several trophic hormones produced in the brain. Understanding of the various factors involved in the normal pigmentary process is crucial to explaining the many alterations and anomalies in human pigmentation.

  12. BASIS FOR ENHANCED BARRIER FUNCTION OF PIGMENTED SKIN

    PubMed Central

    Man, Mao-Qiang; Lin, Tzu-Kai; Santiago, Juan Luis; Celli, Anna; Zhong, Lily; Huang, Zhi-Ming; Roelandt, Truus; Hupe, Melanie; Sundberg, John P.; Silva, Kathleen A.; Crumrine, Debra; Martin-Ezquerra, Gemma; Trullas, Carles; Sun, Richard; Wakefield, Joan S.; Wei, Maria L.; Feingold, Kenneth R.; Mauro, Theodora M.; Elias, Peter M.

    2014-01-01

    Humans with darkly-pigmented skin display superior permeability barrier function in comparison to humans with lightly-pigmented skin. The reduced pH of the stratum corneum (SC) of darkly-pigmented skin could account for enhanced function, because acidifying lightly-pigmented human SC resets barrier function to darkly-pigmented levels. In SKH1 (non-pigmented) vs. SKH2/J (pigmented) hairless mice, we evaluated how a pigment-dependent reduction in pH could influence epidermal barrier function. Permeability barrier homeostasis is enhanced in SKH2/J vs. SKH1 mice, correlating with a reduced pH in the lower SC that co-localizes with the extrusion of melanin granules. Darkly-pigmented human epidermis also shows substantial melanin extrusion in the outer epidermis. Both acute barrier disruption and topical basic pH challenges accelerate re-acidification of SKH2/J (but not SKH1) SC, while inducing melanin extrusion. SKH2/J mice also display enhanced expression of the SC acidifying enzyme, secretory phospholipase A2f (sPLA2f). Enhanced barrier function of SKH2/J mice could be attributed to enhanced activity of two acidic pH-dependent, ceramide-generating enzymes, β-glucocerebrosidase and acidic sphingomyelinase, leading to accelerated maturation of SC lamellar bilayers. Finally, organotypic cultures of darkly-pigmented-bearing human keratinocytes display enhanced barrier function in comparison to lightly-pigmented cultures. Together, these results suggest that the superior barrier function of pigmented epidermis can be largely attributed to the pH-lowering impact of melanin persistence/extrusion and enhanced sPLA2f expression. PMID:24732399

  13. Production and Identification of N-Glucosylrubropunctamine and N-Glucosylmonascorubramine from Monascus ruber and Occurrence of Electron Donor-Acceptor Complexes in These Red Pigments

    PubMed Central

    Hajjaj, H.; Klaebe, A.; Loret, M. O.; Tzedakis, T.; Goma, G.; Blanc, P. J.

    1997-01-01

    The filamentous fungus Monascus ruber produces water-soluble red pigments in a submerged culture when grown in a chemically defined medium containing glucose as a carbon source and monosodium glutamate as a nitrogen source. Two new molecules with polyketide structures, N-glucosylrubropunctamine and N-glucosylmonascorubramine, constituting under some conditions 10% of the total extracellular coloring matter when glucose as a carbon source was in excess (20 g/liter), were isolated and structurally characterized by high-pressure liquid chromatography, Dionex methods, (sup1)H and (sup13)C nuclear magnetic resonance spectroscopy, and mass spectrometry. The occurrence of the electron donor-acceptor complex effect was demonstrated by UV spectroscopy, polarography, and thin-layer voltammetry. The use of n-butanol as an extraction solvent stabilized the pigments against the effects of daylight for several months, promoting the stability of this type of complex. PMID:16535644

  14. Identification of an Alternative Splicing Product of the Otx2 Gene Expressed in the Neural Retina and Retinal Pigmented Epithelial Cells.

    PubMed

    Kole, Christo; Berdugo, Naomi; Da Silva, Corinne; Aït-Ali, Najate; Millet-Puel, Géraldine; Pagan, Delphine; Blond, Frédéric; Poidevin, Laetitia; Ripp, Raymond; Fontaine, Valérie; Wincker, Patrick; Zack, Donald J; Sahel, José-Alain; Poch, Olivier; Léveillard, Thierry

    2016-01-01

    To investigate the complexity of alternative splicing in the retina, we sequenced and analyzed a total of 115,706 clones from normalized cDNA libraries from mouse neural retina (66,217) and rat retinal pigmented epithelium (49,489). Based upon clustering the cDNAs and mapping them with their respective genomes, the estimated numbers of genes were 9,134 for the mouse neural retina and 12,050 for the rat retinal pigmented epithelium libraries. This unique collection of retinal of messenger RNAs is maintained and accessible through a web-base server to the whole community of retinal biologists for further functional characterization. The analysis revealed 3,248 and 3,202 alternative splice events for mouse neural retina and rat retinal pigmented epithelium, respectively. We focused on transcription factors involved in vision. Among the six candidates suitable for functional analysis, we selected Otx2S, a novel variant of the Otx2 gene with a deletion within the homeodomain sequence. Otx2S is expressed in both the neural retina and retinal pigmented epithelium, and encodes a protein that is targeted to the nucleus. OTX2S exerts transdominant activity on the tyrosinase promoter when tested in the physiological environment of primary RPE cells. By overexpressing OTX2S in primary RPE cells using an adeno associated viral vector, we identified 10 genes whose expression is positively regulated by OTX2S. We find that OTX2S is able to bind to the chromatin at the promoter of the retinal dehydrogenase 10 (RDH10) gene.

  15. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells.

    PubMed

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-07-15

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.

  16. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells

    PubMed Central

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-01-01

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite. PMID:25221599

  17. The focal differentiation of pigment cells.

    PubMed

    Whimster, I W

    1979-05-01

    A study has been made of the normal development and of the regeneration after excision of the groups of large pigment cells which form the spotted skin pattern of the gecko Eublepharis macularius, together with the effects of neonatal graft transplantation on this pattern. The results all indicate strongly that such groups of specialized pigment cells are not clones but the product of an induction process. This is then compared with the neural reflex mechanism by which the skin pattern of Chamaeoleo dilepis is formed.

  18. RISK ASSESSMENT FOR THE DYE AND PIGMENT ...

    EPA Pesticide Factsheets

    This risk assessment calculates the maximum loadings of constituents found in dyes and pigment industries waste streams which can be disposed in different types of waste management units without causing health benchmarks to be exceeded at plausible receptor locations. The assessment focuses on potential risks from volatilization and leaching to groundwater of constituents disposed in surface impoundments and landfills with either clay liners or composite liners. This product will be used by EPA decision makers to assist in determining whether certain waste streams generated by the dyes and pigments industries should be designated as hazardous.

  19. Inadvertent polychlorinated biphenyls in commercial paint pigments.

    PubMed

    Hu, Dingfei; Hornbuckle, Keri C

    2010-04-15

    A polychlorinated biphenyl (PCB) that was not produced as part of the Aroclor mixtures banned in the 1980s was recently reported in air samples collected in Chicago, Philadelphia, the Arctic, and several sites around the Great Lakes. In Chicago, the congener 3,3'-dichlorobiphenyl or PCB11 was found to be the fifth most concentrated congener and ubiquitous throughout the city. The congener exhibited strong seasonal concentration trends that suggest volatilization of this compound from common outdoor surfaces. Due to these findings and also the compound's presence in waters that received waste from paint manufacturing facilities, we hypothesized that PCB11 may be present in current commercial paint. In this study we measured PCBs in paint sold on the current retail market. We tested 33 commercial paint pigments purchased from three local paint stores. The pigment samples were analyzed for all 209 PCB congeners using gas chromatography with tandem mass spectrometry (GC-MS/MS). More than 50 PCB congeners including several dioxin-like PCBs were detected, and the PCB profiles varied due to different types of pigments and different manufacturing processes. PCB congeners were detected in azo and phthalocyanine pigments which are commonly used in paint but also in inks, textiles, paper, cosmetics, leather, plastics, food and other materials. Our findings suggest several possible mechanisms for the inadvertent production of specific PCB congeners during the manufacturing of paint pigments.

  20. An intracellular anion channel critical for pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-12-16

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.

  1. Fungal polyketide azaphilone pigments as future natural food colorants?

    PubMed

    Mapari, Sameer A S; Thrane, Ulf; Meyer, Anne S

    2010-06-01

    The recent approval of fungal carotenoids as food colorants by the European Union has strengthened the prospects for fungal cell factories for the production of polyketide pigments. Fungal production of colorants has the main advantage of making the manufacturer independent of the seasonal supply of raw materials, thus minimizing batch-to-batch variations. Here, we review the potential of polyketide pigments produced from chemotaxonomically selected non-toxigenic fungal strains (e.g. Penicillium and Epicoccum spp.) to serve as food colorants. We argue that the production of polyketide azaphilone pigments from such potentially safe hosts is advantageous over traditional processes that involve Monascus spp., which risks co-production of the mycotoxin citrinin. Thus, there is tremendous potential for the development of robust fungal production systems for polyketide pigments, both to tailor functionality and to expand the color palette of contemporary natural food colorants.

  2. Terahertz Analysis of Quinacridone Pigments

    NASA Astrophysics Data System (ADS)

    Squires, A. D.; Kelly, M.; Lewis, R. A.

    2017-03-01

    We present terahertz spectroscopy and analysis of two commercially available quinacridone pigments in the 0.5-4.5 THz range. Our results show a clear distinction between quinacridone red and magenta pigments. We reveal four definite absorptions in the terahertz regime common to both pigments, but offset between the pigments by ˜0.2 THz. The lowest-energy line in each pigment is observed to increase in frequency by ˜0.1 THz as the temperature is reduced from 300 to 12 K.

  3. Zidovudine-induced nail hyper-pigmentation in 45-year-old women prescribed for HIV/tuberculosis co-infection.

    PubMed

    Tandon, Vishal R; Sadiq, Shamiya; Khajuria, Vijay; Mahajan, Annil; Sharma, Sudhaa; Gillani, Zahid

    2016-01-01

    Zidovudine is an important component of first-line antiretroviral treatment regimens used to manage HIV and tuberculosis (TB) co-infection. Nail pigmentation is documented both in adult as well as pediatric HIV patients, but to the best of our knowledge, it has not been reported in 45-year-old women of HIV/TB co-infection. Such an adverse drugs reactions (ADR), although is harmless and reversible, psychological aspects of such ADR may be immense to the extent that it can negatively affect the compliance and result in therapeutic failure. Thus, it is worth reporting.

  4. Py-GC/MS applied to the analysis of synthetic organic pigments: characterization and identification in paint samples.

    PubMed

    Ghelardi, Elisa; Degano, Ilaria; Colombini, Maria Perla; Mazurek, Joy; Schilling, Michael; Learner, Tom

    2015-02-01

    A collection of 76 synthetic organic pigments was analysed using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The purpose of this work was to expand the knowledge on synthetic pigments and to assess characteristic pyrolysis products that could help in the identification of these pigments in paint samples. We analysed several classes of synthetic pigments not previously reported as being analysed by this technique: some metal complexes, β-naphthol pigment lakes, BONA pigment lakes, disazopyrazolone, triarylcarbonium, dioxazine, anthraquinone, indanthrone, isoindoline and thioindigo classes. We also report for the first time the Py-GC/MS analysis of a number of naphthol AS, benzimidazolone, phthalocyanine and perylene pigments and other miscellaneous pigments including pigments with unpublished chemical structure. We successfully used the Py-GC/MS technique for the analysis of paints by artists Clyfford Still and Jackson Pollock to identify the synthetic organic pigments and the binding media.

  5. Data on IL-17 production induced by plant lectins

    PubMed Central

    da Silva, Thiago Aparecido; Fernandes, Fabrício Freitas; Roque-Barreira, Maria Cristina

    2016-01-01

    We reported in article da Silva et al. (2016) [2] that ArtinM induces the IL-17 production through interaction with CD4+ T cells and stimulation of IL-23 and IL-1. Besides ArtinM, other plant lectins (PLs) induce IL-17 production by murine spleen cells. The IL-17 production induced by PLs was evaluated regarding the involvement of IL-23, IL-6, Th1-, and Th2-cytokines. Furthermore, the effect exerted TLR2, TLR4, and CD14 on the PLs׳ performance in the induction of IL-17 was examined. The current data were compared to the known ArtinM ability to induce Th17 immunity. PMID:27222857

  6. Light-induced degeneration and microglial response in the retina of an epibenthonic pigmented teleost: age-dependent photoreceptor susceptibility to cell death.

    PubMed

    Bejarano-Escobar, Ruth; Blasco, Manuel; Martín-Partido, Gervasio; Francisco-Morcillo, Javier

    2012-11-01

    Constant intense light causes apoptosis of photoreceptors in the retina of albino fish. However, very few studies have been performed on pigmented species. Tench (Tinca tinca) is a teleost inhabiting dimly lit environments that has a predominance of rods within the photoreceptor layer. To test the hypothesis that constant high intensity light can result in retinal damage in such pigmented epibenthonic teleost species, photodegeneration of the retina was investigated in the larvae and in juveniles of tench to assess whether any damage may also be dependent on fish age. We exposed both groups of animals to 5 days of constant darkness, followed by 4 days of constant 20,000 lx light, and then by 6 days of recovery in a 14 h light:10 h dark cycle. The results showed that the retina of the larvae group exhibited abundant photoreceptor cell apoptosis during the time of exposition to intense light, whereas that of juveniles was indifferent to it. Damaged retinas showed a strong TUNEL signal in photoreceptor nuclei, and occasionally a weak cytoplasmic TUNEL signal in Müller glia. Specific labelling of microglial cells with Griffonia simplicifolia lectin (GSL) histochemistry revealed that photoreceptor cell death alerts microglia in the degenerating retina, leading to local proliferation, migration towards the injured outer nuclear layer (ONL), and enhanced phagocytosis of photoreceptor debris. During the first days of intense light treatment, Müller cells phagocytosed dead photoreceptor cells but, once microglial cells became activated, there was a progressive increase in the phagocytic capacity of the microglia.

  7. Changes in pigment, spectral transmission and element content of pink chicken eggshells with different pigment intensity during incubation.

    PubMed

    Yu, Yue; Li, Zhanming; Pan, Jinming

    2016-01-01

    Objective. The objective of this study was to investigate changes in pigment, spectral transmission and element content of chicken eggshells with different intensities of pink pigment during the incubation period. We also investigated the effects of the region (small pole, equator and large pole) and pink pigment intensity of the chicken eggshell on the percent transmission of light passing through the chicken eggshells. Method. Eggs of comparable weight from a meat-type breeder (Meihuang) were used, and divided based on three levels of pink pigment (light, medium and dark) in the eggshells. During the incubation (0-21 d), the values of the eggshell pigment (ΔE, L (∗), a (∗), b (∗)) were measured. The percent transmission of light for different regions and intensities of eggshell pigmentation was measured by using the visible wavelength range of 380-780 nm. Result. Three measured indicators of eggshell color, ΔE, L (∗) and a (∗), did not change significantly during incubation. Compared with other regions and pigment intensities, eggshell at the small pole and with light pigmentation intensity showed the highest percent transmission of light. The transmission value varied significantly (P < 0.001) with incubation time. The element analysis of eggshells with different levels of pink pigment showed that the potassium content of the eggshells for all pigment levels decreased significantly during incubation. Conclusion. In summary, pigment intensity and the region of the eggshell influenced the percent transmission of light of eggshell. Differences in the spectral characteristics of different eggshells may influence the effects of photostimulation during the incubation of eggs. All of these results will be applicable for perfecting the design of light intensity for lighted incubation to improve productivity.

  8. [Synthesis of melanin pigments by Antarctic black yeast].

    PubMed

    Tashirev, A B; Romanovskaia, V A; Rokitko, P V; Matveeva, N A; Shilin, S O; Tashireva, A A

    2012-01-01

    Five strains of the black yeast similar to Exophiala nigra (Nadsoniela nigra), which we have isolated from the Antarctic biotopes, are studied. At cultivation in a periodic operation the maximum level of absolutely dry biomass in five tested strains constituted 3.2-7.8 g/l of medium, melanin pigment yield being 6-9% of absolutely dry mass of cells. Two highly productive strains have been selected. Pigments of the studied black yeast are water-insoluble, however dissolve in alkali and concentrated acids. The maximum absorption of the yeast pigments was in the range of 220 nm. The above-stated properties of pigments of the investigated yeast correspond to the description of melanin fractions of Nadsoniela nigra and some microscopic mushrooms. The water-soluble melanin-pigments have been obtained after the dialysis of alkaline solution of the pigment. UV-spectra and visible absorption spectra of water solution of melanin-pigments are almost identical to those of initial alkaline solutions. It is shown that the studied yeast are resistant to high concentrations of toxic metals (Hg2+, Cu2+, Co2+, Cr(VI) and Ni2+), and introduction of Co2+ into the cultivation medium leads to the increase of pigments synthesis.

  9. Study on the autofluorescence profiles of iris pigment epithelium and retinal pigment epithetlium

    NASA Astrophysics Data System (ADS)

    Xu, Gaixia; Qu, Junle; Chen, Danni; Sun, Yiwen; Zhao, Lingling; Lin, Ziyang; Ding, Zhihua; Niu, Hanben

    2007-05-01

    Transplantation technique of retinal pigment epithelium has been noticeable in recent years and gradually put into clinical practice in treatment of retinal degenerative diseases. Generally, immunological, histochemical, and physical methods are used to study the iris pigment epithelium (IPE) and retinal pigment epithelium (RPE) cells, which need complex sample preparation. In this paper, we provided a simple autofluorescence microscopy to investigate the fresh porcine IPE and RPE cells without any pretreatment. The results showed that the morphology and size of both were similar, round and about 15 μm. The main flourophore in both cells was similar, i.e. lipofuscin. In additional, the autofluorescence spectrum of RPE shifted blue after light-induced damage by laser illuminating. Because it was easier for IPE to be damaged by laser than for RPE, and the power of one scanning operation to get a full image was strong enough to damage IPE sample, we hadn't get any satisfied autofluorescence spectrum of IPE.

  10. PIGMENT DEPOSITION IN VISCERA ASSOCIATED WITH PROLONGED CHLORPROMAZINE THERAPY.

    PubMed

    GREINER, A C; NICOLSON, G A

    1964-09-19

    Twelve physically healthy young adult mental hospital patients died unexpectedly while on prolonged chlorpromazine therapy. Five of them had clinically obvious pigmentation of the exposed skin. Two of these had impairment of vision as well. Autopsies were performed on all 12 patients. Extensive deposits of pigment (exhibiting the physical and histochemical properties of melanin) were present in macrophages in the dermis and throughout the reticuloendothelial system, and in the parenchymal cells of internal organs. The dopa tyrosinase reaction indicated increased melanocyte activity in the epidermis.The possible mechanism of production of this pigment is discussed, and the belief is expressed that the increased melanin production is due, at least partly, to the effect of chlorpromazine on the autonomic nervous system, blocking the production of pigment-lightening factors, of which melatonin is the most important. A short outline of contemplated further investigation is given.

  11. Portuguese tin-glazed earthenware from the 17th century. Part 1: Pigments and glazes characterization

    NASA Astrophysics Data System (ADS)

    Vieira Ferreira, L. F.; Casimiro, T. M.; Colomban, Ph.

    2013-03-01

    Two sherds representative of the Portuguese faience production of the first and second halves of the 17th century were studied carefully with the use of non-invasive spectroscopies, namely: Ground State Diffuse Reflectance Absorption (GSDR), micro-Raman, Fourier-Transform Infrared (FT-IR), Laser Induced Luminescence (LIL) and Proton Induced X-ray (PIXE). These results were compared with the ones obtained for a Chinese Ming porcelain, Wanli period (16th/beginning of the 17th centuries), which served as an influence for the initial Lisbon's faience production. By combining information of the different non-destructive spectroscopic techniques used in this work, it was possible to conclude that: Co3O4 (Co II and Co III) can be found in the silicate matrix and is the blue pigment in the "Especieiro" sample (1st half of the 17th C.). Cobalt olivine silicate (Co2SiO4, Co II only) was clearly identified as the blue pigment in "Aranhões" sample (2nd half of the17th C.) - 824 cm-1 band in the micro-Raman-spectrum. Cobalt aluminate (CoAl2O4, Co II only) is the blue pigment in the Wanli plate - 203 and 512 cm-1 bands in the micro-Raman spectrum. The blue pigment in the 1st half 17th century of Lisbon's production was obtained by addition of a cobalt ore in low concentrations, which gives no specific Raman signature, because of complete dissolution in the glass. However, in most cases of the 2nd half 17th century, the Raman signature was quite evident, from a cobalt silicate. These findings point to the use of higher temperature kilns in the second case.

  12. Portuguese tin-glazed earthenware from the 17th century. Part 1: pigments and glazes characterization.

    PubMed

    Vieira Ferreira, L F; Casimiro, T M; Colomban, Ph

    2013-03-01

    Two sherds representative of the Portuguese faience production of the first and second halves of the 17th century were studied carefully with the use of non-invasive spectroscopies, namely: Ground State Diffuse Reflectance Absorption (GSDR), micro-Raman, Fourier-Transform Infrared (FT-IR), Laser Induced Luminescence (LIL) and Proton Induced X-ray (PIXE). These results were compared with the ones obtained for a Chinese Ming porcelain, Wanli period (16th/beginning of the 17th centuries), which served as an influence for the initial Lisbon's faience production. By combining information of the different non-destructive spectroscopic techniques used in this work, it was possible to conclude that: Co(3)O(4) (Co II and Co III) can be found in the silicate matrix and is the blue pigment in the "Especieiro" sample (1st half of the 17th C.). Cobalt olivine silicate (Co(2)SiO(4), Co II only) was clearly identified as the blue pigment in "Aranhões" sample (2nd half of the 17th C.) - 824 cm(-1) band in the micro-Raman-spectrum. Cobalt aluminate (CoAl(2)O(4), Co II only) is the blue pigment in the Wanli plate - 203 and 512 cm(-1) bands in the micro-Raman spectrum. The blue pigment in the 1st half 17th century of Lisbon's production was obtained by addition of a cobalt ore in low concentrations, which gives no specific Raman signature, because of complete dissolution in the glass. However, in most cases of the 2nd half 17th century, the Raman signature was quite evident, from a cobalt silicate. These findings point to the use of higher temperature kilns in the second case.

  13. L-carbocisteine reduces neutrophil elastase-induced mucin production.

    PubMed

    Yasuo, Masanori; Fujimoto, Keisaku; Imamura, Hitomi; Ushiki, Atsuhito; Kanda, Shintaro; Tsushima, Kenji; Kubo, Hiroshi; Yamaya, Mutsuo; Kubo, Keishi

    2009-06-30

    Human neutrophil elastase (HNE) exists in high concentrations in airway secretions and produces mucus hypersecretion in patients with chronic obstructive pulmonary disease (COPD). L-carbocisteine improves the quality of life and reduces exacerbation in COPD patients. However the precise mechanism is uncertain. We examined the effects of L-carbocisteine on HNE-induced mucus hypersecretion and on the production of reactive oxygen species (ROS) which is associated with mucin production induced by HNE. NCI-H292, a human lung mucoepidermoid carcinoma cell line, was treated with or without HNE and L-carbocisteine. MUC5AC mRNA expression and ROS production in the cells, and MUC5AC protein concentration in supernatants were measured. HNE increased MUC5AC mRNA expression and MUC5AC protein concentration in supernatants in the cells. L-carbocisteine reduces HNE-induced mRNA expression and protein secretion of MUC5AC. L-carbocisteine also reduced ROS production in the cells induced by HNE. Reduction of HNE-induced mucus secretion by L-carbocisteine in the pulmonary epithelial cells may partly relate to the reduction of ROS.

  14. Raman Spectroscopy of Microbial Pigments

    PubMed Central

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  15. Mineral resource of the month: iron oxide pigments

    USGS Publications Warehouse

    ,

    2008-01-01

    The article discusses iron oxide pigments, which have been used as colorants since human began painting as they resist color change due to sunlight exposure, have good chemical resistance and are stable under normal ambient conditions. Cyprus, Italy and Spain are among the countries that are known for the production of iron oxide pigments. Granular forms of iron oxides and nano-sized materials are cited as developments in the synthetic iron oxide pigment industry which are being used in computer disk drives and nuclear magnetic resonance imaging.

  16. Copepods induce paralytic shellfish toxin production in marine dinoflagellates

    PubMed Central

    Selander, Erik; Thor, Peter; Toth, Gunilla; Pavia, Henrik

    2006-01-01

    Among the thousands of unicellular phytoplankton species described in the sea, some frequently occurring and bloom-forming marine dinoflagellates are known to produce the potent neurotoxins causing paralytic shellfish poisoning. The natural function of these toxins is not clear, although they have been hypothesized to act as a chemical defence towards grazers. Here, we show that waterborne cues from the copepod Acartia tonsa induce paralytic shellfish toxin (PST) production in the harmful algal bloom-forming dinoflagellate Alexandrium minutum. Induced A. minutum contained up to 2.5 times more toxins than controls and was more resistant to further copepod grazing. Ingestion of non-toxic alternative prey was not affected by the presence of induced A. minutum. The ability of A. minutum to sense and respond to the presence of grazers by increased PST production and increased resistance to grazing may facilitate the formation of harmful algal blooms in the sea. PMID:16769640

  17. The penetration depth and lateral distribution of pigment related to the pigment grain size and the calendering of paper

    NASA Astrophysics Data System (ADS)

    Bülow, K.; Kristiansson, P.; Schüler, B.; Tullander, E.; Östling, S.; Elfman, M.; Malmqvist, K.; Pallon, J.; Shariff, A.

    2002-04-01

    The interaction of ink and newspaper has been investigated and the specific question of penetration of ink into the paper has been addressed with a nuclear microprobe using particle induced X-ray emission. The penetration depth of the newsprint is a critical factor in terms of increasing the quality of newsprint and minimising the amount of ink used. The objective of the experiment was to relate the penetration depth of pigment with the calendering of the paper. The dependence of the penetration depth on the pigment grain size was also studied. To study the penetration depth of pigment in paper, cyan ink with Cu as a tracer of the coloured pigment was used. For the study of the penetration depth dependence of pigment size, specially grounded Japanese ink with well-defined pigment grain size was used. This was compared to Swedish ink with pigment grains with normal size-distribution. The results show that the calendering of the paper considerably affects the penetration depth of ink.

  18. Reformulated meat products protect against ischemia-induced cardiac damage.

    PubMed

    Asensio-Lopez, M C; Lax, A; Sanchez-Mas, J; Avellaneda, A; Planes, J; Pascual-Figal, D A

    2016-02-01

    The protective effects of the antioxidants present in food are of great relevance for cardiovascular health. This study evaluates whether the extracts from reformulated meat products with a reduction in fat and/or sodium content exert a cardioprotective effect against ischemia-induced oxidative stress in cardiomyocytes, compared with non-meat foods. Ischemic damage caused loss of cell viability, increased reactive oxygen species and lipid peroxidation and decreased the antioxidant activity. Pretreatment for 24 h with digested or non-digested extracts from reformulated meat products led to protection against ischemia-induced oxidative damage: increased cell viability, reduced oxidative stress and restored the antioxidant activity. Similar results were obtained using extracts from tuna fish, but not with the extracts of green peas, salad or white beans. These results suggest that reformulated meat products have a beneficial impact in protecting cardiac cells against ischemia, and they may represent a source of natural antioxidants with benefits for cardiovascular health.

  19. Concentration dependence of vitamin C in combinations with vitamin E and zeaxanthin on light-induced toxicity to retinal pigment epithelial cells.

    PubMed

    Różanowska, Małgorzata; Bakker, Linda; Boulton, Michael E; Różanowski, Bartosz

    2012-01-01

    The purpose of this study was to determine the effects of increasing concentration of ascorbate alone and in combinations with α-tocopherol and zeaxanthin on phototoxicity to the retinal pigment epithelium. ARPE-19 cells were exposed to rose bengal and visible light in the presence and absence of antioxidants. Toxicity was quantified by an assay of cell-reductive activity. A 20 min exposure to visible light and photosensitizer decreased cell viability to ca 42%. Lipophilic antioxidants increased viabilities to ca 70%, 61% and 75% for α-tocopherol, zeaxanthin and their combination, respectively. Cell viabilities were ca 70%, 56% and 5% after exposures in the presence of 0.35, 0.7 and 1.4 mm ascorbate, respectively. A 45 min exposure increased cell death to ca 74% and >95% in the absence and presence of ascorbate, respectively. In the presence of ascorbate, zeaxanthin did not significantly affect phototoxicity. α-Tocopherol and its combination with zeaxanthin enhanced protective effects of ascorbate, but did not prevent from ascorbate-mediated deleterious effects. In conclusion, there is a narrow range of concentrations and exposure times where ascorbate exerts photoprotective effects, exceeding which leads to ascorbate-mediated increase in photocytotoxicity. Vitamin E and its combination with zeaxanthin can enhance protective effects of ascorbate, but do not ameliorate its deleterious effects.

  20. Nonphotosynthetic Pigments as Potential Biosignatures

    PubMed Central

    Cockell, Charles S.; Meadows, Victoria S.

    2015-01-01

    Abstract Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data. Key Words: Biosignatures—Exoplanets—Halophiles—Pigmentation—Reflectance spectroscopy—Spectral models. Astrobiology 15, 341–361. PMID:25941875

  1. Energy Conserving Coating - Pigment Research

    DTIC Science & Technology

    1991-05-01

    indicated above, changes from yellow to orange. Thermochromic CVL Mixtures Thermochromic dye mixtures were made by reacting specific leuco (colorless...2 Photochromic Pigments and Dyes ................................. 3 Thermochromic Inorganic Pigments...describing the state of the art in color changing materials, from liquid crystals to thermochromic metal complexes to photochromic spiran dyes . The re- search

  2. Nonphotosynthetic pigments as potential biosignatures.

    PubMed

    Schwieterman, Edward W; Cockell, Charles S; Meadows, Victoria S

    2015-05-01

    Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data.

  3. Nonphotosynthetic Pigments as Potential Biosignatures

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward W.; Cockell, Charles S.; Meadows, Victoria S.

    2015-05-01

    Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data.

  4. Comparative chromatography of chloroplast pigment

    NASA Technical Reports Server (NTRS)

    Grandolfo, M.; Sherma, J.; Strain, H. H.

    1969-01-01

    Methods for isolation of low concentration pigments of the cocklebur species are described. The methods entail two step chromatography so that the different sorption properties of the various pigments in varying column parameters can be utilized. Columnar and thin layer methods are compared. Many conditions influence separability of the chloroplasts.

  5. New directions in phthalocyanine pigments

    NASA Technical Reports Server (NTRS)

    Trinh, Diep VO

    1994-01-01

    Phthalocyanines have been used as a pigment in coatings and related applications for many years. These pigments are some of the most stable organic pigments known. The phthalo blue and green pigments have been known to be ultraviolet (UV) stable and thermally stable to over 400 C. These phthalocyanines are both a semiconductor and photoconductor, exhibiting catalytic activity and photostabilization capability of polymers. Many metal free and metallic phthalocyanine derivatives have been prepared. Development of the new classes of phthalocyanine pigment could be used as coating on NASA spacecraft material such as glass to decrease the optical degradation from UV light, the outside of the space station modules for UV protection, and coating on solar cells to increase lifetime and efficiency.

  6. Microanalysis study of archaeological mural samples containing Maya blue pigment

    NASA Astrophysics Data System (ADS)

    Sánchez del Río, M.; Martinetto, P.; Somogyi, A.; Reyes-Valerio, C.; Dooryhée, E.; Peltier, N.; Alianelli, L.; Moignard, B.; Pichon, L.; Calligaro, T.; Dran, J.-C.

    2004-10-01

    Elemental analysis by X-ray fluorescence and particle induced X-ray emission is applied to the study of several Mesoamerican mural samples containing blue pigments. The most characteristic blue pigment is Maya blue, a very stable organo-clay complex original from Maya culture and widely used in murals, pottery and sculptures in a vast region of Mesoamerica during the pre-hispanic time (from VIII century) and during the colonization until 1580. The mural samples come from six different archaeological sites (four pre-hispanic and two from XVI century colonial convents). The correlation between the presence of some elements and the pigment colour is discussed. From the comparative study of the elemental concentration, some conclusions are drawn on the nature of the pigments and the technology used.

  7. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation.

    PubMed

    Anderson, Michael G; Hawes, Norman L; Trantow, Colleen M; Chang, Bo; John, Simon W M

    2008-10-01

    Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among 16 mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease.

  8. [INHERITANCE OF EPIDERMIS PIGMENTATION IN SUNFLOWER ACHENES].

    PubMed

    Gorohivets, N A; Vedmedeva, E V

    2016-01-01

    Inheritance of epidermis pigmentation in the pericarp of sunflower seeds was studied. Inheritance of pigmentation was confirmed by three alleles Ew (epidermis devoid of pigmentation), Estr (epidermal pigmentation in strips), Edg (solid pigmentation). Dominance of the lack of epidermis pigmentation over striped epidermis and striped epidermis over solid pigmentation was established. It was shown that the striped epidermis pigmentation and the presence of testa layer are controlled by two genes, expression of which is independent from each other. Yellowish hypodermis was discovered in the sample I2K2218, which is inherited monogenically dominantly.

  9. Octylphenol induces vitellogenin production and cell death in fish hepatocytes

    SciTech Connect

    Toomey, B.H.; Monteverdi, G.H.; Di Giulio, R.T.

    1999-04-01

    The effects of octylphenol (OP) on vitellogenin production and cell death in hepatocytes from brown bullhead catfish (Americurus nebulosus) were studied. Production of vitellogenin was induced in hepatocytes exposed to 10 to 50 {micro}M OP, whereas a higher concentration of OP (100 {micro}M) induced apoptotic cell death. By 3 h after the addition of 100 {micro}M OP, dying cells showed chromatin condensation and DNA fragmentation as determined by fluorescence microscopy and gel electrophoresis. Later stages of cell death (nuclear membrane breakdown and cell fragmentation into apoptotic bodies) were identified in cells exposed to OP for at least 6 h. Hepatocytes exposed to 100 {micro}M OP also produced less vitellogenin than cells exposed to 50 {micro}M OP. An estrogen receptor antagonist, tamoxifen, greatly decreased vitellogenin production in OP-exposed hepatocytes from male fish but did not decrease cell death in these cells. Thus, although the ability of OP to induce vitellogenin production is likely mediated through interactions with the estrogen receptor, the induction of apoptotic cell death by OP does not appear to be dependent on its estrogenic activity but may be a more general toxic effect.

  10. A Novel IFITM5 Mutation in Severe Atypical Osteogenesis Imperfecta Type VI Impairs Osteoblast Production of Pigment Epithelium-Derived Factor

    PubMed Central

    Farber, Charles R; Reich, Adi; Barnes, Aileen M; Becerra, Patricia; Rauch, Frank; Cabral, Wayne A; Bae, Alison; Quinlan, Aaron; Glorieux, Francis H; Clemens, Thomas L; Marini, Joan C

    2015-01-01

    Osteogenesis imperfecta (OI) types V and VI are caused, respectively, by a unique dominant mutation in IFITM5, encoding BRIL, a transmembrane ifitm-like protein most strongly expressed in the skeletal system, and recessive null mutations in SERPINF1, encoding pigment epithelium-derived factor (PEDF). We identified a 25-year-old woman with severe OI whose dermal fibroblasts and cultured osteoblasts displayed minimal secretion of PEDF, but whose serum PEDF level was in the normal range. SERPINF1 sequences were normal despite bone histomorphometry consistent with type VI OI and elevated childhood serum alkaline phosphatase. We performed exome sequencing on the proband, both parents, and an unaffected sibling. IFITM5 emerged as the candidate gene from bioinformatics analysis, and was corroborated by membership in a murine bone co-expression network module containing all currently known OI genes. The de novo IFITM5 mutation was confirmed in one allele of the proband, resulting in a p.S40L substitution in the intracellular domain of BRIL but was absent in unaffected family members. IFITM5 expression was normal in proband fibroblasts and osteoblasts, and BRIL protein level was similar to control in differentiated proband osteoblasts on Western blot and in permeabilized mutant osteoblasts by microscopy. In contrast, SERPINF1 expression was decreased in proband osteoblasts; PEDF was barely detectable in conditioned media of proband cells. Expression and secretion of type I collagen was similarly decreased in proband osteoblasts; the expression pattern of several osteoblast markers largely overlapped reported values from cells with a primary PEDF defect. In contrast, osteoblasts from a typical case of type V OI, with an activating mutation at the 5′-terminus of BRIL, have increased SERPINF1 expression and PEDF secretion during osteoblast differentiation. Together, these data suggest that BRIL and PEDF have a relationship that connects the genes for types V and VI OI and

  11. Natural pigments and sacred art

    NASA Astrophysics Data System (ADS)

    Kelekian, Lena, ,, Lady

    2010-05-01

    Since the dawn of mankind, cavemen has expressed himself through art. The earliest known cave paintings date to some 32,000 years ago and used 4 colours derived from the earth. These pigments were iron oxides and known as ochres, blacks and whites. All pigments known by the Egyptians, the Greeks, the Romans and Renaissance man were natural and it was not until the 18th century that synthetic pigments were made and widely used. Until that time all art, be it sacred or secular used only natural pigments, of which the preparation of many have been lost or rarely used because of their tedious preparation. As a geologist, a mineralogist and an artist specializing in iconography, I have been able to rediscover 89 natural pigments extracted from minerals. I use these pigments to paint my icons in the traditional Byzantine manner and also to restore old icons, bringing back their glamour and conserving them for years to come. The use of the natural pigments in its proper way also helps to preserve the traditional skills of the iconographer. In the ancient past, pigments were extremely precious. Many took an exceedingly long journey to reach the artists, and came from remote countries. Research into these pigments is the work of history, geography and anthropology. It is an interesting journey in itself to discover that the blue aquamarines came from Afghanistan, the reds from Spain, the greens Africa, and so on. In this contribution I will be describing the origins, preparation and use of some natural pigments, together with their history and provenance. Additionally, I will show how the natural pigments are used in the creation of an icon. Being a geologist iconographer, for me, is a sacrement that transforms that which is earthly, material and natural into a thing of beauty that is sacred. As bread and wine in the Eucharist, water during baptism and oil in Holy Union transmit sanctification to the beholder, natural pigments do the same when one considers an icon. The

  12. Multi-strangeness production in hadron induced reactions

    NASA Astrophysics Data System (ADS)

    Gaitanos, T.; Moustakidis, Ch.; Lalazissis, G. A.; Lenske, H.

    2016-10-01

    We discuss in detail the formation and propagation of multi-strangeness particles in reactions induced by hadron beams relevant for the forthcoming experiments at FAIR. We focus the discussion on the production of the decuplet-particle Ω and study for the first time the production and propagation mechanism of this heavy hyperon inside hadronic environments. The transport calculations show the possibility of Ω-production in the forthcoming P ‾ANDA-experiment, which can be achieved with measurable probabilities using high-energy secondary Ξ-beams. We predict cross sections for Ω-production. The theoretical results are important in understanding the hyperon-nucleon and, in particular, the hyperon-hyperon interactions also in the high-strangeness sector. We emphasize the importance of our studies for the research plans at FAIR.

  13. Animal pigment bilirubin discovered in plants.

    PubMed

    Pirone, Cary; Quirke, J Martin E; Priestap, Horacio A; Lee, David W

    2009-03-04

    The bile pigment bilirubin-IXalpha is the degradative product of heme, distributed among mammals and some other vertebrates. It can be recognized as the pigment responsible for the yellow color of jaundice and healing bruises. In this paper we present the first example of the isolation of bilirubin in plants. The compound was isolated from the brilliant orange-colored arils of Strelitzia nicolai, the white bird of paradise tree, and characterized by HPLC-ESMS, UV-visible, (1)H NMR, and (13)C NMR spectroscopy, as well as comparison with an authentic standard. This discovery indicates that plant cyclic tetrapyrroles may undergo degradation by a previously unknown pathway. Preliminary analyses of related plants, including S. reginae, the bird of paradise, also revealed bilirubin in the arils and flowers, indicating that the occurrence of bilirubin is not limited to a single species or tissue type.

  14. Fluid Production Induced Stress Analysis Surrounding an Elliptic Fracture

    NASA Astrophysics Data System (ADS)

    Pandit, Harshad Rajendra

    Hydraulic fracturing is an effective technique used in well stimulation to increase petroleum well production. A combination of multi-stage hydraulic fracturing and horizontal drilling has led to the recent boom in shale gas production which has changed the energy landscape of North America. During the fracking process, highly pressurized mixture of water and proppants (sand and chemicals) is injected into to a crack, which fractures the surrounding rock structure and proppants help in keeping the fracture open. Over a longer period, however, these fractures tend to close due to the difference between the compressive stress exerted by the reservoir on the fracture and the fluid pressure inside the fracture. During production, fluid pressure inside the fracture is reduced further which can accelerate the closure of a fracture. In this thesis, we study the stress distribution around a hydraulic fracture caused by fluid production. It is shown that fluid flow can induce a very high hoop stress near the fracture tip. As the pressure gradient increases stress concentration increases. If a fracture is very thin, the flow induced stress along the fracture decreases, but the stress concentration at the fracture tip increases and become unbounded for an infinitely thin fracture. The result from the present study can be used for studying the fracture closure problem, and ultimately this in turn can lead to the development of better proppants so that prolific well production can be sustained for a long period of time.

  15. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.

    PubMed

    Torres-Pérez, Juan L; Guild, Liane S; Armstrong, Roy A; Corredor, Jorge; Zuluaga-Montero, Anabella; Polanco, Ramón

    2015-01-01

    Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

  16. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals

    PubMed Central

    Torres-Pérez, Juan L.; Guild, Liane S.; Armstrong, Roy A.; Corredor, Jorge; Zuluaga-Montero, Anabella; Polanco, Ramón

    2015-01-01

    Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral’s symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5–98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health. PMID:26619210

  17. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis

    PubMed Central

    Balmer, Delphine; Bapst-Wicht, Linda; Pyakurel, Aswin; Emery, Martine; Nanchen, Natacha; Bochet, Christian G.; Roduit, Raphael

    2017-01-01

    Age-related macular degeneration (ARMD) is the leading cause of vision loss in developed countries. Hallmarks of the disease are well known; indeed, this pathology is characterized by lipofuscin accumulation, is principally composed of lipid-containing residues of lysosomal digestion. The N-retinyl-N-retinylidene ethanolamine (A2E) retinoid which is thought to be a cytotoxic component for RPE is the best-characterized component of lipofuscin so far. Even if no direct correlation between A2E spatial distribution and lipofuscin fluorescence has been established in aged human RPE, modified forms or metabolites of A2E could be involved in ARMD pathology. Mitogen-activated protein kinase (MAPK) pathways have been involved in many pathologies, but not in ARMD. Therefore, we wanted to analyze the effects of A2E on MAPKs in polarized ARPE19 and isolated mouse RPE cells. We showed that long-term exposure of polarized ARPE19 cells to low A2E dose induces a strong decrease of the extracellular signal-regulated kinases' (ERK1/2) activity. In addition, we showed that A2E, via ERK1/2 decrease, induces a significant decrease of the retinal pigment epithelium-specific protein 65 kDa (RPE65) expression in ARPE19 cells and isolated mouse RPE. In the meantime, we showed that the decrease of ERK1/2 activity mediates an increase of basic fibroblast growth factor (bFGF) mRNA expression and secretion that induces an increase in phagocytosis via a paracrine effect. We suggest that the accumulation of deposits coming from outer segments (OS) could be explained by both an increase of bFGF-induced phagocytosis and by the decrease of clearance by A2E. The bFGF angiogenic protein may therefore be an attractive target to treat ARMD. PMID:28298893

  18. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    PubMed Central

    Saksens, Nicole T.M.; Krebs, Mark P.; Schoenmaker-Koller, Frederieke E.; Hicks, Wanda; Yu, Minzhong; Shi, Lanying; Rowe, Lucy; Collin, Gayle B.; Charette, Jeremy R.; Letteboer, Stef J.; Neveling, Kornelia; van Moorsel, Tamara W.; Abu-Ltaif, Sleiman; De Baere, Elfride; Walraedt, Sophie; Banfi, Sandro; Simonelli, Francesca; Cremers, Frans P.M.; Boon, Camiel J.F.; Roepman, Ronald; Leroy, Bart P.; Peachey, Neal S.; Hoyng, Carel B.; Nishina, Patsy M.; den Hollander, Anneke I.

    2015-01-01

    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here, we report the identification of heterozygous missense mutations in the α-catenin 1 (CTNNA1) gene in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice revealed increased cell shedding and large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, suggests that CTNNA1 is involved in maintaining RPE integrity, and suggests that other components that participate in intercellular adhesion may be implicated in macular disease. PMID:26691986

  19. Dermoscopy of pigmented skin lesions.

    PubMed

    Soyer, H P; Argenziano, G; Chimenti, S; Ruocco, V

    2001-01-01

    This paper describes the basic concepts of dermoscopy, the various dermoscopic equipments and the standard criteria for diagnosing pigmented skin lesions. In assessing dermoscopic images, both global and local features can be recognized. These features will be systematically described and illustrated in Part I of this article. First, we will focus on 8 morphologically rather distinctive global features that allow a quick, preliminary categorization of a given pigmented skin lesion. Second, we will describe various local features representing the letters of the dermoscopic alphabet. The local features permit a more detailed assessment of pigmented skin lesions.

  20. Optical tomography of pigmented human skin biopsies

    NASA Astrophysics Data System (ADS)

    Riemann, Iris; Fischer, Peter; Kaatz, Martin; Fischer, Tobias W.; Elsner, Peter; Dimitrov, Enrico; Reif, Annette; Konig, Karsten

    2004-07-01

    The novel femtosecond NIR (near infrared) laser based high resolution imaging system DermaInspect was used for non-invasive diagnostics of pigmented skin. The system provides fluorescence and SHG images of high spatial submicron resolution (3D) and 250 ps temporal resolution (4D) based on time resolved single photon counting (TCSPC). Pigmented tissue biopsies from patients with nevi and melanoma have been investigated using the tunable 80 MHz femtosecond laser MaiTai with laser wavelengths in the range of 750 - 850 nm. The autofluorescence patterns of different intratissue cell types and structures were determined. The non-linear induced autofluorescence originates from naturally endogenous fluorophores and protein structures like NAD(P)H, flavins, elastin, collagen, phorphyrins and melanin. In addition to autofluorescence, SHG (second harmonic generation) was used to detect dermal collagen structures. Interestingly, pigmented cells showed intense luminescence signals. Further characterization of tissue components was performed via 4D measurements of the fluorescence lifetime (x, y, z, τ). The novel multiphoton technique offers the possibility of a painless high resolution non invasive diagnostic method (optical biopsy), in particular for the early detection of skin cancer.

  1. Pigmentation plasticity enhances crypsis in larval newts: associated metabolic cost and background choice behaviour

    PubMed Central

    Polo-Cavia, Nuria; Gomez-Mestre, Ivan

    2017-01-01

    In heterogeneous environments, the capacity for colour change can be a valuable adaptation enhancing crypsis against predators. Alternatively, organisms might achieve concealment by evolving preferences for backgrounds that match their visual traits, thus avoiding the costs of plasticity. Here we examined the degree of plasticity in pigmentation of newt larvae (Lissotriton boscai) in relation to predation risk. Furthermore, we tested for associated metabolic costs and pigmentation-dependent background choice behaviour. Newt larvae expressed substantial changes in pigmentation so that light, high-reflecting environment induced depigmentation whereas dark, low-reflecting environment induced pigmentation in just three days of exposure. Induced pigmentation was completely reversible upon switching microhabitats. Predator cues, however, did not enhance cryptic phenotypes, suggesting that environmental albedo induces changes in pigmentation improving concealment regardless of the perceived predation risk. Metabolic rate was higher in heavily pigmented individuals from dark environments, indicating a high energetic requirement of pigmentation that could impose a constraint to larval camouflage in dim habitats. Finally, we found partial evidence for larvae selecting backgrounds matching their induced phenotypes. However, in the presence of predator cues, larvae increased the time spent in light environments, which may reflect a escape response towards shallow waters rather than an attempt at increasing crypsis. PMID:28051112

  2. Laser therapy of pigmented lesions: pro and contra.

    PubMed

    Bukvić Mokos, Zrinka; Lipozenčić, Jasna; Ceović, Romana; Stulhofer Buzina, Daška; Kostović, Krešimir

    2010-01-01

    Although frequently performed, laser removal of pigmented lesions still contains certain controversial issues. Epidermal pigmented lesions include solar lentigines, ephelides, café au lait macules and seborrheic keratoses. Dermal lesions include melanocytic nevi, blue nevi, drug induced hyperpigmentation and nevus of Ota and Ito. Some lesions exhibit both an epidermal and dermal component like Becker's nevus, postinflammatory hyperpigmentations, melasma and nevus spilus. Due to the wide absorption spectrum of melanin (500-1100 nm), several laser systems are effective in removal of pigmented lesions. These lasers include the pigmented lesion pulsed dye laser (510 nm), the Q-switched ruby laser (694 nm), the Q-switched alexandrite laser (755 nm) and the Q-switched Nd:YAG laser (1064 nm), which can be frequency-doubled to produce visible green light with a wavelength of 532 nm. The results of laser therapy are usually successful. However, there are still many controversies regarding the use of lasers in treating certain pigmented lesions. Actually, the essential question in removing pigmented lesions with lasers is whether the lesion has atypical features or has a malignant potential. Dermoscopy, used as a routine first-level diagnostic technique, is helpful in most cases. If there is any doubt whether the lesion is benign, then a biopsy for histologic evaluation is obligatory.

  3. Electrochemical photodegradation study of semiconductor pigments: influence of environmental parameters.

    PubMed

    Anaf, Willemien; Trashin, Stanislav; Schalm, Olivier; van Dorp, Dennis; Janssens, Koen; De Wael, Karolien

    2014-10-07

    Chemical transformations in paintings often induce discolorations, disturbing the appearance of the image. For an appropriate conservation of such valuable and irreplaceable heritage objects, it is important to have a good know-how on the degradation processes of the (historical) materials: which pigments have been discolored, what are the responsible processes, and which (environmental) conditions have the highest impact on the pigment degradation and should be mitigated. Pigment degradation is already widely studied, either by analyzing historical samples or by accelerated weathering experiments on dummies. However, in historic samples several processes may have taken place, increasing the complexity of the current state, while aging experiments are time-consuming due to the often extended aging period. An alternative method is proposed for a fast monitoring of degradation processes of semiconductor pigments, using an electrochemical setup mimicking the real environment and allowing the identification of harmful environmental parameters for each pigment. Examples are given for the pigments cadmium yellow (CdS) and vermilion (α-HgS).

  4. Higgs-boson production induced by bottom quarks

    NASA Astrophysics Data System (ADS)

    Boos, Eduard; Plehn, Tilman

    2004-05-01

    Bottom-quark-induced processes are responsible for a large fraction of the CERN Large Hadron Collider (LHC) discovery potential, in particular, for supersymmetric Higgs bosons. Recently, the discrepancy between exclusive and inclusive Higgs boson production rates has been linked to the choice of an appropriate bottom factorization scale. We investigate the process kinematics at hadron colliders and show that it leads to a considerable decrease in the bottom factorization scale. This effect is the missing piece needed to understand the corresponding higher order results. Our results hold generally for charged and for neutral Higgs boson production at the LHC as well as at the Fermilab Tevatron. The situation is different for single top quark production, where we find no sizable suppression of the factorization scale. Turning the argument around, we can specify how large are the collinear logarithms that can be resummed using the bottom parton picture.

  5. Fumed metallic oxides and conventional pigments for glossy inkjet paper

    NASA Astrophysics Data System (ADS)

    Lee, Hyunkook

    Product development activity in the area of inkjet printing papers has accelerated greatly to meet the rapidly growing market for inkjet papers. Advancements in inkjet printing technology have also placed new demands on the paper substrate due to faster printing rates, greater resolution through increased drop volumes, and colorants added to the ink. To meet these requirements, papermakers are turning to pigmented size press formulations or pigmented coating systems. For inkjet coating applications, both the internal porosity of the pigment particles as well as the packing porosity of the coating affect print quality and dry time. Pores between the pigment particles allow for rapid diffusion of ink fluids into the coating structure, while also providing capacity for ink fluid uptake. Past research has shown the presence of coating cracks to increase the microroughness of the papers, consequently reducing the gloss of the silica/polyvinyl alcohol based coating colors. Coating cracks were not observed, at the same level of magnification, in the scanning electron microscopy images of alumina/polyvinyl alcohol coated papers. Studies are therefore needed to understand the influence of coating cracking on the microroughening of silica/polyvinyl alcohol based coatings and consequences to coating and ink gloss. Since micro roughening is known to be linked to shrinkage of the coating layer, studies are needed to determine if composite pigments can be formulated, which would enable the coating solids of the formulations to be increased to minimize the shrinkage of coating layer during drying. Coating solids greater than 55% solids are needed to reduce the difference between application solids and the coating's immobilization solids point in order to reduce shrinkage. The aim of this research was to address the above mentioned needed studies. Studies were performed to understand the influence of particle packing on gloss and ink jet print quality. Composite pigment structures

  6. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress.

    PubMed

    Chang, Yun-Ching; Chang, Wei-Chao; Hung, Kuo-Hsuan; Yang, Der-Ming; Cheng, Yung-Hsin; Liao, Yi-Wen; Woung, Lin-Chung; Tsai, Ching-Yao; Hsu, Chih-Chien; Lin, Tai-Chi; Liu, Jorn-Hon; Chiou, Shih-Hwa; Peng, Chi-Hsien; Chen, Shih-Jen

    2014-01-01

    Age-related macular degeneration (AMD) is one retinal aging process that may lead to irreversible vision loss in the elderly. Its pathogenesis remains unclear, but oxidative stress inducing retinal pigment epithelial (RPE) cells damage is perhaps responsible for the aging sequence of retina and may play an important role in macular degeneration. In this study, we have reprogrammed T cells from patients with dry type AMD into induced pluripotent stem cells (iPSCs) via integration-free episomal vectors and differentiated them into RPE cells that were used as an expandable platform for investigating pathogenesis of the AMD and in-vitro drug screening. These patient-derived RPEs with the AMD-associated background (AMD-RPEs) exhibited reduced antioxidant ability, compared with normal RPE cells. Among several screened candidate drugs, curcumin caused most significant reduction of ROS in AMD-RPEs. Pre-treatment of curcumin protected these AMD-RPEs from H2O2-induced cell death and also increased the cytoprotective effect against the oxidative stress of H2O2 through the reduction of ROS levels. In addition, curcumin with its versatile activities modulated the expression of many oxidative stress-regulating genes such as PDGF, VEGF, IGFBP-2, HO1, SOD2, and GPX1. Our findings indicated that the RPE cells derived from AMD patients have decreased antioxidative defense, making RPE cells more susceptible to oxidative damage and thereby leading to AMD formation. Curcumin represented an ideal drug that can effectively restore the neuronal functions in AMD patient-derived RPE cells, rendering this drug an effective option for macular degeneration therapy and an agent against aging-associated oxidative stress.

  7. Pathophysiological preconditions promoting mixed "black" pigment plus cholesterol gallstones in a DeltaF508 mouse model of cystic fibrosis.

    PubMed

    Freudenberg, Folke; Leonard, Monika R; Liu, Shou-An; Glickman, Jonathan N; Carey, Martin C

    2010-07-01

    Gallstones are frequent in patients with cystic fibrosis (CF). These stones are generally "black" pigment (i.e., Ca bilirubinate) with an appreciable cholesterol admixture. The pathophysiology and molecular mechanisms for this "mixed" gallstone in CF are unknown. Here we investigate in a CF mouse model with no overt liver or gallbladder disease whether pathophysiological changes in the physical chemistry of gallbladder bile might predict the occurrence of "mixed" cholelithiasis. Employing a DeltaF508 mouse model with documented increased fecal bile acid loss and induced enterohepatic cycling of bilirubin (Am J Physiol Gastrointest Liver Physiol 294: G1411-G1420, 2008), we assessed gallbladder bile chemistry, morphology, and microscopy in CF and wild-type mice, with focus on the concentrations and compositions of the common biliary lipids, bilirubins, Ca(2+), and pH. Our results demonstrate that gallbladder bile of CF mice contains significantly higher levels of all bilirubin conjugates and unconjugated bilirubin with lower gallbladder bile pH values. Significant elevations in Ca bilirubinate ion products in bile of CF mice increase the likelihood of supersaturating bile and forming black pigment gallstones. The risk of potential pigment cholelithogenesis is coupled with higher cholesterol saturations and bile salt hydrophobicity indexes, consistent with a proclivity to cholesterol phase separation during pigment gallstone formation. This is an initial step toward unraveling the molecular basis of CF gallstone disease and constitutes a framework for investigating animal models of CF with more severe biliary disease, as well as the human disease.

  8. Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster

    PubMed Central

    Dembeck, Lauren M.; Huang, Wen; Magwire, Michael M.; Lawrence, Faye; Lyman, Richard F.; Mackay, Trudy F. C.

    2015-01-01

    Pigmentation varies within and between species and is often adaptive. The amount of pigmentation on the abdomen of Drosophila melanogaster is a relatively simple morphological trait, which serves as a model for mapping the genetic basis of variation in complex phenotypes. Here, we assessed natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel, derived from the Raleigh, NC population. We quantified the proportion of melanization on the two most posterior abdominal segments, tergites 5 and 6 (T5, T6). We found significant genetic variation in the proportion of melanization and high broad-sense heritabilities for each tergite. Genome-wide association studies identified over 150 DNA variants associated with the proportion of melanization on T5 (84), T6 (34), and the difference between T5 and T6 (35). Several of the top variants associated with variation in pigmentation are in tan, ebony, and bric-a-brac1, genes known to affect D. melanogaster abdominal pigmentation. Mutational analyses and targeted RNAi-knockdown showed that 17 out of 28 (61%) novel candidate genes implicated by the genome-wide association study affected abdominal pigmentation. Several of these genes are involved in developmental and regulatory pathways, chitin production, cuticle structure, and vesicle formation and transport. These findings show that genetic variation may affect multiple steps in pathways involved in tergite development and melanization. Variation in these novel candidates may serve as targets for adaptive evolution and sexual selection in D. melanogaster. PMID:25933381

  9. The anti-mutagenic properties of bile pigments.

    PubMed

    Bulmer, A C; Ried, K; Blanchfield, J T; Wagner, K-H

    2008-01-01

    Bile pigments, including bilirubin and biliverdin, are endogenous compounds belonging to the porphyrin family of molecules. In the past, bile pigments and bilirubin in particular were thought of as useless by-products of heme catabolism that can be toxic if they accumulate. However, in the past 20 years, research probing the physiological relevance of bile pigments has been mounting, with evidence to suggest bile pigments possess significant antioxidant and anti-mutagenic properties. More specifically, bile pigments are potent peroxyl radical scavengers and inhibit the mutagenic effects of a number of classes of mutagens (polycyclic aromatic hydrocarbons, heterocyclic amines, oxidants). Coincidentally, persons with elevated circulating bilirubin concentrations have a reduced prevalence of cancer and cardio-vascular disease. Despite the encouraging in vitro anti-mutagenic effects of bile pigments, relatively little research has been conducted on their inhibitory capacity in bacterial and cultured cell assays of mutation, which might link the existing in vitro and in vivo observations. This is the first review to summarise the published data and it is our hope it will stimulate further research on these potentially preventative compounds.

  10. Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster.

    PubMed

    Dembeck, Lauren M; Huang, Wen; Magwire, Michael M; Lawrence, Faye; Lyman, Richard F; Mackay, Trudy F C

    2015-05-01

    Pigmentation varies within and between species and is often adaptive. The amount of pigmentation on the abdomen of Drosophila melanogaster is a relatively simple morphological trait, which serves as a model for mapping the genetic basis of variation in complex phenotypes. Here, we assessed natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel, derived from the Raleigh, NC population. We quantified the proportion of melanization on the two most posterior abdominal segments, tergites 5 and 6 (T5, T6). We found significant genetic variation in the proportion of melanization and high broad-sense heritabilities for each tergite. Genome-wide association studies identified over 150 DNA variants associated with the proportion of melanization on T5 (84), T6 (34), and the difference between T5 and T6 (35). Several of the top variants associated with variation in pigmentation are in tan, ebony, and bric-a-brac1, genes known to affect D. melanogaster abdominal pigmentation. Mutational analyses and targeted RNAi-knockdown showed that 17 out of 28 (61%) novel candidate genes implicated by the genome-wide association study affected abdominal pigmentation. Several of these genes are involved in developmental and regulatory pathways, chitin production, cuticle structure, and vesicle formation and transport. These findings show that genetic variation may affect multiple steps in pathways involved in tergite development and melanization. Variation in these novel candidates may serve as targets for adaptive evolution and sexual selection in D. melanogaster.

  11. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections.

  12. Erp29 Attenuates Cigarette Smoke Extract–Induced Endoplasmic Reticulum Stress and Mitigates Tight Junction Damage in Retinal Pigment Epithelial Cells

    PubMed Central

    Huang, Chuangxin; Wang, Joshua J.; Jing, Guangjun; Li, Junhua; Jin, Chenjin; Yu, Qiang; Falkowski, Marek W.; Zhang, Sarah X.

    2015-01-01

    Purpose Endoplasmic reticulum protein 29 (ERp29) is a novel chaperone that was recently found decreased in human retinas with AMD. Herein, we examined the effect of ERp29 on cigarette smoke–induced RPE apoptosis and tight junction disruption. Methods Cultured human RPE (HRPE) cells (ARPE-19) or mouse RPE eyecup explants were exposed to cigarette smoke extract (CSE) for short (up to 24 hours) or long (up to 3 weeks) periods. Expression of ERp29 was up- and downregulated by adenovirus and siRNA, respectively. Endoplasmic reticulum stress markers, apoptosis, and cell death, the expression and distribution of tight junction protein ZO-1, transepithelial electrical resistance (TEER), and F-actin expression were examined. Results Endoplasmic reticulum protein 29 was significantly increased by short-term exposure to CSE in ARPE-19 cells or eyecup explants but was reduced after 3-week exposure. Overexpression of ERp29 increased the levels of GRP78, p58IPK, and Nrf-2, while reducing p-eIF2α and C/EBP homologous protein (CHOP), and protected RPE cells from CSE-induced apoptosis. In contrast, knockdown of ERp29 decreased the levels of p58IPK and Nrf2, but increased p-eIF2α and CHOP and exacerbated CSE-triggered cell death. In addition, overexpression of ERp29 attenuated CSE-induced reduction in ZO-1 and enhanced the RPE barrier function, as measured by TEER. Knockdown of ERp29 decreased the level of ZO-1 protein. These effects were associated with changes in the expression of cytoskeleton F-actin. Conclusions Endoplasmic reticulum protein 29 attenuates CSE-induced ER stress and enhances cell viability and barrier integrity of RPE cells, and therefore may act as a protective mechanism for RPE survival and activity. PMID:26431474

  13. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking

    PubMed Central

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  14. Resveratrol inhibits transforming growth factor-β2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway

    PubMed Central

    Chen, Ching-Long; Chen, Yi-Hao; Tai, Ming-Cheng; Liang, Chang-Min; Lu, Da-Wen; Chen, Jiann-Torng

    2017-01-01

    Proliferative vitreoretinopathy (PVR) is the main cause of failure following retinal detachment surgery. Transforming growth factor (TGF)-β2-induced epithelial-to-mesenchymal transition (EMT) plays an important role in the development of PVR, and EMT inhibition decreases collagen gel contraction and fibrotic membrane formation, resulting in prevention of PVR. Resveratrol is naturally found in red wine and has inhibitory effects on EMT. Resveratrol is widely used in cardioprotection, neuroprotection, chemotherapy, and antiaging therapy. The purpose of this study was to investigate the effects of resveratrol on TGF-β2-induced EMT in ARPE-19 cells in vitro. We found that resveratrol suppressed the decrease of zona occludens-1 (ZO-1) and caused an increase of alpha-smooth muscle actin expression in TGF-β2-treated ARPE-19 cells, assessed using Western blots; moreover, it also suppressed the decrease in ZO-1 and the increase of vimentin expression, observed using immunocytochemistry. Resveratrol attenuated TGF-β2-induced wound closure and cell migration in ARPE-19 cells in a scratch wound test and modified Boyden chamber assay, respectively. We also found that resveratrol reduced collagen gel contraction – assessed by collagen matrix contraction assay – and suppressed the phosphorylation of Smad2 and Smad3 in TGF-β2-treated ARPE-19 cells. These results suggest that resveratrol mediates anti-EMT effects, which could be used in the prevention of PVR. PMID:28138219

  15. Radiation-induced volatile hydrocarbon production in platelets

    SciTech Connect

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets.

  16. Characterization of Chromobacterium violaceum pigment through a hyperspectral imaging system

    PubMed Central

    2014-01-01

    In this paper, a comprehensive spatio-spectral and temporal analysis for Chromobacterium violaceum colonies is reported. A hyperspectral imaging (HSI) system is used to recover the spectral signatures of pigment production in a non-homogeneous media with high spectral resolution and high sensitivity in vivo, without destructing the sample. This non-contact sensing technique opens avenues to study the temporal growing of a specific section in the bacterial colony. Further, from a 580 [nm] and 764 [nm] spatio-spectral time series, a wild-type and mutant Chromobacterium violaceum strains are characterized. Such study provides quantitative information about kinetic parameters of pigment production and bacterial growing. PMID:24417877

  17. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  18. Bee products prevent agrichemical-induced oxidative damage in fish.

    PubMed

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; da Rosa, João Gabriel Santos; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L(-1) of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.

  19. Bee Products Prevent Agrichemical-Induced Oxidative Damage in Fish

    PubMed Central

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; Santos da Rosa, João Gabriel; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L−1 of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased. PMID:24098336

  20. Production and decay of baryonic resonances in pion induced reactions

    NASA Astrophysics Data System (ADS)

    Przygoda, Witold

    2016-11-01

    Pion induced reactions give unique opportunities for an unambiguous description of baryonic resonances and their coupling channels. A systematic energy scan and high precision data, in conjunction with a partial wave analysis, allow for the study of the excitation function of the various contributions. A review of available world data unravels strong need for modern facilities delivering measurements with a pion beam. Recently, HADES collaboration collected data in pion-induced reactions on light (12C) and heavy (74W) nuclei at a beam momentum of 1.7 GeV/c dedicated to strangeness production. It was followed by a systematic scan at four different pion beam momenta (0.656, 0.69, 0.748 and 0.8 GeV/c) in π- - p reaction in order to tackle the role of N(1520) resonance in conjunction with the intermediate ρ production. First results on exclusive channels with one pion (π- p) and two pions (nπ+π-, pπ-π0) in the final state are discussed.

  1. Fenofibrate Induces Ketone Body Production in Melanoma and Glioblastoma Cells

    PubMed Central

    Grabacka, Maja M.; Wilk, Anna; Antonczyk, Anna; Banks, Paula; Walczyk-Tytko, Emilia; Dean, Matthew; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2016-01-01

    Ketone bodies [beta-hydroxybutyrate (bHB) and acetoacetate] are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly, its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa) agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of non-transformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and downregulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic) therapeutic approaches against glioblastoma. PMID:26869992

  2. Ultrasound-assisted adsorption of anionic nanoscale pigment on cationised cotton fabrics.

    PubMed

    Hao, Longyun; wang, Rui; Liu, Jingquan; Liu, Rongzhan

    2012-11-06

    Application of pigments in textile coloring has many advantages such as less water and energy consumption, less effluent load and higher efficiency, so the pigments are perfect alternatives to dyes for eco-friendly coloring. In this work, a stable anionic nanoscale pigment suspension was prepared using a polymeric dispersant to color the cationised cotton with the exhaust method. Meanwhile, ultrasound was carried out during the adsorption to evaluate the ultrasonic influences on the uptake of pigment, adsorption efficiency and final product quality. The uptake of pigment is found to be higher with ultrasonic method than that with conventional technique because of the good dispersing capacity of ultrasound to pigment particles. Besides, it is found that nanoscale pigment has higher adsorption rate when using ultrasonic method because the ultrasound promotes the diffusion of pigment through the fiber-liquid boundary layer. Lastly, the color difference (ΔE) reveals the nanoscale pigment can be deposited on cotton surface more uniformly under ultrasonic condition, improving the product quality obviously.

  3. Pigmentation and sporulation are alternative cell fates in Bacillus pumilus SF214.

    PubMed

    Manzo, Nicola; Di Luccia, Blanda; Isticato, Rachele; D'Apuzzo, Enrica; De Felice, Maurilio; Ricca, Ezio

    2013-01-01

    Bacillus pumilus SF214 is a spore forming bacterium, isolated from a marine sample, able to produce a matrix and a orange-red, water soluble pigment. Pigmentation is strictly regulated and high pigment production was observed during the late stationary growth phase in a minimal medium and at growth temperatures lower than the optimum. Only a subpopulation of stationary phase cells produced the pigment, indicating that the stationary culture contains a heterogeneous cell population and that pigment synthesis is a bimodal phenomenon. The fraction of cells producing the pigment varied in the different growth conditions and occurred only in cells not devoted to sporulation. Only some of the pigmented cells were also able to produce a matrix. Pigment and matrix production in SF214 appear then as two developmental fates both alternative to sporulation. Since the pigment had an essential role in the cell resistance to oxidative stress conditions, we propose that within the heterogeneous population different survival strategies can be followed by the different cells.

  4. BrMYB4, a suppressor of genes for phenylpropanoid and anthocyanin biosynthesis, is down-regulated by UV-B but not by pigment-inducing sunlight in turnip cv. Tsuda.

    PubMed

    Zhang, Lili; Wang, Yu; Sun, Mei; Wang, Jing; Kawabata, Saneyuki; Li, Yuhua

    2014-12-01

    The regulation of light-dependent anthocyanin biosynthesis in Brassica rapa subsp. rapa cv. Tsuda turnip was investigated using an ethyl methanesulfonate (EMS)-induced mutant R30 with light-independent pigmentation. TILLING (targeting induced local lesions in genomes) and subsequent analysis showed that a stop codon was inserted in the R2R3-MYB transcription factor gene BrMYB4 and that the encoded protein (BrMYB4mu) had lost its C-terminal region. In R30, anthocyanin accumulated in the below-ground portion of the storage root of 2-month-old plants. In 4-day-old seedlings and 2-month-old plants, expression of BrMYB4 was similar between R30 and the wild type (WT), but the expression of the cinnamate 4-hydroxylase gene (BrC4H) was markedly enhanced in R30 in the dark. In turnip seedlings, BrMYB4 expression was suppressed by UV-B irradiation in the WT, but this negative regulation was absent in R30. Concomitantly, BrC4H was repressed by UV-B irradiation in the WT, but stayed at high levels in R30. A gel-shift assay revealed that BrMYB4 could directly bind to the promoter region of BrC4H, but BrMYB4mu could not. The BrMYB4-enhanced green fluorescent protein (eGFP) protein could enter the nucleus in the presence of BrSAD2 (an importin β-like protein) nuclear transporter, but BrMYB4mu-eGFP could not. These results showed that BrMYB4 functions as a negative transcriptional regulator of BrC4H and mediates UV-B-dependent phenylpropanoid biosynthesis, while BrMYB4mu has lost this function. In the storage roots, the expression of anthocyanin biosynthesis genes was enhanced in R30 in the dark and in sunlight in both the WT and R30. However, in the WT, anthocyanin-inducing sunlight did not suppress BrMYB4 expression. Therefore, sunlight-induced anthocyanin biosynthesis does not seem to be regulated by BrMYB4.

  5. Algal pigments in Southern Ocean abyssal foraminiferans indicate pelagobenthic coupling

    NASA Astrophysics Data System (ADS)

    Cedhagen, Tomas; Cheah, Wee; Bracher, Astrid; Lejzerowicz, Franck

    2014-10-01

    The cytoplasm of four species of abyssal benthic foraminiferans from the Southern Ocean (around 51°S; 12°W and 50°S; 39°W) was analysed by High Performance Liquid Chromatography (HPLC) and found to contain large concentrations of algal pigments and their degradation products. The composition of the algal pigments in the foraminiferan cytoplasm reflected the plankton community at the surface. Some foraminiferans contained high ratios of chlorophyll a/degraded pigments because they were feeding on fresher phytodetritus. Other foraminiferans contained only degraded pigments which shows that they utilized degraded phytodetritus. The concentration of algal pigment and corresponding degradation products in the foraminiferan cytoplasm is much higher than in the surrounding sediment. It shows that the foraminiferans collect a diluted and sparse food resource and concentrate it as they build up their cytoplasm. This ability contributes to the understanding of the great quantitative success of foraminiferans in the deep sea. Benthic foraminiferans are a food source for many abyssal metazoans. They form a link between the degraded food resources, phytodetritus, back to the active metazoan food chains.

  6. Coral Pigments: Quantification Using HPLC and Detection by Remote Sensing

    NASA Technical Reports Server (NTRS)

    Cottone, Mary C.

    1995-01-01

    contribute to the limited database of pigment concentrations in healthy corals, from which quantitative definitions of 'healthy' vs. 'bleached' coral may emerge. They also serve as ground-truth, corresponding to fluorescence data collected from the reef at Puako using airborne remote sensing of laser induced fluorescence. Fluorescence spectra from several overflights using the NASA AOL (airborne oceanographic lidar) system show consistent chlorphyll fluorescence peaks around 685 nm, as well as consistence peaks in the 400-600 nm range which may emanate from granules in the coral tissue. These data, along with results from previous studies of coral fluorescence, suggest that remote sensing of laser-induced fluorescence may become a rapid and efficient means of monitoring coral pigmentation and coral reef bleaching.

  7. Microprobe analysis of chlorpromazine pigmentation

    SciTech Connect

    Benning, T.L.; McCormack, K.M.; Ingram, P.; Kaplan, D.L.; Shelburne, J.D.

    1988-10-01

    We describe the histochemical, ultrastructural, and microanalytical features of a skin biopsy specimen obtained from a patient with chlorpromazine pigmentation. Golden-brown pigment granules were present in the dermis, predominantly in a perivascular arrangement. The granules stained positively with the Fontana-Masson stain for silver-reducing substances and negatively with Perl's stain for iron. Electron microscopy revealed dense inclusion bodies in dermal histiocytes, pericytes, endothelial cells, and Schwann cells, as well as lying free in the extracellular matrix. These ''chlorpromazine bodies'' were quite dense even in unosmicated, unstained ultrathin sections, indicating that the pigmentation is related, at least in part, to the inclusions. Microprobe analysis of the chlorpromazine bodies revealed a striking peak for sulfur, which strongly suggests the presence of the drug or its metabolite within these inclusions.

  8. A field study on solar-induced chlorophyll fluorescence and pigment parameters along a vertical canopy gradient of four tree species in an urban environment.

    PubMed

    Van Wittenberghe, Shari; Alonso, Luis; Verrelst, Jochem; Hermans, Inge; Valcke, Roland; Veroustraete, Frank; Moreno, José; Samson, Roeland

    2014-01-01

    To better understand the potential uses of vegetation indices based on the sun-induced upward and downward chlorophyll fluorescence at leaf and at canopy scales, a field study was carried out in the city of Valencia (Spain). Fluorescence yield (FY) indices were derived for trees at different traffic intensity locations and at three canopy heights. This allowed investigating within-tree and between-tree variations of FY indices for four tree species. Several FY indices showed a significant (p < 0.05) and important effect of tree location for the species Morus alba (white mulberry) and Phoenix canariensis (Canary Island date palm). The upward FY parameters of M. alba, and the upward to downward ratios at 687 and 741 nm for both species, were significantly related to tree location. It was found that not the total chlorophyll (Chl) content, but rather the Chl a/b ratio showed the strongest correlations with several of the indices applied. Chl a/b was lowest at the bottom level of the highest traffic intensity location for both species due to an increased Chl b, indicating a larger light harvesting complex related to Photosystem II (LHCII) as a response to limiting light. The leaf deposits from traffic observed at this sampling location possibly led to a shading effect, resulting further in an adaptive response of the photosynthetic system and subsequent difference of FY indices. This study therefore indicated the importance of the size of LHCII on the fluorescence emission, observed under different traffic generated pollution conditions.

  9. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    NASA Astrophysics Data System (ADS)

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-06-01

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  10. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    SciTech Connect

    Fujihashi, Yuta; Ishizaki, Akihito; Fleming, Graham R.

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  11. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra.

    PubMed

    Fujihashi, Yuta; Fleming, Graham R; Ishizaki, Akihito

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  12. Detailed industrial hygiene survey, formaldehyde production, E. I. DuPont de Nemours and Co. , Chemicals and Pigment Department, Grasselli Plant, Linden, New Jersey

    SciTech Connect

    Dunn, D.W.; Toy, H.D.; Wright, A.J.; Hedley, W.H.; Holmes, L.

    1983-09-01

    A survey to assess the techniques used to control occupational exposure to formaldehyde (50000) and methanol (67561) was conducted at the E. I. DuPont de Nemours and Company (SIC-2869) formaldehyde production unit, Linden, New Jersey, in October 1982. Exposure concentrations were reduced primarily by the use of a process that was completely enclosed except for process sampling, methanol unloading, and formaldehyde discharge points. Local and area exhaust ventilation, and work practices were also used to control exposures. Formaldehyde concentrations in the absorber area were controlled by burning the exit gases in an afterburner and discharging them high above the ground. Analysis of area and breathing zone samples showed methanol and formaldehyde concentrations below the OSHA limits of 200 and 3 parts per million, respectively. The authors conclude that workers are not overexposed to either methanol or formaldehyde on a short or long term basis. Maintenance workers should not be overexposed if they use personal protective equipment during activities that have a potential for excessive exposure.

  13. Reactive oxygen species produced from chromate pigments and ascorbate.

    PubMed Central

    Lefebvre, Y; Pezerat, H

    1994-01-01

    The reactions of various chromate pigments and ascorbate were investigated by an ESR spin trapping technique. Production of Cr(V) was detected directly and productions of very electrophilic reactive oxygen species (ROS) was detected via the oxidation of formate. We demonstrated previously that both dissolved oxygen and Cr (V) were essential in the production of ROS in this system, and that ROS production was inhibited by catalase. We studied here the effect of solubility of different chromate pigments: sodium, calcium, strontium, basic zinc, basic lead supported on silica, and lead and barium chromates on the production of ROS in buffered medium and cell culture medium (Dublecco's Modified Eagle medium + fetal calf serum). Sodium, calcium, basic zinc, and basic lead chromates were active in the production of ROS in presence of cell culture medium, whereas lead and barium chromates were inactive. PMID:7843106

  14. Histone Deacetylase Inhibition Restores Retinal Pigment Epithelium Function in Hyperglycemia

    PubMed Central

    Desjardins, Danielle; Liu, Yueying; Crosson, Craig E.; Ablonczy, Zsolt

    2016-01-01

    In diabetic individuals, macular edema is a major cause of vision loss. This condition is refractory to insulin therapy and has been attributed to metabolic memory. The retinal pigment epithelium (RPE) is central to maintaining fluid balance in the retina, and this function is compromised by the activation of advanced glycation end-product receptors (RAGE). Here we provide evidence that acute administration of the RAGE agonist, glycated-albumin (gAlb) or vascular endothelial growth factor (VEGF), increased histone deacetylase (HDAC) activity in RPE cells. The administration of the class I/II HDAC inhibitor, trichostatin-A (TSA), suppressed gAlb-induced reductions in RPE transepithelial resistance (in vitro) and fluid transport (in vivo). Systemic TSA also restored normal RPE fluid transport in rats with subchronic hyperglycemia. Both gAlb and VEGF increased HDAC activity and reduced acetyl-α-tubulin levels. Tubastatin-A, a relatively specific antagonist of HDAC6, inhibited gAlb-induced changes in RPE cell resistance. These data are consistent with the idea that RPE dysfunction following exposure to gAlb, VEGF, or hyperglycemia is associated with increased HDAC6 activity and decreased acetyl-α-tubulin. Therefore, we propose inhibiting HDAC6 in the RPE as a potential therapy for preserving normal fluid homeostasis in the hyperglycemic retina. PMID:27617745

  15. Exogenous ammonium inhibits petal pigmentation and expansion in Gerbera hybrida.

    PubMed

    Huang, Zhigang; Liang, Minting; Peng, Jianzong; Xing, Tim; Wang, Xiaojing

    2008-06-01

    Petal pigmentation is the most important aspect in natural flower coloration. In the present study, the inhibition of petal pigmentation by exogenous ammonium was investigated. Ray floret petals detached from inflorescences of Gerbera hybrida (Shenzhen No. 5) were cultured in vitro on media supplied with different forms of nitrogen and its assimilated compounds. The expression of a set of genes involved in anthocyanin biosynthesis and regulation was determined by Northern blotting assay. It was found that ammonium (NH4+), not nitrate (NO3-), in millimolar concentrations inhibited anthocyanin accumulation. The expressions of Gerbera chalcone synthase 1 (GCHS1), Gerbera chalcone synthase 2 (GCHS2) and Gerbera dihydroflavonol-4-reductase (GDFR) decreased, while six other related genes showed no significant changes after NH4+ treatment. Further studies on NH4+ function indicated that glutamine (Gln) acted as a downstream factor of NH4+ to suppress petal pigmentation. Both exogenous Gln and NH4+ were found to inhibit anthocyanin accumulation in the petals, and the application of Gln was also found to inhibit the expressions of GCHS1, GCHS2 and GDFR. The application of NH4+ also resulted in an increase in the activity of Gerbera glutamine synthetase (EC 6.3.1.2) along with a rapid increase of Gln content. When methionine sulfoximine, an inhibitor of glutamine synthetase (GS), was added, it was found to block the NH4+-induced inhibition of pigmentation. From these experiments, we conclude that the NH4+-induced suppression of petal pigmentation is not because of NH4+ toxicity, and the inhibition of pigmentation caused by the addition of exogenous NH4+ is the result of its assimilation into Gln.

  16. Progress in combating microbiologically induced corrosion in oil production

    SciTech Connect

    Ciaraldi, S.W.; Ghazal, H.H.; Abou Shadey, T.H.; El-Leil, H.A.; El-Raghy, S.M.

    1999-11-01

    Widespread microbial activity has caused substantial recent corrosion problems throughout a major mature oil production operation. Control over this situation is gradually being gained through advances in several areas, These include improved understanding of the reservoir souring process, operational factors contributing to biocell formation/propagation, the role of bio-breeders in promoting corrosion and the kinetics of attack. Synergistic beneficial effects of cleaning programs (pigging, chemical treatments, etc.) and biocide/corrosion inhibitor injections have now been well demonstrated, with corrosion rates reduced to nil in many places, even in significantly damaged systems. Feasibility studies of new de-souring technologies have been performed with encouraging results and these offer the potential for successful and cost-effective long-term control of microbiologically induced corrosion (MIC) in several possible operational areas.

  17. Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution.

    PubMed

    Hu, Zhiqiang; Zhang, Xuehong; Wu, Zhenqiang; Qi, Hanshi; Wang, Zhilong

    2012-04-01

    "Milking processing" describes the cultivation of microalgae in a water-organic solvent two-phase system that consists of simultaneous fermentation and secretion of intracellular product. It is usually limited by the conflict between the biocompatibility of the organic solvent to the microorganisms and the ability of the organic solvent to secret intracellular product into its extracellular broth. In the present work, submerged cultivation of Monascus in the nonionic surfactant Triton X-100 micelle aqueous solution for pigment production is exploited, in which the fungus Monascus remains actively growing. Permeabilization of intracellular pigments across the cell membrane and extraction of the pigments to the nonionic surfactant micelles of its fermentation broth occur simultaneously. "Milking" the intracellular pigments in the submerged cultivation of Monascus is a perstraction process. The perstractive fermentation of intracellular pigments has the advantage of submerged cultivation by secretion of the intracellular pigments to its extracellular broth and the benefit of extractive microbial fermentation by solubilizing the pigments into nonionic surfactant micelles. It is shown as the marked increase of the extracellular pigment concentration by the submerged cultivation of Monascus in the nonionic surfactant Triton X-100 micelle solution.

  18. Water-soluble red pigments from Isaria farinosa and structural characterization of the main colored component.

    PubMed

    Velmurugan, Palanivel; Lee, Yong Hoon; Nanthakumar, Kuppanan; Kamala-Kannan, Seralathan; Dufossé, Laurent; Mapari, Sameer A S; Oh, Byung-Taek

    2010-12-01

    The present study describes the red pigment synthesized by the filamentous fungi Isaria farinosa under submerged culture conditions. The pigment production was optimal under the following conditions: pH 5, agitation speed 150 rpm, temperature 27 °C, incubation time 192 h, light source total darkness, sucrose and glucose as carbon source, yeast extract, meat peptone and monosodium glutamate at a fixed concentration of 3% as nitrogen source. The addition of 10 mM CaCl₂ to the culture medium increased the biomass and pigment production. Structural elucidation of the pigment using gas chromatography-mass spectrometry, Fourier transform infrared spectroscopy and ¹H nuclear magnetic resonance spectroscopy revealed that the red pigment contains an anthraquinone-related compound. In addition, the isolated pigment was water soluble, and was stable when exposed to salt solution (96.1% of stability after treatment with sodium chloride), acid (72.1% with citric acid), heat (86.2% at 60 °C), and sunlight (99.4%). These results are promising to further exploit the fungal culture of Isaria farinosa for producing the red pigment and, subsequently, to considerably increase its yield. The study has commercial importance in the production of Isaria farinosa pigment for industrial application after considerable toxicological examination.

  19. Production and air-sea flux of halomethanes in the western subarctic Pacific in relation to phytoplankton pigment concentrations during the iron fertilization experiment (SEEDS II)

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shinya; Toda, Shuji; Suzuki, Koji; Kato, Shungo; Narita, Yasusi; Kurihara, Michiko K.; Akatsuka, Yoko; Oda, Hiroshi; Nagai, Takahiro; Nagao, Ippei; Kudo, Isao; Uematsu, Mitsuo

    2009-12-01

    Iron could play a key role in controlling phytoplankton biomass and productivity in high-nutrient, low-chlorophyll regions. As a part of the iron fertilization experiment carried out in the western subarctic Pacific from July to August 2004 (Subarctic Pacific iron Experiment for Ecosystem Dynamics Study II—SEEDS II), we analysed the concentrations of trace gases in the seawater for 12 d following iron fertilization. The mean concentrations of chlorophyll a in the mixed layer (5-30 m depth) increased from 0.94 to 2.81 μg L -1 for 8 d in the iron patch. The mean concentrations of methyl bromide (CH 3Br; 5-30 m depth) increased from 6.4 to 13.4 pmol L -1 for 11 d; the in-patch concentration increased relative to the out-patch concentration. A linear correlation was observed between the concentrations of 19'-hexanoyloxyfucoxanthin, which is a biomarker of several prymnesiophytes, and CH 3Br in the seawater. After fertilization, the air-sea flux of CH 3Br inside the patch changed from influx to efflux from the ocean. There was no clear evidence for the increase in saturation anomaly of methyl chloride (CH 3Cl) due to iron fertilization. Furthermore, CH 3Cl fluxes did not show a tendency to increase after fertilization of the patch. In contrast to CH 3Br, no change was observed in the concentrations of bromoform (in-patch day 11 and out-patch day 11: 1.7 and 1.7 pmol L -1), dibromomethane (2.1 and 2.2 pmol L -1), and dibromochloromethane (1.0 and 1.2 pmol L -1, respectively). The concentration of isoprene, which is known to have a relationship with chlorophyll a, did not change in this study. The responses of trace gases during SEEDS II differed from the previous findings ( in situ iron enrichment experiment—EisenEx, Southern Ocean iron experiment—SOFeX, and Subarctic Ecosystem Response to Iron Enrichment Study—SERIES). Thus, in order to estimate the concomitant effect of iron fertilization on the climate, it is important to assess the induction of biological

  20. Inhibition of skin pigmentation by an extract of Lepidium apetalum and its possible implication in IL-6 mediated signaling.

    PubMed

    Choi, Hyunjung; Ahn, Soomi; Lee, Byeong G; Chang, Ihseop; Hwang, Jae S

    2005-12-01

    The development of effective skin-lightening agents is an increasingly important area of research aimed at the treatment of hyperpigmentation induced by UV irradiation or by medical conditions such as melasma, postinflammatory melanoderma and solar lentigo. Although some inhibit tyrosinase, identifying and understanding the mechanisms of action of other agents is an important goal if more effective pigmentation inhibitors are to be developed. We present here that an extract of Lepidium apetalum (ELA) decreased UV-induced skin pigmentation in brown guinea pigs and melanogenesis of HM3KO human melanoma cells. Interestingly, ELA did not reduce melanogenesis in HM3KO cells unless they were co-cultivated in keratinocyte-conditioned medium prepared by culturing keratinocytes with ELA. Under these conditions, ELA decreased tyrosinase mRNA and protein expression as well as melanin content via an ELA-mediated increase in keratinocyte IL-6 production which in turn was shown to decrease in the expression Mitf, a transcription factor implicated in tyrosinase gene expression and melanocyte differentiation. The results reveal that ELA may be an effective inhibitor of hyperpigmentation caused by UV irradiation or by pigmented skin disorders through a mechanism involving IL-6-mediated downregulation of Mitf rather than a direct inhibition of tyrosinase activity.

  1. Solubilization capacity of nonionic surfactant micelles exhibiting strong influence on export of intracellular pigments in Monascus fermentation.

    PubMed

    Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Qi, Hanshi; Wang, Zhilong

    2013-09-01

    In this study, perstractive fermentation of intracellular Monascus pigments in nonionic surfactant micelle aqueous solution had been studied. The permeability of cell membrane modified by nonionic surfactant might have influence on the rate of export of intracellular pigments into its extracellular broth while nearly no effect on the final extracellular pigment concentration. However, the solubilization of pigments in nonionic surfactant micelles strongly affected the final extracellular pigment concentration. The solubilization capacity of micelles depended on the kind of nonionic surfactant, the super-molecule assembly structure of nonionic surfactant in an aqueous solution, and the nonionic surfactant concentration. Elimination of pigment degradation by export of intracellular Monascus pigments and solubilizing them into nonionic surfactant micelles was also confirmed experimentally. Thus, nonionic surfactant micelle aqueous solution is potential for replacement of organic solvent for perstractive fermentation of intracellular product.

  2. Solubilization capacity of nonionic surfactant micelles exhibiting strong influence on export of intracellular pigments in Monascus fermentation

    PubMed Central

    Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Qi, Hanshi; Wang, Zhilong

    2013-01-01

    Summary In this study, perstractive fermentation of intracellular Monascus pigments in nonionic surfactant micelle aqueous solution had been studied. The permeability of cell membrane modified by nonionic surfactant might have influence on the rate of export of intracellular pigments into its extracellular broth while nearly no effect on the final extracellular pigment concentration. However, the solubilization of pigments in nonionic surfactant micelles strongly affected the final extracellular pigment concentration. The solubilization capacity of micelles depended on the kind of nonionic surfactant, the super-molecule assembly structure of nonionic surfactant in an aqueous solution, and the nonionic surfactant concentration. Elimination of pigment degradation by export of intracellular Monascus pigments and solubilizing them into nonionic surfactant micelles was also confirmed experimentally. Thus, nonionic surfactant micelle aqueous solution is potential for replacement of organic solvent for perstractive fermentation of intracellular product. PMID:23425092

  3. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    PubMed

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering.

  4. Characterization of water-soluble dark-brown pigment from Antarctic bacterium, Lysobacter oligotrophicus.

    PubMed

    Kimura, Tomomi; Fukuda, Wakao; Sanada, Tomoe; Imanaka, Tadayuki

    2015-07-01

    Lysobacter oligotrophicus strain 107-E2(T) isolated from Antarctica produces dark-brown colored water-soluble pigment, in addition to hydrolases and lytic enzymes. The production of pigment is a common characteristic among members of the genus Lysobacter, but the identity of the pigments has been unknown. In this study, we identified the pigment from L. oligotrophicus as melanin pigment (Lo-melanin) by chemical and spectroscopic analyses. Although melanin is generally insoluble in both aqueous and organic solvents, the results in this study revealed that Lo-melanin shows water-solubility by means of the added polysaccharide chain. Lo-melanin production of L. oligotrophicus was increased by ultraviolet (UV) exposure, and survival rate of Escherichia coli under UV-irradiated condition was increased by the addition of Lo-melanin to the medium.

  5. Analysis of bakery products by laser-induced breakdown spectroscopy.

    PubMed

    Bilge, Gonca; Boyacı, İsmail Hakkı; Eseller, Kemal Efe; Tamer, Uğur; Çakır, Serhat

    2015-08-15

    In this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R(2)) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique.

  6. Testosterone production and spermatogenic damage induced by organophosphorate pesticides.

    PubMed

    Contreras, H R; Paredes, V; Urquieta, B; Del Valle, L; Bustos-Obregón, E

    2006-12-01

    Parathion is an organophosphorate pesticide amply used in agriculture. Many alterations induced by organophosphorate pesticides have been described, such as: cytogenetic alterations in germinal cells, oligozoospermia and teratozoospermia in the mouse. The effect of Parathion, both pure (PP) and commercial (PC), on mouse interstitial cell testosterone production was evaluated in vivo and in vitro. Male mice were intraperitoneally injected with a single dose of 1/3 LD50 of Parathion, both PP and PC. The animals were sacrificed at 1, 8 and 40 days post injection to evaluate the impact of disrupting testosterone production on spermatogonia, spermatocytes and elongated spermatids. The plasma testosterone was assayed by standard radioimmunoanalysis. The same method was used to assay testosterone in the culture medium of interstitial cells obtained from the control and Parathion treated animals at the same time intervals. Sperm count, sperm teratozoospermia and tubular blockage were analyzed for an appraisal of spermatogenesis. Increase in the teratozoospermia and tubular blockage was detected in the PP and PC group at 8 and 40 days post injection. Plasma testosterone levels drop significantly at 8 days and recovered slowly at 40 days only in PP animals as detected in vivo, implying interference of testicular steroidogenesis due to the toxicant. Recuperation of normality occurs at long time intervals. In conclusion, Parathion disturbs the synthesis of testosterone in mice affecting qualitatively the spermatogenesis

  7. Cytokines induce nitric oxide production in mouse osteoblasts.

    PubMed

    Damoulis, P D; Hauschka, P V

    1994-06-15

    MC3T3-E1 mouse clonal osteogenic cells were incubated with interferon-gamma, interleukin-1 beta, tumor necrosis factor-alpha, and E. coli lipopolysaccharide. TNF alpha, IL-1 beta, and LPS caused a dose- and time-dependent increase of nitrite (NO2-), the stable metabolite of nitric oxide (NO), in conditioned media over 48 hours, while IFN gamma had a minimal effect. Different combinations of the same factors caused a synergistic enhancement of NO2- accumulation, except for IL-1 beta with LPS. The earliest detectable NO2- production was at 6-9 hours, with continued accumulation over 48 hours. NO2- production was inhibited dose-dependently by three arginine analogs known to be specific inhibitors of NO synthase, as well as by actinomycin D, cycloheximide, and dexamethasone; EGTA or indomethacin had a small inhibitory effect. It is concluded that osteoblast-like cells can be induced by proinflammatory cytokines and bacterial endotoxin to produce NO, which can play an important role in bone pathophysiology.

  8. Group B streptococcal haemolysin and pigment, a tale of twins

    PubMed Central

    Rosa-Fraile, Manuel; Dramsi, Shaynoor; Spellerberg, Barbara

    2014-01-01

    Group B streptococcus [(GBS or Streptococcus agalactiae)] is a leading cause of neonatal meningitis and septicaemia. Most clinical isolates express simultaneously a β-haemolysin/cytolysin and a red polyenic pigment, two phenotypic traits important for GBS identification in medical microbiology. The genetic determinants encoding the GBS haemolysin and pigment have been elucidated and the molecular structure of the pigment has been determined. The cyl operon involved in haemolysin and pigment production is regulated by the major two-component system CovS/R, which coordinates the expression of multiple virulence factors of GBS. Genetic analyses indicated strongly that the haemolysin activity was due to a cytolytic toxin encoded by cylE. However, the biochemical nature of the GBS haemolysin has remained elusive for almost a century because of its instability during purification procedures. Recently, it has been suggested that the haemolytic and cytolytic activity of GBS is due to the ornithine rhamnopolyenic pigment and not to the CylE protein. Here we review and summarize our current knowledge of the genetics, regulation and biochemistry of these twin GBS phenotypic traits, including their functions as GBS virulence factors. PMID:24617549

  9. Study of a melanic pigment of Proteus mirabilis.

    PubMed

    Agodi, A; Stefani, S; Corsaro, C; Campanile, F; Gribaldo, S; Sichel, G

    1996-01-01

    The present study sought to determine whether the pigment produced by Proteus mirabilis from the L-forms of various aromatic amino acids under aerobic conditions is melanic in nature. It is a black-brown pigment which behaves like a melanin in many respects, namely solubility features, bleaching by oxidizing agents and positive response to the Fontana-Masson assay. In the present study, for the first time, it was shown by electron spin resonance analysis that a bacterial melanin is able to act as a free radical trap, as was previously demonstrated for other melanins. Scanning electron microscopy studies showed a specific organized structure of the pigment as rounded aggregates of spherical bodies. DNA hybridization data did not reveal, in the P. mirabilis genome, any nucleotide sequence related to Shewanella colwelliana mel A, one of the two melanogenesis systems already defined at the molecular level in bacteria. Results obtained from experiments on pigment production inhibition suggest a possible role of tyrosinase in P. mirabilis melanogenesis. In conclusion, from the bulk of our results, it appears that the pigment produced by P. mirabilis is melanic in nature.

  10. Pigmented lesions of the nail unit: clinical and histopathologic features.

    PubMed

    Ruben, Beth S

    2010-09-01

    Probably the most common reason to perform biopsy of the nail unit is for the evaluation of irregular pigmentation, especially longitudinal melanonychia or pigmented bands. When narrow and solitary, these are usually the product of melanocytic activation/hypermelanosis, lentigines, or melanocytic nevi. Multiple pigmented bands are generally a benign finding, the result of melanocytic activation, as seen in racial pigmentation in darker-skinned patients, for example. In the context of an irregular, broad, heterogeneous or "streaky" band, the chief concern is the exclusion of subungual melanoma. Before assessing the histologic features of any such entities, it is important to understand the normal nail anatomy and melanocytic density of nail unit epithelium, as well as the type of specimen submitted, and whether it is adequate to undertake a proper histologic evaluation. The criteria for diagnosis and prognosis of melanoma of the nail unit are still evolving, and a variety of factors must be weighed in the balance to make a correct diagnosis. The importance of the clinical context cannot be overemphasized. There are also nonmelanocytic conditions to be considered that may produce worrisome nail discoloration, such as subungual hemorrhage, squamous cell carcinoma, and pigmented onychomycosis.

  11. Leaves of Citrus aurantifolia exhibit a different sensibility to solar UV-B radiation according to development stage in relation to photosynthetic pigments and UV-B absorbing compounds production.

    PubMed

    Ibañez, Silvina; Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2008-03-28

    Plants of Citrus aurantifolia grown in a greenhouse without solar UV radiation (UVR) were transferred outdoors to evaluate the effect of solar UV-B radiation (UVBR, 280-315 nm) in prior-developed leaves, constituted by apical bud and those fully expanded before being taken outdoors, and post-developed leaves, formed by those expanded outdoors. Results demonstrated that over a 40 d outdoor period leaf chlorophyll content and distribution pattern were different with and without solar UVBR. Chlorophyll a, chlorophyll b and total chlorophyll contents in both treatments were higher in prior-developed leaves than in post-developed ones. However, highest values were observed in prior-developed leaves under solar UVBR, whereas in post-developed leaves an opposite trend was observed. Carotenoids content in prior-developed leaves was higher with solar UVBR, whereas in post-developed leaves there were no significant differences in both with and without solar UVBR. In addition, prior-developed leaves under solar UVBR accumulated flavonoids, but not anthocyanins. Growth parameters (e.g. DW, DW/FW ratio, LMA, plant height, length and width of foliar lamina) did not show significant differences between plants grown with and without solar UVBR. Thus, our results demonstrated that C. aurantifolia leaves exhibited a different sensibility to solar UVBR according to development stage in relation to photosynthetic pigments and UV-B absorbing compounds production. In addition, the solar UVBR was not necessary as inductor of photosynthetic protection mechanisms in a short-time growth period. On the other hand, our results also demonstrated that solar UVBR acted as an effective feeding deterrent against citrus leafminer.

  12. A case of pigmented Bowen's disease*

    PubMed Central

    Vivan, Márcia Maria; Hirata, Sérgio Henrique; do Nascimento, Liliane Santos; Enokihara, Milvia Maria Simões e Silva

    2017-01-01

    Pigmented Bowen's disease is a rare subtype of Bowen's disease. Clinically it presents as a slow-growing, well-defined, hyperpigmented plaque, and should be included as a differential diagnosis of other pigmented lesions. The authors describe a challenging case of pigmented Bowen's disease with non-diagnostic dermscopy findings. PMID:28225972

  13. 21 CFR 73.352 - Paracoccus pigment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Paracoccus pigment. 73.352 Section 73.352 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.352 Paracoccus pigment. (a) Identity. (1) The color additive paracoccus pigment consists of the heat-killed, dried cells of a nonpathogenic and nontoxicogenic strain...

  14. 21 CFR 73.352 - Paracoccus pigment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Paracoccus pigment. 73.352 Section 73.352 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.352 Paracoccus pigment. (a) Identity. (1) The color additive paracoccus pigment consists of the heat-killed, dried cells of a nonpathogenic and nontoxicogenic strain...

  15. 21 CFR 73.352 - Paracoccus pigment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Paracoccus pigment. 73.352 Section 73.352 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.352 Paracoccus pigment. (a) Identity. (1) The color additive paracoccus pigment consists of the heat-killed, dried cells of a nonpathogenic and nontoxicogenic strain...

  16. 21 CFR 178.3725 - Pigment dispersants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Pigment dispersants. 178.3725 Section 178.3725... § 178.3725 Pigment dispersants. Subject to the provisions of this regulation, the substances listed in this section may be safely used as pigment dispersants in food-contact materials....

  17. 21 CFR 73.352 - Paracoccus pigment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Paracoccus pigment. 73.352 Section 73.352 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.352 Paracoccus pigment. (a) Identity. (1) The color additive paracoccus pigment consists of the heat-killed, dried cells of a nonpathogenic and nontoxicogenic strain...

  18. 21 CFR 73.352 - Paracoccus pigment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Paracoccus pigment. 73.352 Section 73.352 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.352 Paracoccus pigment. (a) Identity. (1) The color additive paracoccus pigment consists of the heat-killed, dried cells of a nonpathogenic and nontoxicogenic strain...

  19. Oral postinflammatory pigmentation: an analysis of 7 cases.

    PubMed

    Mergoni, Giovanni; Ergun, Sertan; Vescovi, Paolo; Mete, Özgür; Tanyeri, Hakkı; Meleti, Marco

    2011-01-01

    Oral postinflammatory pigmentation (OPP) is a discoloration of the oral mucosa caused by an excess of melanin production and deposition within the basal layer of the epithelium and connective tissue of areas affected by chronic inflammation. Therefore, it is mandatory to demonstrate the association with a previous or concomitant inflammatory process in the same area of oral mucosa. Clinically OPP appears as a localized or diffuse, black to brown pigmentation. OPP may persist for many years even though the disappearing of the pigmentation after the resolution of the inflammatory state has been reported. We reviewed retrospectively the medical records and, when performed, biopsy examinations of 7 cases of OPP. Four cases were associated with oral lichen planus, two cases with lichenoid lesions and one case with proliferative verrucous leukoplakia. Despite a possible high prevalence of OPP, only a few reports concerning diagnosis, etiopathogenesis and clinical manifestation have been published so far.

  20. Bioactive Pigments from Marine Bacteria: Applications and Physiological Roles

    PubMed Central

    Soliev, Azamjon B.; Hosokawa, Kakushi; Enomoto, Keiichi

    2011-01-01

    Research into natural products from the marine environment, including microorganisms, has rapidly increased over the past two decades. Despite the enormous difficulty in isolating and harvesting marine bacteria, microbial metabolites are increasingly attractive to science because of their broad-ranging pharmacological activities, especially those with unique color pigments. This current review paper gives an overview of the pigmented natural compounds isolated from bacteria of marine origin, based on accumulated data in the literature. We review the biological activities of marine compounds, including recent advances in the study of pharmacological effects and other commercial applications, in addition to the biosynthesis and physiological roles of associated pigments. Chemical structures of the bioactive compounds discussed are also presented. PMID:21961023

  1. Quantification of Thiopurine/UVA-Induced Singlet Oxygen Production

    PubMed Central

    Zhang, Yazhou; Barnes, Ashley N.; Zhu, Xianchun; Campbell, Naomi F.; Gao, Ruomei

    2011-01-01

    Thiopurines were examined for their ability to produce singlet oxygen (1O2) with UVA light. The target compounds were three thiopurine prodrugs, azathioprine (Aza), 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG), and their S-methylated derivatives of 6-methylmercaptopurine (me6-MP) and 6-methylthioguanine (me6-TG). Our results showed that these thiopurines were efficient 1O2 sensitizers under UVA irradiation but rapidly lost their photoactivities for 1O2 production over time by a self-sensitized photooxidation of sulfur atoms in the presence of oxygen and UVA light. The initial quantum yields of 1O2 production were determined to be in the range of 0.30–0.6 in aqueous solutions. Substitution of a hydrogen atom with a nitroimidazole or methyl group at S decreased the efficacy of photosensitized 1O2 production as found for Aza, me6-MP and me6-TG. 1O2-induced formation of 8-oxo-7,8-dihydro-2’-dexyguanosine (8-oxodGuo) was assessed by incubation of 6-methylthiopurine/UVA-treated calf thymus DNA with human repair enzyme 8-oxodGuo DNA glycosylase (hOGG1), followed by apurinic (AP) site determination. Because more 8-oxodGuo was formed in Tris D2O than in Tris H2O, 1O2 is implicated as a key species in the reaction. These findings provided quantitative information on the photosensitization efficacy of thiopurines and to some extent revealed the correlations between photoactivity and phototoxicity. PMID:22081749

  2. Local Production of the Alternative Pathway Component Factor B Is Sufficient to Promote Laser-Induced Choroidal Neovascularization

    PubMed Central

    Schnabolk, Gloriane; Coughlin, Beth; Joseph, Kusumam; Kunchithapautham, Kannan; Bandyopadhyay, Mausumi; O'Quinn, Elizabeth C.; Nowling, Tamara; Rohrer, Bärbel

    2015-01-01

    Purpose. Complement factor B (CFB) is a required component of the alternative pathway (AP) of complement, and CFB polymorphisms are associated with age-related macular degeneration (AMD) risk. Complement factor B is made in the liver, but expression has also been detected in retina and retinal pigment epithelium (RPE)-choroid. We investigated whether production of CFB by the RPE can promote AP activation in mouse choroidal neovascularization (CNV). Methods. Transgenic mice expressing CFB under the RPE65 promoter were generated and crossed onto factor B-deficient (CFB-KO) mice. Biological activity was determined in vitro using RPE monolayers and in vivo using laser-induced CNV. Contribution of systemic CFB was investigated using CFB-KO reconstituted with CFB-sufficient serum. Results. Transgenic mice (CFB-tg) expressed CFB in RPE-choroid; no CFB was detected in serum. Cultured CFB-tg RPE monolayers secreted CFB apically and basally upon exposure to oxidative stress that was biologically active. Choroidal neovascularization sizes were comparable between wild-type and CFB-tg mice, but significantly increased when compared to lesions in CFB-KO mice. Injections of CFB-sufficient serum into CFB-KO mice resulted in partial reconstitution of systemic AP activity and significantly increased CNV size. Conclusions. Mouse RPE cells express and secrete CFB sufficient to promote RPE damage and CNV. This further supports that local complement production may regulate disease processes; however, the reconstitution experiments suggest that additional components may be sequestered from the bloodstream. Understanding the process of ocular complement production and regulation will further our understanding of the AMD disease process and the requirements of a complement-based therapeutic. PMID:25593023

  3. Investigation of relationship between lipid and Monascus pigment accumulation by extractive fermentation.

    PubMed

    Wang, Bo; Zhang, Xuehong; Wu, Zhenqiang; Wang, Zhilong

    2015-10-20

    Fermented Monascus pigments have been utilized as traditional Chinese medicine and food colorant for thousands of years. Under the limited nitrogen concentration and/or low initial pH 2.5 conditions, it was observed that production of intracellular pigments and accumulation of microbial lipids (high content reaching to approximately 50% in dry cell weight) by edible Monascus anka exhibited a positive correlated relationship. Extractive fermentation in nonionic surfactant micelle aqueous solution selectively exported the intracellular Monascus pigments into its extracellular broth, in which the concentration of intracellular pigments was negligible while the extracellular one was enhanced. The extractive fermentation provides a novel strategy for shifting of the metabolic channeling from intracellular lipid accumulation to Monascus pigment production. High pigment concentration, i.e., approximately 40 AU of extracellular Monascus pigments, was achieved by extractive fermentation at a relatively high nonionic surfactant concentration 10 g/l. This phenomenon might be attributed to the nonionic surfactant micelles acting as pigment reservoirs by biomimetic of intracellular lipids.

  4. Multiple roles of photosynthetic and sunscreen pigments in cyanobacteria focusing on the oxidative stress.

    PubMed

    Wada, Naoki; Sakamoto, Toshio; Matsugo, Seiichi

    2013-05-30

    Cyanobacteria have two types of sunscreen pigments, scytonemin and mycosporine-like amino acids (MAAs). These secondary metabolites are thought to play multiple roles against several environmental stresses such as UV radiation and desiccation. Not only the large molar absorption coefficients of these sunscreen pigments, but also their antioxidative properties may be necessary for the protection of biological molecules against the oxidative damages induced by UV radiation. The antioxidant activity and vitrification property of these pigments are thought to be requisite for the desiccation and rehydration processes in anhydrobiotes. In this review, the multiple roles of photosynthetic pigments and sunscreen pigments on stress resistance, especially from the viewpoint of their structures, biosynthetic pathway, and in vitro studies of their antioxidant activity, will be discussed.

  5. Effects of blue light on pigment biosynthesis of Monascus.

    PubMed

    Chen, Di; Xue, Chunmao; Chen, Mianhua; Wu, Shufen; Li, Zhenjing; Wang, Changlu

    2016-04-01

    The influence of different illumination levels of blue light on the growth and intracellular pigment yields of Monascus strain M9 was investigated. Compared with darkness, constant exposure to blue light of 100 lux reduced the yields of six pigments, namely, rubropunctatamine (RUM), monascorubramine (MOM), rubropunctatin (RUN), monascorubrin (MON), monascin (MS), and ankaflavin (AK). However, exposure to varying levels of blue light had different effects on pigment production. Exposure to 100 lux of blue light once for 30 min/day and to 100 lux of blue light once and twice for 15 min/day could enhance RUM, MOM, MS, and AK production and reduce RUN and MON compared with non-exposure. Exposure to 100 lux twice for 30 min/day and to 200 lux once for 45 min/day decreased the RUM, MOM, MS, and AK yields and increased the RUN and MON. Meanwhile, the expression levels of pigment biosynthetic genes were analyzed by real-time quantitative PCR. Results indicated that gene MpPKS5, mppR1, mppA, mppB, mmpC, mppD, MpFasA, MpFasB, and mppF were positively correlated with the yields of RUN and MON, whereas mppE and mppR2 were associated with RUM, MOM, MS, and AK production.

  6. Heme modulates Trypanosoma cruzi bioenergetics inducing mitochondrial ROS production.

    PubMed

    Nogueira, Natália P; Saraiva, Francis M S; Oliveira, Matheus P; Mendonça, Ana Paula M; Inacio, Job D F; Almeida-Amaral, Elmo E; Menna-Barreto, Rubem F; Laranja, Gustavo A T; Torres, Eduardo J Lopes; Oliveira, Marcus F; Paes, Marcia C

    2017-03-29

    Trypanosoma cruzi is the causative agent of Chagas disease and has a single mitochondrion, an organelle responsible for ATP production and the main site for the formation of reactive oxygen species (ROS). T. cruzi is an obligate intracellular parasite with a complex life cycle that alternates between vertebrate and invertebrate hosts, therefore the development of survival strategies and morphogenetic adaptations to deal with the various environments is mandatory. Over the years our group has been studying the vector-parasite interactions using heme as a physiological oxidant molecule that triggered epimastigote proliferation however, the source of ROS induced by heme remained unknown. In the present study we demonstrate the involvement of heme in the parasite mitochondrial metabolism, decreasing oxygen consumption leading to increased mitochondrial ROS and membrane potential. First, we incubated epimastigotes with carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), an uncoupler of oxidative phosphorylation, which led to decreased ROS formation and parasite proliferation, even in the presence of heme, correlating mitochondrial ROS and T. cruzi survival. This hypothesis was confirmed after the mitochondria-targeted antioxidant ((2-(2,2,6,6 Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) decreased both heme-induced ROS and epimastigote proliferation. Furthermore, heme increased the percentage of tetramethylrhodamine methyl ester (TMRM) positive parasites tremendously-indicating the hyperpolarization and increase of potential of the mitochondrial membrane (ΔΨm). Assessing the mitochondrial functional metabolism, we observed that in comparison to untreated parasites, heme-treated epimastigotes decreased their oxygen consumption, and increased the complex II-III activity. These changes allowed the electron flow into the electron transport system, even though the complex IV (cytochrome c oxidase) activity decreased

  7. Bile pigments in pulmonary and vascular disease.

    PubMed

    Ryter, Stefan W

    2012-01-01

    The bile pigments, biliverdin, and bilirubin, are endogenously derived substances generated during enzymatic heme degradation. These compounds have been shown to act as chemical antioxidants in vitro. Bilirubin formed in tissues circulates in the serum, prior to undergoing hepatic conjugation and biliary excretion. The excess production of bilirubin has been associated with neurotoxicity, in particular to the newborn. Nevertheless, clinical evidence suggests that mild states of hyperbilirubinemia may be beneficial in protecting against cardiovascular disease in adults. Pharmacological application of either bilirubin and/or its biological precursor biliverdin, can provide therapeutic benefit in several animal models of cardiovascular and pulmonary disease. Furthermore, biliverdin and bilirubin can confer protection against ischemia/reperfusion injury and graft rejection secondary to organ transplantation in animal models. Several possible mechanisms for these effects have been proposed, including direct antioxidant and scavenging effects, and modulation of signaling pathways regulating inflammation, apoptosis, cell proliferation, and immune responses. The practicality and therapeutic-effectiveness of bile pigment application to humans remains unclear.

  8. Endothelin Regulates Porphyromonas gingivalis-Induced Production of Inflammatory Cytokines

    PubMed Central

    Kim, Ji-Hye; Lee, Dong Eun; Kang, Si-Mook; Lee, So Yun; Choi, Lin; Sun, Ji Su; Kim, Seul Ki; Park, Wonse; Kim, Baek Il; Yoo, Yun-Jung; Chang, Inik; Shin, Dong Min

    2016-01-01

    Periodontitis is a very common oral inflammatory disease that results in the destruction of supporting connective and osseous tissues of the teeth. Although the exact etiology is still unclear, Gram-negative bacteria, especially Porphyromonas gingivalis in subgingival pockets are thought to be one of the major etiologic agents of periodontitis. Endothelin (ET) is a family of three 21-amino acid peptides, ET-1, -2, and -3, that activate G protein-coupled receptors, ETA and ETB. Endothelin is involved in the occurrence and progression of various inflammatory diseases. Previous reports have shown that ET-1 and its receptors, ETA and ETB are expressed in the periodontal tissues and, that ET-1 levels in gingival crevicular fluid are increased in periodontitis patients. Moreover, P. gingivalis infection has been shown to induce the production of ET-1 along with other inflammatory cytokines. Despite these studies, however, the functional significance of endothelin in periodontitis is still largely unknown. In this study, we explored the cellular and molecular mechanisms of ET-1 action in periodontitis using human gingival epithelial cells (HGECs). ET-1 and ETA, but not ETB, were abundantly expressed in HGECs. Stimulation of HGECs with P. gingivalis or P. gingivalis lipopolysaccharide increased the expression of ET-1 and ETA suggesting the activation of the endothelin signaling pathway. Production of inflammatory cytokines, IL-1β, TNFα, and IL-6, was significantly enhanced by exogenous ET-1 treatment, and this effect depended on the mitogen-activated protein kinases via intracellular Ca2+ increase, which resulted from the activation of the phospholipase C/inositol 1,4,5-trisphosphate pathway. The inhibition of the endothelin receptor-mediated signaling pathway with the dual receptor inhibitor, bosentan, partially ameliorated alveolar bone loss and immune cell infiltration. These results suggest that endothelin plays an important role in P. gingivalis

  9. Biosynthesis of Monascus pigments by resting cell submerged culture in nonionic surfactant micelle aqueous solution.

    PubMed

    Wang, Bo; Zhang, Xuehong; Wu, Zhenqiang; Wang, Zhilong

    2016-08-01

    Growing cell submerged culture is usually applied for fermentative production of intracellular orange Monascus pigments, in which accumulation of Monascus pigments is at least partially associated to cell growth. In the present work, extractive fermentation in a nonionic surfactant micelle aqueous solution was utilized as a strategy for releasing of intracellular Monascus pigments. Those mycelia with low content of intracellular Monascus pigments were utilized as biocatalyst in resting cell submerged culture. By this means, resting cell submerged culture for production of orange Monascus pigments was carried out successfully in the nonionic surfactant micelle aqueous solution, which exhibited some advantages comparing with the corresponding conventional growing cell submerged culture, such as non-sterilization operation, high cell density (24 g/l DCW) leading to high productivity (14 AU of orange Monascus pigments at 470 nm per day), and recycling of cells as biocatalyst leading to high product yield (approximately 1 AU of orange Monascus pigments at 470 nm per gram of glucose) based on energy metabolism.

  10. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.

    PubMed

    Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Baqui, Munira Muhammad Abdel; McNamara, John Campbell

    2014-12-01

    The binding of red pigment concentrating hormone (RPCH) to membrane receptors in crustacean chromatophores triggers Ca²⁺/cGMP signaling cascades that activate cytoskeletal motors, driving pigment granule translocation. We investigate the distributions of microfilaments and microtubules and their associated molecular motors, myosin and dynein, by confocal and transmission electron microscopy, evaluating a functional role for the cytoskeleton in pigment translocation using inhibitors of polymer turnover and motor activity in vitro. Microtubules occupy the chromatophore cell extensions whether the pigment granules are aggregated or dispersed. The inhibition of microtubule turnover by taxol induces pigment aggregation and inhibits re-dispersion. Phalloidin-FITC actin labeling, together with tannic acid fixation and ultrastructural analysis, reveals that microfilaments form networks associated with the pigment granules. Actin polymerization induced by jasplaquinolide strongly inhibits RPCH-induced aggregation, causes spontaneous pigment dispersion, and inhibits pigment re-dispersion. Inhibition of actin polymerization by latrunculin-A completely impedes pigment aggregation and re-dispersion. Confocal immunocytochemistry shows that non-muscle myosin II (NMMII) co-localizes mainly with pigment granules while blebbistatin inhibition of NMMII strongly reduces the RPCH response, also inducing spontaneous pigment dispersion. Myosin II and dynein also co-localize with the pigment granules. Inhibition of dynein ATPase by erythro-9-(2-hydroxy-3-nonyl) adenine induces aggregation, inhibits RPCH-triggered aggregation, and inhibits re-dispersion. Granule aggregation and dispersion depend mainly on microfilament integrity although microtubules may be involved. Both cytoskeletal polymers are functional only when subunit turnover is active. Myosin and dynein may be the molecular motors that drive pigment aggregation. These mechanisms of granule translocation in crustacean

  11. Radiation-induced volatile hydrocarbon production in platelets. Scientific report

    SciTech Connect

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Thrombocytopenia plays an important role in the development of the post-irradiation hemorrhagic syndrome. Although destruction of platelet precursors in bone marrow is a major effect of high-dose radiation exposure, the effects of radiation on preformed platelets are unclear. The latter is also of concern with respect to blood-banking practices since platelets are often irradiated at doses in the range of 20-50 Gy before transfusions to prevent graft-versus-host disease. With increasing emphasis on allogenic and autologous bone-marrow transplantation, transfusions of irradiated platelets are likely to rise. Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets.

  12. Production of miniaturized biosensors through laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Fernández-Pradas, J. M.; Duocastella, M.; Colina, M.; Serra, P.; Morenza, J. L.

    2007-05-01

    Lasers are adequate tools for the production of patterns with high spatial resolution owing to the high focusing power of their radiation. Laser induced forward transfer (LIFT) is a direct-writing technique allowing the deposition of tiny amounts of material from a donor thin film through the action of a pulsed laser beam. A laser pulse is focused onto the donor thin film through a transparent support, what results in the transference of a small area of the film onto a receptor substrate that is placed parallel to the film-support system. Although LIFT was originally developed to operate with solid films, it has been demonstrated that deposition is also viable from liquid films. In this case, a small amount of liquid is directly ejected from the film onto the receptor substrate, where it rests deposited in the form of a microdroplet. This makes LIFT adequate for biosensors preparation, since biological solutions can be transferred onto solid substrates to produce micrometric patterns of biomolecules. In this case, the liquid solvent acts as transport vector of the biomolecules. The viability of the technique has been demonstrated through the preparation of functional miniaturized biosensors showing similar performances and higher scales of integration than those prepared through more conventional techniques.

  13. Pion-induced pion production on deuterium: a quasifree process

    NASA Astrophysics Data System (ADS)

    Sossi, V.; Iqbal, M. J.; Johnson, R. R.; Jones, G.; Pavan, M.; Rozon, F. M.; Sevior, M.; Vetterli, D.; Weber, P.; Sheffer, G.; Smith, G. R.; Camerini, P.; Grion, N.; Rui, R.; Stevenson, N. R.; Vicente-Vacas, M. J.

    1992-10-01

    A detailed experimental analysis of the π+d → π+π-pp in-plane coincidence data first presented by Rui et al. is compared to an expanded version of the Oset and Vicente-Vacas model for pion-induced pion production on a free nucleon. This extended model averages over Fermi motion to describe the assumed quasifree nature of the process occurring on the deuteron and includes nine additional diagrams to account for the N∗ → N(ππ) p-wave reaction channels. Experimental effects such as pion energy loss in the target and in the detectors, pion decay and muon detection are investigated and incorporated into the comparison of experimental data and theory. Inclusion of Fermi motion was found to be essential to provide good agreement between data and model confirming the quasifree nature of the reaction. When compared to the total-cross-section measurements of Manley et al., the free-reaction model yields a model-dependent estimate of the overall strength of the diagram containing the N∗ → N(ππ) s-wave vertex.

  14. Lipopolysaccharide-induced lethality and cytokine production in aged mice.

    PubMed Central

    Tateda, K; Matsumoto, T; Miyazaki, S; Yamaguchi, K

    1996-01-01

    This study was designed to define the lipopolysaccharide (LPS) sensitivity of aged mice in terms of lethality and cytokine production and to determine down-regulating responses of corticosterone and interleukin 10 (IL-10). The 50% lethal doses of LPS in young (6- to 7-week-old) and aged (98- to 102-week-old) mice were 601 and 93 microg per mouse (25.6 and 1.6 mg per kg of body weight), respectively. Aged mice were approximately 6.5-fold more sensitive to the lethal toxicity of LPS in micrograms per mouse (16-fold more sensitive in milligrams per kilogram) than young mice. Levels in sera of tumor necrosis factor-alpha (TNF-alpha) IL-1alpha, and IL-6 after intraperitoneal injection of 100 microg of LPS peaked at 1.5, 3, and 3 h, respectively, and declined thereafter in both groups of mice. However, the peak values of these cytokines were significantly higher in aged than in young mice (P < 0.05). Gamma interferon (IFN-gamma) was detectable at 3 h, and sustained high levels were still detected after 12 h in both age groups. Although there were no significant differences in levels of IFN-gamma in sera from both groups, aged mice showed higher IFN-gamma levels throughout the 3- to 12-h study period. Administration of increasing doses of LPS revealed that aged mice had a lower threshold to IL-1alpha production than young mice. In addition, aged mice were approximately 4-fold more sensitive to the lethal toxicity of exogenous TNF in units per mouse (10-fold more sensitive in units per kilogram) than young mice. With regard to down-regulating factors, corticosterone amounts were similar at basal levels and no differences in kinetics after the LPS challenge were observed, whereas IL-10 levels in sera were significantly higher in aged mice at 1.5 and 3 h than in young mice (P < 0.01). These results indicate that aged mice are more sensitive to the lethal toxicities of LPS and TNF than young mice. We conclude that a relatively activated, or primed, state for LPS-induced

  15. Holographic films from carotenoid pigments

    NASA Astrophysics Data System (ADS)

    Toxqui-López, S.; Lecona-Sánchez, J. F.; Santacruz-Vázquez, C.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2014-02-01

    Carotenoids pigments presents in pineapple can be more than just natural dyes, which is one of the applications that now at day gives the chemical industry. In this research shown that can be used in implementing of holographic recording Films. Therefore we describe the technique how to obtain this kind of pigments trough spay drying of natural pineapple juice, which are then dissolved with water in a proportion of 0.1g to 1mL. The obtained sample is poured into glass substrates using the gravity method, after a drying of 24 hours in laboratory normal conditions the films are ready. The films are characterized by recording transmission holographic gratings (LSR 445 NL 445 nm) and measuring the diffraction efficiency holographic parameter. This recording material has good diffraction efficiency and environmental stability.

  16. Cutaneous metastatic pigmented breast carcinoma.

    PubMed

    Gaitan-Gaona, Francisco; Said, Mirra C; Valdes-Rodriguez, Rodrigo

    2016-03-16

    A 66-year-old woman presented with a 3 cm black, ulcerated nodule located on the skin of the upper abdomen, just below the breast. The lesion was painful to the touch, but the patient reported no other associated symptoms and was otherwise healthy. A 4-mm punch biopsy of the affected skin was obtained and the histological diagnosis was cutaneous metastatic pigmented breast carcinoma.

  17. Visual Pigments of Goldfish Cones

    PubMed Central

    Hárosi, Ferenc I.; MacNichol, Edward F.

    1974-01-01

    Freshly isolated retinal photoreceptors of goldfish were studied microspectrophotometrically. Absolute absorptance spectra obtained from dark-adapted cone outer segments reaffirm the existence of three spectrally distinct cone types with absorption maxima at 455 ± 3,530 ± 3, and 625 ± 5 nm. These types were found often recognizable by gross cellular morphology. Side-illuminated cone outer segments were dichroic. The measured dichroic ratio for the main absorption band of each type was 2–3:1. Rapidly bleached cells revealed spectral and dichroic transitions in regions near 400–410, 435–455, and 350–360 nm. These photoproducts decay about fivefold as fast as the intermediates in frog rods. The spectral maxima of photoproducts, combined with other evidence, indicate that retinene2 is the chromophore of all three cone pigments. The average specific optical density for goldfish cone outer segments was found to be 0.0124 ± 0.0015/µm. The spectra of the blue-, and green-absorbing cones appeared to match porphyropsin standards with half-band width Δν = 4,832 ± 100 cm–1. The red-absorbing spectrum was found narrower, having Δν = 3,625 ± 100 cm–1. The results are consistent with the notion that visual pigment concentration within the outer segments is about the same for frog rods and goldfish cones, but that the blue-, and green-absorbing pigments possess molar extinctions of 30,000 liter/mol cm. The red-absorbing pigment was found to have extinction of 40,000 liter/mol cm, assuming invariance of oscillator strength among the three cone spectra. PMID:4817352

  18. Nanoscience of an ancient pigment.

    PubMed

    Johnson-McDaniel, Darrah; Barrett, Christopher A; Sharafi, Asma; Salguero, Tina T

    2013-02-06

    We describe monolayer nanosheets of calcium copper tetrasilicate, CaCuSi(4)O(10), which have strong near-IR luminescence and are amenable to solution processing methods. The facile exfoliation of bulk CaCuSi(4)O(10) into nanosheets is especially surprising in view of the long history of this material as the colored component of Egyptian blue, a well-known pigment from ancient times.

  19. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency.

    PubMed

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hong-Bin

    2016-11-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants.

  20. Delayed induction of pigmented spots on UVB-irradiated hairless mice.

    PubMed

    Naganumaa, M; Yagi, E; Fukuda, M

    2001-01-01

    Human skin exposed to solar radiation for a long time subsequently develops pigmented spots, which are named solar lentigines. Since no animal model of this process is currently available, we attempted to induce similar spots in pigmented hairless mice. The mice were irradiated at 38 or 94 mJ/cm(2) three times/week for various periods of time (1-8 weeks) under an ultraviolet light source (Toshiba FL-SE; UVB). Skin pigmentation of irradiated mice was visually observed and skin color was determined with a colorimeter for 78 weeks. Uniform pigmentation was induced, but persisted only during exposure, disappearing completely within 2 weeks after cessation of exposure. At about 28 weeks after the first exposure, pigmented spots suddenly began to appear. These pigmented spots were less than 2 mm in diameter and light brown in color. The length of the latent period until appearance and the extent of development of these spots were dependent on the exposure period. Histological examination revealed increased numbers of active melanocytes and melanin granules in the affected epidermis. These pigmented spots closely resemble solar lentigines in humans, and the mice should be useful as an animal model of solar lentigines.

  1. Genes Involved in Yellow Pigmentation of Cronobacter sakazakii ES5 and Influence of Pigmentation on Persistence and Growth under Environmental Stress▿

    PubMed Central

    Johler, Sophia; Stephan, Roger; Hartmann, Isabel; Kuehner, Kirsten A.; Lehner, Angelika

    2010-01-01

    Cronobacter spp. are opportunistic food-borne pathogens that are responsible for rare but highly fatal cases of meningitis and necrotizing enterocolitis in neonates. While the operon responsible for yellow pigmentation in Cronobacter sakazakii strain ES5 was described recently, the involvement of additional genes in pigment expression and the influence of pigmentation on the fitness of Cronobacter spp. have not been investigated. Thus, the aim of this study was to identify further genes involved in pigment expression in Cronobacter sakazakii ES5 and to assess the influence of pigmentation on growth and persistence under conditions of environmental stress. A knockout library was created using random transposon mutagenesis. The screening of 9,500 mutants for decreased pigment production identified 30 colorless mutants. The mapping of transposon insertion sites revealed insertions in not only the carotenoid operon but also in various other genes involved in signal transduction, inorganic ions, and energy metabolism. To determine the effect of pigmentation on fitness, colorless mutants (ΔcrtE, ΔcrtX, and ΔcrtY) were compared to the yellow wild type using growth and inactivation experiments, a macrophage assay, and a phenotype array. Among other findings, the colorless mutants grew at significantly increased rates under osmotic stress compared to that of the yellow wild type while showing increased susceptibility to desiccation. Moreover, ΔcrtE and ΔcrtY exhibited increased sensitivity to UVB irradiation. PMID:20038705

  2. Effect of epidermal pigmentation on selective vascular effects of pulsed laser

    SciTech Connect

    Tan, O.T.; Kerschmann, R.; Parrish, J.A.

    1984-01-01

    The effect of epidermal pigmentation on the threshold exposure dose for inducing purpura with a tunable dye laser at 577 nm, 1.5 microseconds pulse duration, was studied in 21 human volunteers with varied genetically determined amounts of melanin. More laser energy was required to produce purpura as constitutive skin pigmentation increased. Histology showed that, in lighter skin, the laser threshold dose produced the most specific vascular injury with no disruption of surrounding structures. In more pigmented skin, damage occurred in the epidermal basal layer and very few changes were seen in blood vessels below.

  3. Photosynthetic accessory pigments - Evidence for the influence of phycoerythrin on the submarine light field

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Swift, Robert N.

    1990-01-01

    Upwelled water-leaving spectral radiances and the submarine light-field source are theorized to have the physical scattering and absorption effects of photosynthetic accessory pigments. A laser is employed to induce phycoerythrin pigment fluorescence, and the presence of the photosynthetic accessory pigment is measured in oceanic waters with a spectral fluorescence method. Experimental data from active-passive correlation spectroscopy demonstrate that water-leaving spectral radiances of about 600 nm are highly correlated with phycoerythrin pigment fluorescence. Because the data on the phycoerythrin and chlorophyll fluorescences are entered randomly in the correlation the results are considered unambiguous. An estimate of the photopigment is derived that agrees with measurements of its laser-induced fluorescence.

  4. Characterization of ancient Chinese pottery decorated with a black pigment

    NASA Astrophysics Data System (ADS)

    Uda, M.; Akiyoshi, K.; Nakamura, M.

    1999-04-01

    The Yangshao type pottery, made about 6000 yrs ago, was investigated by X-ray diffraction (XRD), and confirmed to be composed of quartz, feldspar, muscovite and calcite. A black pigment on it was assumed to be (Mn, Fe) 3O 4 from Particle Induced X-ray Emission (PIXE) and XRD experiments. Firing temperature of the pottery was assumed to be less than 600°C from a heating experiment of the fragment of the pottery.

  5. Second stage production of iturin A by induced germination of Bacillus subtilis RB14.

    PubMed

    Rahman, Mohammad Shahedur; Ano, Takashi; Shoda, Makoto

    2006-10-01

    Bacillus subtilis RB14, a dual producer of lipopeptide antibiotics iturin A and surfactin undergoes sporulation in the submerged fermentation and the production of these secondary metabolites becomes halted. In this study, production of lipopeptide antibiotics was investigated by induced germination of the spores by heat-activation and nutrient supplementation. The induced spores became metabolically active vegetative state and produced lipopeptide antibiotic iturin A that added up the total production at the end of the fermentation. However, additional production of surfactin was not observed. This second time iturin A production by the germinated cells from the spores was defined as second stage production.

  6. Constitutive expression of MC1R in HaCaT keratinocytes inhibits basal and UVB-induced TNF-alpha production.

    PubMed

    Garcin, Geneviève; Le Gallic, Lionel; Stoebner, Pierre-Emmanuel; Guezennec, Anne; Guesnet, Joelle; Lavabre-Bertrand, Thierry; Martinez, Jean; Meunier, Laurent

    2009-01-01

    Alpha-melanocyte stimulating hormone (alpha-MSH) binds to melanocortin-1 receptor (MC1R) on melanocytes to stimulate pigmentation and modulate various cutaneous inflammatory responses. MC1R expression is not restricted to melanocytic cells and may be induced in keratinocytes after UVB exposure. We hypothesized that MC1R signaling in keratinocytes, wherein basal conditions are barely expressed, may modulate mediators of inflammation, such as nuclear factor-kappa B (NF-kappaB) and tumor necrosis factor-alpha (TNF-alpha). Therefore, we generated HaCaT cells that stably express human MC1R or the Arg151Cys (R151C) nonfunctional variant. We demonstrate that: (1) the constitutive activity of MC1R results in elevated intracellular cAMP level, reduced NF-kappaB activity and decreased TNF-alpha transcription; (2) binding of alpha-MSH to MC1R and the subsequent increase in cAMP production do not inhibit TNFalpha-mediated NF-kappaB activation; (3) MC1R signaling is sufficient to strongly inhibit UVB-induced TNF-alpha expression and this inhibitory effect is further enhanced by alpha-MSH stimulation. Our findings suggest that the constitutive activity of the G-protein-coupled MC1R in keratinocytes may contribute to the modulation of inflammatory events and immune response induced by UV light.

  7. Improved production of phleichrome from the phytopathogenic fungus Cladosporium phlei using synthetic inducers and photodynamic ROS production by phleichrome.

    PubMed

    So, Kum-Kang; Jo, Ik-Su; Chae, Min-Seon; Kim, Jung-Mi; Chung, Hea-Jong; Yang, Moon-Sik; Kim, Beom-Tae; Kim, Jin-Kug; Choi, Jong-Kyung; Kim, Dae-Hyuk

    2015-03-01

    Two different diketopiperazines, cyclo-(L-Pro-L-Leu) and cyclo-(L-Pro-L-Phe), which were isolated from the culture filtrate of Epichloe typhina and found to be inducers of phleichrome production, were chemically synthesized and evaluated for use in the improved production of phleichrome from wild-type and UV-mutagenized strains (M0035) of Cladosporium phlei. When supplemented with PDA and V8 juice agar media, both inducers showed significant increases in the production of phleichrome. Phleichrome production was increased in a dose-dependent manner up to a concentration of maximum yield for both inducers. No further significant induction was observed by supplementing inducers over the concentration of maximum yield. Among the two inducers, cyclo-(L-Pro-L-Phe) showed better inducing capability than cyclo-(L-Pro-L-Leu). The maximum yield was observed from the M0035 strain grown on V8 juice media supplemented with 150 μM cyclo-(L-Pro-L-Phe), which was estimated to be 232.6 mg of phleichrome per gram of mycelia and 10.2 mg of secreted phleichrome per 20 agar-plugs. Interestingly, growth inhibition was observed on V8 juice agar media with 100, 150, and 200 μM cyclo-(L-Pro-L-Phe) but not on PDA with the same amount of inducer, which suggests that the inhibitory effect might be through the overproduction of phleichrome rather than the toxic effect of the inducer itself. Superoxide production by purified phleichrome was dramatically stimulated upon illumination, thus demonstrating photodynamic production of superoxide in vitro by phleichrome.

  8. Phytochemistry: structure of the blue cornflower pigment.

    PubMed

    Shiono, Masaaki; Matsugaki, Naohiro; Takeda, Kosaku

    2005-08-11

    The same anthocyanin pigment makes roses red but cornflowers blue, a phenomenon that has so far not been entirely explained. Here we describe the X-ray crystal structure of the cornflower pigment, which reveals that its blue colour arises from a complex of six molecules each of anthocyanin and flavone, with one ferric iron, one magnesium and two calcium ions. We believe that this tetrametal complex may represent a previously undiscovered type of supermolecular pigment.

  9. The identification of synthetic organic pigments in modern paints and modern paintings using pyrolysis-gas chromatography-mass spectrometry.

    PubMed

    Russell, Joanna; Singer, Brian W; Perry, Justin J; Bacon, Anne

    2011-05-01

    A collection of more than 70 synthetic organic pigments were analysed using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). We report on the analysis of diketo-pyrrolo-pyrrole, isoindolinone and perylene pigments which are classes not previously reported as being analysed by this technique. We also report on a number of azo pigments (2-naphthol, naphthol AS, arylide, diarylide, benzimidazolone and disazo condensation pigments) and phthalocyanine pigments, the Py-GC-MS analysis of which has not been previously reported. The members of each class were found to fragment in a consistent way and the pyrolysis products are reported. The technique was successfully applied to the analysis of paints used by the artist Francis Bacon (1909-1992), to simultaneously identify synthetic organic pigments and synthetic binding media in two samples of paint taken from Bacon's studio and micro-samples taken from three of his paintings and one painting attributed to him.

  10. Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry

    PubMed Central

    Andrews, Allison M.; Jaron, Dov; Buerk, Donald G.; Barbee, Kenneth A.

    2014-01-01

    Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established. Furthermore, the importance of calcium in shear stress-induced NO production remains controversial, and in particular the role of capacitive calcium entry (CCE) has yet to be determined. We have utilized our unique NO measurement device to investigate the role of ATP autocrine signaling and CCE in shear stress-induced NO production. We found that endogenously released ATP and downstream activation of purinergic receptors and CCE plays a significant role in shear stress-induced NO production. ATP-induced eNOS phophorylation under static conditions is also dependent on CCE. Inhibition of protein kinase C significantly inhibited eNOS phosphorylation and the calcium response. To our knowledge, we are the first to report on the role of CCE in the mechanism of acute shear stress-induced NO response. In addition, our work highlights the importance of ATP autocrine signaling in shear stress-induced NO production. PMID:25386222

  11. Mutant laboratory mice with abnormalities in pigmentation: annotated tables.

    PubMed

    Nakamura, Motonobu; Tobin, Desmond J; Richards-Smith, Beverly; Sundberg, John P; Paus, Ralf

    2002-01-01

    Mammalian pigment cell research has recently entered a phase of significantly increased activity due largely to the exploitation of the many mutant mouse stocks that are coming on stream. Numerous transgenic, targeted mutagenesis (so-called 'knockouts'), conditional (so-called 'gene switch') and spontaneous mutant mice develop abnormal coat color phenotypes. The number of mice that exhibit such abnormalities is increasing exponentially as genetic engineering methods become routine. Since defined abnormalities in such mutant mice provide important clues to the as yet often poorly understood functional roles of many gene products, this overview includes a corresponding, annotated table of mutant mice with pigmentation alterations. These range from early developmental defects via a large array of coat color abnormalities to a melanoma metastasis model. This overview should provide helpful pointers to investigators who are looking for mouse models to explore or to compare functional activities of genes of interest and for comparing coat color phenotypes of spontaneous or genetically engineered mouse mutants with novel ones. Secondly, this review includes a table of mouse models of specific human diseases with genetically defined pigmentation abnormalities. In summary, this annotated table should serve as a useful reference for anyone interested in the molecular controls of pigmentation.

  12. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress.

  13. Non-photosynthetic pigments as potential biosignatures

    NASA Astrophysics Data System (ADS)

    Schwieterman, E. W.; Cockell, C. S.; Meadows, V. S.

    2014-03-01

    Photosynthetic organisms on Earth produce potentially detectable surface reflectance biosignatures due in part to the spectral location and strength of pigment absorption. However, life on Earth uses pigments for a multitude of purposes other than photosynthesis, including coping with extreme environments. Macroscopic environments exist on Earth where the surface reflectance is significantly altered by a nonphotosynthetic pigment, such as the case of hypersaline lakes and ponds (Oren et al. 1992). Here we explore the nature and potential detectability of non-photosynthetic pigments in disk-averaged planetary observations using a combination of laboratory measurements and archival reflectance spectra, along with simulated broadband photometry and spectra. The in vivo visible reflectance spectra of a cross section of pigmented microorganisms are presented to illustrate the spectral diversity of biologically produced pigments. Synthetic broadband colors are generated to show a significant spread in color space. A 1D radiative transfer model (Meadows & Crisp 1996; Crisp 1997) is used to approximate the spectra of scenarios where pigmented organisms are widespread on planets with Earth-like atmospheres. Broadband colors are revisited to show that colors due to surface reflectivity are not robust to the addition of scattering and absorption effects from the atmosphere. We consider a èbest case' plausible scenario for the detection of nonphotosynthetic pigments by using the Virtual Planetary Laboratory's 3D spectral Earth model (Robinson et al. 2011) to explore the detectability of the surface biosignature produced by pigmented halophiles that are widespread on an Earth-analog planet.

  14. Melanin pigmented solar absorbing surfaces

    SciTech Connect

    Gallas, J.M.; Eisner, M.

    1980-01-01

    Selectivity enhancement is shown to result for melanin, a black biopolymer pigment, for sufficiently low sample density. The effect is proposed to follow from a consideration of the evanescent waves associated with the total internal reflection phenomenon. A relationship is discussed among powder density, pH and the paramagnetic properties of melanin; this relationship is shown to be consistent with, and offer support to an amino-acid side group proposed earlier as part of the melanin structure. A brief discussion is also presented on the optical properties of melanin and the relative importance of quinhydrone, a change transfer complex believed to exist in the polymeric structure of melanin.

  15. Ceramide Production Mediates Aldosterone-Induced Human Umbilical Vein Endothelial Cell (HUVEC) Damages.

    PubMed

    Zhang, Yumei; Pan, Yu; Bian, Zhixiang; Chen, Peihua; Zhu, Shijian; Gu, Huiyi; Guo, Liping; Hu, Chun

    2016-01-01

    Here, we studied the underlying mechanism of aldosterone (Aldo)-induced vascular endothelial cell damages by focusing on ceramide. We confirmed that Aldo (at nmol/L) inhibited human umbilical vein endothelial cells (HUVEC) survival, and induced considerable cell apoptosis. We propose that ceramide (mainly C18) production might be responsible for Aldo-mediated damages in HUVECs. Sphingosine-1-phosphate (S1P), an anti-ceramide lipid, attenuated Aldo-induced ceramide production and following HUVEC damages. On the other hand, the glucosylceramide synthase (GCS) inhibitor PDMP or the ceramide (C6) potentiated Aldo-induced HUVEC apoptosis. Eplerenone, a mineralocorticoid receptor (MR) antagonist, almost completely blocked Aldo-induced C18 ceramide production and HUVEC damages. Molecularly, ceramide synthase 1 (CerS-1) is required for C18 ceramide production by Aldo. Knockdown of CerS-1 by targeted-shRNA inhibited Aldo-induced C18 ceramide production, and protected HUVECs from Aldo. Reversely, CerS-1 overexpression facilitated Aldo-induced C18 ceramide production, and potentiated HUVEC damages. Together, these results suggest that C18 ceramide production mediates Aldo-mediated HUVEC damages. MR and CerS-1 could be the two signaling molecule regulating C18 ceramide production by Aldo.

  16. Ceramide Production Mediates Aldosterone-Induced Human Umbilical Vein Endothelial Cell (HUVEC) Damages

    PubMed Central

    Zhang, Yumei; Pan, Yu; Bian, Zhixiang; Chen, Peihua; Zhu, Shijian; Gu, Huiyi; Guo, Liping; Hu, Chun

    2016-01-01

    Here, we studied the underlying mechanism of aldosterone (Aldo)-induced vascular endothelial cell damages by focusing on ceramide. We confirmed that Aldo (at nmol/L) inhibited human umbilical vein endothelial cells (HUVEC) survival, and induced considerable cell apoptosis. We propose that ceramide (mainly C18) production might be responsible for Aldo-mediated damages in HUVECs. Sphingosine-1-phosphate (S1P), an anti-ceramide lipid, attenuated Aldo-induced ceramide production and following HUVEC damages. On the other hand, the glucosylceramide synthase (GCS) inhibitor PDMP or the ceramide (C6) potentiated Aldo-induced HUVEC apoptosis. Eplerenone, a mineralocorticoid receptor (MR) antagonist, almost completely blocked Aldo-induced C18 ceramide production and HUVEC damages. Molecularly, ceramide synthase 1 (CerS-1) is required for C18 ceramide production by Aldo. Knockdown of CerS-1 by targeted-shRNA inhibited Aldo-induced C18 ceramide production, and protected HUVECs from Aldo. Reversely, CerS-1 overexpression facilitated Aldo-induced C18 ceramide production, and potentiated HUVEC damages. Together, these results suggest that C18 ceramide production mediates Aldo-mediated HUVEC damages. MR and CerS-1 could be the two signaling molecule regulating C18 ceramide production by Aldo. PMID:26788916

  17. A genomic and transcriptomic approach to investigate the blue pigment phenotype in Pseudomonas fluorescens.

    PubMed

    Andreani, Nadia Andrea; Carraro, Lisa; Martino, Maria Elena; Fondi, Marco; Fasolato, Luca; Miotto, Giovanni; Magro, Massimiliano; Vianello, Fabio; Cardazzo, Barbara

    2015-11-20

    Pseudomonas fluorescens is a well-known food spoiler, able to cause serious economic losses in the food industry due to its ability to produce many extracellular, and often thermostable, compounds. The most outstanding spoilage events involving P. fluorescens were blue discoloration of several food stuffs, mainly dairy products. The bacteria involved in such high-profile cases have been identified as belonging to a clearly distinct phylogenetic cluster of the P. fluorescens group. Although the blue pigment has recently been investigated in several studies, the biosynthetic pathway leading to the pigment formation, as well as its chemical nature, remain challenging and unsolved points. In the present paper, genomic and transcriptomic data of 4 P. fluorescens strains (2 blue-pigmenting strains and 2 non-pigmenting strains) were analyzed to evaluate the presence and the expression of blue strain-specific genes. In particular, the pangenome analysis showed the presence in the blue-pigmenting strains of two copies of genes involved in the tryptophan biosynthesis pathway (including trpABCDF). The global expression profiling of blue-pigmenting strains versus non-pigmenting strains showed a general up-regulation of genes involved in iron uptake and a down-regulation of genes involved in primary metabolism. Chromogenic reaction of the blue-pigmenting bacterial cells with Kovac's reagent indicated an indole-derivative as the precursor of the blue pigment. Finally, solubility tests and MALDI-TOF mass spectrometry analysis of the isolated pigment suggested that its molecular structure is very probably a hydrophobic indigo analog.

  18. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins.

    PubMed

    Somsen, O J; van Grondelle, R; van Amerongen, H

    1996-10-01

    Excitonic interaction between pigment molecules is largely responsible for the static and dynamic spectroscopic properties of photosynthetic pigment-proteins. This paper provides a new description of its effect on polarized absorption spectroscopy, in particular on circular dichroism (CD). We investigate excitonic spectra of finite width and use "spectral moments" to compare 1) inhomogeneously broadened excitonic spectra, 2) spectra that are (homogeneously broadened by vibrations or electron-phonon interaction, and 3) spectra that are simulated by applying convolution after the interaction has been evaluated. Two cases are distinguished. If the excitonic splitting is smaller than the width of the interacting absorption bands, the broadening of the excitonic spectrum can be approximated by a convolution approach, although a correction is necessary for CD spectra. If the excitonic splitting exceeds the bandwidth, the well-known exchange narrowing occurs. We demonstrate that this is accompanied by redistribution of dipole strength and spectral shifts. The magnitude of a CD spectrum is conveniently expressed by its first spectral moment. As will be shown, this is independent of spectral broadening as well as dispersive shifts induced by pigment-protein interactions. Consequently, it provides a simple tool to relate the experimental CD spectrum of a pigment complex to the excitonic interactions from which it originates. To illustrate the potential of the presented framework, the spectroscopy of the LH2 pigment-protein complex from purple bacteria is analyzed and compared for dimer-like and ring-like structures. Furthermore, it is demonstrated that the variability of the CD of chlorosomes from green bacteria can be explained by small changes in the structure of their cylindrical bacteriochlorophyll c subunits.

  19. Characterization of the yellow pigment in the axanthic mutant of the Mexican axolotl, Ambystoma mexicanum.

    PubMed

    Bukowski, L; Erickson, K; Lyerla, T A

    1990-09-01

    The yellow pigment observed in older axanthic (ax/ax) mutant Mexican axolotls (Ambystoma mexicanum) was analyzed by thin layer chromatography and by spectrofluorometry of its acetyl derivative. Ethanol extracts from the skin of axanthic animals were acetylated and the chloroform-soluble portion of the product mixture was compared with a chloroform solution of an authentic riboflavin tetraacetate standard prepared in the same manner. The pigment in these two solutions behaved identically on thin layer chromatograms and in fluorescent emission spectroscopy. This confirms that the yellow pigment seen in these genetically axanthic animals is riboflavin and, since it cannot be synthesized by the animal, must be derived from the diet.

  20. Surface micro-distributions of pigment and the relation between smearing and local mass distribution

    NASA Astrophysics Data System (ADS)

    Bülow, K.; Kristiansson, P.; Larsson, T.; Malmberg, S.; Elfman, M.; Malmqvist, K.; Pallon, J.; Shariff, A.

    2001-07-01

    In this work, the process of smearing and its time evolution have been investigated. When smearing occurs, the print is removed from the printed paper and colours other parts of the paper or the printing press and destroys the final product. To study the re-distribution of ink, cyan ink with Cu as a tracer in the coloured pigment has been used. Non-printed paper has been pressed against the paper, 1 and 5 s after the printing. The micro-distributions of ink on both printed and non-printed papers have then been studied using particle-induced X-ray emission (PIXE). Basis weight was measured with the off-axis scanning transmission ion microscopy (STIM) technique and this data was correlated with the data from the print. One conclusion is that the process of smearing is not dependent on the shape of the pigment distribution, i.e. copper, or the content of copper in a specific pixel. On the contrary, the smearing was found to be related to the structure of the paper and that it mainly occurs where the paper is thicker.

  1. Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores

    PubMed Central

    1994-01-01

    Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca(2+)-) based regulation (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). Despite these observations, there have been no direct measurements in intact erythrophores or any cell type correlating changes of intracellular free Ca2+ ([Ca2+]i) with organelle movements. Here we demonstrate that extracellular Ca2+ is necessary and that a Ca2+ influx via microinjection is sufficient to induce pigment aggregation in erythrophores, but not melanophores of squirrel fish. Using the Ca(2+)- sensitive indicator, Fura-2, we demonstrate that [Ca2+]i rises dramatically concomitant with aggregation of pigment granules in erythrophores, but not melanophores. In addition, we find that an erythrophore stimulated to aggregate pigment will immediately transmit a rise in [Ca2+]i to neighboring cells, suggesting that these cells are electrically coupled. Surprisingly, we find that a fall in [Ca2+]i is not sufficient to induce pigment dispersion in erythrophores, contrary to the findings obtained with the ionophore and lysed-cell models (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). We find that a rise in intracellular cAMP ([cAMP]i) induces pigment dispersion, and that this dispersive stimulus can be overridden by an aggregation stimulus, suggesting that both high [cAMP]i and low [Ca2+]i are necessary to produce pigment dispersion in erythrophores. PMID:8106546

  2. Changes in localization and expression levels of Shroom2 and spectrin contribute to variation in amphibian egg pigmentation patterns.

    PubMed

    Lee, Chanjae; Le, Minh-Phuong; Cannatella, David; Wallingford, John B

    2009-06-01

    One contributing factor in the worldwide decline in amphibian populations is thought to be the exposure of eggs to UV light. Enrichment of pigment in the animal hemisphere of eggs laid in the sunlight defends against UV damage, but little is known about the cell biological mechanisms controlling such polarized pigment patterns. Even less is known about how such mechanisms were modified during evolution to achieve the array of amphibian egg pigment patterns. Here, we show that ectopic expression of the gamma-tubulin regulator, Shroom2, is sufficient to induce co-accumulation of pigment granules, spectrin, and dynactin in Xenopus blastomeres. Shroom2 and spectrin are enriched and co-localize specifically in the pigmented animal hemisphere of Xenopus eggs and blastulae. Moreover, Shroom2 messenger RNA (mRNA) is expressed maternally at high levels in Xenopus. In contrast to Xenopus, eggs and blastulae of Physalaemus pustulosus have very little surface pigmentation. Rather, we find that pigment is enriched in the perinuclear region of these embryos, where it co-localizes with spectrin. Moreover, maternal Shroom2 mRNA was barely detectable in Physaleamus, though zygotic levels were comparable to Xenopus. We therefore suggest that a Shroom2/spectrin/dynactin-based mechanism controls pigment localization in amphibian eggs and that variation in maternal Shroom2 mRNA levels accounts in part for variation in amphibian egg pigment patterns during evolution.

  3. The genetic control of aposematic black pigmentation in hemimetabolous insects: insights from Oncopeltus fasciatus

    PubMed Central

    Liu, Jin; Lemonds, Thomas R.; Popadić, Aleksandar

    2014-01-01

    SUMMARY Variations in body pigmentation, encompassing both the range of specific colors as well as the spatial arrangement of those colors, are among the most noticeable and lineage-specific insect features. However, the genetic mechanisms responsible for generating this diversity are still limited to several model species that are primarily holometabolous insects. To address this lack of knowledge, we utilize Oncopeltus fasciatus, an aposematic hemimetabolous insect, as a new model to study insect pigmentation. First, to determine the genetic regulation of black pigment production in Oncopeltus, we perform an RNAi analysis on three core genes involved in the melanin pathway, tyrosine hydroxylase (TH), dopa decarboxylase (DDC), and laccase 2 (lac2). The black pigmentation is affected in all instances, showing that the black pigments in this species are derived from the melanin pathway. The results of the DDC RNAi are particularly informative because they reveal that it is Dopamine melanin, not DOPA melanin, which is the predominant component of black pigments in Oncopeltus. Second, we test whether pigmentation follows a two-step model where the spatial pre-mapping of enzymatic activity is followed by vein-dependent transportation of melanin substances. We confirm the existence of the first step by observing that premature wings develop black pigmentation when exposed to melanin precursors. In addition, we provide evidence for the second step by showing that wing melanin patterning is disrupted when vein transportation is halted. These findings bring novel insights from a hemimetabolous species and establish a framework for subsequent studies on the mechanisms of pigment production and patterning responsible for variations in insect coloration. PMID:25124093

  4. The genetic control of aposematic black pigmentation in hemimetabolous insects: insights from Oncopeltus fasciatus.

    PubMed

    Liu, Jin; Lemonds, Thomas R; Popadić, Aleksandar

    2014-09-01

    Variations in body pigmentation, encompassing both the range of specific colors as well as the spatial arrangement of those colors, are among the most noticeable and lineage-specific insect features. However, the genetic mechanisms responsible for generating this diversity are still limited to several model species that are primarily holometabolous insects. To address this lack of knowledge, we utilize Oncopeltus fasciatus, an aposematic hemimetabolous insect, as a new model to study insect pigmentation. First, to determine the genetic regulation of black pigment production in Oncopeltus, we perform an RNAi analysis on three core genes involved in the melanin pathway, tyrosine hydroxylase (TH), dopa decarboxylase (DDC), and laccase 2 (lac2). The black pigmentation is affected in all instances, showing that the black pigments in this species are derived from the melanin pathway. The results of the DDC RNAi are particularly informative because they reveal that it is Dopamine melanin, not DOPA melanin, which is the predominant component of black pigments in Oncopeltus. Second, we test whether pigmentation follows a two-step model where the spatial pre-mapping of enzymatic activity is followed by vein-dependent transportation of melanin substances. We confirm the existence of the first step by observing that premature wings develop black pigmentation when exposed to melanin precursors. In addition, we provide evidence for the second step by showing that wing melanin patterning is disrupted when vein transportation is halted. These findings bring novel insights from a hemimetabolous species and establish a framework for subsequent studies on the mechanisms of pigment production and patterning responsible for variations in insect coloration.

  5. Pigment Translocation in Caridean Shrimp Chromatophores: Receptor Type, Signal Transduction, Second Messengers, and Cross Talk Among Multiple Signaling Cascades.

    PubMed

    Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Bell, Fernanda Tinti; McNamara, John Campbell

    2016-11-01

    Pigment aggregation in shrimp chromatophores is triggered by red pigment concentrating hormone (RPCH), a neurosecretory peptide whose plasma membrane receptor may be a G-protein coupled receptor (GPCR). While RPCH binding activates the Ca(2+) /cGMP signaling cascades, a role for cyclic AMP (cAMP) in pigment aggregation is obscure, as are the steps governing Ca(2+) release from the smooth endoplasmic reticulum (SER). A role for the antagonistic neuropeptide, pigment dispersing homone (α-PDH) is also unclear. In red, ovarian chromatophores from the freshwater shrimp Macrobrachium olfersi, we show that a G-protein antagonist (AntPG) strongly inhibits RPCH-triggered pigment aggregation, suggesting that RPCH binds to a GPCR, activating an inhibitory G-protein. Decreasing cAMP levels may cue pigment aggregation, since cytosolic cAMP titers, when augmented by cholera toxin, forskolin or vinpocentine, completely or partially impair pigment aggregation. Triggering opposing Ca(2+) /cGMP and cAMP cascades by simultaneous perfusion with lipid-soluble cyclic nucleotide analogs induces a "tug-of-war" response, pigments aggregating in some chromatosomes with unpredictable, oscillatory movements in others. Inhibition of cAMP-dependent protein kinase accelerates aggregation and reduces dispersion velocities, suggesting a role in phosphorylation events, possibly regulating SER Ca(2+) release and pigment aggregation. The second messengers IP3 and cADPR do not stimulate SER Ca(2+) release. α-PDH does not sustain pigment dispersion, suggesting that pigment translocation in caridean chromatophores may be regulated solely by RPCH, since PDH is not required. We propose a working hypothesis to further unravel key steps in the mechanisms of pigment translocation within crustacean chromatophores that have remained obscure for nearly a century.

  6. N-Nicotinoyl dopamine, a novel niacinamide derivative, retains high antioxidant activity and inhibits skin pigmentation.

    PubMed

    Kim, Bora; Kim, Jin Eun; Lee, Su Min; Lee, Soung-Hoon; Lee, Jin Won; Kim, Myung Kyoo; Lee, Kye Jong; Kim, Hyuk; Lee, Joo Dong; Choi, Kang-Yell

    2011-11-01

    We synthesized a novel derivative of a well-known skin-lightening compound niacinamide, N-nicotinoyl dopamine (NND). NND did not show inhibitory effects of tyrosinase and melanin synthesis in B16F10 mouse melanoma cells. However, NND retains high antioxidant activity without affecting viability of cells. In a reconstructed skin model, topical applications of 0.05% and 0.1% NND induced skin lightening and decreased melanin production without affecting the viability and morphology of melanocytes and overall tissue histology. Moreover, no evidence for skin irritation or sensitization was observed when 0.1% NND emulsion was applied onto the skin of 52 volunteers. The effect of NND on skin lightening was further revealed by pigmented spot analyses of human clinical trial. Overall, NND treatment may be a useful trial for skin lightening and treating pigmentary disorders.

  7. Human skin pigmentation as an adaptation to UV radiation

    PubMed Central

    Jablonski, Nina G.; Chaplin, George

    2010-01-01

    Human skin pigmentation is the product of two clines produced by natural selection to adjust levels of constitutive pigmentation to levels of UV radiation (UVR). One cline was generated by high UVR near the equator and led to the evolution of dark, photoprotective, eumelanin-rich pigmentation. The other was produced by the requirement for UVB photons to sustain cutaneous photosynthesis of vitamin D3 in low-UVB environments, and resulted in the evolution of depigmented skin. As hominins dispersed outside of the tropics, they experienced different intensities and seasonal mixtures of UVA and UVB. Extreme UVA throughout the year and two equinoctial peaks of UVB prevail within the tropics. Under these conditions, the primary selective pressure was to protect folate by maintaining dark pigmentation. Photolysis of folate and its main serum form of 5-methylhydrofolate is caused by UVR and by reactive oxygen species generated by UVA. Competition for folate between the needs for cell division, DNA repair, and melanogenesis is severe under stressful, high-UVR conditions and is exacerbated by dietary insufficiency. Outside of tropical latitudes, UVB levels are generally low and peak only once during the year. The populations exhibiting maximally depigmented skin are those inhabiting environments with the lowest annual and summer peak levels of UVB. Development of facultative pigmentation (tanning) was important to populations settling between roughly 23° and 46° , where levels of UVB varied strongly according to season. Depigmented and tannable skin evolved numerous times in hominin evolution via independent genetic pathways under positive selection. PMID:20445093

  8. Inducible product gene expression technology tailored to bioprocess engineering.

    PubMed

    Weber, Wilfried; Fussenegger, Martin

    2007-10-01

    Bioprocess engineering has developed as a discipline to design optimal culture conditions and bioreactor operation protocols for production cell lines engineered for constitutive expression of desired protein pharmaceuticals. With the advent of heterologous gene regulation systems it has become possible to fine-tune expression of difficult-to-produce protein pharmaceuticals to optimal levels and to conditionally engineer cell metabolism for the best production performance. However, most of the small-molecules used to trigger expression of product or metabolic engineering product genes are incompatible with downstream processing regulations or process economics. Recent progress in product gene control design has resulted in the development of bioprocess-compatible regulation systems, which are responsive to physical parameters such as temperature or physiologic trigger molecules that are either an inherent part of host cell metabolism or intrinsic components of licensed protein-free cell culture media, such as redox status, vitamin H and gaseous acetaldehyde. While all of these systems have been shown to fine-tune product gene expression independent of the host cell metabolism some of them can be plugged into metabolic networks to capture critical physiologic parameters and convert them into an optimal production response. Assembly of individual product gene control modalities into synthetic networks has recently enabled construction of autonomously regulated time-delay or cell density-sensitive gene circuits, which trigger population-wide induction of product gene expression at a predefined time or culture density. We provide a comprehensive overview on the latest developments in the design of bioprocess-compatible product gene control systems.

  9. Plastids of Marine Phytoplankton Produce Bioactive Pigments and Lipids

    PubMed Central

    Heydarizadeh, Parisa; Poirier, Isabelle; Loizeau, Damien; Ulmann, Lionel; Mimouni, Virginie; Schoefs, Benoît; Bertrand, Martine

    2013-01-01

    Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section. PMID:24022731

  10. Dermatoscopic findings of pigmented purpuric dermatosis*

    PubMed Central

    Ozkaya, Dilek Biyik; Emiroglu, Nazan; Su, Ozlem; Cengiz, Fatma Pelin; Bahali, Anil Gulsel; Yildiz, Pelin; Demirkesen, Cuyan; Onsun, Nahide

    2016-01-01

    Background Pigmented purpuric dermatosis is a chronic skin disorder of unknown aetiology characterised by symmetrical petechial and pigmented macules, often confined to the lower limbs. The aetiology of pigmented purpuric dermatosis is unknown. Dermatoscopy is a non-invasive diagnostic technique that allows the visualisation of morphological features invisible to the naked eye; it combines a method that renders the corneal layer of the skin translucent with an optical system that magnifies the image projected onto the retina. Objectives The aim of this study is to investigate the dermatoscopic findings of pigmented purpuric dermatosis. Methods This study enrolled patients diagnosed histopathologically with pigmented purpuric dermatosis who had dermatoscopic records. We reviewed the dermatoscopic images of PPD patients who attended the outpatient clinic in the Istanbul Dermatovenereology Department at the Bezmialem Vakıf University Medical Faculty. Results Dermatoscopy showed: coppery-red pigmentation (97%, n = 31) in the background, a brown network (34%, n = 11), linear vessels (22%, n = 7), round to oval red dots, globules, and patches (69%, n = 22; 75%, n = 24; 34%, n = 11; respectively), brown globules (26%, n = 8) and dots (53%, n = 17), linear brown lines (22%, n = 7), and follicular openings (13%, n = 4). Conclusion To our knowledge, this is the first study to report the dermatoscopy of pigmented purpuric dermatosis. In our opinion, dermatoscopy can be useful in the diagnosis of pigmented purpuric dermatosis. PMID:27828629

  11. Thin Layer Chromatography (TLC) of Chlorophyll Pigments.

    ERIC Educational Resources Information Center

    Foote, Jerry

    1984-01-01

    Background information, list of materials needed, procedures used, and discussion of typical results are provided for an experiment on the thin layer chromatography of chlorophyll pigments. The experiment works well in high school, since the chemicals used are the same as those used in paper chromatography of plant pigments. (JN)

  12. Human pigmentation genes and their response to solar UV radiation.

    PubMed

    Sturm, R A

    1998-11-09

    Identification and characterisation of the genes involved in melanin pigment formation, together with the study of how their action is influenced by exposure to UV radiation, is providing a molecular understanding of the process of skin photoprotection through tanning. The mechanisms underlying this change in epidermal melanin involve both a transcriptional response of the pigmentation genes and post-translational control of the melanin biosynthetic pathway. UV rays are known to interact with numerous molecules within cells, and among these the photochemical reactions involving lipids and DNA are implicated in modulating melanogenesis. The combination of DNA damage, the formation of diacylglycerol, and the action of the melanocyte stimulating hormone receptor are all likely to be involved in UV-induced tanning.

  13. Blue light effect on retinal pigment epithelial cells by display devices.

    PubMed

    Moon, Jiyoung; Yun, Jieun; Yoon, Yeo Dae; Park, Sang-Il; Seo, Young-Jun; Park, Won-Sang; Chu, Hye Yong; Park, Keun Hong; Lee, Myung Yeol; Lee, Chang Woo; Oh, Soo Jin; Kwak, Young-Shin; Jang, Young Pyo; Kang, Jong Soon

    2017-04-07

    Blue light has high photochemical energy and induces cell apoptosis in retinal pigment epithelial cells. Due to its phototoxicity, retinal hazard by blue light stimulation has been well demonstrated using high intensity light sources. However, it has not been studied whether blue light in the displays, emitting low intensity light, such as those used in today's smartphones, monitors, and TVs, also causes apoptosis in retinal pigment epithelial cells. We attempted to examine the blue light effect on human adult retinal epithelial cells using display devices with different blue light wavelength ranges, the peaks of which specifically appear at 449 nm, 458 nm, and 470 nm. When blue light was illuminated on A2E-loaded ARPE-19 cells using these displays, the display with a blue light peak at a shorter wavelength resulted in an increased production of reactive oxygen species (ROS). Moreover, the reduction of cell viability and induction of caspase-3/7 activity were more evident in A2E-loaded ARPE-19 cells after illumination by the display with a blue light peak at a shorter wavelength, especially at 449 nm. Additionally, white light was tested to examine the effect of blue light in a mixed color illumination with red and green lights. Consistent with the results obtained using only blue light, white light illuminated by display devices with a blue light peak at a shorter wavelength also triggered increased cell death and apoptosis compared to that illuminated by display devices with a blue light peak at longer wavelength. These results show that even at the low intensity utilized in the display devices, blue light can induce ROS production and apoptosis in retinal cells. Our results also suggest that the blue light hazard of display devices might be highly reduced if the display devices contain less short wavelength blue light.

  14. Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts

    USGS Publications Warehouse

    Bowker, M.A.; Reed, S.C.; Belnap, J.; Phillips, S.L.

    2002-01-01

    Summers on the Colorado Plateau (USA) are typified by harsh conditions such as high temperatures, brief soil hydration periods, and high UV and visible radiation. We investigated whether community composition, physiological status, and pigmentation might vary in biological soil crusts as a result of such conditions. Representative surface cores were sampled at the ENE, WSW, and top microaspects of 20 individual soil crust pedicels at a single site in Canyonlands National Park, Utah, in spring and fall of 1999. Frequency of cyanobacterial taxa, pigment concentrations, and dark adapted quantum yield (Fv/Fm) were measured for each core. The frequency of major cyanobacterial taxa was lower in the fall compared to spring. The less-pigmented cyanobacterium Microcoleus vaginatus showed significant mortality when not in the presence of Nostoc spp. and Scytonema myochrous (Dillw.) Agardh. (both synthesizers of UV radiation-linked pigments) but had little or no mortality when these species were abundant. We hypothesize that the sunscreen pigments produced by Nostoc and Scytonema in the surface of crusts protect other, less-pigmented taxa. When fall and spring samples were compared, overall cyanobacterial frequency was lower in fall, while sunscreen pigment concentrations, chlorophyll a concentration, and Fv/Fm were higher in fall. The ratio of cyanobacterial frequency/chlorophyll a concentrations was 2-3 times lower in fall than spring. Because chlorophyll a is commonly used as a surrogate measure of soil cyanobacterial biomass, these results indicate that seasonality needs to be taken into consideration. In the fall sample, most pigments associated with UV radiation protection or repair were at their highest concentrations on pedicel tops and WSW microaspects, and at their lowest concentrations on ENE microaspects. We suggest that differential pigment concentrations between microaspects are induced by varying UV radiation dosage at the soil surface on these different

  15. Bilateral pigmented villonodular synovitis of the knee

    PubMed Central

    Shah, Samir H.; Porrino, Jack A.; Green, John R.; Chew, Felix S.

    2015-01-01

    Pigmented villonodular synovitis is a disorder resulting in a villous, nodular, or villonodular proliferation of the synovium, with pigmentation related to the presence of hemosiderin. These lesions are almost exclusively benign with rare reports of malignancy. Pigmented villonodular synovitis can occur in a variety of joints and at any age but most often occurs within the knee in the young adult. Pigmented villonodular synovitis is a rare disease entity, and bilateral synchronous or metachronous involvement of a joint is even more uncommon, with few reports previously described in the literature. We present a case of pigmented villonodular synovitis involving both the right and left knee in the same patient, with radiographic imaging, magnetic resonance imaging, photograph and video intraoperative imaging, and pathologic correlation. PMID:26649121

  16. Organic pigments in plastics can cause allergic contact dermatitis.

    PubMed

    Jolanki, R; Kanerva, L; Estlander, T

    1987-01-01

    A short review on organic pigments in plastics as a cause of allergic contact dermatitis is presented. Previously, organic pigments have been reported as provoking allergic pigmented contact dermatitis when used in cosmetics. Here we present the case of a patient who developed allergic contact dermatitis from an organic pigment (Irgalite Orange F2G) in a plastic glove. This shows that organic pigments in plastics can also cause allergic contact dermatitis. The potential sensitizing capacity of organic pigments should be noted.

  17. Cisplatin in children: hearing loss correlates with iris and skin pigmentation.

    PubMed

    Todd, N W; Alvarado, C S; Brewer, D B

    1995-10-01

    Pigmentation is reported to affect cisplatin-induced ototoxicity in adult humans. The hearing loss is worse in people with brown irises, than in those with blue irises. We assessed the hypothesis that cisplatin-treated children with dark irises suffer more deterioration in auditory thresholds than do those with less pigmentation. For the 19 children whose data met the requirements of this observational retrospective study, we found a weak correlation (Spearman's r = 0.50; p < 0.05) of high frequency hearing loss (at 4000 Hz) and pigmentation. Blue or hazel-eyed children averaged 2.9 dB worsening at 4000 Hz, in contrast to 14.2 dB worsening for brown or black-eyed children. Pigmentation may account for some of the individual susceptibility to cisplatin ototoxicity. We suggest that iris colour be included in future reports of cisplatin-related hearing loss.

  18. Vacuum and ultraviolet radiation effects on binders and pigments for spacecraft thermal control coatings

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Wade, W. R.

    1971-01-01

    An evaluation of several silicone resin binders and powdered inorganic pigments for potential use in spacecraft thermal-control paint formulations is presented. The pigments were selected on the basis of a hypothesis relating the heat of formation of a compound to the compound's resistance to ultra-radiation-induced degradation. Reflectance measurements were made in situ to determine degradation rates due to ultraviolet radiation. The tested polydimethylsiloxane resins were not significantly affected by long exposures to ultraviolet radiation. All the pigments, which were dispersed in a polydimethylsiloxane resin, were degraded by ultraviolet radiation as determined by an increase of solar absorptance. For the materials evaluated in this study, no evidence was found to indicate that pigments with high heats of formation were resistant to ultraviolet degradation.

  19. Protective effect of phytic acid hydrolysis products on iron-induced lipid peroxidation of liposomal membranes.

    PubMed

    Miyamoto, S; Kuwata, G; Imai, M; Nagao, A; Terao, J

    2000-12-01

    Beneficial effects of dietary phytic acid (myo-inositol hexaphosphate; IP6) have often been explained by its strong iron ion-chelating ability, which possibly suppresses iron ion-induced oxidative damage in the gastrointestinal tract. Because phytic acid is hydrolyzed during digestion, this work aimed to know whether its hydrolysis products (IP2, IP3, IP4, and IP5) could still prevent iron ion-induced lipid peroxidation. Studies using liposomal membranes demonstrated that hydrolysis products containing three or more phosphate groups are able to inhibit iron ion-induced lipid peroxidation although their effectiveness decreased with dephosphorylation. Similarly, they also prevented iron ion-induced decomposition of phosphatidylcholine hydroperoxide. These results demonstrate that intermediate products of phytic acid hydrolysis still possess iron ion-chelating ability, and thus they can probably prevent iron ion-induced lipid peroxidation in biological systems.

  20. Anthocyanins. Plant pigments and beyond.

    PubMed

    Santos-Buelga, Celestino; Mateus, Nuno; De Freitas, Victor

    2014-07-23

    Anthocyanins are plant pigments widespread in nature. They play relevant roles in plant propagation and ecophysiology and plant defense mechanisms and are responsible for the color of fruits and vegetables. A large number of novel anthocyanin structures have been identified, including new families such as pyranoanthocyanins or anthocyanin oligomers; their biosynthesis pathways have been elucidated, and new plants with "a la carte" colors have been created by genetic engineering. Furthermore, evidence about their benefits in human health has accumulated, and processes of anthocyanin absorption and biotransformation in the human organism have started to be ascertained. These advances in anthocyanin research were revised in the Seventh International Workshop on Anthocyanins that took place in Porto (Portugal) on September 9-11, 2013. Some selected papers are collected in this special issue, where aspects such as anthocyanin accumulation in plants, relationship with color expression, stability in plants and food, and bioavailability or biological activity are revised.

  1. Structure of plant bile pigments

    SciTech Connect

    Schoenleber, R.W.

    1983-12-01

    Selective peptide cleavage has provided a general procedure for the study of the structure, including stereochemistry, of plant bile pigments. The information derived from the synthesis and spectral analysis of a series of 2,3-dihydrodioxobilins allows the determination of the trans relative stereochemistry for ring A of the ..beta../sub 1/-phycocyanobilin from C-phycocyanin as well as for ring A of phytochrome. A complete structure proof of the five phycoerythrobilins attached to the ..cap alpha.. and ..beta.. subunits of B-phycoerythrin is described. One of these tetrapyrroles is doubly-peptide linked to a single peptide chain through two thioethers at the C-3' and C-18' positions. The four remaining phycoerythrobilins are singly-linked to the protein through thioethers at the C-3' position and all possess the probable stereochemistry C-2(R), C-3(R), C-3'(R), and C-16(R).

  2. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    EPA Science Inventory

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  3. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review.

    PubMed

    Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat

    2013-01-01

    The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

  4. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  5. Adenosine modulates LPS-induced cytokine production in porcine monocytes.

    PubMed

    Ondrackova, Petra; Kovaru, Hana; Kovaru, Frantisek; Leva, Lenka; Faldyna, Martin

    2013-03-01

    Adenosine plays an important role during inflammation, particularly through modulation of monocyte function. The objective of the present study was to evaluate the effect of synthetic adenosine analogs on cytokine production by porcine monocytes. The LPS-stimulated cytokine production was measured by flow cytometry and quantitative real-time PCR. Adenosine receptor expression was measured by quantitative real-time PCR. The present study demonstrates that adenosine analog N-ethylcarboxyamidoadenosine (NECA) down-regulates TNF-α production and up-regulates IL-8 production by LPS-stimulated porcine monocytes. The effect was more pronounced in CD163(-) subset of monocytes compared to the CD163(+) subset. Although both monocyte subsets express mRNA for A1, A2A, A2B and A3 adenosine receptors, the treatment of monocytes with various adenosine receptor agonists and antagonists proved that the effect of adenosine is mediated preferentially via A2A adenosine receptor. Moreover, the study suggests that the effect of NECA on porcine monocytes alters the levels of the cytokines which could play a role in the differentiation of naive T cells into Th17 cells. The results suggest that adenosine plays an important role in modulation of cytokine production by porcine monocytes.

  6. Identification and role analysis of an intermediate produced by a polygenic mutant of Monascus pigments cluster in Monascus ruber M7.

    PubMed

    Liu, Jiao; Zhou, Youxiang; Yi, Tao; Zhao, Mingming; Xie, Nana; Lei, Ming; Liu, Qingpei; Shao, Yanchun; Chen, Fusheng

    2016-08-01

    Monascus pigments (Mps) are a group of azaphilonic secondary metabolites produced by Monascus spp. via a polyketide pathway. A mutant deleted an about 30 kb region of Mps gene cluster from Monascus ruber M7 was isolated previously, which produces a high amount of a light yellow pigment. The current study revealed that the mutant named ΔMpigJ-R lost proximate eight genes of the Mps gene cluster in M. ruber M7 through genetic analysis at DNA and RNA levels. The produced light yellow material was identified as a benzaldehyde derivative named as 6-(4-hydroxy-2-oxopentyl)-3-methyl-2, 4-dioxocyclohexane carb-aldehyde (M7PKS-1) by FT-IR, NMR, and MS. The sodium acetate-1-(13)C feeding experiment indicated that M7PKS-1 was a product produced from polyketide pathway. Finally, the feeding of M7PKS-1 helped to induce and regain Mps production of the mutants (ΔMpigA and ΔMpigE) which were previously unable to biosynthesize Mps and proved that M7PKS-1 was an initial intermediate of Mps. The results in this study provide a line of action to unveil Monascus pigments biosynthesis pathway.

  7. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions.

    PubMed

    Park, Hongzoo; Lee, Dae-Sung; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Jang, Won Hee; Yea, Sung Su; Park, Won Sun; Lee, Chang-Min; Jung, Won-Kyo; Choi, Il-Whan

    2015-07-01

    Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.

  8. Induced Mutations for Improving Production on Bread and Durum Wheat

    SciTech Connect

    Stamo, Ilirjana; Ylli, Ariana; Dodbiba, Andon

    2007-04-23

    Wheat is a very important crop and has been bred for food and its improvement is continuous from cross-breeding. Radiation and chemically induced mutations have provided variability in selection for novel varieties. Four bread and one durum wheat cultivars were exposed to gamma rays, Cs 137 with doses 10, 15 and 20 krad (2000 seeds of each dose and cultivars). We have isolated mutant plants with height reduced and on cv Progress spike without chaff.

  9. Gravitationally induced particle production and its impact on structure formation

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.

    2016-08-01

    In this paper we investigate the influence of a continuous particles creation processes on the linear and nonlinear matter clustering, and its consequences on the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole l, showing that the scale where the nonlinear growth overcomes the linear effect depends strongly of particles creation rate.

  10. Isolation and characterization of pigmented algicidal bacteria from seawater

    NASA Astrophysics Data System (ADS)

    Shaima, A.; Gires, U.; Asmat, A.

    2014-09-01

    Some dinoflagellate species are toxic and widely distributed in Malaysian marines ecosystems. They can cause many problems to aquatic life due to the production of various potential and natural toxins that accumulate in filter feeding shellfish and cause food poisoning to human. In recent decades, bacteria have been widely used as a biological control against these harmful algae. In the present study, pigmented bacteria isolated from marine water of Port Dickson beach was studied for their anti-algal activity towards toxic dinoflagellate Alexandrium minutum. Four isolates were studied and only one was capable of inhibiting algal growth when treated with bacterial culture. The algilytic effect on dinoflagellate was evaluated based on direct cell count under the microscope. Results showed that only isolate Sdpd-310 with orange colour has an inhibitory effect on A. minutum growth. This study demonstrated the rapid algicidal activity of a marine pigmented bacteria against the toxic dinoflagellate A. minutum.

  11. The production of an inducible antisense alternative oxidase (Aox1a) plant.

    PubMed

    Potter, F J; Wiskich, J T; Dry, I B

    2001-01-01

    Plant mitochondria contain an alternative oxidase (AOX) acting as a terminal electron acceptor of the alternative pathway in the electron transport chain. Here we describe the production of inducible antisense Aox1a plants of Arabidopsis thaliana (L.) Heynh. and the procedures used to determine the resulting alternative pathway activity. The Arabidopsis Aox1a cDNA sequence was cloned behind a copper-inducible promoter system in the antisense orientation. Arabidopsis thaliana (Columbia) plants were transformed by in-planta vacuum infiltration with Agrobacterium containing the antisense construct. Whole-leaf ethanol production was used as a measure to investigate alternative pathway activity in the presence of antimycin A. After 24 h, leaves from the copper-induced, antisense line F1.1 produced up to 8.8 times more ethanol (via aerobic fermentation) than the non-induced and wild-type leaves, indicating effective cytochrome pathway inhibition by antimycin A and a decreased alternative pathway activity in induced F1.1 leaves. Transgene expression studies also revealed no expression in non-induced leaves and up until 24 h post-induction. Copper-induced transgenic leaves were less susceptible to alternative pathway inhibition than non-induced transgenic leaves, as seen via tissue-slice respiratory studies, and mitochondrial respiration, using F1.1 cell cultures, also supported this. These results demonstrate the successful production of a transgenic line of Arabidopsis in which the alternative pathway activity can be genetically manipulated with an inducible antisense system.

  12. Laser-Induced Production of Large Carbon-Based Toriods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the production of large carbon-based toroids (CBTs) from fullerencs. The process involves two step laser irradiation of a mixed fullcrene target (76% C-60, 22% C-70). Transmission electron microscopy (11M) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. ...

  13. Chemical products induce resistance to Xanthomonas perforans in tomato

    PubMed Central

    Itako, Adriana Terumi; Tolentino, João Batista; da Silva, Tadeu Antônio Fernandes; Soman, José Marcelo; Maringoni, Antonio Carlos

    2015-01-01

    The bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons. This study aimed to evaluate, under greenhouse conditions, the efficacy of leaf-spraying chemicals (acibenzolar-S-methyl (ASM) (0.025 g.L−1), fluazinam (0.25 g.L−1), pyraclostrobin (0.08 g.L−1), pyraclostrobin + methiran (0.02 g.L−1 + 2.2 g.L−1), copper oxychloride (1.50 g.L−1), mancozeb + copper oxychloride (0.88 g.L−1 + 0.60 g.L−1), and oxytetracycline (0.40 g.L−1)) on control of bacterial spot. Tomatoes Santa Clara and Gisele cultivars were pulverized 3 days before inoculation with Xanthomonas perforans. The production of enzymes associated with resistance induction (peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and protease) was quantified from leaf samples collected 24 hours before and 24 hours after chemical spraying and at 1, 2, 4, 6, and 8 days after bacterial inoculation. All products tested controlled bacterial spot, but only ASM, pyraclostrobin, and pyraclostrobin + metiram increased the production of peroxidase in the leaves of the two tomato cultivars, and increased the production of polyphenol oxidase and β-1,3-glucanase in the Santa Clara cultivar. PMID:26413050

  14. Surgical Management of Iatrogenic Pigment Dispersion Glaucoma

    PubMed Central

    Mierlo, Camille Van; Pinto, Luis Abegão

    2015-01-01

    ABSTRACT Introduction: Iatrogenic pigment dispersion syndrome generally originates from a repetitive, mechanical trauma to the pigmented posterior epithelium of the iris. This trauma can arise after intraocular surgery, most commonly due to an abnormal contact between the intraocular lens (IOL) and the iris. Whether surgical removal of this primary insult can lead to a successful intraocular pressure (IOP) control remains unclear. Methods: Case-series. Patients with IOP elevation and clinical signs of pigment dispersion were screened for a diagnosis of iatrogenic IOL-related pigment dispersion. Results: Three patients in which the IOL or the IOL-bag complex caused a pigment dispersion through a repetitive iris chafing were selected. In two cases, replacement of a sulcus-based single-piece IOL (patient 1) or a sub-luxated in-the-bag IOL (patient 2) by an anterior-chamber (AC) iris-fixed IOL led to a sustained decrease in IOP. In the third case, extensive iris atrophy and poor anatomical AC parameters for IOL implantation precluded further surgical intervention. Conclusion: IOL-exchange appears to be a useful tool in the management of iatrogenic pigment dispersion glaucoma due to inappropriate IOL implantation. This cause-oriented approach seems to be effective in controlling IOP, but should be offered only if safety criteria are met. How to cite this article: Van Mierlo C, Abegao Pinto L, Stalmans I. Surgical Management of Iatrogenic Pigment Dispersion Glaucoma. J Curr Glaucoma Pract 2015;9(1):28-32. PMID:26997830

  15. Exosomes released by keratinocytes modulate melanocyte pigmentation

    PubMed Central

    Cicero, Alessandra Lo; Delevoye, Cédric; Gilles-Marsens, Floriane; Loew, Damarys; Dingli, Florent; Guéré, Christelle; André, Nathalie; Vié, Katell; van Niel, Guillaume; Raposo, Graça

    2015-01-01

    Cells secrete extracellular vesicles (EVs), exosomes and microvesicles, which transfer proteins, lipids and RNAs to regulate recipient cell functions. Skin pigmentation relies on a tight dialogue between keratinocytes and melanocytes in the epidermis. Here we report that exosomes secreted by keratinocytes enhance melanin synthesis by increasing both the expression and activity of melanosomal proteins. Furthermore, we show that the function of keratinocyte-derived exosomes is phototype-dependent and is modulated by ultraviolet B. In sum, this study uncovers an important physiological function for exosomes in human pigmentation and opens new avenues in our understanding of how pigmentation is regulated by intercellular communication in both healthy and diseased states. PMID:26103923

  16. Exosomes released by keratinocytes modulate melanocyte pigmentation.

    PubMed

    Lo Cicero, Alessandra; Delevoye, Cédric; Gilles-Marsens, Floriane; Loew, Damarys; Dingli, Florent; Guéré, Christelle; André, Nathalie; Vié, Katell; van Niel, Guillaume; Raposo, Graça

    2015-06-24

    Cells secrete extracellular vesicles (EVs), exosomes and microvesicles, which transfer proteins, lipids and RNAs to regulate recipient cell functions. Skin pigmentation relies on a tight dialogue between keratinocytes and melanocytes in the epidermis. Here we report that exosomes secreted by keratinocytes enhance melanin synthesis by increasing both the expression and activity of melanosomal proteins. Furthermore, we show that the function of keratinocyte-derived exosomes is phototype-dependent and is modulated by ultraviolet B. In sum, this study uncovers an important physiological function for exosomes in human pigmentation and opens new avenues in our understanding of how pigmentation is regulated by intercellular communication in both healthy and diseased states.

  17. Study of DT-diaphorase in pigment-producing cells.

    PubMed

    Smit, N P; Hoogduijn, M J; Riley, P A; Pavel, S

    1999-11-01

    DT-diaphorase is an FAD-containing enzyme capable of a two-electron reduction of ortho- and paraquinones. Nicotinamide coenzymes (NADH + H+ and NADPH + H+) serve as hydrogen sources in these reactions. The role of DT-diaphorase has been thoroughly investigated in situations when the enzyme is able to reduce exogenous and endogenous quinones, hence protecting the cells against these reactive intermediates. The enzyme has also been studied in connection with its ability to activate some quinoid cytostatics. It is surprising that DT-diaphorase has never been investigated in pigment-producing cells that are known to generate considerable amounts of ortho-quinones. Using a spectrophotometric method we could readily measure the activity of DT-diaphorase in epidermis and various cultured pigment cells. The melanocytes isolated from dark skin showed generally higher DT-diaphorase activity than those from fair skin samples. Also, darkly pigmented congenital naevus cells exhibited higher activity of this enzyme. The most striking was the high DT-diaphorase activity in melanoma cell cultures. In these cells DT-diaphorase activity could be induced by incubation of the cells with 4-hydroxyanisole. A similar effect was seen when a catechol-O-methyltransferase (COMT) inhibitor (3-(3,4-dihydroxy-5-nitrobenzylidene)-2,4-pentanedione (OR-462) was utilised. The induction was inhibited by cyclohexidine.

  18. Crystal Engineering on Industrial Diaryl Pigments Using Lattice Energy Minimizations and X-ray Powder Diffraction

    SciTech Connect

    Schmidt,M.; Dinnebier, R.; Kalkhof, H.

    2007-01-01

    Diaryl azo pigments play an important role as yellow pigments for printing inks, with an annual pigment production of more than 50,000 t. The crystal structures of Pigment Yellow 12 (PY12), Pigment Yellow 13 (PY13), Pigment Yellow 14 (PY14), and Pigment Yellow 83 (PY83) were determined from X-ray powder data using lattice energy minimizations and subsequent Rietveld refinements. Details of the lattice energy minimization procedure and of the development of a torsion potential for the biphenyl fragment are given. The Rietveld refinements were carried out using rigid bodies, or constraints. It was also possible to refine all atomic positions individually without any constraint or restraint, even for PY12 having 44 independent non-hydrogen atoms per asymmetric unit. For PY14 (23 independent non-hydrogen atoms), additionally all atomic isotropic temperature factors could be refined individually. PY12 crystallized in a herringbone arrangement with twisted biaryl fragments. PY13 and PY14 formed a layer structure of planar molecules. PY83 showed a herringbone structure with planar molecules. According to quantum mechanical calculations, the twisting of the biaryl fragment results in a lower color strength of the pigments, whereas changes in the substitution pattern have almost no influence on the color strength of a single molecule. Hence, the experimentally observed lower color strength of PY12 in comparison with that of PY13 and PY83 can be explained as a pure packing effect. Further lattice energy calculations explained that the four investigated pigments crystallize in three different structures because these structures are the energetically most favorable ones for each compound. For example, for PY13, PY14, or PY83, a PY12-analogous crystal structure would lead to considerably poorer lattice energies and lower densities. In contrast, lattice energy calculations revealed that PY12 could adopt a PY13-type structure with only slightly poorer energy. This structure was

  19. Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland.

    PubMed

    Bertolesi, Gabriel E; Hehr, Carrie L; McFarlane, Sarah

    2015-09-01

    How skin colour adjusts to circadia