Science.gov

Sample records for induces potent immune

  1. Intranasal DNA vaccination induces potent mucosal and systemic immune responses and cross-protective immunity against influenza viruses.

    PubMed

    Torrieri-Dramard, Lea; Lambrecht, Bénédicte; Ferreira, Helena Lage; Van den Berg, Thierry; Klatzmann, David; Bellier, Bertrand

    2011-03-01

    The induction of potent virus-specific immune responses at mucosal surfaces where virus transmission occurs is a major challenge for vaccination strategies. In the case of influenza vaccination, this has been achieved only by intranasal delivery of live-attenuated vaccines that otherwise pose safety problems. Here, we demonstrate that potent mucosal and systemic immune responses, both cellular and humoral, are induced by intranasal immunization using formulated DNA. We show that formulation with the DNA carrier polyethylenimine (PEI) improved by a 1,000-fold the efficiency of gene transfer in the respiratory track following intranasal administration of luciferase-coding DNA. Using PEI formulation, intranasal vaccination with DNA-encoding hemagglutinin (HA) from influenza A H5N1 or (H1N1)2009 viruses induced high levels of HA-specific immunoglobulin A (IgA) antibodies that were detected in bronchoalveolar lavages (BALs) and the serum. No mucosal responses could be detected after parenteral or intranasal immunization with naked-DNA. Furthermore, intranasal DNA vaccination with HA from a given H5N1 virus elicited full protection against the parental strain and partial cross-protection against a distinct highly pathogenic H5N1 strain that could be improved by adding neuraminidase (NA) DNA plasmids. Our observations warrant further investigation of intranasal DNA as an effective vaccination route.

  2. Oncolytic poliovirus therapy and immunization with poliovirus-infected cell lysate induces potent antitumor immunity against neuroblastoma in vivo.

    PubMed

    Toyoda, Hidemi; Wimmer, Eckard; Cello, Jeronimo

    2011-01-01

    In a previous study, we demonstrated that neuroblastoma subcutaneously implanted in immuno-competent mice is eliminated by intratumoral administration of neuroattenuated poliovirus (PV). Our results also suggested that the in vivo destruction of neuroblastoma cells by virotherapy lead to a robust antitumor immune response. In this work, splenocytes harvested from neuroblastoma-bearing animals treated with neuroattenuated PV exhibited significantly higher lytic activity against tumor target cells than did those from splenocytes derived from control mice. In vitro T-cell depletion experiments indicated that CD8(+) T cells were essential for the cytotoxic antitumor activity of splenocytes. Moreover, adoptive transfer of splenocytes obtained from mice cured of neuroblastoma by PV virotherapy markedly delayed the tumor growth of previously established neuroblastomas in recipient naïve mice. These results confirmed that treatment with a neuroattenuated oncolytic PV strain induces antitumor immunity against neuroblastoma that is mainly mediated by cytotoxic CD8(+) T cells. Immunocompetent mice, on the other hand, were immunized with PV-infected neuroblastoma cell lysate prior intravenous challenge with neuroblastoma cells. As a control, mice were vaccinated with either non-infected neuroblastoma cell lysate alone or mixed with PV, or with PBS prior tumor cell injection. Results showed that survival is significantly prolonged only in mice immunized with PV-infected tumor lysate. This finding clearly suggested that in vitro poliovirus infection of neuroblastoma cells turns these cells into a potent tumor immunogen. Further studies in oncolytic treatment of neuroblastoma using attenuated PV alone or in combination with immunotherapy with PV oncolysate should improve the probability for successful translation in the clinic.

  3. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis

    PubMed Central

    Sweeney, Kari A; Dao, Dee N; Goldberg, Michael F; Hsu, Tsungda; Venkataswamy, Manjunatha M; Henao-Tamayo, Marcela; Ordway, Diane; Sellers, Rani S; Jain, Paras; Chen, Bing; Chen, Mei; Kim, John; Lukose, Regy; Chan, John; Orme, Ian M; Porcelli, Steven A; Jacobs, William R

    2011-01-01

    We report the involvement of an evolutionarily conserved set of mycobacterial genes, the esx-3 region, in evasion of bacterial killing by innate immunity. Whereas high-dose intravenous infections of mice with the rapidly growing mycobacterial species Mycobacterium smegmatis bearing an intact esx-3 locus were rapidly lethal, infection with an M. smegmatis Δesx-3 mutant (here designated as the IKE strain) was controlled and cleared by a MyD88-dependent bactericidal immune response. Introduction of the orthologous Mycobacterium tuberculosis esx-3 genes into the IKE strain resulted in a strain, designated IKEPLUS, that remained susceptible to innate immune killing and was highly attenuated in mice but had a marked ability to stimulate bactericidal immunity against challenge with virulent M. tuberculosis. Analysis of these adaptive immune responses indicated that the highly protective bactericidal immunity elicited by IKEPLUS was dependent on CD4+ memory T cells and involved a distinct shift in the pattern of cytokine responses by CD4+ cells. Our results establish a role for the esx-3 locus in promoting mycobacterial virulence and also identify the IKE strain as a potentially powerful candidate vaccine vector for eliciting protective immunity to M. tuberculosis. PMID:21892180

  4. Immunization with antigenic peptides complexed with β-glucan induces potent cytotoxic T-lymphocyte activity in combination with CpG-ODNs.

    PubMed

    Mochizuki, Shinichi; Morishita, Hiromi; Kobiyama, Kouji; Aoshi, Taiki; Ishii, Ken J; Sakurai, Kazuo

    2015-12-28

    The induction of antigen-specific immune responses requires immunization with not only antigens, but also adjuvants. CpG oligonucleotides (CpG-ODNs) are well-known ligands for Toll-like receptor 9 and a potent adjuvant that induces both Th1-type humoral and cellular immune responses including cytotoxic T-lymphocyte responses. We previously demonstrated that β-glucan schizophyllan (SPG) can form complexes with CpG-ODNs with attached dA40 (CpG-dA/SPG), which can accumulate in macrophages in the draining inguinal lymph nodes and induce strong immune responses by co-administration of antigenic proteins, namely ovalbumin (OVA). Immunization with antigenic peptides, OVA257-264, did not induce these antigen-specific immune responses even in combination with CpG-dA/SPG, indicating that peptides require a carrier to antigen presenting cells. In this study, we prepared conjugates comprising OVA257-264 and dA40, and made complexes with SPG. Immunization with OVA257-264-dA/SPG induced peptide-specific immune responses in combination with CpG-dA regardless of complexation with SPG both in vitro and in vivo. When splenocytes from immunized mice were incubated with E.G7-OVA tumor model cells presenting OVA peptides, the number of cells drastically decreased after 24h. Furthermore, mice pre-immunized with OVA257-264-dA/SPG and CpG-ODNs exhibited a long delay in tumor growth after tumor inoculation. Therefore, these peptide-dA/SPG and CpG-dA/SPG complexes could be used as a potent vaccine for the treatment of cancers and infectious diseases. PMID:26562685

  5. Potent adaptive immune responses induced against HIV-1 gp140 and influenza virus HA by a polyanionic carbomer.

    PubMed

    Krashias, George; Simon, Anna-Katharina; Wegmann, Frank; Kok, Wai-Ling; Ho, Ling-Pei; Stevens, David; Skehel, John; Heeney, Jonathan L; Moghaddam, Amin E; Sattentau, Quentin J

    2010-03-16

    Carbopol is a polyanionic carbomer gel used in man for a variety of topical applications and drug delivery purposes. Here we show that subcutaneous administration of carbopol with glycoprotein antigens elicits unusually strong specific adaptive immune responses in mice. Recombinant soluble HIV-1 envelope glycoprotein (Env)-based antigen formulated in carbopol was at least as potent at stimulating Env-specific B and T cell responses as Freund's Complete Adjuvant, and significantly more potent than aluminium salts. The antigen-specific T cell immune response elicited both Th1 and Th2 cytokines including high titers of IFN-gamma, IL-2 and IL-4, and drove a Th1 isotype-switched antibody response. Mice immunized with a low dose of purified influenza HA in carbopol generated high titers of anti-HA antibodies and were protected from lethal challenge and disease with live virus. Similarly, immunization of mice with the melanoma cell line B16F10 formulated in carbopol significantly delayed tumor growth. We propose that carbopol, or related cross-linked polyacrylic acid analogues, may have promise for use as systemic vaccine adjuvants in man. PMID:20132920

  6. Intranasal Immunization with DOTAP Cationic Liposomes Combined with DC-Cholesterol Induces Potent Antigen-Specific Mucosal and Systemic Immune Responses in Mice

    PubMed Central

    Iwase, Naoko; Takahashi, Saeko; Yamakita, Yuki; Iwata, Tomoko; Muto, Shoko; Sato, Emi; Takayama, Noriko; Honjo, Emi; Kiyono, Hiroshi; Kunisawa, Jun; Aramaki, Yukihiko

    2015-01-01

    Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens. However, this route of vaccination is not widely used in the clinic due to the lack of a safe and effective mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this study, we show that intranasal administration of a cationic liposome composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice. Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels, suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune response. Additionally, nasal-associated lymphoid tissue and splenocytes from mice treated with OVA plus DOTAP/DC-chol liposome showed high levels of IL–4 expression. DOTAP/DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes merit further development as a mucosal adjuvant for vaccination against infectious diseases. PMID:26440657

  7. A Newly Emerged Swine-Origin Influenza A(H3N2) Variant Dampens Host Antiviral Immunity but Induces Potent Inflammasome Activation.

    PubMed

    Cao, Weiping; Mishina, Margarita; Ranjan, Priya; De La Cruz, Juan A; Kim, Jin Hyang; Garten, Rebecca; Kumar, Amrita; García-Sastre, Adolfo; Katz, Jacqueline M; Gangappa, Shivaprakash; Sambhara, Suryaprakash

    2015-12-15

    We compared the innate immune response to a newly emerged swine-origin influenza A(H3N2) variant containing the M gene from 2009 pandemic influenza A(H1N1), termed "A(H3N2)vpM," to the immune responses to the 2010 swine-origin influenza A(H3N2) variant and seasonal influenza A(H3N2). Our results demonstrated that A(H3N2)vpM-induced myeloid dendritic cells secreted significantly lower levels of type I interferon (IFN) but produced significantly higher levels of proinflammatory cytokines and induced potent inflammasome activation. The reduction in antiviral immunity with increased inflammatory responses upon A(H3N2)vpM infection suggest that these viruses have the potential for increased disease severity in susceptible hosts. PMID:26068782

  8. A plant-expressed conjugate vaccine breaks CD4+ tolerance and induces potent immunity against metastatic Her2+ breast cancer

    PubMed Central

    Chotprakaikiat, Warayut; Allen, Alex; Bui-Minh, Duc; Harden, Elena; Jobsri, Jantipa; Cavallo, Federica; Gleba, Yuri; Stevenson, Freda K.; Ottensmeier, Christian; Klimyuk, Victor; Savelyeva, Natalia

    2016-01-01

    ABSTRACT Passive antibody therapy for cancer is an effective but costly treatment modality. Induction of therapeutically potent anticancer antibodies by active vaccination is an attractive alternative but has proven challenging in cancer due to tolerogenic pressure in patients. Here, we used the clinically relevant cancer target Her2, known to be susceptible to targeting by antibody therapy, to demonstrate how potent antibody can be induced by vaccination. A novel 44kD Her2 protein fragment was generated and found to be highly effective at inducing anti-Her2 antibody including trastuzumab-like reactivities. In the tolerant and spontaneous BALB-neuT mouse model of metastatic breast cancer this Her2-targeting vaccine was only effective if the fragment was conjugated to a foreign immunogenic carrier; Fragment C of tetanus toxin. Only the conjugate vaccine induced high affinity anti-Her2 antibody of multiple isotypes and suppressed tumor development. The magnitude of CD4+ T-cell help and breadth of cytokines secreted by the CD4+ T helper (Th) cells induced to the foreign antigen was critical. We used a highly efficient plant-based bio-manufacturing process for protein antigens, magnICON, for vaccine expression, to underpin feasibility of future clinical testing. Hence, our novel Her2-targeting conjugate vaccine combines preclinical efficacy with clinical deliverability, thus setting the scene for therapeutic testing. PMID:27471642

  9. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation.

    PubMed

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient's own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  10. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    PubMed Central

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  11. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation.

    PubMed

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X

    2016-06-03

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient's own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.

  12. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-06-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.

  13. Modification of sPD1 with CRT induces potent anti-tumor immune responses in vitro and in vivo.

    PubMed

    Wang, Gongze; Li, Zhiying; Tian, Huiqun; Wu, Wei; Liu, Chaoqi

    2015-12-01

    As a key factor for tumor occurrence and development, tumor cells escape immune surveillance and inhibit the body immune killer effect through negative signaling pathways. In this research, we designed and expressed the fusion protein CRT-sPD1 to block PD1/PDL1 negative signal pathway, indirectly bind CRT to the tumor cell surface and to increase the cell immunogenicity activity. Results from western blotting, flow cytometry (FCM) and ELISA showed that the cell lines that stably express CRT, PD1 and CRT-sPD1 protein were obtained and the transfected cellular supernatant contained PD1 and CRT-sPD1 could bind to PDL1 on the surface of EL4 cells. Vitro experiments indicated the secreted mCRT-sPD1 protein could bind to PDL1 and enhance lymphocyte proliferation and CTL activity. We also found that fusion protein CRT-sPD1 could activate and induce the immune system to kill the tumor cells, specifically inhibit the tumor growth and prolong the survival period in mouse tumor model. And all these suggested that CRT-sPD1 could be used as drug development and utilization of cancer immunotherapy. PMID:26653551

  14. In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity.

    PubMed

    Todo, T; Martuza, R L; Dallman, M J; Rabkin, S D

    2001-01-01

    In vivo delivery of immunomodulatory genes is a promising strategy for solid tumor vaccination. A drawback is that it necessitates induction of a large effect from transgene expression in a small percentage of tumor cells. Although the B7 family is known to be the most potent of the costimulatory molecules, gene transduction of B7 alone has not been effective in inducing antitumor immunity in nonimmunogenic tumors by ex vivo methods, much less in vivo. We have developed a novel approach where a gene encoding soluble B7-1, a fusion protein of the extracellular domain of murine B7-1 and the Fc portion of human IgG1, is delivered to tumor cells in vivo in the context of an oncolytic replication-competent herpes simplex virus, and the gene product is secreted by tumor cells rather than expressed on the cell surface. Defective herpes simplex virus vectors containing the B7-1-immunoglobulin (B7-1-Ig) fusion transgene (dvB7Ig) were generated using G207 as a helper virus and tested in the poorly immunogenic murine neuroblastoma, Neuro2a, in syngeneic A/J mice. Intraneoplastic inoculation of dvB7Ig/G207 at a low titer successfully inhibited the growth of established s.c. tumors, despite the expression of B7-1-Ig being detected in only 1% or fewer of tumor cells at the inoculation site, and prolonged the survival of mice bearing intracerebral tumors. Immunohistochemistry of dvB7Ig/G207-inoculated tumors revealed a significant increase in CD4+ and CD8+ T-cell infiltration compared with control tumors inoculated with defective vector expressing alkaline phosphatase (dvAP/G207). The antitumor effect of dvB7Ig/G207 was not manifested in athymic mice. In vivo depletion of immune cell subsets in A/J mice further revealed that CD8+ T cells, but not CD4+ T cells, were required. Animals cured of their tumors by dvB7Ig/G207 treatment were protected against rechallenge with a lethal dose of Neuro2a cells but not SaI/N cells. The results demonstrate that the use of soluble B7-1 for

  15. Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity.

    PubMed

    Muraoka, Daisuke; Harada, Naozumi; Hayashi, Tae; Tahara, Yoshiro; Momose, Fumiyasu; Sawada, Shin-ichi; Mukai, Sada-atsu; Akiyoshi, Kazunari; Shiku, Hiroshi

    2014-09-23

    Because existing therapeutic cancer vaccines provide only a limited clinical benefit, a different vaccination strategy is necessary to improve vaccine efficacy. We developed a nanoparticulate cancer vaccine by encapsulating a synthetic long peptide antigen within an immunologically inert nanoparticulate hydrogel (nanogel) of cholesteryl pullulan (CHP). After subcutaneous injection to mice, the nanogel-based vaccine was efficiently transported to the draining lymph node, and was preferentially engulfed by medullary macrophages but was not sensed by other macrophages and dendritic cells (so-called "immunologically stealth mode"). Although the function of medullary macrophages in T cell immunity has been unexplored so far, these macrophages effectively cross-primed the vaccine-specific CD8(+) T cells in the presence of a Toll-like receptor (TLR) agonist as an adjuvant. The nanogel-based vaccine significantly inhibited in vivo tumor growth in the prophylactic and therapeutic settings, compared to another vaccine formulation using a conventional delivery system, incomplete Freund's adjuvant. We also revealed that lymph node macrophages were highly responsive to TLR stimulation, which may underlie the potency of the macrophage-oriented, nanogel-based vaccine. These results indicate that targeting medullary macrophages using the immunologically stealth nanoparticulate delivery system is an effective vaccine strategy.

  16. A Trifunctional Dextran-Based Nanovaccine Targets and Activates Murine Dendritic Cells, and Induces Potent Cellular and Humoral Immune Responses In Vivo

    PubMed Central

    Shen, Limei; Higuchi, Tetsuya; Tubbe, Ingrid; Voltz, Nicole; Krummen, Mathias; Pektor, Stefanie; Montermann, Evelyn; Rausch, Kristin; Schmidt, Manfred; Schild, Hansjörg

    2013-01-01

    Dendritic cells (DCs) constitute an attractive target for specific delivery of nanovaccines for immunotherapeutic applications. Here we tested nano-sized dextran (DEX) particles to serve as a DC-addressing nanocarrier platform. Non-functionalized DEX particles had no immunomodulatory effect on bone marrow (BM)-derived murine DCs in vitro. However, when adsorbed with ovalbumine (OVA), DEX particles were efficiently engulfed by BM-DCs in a mannose receptor-dependent manner. A DEX-based nanovaccine containing OVA and lipopolysaccharide (LPS) as a DC stimulus induced strong OVA peptide-specific CD4+ and CD8+ T cell proliferation both in vitro and upon systemic application in mice, as well as a robust OVA-specific humoral immune response (IgG1>IgG2a) in vivo. Accordingly, this nanovaccine also raised both a more pronounced delayed-type hypersensitivity response and a stronger induction of cytotoxic CD8+ T cells than obtained upon administration of OVA and LPS in soluble form. Therefore, DEX-based nanoparticles constitute a potent, versatile and easy to prepare nanovaccine platform for immunotherapeutic approaches. PMID:24339889

  17. Targeting the Genital Tract Mucosa with a Lipopeptide/Recombinant Adenovirus Prime/Boost Vaccine Induces Potent and Long-Lasting CD8+ T Cell Immunity Against Herpes: Importance of Myeloid Differentiation Factor 881

    PubMed Central

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; BenMohamed, Lbachir

    2012-01-01

    Targeting the mucosal immune system of the genital tract (GT) with subunit vaccines failed to induce potent and durable local CD8+ T cell immunity, crucial for protection against many sexually transmitted viral (STV) pathogens, including herpes simplex virus type 2 (HSV-2) that causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8+ T cell immunity to protect the female genital tract from herpes. The lipopeptide and the rAdv5 vaccine express the immunodominant HSV-2 CD8+ T cell epitope (gB498-505) and both were delivered intravaginally (IVAG) in the progesterone-induced B6 mouse model of genital herpes. Compared to its homologous lipopeptide/lipopeptide (Lipo/Lipo); the Lipo/rAdv5 prime/boost immunized mice: (i) developed potent and sustained HSV-specific CD8+ T cells, detected in both the GT draining nodes (GT-DLN) and in the vaginal mucosa (VM); (ii) had significantly lower virus titers; (iii) had decreased overt signs of genital herpes disease; and (iv) did not succumb to lethal infection (p < 0.005), following intravaginal HSV-2 challenge. Polyfunctional CD8+ T cells, producing IFN-γ, TNF-α and IL-2 and exhibiting cytotoxic activity, were associated with protection (p < 0.005). The protective CD8+ T cell response was significantly compromised in the absence of the adaptor myeloid differentiation factor 88 (MyD88) (p = 0.0001). Taken together, these findings indicate that targeting the VM with a Lipo/rAdv5 prime/boost vaccine elicits a potent, MyD88-dependent, and long-lasting mucosal CD8+ T cell protective immunity against sexually transmitted herpes infection and disease. PMID:23018456

  18. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice.

    PubMed

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Xiao, Xiang-Qian; Wang, Xiao-Li; Li, Jin-Tao; Zhou, Yu-Bai; Zeng, Yi

    2016-04-01

    Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections.

  19. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice.

    PubMed

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Xiao, Xiang-Qian; Wang, Xiao-Li; Li, Jin-Tao; Zhou, Yu-Bai; Zeng, Yi

    2016-04-01

    Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections. PMID:26821205

  20. LV305, a dendritic cell-targeting integration-deficient ZVexTM-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response

    PubMed Central

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1. PMID:27626061

  1. LV305, a dendritic cell-targeting integration-deficient ZVex(TM)-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response.

    PubMed

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; Ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1. PMID:27626061

  2. LV305, a dendritic cell-targeting integration-deficient ZVex(TM)-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response.

    PubMed

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; Ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1.

  3. Melphalan-induced enhancement of tumor cell immunostimulatory capacity as a mechanism for the appearance of potent antitumor immunity in the spleen of mice bearing a large metastatic MOPC-315 tumor.

    PubMed

    Bocian, R C; Dray, S; Ben-Efraim, S; Mokyr, M B

    1985-01-01

    Exposure of MOPC-315 cells from the primary tumor nodule to a low concentration (0.5 nmol/ml) of melphalan (L-phenylalanine mustard; L-PAM) rendered the tumor cells capable of bringing about the generation of a potent primary antitumor cytotoxic response. Accordingly, the level of antitumor cytotoxicity generated by normal spleen cells immunized in vitro with L-PAm-treated tumor cells was at least five-fold greater than the level generated in response to untreated tumor cells. The marked superiority of L-PAM-treated tumor cells over untreated tumor cells in bringing about the generation of antitumor cytotoxicity was evident over a wide range of responder to stimulator cell ratios. The higher level of antitumor cytotoxicity exhibited by normal spleen cells immunized with L-PAM-treated tumor cells as compared with untreated tumor cells was not merely the result of direct drug-mediated tumoricidal activity, thereby reducing the number of tumor cells present which can act as cold target cell inhibitors during the 51Cr release assay. This is apparent from the observation that the level of antitumor cytotoxicity generated in response to a given percentage of stimulator tumor cells pretreated with 0.5 nmol L-PAM/ml, a drug concentration associated with retention of 60% tumor cell proliferative capacity, is substantially greater than that generated in response to less than half that percentage of untreated stimulator tumor cells. Moreover, stimulator tumor cells exposed to a fully antiproliferative concentration of L-PAM brought about the generation of a higher level of antitumor cytotoxicity than stimulator tumor cells exposed to mitomycin C at a concentration which inhibited the proliferation of the tumor cells to the same extent as the L-PAM. A low concentration of L-PAM which was effective in rendering isolated tumor cells from the primary tumor nodule capable of bringing about the generation of antitumor cytotoxicity was also effective in inducing the appearance of

  4. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade.

    PubMed

    Xue, Wei; Metheringham, Rachael L; Brentville, Victoria A; Gunn, Barbara; Symonds, Peter; Yagita, Hideo; Ramage, Judith M; Durrant, Lindy G

    2016-06-01

    Checkpoint blockade has demonstrated promising antitumor responses in approximately 10-40% of patients. However, the majority of patients do not make a productive immune response to their tumors and do not respond to checkpoint blockade. These patients may benefit from an effective vaccine that stimulates high-avidity T cell responses in combination with checkpoint blockade. We have previously shown that incorporating TRP-2 and gp100 epitopes into the CDR regions of a human IgG1 DNA (ImmunoBody®: IB) results in significant tumor regression both in animal models and patients. This vaccination strategy is superior to others as it targets antigen to antigen-presenting cells and stimulates high-avidity T cell responses. To broaden the application of this vaccination strategy, 16 NY-ESO-1 epitopes, covering over 80% of HLA phenotypes, were incorporated into the IB (SCIB2). They produced higher frequency and avidity T cell responses than peptide vaccination. These T cells were of sufficient avidity to kill NY-ESO-1-expressing tumor cells, and in vivo controlled the growth of established B16-NY-ESO-1 tumors, resulting in long-term survival (35%). When SCIB2 was given in combination with Treg depletion, CTLA-4 blockade or PD-1 blockade, long-term survival from established tumors was significantly enhanced to 56, 67 and 100%, respectively. Translating these responses into the clinic by using a combination of SCIB2 vaccination and checkpoint blockade can only further improve clinical responses.

  5. Broadly Neutralizing Hemagglutinin Stalk-Specific Antibodies Induce Potent Phagocytosis of Immune Complexes by Neutrophils in an Fc-Dependent Manner

    PubMed Central

    Mullarkey, Caitlin E.; Bailey, Mark J.; Golubeva, Diana A.; Tan, Gene S.; Nachbagauer, Raffael; He, Wenqian; Novakowski, Kyle E.; Bowdish, Dawn M.; Miller, Matthew S.

    2016-01-01

    ABSTRACT Broadly neutralizing antibodies that recognize the conserved hemagglutinin (HA) stalk have emerged as exciting new biotherapeutic tools to combat seasonal and pandemic influenza viruses. Our general understanding of the mechanisms by which stalk-specific antibodies achieve protection is rapidly evolving. It has recently been demonstrated that broadly neutralizing HA stalk-specific IgG antibodies require Fc-Fcγ receptor (FcγR) interactions for optimal protection in vivo. Here we examine the neutrophil effector functions induced by stalk-specific antibodies. As the most abundant subset of blood leukocytes, neutrophils represent a critical innate effector cell population and serve an instrumental role in orchestrating downstream adaptive responses to influenza virus infection. Yet, the interplay of HA stalk-specific IgG, Fc-FcγR engagement, and neutrophils has remained largely uncharacterized. Using an in vitro assay to detect the production of reactive oxygen species (ROS), we show that human and mouse monoclonal HA stalk-specific IgG antibodies are able to induce the production of ROS by neutrophils, while HA head-specific antibodies do not. Furthermore, our results indicate that the production of ROS is dependent on Fc receptor (FcR) engagement and phagocytosis. We went on to assess the ability of monoclonal HA stalk-specific IgA antibodies to induce ROS. Consistent with our findings for monoclonal IgGs, only HA stalk-specific IgA antibodies elicited ROS production by neutrophils. This induction is dependent on the engagement of FcαR1. Taken together, our findings describe a novel FcR-dependent effector function induced by HA stalk-specific IgG and IgA antibodies, and importantly, our studies shed light on the mechanisms by which HA stalk-specific antibodies achieve protection. PMID:27703076

  6. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade

    PubMed Central

    Xue, Wei; Metheringham, Rachael L.; Brentville, Victoria A.; Gunn, Barbara; Symonds, Peter; Yagita, Hideo; Ramage, Judith M.; Durrant, Lindy G.

    2016-01-01

    ABSTRACT Checkpoint blockade has demonstrated promising antitumor responses in approximately 10–40% of patients. However, the majority of patients do not make a productive immune response to their tumors and do not respond to checkpoint blockade. These patients may benefit from an effective vaccine that stimulates high-avidity T cell responses in combination with checkpoint blockade. We have previously shown that incorporating TRP-2 and gp100 epitopes into the CDR regions of a human IgG1 DNA (ImmunoBody®: IB) results in significant tumor regression both in animal models and patients. This vaccination strategy is superior to others as it targets antigen to antigen-presenting cells and stimulates high-avidity T cell responses. To broaden the application of this vaccination strategy, 16 NY-ESO-1 epitopes, covering over 80% of HLA phenotypes, were incorporated into the IB (SCIB2). They produced higher frequency and avidity T cell responses than peptide vaccination. These T cells were of sufficient avidity to kill NY-ESO-1-expressing tumor cells, and in vivo controlled the growth of established B16-NY-ESO-1 tumors, resulting in long-term survival (35%). When SCIB2 was given in combination with Treg depletion, CTLA-4 blockade or PD-1 blockade, long-term survival from established tumors was significantly enhanced to 56, 67 and 100%, respectively. Translating these responses into the clinic by using a combination of SCIB2 vaccination and checkpoint blockade can only further improve clinical responses. PMID:27471648

  7. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells

    PubMed Central

    Zhao, Yinghua; Chu, Xiao; Chen, Jintong; Wang, Ying; Gao, Sujun; Jiang, Yuxue; Zhu, Xiaoqing; Tan, Guangyun; Zhao, Wenjie; Yi, Huanfa; Xu, Honglin; Ma, Xingzhe; Lu, Yong; Yi, Qing; Wang, Siqing

    2016-01-01

    Dectin-1 signalling in dendritic cells (DCs) has an important role in triggering protective antifungal Th17 responses. However, whether dectin-1 directs DCs to prime antitumour Th9 cells remains unclear. Here, we show that DCs activated by dectin-1 agonists potently promote naive CD4+ T cells to differentiate into Th9 cells. Abrogation of dectin-1 in DCs completely abolishes their Th9-polarizing capability in response to dectin-1 agonist curdlan. Notably, dectin-1 stimulation of DCs upregulates TNFSF15 and OX40L, which are essential for dectin-1-activated DC-induced Th9 cell priming. Mechanistically, dectin-1 activates Syk, Raf1 and NF-κB signalling pathways, resulting in increased p50 and RelB nuclear translocation and TNFSF15 and OX40L expression. Furthermore, immunization of tumour-bearing mice with dectin-1-activated DCs induces potent antitumour response that depends on Th9 cells and IL-9 induced by dectin-1-activated DCs in vivo. Our results identify dectin-1-activated DCs as a powerful inducer of Th9 cells and antitumour immunity and may have important clinical implications. PMID:27492902

  8. Sunitinib Induced Immune Thrombocytopenia.

    PubMed

    Shekarriz, Ramin; Koulaeinejad, Neda; Nosrati, Anahita; Salehifa, Ebrahim

    2015-01-01

    Sunitinib is an oral tyrosine kinase inhibitor which prevents tumor growth and metastatic progression. It was approved for treatment of advanced renal cell cancer, gastrointestinal stromal tumor and advanced pancreatic neuroendocrine tumors. It has several adverse reactions on multi organ systems including hematologic system. Although the neutropenia and thrombocytopenia commonly happens as Grade 3 or 4 abnormalities following bone marrow suppression, in the rare cases, the immune mediated abnormality may drive the sunitinib-induced hematologic disorder. In this report, we present a case of immune-mediated thrombocytopenia induced by sunitinib. One month after first treatment cycle with sunitinib, leucopenia and thrombocytopenia were occurred. The patient had a normal bone marrow aspiration and biopsy, the thrombocytopenia was resistant to platelet transfusion which successfully was treated with prednisolone. PMID:26664400

  9. Sunitinib Induced Immune Thrombocytopenia

    PubMed Central

    Shekarriz, Ramin; Koulaeinejad, Neda; Nosrati, Anahita; Salehifa, Ebrahim

    2015-01-01

    Sunitinib is an oral tyrosine kinase inhibitor which prevents tumor growth and metastatic progression. It was approved for treatment of advanced renal cell cancer, gastrointestinal stromal tumor and advanced pancreatic neuroendocrine tumors. It has several adverse reactions on multi organ systems including hematologic system. Although the neutropenia and thrombocytopenia commonly happens as Grade 3 or 4 abnormalities following bone marrow suppression, in the rare cases, the immune mediated abnormality may drive the sunitinib-induced hematologic disorder. In this report, we present a case of immune-mediated thrombocytopenia induced by sunitinib. One month after first treatment cycle with sunitinib, leucopenia and thrombocytopenia were occurred. The patient had a normal bone marrow aspiration and biopsy, the thrombocytopenia was resistant to platelet transfusion which successfully was treated with prednisolone. PMID:26664400

  10. Exosomal membrane molecules are potent immune response modulators

    PubMed Central

    2010-01-01

    Exosomes are endosome-derived vesicles (40–100 nm) formed during the formation of multi-vesicular bodies (MVBs). Occasionally, the MVBs fuse with the plasma membrane releasing their intra-luminal vesicles into the extracellular media, which are then known as exosomes. Different cell types such as B-cells, dendritic cells, platelets, reticulocytes and macrophages can release exosomes and current research in this area is more focused towards exosomes released by antigen-presenting cells. Exosomes have recently been shown to be immunomodulatory and the mechanism of immune response initiation by them is beginning to emerge. Besides molecules present inside the lumen of exosomes, it has been suggested that certain exosomal membrane molecules can interact with their surface receptors on the target cells thereby inducing an immunomodulatory response. In this review, Hsp70 and galectin-5, two immunogenic molecules present on exosomal membrane, are discussed in detail for initiating this response. PMID:21057626

  11. Polyethyleneimine is a potent mucosal adjuvant for glycoproteins with innate and adaptive immune activating properties

    PubMed Central

    Wegmann, Frank; Gartlan, Kate H; Harandi, Ali M; Brinckmann, Sarah A; Coccia, Margherita; Hillson, William R; Kok, Wai Ling; Cole, Suzanne; Ho, Ling-Pei; Lambe, Teresa; Puthia, Manoj; Svanborg, Catharina; Scherer, Erin M; Krashias, George; Williams, Adam; Blattman, Joseph N; Greenberg, Philip D; Flavell, Richard A; Moghaddam, Amin E; Sheppard, Neil C; Sattentau, Quentin J

    2012-01-01

    There are no mucosal adjuvant formulations licensed for human use, despite protection against many mucosally-transmitted infections probably requiring immunity at the site of pathogen entry1. Polyethyleneimines (PEI) are organic polycations used as nucleic acid transfection reagents in vitro, and gene and DNA vaccine delivery vehicles in vivo2, 3. Here we show that PEI has unexpected and unusually potent mucosal adjuvant activity in conjunction with viral subunit glycoprotein antigens. Single intranasal administration of influenza HA or HSV-2 gD with PEI elicited robust protection from otherwise lethal infection, and was superior to existing experimental mucosal adjuvants. PEI formed nanoscale complexes with antigen that were taken up by antigen presenting cells in vitro and in vivo, promoted DC trafficking to draining lymph nodes and induced non-proinflammatory cytokine responses. PEI adjuvanticity required release of host dsDNA that triggered Irf-3-dependent signaling. PEI therefore merits further investigation as a mucosal adjuvant for human use. PMID:22922673

  12. DNA vaccines targeting heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E induce potent humoral and cellular immunity and provide protection from lethal toxin challenge.

    PubMed

    Scott, Veronica L; Villarreal, Daniel O; Hutnick, Natalie A; Walters, Jewell N; Ragwan, Edwin; Bdeir, Khalil; Yan, Jian; Sardesai, Niranjan Y; Finnefrock, Adam C; Casimiro, Danilo R; Weiner, David B

    2015-01-01

    Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4(+) T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins.

  13. DNA vaccines targeting heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E induce potent humoral and cellular immunity and provide protection from lethal toxin challenge

    PubMed Central

    Scott, Veronica L; Villarreal, Daniel O; Hutnick, Natalie A; Walters, Jewell N; Ragwan, Edwin; Bdeir, Khalil; Yan, Jian; Sardesai, Niranjan Y; Finnefrock, Adam C; Casimiro, Danilo R; Weiner, David B

    2015-01-01

    Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4+ T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins. PMID:26158319

  14. Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice.

    PubMed

    Li, Hao-Yang; Han, Jian-Feng; Qin, Cheng-Feng; Chen, Rong

    2013-07-11

    Human Enterovirus 71 (EV71) is recognized as the leading causative agent of hand-foot-and-mouth disease (HFMD) in the Asia-Pacific region in recent years. There are still no approved antiviral drugs or vaccines against EV71 infection yet. In this study, we have developed an advanced platform for production of the virus-like particles (VLPs) for EV71 in Saccharomyces Cerevisiae by co-expressing P1 and 3CD genes of EV71. These VLPs exhibited similar morphology and protein composition as EV71 empty particles produced from EV71-infected cells. Immunization with VLPs in mice elicited robust neutralization antibodies against EV71 and potent cellular immune response. In vivo challenge experiments showed that the immune sera induced by VLP conferred protection in neonate mice against lethal EV71 challenge. Together, our study indicated that VLP from yeast is another potential vaccine candidate against EV71 infection.

  15. Vaccines expressing the innate immune modulator EAT-2 elicit potent effector memory T lymphocyte responses despite pre-existing vaccine immunity.

    PubMed

    Aldhamen, Yasser Ali; Seregin, Sergey S; Schuldt, Nathaniel J; Rastall, David P W; Liu, Chyong-Jy J; Godbehere, Sarah; Amalfitano, Andrea

    2012-08-01

    The mixed results from recent vaccine clinical trials targeting HIV-1 justify the need to enhance the potency of HIV-1 vaccine platforms in general. Use of first-generation recombinant adenovirus serotype 5 (rAd5) platforms failed to protect vaccinees from HIV-1 infection. One hypothesis is that the rAd5-based vaccine failed due to the presence of pre-existing Ad5 immunity in many vaccines. We recently confirmed that EAT-2-expressing rAd5 vectors uniquely activate the innate immune system and improve cellular immune responses against rAd5-expressed Ags, inclusive of HIV/Gag. In this study, we report that use of the rAd5-EAT-2 vaccine can also induce potent cellular immune responses to HIV-1 Ags despite the presence of Ad5-specific immunity. Compared to controls expressing a mutant SH2 domain form of EAT-2, Ad5 immune mice vaccinated with an rAd5-wild-type EAT-2 HIV/Gag-specific vaccine formulation significantly facilitated the induction of several arms of the innate immune system. These responses positively correlated with an improved ability of the vaccine to induce stronger effector memory T cell-biased, cellular immune responses to a coexpressed Ag despite pre-existing anti-Ad5 immunity. Moreover, inclusion of EAT-2 in the vaccine mixture improves the generation of polyfunctional cytolytic CD8(+) T cell responses as characterized by enhanced production of IFN-γ, TNF-α, cytotoxic degranulation, and increased in vivo cytolytic activity. These data suggest a new approach whereby inclusion of EAT-2 expression in stringent human vaccination applications can provide a more effective vaccine against HIV-1 specifically in Ad5 immune subjects.

  16. Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity.

    PubMed

    Hallez, S; Detremmerie, O; Giannouli, C; Thielemans, K; Gajewski, T F; Burny, A; Leo, O

    1999-05-01

    The development of a vaccine that would be capable of preventing or curing the (pre)cancerous lesions induced by genital oncogenic human papillomaviruses (HPVs) is the focus of much research. Many studies are presently evaluating vaccines based on the viral E6 and E7 oncoproteins, both of which are continually expressed by tumor cells. The success of a cancer vaccine relies, in large part, on the induction of a tumor-specific Th1-type immunity. In this study, we have evaluated the ability of B7-related and/or interleukin-12 (IL-12)-expressing, non-immunogenic murine HPV16-transformed BMK-16/myc cells, to achieve this goal. BMK-16/myc cells engineered to express surface B7-1 or B7-2 molecules remain tumorigenic in syngeneic BALB/c mice, suggesting that expression of these molecules alone is not sufficient to induce tumor regression. In contrast, mice injected with tumor cells engineered to secrete IL-12 remained tumor-free, demonstrating that IL-12 expression is sufficient to induce tumor rejection. IL-12-secreting BMK-16/myc cells were further shown to induce potent and specific long-term tumor resistance, even after irradiation. B7-1 was found to slightly but systematically improve anti-tumor immunity elicited by IL-12-secreting BMK-16/myc cells. Injection of irradiated B7-1/IL-12+ BMK-16/myc cells generates long-lasting, Th1-type, BMK-16/myc-directed immunity in tumor-resistant mice. These mice display a memory-type, E7-specific, cell-mediated immune response, which is potentially significant for clinical applications. PMID:10209958

  17. Rosiglitazone-induced immune thrombocytopenia.

    PubMed

    Liu, Xiaojing; Huang, Tao; Sahud, Mervyn A

    2006-05-01

    Rosiglitazone is one of the members in the thiazolidinedione (TZD) class of anti-diabetic agents that have proven efficacy in the treatment of patients with type 2 diabetes. We studied serum from a patient who developed acute, severe thrombocytopenia after exposure to rosiglitazone maleate (Avandia) and proposed the mechanisms for rosiglitazone-induced thrombocytopenia. Tested by flow cytometry, the patient's serum was positive for rosiglitazone-induced antibody with the binding ratio of 5.93 (mean fluorescence intensity, MFI) in the presence of the patient's serum and rosiglitazone in a final concentration of 0.53 mmol/l. The antibody was found to bind both glycoprotein (GP) IIb-IIIa complex and GP Ib/IX complex by MAIPA assay using five different monoclonal antibodies (mAbs) against GP complexes Ib/IX, GPIIb/IIIa or GPIa/IIa. Immunoprecipitation studies showed that both GPIIb/IIIa and GP Ib/IX complex were precipitated by antibody in the presence, but not in the absence of rosiglitazone. These findings provide evidence that immune thrombocytopenia can be caused by sensitivity to the antidiabetic agent rosiglitazone maleate. This report documents the first case of rosiglitazone-induced immune thrombocytopenia. PMID:16702039

  18. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle.

    PubMed

    Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Yang, Shun-Li; Wei, Yan-Quan; Sun, De-Hui; Yin, Shuang-Hui; Ma, Jun-Wu; Liu, Zai-Xin; Guo, Jian-Hong; Luo, Jian-Xun; Yin, Hong; Liu, Xiang-Tao; Liu, Ding Xiang

    2013-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. The format of FMD virus-like particles (VLP) as a non-replicating particulate vaccine candidate is a promising alternative to conventional inactivated FMDV vaccines. In this study, we explored a prokaryotic system to express and assemble the FMD VLP and validated the potential of VLP as an FMDV vaccine candidate. VLP composed entirely of FMDV (Asia1/Jiangsu/China/2005) capsid proteins (VP0, VP1 and VP3) were simultaneously produced as SUMO fusion proteins by an improved SUMO fusion protein system in E. coli. Proteolytic removal of the SUMO moiety from the fusion proteins resulted in the assembly of VLP with size and shape resembling the authentic FMDV. Immunization of guinea pigs, swine and cattle with FMD VLP by intramuscular inoculation stimulated the FMDV-specific antibody response, neutralizing antibody response, T-cell proliferation response and secretion of cytokine IFN-γ. In addition, immunization with one dose of the VLP resulted in complete protection of these animals from homologous FMDV challenge. The 50% protection dose (PD50) of FMD VLP in cattle is up to 6.34. These results suggest that FMD VLP expressed in E. coli are an effective vaccine in guinea pigs, swine and cattle and support further development of these VLP as a vaccine candidate for protection against FMDV. PMID:23826638

  19. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle

    PubMed Central

    2013-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. The format of FMD virus-like particles (VLP) as a non-replicating particulate vaccine candidate is a promising alternative to conventional inactivated FMDV vaccines. In this study, we explored a prokaryotic system to express and assemble the FMD VLP and validated the potential of VLP as an FMDV vaccine candidate. VLP composed entirely of FMDV (Asia1/Jiangsu/China/2005) capsid proteins (VP0, VP1 and VP3) were simultaneously produced as SUMO fusion proteins by an improved SUMO fusion protein system in E. coli. Proteolytic removal of the SUMO moiety from the fusion proteins resulted in the assembly of VLP with size and shape resembling the authentic FMDV. Immunization of guinea pigs, swine and cattle with FMD VLP by intramuscular inoculation stimulated the FMDV-specific antibody response, neutralizing antibody response, T-cell proliferation response and secretion of cytokine IFN-γ. In addition, immunization with one dose of the VLP resulted in complete protection of these animals from homologous FMDV challenge. The 50% protection dose (PD50) of FMD VLP in cattle is up to 6.34. These results suggest that FMD VLP expressed in E. coli are an effective vaccine in guinea pigs, swine and cattle and support further development of these VLP as a vaccine candidate for protection against FMDV. PMID:23826638

  20. Glucopyranosyl Lipid Adjuvant (GLA), a Synthetic TLR4 Agonist, Promotes Potent Systemic and Mucosal Responses to Intranasal Immunization with HIVgp140

    PubMed Central

    Arias, Mauricio A.; Van Roey, Griet A.; Tregoning, John S.; Moutaftsi, Magdalini; Coler, Rhea N.; Windish, Hillarie P.; Reed, Steven G.; Carter, Darrick; Shattock, Robin J.

    2012-01-01

    Successful vaccine development against HIV will likely require the induction of strong, long-lasting humoral and cellular immune responses in both the systemic and mucosal compartments. Based on the known immunological linkage between the upper-respiratory and urogenital tracts, we explored the potential of nasal adjuvants to boost immunization for the induction of vaginal and systemic immune responses to gp140. Mice were immunized intranasally with HIV gp140 together with micellar and emulsion formulations of a synthetic TLR4 agonist, Glucopyranosyl Lipid Adjuvant (GLA) and responses were compared to R848, a TLR7/8 agonist, or chitosan, a non TLR adjuvant. GLA and chitosan but not R848 greatly enhanced serum immunoglobulin levels when compared to antigen alone. Both GLA and chitosan induced high IgG and IgA titers in nasal and vaginal lavage and feces. The high IgA and IgG titers in vaginal lavage were associated with high numbers of gp140-specific antibody secreting cells in the genital tract. Whilst both GLA and chitosan induced T cell responses to immunization, GLA induced a stronger Th17 response and chitosan induced a more Th2 skewed response. Our results show that GLA is a highly potent intranasal adjuvant greatly enhancing humoral and cellular immune responses, both systemically and mucosally. PMID:22829921

  1. Novel vaccine development strategies for inducing mucosal immunity

    PubMed Central

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  2. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice. PMID:9682967

  3. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens.

    PubMed

    Tani, K; Murphy, W J; Chertov, O; Salcedo, R; Koh, C Y; Utsunomiya, I; Funakoshi, S; Asai, O; Herrmann, S H; Wang, J M; Kwak, L W; Oppenheim, J J

    2000-05-01

    Defensins released by neutrophils are able to kill a broad spectrum of microbes. They also induce leukocyte migration in vitro and elicit inflammatory leukocyte responses at s.c. injection sites in mice. In vitro experiments showed that human defensins enhanced concanavalin A-stimulated murine spleen cell proliferation and IFN-gamma production. This led us to examine the effects of human defensins on specific immune responses in vivo. BALB/c mice were immunized with 50 microg of keyhole limpet hemocyanin (KLH) adsorbed to aluminum hydroxide and administered with defensins in aqueous solution. Intraperitoneal administration of defensins significantly increased the production of KLH-specific IgG1, IgG2a and IgG2b antibodies 14 days after immunization. In vitro splenic KLH-specific proliferative responses were higher in mice treated with KLH and defensins than in those treated with KLH alone. Increased IFN-gamma and, to a lesser extent, IL-4 production were also detected in the supernatants of ex vivoKLH-activated spleen cells from mice treated with defensins. Finally, defensins significantly enhanced the antibody response to a syngeneic tumor antigen, lymphoma Ig idiotype and also augmented resistance to tumor challenge. These results indicate that defensins act as potent immune adjuvants by inducing the production of lymphokines, which promote T cell-dependent cellular immunity and antigen-specific Ig production. Thus, defensins appear to function as neutrophil-derived signals that promote adaptive immune responses. PMID:10784615

  4. Utility of Clostridium difficile toxin B for inducing anti-tumor immunity.

    PubMed

    Huang, Tuxiong; Li, Shan; Li, Guangchao; Tian, Yuan; Wang, Haiying; Shi, Lianfa; Perez-Cordon, Gregorio; Mao, Li; Wang, Xiaoning; Wang, Jufang; Feng, Hanping

    2014-01-01

    Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.

  5. A plant-produced antigen elicits potent immune responses against West Nile virus in mice.

    PubMed

    He, Junyun; Peng, Li; Lai, Huafang; Hurtado, Jonathan; Stahnke, Jake; Chen, Qiang

    2014-01-01

    We described the rapid production of the domain III (DIII) of the envelope (E) protein in plants as a vaccine candidate for West Nile Virus (WNV). Using various combinations of vector modules of a deconstructed viral vector expression system, DIII was produced in three subcellular compartments in leaves of Nicotiana benthamiana by transient expression. DIII expressed at much higher levels when targeted to the endoplasmic reticulum (ER) than that targeted to the chloroplast or the cytosol, with accumulation level up to 73  μ g DIII per gram of leaf fresh weight within 4 days after infiltration. Plant ER-derived DIII was soluble and readily purified to > 95% homogeneity without the time-consuming process of denaturing and refolding. Further analysis revealed that plant-produced DIII was processed properly and demonstrated specific binding to an anti-DIII monoclonal antibody that recognizes a conformational epitope. Furthermore, subcutaneous immunization of mice with 5 and 25  μ g of purified DIII elicited a potent systemic response. This study provided the proof of principle for rapidly producing immunogenic vaccine candidates against WNV in plants with low cost and scalability. PMID:24804264

  6. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    NASA Astrophysics Data System (ADS)

    Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.

    2011-03-01

    Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

  7. Harnessing DNA-induced immune responses for improving cancer vaccines.

    PubMed

    Herrada, Andrés A; Rojas-Colonelli, Nicole; González-Figueroa, Paula; Roco, Jonathan; Oyarce, César; Ligtenberg, Maarten A; Lladser, Alvaro

    2012-11-01

    DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful "danger signals" by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance.

  8. Harnessing DNA-induced immune responses for improving cancer vaccines

    PubMed Central

    Herrada, Andrés A.; Rojas-Colonelli, Nicole; González-Figueroa, Paula; Roco, Jonathan; Oyarce, César; Ligtenberg, Maarten A.; Lladser, Alvaro

    2012-01-01

    DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful “danger signals” by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance. PMID:23111166

  9. Combining somatic mutations present in different in vivo affinity-matured antibodies isolated from immunized Lama glama yields ultra-potent antibody therapeutics.

    PubMed

    Klarenbeek, Alex; Blanchetot, Christophe; Schragel, Georg; Sadi, Ava S; Ongenae, Nico; Hemrika, Wieger; Wijdenes, John; Spinelli, Silvia; Desmyter, Aline; Cambillau, Christian; Hultberg, Anna; Kretz-Rommel, Anke; Dreier, Torsten; De Haard, Hans J W; Roovers, Rob C

    2016-04-01

    Highly potent human antibodies are required to therapeutically neutralize cytokines such as interleukin-6 (IL-6) that is involved in many inflammatory diseases and malignancies. Although a number of mutagenesis approaches exist to perform antibody affinity maturation, these may cause antibody instability and production issues. Thus, a robust and easy antibody affinity maturation strategy to increase antibody potency remains highly desirable. By immunizing llama, cloning the 'immune' antibody repertoire and using phage display, we selected a diverse set of IL-6 antagonistic Fabs. Heavy chain shuffling was performed on the Fab with lowest off-rate, resulting in a panel of variants with even lower off-rate. Structural analysis of the Fab:IL-6 complex suggests that the increased affinity was partly due to a serine to tyrosine switch in HCDR2. This translated into neutralizing capacity in an in vivo model of IL-6 induced SAA production. Finally, a novel Fab library was designed, encoding all variations found in the natural repertoire of VH genes identified after heavy chain shuffling. High stringency selections resulted in identification of a Fab with 250-fold increased potency when re-formatted into IgG1. Compared with a heavily engineered anti-IL-6 monoclonal antibody currently in clinical development, this IgG was at least equally potent, showing the engineering process to have had led to a highly potent anti-IL-6 antibody.

  10. RIG-I-dependent antiviral immunity is effective against an RNA virus encoding a potent suppressor of RNAi

    PubMed Central

    Fan, Xiaoxu; Dong, Shuwei; Li, Yang; Ding, Shou-wei; Wang, Ming

    2015-01-01

    Nodamura virus (NoV) lethally infects suckling mice and contains a segmented positive-strand RNA genome that encodes a potent suppressor of RNA interference (RNAi). Recent studies have demonstrated immune detection and subsequent processing of NoV dsRNA replicative intermediates by the mouse RNAi machinery. However, diverse RNA viruses, including Encephalomyocarditis virus that also triggers Dicer-dependent biogenesis of viral siRNAs in mouse cells, are targeted in mammals by RIG-I-like receptors that initiate an IFN-dependent antiviral response. Using mouse embryonic fibroblasts (MEFs) for NoV infection, here we show that MEFs derived from mice knockout for RIG-I, but not those knockout for MDA5, LGP2, TLR3 or TLR7, exhibited an enhanced susceptibility to NoV. Further studies indicate that NoV infection induced an IFN-dependent antiviral response mediated by RIG-I. Our findings suggest that RIG-I directs a typical IFN-dependent antiviral response against an RNA virus capable of suppressing the RNAi response. PMID:25843799

  11. The catalytic A1 domains of cholera toxin and heat-labile enterotoxin are potent DNA adjuvants that evoke mixed Th1/Th17 cellular immune responses

    PubMed Central

    Bagley, Kenneth; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael; Schwartz, Jennifer; Fouts, Timothy

    2015-01-01

    DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action. PMID:26042527

  12. Direct tumor recognition by a human CD4+ T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses

    PubMed Central

    Matsuzaki, Junko; Tsuji, Takemasa; Luescher, Immanuel F.; Shiku, Hiroshi; Mineno, Junichi; Okamoto, Sachiko; Old, Lloyd J.; Shrikant, Protul; Gnjatic, Sacha; Odunsi, Kunle

    2015-01-01

    Tumor antigen-specific CD4+ T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4+ T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4+ helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4+ T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8+ T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8+ T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients. PMID:26447332

  13. Tumor-induced immune dysfunction.

    PubMed

    Kiessling, R; Wasserman, K; Horiguchi, S; Kono, K; Sjöberg, J; Pisa, P; Petersson, M

    1999-10-01

    Immune system-based approaches for the treatment of malignant disease over the past decades have often focused on cytolytic effector cells such as cytotoxic T lymphocytes (CTL), and natural killer (NK) cells. It has also been demonstrated that tumor-bearing mice can be cured using a wide variety of approaches, some of which involve cytokine-mediated enhancement of CTL and NK cell activity. However, the apparent success in mice stands in contrast to the current situation in the clinic, wherein only a minority of patients have thus far benefited from CTL- or NK cell-based antitumor approaches. The underlying causes of tumor-associated immune suppression of CTL and NK cell activity are discussed, and features of interest shared with HIV infection, leprosy, and rheumatoid arthritis are also be mentioned. Remarkable and very recent observations have shed more light upon the causes of dysfunctional alterations in CTL and NK cells often associated with these diseases, that in turn have suggested new immunotherapeutic approaches for cancer and infectious disease. PMID:10501847

  14. Suprofen, a potent antagonist of sodium urate crystal-induced arthritis in dogs.

    PubMed

    Niemegeers, C J; Janssen, P A

    1975-10-01

    A standardized sodium urate-induced arthritis test in dogs is described in detail. A microcrystalline suspension of 20 mg/ml in 0.9% NaCl was injected into one of the stifle joints in a volume of 0.5 ml and motor impairment of the dogs was scored every 30 min over a period of 8 h. A direct quantitative comparison was made of the anti-arthritic activity of acetyl-salicylic acid, phenylbutazone, indometacin and alpha-methyl-4-(2-thienylcarbonyl)benzeneacetic acid (suprofen). All compounds were given by oral gavage immediately after the sodium urate injection. Among the compounds studied suprofen was the most potent antagonist of sodium urate-induced arthritis in dogs. Comparing the ED50 values suprofen was about 4 times as potent as indometacin, 9 times as potent as phenylbutazone and 60 times as potent as acetyl-salicylic acid. PMID:1243031

  15. Blood stage merozoite surface protein conjugated to nanoparticles induce potent parasite inhibitory antibodies.

    PubMed

    Pusic, Kae; Xu, Hengyi; Stridiron, Andrew; Aguilar, Zoraida; Wang, Andrew; Hui, George

    2011-11-01

    In this proof-of-concept study we report the use of <15 nm, water soluble, inorganic nanoparticles as a vaccine delivery system for a blood stage malaria vaccine. The recombinant malarial antigen, Merozoite Surface Protein 1 (rMSP1) of Plasmodium falciparum served as the model vaccine. The rMSP1 was covalently conjugated to polymer-coated quantum dot CdSe/ZnS nanoparticles (QDs) via surface carboxyl groups, forming rMSP1-QDs. Anti-MSP1 antibody responses induced by rMSP1-QDs were found to have 2-3 log higher titers than those obtained with rMSP1 administered with the conventional adjuvants, Montanide ISA51 and CFA. Moreover, the immune responsiveness and the induction of parasite inhibitory antibodies were significantly superior in mice injected with rMSP1-QDs. The rMSP1-QDs delivered via intra-peritoneal (i.p.), intra-muscular (i.m.), and subcutaneous (s.c.) routes were equally efficacious. The high level of immunogenicity exhibited by the rMSP1-QDs was achieved without further addition of other adjuvant components. Bone marrow derived dendritic cells were shown to efficiently take up the nanoparticles leading to their activation and the expression/secretion of key cytokines, suggesting that this may be a mode of action for the enhanced immunogenicity. This study provides promising results for the use of water soluble, inorganic nanoparticles (<15 nm) as potent vehicles/platforms to enhance the immunogenicity of polypeptide antigens in adjuvant-free immunizations.

  16. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier.

    PubMed

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke; Akaike, Toshihiro; Ito, Yoshihiro; Aida, Yoko

    2011-12-01

    The ability of carbonate apatite (CO(3)Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO(3)Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO(3)Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO(3)Ap induced the proliferation and antigen-specific production of IFN-γ by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO(3)Ap and OVA-containing alumina salt (Alum), suggesting that CO(3)Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO(3)Ap.

  17. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    SciTech Connect

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke; Akaike, Toshihiro; Ito, Yoshihiro; Aida, Yoko

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.

  18. Effective Equine Immunization Protocol for Production of Potent Poly-specific Antisera against Calloselasma rhodostoma, Cryptelytrops albolabris and Daboia siamensis

    PubMed Central

    Sapsutthipas, Sompong; Leong, Poh Kuan; Akesowan, Surasak; Pratanaphon, Ronachai; Tan, Nget Hong; Ratanabanangkoon, Kavi

    2015-01-01

    Snake envenomation has been estimated to affect 1.8 million people annually with about 94,000 deaths mostly in poor tropical countries. Specific antivenoms are the only rational and effective therapy for these cases. Efforts are being made to produce effective, affordable and sufficient antivenoms for these victims. The immunization process, which has rarely been described in detail, is one step that needs to be rigorously studied and improved especially with regard to the production of polyspecific antisera. The polyspecific nature of therapeutic antivenom could obviate the need to identify the culprit snake species. The aim of this study was to produce potent polyspecific antisera against 3 medically important vipers of Thailand and its neighboring countries, namely Cryptelytrops albolabris "White lipped pit viper" (CA), Calleoselasma rhodostoma “Malayan pit viper” (CR), and Daboia siamensis “Russell’s viper” (DS). Four horses were immunized with a mixture of the 3 viper venoms using the ‘low dose, low volume multi-site’ immunization protocol. The antisera showed rapid rise in ELISA titers against the 3 venoms and reached plateau at about the 8th week post-immunization. The in vivo neutralization potency (P) of the antisera against CA, CR and DS venoms was 10.40, 2.42 and 0.76 mg/ml, respectively and was much higher than the minimal potency limits set by Queen Soavabha Memorial Institute (QSMI). The corresponding potency values for the QSMI monospecific antisera against CA, CR and DS venoms were 7.28, 3.12 and 1.50 mg/ml, respectively. The polyspecific antisera also effectively neutralized the procoagulant, hemorrhagic, necrotic and nephrotoxic activities of the viper venoms. This effective immunization protocol should be useful in the production of potent polyspecific antisera against snake venoms, and equine antisera against tetanus, diphtheria or rabies. PMID:25774998

  19. Fusokine interleukin-2/interleukin-18, a novel potent innate and adaptive immune stimulator with decreased toxicity.

    PubMed

    Acres, Bruce; Gantzer, Murielle; Remy, Christelle; Futin, Nicolas; Accart, Nathalie; Chaloin, Olivier; Hoebeke, Johan; Balloul, Jean-Marc; Paul, Stéphane

    2005-10-15

    To redress the immune imbalances created by pathologies such as cancer, it would be beneficial to create novel cytokine molecules, which combine desired cytokine activities with reduced toxicities. Due to their divergent but complementary activities, it is of interest to combine interleukin-2 (IL-2) and IL-18 into one recombinant molecule for immunotherapy. Evaluation of a fusokine protein that combines murine IL-2/IL-18 shows that it is stable, maintains IL-2 and IL-18 bioactivities, has notably reduced IL-2 associated toxicities, and has a novel lymphocyte-stimulating activity. An adeno-viral expression system was used to explore the biology of this "fusokine". Inclusion of the IL-18 prosequence (proIL-18) increases the expression, secretion, and potency of this fusokine. In vivo gene transfer experiments show that Ad-IL-2/proIL-18 dramatically outdoes Ad-IL-2, Ad-proIL-18, or the combination of both, by inducing high rates of tumor rejection in several murine models. Both innate and adaptive effector mechanisms are required for this antitumor activity. PMID:16230419

  20. Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses.

    PubMed

    Dashti, Amir; Ebrahimi, Marzieh; Hadjati, Jamshid; Memarnejadian, Arash; Moazzeni, Seyed Mohammad

    2016-04-28

    Cancer stem cells (CSCs) are demonstrated to be usually less sensitive to conventional methods of cancer therapies, resulting in tumor relapse. It is well-known that an ideal treatment would be able to selectively target and kill CSCs, so as to avoid the tumor reversion. The aim of our present study was to evaluate the effectiveness of a dendritic cell (DC) based vaccine against CSCs in a mouse model of malignant melanoma. C57BL/6 mouse bone marrow derived DCs pulsed with a murine melanoma cell line (B16F10) or CSC lysates were used as a vaccine. Immunization of mice with CSC lysate-pulsed DCs was able to induce a significant prophylactic effect by a higher increase in lifespan and obvious depression of tumor growth in tumor bearing mice. The mice vaccinated with DCs loaded with CSC-lysate were revealed to produce specific cytotoxic responses to CSCs. The proliferation assay and cytokine (IFN-γ and IL-4) secretion of mice vaccinated with CSC lysate-pulsed DCs also showed more favorable results, when compared to those receiving B16F10 lysate-pulsed DCs. These findings suggest a potential strategy to improve the efficacy of DC-based immunotherapy of cancers. PMID:26803056

  1. Potent monoclonal antibodies against Clostridium difficile toxin A elicited by DNA immunization.

    PubMed

    Zhang, Chunhua; Jin, Ke; Xiao, Yanling; Cheng, Ying; Huang, Zuhu; Wang, Shixia; Lu, Shan

    2013-10-01

    Recent studies have demonstrated that DNA immunization is effective in eliciting antigen-specific antibody responses against a wide range of infectious disease targets. The polyclonal antibodies elicited by DNA vaccination exhibit high sensitivity to conformational epitopes and high avidity. However, there have been limited reports in literature on the production of monoclonal antibodies (mAb) by DNA immunization. Here, by using Clostridium difficile (C. diff) toxin A as a model antigen, we demonstrated that DNA immunization was effective in producing a panel of mAb that are protective against toxin A challenge and can also be used as sensitive reagents to detect toxin A from various testing samples. The immunoglobulin (Ig) gene usage for such mAb was also investigated. Further studies should be conducted to fully establish DNA immunization as a unique platform to produce mAb in various hosts.

  2. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity

    PubMed Central

    Bartkowiak, Todd; Curran, Michael A.

    2015-01-01

    Immunotherapy is a rapidly expanding field of oncology aimed at targeting, not the tumor itself, but the immune system combating the cancerous lesion. Of the many approaches currently under study to boost anti-tumor immune responses; modulation of immune co-receptors on lymphocytes in the tumor microenvironment has thus far proven to be the most effective. Antibody blockade of the T cell co-inhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) has become the first FDA approved immune checkpoint blockade; however, tumor infiltrating lymphocytes express a diverse array of additional stimulatory and inhibitory co-receptors, which can be targeted to boost tumor immunity. Among these, the co-stimulatory receptor 4-1BB (CD137/TNFSF9) possesses an unequaled capacity for both activation and pro-inflammatory polarization of anti-tumor lymphocytes. While functional studies of 4-1BB have focused on its prominent role in augmenting cytotoxic CD8 T cells, 4-1BB can also modulate the activity of CD4 T cells, B cells, natural killer cells, monocytes, macrophages, and dendritic cells. 4-1BB’s expression on both T cells and antigen presenting cells, coupled with its capacity to promote survival, expansion, and enhanced effector function of activated T cells, has made it an alluring target for tumor immunotherapy. In contrast to immune checkpoint blocking antibodies, 4-1BB agonists can both potentiate anti-tumor and anti-viral immunity, while at the same time ameliorating autoimmune disease. Despite this, 4-1BB agonists can trigger high grade liver inflammation which has slowed their clinical development. In this review, we discuss how the underlying immunobiology of 4-1BB activation suggests the potential for therapeutically synergistic combination strategies in which immune adverse events can be minimized. PMID:26106583

  3. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice.

    PubMed

    Wegmann, Frank; Moghaddam, Amin E; Schiffner, Torben; Gartlan, Kate H; Powell, Timothy J; Russell, Rebecca A; Baart, Matthijs; Carrow, Emily W; Sattentau, Quentin J

    2015-09-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8(+) T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines.

  4. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice.

    PubMed

    Wegmann, Frank; Moghaddam, Amin E; Schiffner, Torben; Gartlan, Kate H; Powell, Timothy J; Russell, Rebecca A; Baart, Matthijs; Carrow, Emily W; Sattentau, Quentin J

    2015-09-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8(+) T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  5. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice

    PubMed Central

    Wegmann, Frank; Moghaddam, Amin E.; Schiffner, Torben; Gartlan, Kate H.; Powell, Timothy J.; Russell, Rebecca A.; Baart, Matthijs; Carrow, Emily W.

    2015-01-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  6. Identification and molecular characterization of peroxiredoxin 6 from Japanese eel (Anguilla japonica) revealing its potent antioxidant properties and putative immune relevancy.

    PubMed

    Priyathilaka, Thanthrige Thiunuwan; Kim, Yucheol; Udayantha, H M V; Lee, Seongdo; Herath, H M L P B; Lakmal, H H Chaminda; Elvitigala, Don Anushka Sandaruwan; Umasuthan, Navaneethaiyer; Godahewa, G I; Kang, Seong Il; Jeong, Hyung Bok; Kim, Shin Kwon; Kim, Dae Jung; Lim, Bong Soo

    2016-04-01

    Peroxiredoxins (Prdx) are thiol specific antioxidant enzymes that play a pivotal role in cellular oxidative stress by reducing toxic peroxide compounds into nontoxic products. In this study, we identified and characterized a peroxiredoxin 6 counterpart from Japanese eel (Anguilla japonica) (AjPrdx6) at molecular, transcriptional and protein level. The identified full-length coding sequence of AjPrdx6 (669 bp) coded for a polypeptide of 223 aa residues (24.9 kDa). Deduced protein of AjPrdx6 showed analogy to characteristic structural features of 1-cysteine peroxiredoxin sub-family. According to the topology of the generated phylogenetic reconstruction AjPrdx6 showed closest evolutionary relationship with Salmo salar. As detected by Quantitative real time PCR (qPCR), AjPrdx6 mRNA was constitutively expressed in all the tissues examined. Upon the immune challenges with Edwardsiella tarda, lipopolysaccharides and polyinosinic:polycytidylic acid, expression of AjPrdx6 mRNA transcripts were significantly induced. The general functional properties of Prdx6 were confirmed using purified recombinant AjPrdx6 protein by deciphering its potent protective effects on cultured vero cells (kidney epithelial cell from an African green monkey) against H2O2-induced oxidative stress and protection against oxidative DNA damage elicited by mixed function oxidative (MFO) system. Altogether, our findings suggest that AjPrdx6 is a potent antioxidant protein in Japanese eels and its putative immune relevancy in pathogen stress mounted by live-bacteria or pathogen associated molecular patterns (PAMPs).

  7. Identification and molecular characterization of peroxiredoxin 6 from Japanese eel (Anguilla japonica) revealing its potent antioxidant properties and putative immune relevancy.

    PubMed

    Priyathilaka, Thanthrige Thiunuwan; Kim, Yucheol; Udayantha, H M V; Lee, Seongdo; Herath, H M L P B; Lakmal, H H Chaminda; Elvitigala, Don Anushka Sandaruwan; Umasuthan, Navaneethaiyer; Godahewa, G I; Kang, Seong Il; Jeong, Hyung Bok; Kim, Shin Kwon; Kim, Dae Jung; Lim, Bong Soo

    2016-04-01

    Peroxiredoxins (Prdx) are thiol specific antioxidant enzymes that play a pivotal role in cellular oxidative stress by reducing toxic peroxide compounds into nontoxic products. In this study, we identified and characterized a peroxiredoxin 6 counterpart from Japanese eel (Anguilla japonica) (AjPrdx6) at molecular, transcriptional and protein level. The identified full-length coding sequence of AjPrdx6 (669 bp) coded for a polypeptide of 223 aa residues (24.9 kDa). Deduced protein of AjPrdx6 showed analogy to characteristic structural features of 1-cysteine peroxiredoxin sub-family. According to the topology of the generated phylogenetic reconstruction AjPrdx6 showed closest evolutionary relationship with Salmo salar. As detected by Quantitative real time PCR (qPCR), AjPrdx6 mRNA was constitutively expressed in all the tissues examined. Upon the immune challenges with Edwardsiella tarda, lipopolysaccharides and polyinosinic:polycytidylic acid, expression of AjPrdx6 mRNA transcripts were significantly induced. The general functional properties of Prdx6 were confirmed using purified recombinant AjPrdx6 protein by deciphering its potent protective effects on cultured vero cells (kidney epithelial cell from an African green monkey) against H2O2-induced oxidative stress and protection against oxidative DNA damage elicited by mixed function oxidative (MFO) system. Altogether, our findings suggest that AjPrdx6 is a potent antioxidant protein in Japanese eels and its putative immune relevancy in pathogen stress mounted by live-bacteria or pathogen associated molecular patterns (PAMPs). PMID:26911410

  8. New Approach for Producing and Purifying IL-15 Heterodimers That Have Potent Immune Effect | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer Cytokines are proteins that play a crucial role in the human immune system by delivering messages that trigger the activation of immune cells to fight off attacks from viruses or other invaders. Cristina Bergamaschi, Ph.D., NCI Center for Cancer Research, has been studying the mechanism of expression and function of a cytokine known as interleukin-15 (IL-15) for the last five years, in collaboration with Elena Chertova, Ph.D., and other researchers in the Retroviral Protein Chemistry Core (RPCC) of the AIDS and Cancer Virus Program (ACVP), Frederick National Laboratory for Cancer Research.

  9. Antitumor Immunity Induced after α Irradiation123

    PubMed Central

    Gorin, Jean-Baptiste; Ménager, Jérémie; Gouard, Sébastien; Maurel, Catherine; Guilloux, Yannick; Faivre-Chauvet, Alain; Morgenstern, Alfred; Bruchertseifer, Frank; Chérel, Michel; Davodeau, François; Gaschet, Joëlle

    2014-01-01

    Radioimmunotherapy (RIT) is a therapeutic modality that allows delivering of ionizing radiation directly to targeted cancer cells. Conventional RIT uses β-emitting radioisotopes, but recently, a growing interest has emerged for the clinical development of α particles. α emitters are ideal for killing isolated or small clusters of tumor cells, thanks to their specific characteristics (high linear energy transfer and short path in the tissue), and their effect is less dependent on dose rate, tissue oxygenation, or cell cycle status than γ and X rays. Several studies have been performed to describe α emitter radiobiology and cell death mechanisms induced after α irradiation. But so far, no investigation has been undertaken to analyze the impact of α particles on the immune system, when several studies have shown that external irradiation, using γ and X rays, can foster an antitumor immune response. Therefore, we decided to evaluate the immunogenicity of murine adenocarcinoma MC-38 after bismuth-213 (213Bi) irradiation using a vaccination approach. In vivo studies performed in immunocompetent C57Bl/6 mice induced a protective antitumor response that is mediated by tumor-specific T cells. The molecular mechanisms potentially involved in the activation of adaptative immunity were also investigated by in vitro studies. We observed that 213Bi-treated MC-38 cells release “danger signals” and activate dendritic cells. Our results demonstrate that α irradiation can stimulate adaptive immunity, elicits an efficient antitumor protection, and therefore is an immunogenic cell death inducer, which provides an attractive complement to its direct cytolytic effect on tumor cells. PMID:24862758

  10. Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance.

    PubMed

    Blazanovic, Kristina; Zhao, Hongliang; Choi, Yoonjoo; Li, Wen; Salvat, Regina S; Osipovitch, Daniel C; Fields, Jennifer; Moise, Leonard; Berwin, Brent L; Fiering, Steven N; Bailey-Kellogg, Chris; Griswold, Karl E

    2015-01-01

    Staphylococcus aureus infections exert a tremendous burden on the health-care system, and the threat of drug-resistant strains continues to grow. The bacteriolytic enzyme lysostaphin is a potent antistaphylococcal agent with proven efficacy against both drug-sensitive and drug-resistant strains; however, the enzyme's own bacterial origins cause undesirable immunogenicity and pose a barrier to clinical translation. Here, we deimmunized lysostaphin using a computationally guided process that optimizes sets of mutations to delete immunogenic T cell epitopes without disrupting protein function. In vitro analyses showed the methods to be both efficient and effective, producing seven different deimmunized designs exhibiting high function and reduced immunogenic potential. Two deimmunized candidates elicited greatly suppressed proliferative responses in splenocytes from humanized mice, while at the same time the variants maintained wild-type efficacy in a staphylococcal pneumonia model. Overall, the deimmunized enzymes represent promising leads in the battle against S. aureus.

  11. Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance

    PubMed Central

    Blazanovic, Kristina; Zhao, Hongliang; Choi, Yoonjoo; Li, Wen; Salvat, Regina S; Osipovitch, Daniel C; Fields, Jennifer; Moise, Leonard; Berwin, Brent L; Fiering, Steven N; Bailey-Kellogg, Chris; Griswold, Karl E

    2015-01-01

    Staphylococcus aureus infections exert a tremendous burden on the health-care system, and the threat of drug-resistant strains continues to grow. The bacteriolytic enzyme lysostaphin is a potent antistaphylococcal agent with proven efficacy against both drug-sensitive and drug-resistant strains; however, the enzyme’s own bacterial origins cause undesirable immunogenicity and pose a barrier to clinical translation. Here, we deimmunized lysostaphin using a computationally guided process that optimizes sets of mutations to delete immunogenic T cell epitopes without disrupting protein function. In vitro analyses showed the methods to be both efficient and effective, producing seven different deimmunized designs exhibiting high function and reduced immunogenic potential. Two deimmunized candidates elicited greatly suppressed proliferative responses in splenocytes from humanized mice, while at the same time the variants maintained wild-type efficacy in a staphylococcal pneumonia model. Overall, the deimmunized enzymes represent promising leads in the battle against S. aureus. PMID:26151066

  12. A novel bispecific antibody, S-Fab, induces potent cancer cell killing.

    PubMed

    Li, Li; He, Ping; Zhou, Changhua; Jing, Li; Dong, Bin; Chen, Siqi; Zhang, Ning; Liu, Yawei; Miao, Ji; Wang, Zhong; Li, Qing

    2015-01-01

    Bispecific antibodies that engage immune cells to kill cancer cells have been actively studied in cancer immunotherapy. In this study, we present a novel bispecific format, S-Fab, fabricated by linking a single-domain anti-carcinoembryonic antigen VHH to a conventional anti-CD3 Fab. In contrast to most bispecific antibodies, the S-Fab bispecific antibody can be efficiently expressed and purified from bacteria. The purified S-Fab is stable in serum and is able to recruit T cells to drive potent cancer cell killing. In xenograft models, the S-Fab antibody suppresses tumor growth in the presence of human immune cells. Our study suggested that the bispecific S-Fab format can be applied to a wide range of immunotherapies.

  13. Drug-induced immune neutropenia/agranulocytosis.

    PubMed

    Curtis, Brian R

    2014-01-01

    Neutrophils are the most abundant white blood cell in blood and play a critical role in preventing infections as part of the innate immune system. Reduction in neutrophils below an absolute count of 500 cells/pL is termed severe neutropenia or agranulocytosis. Drug-induced immune neutropenia (DIIN) occurs when drug-dependent antibodies form against neutrophil membrane glycoproteins and cause neutrophil destruction. Affected patients have fever, chills, and infections; severe infections left untreated can result in death. Treatment with granulocyte colony-stimulating factor can hasten neutrophil recovery. Cumulative data show that severe neutropenia or agranulocytosis associated with exposure to nonchemotherapy drugs ranges from approximately 1.6 to 15.4 cases per million population per year. Drugs most often associated with neutropenia or agranulocytosis include dipyrone, diclofenac, ticlopidine, calcium dobesilate, spironolactone, antithyroid drugs (e.g., propylthiouracil), carbamazepine, sulfamethoxazole- trimethoprim, [3-lactam antibiotics, clozapine, levamisole, and vancomycin. Assays used for detection of neutrophil drug-dependent antibodies (DDAbs) include flow cytometry, monoclonal antibody immobilization of granulocyte antigens, enzyme-linked immunosorbent assay, immunoblotting, granulocyte agglutination, and granulocytotoxicity. However, testing for neutrophil DDAbs is rarely performed owing to its complexity and lack of availability. Mechanisms proposed for DIIN have not been rigorously studied, but those that have been studied include drug- or hapten-induced antibody formation and autoantibody production against drug metabolite or protein adducts covalently attached to neutrophil membrane proteins. This review will address acute, severe neutropenia caused by neutrophil-reactive antibodies induced by nonchemotherapy drugs-DIIN

  14. Generation of potent neutralizing human monoclonal antibodies against cytomegalovirus infection from immune B cells

    PubMed Central

    Funaro, Ada; Gribaudo, Giorgio; Luganini, Anna; Ortolan, Erika; Lo Buono, Nicola; Vicenzi, Elisa; Cassetta, Luca; Landolfo, Santo; Buick, Richard; Falciola, Luca; Murphy, Marianne; Garotta, Gianni; Malavasi, Fabio

    2008-01-01

    Background Human monoclonal antibodies (mAbs) generated as a result of the immune response are likely to be the most effective therapeutic antibodies, particularly in the case of infectious diseases against which the immune response is protective. Human cytomegalovirus (HCMV) is an ubiquitous opportunistic virus that is the most serious pathogenic agent in transplant patients. The available therapeutic armamentarium (e.g. HCMV hyperimmune globulins or antivirals) is associated with severe side effects and the emergence of drug-resistant strains; therefore, neutralizing human mAb may be a decisive alternative in the prevention of primary and re-activated HCMV infections in these patients. Results The purpose of this study was to generate neutralizing mAb against HCMV from the immunological repertoire of immune donors. To this aim, we designed an efficient technology relying on two discrete and sequential steps: first, human B-lymphocytes are stimulated with TLR9-agonists and IL-2; second, after both additives are removed, the cells are infected with EBV. Using this strategy we obtained 29 clones secreting IgG neutralizing the HCMV infectivity; four among these were further characterized. All of the mAbs neutralize the infection in different combinations of HCMV strains and target cells, with a potency ~20 fold higher than that of the HCMV hyperimmune globulins, currently used in transplant recipients. Recombinant human monoclonal IgG1 suitable as a prophylactic or therapeutic tool in clinical applications has been generated. Conclusion The technology described has proven to be more reproducible, efficient and rapid than previously reported techniques, and can be adopted at low overall costs by any cell biology laboratory for the development of fully human mAbs for immunotherapeutic uses. PMID:19014469

  15. Potent stimulation of the innate immune system by a Leishmania brasiliensis recombinant protein.

    PubMed

    Borges, M M; Campos-Neto, A; Sleath, P; Grabstein, K H; Morrissey, P J; Skeiky, Y A; Reed, S G

    2001-09-01

    The interaction of the innate immune system with the microbial world involves primarily two sets of molecules generally known as microbial pattern recognition receptors and microbial pattern recognition molecules, respectively. Examples of the former are the Toll receptors present particularly in macrophages and dendritic cells. Conversely, the microbial pattern recognition molecules are conserved protist homopolymers, such as bacterial lipopolysaccharides, lipoteichoic acids, peptidoglycans, glucans, mannans, unmethylated bacterial DNA, and double-strand viral RNA. However, for protists that lack most of these molecules, such as protozoans, the innate immune system must have evolved receptors that recognize other groups of microbial molecules. Here we present evidence that a highly purified protein encoded by a Leishmania brasiliensis gene may be one such molecule. This recombinant leishmanial molecule, a homologue of eukaryotic ribosomal elongation and initiation factor 4a (LeIF), strongly stimulates spleen cells from severe combined immunodeficient (SCID) mice to produce interleukin-12 (IL-12), IL-18, and high levels of gamma interferon. In addition, LeIF potentiates the cytotoxic activity of the NK cells of these animals. Because LeIF is a conserved molecule and because SCID mice lack T and B lymphocytes but have a normal innate immune system (normal reticuloendothelial system and NK cells), these results suggest that proteins may also be included as microbial pattern recognition molecules. The nature of the receptor involved in this innate recognition is unknown. However, it is possible to exclude the Toll receptor Tlr4 as a putative LeIF receptor because the gene encoding this receptor is defective in C3H/HeJ mice, the mouse strain used in the present studies.

  16. Recombinant human bone morphogenetic protein-9 potently induces osteogenic differentiation of human periodontal ligament fibroblasts.

    PubMed

    Fuchigami, Sawako; Nakamura, Toshiaki; Furue, Kirara; Sena, Kotaro; Shinohara, Yukiya; Noguchi, Kazuyuki

    2016-04-01

    To accomplish effective periodontal regeneration for periodontal defects, several regenerative methods using growth and differentiation factors, including bone morphogenetic proteins (BMPs), have been developed. Bone morphogenetic protein-9 exhibits the most potent osteogenic activity of this growth factor family. However, it is unclear whether exogenous BMP-9 can induce osteogenic differentiation in human periodontal ligament (PDL) fibroblasts. Here, we examined the effects of recombinant human (rh) BMP-9 on osteoblastic differentiation in human PDL fibroblasts in vitro, compared with rhBMP-2. Recombinant human BMP-9 potently induced alkaline phosphatase (ALP) activity, mineralization, and increased expression of runt-related transcription factor-2/core binding factor alpha 1 (RUNX2/CBFA1), osterix, inhibitor of DNA binding/differentiation-1 (ID1), osteopontin, and bone sialoprotein genes, compared with rhBMP-2. The levels of rhBMP-9-induced osterix and ALP mRNA were significantly reduced in activin receptor-like kinase-1 and -2 small interfering RNA (siRNA)-transfected human PDL fibroblasts. Recombinant human BMP-9-induced ALP activity was not inhibited by noggin, in contrast to rhBMP-2 induced ALP activity, which was. Phosphorylation of SMAD1/5/8 in human PDL fibroblasts was induced by addition of rhBMP-9. Recombinant human BMP-9-induced ALP activity was suppressed by SB203580, SP600125, and U0126, which are inhibitors of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2), respectively. Our data suggest that rhBMP-9 is a potent inducer of the differentiation of human PDL fibroblasts into osteoblast-like cells and that this may be mediated by the SMAD and mitogen-activated protein kinase (p38, ERK1/2, and JNK) pathways. PMID:26879145

  17. Potent antitumor immunity generated by a CD40-targeted adenoviral vaccine.

    PubMed

    Hangalapura, Basav N; Oosterhoff, Dinja; de Groot, Jan; Boon, Louis; Tüting, Thomas; van den Eertwegh, Alfons J; Gerritsen, Winald R; van Beusechem, Victor W; Pereboev, Alexander; Curiel, David T; Scheper, Rik J; de Gruijl, Tanja D

    2011-09-01

    In situ delivery of tumor-associated antigen (TAA) genes into dendritic cells (DC) has great potential as a generally applicable tumor vaccination approach. Although adenoviruses (Ad) are an attractive vaccine vehicle in this regard, Ad-mediated transduction of DCs is hampered by the lack of expression of the Ad receptor CAR on the DC surface. DC activation also requires interaction of CD40 with its ligand CD40L to generate protective T-cell-mediated tumor immunity. Therefore, to create a strategy to target Ads to DCs in vivo, we constructed a bispecific adaptor molecule with the CAR ectodomain linked to the CD40L extracellular domain via a trimerization motif (CFm40L). By targeting Ad to CD40 with the use of CFm40L, we enhanced both transduction and maturation of cultured bone marrow-derived DCs. Moreover, we improved transduction efficiency of DCs in lymph node and splenic cell suspensions in vitro and in skin and vaccination site-draining lymph nodes in vivo. Furthermore, CD40 targeting improved the induction of specific CD8(+) T cells along with therapeutic efficacy in a mouse model of melanoma. Taken together, our findings support the use of CD40-targeted Ad vectors encoding full-length TAA for in vivo targeting of DCs and high-efficacy induction of antitumor immunity.

  18. Potent inhibition of Hendra virus infection via RNA interference and poly I:C immune activation.

    PubMed

    McCaskill, Jana L; Marsh, Glenn A; Monaghan, Paul; Wang, Lin-Fa; Doran, Timothy; McMillan, Nigel A J

    2013-01-01

    Hendra virus (HeV) is a highly pathogenic zoonotic paramyxovirus that causes fatal disease in a wide range of species, including humans. HeV was first described in Australia in 1994, and has continued to re-emerge with increasing frequency. HeV is of significant concern to human health due to its high mortality rate, increasing emergence, absence of vaccines and limited post exposure therapies. Here we investigate the use of RNA interference (RNAi) based therapeutics targeting HeV in conjunction with the TLR3 agonist Poly I:C and show that they are potent inhibitors of HeV infection in vitro. We found that short interfering RNAs (siRNAs) targeting the abundantly expressed N, P and M genes of HeV caused over 95% reduction of HeV virus titre, protein and mRNA. Furthermore, we found that the combination of HeV targeting siRNA and Poly I:C had an additive effect in suppressing HeV infection. Our results demonstrate for the first time that RNAi and type I interferon stimulation are effective inhibitors of HeV replication in vitro and may provide an effective therapy for this highly lethal, zoonotic pathogen.

  19. Green tea polyphenols as potent enhancers of glucocorticoid-induced mouse mammary tumor virus gene expression.

    PubMed

    Abe, I; Umehara, K; Morita, R; Nemoto, K; Degawa, M; Noguchi, H

    2001-02-16

    The effect of natural and synthetic galloyl esters on glucocorticoid-induced gene expression was evaluated by using rat fibroblast 3Y1 cells stably transfected with a luciferase reporter gene under the transcriptional regulation of the mouse mammary tumor virus promoter. The glucocorticoid-induced gene transcription was strongly suppressed by synthetic alkyl esters; n-dodecyl gallate showed the most potent inhibition (66% inhibition at 10 microM), which was far more potent than that of crude tannic acid. n-Octyl and n-cetyl gallate also showed good inhibition, while gallic acid itself was not so active, suggesting that the presence of hydrophobic side chain is important for the suppressive effect. On the other hand, surprisingly, green tea gallocatechins, (-)-epigallocatechin-3-O-gallate and theasinensin A, potently enhanced the promoter activity (182 and 247% activity at 1 microM, respectively). The regulation of the level of the glucocorticoid-induced gene expression by the antioxidative gallates is of great interest from a therapeutic point of view.

  20. Potent SIV-specific Cellular Immune Responses in the Breast Milk of SIV-infected, Lactating Rhesus Monkeys1

    PubMed Central

    Permar, Sallie R.; Kang, Helen H.; Carville, Angela; Mansfield, Keith G.; Gelman, Rebecca S.; Rao, Srinivas S.; Whitney, James B.; Letvin, Norman L.

    2008-01-01

    Breast milk transmission of HIV is a leading cause of infant HIV/AIDS in the developing world. Remarkably, only a small minority of breastfeeding infants born to HIV-infected mothers contract HIV via breast milk exposure, raising the possibility that immune factors in the breast milk confer protection to the infants who remain uninfected. To model HIV-specific immunity in breast milk, lactation was pharmacologically induced in Mamu-A*01+ female rhesus monkeys. The composition of lymphocyte subsets in hormone-induced lactation (HIL) breast milk was found to be similar to that in natural lactation (NL) breast milk. Hormone-induced lactating monkeys were inoculated intravenously with SIVmac251 and CD8+ T lymphocytes specific for two immunodominant SIV epitopes, Gag p11C and Tat TL8, and SIV viral load were monitored in peripheral blood and breast milk during acute infection. The breast milk viral load was one to two logs lower than plasma viral load through peak and set-point of viremia. Surprisingly, while the kinetics of the SIV-specific cellular immunity in breast milk mirrored that of the blood, the peak magnitude of the SIV-specific CD8+ T lymphocyte response in breast milk was more than twice as high as the cellular immune response in the blood. Furthermore, the appearance of the SIV-specific CD8+ T lymphocyte response in breast milk was associated with a reduction in breast milk viral load, and this response remained higher than that in the blood after viral set point. This robust viral-specific cellular immune response in breast milk may contribute to control of breast milk virus replication. PMID:18714039

  1. Drug-induced immune hemolytic anemia

    MedlinePlus

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... In some cases, a drug can cause the immune system to mistake your own red blood cells for foreign substances. The body responds by making ...

  2. Sulfur Mustard Induces Immune Sensitization in Hairless Guinea Pigs

    PubMed Central

    Mishra, Neerad C.; Rir-sima-ah, Jules; March, Thomas; Weber, Waylon; Benson, Janet; Jaramillo, Richard; Seagrave, Jean-Clare; Schultz, Gregory; Grotendorst, Gary; Sopori, Mohan

    2009-01-01

    Sulfur mustard (SM, bis-(2-chloroethyl) sulfide) is a well known chemical warfare agent that may cause long-term debilitating injury. Because of the ease of production and storage, it has a strong potential for chemical terrorism; however, the mechanism by which SM causes chronic tissue damage is essentially unknown. SM is a potent protein alkylating agent, and we tested the possibility that SM modifies cellular antigens, leading to an immunological response to “altered self” and a potential long-term injury. To that end, in this communication, we show that dermal exposure of euthymic hairless guinea pigs induced infiltration of both CD4+ and CD8+ T cells into the SM-exposed skin and strong upregulated expression of proinflammatory cytokines and chemokines (TNF-α, IFN-γ, and IL-8) in distal tissues such as the lung and the lymph nodes. Moreover, we present evidence for the first time that SM induces a specific delayed-type hypersensitivity response that is associated with splenomegaly, lymphadenopathy, and proliferation of cells in these tissues. These results clearly suggest that dermal exposure to SM leads to immune activation, infiltration of T cells into the SM-exposed skin, delayed-type hypersensitivity response, and molecular imprints of inflammation in tissues distal from the site of SM exposure. These immunological responses may contribute to the long-term sequelae of SM toxicity. PMID:19887117

  3. 7-Methylsulfinylheptyl and 8-methylsulfinyloctyl isothiocyanates from watercress are potent inducers of phase II enzymes.

    PubMed

    Rose, P; Faulkner, K; Williamson, G; Mithen, R

    2000-11-01

    Watercress is an exceptionally rich dietary source of beta-phenylethyl isothiocyanate (PEITC). This compound inhibits phase I enzymes, which are responsible for the activation of many carcinogens in animals, and induces phase II enzymes, which are associated with enhanced excretion of carcinogens. In this study, we show that watercress extracts are potent inducers of quinone reductase (QR) in murine hepatoma Hepa 1c1c7 cells, a widely adopted assay for measuring phase II enzyme induction. However, contrary to expectations, this induction was not associated with PEITC (which is rapidly lost to the atmosphere upon tissue disruption due to its volatility) or a naturally occurring PEITC-glutathione conjugate, but with 7-methylsulfinyheptyl and 8-methylsulfinyloctyl isothiocyanates (ITCs). While it was confirmed that PEITC does induce QR (5 microM required for a two-fold induction in QR), 7-methylsulfinyheptyl and 8-methylsulfinyloctyl ITCs were more potent inducers (0.2 microM and 0.5 microM, respectively, required for a two-fold induction in QR). Thus, while watercress contains three times more phenylethyl glucosinolate than methylsulfinylalkyl glucosinolates, ITCs derived from methylsulfinylalkyl glucosinolates may be more important phase II enzyme inducers than PEITC, having 10 - to 25-fold greater potency. Analysis of urine by liquid chromatography-mass spectroscopy (LC-MS) following consumption of watercress demonstrated the presence of N:-acetylcysteine conjugates of 7-methylsulfinylheptyl, 8-methylsulfinyloctyl ITCs and PEITC, indicating that these ITCs are taken up by the gut and metabolized in the body. Watercress may have exceptionally good anticarcinogenic potential, as it combines a potent inhibitor of phase I enzymes (PEITC) with at least three inducers of phase II enzymes (PEITC, 7-methylsulfinylheptyl ITC and 8-methylsulfinyloctyl ITC). The study also demonstrates the application of LC-MS for the detection of complex glucosinolate-derived metabolites in

  4. Laser-assisted intradermal delivery of adjuvant-free vaccines targeting XCR1+ dendritic cells induces potent antitumoral responses.

    PubMed

    Terhorst, Dorothea; Fossum, Even; Baranska, Anna; Tamoutounour, Samira; Malosse, Camille; Garbani, Mattia; Braun, Reinhard; Lechat, Elmira; Crameri, Reto; Bogen, Bjarne; Henri, Sandrine; Malissen, Bernard

    2015-06-15

    The development of vaccines inducing efficient CD8(+) T cell responses is the focus of intense research. Dendritic cells (DCs) expressing the XCR1 chemokine receptor, also known as CD103(+) or CD8α(+) DCs, excel in the presentation of extracellular Ags to CD8(+) T cells. Because of its high numbers of DCs, including XCR1(+) DCs, the skin dermis is an attractive site for vaccine administration. By creating laser-generated micropores through the epidermis, we targeted a model protein Ag fused to XCL1, the ligand of XCR1, to dermal XCR1(+) DCs and induced Ag-specific CD8(+) and CD4(+) T cell responses. Efficient immunization required the emigration of XCR1(+) dermal DCs to draining lymph nodes and occurred irrespective of TLR signaling. Moreover, a single intradermal immunization protected mice against melanoma tumor growth in prophylactic and therapeutic settings, in the absence of exogenous adjuvant. The mild inflammatory milieu created in the dermis by skin laser microporation itself most likely favored the development of potent T cell responses in the absence of exogenous adjuvants. The existence of functionally equivalent XCR1(+) dermal DCs in humans should permit the translation of laser-assisted intradermal delivery of a tumor-specific vaccine targeting XCR1(+) DCs to human cancer immunotherapy. Moreover, considering that the use of adjuvants in vaccines is often associated with safety issues, the possibility of inducing protective responses against melanoma tumor growth independently of the administration of exogenous adjuvants should facilitate the development of safer vaccines. PMID:25941327

  5. Induced hyperlipaemia and immune challenge in locusts.

    PubMed

    Mullen, Lisa M; Lightfoot, Mary E; Goldsworthy, Graham J

    2004-05-01

    Injections of immunogens, such as beta-1,3-glucan or lipopolysaccharide (LPS), bring about a marked hyperlipaemia with associated changes in lipophorins and apolipophorin-III in the haemolymph of Locusta migratoria. These changes are similar to those observed after injection of adipokinetic hormone (AKH). The possibility that endogenous AKH is released as part of the response to these immunogens is investigated using passive immunisation against AKH-I, and measurement of AKH-I titre in the haemolymph after injection of immunogens. The data presented show that, despite the similarity of the changes brought about by the presence of immunogens in the haemolymph to those brought about by AKH, there is no release of endogenous AKH after injection of laminarin or LPS. A direct effect of the immunogens on release of neutral lipids by the fat body cannot be demonstrated in vitro, and the mechanism by which hyperlipaemia is induced during immune challenge remains uncertain. PMID:15121454

  6. Prolactin-releasing peptide is a potent mediator of the innate immune response in leukocytes from Salmo salar.

    PubMed

    Romero, Alex; Manríquez, René; Alvarez, Claudio; Gajardo, Cristina; Vásquez, Jorge; Kausel, Gudrun; Monrás, Mónica; Olavarría, Víctor H; Yáñez, Alejandro; Enríquez, Ricardo; Figueroa, Jaime

    2012-06-30

    Prolactin (PRL)-releasing peptide (PrRP) is a strong candidate stimulator of pituitary PRL transcription and secretion in teleosts. However, the role in control of extrapituitary PRL expression or its effects on innate immunity are unclear even in mammals. To study the possible presence of PrRP in peripheral organs, PrRP expression patterns and their effect on innate immunity were characterised in SHK-1 cells and head kidney (HK) leukocytes purified from the salmonid, Salmo salar. We detected immunoreactive cells in leukocytes from blood and HK of S. salar and found that PrRP mRNA was abundantly expressed in these cells. We have recently reported that physiological concentrations of native PRL, downstream of neuropeptide PrRP were able to induce expression of pro-inflammatory cytokines and the production of reactive oxygen species (ROS) in HK leukocytes and macrophages from S. salar and Sparus aurata. It is of interest to note that in this work we have revealed that synthetic PrRP was able to induce expression of pro-inflammatory cytokines (interleukins) IL-1β, IL-6, IL-8, IL-12 and PRL. We also show here that PrRP increased both (ROS) production and phagocytosis. Taken together, our results demonstrate for the first time that PrRP may be a local modulator of innate immune responses in leukocytes from S. salar.

  7. Protein modifications induced in mouse epidermis by potent and weak tumor-promoting hyperplasiogenic agents

    SciTech Connect

    Nelson, K.G.; Stephenson, K.B.; Slaga, T.J.

    1982-10-01

    Two-dimensional gel electrophoresis was used to compare the changes in mouse epidermal proteins induced by the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), by the moderate promoter mechanical abrasion, and by the weakly promoting hyperplasiogenic agents mezerein and ethylphenylpropiolate. Evidence is presented which indicates that TPA caused many changes in the epidermal protein profiles especially related to the keratins which are the major differentiation product of the epidermis. The criteria used for the identification of the keratins were extractability, isoelectric points, molecular weights, filament formation in vitro, immunological cross-reactivity, amino acid composition, and peptide mapping. Several other protein changes were evident in the more soluble epidermal proteins which were also prominent in the newborn epidermis. Mezerein and abrasion produced protein changes similar to those induced by TPA. Ethylphenylpropiolate-induced protein modifications not only occurred at later times compared with either mezerein or TPA but also were less in magnitude. However, although many of the protein modifications induced by TPA appear to be associated with the hyperplasiogenic properties of TPA, the major difference between a potent promoter like TPA and a weak promoter like ethylphenylpropiolate appeared to be related to the magnitude of the response and the time of appearance of the protein changes.

  8. Multivalent TB vaccines targeting the esx gene family generate potent and broad cell-mediated immune responses superior to BCG.

    PubMed

    Villarreal, Daniel O; Walters, Jewell; Laddy, Dominick J; Yan, Jian; Weiner, David B

    2014-01-01

    Development of a broad-spectrum synthetic vaccine against TB would represent an important advance to the limited vaccine armamentarium against TB. It is believed that the esx family of TB antigens may represent important vaccine candidates. However, only 4 esx antigens have been studied as potential vaccine antigens. The challenge remains to develop a vaccine that simultaneously targets all 23 members of the esx family to induce enhanced broad-spectrum cell-mediated immunity. We sought to investigate if broader cellular immune responses could be induced using a multivalent DNA vaccine representing the esx family protein members delivered via electroporation. In this study, 15 designed esx antigens were created to cross target all members of the esx family. They were distributed into groups of 3 self-processing antigens each, resulting in 5 trivalent highly optimized DNA plasmids. Vaccination with all 5 constructs elicited robust antigen-specific IFN-γ responses to all encoded esx antigens and induced multifunctional CD4 Th1 and CD8 T cell responses. Importantly, we show that when all constructs are combined into a cocktail, the RSQ-15 vaccine, elicited substantial broad Ag-specific T cell responses to all esx antigens as compared with vaccination with BCG. Moreover, these vaccine-induced responses were highly cross-reactive with BCG encoded esx family members and were highly immune effective in a BCG DNA prime-boost format. Furthermore, we demonstrate the vaccine potential and immunopotent profile of several novel esx antigens never previously studied. These data highlight the likely importance of these novel immunogens for study as preventative or therapeutic synthetic TB vaccines in combination or as stand alone antigens.

  9. Human Anti-CD40 Antibody and Poly IC:LC Adjuvant Combination Induces Potent T Cell Responses in the Lung of Non-Human Primates1

    PubMed Central

    Thompson, Elizabeth A; Liang, Frank; Lindgren, Gustaf; Sandgren, Kerrie J; Quinn, Kylie M; Darrah, Patricia A; Koup, Richard A; Seder, Robert A; Kedl, Ross M; Loré, Karin

    2015-01-01

    Non-live vaccine platforms that induce potent cellular immune responses in mucosal tissue would have broad application for vaccines against infectious diseases and tumors. Induction of cellular immunity could be optimized by targeted activation of multiple innate and co-stimulatory signaling pathways, such as CD40 or toll-like receptors (TLRs). In this study, we evaluated immune activation and elicitation of T cell responses in non-human primates (NHPs) after immunization with peptide antigens adjuvanted with an agonistic αCD40Ab, with or without the TLR3 ligand poly IC:LC. We found that intravenous administration of the αCD40Ab induced rapid and transient innate activation characterized by IL-12 production and upregulated co-stimulatory and lymph node homing molecules on dendritic cells. Using fluorescently-labeled Abs for in vivo tracking, the αCD40Ab bound to all leucocytes, except T cells, and disseminated to multiple organs. CD4+ and CD8+ T cell responses were significantly enhanced when the αCD40Ab was co-administered with poly IC:LC compared to either adjuvant given alone and were almost exclusively compartmentalized to the lung. Notably, antigen-specific T cells in the bronchoalveolar lavage were sustained at ~5–10%. These data indicate that systemic administration of αCD40Ab may be particularly advantageous for vaccines and/or therapies requiring T cell immunity in the lung. PMID:26123354

  10. Distinct Pathways of Humoral and Cellular Immunity Induced with the Mucosal Administration of a Nanoemulsion Adjuvant

    PubMed Central

    Makidon, Paul E.; Janczak, Katarzyna W.; Blanco, Luz P.; Swanson, Benjamin; Smith, Douglas M.; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F.; Baker, James R.

    2014-01-01

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1– and Th-17–balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell–mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses. PMID:24532579

  11. Neuroprotective Effects of the Triterpenoid, CDDO Methyl Amide, a Potent Inducer of Nrf2-Mediated Transcription

    PubMed Central

    Yang, Lichuan; Calingasan, Noel Y.; Thomas, Bobby; Chaturvedi, Rajnish K.; Kiaei, Mahmoud; Wille, Elizabeth J.; Liby, Karen T.; Williams, Charlotte; Royce, Darlene; Risingsong, Renee; Musiek, Eric S.; Morrow, Jason D.; Sporn, Michael; Beal, M. Flint

    2009-01-01

    The NF-E2-related factor-2 (Nrf2)/antioxidant response element (ARE) signaling pathway regulates phase 2 detoxification genes, including a variety of antioxidative enzymes. We tested neuroprotective effects of the synthetic triterpenoid CDDO-MA, a potent activator of the Nrf2/ARE signaling. CDDO-MA treatment of neuroblastoma SH-SY5Y cells resulted in Nrf2 upregulation and translocation from cytosol to nucleus and subsequent activation of ARE pathway genes. CDDO-MA blocked t-butylhydroperoxide-induced production of reactive oxygen species (ROS) by activation of ARE genes only in wild type, but not Nrf2 knockout mouse embryonic fibroblasts. Oral administration of CDDO-MA resulted in significant protection against MPTP-induced nigrostriatal dopaminergic neurodegeneration, pathological alpha-synuclein accumulation and oxidative damage in mice. Additionally, CDDO-MA treatment in rats produced significant rescue against striatal lesions caused by the neurotoxin 3-NP, and associated increases in the oxidative damage markers malondialdehyde, F2-Isoprostanes, 8-hydroxy-2-deoxyguanosine, 3-nitrotyrosine, and impaired glutathione homeostasis. Our results indicate that the CDDO-MA renders its neuroprotective effects through its potent activation of the Nrf2/ARE pathway, and suggest that triterpenoids may be beneficial for the treatment of neurodegenerative diseases like Parkinson's disease and Huntington's disease. PMID:19484125

  12. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity.

    PubMed

    Carmi, Yaron; Spitzer, Matthew H; Linde, Ian L; Burt, Bryan M; Prestwood, Tyler R; Perlman, Nicola; Davidson, Matthew G; Kenkel, Justin A; Segal, Ehud; Pusapati, Ganesh V; Bhattacharya, Nupur; Engleman, Edgar G

    2015-05-01

    Whereas cancers grow within host tissues and evade host immunity through immune-editing and immunosuppression, tumours are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumours are reliably rejected by host T cells, even when the tumour and host share the same major histocompatibility complex alleles, the most potent determinants of transplant rejection. How such tumour-eradicating immunity is initiated remains unknown, although elucidating this process could provide the basis for inducing similar responses against naturally arising tumours. Here we find that allogeneic tumour rejection is initiated in mice by naturally occurring tumour-binding IgG antibodies, which enable dendritic cells (DCs) to internalize tumour antigens and subsequently activate tumour-reactive T cells. We exploited this mechanism to treat autologous and autochthonous tumours successfully. Either systemic administration of DCs loaded with allogeneic-IgG-coated tumour cells or intratumoral injection of allogeneic IgG in combination with DC stimuli induced potent T-cell-mediated antitumour immune responses, resulting in tumour eradication in mouse models of melanoma, pancreas, lung and breast cancer. Moreover, this strategy led to eradication of distant tumours and metastases, as well as the injected primary tumours. To assess the clinical relevance of these findings, we studied antibodies and cells from patients with lung cancer. T cells from these patients responded vigorously to autologous tumour antigens after culture with allogeneic-IgG-loaded DCs, recapitulating our findings in mice. These results reveal that tumour-binding allogeneic IgG can induce powerful antitumour immunity that can be exploited for cancer immunotherapy.

  13. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro

    NASA Astrophysics Data System (ADS)

    Dechristopher, Brian A.; Loy, Brian A.; Marsden, Matthew D.; Schrier, Adam J.; Zack, Jerome A.; Wender, Paul A.

    2012-09-01

    Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.

  14. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A.

    PubMed

    Smith, J C; Price, B M; Van Nimmen, K; Huylebroeck, D

    1990-06-21

    The first inductive interaction in amphibian development is mesoderm induction, when a signal from the vegetal hemisphere of the blastula induces mesoderm from overlying equatorial cells. Recently, several 'mesoderm-inducing factors' (MIFs) have been discovered. These cause isolated Xenopus animal caps to form mesodermal cell types such as muscle, instead of their normal fate of epidermis. The MIFs fall into two classes. One comprises members of the fibroblast growth factor (FGF) family, and the other members of the transforming growth factor type beta (TGF-beta) family. Of the latter group, the most potent is XTC-MIF, a protein produced by Xenopus XTC cells. Here we show that XTC-MIF is the homologue of mammalian activin A. Activins modulate the release of follicle-stimulating hormone from cultured anterior pituitary cells and cause the differentiation of two erythroleukaemia cell lines. Our results indicate that these molecules may also act in early development during formation of the mesoderm.

  15. Mucosal and systemic immune responses induced by a single time vaccination strategy in mice.

    PubMed

    González Aznar, Elizabeth; Romeu, Belkis; Lastre, Miriam; Zayas, Caridad; Cuello, Maribel; Cabrera, Osmir; Valdez, Yolanda; Fariñas, Mildrey; Pérez, Oliver

    2015-08-01

    Vaccination is considered by the World Health Organization as the most cost-effective strategy for controlling infectious diseases. In spite of great successes with vaccines, many infectious diseases are still leading killers, because of the inadequate coverage of many vaccines. Several factors have been responsible: number of doses, high vaccine reactogenicity, vaccine costs, vaccination policy, among others. Contradictorily, few vaccines are of single dose and even less of mucosal administration. However, more common infections occur via mucosa, where secretory immunoglobulin A plays an essential role. As an alternative, we proposed a novel protocol of vaccination called Single Time Vaccination Strategy (SinTimVaS) by immunizing 2 priming doses at the same time: one by mucosal route and the other by parenteral route. Here, the mucosal and systemic responses induced by Finlay adjuvants (AF Proteoliposome 1 and AF Cochleate 1) implementing SinTimVaS in BALB/c mice were evaluated. One intranasal dose of AF Cochleate 1 and an intramuscular dose of AF Proteoliposome 1 adsorbed onto aluminum hydroxide, with bovine serum albumin or tetanus toxoid as model antigens, administrated at the same time, induced potent specific mucosal and systemic immune responses. Also, we demonstrated that SinTimVaS using other mucosal routes like oral and sublingual, in combination with the subcutaneous route elicits immune responses. SinTimVaS, as a new immunization strategy, could increase vaccination coverage and reduce time-cost vaccines campaigns, adding the benefits of immune response in mucosa.

  16. PEGylated cholecystokinin is more potent in inducing anorexia than conditioned taste aversion in rats

    PubMed Central

    Verbaeys, I; León-Tamariz, F; Pottel, H; Decuypere, E; Swennen, Q; Cokelaere, M

    2008-01-01

    Background and purpose: The physiological involvement of endogenous cholecystokinin (CCK) in the termination of feeding has been challenged by evidence of aversive effects of exogenous CCK8. We previously prolonged the anorectic effect of CCK by conjugation to polyethylene glycol (PEGylation) to produce PEG-CCK9. In this study, we investigated the ability of different doses of PEG-CCK9 to induce conditioned taste aversion (CTA) and satiety and identified the receptors involved in CTA induction. Experimental approach: Induction of CTA, measured by the saccharin preference ratio determined in a two-bottle CTA procedure, and of satiety in adult male Wistar rats after intraperitoneal (i.p.) injection of different doses of PEG-CCK9 (1, 2, 4, 8, 16 or 32 μg kg−1) was compared. Devazepide (100 μg kg−1) and 2-NAP (3 mg kg−1), two selective CCK1-receptor antagonists, were co-administered i.p. with PEG-CCK9 (8 μg kg−1) and the CTA effects monitored. Key results: PEG-CCK9 dose-dependently induced CTA, with a minimal effective dose of 8 μg kg−1, whereas the minimal effective dose to induce satiety was 1 μg kg−1. The CTA effects of PEG-CCK9 were completely abolished by i.p. administration of devazepide prior to PEG-CCK9 treatment and only partially abolished by administration of 2-NAP. Conclusions and implications: Although PEG-CCK9-induced satiety and PEG-CCK9-induced CTA both increased with dose, the conjugate was more potent in inducing satiety, suggesting that the anorexia could not be completely attributed to the aversiveness of the drug. As observed with induction of satiety, PEG-CCK9-induced CTA was mediated by CCK1-receptors. PMID:18574458

  17. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Li, Yuhuan; Jiao, Jun; Hu, Hong-Ming

    2011-10-01

    Therapeutic cancer vaccination is an attractive strategy because it induces T cells of the immune system to recognize and kill tumour cells in cancer patients. However, it remains difficult to generate large numbers of T cells that can recognize the antigens on cancer cells using conventional vaccine carrier systems. Here we show that α-Al2O3 nanoparticles can act as an antigen carrier to reduce the amount of antigen required to activate T cells in vitro and in vivo. We found that α-Al2O3 nanoparticles delivered antigens to autophagosomes in dendritic cells, which then presented the antigens to T cells through autophagy. Immunization of mice with α-Al2O3 nanoparticles that are conjugated to either a model tumour antigen or autophagosomes derived from tumour cells resulted in tumour regression. These results suggest that α-Al2O3 nanoparticles may be a promising adjuvant in the development of therapeutic cancer vaccines.

  18. Mathematical models of immune-induced cancer dormancy and the emergence of immune evasion

    PubMed Central

    Wilkie, Kathleen P.; Hahnfeldt, Philip

    2013-01-01

    Cancer dormancy, a state in which cancer cells persist in a host without significant growth, is a natural forestallment of progression to manifest disease and is thus of great clinical interest. Experimental work in mice suggests that in immune-induced dormancy, the longer a cancer remains dormant in a host, the more resistant the cancer cells become to cytotoxic T-cell-mediated killing. In this work, mathematical models are used to analyse the possible causative mechanisms of cancer escape from immune-induced dormancy. Using a data-driven approach, both decaying efficacy in immune predation and immune recruitment are analysed with results suggesting that decline in recruitment is a stronger determinant of escape than increased resistance to predation. Using a mechanistic approach, the existence of an immune-resistant cancer cell subpopulation is considered, and the effects on cancer dormancy and potential immunoediting mechanisms of cancer escape are analysed and discussed. The immunoediting mechanism assumes that the immune system selectively prunes the cancer of immune-sensitive cells, which is shown to cause an initially heterogeneous population to become a more homogeneous, and more resistant, population. The fact that this selection may result in the appearance of decreasing efficacy in T-cell cytotoxic effect with time in dormancy is also demonstrated. This work suggests that through actions that temporarily delay cancer growth through the targeted removal of immune-sensitive subpopulations, the immune response may actually progress the cancer to a more aggressive state. PMID:24511375

  19. Allogeneic IgG combined with dendritic cell stimuli induces anti-tumor T cell immunity

    PubMed Central

    Carmi, Yaron; Spitzer, Matthew H.; Linde, Ian L.; Burt, Bryan M; Prestwood, Tyler R.; Perlman, Nikola; Davidson, Matthew G.; Kenkel, Justin A.; Segal, Ehud; Pusapati, Ganesh V.; Bhattacharya, Nupur; Engleman, Edgar G.

    2015-01-01

    While cancers grow in their hosts and evade host immunity through immunoediting and immunosuppression1–5, tumors are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumors are reliably rejected by host T cells, even when the tumor and host share the same major histocompatibility complex (MHC) alleles, the most potent determinants of transplant rejection6–10. How such tumor-eradicating immunity is initiated remains unknown, though elucidating this process could provide a roadmap for inducing similar responses against naturally arising tumors. We found that allogeneic tumor rejection is initiated by naturally occurring tumor-binding IgG antibodies, which enable dendritic cells (DC) to internalize tumor antigens and subsequently activate tumor-reactive T cells. We exploited this mechanism to successfully treat autologous and autochthonous tumors. Either systemic administration of DC loaded with allogeneic IgG (alloIgG)-coated tumor cells or intratumoral injection of alloIgG in combination with DC stimuli induced potent T cell mediated anti-tumor immune responses, resulting in tumor eradication in mouse models of melanoma, pancreas, lung and breast cancer. Moreover, this strategy led to eradication of distant tumors and metastases, as well as the injected primary tumors. To assess the clinical relevance of these findings, we studied antibodies and cells from patients with lung cancer. T cells from these patients responded vigorously to autologous tumor antigens after culture with alloIgG-loaded DC, recapitulating our findings in mice. These results reveal that tumor-binding alloIgG can induce powerful anti-tumor immunity that can be exploited for cancer immunotherapy. PMID:25924063

  20. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  1. New-to-nature sophorose analog: a potent inducer for gene expression in Trichoderma reesei.

    PubMed

    Huang, Tom Tao; Wages, John M

    2016-04-01

    Controlled hydrolysis of lactonic sophorolipids from Starmerella bombicola yields a previously undescribed sophorose analog that potently induces cellulase in Trichoderma reesei Rut-C30. Acid treatment of natural sophorolipids results in a mixture of monoacetylated, deacetylated, and diacetylated sophorolipids in acidic and lactonic forms. Isolation of the active components of the mixture, followed by structure determination by MS and NMR, reveals a new chemical entity, in which the lactone ring has been opened at the C-1' rather than at the C-4″ position of the sophorose moiety. This sophorose ester is resistant to degradation by the host and is at least 28 times more powerful an inducer than sophorose in shake-flask culture. Even at low concentrations (0.05 mM), the chemically modified sophorolipid effectively induces cellulase. With further improvements, this highly enabling technology can potentially reduce the cost of enzymes produced in T. reesei and can facilitate the rapid deployment of enzyme plants to support the nascent cellulosic biofuels and biochemicals industries. PMID:26920480

  2. New-to-nature sophorose analog: a potent inducer for gene expression in Trichoderma reesei.

    PubMed

    Huang, Tom Tao; Wages, John M

    2016-04-01

    Controlled hydrolysis of lactonic sophorolipids from Starmerella bombicola yields a previously undescribed sophorose analog that potently induces cellulase in Trichoderma reesei Rut-C30. Acid treatment of natural sophorolipids results in a mixture of monoacetylated, deacetylated, and diacetylated sophorolipids in acidic and lactonic forms. Isolation of the active components of the mixture, followed by structure determination by MS and NMR, reveals a new chemical entity, in which the lactone ring has been opened at the C-1' rather than at the C-4″ position of the sophorose moiety. This sophorose ester is resistant to degradation by the host and is at least 28 times more powerful an inducer than sophorose in shake-flask culture. Even at low concentrations (0.05 mM), the chemically modified sophorolipid effectively induces cellulase. With further improvements, this highly enabling technology can potentially reduce the cost of enzymes produced in T. reesei and can facilitate the rapid deployment of enzyme plants to support the nascent cellulosic biofuels and biochemicals industries.

  3. Cutaneous innate immune sensing of Toll-like receptor 2-6 ligands suppresses T cell immunity by inducing myeloid-derived suppressor cells.

    PubMed

    Skabytska, Yuliya; Wölbing, Florian; Günther, Claudia; Köberle, Martin; Kaesler, Susanne; Chen, Ko-Ming; Guenova, Emmanuella; Demircioglu, Doruk; Kempf, Wolfgang E; Volz, Thomas; Rammensee, Hans-Georg; Schaller, Martin; Röcken, Martin; Götz, Friedrich; Biedermann, Tilo

    2014-11-20

    Skin is constantly exposed to bacteria and antigens, and cutaneous innate immune sensing orchestrates adaptive immune responses. In its absence, skin pathogens can expand, entering deeper tissues and leading to life-threatening infectious diseases. To characterize skin-driven immunity better, we applied living bacteria, defined lipopeptides, and antigens cutaneously. We found suppression of immune responses due to cutaneous infection with Gram-positive S. aureus, which was based on bacterial lipopeptides. Skin exposure to Toll-like receptor (TLR)2-6-binding lipopeptides, but not TLR2-1-binding lipopeptides, potently suppressed immune responses through induction of Gr1(+)CD11b(+) myeloid-derived suppressor cells (MDSCs). Investigating human atopic dermatitis, in which Gram-positive bacteria accumulate, we detected high MDSC amounts in blood and skin. TLR2 activation in skin resident cells triggered interleukin-6 (IL-6), which induced suppressive MDSCs, which are then recruited to the skin suppressing T cell-mediated recall responses such as dermatitis. Thus, cutaneous bacteria can negatively regulate skin-driven immune responses by inducing MDSCs via TLR2-6 activation.

  4. Soluble Aβ seeds are potent inducers of cerebral β-amyloid deposition

    PubMed Central

    Langer, Franziska; Eisele, Yvonne S.; Fritschi, Sarah K.; Staufenbiel, Matthias; Walker, Lary C.; Jucker, Mathias

    2011-01-01

    Cerebral β-amyloidosis and associated pathologies can be exogenously induced by the intracerebral injection of small amounts of pathogenic Aβ-containing brain extract into young β-amyloid precursor protein (APP) transgenic mice. The probable β-amyloid-inducing factor in the brain extract has been identified as a species of aggregated Aβ that is generated in its most effective conformation or composition in vivo. Here we report that Aβ in the brain extract is more proteinase K- (PK) resistant than is synthetic fibrillar Aβ, and that this PK-resistant fraction of the brain extract retains the capacity to induce β-amyloid deposition upon intracerebral injection in young, pre-depositing APP23 transgenic mice. After ultra-centrifugation of the brain extract, less than 0.05% of the Aβ remained in the supernatant fraction, and these soluble Aβ species were largely PK-sensitive. However, upon intracerebral injection, this soluble fraction accounted for up to 30% of the β-amyloid induction observed with the un-fractionated extract. Fragmentation of the Aβ seeds by extended sonication increased the seeding capacity of the brain extract. In summary, these results suggest that multiple Aβ assemblies, with various PK sensitivities, are capable of inducing β-amyloid aggregation in vivo. The finding that small and soluble Aβ seeds are potent inducers of cerebral β-amyloidosis raises the possibility that such seeds may mediate the spread of β-amyloidosis in the brain. If they can be identified in vivo, soluble Aβ seeds in bodily fluids also could serve as early biomarkers for cerebral β-amyloidogenesis and eventually Alzheimer´s disease. PMID:21994365

  5. Protective effects of inhibitors of nitric oxide synthase in immune complex-induced vasculitis.

    PubMed Central

    Mulligan, M. S.; Moncada, S.; Ward, P. A.

    1992-01-01

    1. The ability of analogues of L-arginine (N-iminoethyl-L-ornithine (L-NIO), NG-monomethyl-L-arginine (L-NMMA), NG-nitro-L-arginine methyl ester (L-NAME) and NG-nitro-L-arginine (L-NNA)) to protect against inflammatory injury induced by activated neutrophils was investigated in rats following intradermal or intrapulmonary deposition of immune complexes. 2. The descending order of potency for protective effects of these analogues was: L-NIO > L-NMMA > L-NNA = L-NAME. The approximate IC50 value for L-NIO in the dermal vasculitis model was 65 microM. For all other compounds, the IC50 values were > 5 mM. 3. The protective effect of L-NIO in the skin was reversed in a dose-dependent manner by the presence of L-arginine, but not by D-arginine. L-Arginine also reversed the protective effects of L-NIO in immune complex-induced lung injury. 4. The protective effects of L-NIO were not associated with reductions in neutrophil accumulation, as measured by extraction from tissues of myeloperoxidase. 5. These data demonstrate that L-NIO has the most potent protective effects against immune complex-induced vascular injury induced by activated macrophages. Furthermore, they indicate that this injury is dependent upon the generation of nitric oxide. PMID:1281719

  6. Characterization of Potent SMAC Mimetics that Sensitize Cancer Cells to TNF Family-Induced Apoptosis

    PubMed Central

    Welsh, Kate; Milutinovic, Snezana; Ardecky, Robert J.; Gonzalez-Lopez, Marcos; Ganji, Santhi Reddy; Finlay, Darren; Riedl, Stefan; Matsuzawa, Shu-ichi; Pinilla, Clemencia; Houghten, Richard; Vuori, Kristiina; Reed, John C.; Cosford, Nicholas D. P.

    2016-01-01

    Members of the Inhibitor of APoptosis (IAP) protein family suppress apoptosis within tumor cells, particularly in the context of immune cell-mediated killing by the tumor necrosis factor (TNF) superfamily cytokines. Most IAPs are opposed endogenously by the second mitochondrial activator of caspases (SMAC), which binds to selected baculovirus IAP repeat (BIR) domains of IAPs to displace interacting proteins. The development of SMAC mimetics as novel anticancer drugs has gained impetus, with several agents now in human clinical trials. To further understand the cellular mechanisms of SMAC mimetics, we focused on IAP family members cIAP1 and cIAP2, which are recruited to TNF receptor complexes where they support cell survival through NF-κB activation while suppressing apoptosis by preventing caspase activation. We established fluorescence polarization (FP) assays for the BIR2 and BIR3 domains of human cIAP1 and cIAP2 using fluorochrome-conjugated SMAC peptides as ligands. A library of SMAC mimetics was profiled using the FP assays to provide a unique structure activity relationship (SAR) analysis compared to previous assessments of binding to XIAP. Potent compounds displayed mean inhibitory binding constants (Ki) of 9 to 27 nM against the BIR3 domains of cIAP1 and cIAP2, respectively. Selected compounds were then characterized using cytotoxicity assays in which a cytokine-resistant human tumor cell line was sensitized to either TNF or lymphotoxin-α (LT-α). Cytotoxicity correlated closely with cIAP1 and cIAP2 BIR3 binding activity with the most potent compounds able to reduce cell viability by 50%. Further testing demonstrated that active compounds also inhibit RIP1 binding to BIR3 of cIAP1 and cIAP2 in vitro and reduce steady-state cIAP1 protein levels in cells. Altogether, these data inform the SAR for our SMAC mimetics with respect to cIAP1 and cIAP2, suggesting that these IAP family members play an important role in tumor cell resistance to cytotoxicity

  7. Characterization of Potent SMAC Mimetics that Sensitize Cancer Cells to TNF Family-Induced Apoptosis.

    PubMed

    Welsh, Kate; Milutinovic, Snezana; Ardecky, Robert J; Gonzalez-Lopez, Marcos; Ganji, Santhi Reddy; Teriete, Peter; Finlay, Darren; Riedl, Stefan; Matsuzawa, Shu-Ichi; Pinilla, Clemencia; Houghten, Richard; Vuori, Kristiina; Reed, John C; Cosford, Nicholas D P

    2016-01-01

    Members of the Inhibitor of APoptosis (IAP) protein family suppress apoptosis within tumor cells, particularly in the context of immune cell-mediated killing by the tumor necrosis factor (TNF) superfamily cytokines. Most IAPs are opposed endogenously by the second mitochondrial activator of caspases (SMAC), which binds to selected baculovirus IAP repeat (BIR) domains of IAPs to displace interacting proteins. The development of SMAC mimetics as novel anticancer drugs has gained impetus, with several agents now in human clinical trials. To further understand the cellular mechanisms of SMAC mimetics, we focused on IAP family members cIAP1 and cIAP2, which are recruited to TNF receptor complexes where they support cell survival through NF-κB activation while suppressing apoptosis by preventing caspase activation. We established fluorescence polarization (FP) assays for the BIR2 and BIR3 domains of human cIAP1 and cIAP2 using fluorochrome-conjugated SMAC peptides as ligands. A library of SMAC mimetics was profiled using the FP assays to provide a unique structure activity relationship (SAR) analysis compared to previous assessments of binding to XIAP. Potent compounds displayed mean inhibitory binding constants (Ki) of 9 to 27 nM against the BIR3 domains of cIAP1 and cIAP2, respectively. Selected compounds were then characterized using cytotoxicity assays in which a cytokine-resistant human tumor cell line was sensitized to either TNF or lymphotoxin-α (LT-α). Cytotoxicity correlated closely with cIAP1 and cIAP2 BIR3 binding activity with the most potent compounds able to reduce cell viability by 50%. Further testing demonstrated that active compounds also inhibit RIP1 binding to BIR3 of cIAP1 and cIAP2 in vitro and reduce steady-state cIAP1 protein levels in cells. Altogether, these data inform the SAR for our SMAC mimetics with respect to cIAP1 and cIAP2, suggesting that these IAP family members play an important role in tumor cell resistance to cytotoxicity

  8. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors.

    PubMed

    Schölch, Sebastian; Rauber, Conrad; Tietz, Alexandra; Rahbari, Nuh N; Bork, Ulrich; Schmidt, Thomas; Kahlert, Christoph; Haberkorn, Uwe; Tomai, Mark A; Lipson, Kenneth E; Carretero, Rafael; Weitz, Jürgen; Koch, Moritz; Huber, Peter E

    2015-03-10

    In addition to local cytotoxic activity, radiotherapy may also elicit local and systemic antitumor immunity, which may be augmented by immunotherapeutic agents including Toll-like receptor (TLR) 7/8 agonists. Here, we investigated the ability of 3M-011 (854A), a TLR7/8 agonist, to boost the antigen-presenting activity of dendritic cells (DC) as an adjuvant to radiotherapy. The combined treatment induced marked local and systemic responses in subcutaneous and orthotopic mouse models of colorectal and pancreatic cancer. In vitro cytotoxicity assays as well as in vivo depletion experiments with monoclonal antibodies identified NK and CD8 T cells as the cell populations mediating the cytotoxic effects of the treatment, while in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-DTR transgenic mice revealed DC as the pivotal immune hub in this setting. The specificity of the immune reaction was confirmed by ELISPOT assays. TLR7/8 agonists therefore seem to be potent adjuvants to radiotherapy, inducing strong local and profound systemic immune responses to tumor antigens released by conventional therapy.

  9. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors

    PubMed Central

    Tietz, Alexandra; Rahbari, Nuh N.; Bork, Ulrich; Schmidt, Thomas; Kahlert, Christoph; Haberkorn, Uwe; Tomai, Mark A.; Lipson, Kenneth E.; Carretero, Rafael; Weitz, Jürgen; Koch, Moritz; Huber, Peter E.

    2015-01-01

    In addition to local cytotoxic activity, radiotherapy may also elicit local and systemic antitumor immunity, which may be augmented by immunotherapeutic agents including Toll-like receptor (TLR) 7/8 agonists. Here, we investigated the ability of 3M-011 (854A), a TLR7/8 agonist, to boost the antigen-presenting activity of dendritic cells (DC) as an adjuvant to radiotherapy. The combined treatment induced marked local and systemic responses in subcutaneous and orthotopic mouse models of colorectal and pancreatic cancer. In vitro cytotoxicity assays as well as in vivo depletion experiments with monoclonal antibodies identified NK and CD8 T cells as the cell populations mediating the cytotoxic effects of the treatment, while in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-DTR transgenic mice revealed DC as the pivotal immune hub in this setting. The specificity of the immune reaction was confirmed by ELISPOT assays. TLR7/8 agonists therefore seem to be potent adjuvants to radiotherapy, inducing strong local and profound systemic immune responses to tumor antigens released by conventional therapy. PMID:25609199

  10. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway

    PubMed Central

    Wan, Gang; Xie, Weidong; Liu, Zhenyan; Xu, Wei; Lao, Yuanzhi; Huang, Nunu; Cui, Kai; Liao, Meijian; He, Jie; Jiang, Yuyang; Yang, Burton B; Xu, Hongxi; Xu, Naihan; Zhang, Yaou

    2014-01-01

    Hypoxia activates autophagy, an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been implicated in an increasing number of human diseases, including cancer. Hypoxia induces upregulation of a specific set of microRNAs (miRNAs) in a variety of cell types. Here, we describe hypoxia-induced MIR155 as a potent inducer of autophagy. Enforced expression of MIR155 increases autophagic activity in human nasopharyngeal cancer and cervical cancer cells. Knocking down endogenous MIR155 inhibits hypoxia-induced autophagy. We demonstrated that MIR155 targets multiple players in MTOR signaling, including RHEB, RICTOR, and RPS6KB2. MIR155 suppresses target-gene expression by directly interacting with their 3′ untranslated regions (UTRs), mutations of the binding sites abolish their MIR155 responsiveness. Furthermore, by downregulating MTOR signaling, MIR155 also attenuates cell proliferation and induces G1/S cell cycle arrest. Collectively, these data present a new role for MIR155 as a key regulator of autophagy via dysregulation of MTOR pathway. PMID:24262949

  11. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network

    PubMed Central

    Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan

    2015-01-01

    Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088

  12. Active immunization by a dengue virus-induced cytokine.

    PubMed Central

    Chaturvedi, U C; Mukerjee, R; Dhawan, R

    1994-01-01

    Dengue type 2 virus (DV)-induced cytotoxic factor (CF) is capable of reproducing various pathological lesions in mice that are seen in human dengue. The present study was undertaken to investigate the protective effect of active immunization of mice with CF. Mice were immunized with 5 microgram of CF and prevention of CF-induced increase in capillary permeability and damage to the blood-brain barrier were studied at weekly intervals, up to 48 weeks, by challenging with 3 microgram of CF. Maximum protection against increase in capillary permeability and damage to the blood-brain barrier was observed in week 4 after immunization. A breakthrough in the protection occurred with higher doses of CF in a dose-dependent manner. Challenge with a lethal intracerebral (i.c.) dose of DV showed significantly prolonged mean survival time and delayed onset of symptoms of sickness in the immunized mice compared with the normal mice, but the titre of the virus in the brain was similar in the two groups. On i.p. challenge with the virus the protection against damage to the blood-brain barrier was 86 +/- 7% at week 4 and 17 +/- 4% at week 26 after immunization. Sera obtained from the immunized mice showed the presence of CF-specific antibodies by ELISA, Western blot, and by neutralization of the cytotoxic activity of CF in vitro. The present study describes successful prevention of a cytokine-induced pathology by specific active immunization. PMID:8187327

  13. Nasal Immunization with Lactococcus lactis Expressing the Pneumococcal Protective Protein A Induces Protective Immunity in Mice▿

    PubMed Central

    Medina, Marcela; Villena, Julio; Vintiñi, Elisa; Hebert, Elvira María; Raya, Raúl; Alvarez, Susana

    2008-01-01

    Nisin-controlled gene expression was used to develop a recombinant strain of Lactococcus lactis that is able to express the pneumococcal protective protein A (PppA) on its surface. Immunodetection assays confirmed that after the induction with nisin, the PppA antigen was predictably and efficiently displayed on the cell surface of the recombinant strain, which was termed L. lactis PppA. The production of mucosal and systemically specific antibodies in adult and young mice was evaluated after mice were nasally immunized with L. lactis PppA. Immunoglobulin M (IgM), IgG, and IgA anti-PppA antibodies were detected in the serum and bronchoalveolar lavage fluid of adult and young mice, which showed that PppA expressed in L. lactis was able to induce a strong mucosal and systemic immune response. Challenge survival experiments demonstrated that immunization with L. lactis PppA was able to increase resistance to systemic and respiratory infection with different pneumococcal serotypes, and passive immunization assays of naïve young mice demonstrated a direct correlation between anti-PppA antibodies and protection. The results presented in this study demonstrate three major characteristics of the effectiveness of nasal immunization with PppA expressed as a protein anchored to the cell wall of L. lactis: it elicited cross-protective immunity against different pneumococcal serotypes, it afforded protection against both systemic and respiratory challenges, and it induced protective immunity in mice of different ages. PMID:18390997

  14. Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism.

    PubMed

    Mason, R Preston; Jacob, Robert F

    2015-02-01

    Lipid oxidation leads to endothelial dysfunction, inflammation, and foam cell formation during atherogenesis. Glucose also contributes to lipid oxidation and promotes pathologic changes in membrane structural organization, including the development of cholesterol crystalline domains. In this study, we tested the comparative effects of eicosapentaenoic acid (EPA), an omega-3 fatty acid indicated for the treatment of very high triglyceride (TG) levels, and other TG-lowering agents (fenofibrate, niacin, and gemfibrozil) on lipid oxidation in human low-density lipoprotein (LDL) as well as membrane lipid vesicles prepared in the presence of glucose (200 mg/dL). We also examined the antioxidant effects of EPA in combination with atorvastatin o-hydroxy (active) metabolite (ATM). Glucose-induced changes in membrane structural organization were measured using small angle x-ray scattering approaches and correlated with changes in lipid hydroperoxide (LOOH) levels. EPA was found to inhibit LDL oxidation in a dose-dependent manner (1.0-10.0 µM) and was distinguished from the other TG-lowering agents, which had no significant effect as compared to vehicle treatment alone. Similar effects were observed in membrane lipid vesicles exposed to hyperglycemic conditions. The antioxidant activity of EPA, as observed in glucose-treated vesicles, was significantly enhanced in combination with ATM. Glucose treatment produced highly-ordered, membrane-restricted, cholesterol crystalline domains, which correlated with increased LOOH levels. Of the agents tested in this study, only EPA inhibited glucose-induced cholesterol domain formation. These data demonstrate that EPA, at pharmacologic levels, inhibits hyperglycemia-induced changes in membrane lipid structural organization through a potent antioxidant mechanism associated with its distinct, physicochemical interactions with the membrane bilayer. PMID:25449996

  15. Innate Immune Response Induced by Baculovirus Attenuates Transgene Expression in Mammalian Cells

    PubMed Central

    Ono, Chikako; Ninomiya, Akinori; Yamamoto, Satomi; Abe, Takayuki; Wen, Xiauyu; Fukuhara, Takasuke; Sasai, Miwa; Yamamoto, Masahiro; Saitoh, Tatsuya; Satoh, Takashi; Kawai, Taro; Ishii, Ken J.; Akira, Shizuo; Okamoto, Toru

    2014-01-01

    The baculovirus Autographa californica nucleopolyhedrovirus (AcNPV) has been widely used to achieve a high level of foreign gene expression in insect cells, as well as for efficient gene transduction into mammalian cells without any replication. In addition to permitting efficient gene delivery, baculovirus has been shown to induce host innate immune responses in various mammalian cells and in mice. In this study, we examined the effects of the innate immune responses on gene expression by recombinant baculoviruses in cultured cells. The reporter gene expression in IRF3-deficient mouse embryonic fibroblasts (MEFs) infected with the recombinant baculovirus was shown to be enhanced in accordance with the suppression of beta interferon (IFN-β) production. Furthermore, efficient gene transduction by the recombinant baculovirus was achieved in MEFs deficient for stimulator of interferon genes (STING), TANK binding kinase 1 (TBK1), IFN regulatory factor 3 (IRF3), or IFN-β promoter stimulator 1 (IPS-1), but not in those deficient for IRF7, MyD88, or Z-DNA binding protein 1 (ZBP1)/DAI. Enhancement of gene expression by the recombinant baculovirus was also observed in human hepatoma cell lines replicating hepatitis C virus (HCV), in which innate immunity was impaired by the cleavage of IPS-1 by the viral protease. In addition, infection with the recombinant baculovirus expressing the BH3-only protein, BIMS, a potent inducer of apoptosis, resulted in a selective cell death in the HCV replicon cells. These results indicate that innate immune responses induced by infection with baculovirus attenuate transgene expression, and this characteristic might be useful for a selective gene transduction into cells with impaired innate immunity arising from infection with various viruses. PMID:24335288

  16. Extracellular amastigotes of Trypanosoma cruzi are potent inducers of phagocytosis in mammalian cells.

    PubMed

    Fernandes, Maria Cecilia; Flannery, Andrew R; Andrews, Norma; Mortara, Renato A

    2013-06-01

    The protozoan parasite Trypanosoma cruzi, the aetiological agent of Chagas' disease, has two infective life cycle stages, trypomastigotes and amastigotes. While trypomastigotes actively enter mammalian cells, highly infective extracellular amastigotes (type I T. cruzi) rely on actin-mediated uptake, which is generally inefficient in non-professional phagocytes. We found that extracellular amastigotes (EAs) of T. cruzi G strain (type I), but not Y strain (type II), were taken up 100-fold more efficiently than inert particles. Mammalian cell lines showed levels of parasite uptake comparable to macrophages, and extensive actin recruitment and polymerization was observed at the site of entry. EA uptake was not dependent on parasite-secreted molecules and required the same molecular machinery utilized by professional phagocytes during large particle phagocytosis. Transcriptional silencing of synaptotagmin VII and CD63 significantly inhibited EA internalization, demonstrating that delivery of supplemental lysosomal membrane to form the phagosome is involved in parasite uptake. Importantly, time-lapse live imaging using fluorescent reporters revealed phagosome-associated modulation of phosphoinositide metabolism during EA uptake that closely resembles what occurs during phagocytosis by macrophages. Collectively, our results demonstrate that T. cruzi EAs are potent inducers of phagocytosis in non-professional phagocytes, a process that may facilitate parasite persistence in infected hosts.

  17. Potent degradation of neuronal miRNAs induced by highly complementary targets

    PubMed Central

    de la Mata, Manuel; Gaidatzis, Dimos; Vitanescu, Mirela; Stadler, Michael B; Wentzel, Corinna; Scheiffele, Peter; Filipowicz, Witold; Großhans, Helge

    2015-01-01

    MicroRNAs (miRNAs) regulate target mRNAs by silencing them. Reciprocally, however, target mRNAs can also modulate miRNA stability. Here, we uncover a remarkable efficacy of target RNA-directed miRNA degradation (TDMD) in rodent primary neurons. Coincident with degradation, and while still bound to Argonaute, targeted miRNAs are 3′ terminally tailed and trimmed. Absolute quantification of both miRNAs and their decay-inducing targets suggests that neuronal TDMD is multiple turnover and does not involve co-degradation of the target but rather competes with miRNA-mediated decay of the target. Moreover, mRNA silencing, but not TDMD, relies on cooperativity among multiple target sites to reach high efficacy. This knowledge can be harnessed for effective depletion of abundant miRNAs. Our findings bring insight into a potent miRNA degradation pathway in primary neurons, whose TDMD activity greatly surpasses that of non-neuronal cells and established cell lines. Thus, TDMD may be particularly relevant for miRNA regulation in the nervous system. PMID:25724380

  18. Allergen challenge during halothane compared to isoflurane anesthesia induces a more potent peripheral lung response.

    PubMed

    Borges, Marcos C; Marchica, Cinzia L; Narayanan, Venkatesan; Ludwig, Mara S

    2013-10-01

    Allergen instillation in anaesthetized vs. awake animals results in increased distribution of allergen in the lung. Halothane is a more potent bronchodilator of the small airways than isoflurane. As small airways contribute to asthma pathogenesis, we questioned whether intranasal challenge under halothane vs. isoflurane anesthesia would lead to an increase in allergen deposition in the lung periphery and, consequently, an enhanced allergic response. C57Bl/6 mice were sensitized twice and repeatedly challenged with ovalbumin (OA) under halothane or isoflurane anesthesia. After OA-challenge, in vivo lung function was measured and BAL performed. Peribronchial and peripheral inflammation, cytokine mRNA production and collagen deposition were assessed. Airway hyperresponsiveness, BAL eosinophilia, peripheral lung inflammation, IL-5 mRNA production and collagen deposition were significantly increased in halothane OA-challenged compared to isoflurane OA-challenged mice. Airway challenge induced a higher level of airway hyperresponsiveness, inflammation and remodeling under halothane than isoflurane anesthesia in a murine model of asthma. These differences may be due to increased allergen deposition in the small airways. PMID:23876740

  19. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development

    SciTech Connect

    McMorris, F.A.; Smith, T.M.; DeSalvo, S.; Furlanetto, R.W.

    1986-02-01

    Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetal bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition.

  20. Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer

    PubMed Central

    2014-01-01

    Background Polyoxypeptin A was isolated from a culture broth of Streptomyces sp. MK498-98 F14, which has a potent apoptosis-inducing activity towards human pancreatic carcinoma AsPC-1 cells. Structurally, polyoxypeptin A is composed of a C15 acyl side chain and a nineteen-membered cyclodepsipeptide core that consists of six unusual nonproteinogenic amino acid residues (N-hydroxyvaline, 3-hydroxy-3-methylproline, 5-hydroxypiperazic acid, N-hydroxyalanine, piperazic acid, and 3-hydroxyleucine) at high oxidation states. Results A gene cluster containing 37 open reading frames (ORFs) has been sequenced and analyzed for the biosynthesis of polyoxypeptin A. We constructed 12 specific gene inactivation mutants, most of which abolished the production of polyoxypeptin A and only ΔplyM mutant accumulated a dehydroxylated analogue polyoxypeptin B. Based on bioinformatics analysis and genetic data, we proposed the biosynthetic pathway of polyoxypeptin A and biosynthetic models of six unusual amino acid building blocks and a PKS extender unit. Conclusions The identified gene cluster and proposed pathway for the biosynthesis of polyoxypeptin A will pave a way to understand the biosynthetic mechanism of the azinothricin family natural products and provide opportunities to apply combinatorial biosynthesis strategy to create more useful compounds. PMID:24506891

  1. CRISPR-induced distributed immunity in microbial populations.

    PubMed

    Childs, Lauren M; England, Whitney E; Young, Mark J; Weitz, Joshua S; Whitaker, Rachel J

    2014-01-01

    In bacteria and archaea, viruses are the primary infectious agents, acting as virulent, often deadly pathogens. A form of adaptive immune defense known as CRISPR-Cas enables microbial cells to acquire immunity to viral pathogens by recognizing specific sequences encoded in viral genomes. The unique biology of this system results in evolutionary dynamics of host and viral diversity that cannot be fully explained by the traditional models used to describe microbe-virus coevolutionary dynamics. Here, we show how the CRISPR-mediated adaptive immune response of hosts to invading viruses facilitates the emergence of an evolutionary mode we call distributed immunity - the coexistence of multiple, equally-fit immune alleles among individuals in a microbial population. We use an eco-evolutionary modeling framework to quantify distributed immunity and demonstrate how it emerges and fluctuates in multi-strain communities of hosts and viruses as a consequence of CRISPR-induced coevolution under conditions of low viral mutation and high relative numbers of viral protospacers. We demonstrate that distributed immunity promotes sustained diversity and stability in host communities and decreased viral population density that can lead to viral extinction. We analyze sequence diversity of experimentally coevolving populations of Streptococcus thermophilus and their viruses where CRISPR-Cas is active, and find the rapid emergence of distributed immunity in the host population, demonstrating the importance of this emergent phenomenon in evolving microbial communities.

  2. CRISPR-Induced Distributed Immunity in Microbial Populations

    PubMed Central

    Young, Mark J.; Weitz, Joshua S.; Whitaker, Rachel J.

    2014-01-01

    In bacteria and archaea, viruses are the primary infectious agents, acting as virulent, often deadly pathogens. A form of adaptive immune defense known as CRISPR-Cas enables microbial cells to acquire immunity to viral pathogens by recognizing specific sequences encoded in viral genomes. The unique biology of this system results in evolutionary dynamics of host and viral diversity that cannot be fully explained by the traditional models used to describe microbe-virus coevolutionary dynamics. Here, we show how the CRISPR-mediated adaptive immune response of hosts to invading viruses facilitates the emergence of an evolutionary mode we call distributed immunity - the coexistence of multiple, equally-fit immune alleles among individuals in a microbial population. We use an eco-evolutionary modeling framework to quantify distributed immunity and demonstrate how it emerges and fluctuates in multi-strain communities of hosts and viruses as a consequence of CRISPR-induced coevolution under conditions of low viral mutation and high relative numbers of viral protospacers. We demonstrate that distributed immunity promotes sustained diversity and stability in host communities and decreased viral population density that can lead to viral extinction. We analyze sequence diversity of experimentally coevolving populations of Streptococcus thermophilus and their viruses where CRISPR-Cas is active, and find the rapid emergence of distributed immunity in the host population, demonstrating the importance of this emergent phenomenon in evolving microbial communities. PMID:25000306

  3. Induced immunity against hepatitis B virus

    PubMed Central

    Said, Zeinab Nabil Ahmed; Abdelwahab, Kouka Saadeldin

    2015-01-01

    Prevention of hepatitis B virus (HBV) infection with its consequent development of HBV chronic liver disease and hepatocellular carcinoma is a global mandatory goal. Fortunately, safe and effective HBV vaccines are currently available. Universal hepatitis B surface antigen HBV vaccination coverage is almost done. Growing knowledge based upon monitoring and surveillance of HBV vaccination programs has accumulated and the policy of booster vaccination has been evaluated. This review article provides an overview of the natural history of HBV infection, immune responses and the future of HBV infection. It also summarizes the updated sources, types and uses of HBV vaccines, whether in the preclinical phase or in the post-field vaccination. PMID:26140085

  4. High-Content Screening in Zebrafish Embryos Identifies Butafenacil as a Potent Inducer of Anemia

    PubMed Central

    Leet, Jessica K.; Lindberg, Casey D.; Bassett, Luke A.; Isales, Gregory M.; Yozzo, Krystle L.; Raftery, Tara D.; Volz, David C.

    2014-01-01

    Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency's (EPA's) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA's ToxCast Phase-I library in concentration-response format (0.05–50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO) – an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors – flumioxazin – resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis

  5. Interleukin-17-induced protein lipocalin 2 is dispensable for immunity to oral candidiasis.

    PubMed

    Ferreira, Maria Carolina; Whibley, Natasha; Mamo, Anna J; Siebenlist, Ulrich; Chan, Yvonne R; Gaffen, Sarah L

    2014-03-01

    Oropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17-mediated host defense remain unclear. Lipocalin 2 (Lcn2; 24p3; neutrophil gelatinase-associated lipocalin [NGAL]) is an antimicrobial host defense factor produced in response to inflammatory cytokines, particularly IL-17. Lcn2 plays a key role in preventing iron acquisition by bacteria that use catecholate-type siderophores, and lipocalin 2(-/-) mice are highly susceptible to infection by Escherichia coli and Klebsiella pneumoniae. The role of Lcn2 in mediating immunity to fungi is poorly defined. Accordingly, in this study, we evaluated the role of Lcn2 in immunity to oral infection with C. albicans. Lcn2 is strongly upregulated following oral infection with C. albicans, and its expression is almost entirely abrogated in mice with defective IL-17 signaling (IL-17RA(-/-) or Act1(-/-) mice). However, Lcn2(-/-) mice were completely resistant to OPC, comparably to wild-type (WT) mice. Moreover, Lcn2 deficiency mediated protection from OPC induced by steroid immunosuppression. Therefore, despite its potent regulation during C. albicans infection, Lcn2 is not required for immunity to mucosal candidiasis.

  6. Interleukin-17-Induced Protein Lipocalin 2 Is Dispensable for Immunity to Oral Candidiasis

    PubMed Central

    Ferreira, Maria Carolina; Whibley, Natasha; Mamo, Anna J.; Siebenlist, Ulrich; Chan, Yvonne R.

    2014-01-01

    Oropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17-mediated host defense remain unclear. Lipocalin 2 (Lcn2; 24p3; neutrophil gelatinase-associated lipocalin [NGAL]) is an antimicrobial host defense factor produced in response to inflammatory cytokines, particularly IL-17. Lcn2 plays a key role in preventing iron acquisition by bacteria that use catecholate-type siderophores, and lipocalin 2−/− mice are highly susceptible to infection by Escherichia coli and Klebsiella pneumoniae. The role of Lcn2 in mediating immunity to fungi is poorly defined. Accordingly, in this study, we evaluated the role of Lcn2 in immunity to oral infection with C. albicans. Lcn2 is strongly upregulated following oral infection with C. albicans, and its expression is almost entirely abrogated in mice with defective IL-17 signaling (IL-17RA−/− or Act1−/− mice). However, Lcn2−/− mice were completely resistant to OPC, comparably to wild-type (WT) mice. Moreover, Lcn2 deficiency mediated protection from OPC induced by steroid immunosuppression. Therefore, despite its potent regulation during C. albicans infection, Lcn2 is not required for immunity to mucosal candidiasis. PMID:24343647

  7. Nanomaterial Induced Immune Responses and Cytotoxicity.

    PubMed

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines.

  8. Nanomaterial Induced Immune Responses and Cytotoxicity.

    PubMed

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines. PMID:27398432

  9. Transcutaneous vaccination using a hydrogel patch induces effective immune responses to tetanus and diphtheria toxoid in hairless rat.

    PubMed

    Matsuo, Kazuhiko; Ishii, Yumiko; Quan, Ying-Shu; Kamiyama, Fumio; Mukai, Yohei; Yoshioka, Yasuo; Okada, Naoki; Nakagawa, Shinsaku

    2011-01-01

    Transcutaneous immunization (TCI) targeting the Langerhans cells (LCs) of the epidermal layer is a promising needle-free, easy-to-use, and non-invasive vaccination method. We developed a hydrogel patch formulation to promote the penetration of antigenic proteins into the stratum corneum. Here, we investigated the characteristics of the immune responses induced by this vaccination method and the vaccine efficacy of TCI using a hydrogel patch containing tetanus and diphtheria toxoids. Our TCI system induced toxoid-specific IgG production in an antigen dose-, patch area-, and application period-dependent manner. Moreover, IgG subclass analysis indicated that our TCI predominantly elicited a Th2-type immune response rather than a Th1-type immune response. Importantly, our TCI system induced antigen-specific immune memory based on the booster effect and showed potent efficacy, comparable to that of subcutaneous immunization in toxin-challenge experiments. On the basis of these results, we are now performing translational research to apply TCI for tetanus and diphtheria.

  10. Activation of antigen-exposed iMC-DCs at the "right place" and "right time" promotes potent anti-tumor immunity.

    PubMed

    Spencer, David M

    2012-05-01

    To better control the "licensing" of pro-Th1 dendritic cells (DCs), Spencer and colleagues have developed a synthetic ligand-inducible chimeric receptor, iMyD88/CD40 (iMC), incorporating synergistic Toll-like receptor (TLR) and costimulatory signaling elements, permitting DC regulation in vivo within the context of an immunological synapse. This novel technology results in potent anti-cancer activity.

  11. Potent Paracrine Effects of human induced Pluripotent Stem Cell-derived Mesenchymal Stem Cells Attenuate Doxorubicin-induced Cardiomyopathy

    PubMed Central

    Zhang, Yuelin; Liang, Xiaoting; Liao, Songyan; Wang, Weixin; Wang, Junwen; Li, Xiang; Ding, Yue; Liang, Yingmin; Gao, Fei; Yang, Mo; Fu, Qingling; Xu, Aimin; Chai, Yuet-Hung; He, Jia; Tse, Hung-Fat; Lian, Qizhou

    2015-01-01

    Transplantation of bone marrow mesenchymal stem cells (BM-MSCs) can protect cardiomyocytes against anthracycline-induced cardiomyopathy (AIC) through paracrine effects. Nonetheless the paracrine effects of human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) on AIC are poorly understood. In vitro studies reveal that doxorubicin (Dox)-induced reactive oxidative stress (ROS) generation and cell apoptosis in neonatal rat cardiomyocytes (NRCMs) are significantly reduced when treated with conditioned medium harvested from BM-MSCs (BM-MSCs-CdM) or iPSC-MSCs (iPSC-MSCs-CdM). Compared with BM-MSCs-CdM, NRCMs treated with iPSC-MSCs-CdM exhibit significantly less ROS and cell apoptosis in a dose-dependent manner. Transplantation of BM-MSCs-CdM or iPSC-MSCs-CdM into mice with AIC remarkably attenuated left ventricular (LV) dysfunction and dilatation. Compared with BM-MSCs-CdM, iPSC-MSCs-CdM treatment showed better alleviation of heart failure, less cardiomyocyte apoptosis and fibrosis. Analysis of common and distinct cytokines revealed that macrophage migration inhibitory factor (MIF) and growth differentiation factor-15 (GDF-15) were uniquely overpresented in iPSC-MSC-CdM. Immunodepletion of MIF and GDF-15 in iPSC-MSCs-CdM dramatically decreased cardioprotection. Injection of GDF-15/MIF cytokines could partially reverse Dox-induced heart dysfunction. We suggest that the potent paracrine effects of iPSC-MSCs provide novel “cell-free” therapeutic cardioprotection against AIC, and that MIF and GDF-15 in iPSC-MSCs-CdM are critical for these enhanced cardioprotective effects. PMID:26057572

  12. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1.

    PubMed

    Vacchelli, Erika; Ma, Yuting; Baracco, Elisa E; Sistigu, Antonella; Enot, David P; Pietrocola, Federico; Yang, Heng; Adjemian, Sandy; Chaba, Kariman; Semeraro, Michaela; Signore, Michele; De Ninno, Adele; Lucarini, Valeria; Peschiaroli, Francesca; Businaro, Luca; Gerardino, Annamaria; Manic, Gwenola; Ulas, Thomas; Günther, Patrick; Schultze, Joachim L; Kepp, Oliver; Stoll, Gautier; Lefebvre, Céline; Mulot, Claire; Castoldi, Francesca; Rusakiewicz, Sylvie; Ladoire, Sylvain; Apetoh, Lionel; Bravo-San Pedro, José Manuel; Lucattelli, Monica; Delarasse, Cécile; Boige, Valérie; Ducreux, Michel; Delaloge, Suzette; Borg, Christophe; André, Fabrice; Schiavoni, Giovanna; Vitale, Ilio; Laurent-Puig, Pierre; Mattei, Fabrizio; Zitvogel, Laurence; Kroemer, Guido

    2015-11-20

    Antitumor immunity driven by intratumoral dendritic cells contributes to the efficacy of anthracycline-based chemotherapy in cancer. We identified a loss-of-function allele of the gene coding for formyl peptide receptor 1 (FPR1) that was associated with poor metastasis-free and overall survival in breast and colorectal cancer patients receiving adjuvant chemotherapy. The therapeutic effects of anthracyclines were abrogated in tumor-bearing Fpr1(-/-) mice due to impaired antitumor immunity. Fpr1-deficient dendritic cells failed to approach dying cancer cells and, as a result, could not elicit antitumor T cell immunity. Experiments performed in a microfluidic device confirmed that FPR1 and its ligand, annexin-1, promoted stable interactions between dying cancer cells and human or murine leukocytes. Altogether, these results highlight the importance of FPR1 in chemotherapy-induced anticancer immune responses. PMID:26516201

  13. The Imidazoquinoline Toll-Like Receptor-7/8 Agonist Hybrid-2 Potently Induces Cytokine Production by Human Newborn and Adult Leukocytes

    PubMed Central

    Ganapathi, Lakshmi; Van Haren, Simon; Dowling, David J.; Bergelson, Ilana; Shukla, Nikunj M.; Malladi, Subbalakshmi S.; Balakrishna, Rajalakshmi; Tanji, Hiromi; Ohto, Umeharu; Shimizu, Toshiyuki; David, Sunil A.; Levy, Ofer

    2015-01-01

    Background Newborns and young infants are at higher risk for infections than adults, and manifest suboptimal vaccine responses, motivating a search for novel immunomodulators and/or vaccine adjuvants effective in early life. In contrast to most TLR agonists (TLRA), TLR8 agonists such as imidazoquinolines (IMQs) induce adult-level Th1-polarizing cytokine production from human neonatal cord blood monocytes and are candidate early life adjuvants. We assessed whether TLR8-activating IMQ congeners may differ in potency and efficacy in inducing neonatal cytokine production in vitro, comparing the novel TLR7/8-activating IMQ analogues Hybrid-2, Meta-amine, and Para-amine to the benchmark IMQ resiquimod (R848). Methods TLRA-induced NF-κB activation was measured in TLR-transfected HEK cells. Cytokine production in human newborn cord and adult peripheral blood and in monocyte-derived dendritic cell cultures were measured by ELISA and multiplex assays. X-ray crystallography characterized the interaction of human TLR8 with Hybrid-2. Results Hybrid-2 selectively activated both TLR7 and 8 and was more potent than R848 in inducing adult-like levels of TNF-α, and IL-1β. Consistent with its relatively high in vitro activity, crystallographic studies suggest that absence in Hybrid-2 of an ether oxygen of the C2-ethoxymethyl substituent, which can engage in unfavorable electrostatic and/or dipolar interactions with the carbonyl oxygen of Gly572 in human TLR8, may confer greater efficacy and potency compared to R848. Conclusions Hybrid-2 is a selective and potent TLR7/8 agonist that is a candidate adjuvant for early life immunization. PMID:26274907

  14. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism.

    PubMed

    Tan, Dun-Xian; Manchester, Lucien C; Esteban-Zubero, Eduardo; Zhou, Zhou; Reiter, Russel J

    2015-01-01

    Melatonin is a tryptophan-derived molecule with pleiotropic activities. It is present in almost all or all organisms. Its synthetic pathway depends on the species in which it is measured. For example, the tryptophan to melatonin pathway differs in plants and animals. It is speculated that the melatonin synthetic machinery in eukaryotes was inherited from bacteria as a result of endosymbiosis. However, melatonin's synthetic mechanisms in microorganisms are currently unknown. Melatonin metabolism is highly complex with these enzymatic processes having evolved from cytochrome C. In addition to its enzymatic degradation, melatonin is metabolized via pseudoenzymatic and free radical interactive processes. The metabolic products of these processes overlap and it is often difficult to determine which process is dominant. However, under oxidative stress, the free radical interactive pathway may be featured over the others. Because of the complexity of the melatonin degradative processes, it is expected that additional novel melatonin metabolites will be identified in future investigations. The original and primary function of melatonin in early life forms such as in unicellular organisms was as a free radical scavenger and antioxidant. During evolution, melatonin was selected as a signaling molecule to transduce the environmental photoperiodic information into an endocrine message in multicellular organisms and for other purposes as well. As an antioxidant, melatonin exhibits several unique features which differ from the classic antioxidants. These include its cascade reaction with free radicals and its capacity to be induced under moderate oxidative stress. These features make melatonin a potent endogenously-occurring antioxidant that protects organisms from catastrophic oxidative stress. PMID:26501252

  15. Triapine and a more potent dimethyl derivative induce endoplasmic reticulum stress in cancer cells.

    PubMed

    Trondl, Robert; Flocke, Lea S; Kowol, Christian R; Heffeter, Petra; Jungwirth, Ute; Mair, Georg E; Steinborn, Ralf; Enyedy, Éva A; Jakupec, Michael A; Berger, Walter; Keppler, Bernhard K

    2014-03-01

    Triapine (3-AP; 3-aminopyridine-2-carboxaldehyde thiosemicarbazone), a ribonucleotide reductase inhibitor, has been extensively evaluated in clinical trials in the last decade. This study addresses the role of endoplasmic reticulum (ER) stress in the anticancer activity of 3-AP and the derivative N(4),N(4)-dimethyl-triapine (3-AP-Me), differing from 3-AP only by dimethylation of the terminal nitrogen. Treatment of colon cancer cells with 3-AP or 3-AP-Me activated all three ER stress pathways (PERK, IRE1a, ATF6) by phosphorylation of eIF2α and upregulation of gene expression of activating transcription factors ATF4 and ATF6. In particular, 3-AP-Me led to an upregulation of the alternatively spliced mRNA variant XBP1 (16-fold). Moreover, 3-AP and 3-AP-Me activated the cellular stress kinases c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases, and inhibition of JNK activity antagonized the cytotoxic effect of both compounds. Subsequent to induction of the unfolded protein response, a significant upregulation of proapoptotic proteins was detected, including the transcription factor CHOP and Bim, an essential factor for ER stress-related apoptosis. In correlation with the higher degree of ER stress after 3-AP-Me treatment, also a more potent depolarization of mitochondrial membranes was found. These data suggest that 3-AP and 3-AP-Me induce apoptosis via ER stress. This was further corroborated by showing that inhibition of protein biosynthesis with cycloheximide prior to 3-AP and 3-AP-Me treatment leads to a significant reduction of the antiproliferative properties of both compounds. Taken together, this study demonstrates that induction of ER stress contributes to the mode of action of 3-AP and that terminal dimethylation leads to an even more pronounced manifestation of this effect.

  16. Suxiao Jiuxin Pill Induces Potent Relaxation and Inhibition on Contraction in Human Artery and the Mechanism

    PubMed Central

    Bai, Xiao-Yan; Zhang, Ping; Yang, Qin; Liu, Xiao-Cheng; Wang, Jun; Tong, Yong-Ling; Xiong, Song-Jin; Liu, Li-Hua; Wang, Lei; He, Guo-Wei

    2014-01-01

    Suxiao Jiuxin Pill, a compound Chinese traditional medicine with main components of tetramethylpyrazine and borneol, is widely used for antiangina treatment in China but its pharmacological effect on human blood vessels is unknown. We investigated the effect and possible mechanism of SJP in the human internal mammary artery (IMA, n = 78) taken from patients undergoing coronary surgery. SJP caused full relaxation in KCl- (99.4 ± 10.5%, n = 6) and U46619- (99.9 ± 5.6%, n = 6) contracted IMA. Pretreatment of IMA with plasma concentrations of SJP (1 mg/mL), calculated from the plasma concentration of its major component borneol, significantly depressed the maximal contraction to KCl (from 35.8 ± 6.0 mN to 12.6 ± 5.6 mN, P = 0.03) and U46619 (from 19.4 ± 2.9 mN to 5.7 ± 2.4 mN, P = 0.007) while SJP at 10 mg/mL abolished the subsequent contraction. Endothelium denudation and inhibition of eNOS significantly altered the SJP-induced relaxation without changes of eNOS expression. We conclude that SJP has a potent inhibitory effect on the vasoconstriction mediated by a variety of vasoconstrictors in human arteries. The vasorelaxation involves both endothelium-dependent and -independent mechanisms. Thus, the effect of SJP on human arteries demonstrated in this study may prove to be particularly important in vasorelaxing therapy in cardiovascular disease. PMID:24808920

  17. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism.

    PubMed

    Tan, Dun-Xian; Manchester, Lucien C; Esteban-Zubero, Eduardo; Zhou, Zhou; Reiter, Russel J

    2015-10-16

    Melatonin is a tryptophan-derived molecule with pleiotropic activities. It is present in almost all or all organisms. Its synthetic pathway depends on the species in which it is measured. For example, the tryptophan to melatonin pathway differs in plants and animals. It is speculated that the melatonin synthetic machinery in eukaryotes was inherited from bacteria as a result of endosymbiosis. However, melatonin's synthetic mechanisms in microorganisms are currently unknown. Melatonin metabolism is highly complex with these enzymatic processes having evolved from cytochrome C. In addition to its enzymatic degradation, melatonin is metabolized via pseudoenzymatic and free radical interactive processes. The metabolic products of these processes overlap and it is often difficult to determine which process is dominant. However, under oxidative stress, the free radical interactive pathway may be featured over the others. Because of the complexity of the melatonin degradative processes, it is expected that additional novel melatonin metabolites will be identified in future investigations. The original and primary function of melatonin in early life forms such as in unicellular organisms was as a free radical scavenger and antioxidant. During evolution, melatonin was selected as a signaling molecule to transduce the environmental photoperiodic information into an endocrine message in multicellular organisms and for other purposes as well. As an antioxidant, melatonin exhibits several unique features which differ from the classic antioxidants. These include its cascade reaction with free radicals and its capacity to be induced under moderate oxidative stress. These features make melatonin a potent endogenously-occurring antioxidant that protects organisms from catastrophic oxidative stress.

  18. ArtinM, a D-mannose-binding lectin from Artocarpus integrifolia, plays a potent adjuvant and immunostimulatory role in immunization against Neospora caninum.

    PubMed

    Cardoso, Mariana R D; Mota, Caroline M; Ribeiro, Dâmaso P; Santiago, Fernanda M; Carvalho, Julianne V; Araujo, Ester C B; Silva, Neide M; Mineo, Tiago W P; Roque-Barreira, Maria C; Mineo, José R; Silva, Deise A O

    2011-11-15

    ArtinM and Jacalin (JAC) are lectins from the jackfruit (Artocarpus integrifolia) that have important role in modulation of immune responses to pathogens. Neospora caninum is an Apicomplexa parasite that causes neuromuscular disease in dogs and reproductive disorders in cattle, with economic impact on the livestock industry. Hence, we evaluated the adjuvant effect of ArtinM and JAC in immunization of mice against neosporosis. Six C57BL/6 mouse groups were subcutaneously immunized three times at 2-week intervals with Neospora lysate antigen (NLA) associated with lectins (NLA+ArtinM and NLA+JAC), NLA, ArtinM and JAC alone, and PBS (infection control). Animals were challenged with lethal dose of Nc-1 isolate and evaluated for morbidity, mortality, specific antibody response, cytokine production by spleen cells, brain parasite burden and inflammation. Our results demonstrated that ArtinM was able to increase NLA immunogenicity, inducing the highest levels of specific total IgG and IgG2a/IgG1 ratio, ex vivo Th1 cytokine production, increased survival, the lowest brain parasite burden, along with the highest inflammation scores. In contrast, NLA+JAC immunized group showed intermediate survival, the highest brain parasite burden and the lowest inflammation scores. In conclusion, ArtinM presents stronger immunostimulatory and adjuvant effect than Jacalin in immunization of mice against neosporosis, by inducing a protective Th1-biased pro-inflammatory immune response and higher protection after parasite challenge.

  19. Specific humoral and cellular immunity induced by Trypanosoma cruzi DNA immunization in a canine model

    PubMed Central

    2013-01-01

    Chagas disease has a high incidence in Mexico and other Latin American countries. Because one of the most important known methods of prevention is vector control, which has been effective only in certain areas of South America, the development of a vaccine to protect people at risk has been proposed. In this study, we assessed the cellular and humoral immune response generated following immunization with pBCSP and pBCSSP4 plasmids containing the genes encoding a trans-sialidase protein (present in all three forms of T. cruzi) and an amastigote specific glycoprotein, respectively, in a canine model. Thirty-five beagle dogs were divided randomly into 5 groups (n = 7) and were immunized twice intramuscularly with 500 μg of pBCSSP4, pBCSP, pBk-CMV (empty plasmid) or saline solution. Fifteen days after the last immunization the 4 groups were infected intraperitoneally with 500 000 metacyclic trypomastigotes. The fifth group was unimmunized/infected. The parasitaemia in the immunized/infected dogs was for a shorter period (14 vs. 29 days) and the parasite load was lower. The concentration of IgG1 (0.612 ± 0.019 O.D.) and IgG2 (1.167 ± 0.097 O.D.) subclasses was measured (absorbance) 15 days after the last immunization with both recombinant plasmids, the majority of which were IgG2. The treatment of parasites using the serum from dogs immunized with pBCSP and pBCSSP4 plasmids produced 54% (± 11.8) and 68% (± 21.4) complement-mediated lysis, respectively. At 12 h post immunization, an increase in cytokines was not observed; however, vaccination with pBCSSP4 significantly increased the levels of IFN-γ and IL-10 at 9 months post-infection. The recombinant plasmid immunization stimulated the spleen cell proliferation showing a positive stimulatory index above 2.0. In conclusion, immunization using both genes effectively induces a humoral and cellular immune response. PMID:23497041

  20. Specific humoral and cellular immunity induced by Trypanosoma cruzi DNA immunization in a canine model.

    PubMed

    Arce-Fonseca, Minerva; Ballinas-Verdugo, Martha A; Zenteno, Emma R Abreu; Suárez-Flores, Davinia; Carrillo-Sánchez, Silvia C; Alejandre-Aguilar, Ricardo; Rosales-Encina, José Luis; Reyes, Pedro A; Rodríguez-Morales, Olivia

    2013-01-01

    Chagas disease has a high incidence in Mexico and other Latin American countries. Because one of the most important known methods of prevention is vector control, which has been effective only in certain areas of South America, the development of a vaccine to protect people at risk has been proposed. In this study, we assessed the cellular and humoral immune response generated following immunization with pBCSP and pBCSSP4 plasmids containing the genes encoding a trans-sialidase protein (present in all three forms of T. cruzi) and an amastigote specific glycoprotein, respectively, in a canine model. Thirty-five beagle dogs were divided randomly into 5 groups (n=7) and were immunized twice intramuscularly with 500 μg of pBCSSP4, pBCSP, pBk-CMV (empty plasmid) or saline solution. Fifteen days after the last immunization the 4 groups were infected intraperitoneally with 500,000 metacyclic trypomastigotes. The fifth group was unimmunized/infected. The parasitaemia in the immunized/infected dogs was for a shorter period (14 vs. 29 days) and the parasite load was lower. The concentration of IgG1 (0.612±0.019 O.D.) and IgG2 (1.167±0.097 O.D.) subclasses was measured (absorbance) 15 days after the last immunization with both recombinant plasmids, the majority of which were IgG2. The treatment of parasites using the serum from dogs immunized with pBCSP and pBCSSP4 plasmids produced 54% (±11.8) and 68% (±21.4) complement-mediated lysis, respectively. At 12 h post immunization, an increase in cytokines was not observed; however, vaccination with pBCSSP4 significantly increased the levels of IFN-γ and IL-10 at 9 months post-infection. The recombinant plasmid immunization stimulated the spleen cell proliferation showing a positive stimulatory index above 2.0. In conclusion, immunization using both genes effectively induces a humoral and cellular immune response. PMID:23497041

  1. Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

    NASA Astrophysics Data System (ADS)

    Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.

    1993-04-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.

  2. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity.

    PubMed Central

    Dranoff, G; Jaffee, E; Lazenby, A; Golumbek, P; Levitsky, H; Brose, K; Jackson, V; Hamada, H; Pardoll, D; Mulligan, R C

    1993-01-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4+ and CD8+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines. PMID:8097319

  3. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  4. Cross-species malaria immunity induced by chemically attenuated parasites

    PubMed Central

    Good, Michael F.; Reiman, Jennifer M.; Rodriguez, I. Bibiana; Ito, Koichi; Yanow, Stephanie K.; El-Deeb, Ibrahim M.; Batzloff, Michael R.; Stanisic, Danielle I.; Engwerda, Christian; Spithill, Terry; Hoffman, Stephen L.; Lee, Moses; McPhun, Virginia

    2013-01-01

    Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species. PMID:23863622

  5. Extraordinarily few organisms of a live recombinant BCG vaccine against tuberculosis induce maximal cell-mediated and protective immunity.

    PubMed

    Horwitz, Marcus A; Harth, Günter; Dillon, Barbara Jane; Maslesa-Galić, Sasa

    2006-01-23

    In previous studies, we have described a live recombinant BCG vaccine (rBCG30) overexpressing the 30 kDa major secretory protein of Mycobacterium tuberculosis that induces greater protective immunity against tuberculosis than the current vaccine in the demanding guinea pig model of pulmonary tuberculosis. In this study, we have investigated the impact of vaccine dose on the development of cell-mediated and protective immunity in the guinea pig model. We found that the protective efficacy against M. tuberculosis aerosol challenge of both BCG and rBCG30 was essentially dose-independent over a dose range of 10(1)-10(6) live organisms. As previously observed, rBCG30 was more potent, reducing colony-forming units (CFU) below the level observed in animals immunized with the parental BCG vaccine by 0.7 logs in the lungs and 1.0 logs in the spleen (P<0.0001). To gain a better understanding of the influence of dose on bacterial clearance and immunity, we assessed animals immunized with 10(1), 10(3), or 10(6)CFU of rBCG30. The higher the dose, the higher the peak CFU level achieved in animal organs. However, whereas humoral immune responses to the 30 kDa protein reflected the disparate CFU levels, cell-mediated immune responses did not; high and low doses of rBCG30 ultimately induced comparable peak lymphocyte proliferative responses and cutaneous delayed-type hypersensitivity responses to the 30 kDa protein. We estimate that the amount of the 30 kDa protein required to induce a strong cell-mediated immune response when delivered via 10 rBCG30 organisms is about 9 orders of magnitude less than that required when the protein is delivered in a conventional protein/adjuvant vaccine. This study demonstrates that a very low inoculum of rBCG30 organisms has the capacity to induce strong protective immunity against tuberculosis and that rBCG30 is an extremely potent delivery system for mycobacterial antigens.

  6. Drug-Induced Glomerular Disease: Immune-Mediated Injury

    PubMed Central

    Markowitz, Glen S.; Radhakrishnan, Jai

    2015-01-01

    Drug-induced autoimmune disease was initially described decades ago, with reports of vasculitis and a lupus-like syndrome in patients taking hydralazine, procainamide, and sulfadiazine. Over the years, multiple other agents have been linked to immune-mediated glomerular disease, often with associated autoantibody formation. Certain clinical and laboratory features may distinguish these entities from their idiopathic counterparts, and making this distinction is important in the diagnosis and management of these patients. Here, drug-induced, ANCA-associated vasculitis, drug-induced lupus, and drug-associated membranous nephropathy are reviewed. PMID:26092827

  7. A Plant-Derived Multi-HIV Antigen Induces Broad Immune Responses in Orally Immunized Mice.

    PubMed

    Rubio-Infante, Néstor; Govea-Alonso, Dania O; Romero-Maldonado, Andrea; García-Hernández, Ana Lilia; Ilhuicatzi-Alvarado, Damaris; Salazar-González, Jorge A; Korban, Schuyler S; Rosales-Mendoza, Sergio; Moreno-Fierros, Leticia

    2015-07-01

    Multi-HIV, a multiepitopic protein derived from both gp120 and gp41 envelope proteins of the human immunodeficiency virus (HIV), has been proposed as a vaccine prototype capable of inducing broad immune responses, as it carries various B and T cell epitopes from several HIV strains. In this study, the immunogenic properties of a Multi-HIV expressed in tobacco chloroplasts are evaluated in test mice. BALB/c mice orally immunized with tobacco-derived Multi-HIV have elicited antibody responses, including both the V3 loop of gp120 and the ELDKWA epitope of gp41. Based on splenocyte proliferation assays, stimulation with epitopes of the C4, V3 domain of gp120, and the ELDKWA domain of gp41 elicits positive cellular responses. Furthermore, specific interferon gamma production is observed in both CD4+ and CD8+ T cells stimulated with HIV peptides. These results demonstrate that plant-derived Multi-HIV induces T helper-specific responses. Altogether, these findings illustrate the immunogenic potential of plant-derived Multi-HIV in an oral immunization scheme. The potential of this low-cost immunization approach and its implications on HIV/AIDS vaccine development are discussed. PMID:25779638

  8. Vaccination with vascular progenitor cells derived from induced pluripotent stem cells elicits antitumor immunity targeting vascular and tumor cells.

    PubMed

    Koido, Shigeo; Ito, Masaki; Sagawa, Yukiko; Okamoto, Masato; Hayashi, Kazumi; Nagasaki, Eijiro; Kan, Shin; Komita, Hideo; Kamata, Yuko; Homma, Sadamu

    2014-05-01

    Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8(+) T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8(+) T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1(+) vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells. PMID:24627093

  9. Radiation-induced effects and the immune system in cancer

    PubMed Central

    Kaur, Punit; Asea, Alexzander

    2012-01-01

    Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT. PMID:23251903

  10. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation.

    PubMed

    Honda, Hiroe; Nagai, Yoshinori; Matsunaga, Takayuki; Okamoto, Naoki; Watanabe, Yasuharu; Tsuneyama, Koichi; Hayashi, Hiroaki; Fujii, Isao; Ikutani, Masashi; Hirai, Yoshikatsu; Muraguchi, Atsushi; Takatsu, Kiyoshi

    2014-12-01

    Inflammasome activation initiates the development of many inflammatory diseases, including obesity and type 2 diabetes. Therefore, agents that target discrete activation steps could represent very important drugs. We reported previously that ILG, a chalcone from Glycyrrhiza uralensis, inhibits LPS-induced NF-κB activation. Here, we show that ILG potently inhibits the activation of NLRP3 inflammasome, and the effect is independent of its inhibitory potency on TLR4. The inhibitory effect of ILG was stronger than that of parthenolide, a known inhibitor of the NLRP3 inflammasome. GL, a triterpenoid from G. uralensis, had similar inhibitory effects on NLRP3 activity, but high concentrations of GL were required. In contrast, activation of the AIM2 inflammasome was inhibited by GL but not by ILG. Moreover, GL inhibited NLRP3- and AIM2-activated ASC oligomerization, whereas ILG inhibited NLRP3-activated ASC oligomerization. Low concentrations of ILG were highly effective in IAPP-induced IL-1β production compared with the sulfonylurea drug glyburide. In vivo analyses revealed that ILG potently attenuated HFD-induced obesity, hypercholesterolemia, and insulin resistance. Furthermore, ILG treatment improved HFD-induced macrovesicular steatosis in the liver. Finally, ILG markedly inhibited diet-induced adipose tissue inflammation and IL-1β and caspase-1 production in white adipose tissue in ex vivo culture. These results suggest that ILG is a potential drug target for treatment of NLRP3 inflammasome-associated inflammatory diseases. PMID:25210146

  11. Immunization with thyroglobulin induces Graves'-like disease in mice

    PubMed Central

    Endo, Toyoshi; Kobayashi, Tetsuro

    2009-01-01

    We immunized AKR/N mice with bovine thyroglobulin (Tg) once every 2 weeks and monitored their time-dependent changes in 125I uptake activity in the thyroid glands. After 3 months, anti-Tg antibody was positive in all sera from the immunized mice. Serum free tri-iodothyronine (T3) and free thyroxine (T4) levels in the immunized mice (n=6) were significantly higher than those in the saline injected (control) mice (n=6). Neck counts as well as scintigraphy of the thyroid glands revealed that iodide uptake activity of the immunized mice was not suppressed, but was instead higher than that of the control mice. Two of the six immunized mice showed extremely high iodide uptake activity. The thyroid glands of these two mice were diffusely enlarged and the height of the epithelial cells was also increased. In addition, two mice with high iodide uptake activity produced a high titer of thyroid-stimulating antibody. Additional experiments showed that 4 out of 11 AKR/N mice and 3 out of 10 C57BL6 mice immunized with Tg had high serum free T3/free T4 levels, high 125I uptake activity of the thyroid, and positive thyroid-stimulating antibody activity. Diffuse goiter, thyrotoxicosis, high iodide uptake activity, and positive thyroid-stimulating antibody are the characteristics of Graves' disease. Thus, these mice exhibit the symptoms of Graves' disease. These results suggest that immunization with Tg induces Graves'-like disease in mice and that our methods will provide a new animal model of Graves' disease. PMID:19491147

  12. Immunization with thyroglobulin induces Graves'-like disease in mice.

    PubMed

    Endo, Toyoshi; Kobayashi, Tetsuro

    2009-08-01

    We immunized AKR/N mice with bovine thyroglobulin (Tg) once every 2 weeks and monitored their time-dependent changes in (125)I uptake activity in the thyroid glands. After 3 months, anti-Tg antibody was positive in all sera from the immunized mice. Serum free tri-iodothyronine (T(3)) and free thyroxine (T(4)) levels in the immunized mice (n=6) were significantly higher than those in the saline injected (control) mice (n=6). Neck counts as well as scintigraphy of the thyroid glands revealed that iodide uptake activity of the immunized mice was not suppressed, but was instead higher than that of the control mice. Two of the six immunized mice showed extremely high iodide uptake activity. The thyroid glands of these two mice were diffusely enlarged and the height of the epithelial cells was also increased. In addition, two mice with high iodide uptake activity produced a high titer of thyroid-stimulating antibody. Additional experiments showed that 4 out of 11 AKR/N mice and 3 out of 10 C57BL6 mice immunized with Tg had high serum free T(3)/free T(4) levels, high (125)I uptake activity of the thyroid, and positive thyroid-stimulating antibody activity. Diffuse goiter, thyrotoxicosis, high iodide uptake activity, and positive thyroid-stimulating antibody are the characteristics of Graves' disease. Thus, these mice exhibit the symptoms of Graves' disease. These results suggest that immunization with Tg induces Graves'-like disease in mice and that our methods will provide a new animal model of Graves' disease. PMID:19491147

  13. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. PMID:26926999

  14. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions.

  15. Regulatory T-cell Trafficking: From Thymic Development to Tumor-Induced Immune Suppression

    PubMed Central

    Mailloux, Adam W.; Young, M. Rita I.

    2011-01-01

    Regulatory T cells (Tregs) have become a priority for many investigators in immunology due to their potent immunosuppressive and tolerogenic effects. While Treg activity is required for normal immune homeostasis, dysregulation of their numbers can induce autoimmunity or aid in the pathogenesis of disease. Therefore, great effort has been made to understand the mechanisms by which Tregs accumulate in different areas of the body. Like other lymphocytes, Tregs migrate in response to a network of chemotactic stimuli involving chemokines, chemokine receptors, integrins, and their corresponding ligands. However, many of these stimuli are exclusive to Tregs, inducing their migration while leaving conventional populations unaffected. It is these selective stimuli that result in increased ratios of Tregs among conventional effector populations, leading to changes in immune suppression and homeostasis. This review explores selective Treg trafficking during thymic Treg development, migration to secondary lymphoid tissues and emigration into the periphery during homeostatic conditions, inflammation, and the tumor microenvironment, placing emphasis on stimuli that selectively recruits Tregs to target locations. PMID:21083525

  16. Is immunity a mechanism contributing to statin-induced diabetes?

    PubMed Central

    Henriksbo, Brandyn D; Schertzer, Jonathan D

    2015-01-01

    Statins lower cholesterol and are commonly prescribed for prevention and treatment of cardiovascular disease risk. Statins have pleotropic actions beyond cholesterol lowering, including decreased protein prenylation, which can alter immune function. The general anti-inflammatory effect of statins may be a key pleiotropic effect that improves cardiovascular disease risk. However, a series of findings have shown that statins increase the pro-inflammatory cytokine, IL-1β, via decreased protein prenylation in immune cells. IL-1β can be regulated by the NLRP3 inflammasome containing caspase-1. Statins have been associated with an increased risk of new onset diabetes. Inflammation can promote ineffective insulin action (insulin resistance), which often precedes diabetes. This review highlights the links between statins, insulin resistance and immunity via the NLRP3 inflammasome. We propose that statin-induced changes in immunity should be investigated as a mechanism underlying increased risk of diabetes. It is possible that statin-related insulin resistance occurs through a separate pathway from various mechanisms that confer cardiovascular benefits. Therefore, understanding the potential mechanisms that segregate statin-induced cardiovascular effects from those that cause dysglycemia may lead to improvements in this drugs class. PMID:26451278

  17. TIM-3 Regulates Innate Immune Cells to Induce Fetomaternal Tolerance

    PubMed Central

    Chabtini, Lola; Mfarrej, Bechara; Mounayar, Marwan; Zhu, Bing; Batal, Ibrahim; Dakle, Pranal J; Smith, Brian D; Boenisch, Olaf; Najafian, Nader; Akiba, Hisaya; Yagita, Hideo; Guleria, Indira

    2012-01-01

    TIM-3 is constitutively expressed on subsets of macrophages and dendritic cells. Its expression on other cells of the innate immune system and its role in fetomaternal tolerance has not yet been explored. Here we investigate the role of TIM-3 expressing innate immune cells in the regulation of tolerance at the fetomaternal interface (FMI) using an allogeneic mouse model of pregnancy. Blockade of TIM-3 results in accumulation of inflammatory granulocytes and macrophages at the utero-placental interface and up regulation of pro-inflammatory cytokines. Furthermore, TIM-3 blockade inhibits the phagocytic potential of uterine macrophages resulting in a build up of apoptotic bodies at the utero-placental interface that elicits a local immune response. In response to inflammatory cytokines, Ly-6ChiGneg M-MDSCs (monocytic myeloid derived suppressor cells) expressing iNOS and arginase 1 are induced. However, these suppressive cells fail to down-regulate the inflammatory cascade induced by inflammatory granulocytes (Ly-6Cint Ghi) and apoptotic cells; the increased production of IFNγ and TNFα by inflammatory granulocytes leads to abrogation of tolerance at the fetomaternal interface and fetal rejection. These data highlight the interplay between cells of the innate immune system at the FMI and their influence on successful pregnancy in mice. PMID:23180822

  18. Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity

    PubMed Central

    Flatz, Lukas; Hegazy, Ahmed N; Bergthaler, Andreas; Verschoor, Admar; Claus, Christina; Fernandez, Marylise; Gattinoni, Luca; Johnson, Susan; Kreppel, Florian; Kochanek, Stefan; van den Broek, Maries; Radbruch, Andreas; Lévy, Frédéric; Lambert, Paul-Henri; Siegrist, Claire-Anne; Restifo, Nicholas P; Löhning, Max; Ochsenbein, Adrian F; Nabel, Gary J; Pinschewer, Daniel D

    2011-01-01

    Lymphocytic choriomeningitis virus (LCMV) exhibits natural tropism for dendritic cells and represents the prototypic infection that elicits protective CD8+ T cell (cytotoxic T lymphocyte (CTL)) immunity. Here we have harnessed the immunobiology of this arenavirus for vaccine delivery. By using producer cells constitutively synthesizing the viral glycoprotein (GP), it was possible to replace the gene encoding LCMV GP with vaccine antigens to create replication-defective vaccine vectors. These rLCMV vaccines elicited CTL responses that were equivalent to or greater than those elicited by recombinant adenovirus 5 or recombinant vaccinia virus in their magnitude and cytokine profiles, and they exhibited more effective protection in several models. In contrast to recombinant adenovirus 5, rLCMV failed to elicit vector-specific antibody immunity, which facilitated re-administration of the same vector for booster vaccination. In addition, rLCMV elicited T helper type 1 CD4+ T cell responses and protective neutralizing antibodies to vaccine antigens. These features, together with low seroprevalence in humans, suggest that rLCMV may show utility as a vaccine platform against infectious diseases and cancer. PMID:20139992

  19. Expanded Non-human Primate Tregs Exhibit A Unique Gene Expression Signature and Potently Downregulate Allo-immune Responses

    PubMed Central

    Anderson, Alan; Martens, Christine; Hendrix, Rose; Stempora, Linda; Miller, Wes; Hamby, Kelly; Russell, Maria; Strobert, Elizabeth; Blazar, Bruce R.; Pearson, Thomas C.; Larsen, Christian P.; Kean, Leslie S.

    2009-01-01

    We have established two complementary strategies for purifying naturally occurring regulatory T cells (Tregs) from rhesus macaques in quantities which would be sufficient for use as an in vivo cellular therapeutic. The first identified Tregs based on their being CD4+/CD25bright. The second incorporated CD127, and purified Tregs based on their expression of CD4 and CD25 and their low expression of CD127. Using these purification strategies, we were able to purify as many as 1×106 Tregs from 120cc of peripheral blood. Culture of these cells with anti-CD3, anti-CD28 and IL-2 over 21 days yielded as much as 450-fold expansion, ultimately producing as many as 4.7×108 Tregs. Expanded Treg cultures potently inhibited alloimmune proliferation as measured by a CFSE-MLR assay even at a 1:100 ratio with responder T cells. Furthermore, both responder-specific and third-party Tregs downregulated alloproliferation similarly. Both freshly isolated and cultured Tregs had gene expression signatures distinguishable from concurrently isolated bulk CD4+ T cell populations, as measured by single-plex RT-PCR and gene array. Moreover, an overlapping yet distinct gene expression signature seen in freshly isolated compared to expanded Tregs identifies a subset of Treg genes likely to be functionally significant. PMID:18801023

  20. Rational design of a meningococcal antigen inducing broad protective immunity.

    PubMed

    Scarselli, Maria; Aricò, Beatrice; Brunelli, Brunella; Savino, Silvana; Di Marcello, Federica; Palumbo, Emmanuelle; Veggi, Daniele; Ciucchi, Laura; Cartocci, Elena; Bottomley, Matthew James; Malito, Enrico; Lo Surdo, Paola; Comanducci, Maurizio; Giuliani, Marzia Monica; Cantini, Francesca; Dragonetti, Sara; Colaprico, Annalisa; Doro, Francesco; Giannetti, Patrizia; Pallaoro, Michele; Brogioni, Barbara; Tontini, Marta; Hilleringmann, Markus; Nardi-Dei, Vincenzo; Banci, Lucia; Pizza, Mariagrazia; Rappuoli, Rino

    2011-07-13

    The sequence variability of protective antigens is a major challenge to the development of vaccines. For Neisseria meningitidis, the bacterial pathogen that causes meningitis, the amino acid sequence of the protective antigen factor H binding protein (fHBP) has more than 300 variations. These sequence differences can be classified into three distinct groups of antigenic variants that do not induce cross-protective immunity. Our goal was to generate a single antigen that would induce immunity against all known sequence variants of N. meningitidis. To achieve this, we rationally designed, expressed, and purified 54 different mutants of fHBP and tested them in mice for the induction of protective immunity. We identified and determined the crystal structure of a lead chimeric antigen that was able to induce high levels of cross-protective antibodies in mice against all variant strains tested. The new fHBP antigen had a conserved backbone that carried an engineered surface containing specificities for all three variant groups. We demonstrate that the structure-based design of multiple immunodominant antigenic surfaces on a single protein scaffold is possible and represents an effective way to create broadly protective vaccines.

  1. Innate immunity induced by Plasmodium liver infection inhibits malaria reinfections.

    PubMed

    Liehl, Peter; Meireles, Patrícia; Albuquerque, Inês S; Pinkevych, Mykola; Baptista, Fernanda; Mota, Maria M; Davenport, Miles P; Prudêncio, Miguel

    2015-03-01

    Following transmission through a mosquito bite to the mammalian host, Plasmodium parasites first invade and replicate inside hepatocytes before infecting erythrocytes and causing malaria. The mechanisms limiting Plasmodium reinfections in humans living in regions of malaria endemicity have mainly been explored by studying the resistance induced by the blood stage of infection. However, epidemiologic studies have suggested that in high-transmission areas, preerythrocytic stages also activate host resistance to reinfection. This, along with the recent discovery that liver infections trigger a specific and effective type I interferon (IFN) response, prompted us to hypothesize that this pre-erythrocyte-stage-induced resistance is linked to liver innate immunity. Here, we combined experimental approaches and mathematical modeling to recapitulate field studies and understand the molecular basis behind such resistance. We present a newly established mouse reinfection model and demonstrate that rodent malaria liver-stage infection inhibits reinfection. This protection relies on the activation of innate immunity and involves the type I IFN response and the antimicrobial cytokine gamma IFN (IFN-γ). Importantly, mathematical simulations indicate that the predictions based on our experimental murine reinfection model fit available epidemiological data. Overall, our study revealed that liver-stage-induced innate immunity may contribute to the preerythrocytic resistance observed in humans in regions of malaria hyperendemicity.

  2. The potent microtubule-stabilizing agent (+)-discodermolide induces apoptosis in human breast carcinoma cells--preliminary comparisons to paclitaxel.

    PubMed

    Balachandran, R; ter Haar, E; Welsh, M J; Grant, S G; Day, B W

    1998-01-01

    (+)-Discodermolide, a sponge-derived natural product, stabilizes microtubules more potently than paclitaxel despite the lack of any obvious structural similarities between the drugs. It competitively inhibits the binding of paclitaxel to tubulin polymers, hypernucleates microtubule assembly more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant ovarian and colon carcinoma cells. Because paclitaxel shows clinical promise for breast cancer treatment, its effects in a series of human breast cancer cells were compared to those of (+)-discodermolide. Growth inhibition, cell and nuclear morphological, and electrophoretic and flow cytometric analyses were performed on (+)-discodermolide-treated MCF-7 and MDA-MB231 cells. (+)-Discodermolide potently inhibited the growth of both cell types (IC50 < 2.5 nM) at concentrations similar to those observed with paclitaxel. Complete inhibition of growth occurred with 10 nM or greater of each drug and was not reversed by removal. (+)-Discodermolide-treated cells exhibited condensed and highly fragmented nuclei. Flow cytometric comparison of cells treated with either drug at 10 nM, a concentration well below that achieved clinically with paclitaxel, showed both caused cell cycle perturbation and induction of a hypodiploid cell population. (+)-Discodermolide caused these effects more extensively and at earlier time points. The timing and type of high molecular weight DNA fragmentation induced by the two agents was consistent with induction of apoptosis. The results suggest that (+)-discodermolide has promise as a new chemotherapeutic agent against breast and other cancers.

  3. Hepatotoxicants induce cytokine imbalance in response to innate immune system.

    PubMed

    Goto, Shima; Deguchi, Jiro; Nishio, Naoki; Nomura, Naruaki; Funabashi, Hitoshi

    2015-06-01

    In recent years, attention has been paid to innate immune systems as mechanisms to initiate or promote drug-induced liver injury (DILI). Kupffer cells are hepatic resident macrophages and might be involved in the pathogenesis of DILI by release of pro- and anti-inflammatory mediators such as cytokines, chemokines, reactive oxygen species, and/or nitric oxides. The purpose of this study was to investigate alterations in mediator levels induced by hepatotoxic compounds in isolated Kupffer cells and discuss the relation between balance of each cytokine or chemokine and potential of innate immune-mediated DILI. Primary cultured rat Kupffer cells were treated with hepatotoxic (acetaminophen, troglitazone, trovafloxacin) or non-hepatotoxic (pioglitazone, levofloxacin) compounds with or without lipopolysaccharide (LPS). After 24 hr treatment, cell supernatants were collected and various levels of mediators released by Kupffer cells were examined. Although hepatotoxicants had no effect on the LPS-induced tumor necrosis factor-alpha (TNF-α) secretion, they enhanced the release of pro-inflammatory cytokine interleukin-1 beta (IL-1β) and suppressed the anti-inflammatory cytokines interleukin-6 (IL-6) and interleukin-10 (IL-10) induced by LPS. These cytokine shifts were not associated with switching the phenotypes of M1 and M2 macrophages in Kupffer cells. In conclusion, the present study suggested that the levels of some specific cytokines are affected by DILI-related drugs with LPS stimulation, and imbalance between pro- and anti-inflammatory cytokines, induced by the up-regulation of IL-1β and the down-regulation of IL-6 or IL-10, plays a key role in innate immune-mediated DILI. PMID:25972199

  4. Immune privilege induced by regulatory T cells in transplantation tolerance.

    PubMed

    Cobbold, Stephen P; Adams, Elizabeth; Graca, Luis; Daley, Stephen; Yates, Stephen; Paterson, Alison; Robertson, Nathan J; Nolan, Kathleen F; Fairchild, Paul J; Waldmann, Herman

    2006-10-01

    Immune privilege was originally believed to be associated with particular organs, such as the testes, brain, the anterior chamber of the eye, and the placenta, which need to be protected from any excessive inflammatory activity. It is now becoming clear, however, that immune privilege can be acquired locally in many different tissues in response to inflammation, but particularly due to the action of regulatory T cells (Tregs) induced by the deliberate therapeutic manipulation of the immune system toward tolerance. In this review, we consider the interplay between Tregs, dendritic cells, and the graft itself and the resulting local protective mechanisms that are coordinated to maintain the tolerant state. We discuss how both anti-inflammatory cytokines and negative costimulatory interactions can elicit a number of interrelated mechanisms to regulate both T-cell and antigen-presenting cell activity, for example, by catabolism of the amino acids tryptophan and arginine and the induction of hemoxygenase and carbon monoxide. The induction of local immune privilege has implications for the design of therapeutic regimens and the monitoring of the tolerant status of patients being weaned off immunosuppression. PMID:16972908

  5. Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin.

    PubMed

    Chernokhaeva, L L; Rogova, Yu V; Vorovitch, M F; Romanova, L Iu; Kozlovskaya, L I; Maikova, G B; Kholodilov, I S; Karganova, G G

    2016-04-29

    Tick-borne encephalitis (TBE) circulates widely in the territory of Eurasia with up to 10,000 cases registered annually. The TBE virus (TBEV) includes three main subtypes: European, Siberian and Far-Eastern, and two new Asiatic variants, phylogenetically distant from the others. The inactivated antigen of European or Far-Eastern strains is used in commercial TBE vaccines. A set of 14 TBEV strains, isolated in 1937-2008, with different passage histories, representing all subtypes and variants, was used in this work. The chosen set covers almost all the TBE area. Sera of mice, immunized with the TBE vaccine Moscow, prepared from the TBEV strain Sofjin, were studied in a plaque neutralization test against the set of TBEV strains. The vaccine induced antibodies at a protective titer against all TBEV strains and Omsk hemorrhagic fever virus (OHFV) with Е protein amino acid distances of 0.008-0.069, but not against Powassan virus. We showed that after a course of two immunizations, factors such as the period between vaccinations (1-4 weeks), the challenging virus dose (30-1000 LD50) and terms of challenge (1-4 weeks after the last immunization) did not significantly affect the assessment of protective efficacy of the vaccine in vivo. The protective effect of the TBE vaccine Moscow against the set of TBEV strains and the OHFV was demonstrated in in vivo experiments. TBE vaccine Moscow did not protect mice against 10 LD50 of the Powassan virus. We showed that this range of Е protein amino acid distances between the vaccine strain and challenging virus do not have a decisive impact on the TBE vaccine protective effect in vitro and in vivo. Moreover, the TBE vaccine Moscow induces an immune response protective against a wide range of TBEV variants. PMID:27013433

  6. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules

    PubMed Central

    Gannavaram, Sreenivas; Bhattacharya, Parna; Ismail, Nevien; Kaul, Amit; Singh, Rakesh; Nakhasi, Hira L.

    2016-01-01

    No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on the

  7. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules.

    PubMed

    Gannavaram, Sreenivas; Bhattacharya, Parna; Ismail, Nevien; Kaul, Amit; Singh, Rakesh; Nakhasi, Hira L

    2016-01-01

    No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4(+) and CD8(+) T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on

  8. Immunization with extracellular proteins of Mycobacterium tuberculosis induces cell-mediated immune responses and substantial protective immunity in a guinea pig model of pulmonary tuberculosis.

    PubMed Central

    Pal, P G; Horwitz, M A

    1992-01-01

    We have studied the capacity of a selected fraction of Mycobacterium tuberculosis extracellular proteins (EP) released into broth culture by mid-logarithmic-growth-phase organisms to induce cell-mediated immune responses and protective immunity in a guinea pig model of pulmonary tuberculosis. Guinea pigs infected with M. tuberculosis by aerosol but not uninfected control guinea pigs exhibit strong cell-mediated immune responses to EP, manifest by dose-dependent cutaneous delayed-type hypersensitivity and splenic lymphocyte proliferation. Guinea pigs immunized subcutaneously with EP but not sham-immunized control guinea pigs also develop strong cell-mediated immune responses to EP, manifest by dose-dependent cutaneous delayed-type hypersensitivity and splenic lymphocyte proliferation. EP is nonlethal and nontoxic to guinea pigs upon subcutaneous immunization. Guinea pigs immunized with EP and then challenged with aerosolized M. tuberculosis exhibit protective immunity. In five independent experiments, EP-immunized guinea pigs were consistently protected against clinical illness, including weight loss. Compared with EP-immunized guinea pigs, sham-immunized control guinea pigs lost 12.9 +/- 2.0% (mean +/- SE) of their total weight. EP-immunized guinea pigs also had a 10-fold reduction in viable M. tuberculosis bacilli in their lungs and spleens (P = 0.004 and 0.001, respectively) compared with sham-immunized control animals. In the two experiments in which some guinea pigs died after aerosol challenge, EP-immunized animals were protected from death. Whereas all 12 (100%) EP-immunized guinea pigs survived challenge with aerosolized M. tuberculosis, only 6 of 12 (50%) sham-immunized control guinea pigs survived challenge (P = 0.007, Fisher exact test). This study demonstrates that actively growing M. tuberculosis cells release immunoprotective molecules extracellularly, that a subunit vaccine against tuberculosis is feasible, and that extracellular molecules of M

  9. Heterologous Prime-Boost Oral Immunization with GK-1 Peptide from Taenia crassiceps Cysticerci Induces Protective Immunity▿

    PubMed Central

    Fragoso, Gladis; Esquivel-Guadarrama, Fernando; Santana, M. Angélica; Bobes, Raul J.; Hernández, Beatriz; Cervantes, Jacquelynne; Segura, René; Goldbaum, Fernando A.; Sciutto, Edda; Rosas, Gabriela

    2011-01-01

    Oral immunization is a goal in vaccine development, particularly for pathogens that enter the host through the mucosal system. This study was designed to explore the immunogenic properties of the Taenia crassiceps protective peptide GK-1 administered orally. Mice were orally immunized with the synthetic GK-1 peptide in its linear form with or without the Brucella lumazine synthase (BLS) protein adjuvant or as a chimera recombinantly bound to BLS (BLS-GK-1). Mice were boosted twice with GK-1 only at 15-day intervals. A significant rate of protection of 64.7% was achieved in GK-1-immunized mice, and that rate significantly increased to 91.8 and 96% when mice were primed with GK-1 coadministered with BLS as an adjuvant and BLS as a carrier, respectively. Specific antibodies and T cell activation and proliferation accompanied the protection induced, revealing the potent immunogenicity of GK-1. Through immunohistochemical studies, GK-1 was detected in T and B cell zones of the Peyer's patches (PP) and mesenteric lymph nodes. In the latter, abundant proliferating cells were detected by 5′-bromo-2′-deoxyuridine incorporation. No proliferation was detected in PP. Altogether, these results portray the potent immunogenic properties of GK-1 administered orally and reinforce the usefulness of BLS as an adjuvant and adequate vaccine delivery system for oral vaccines. PMID:21593234

  10. Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis.

    PubMed

    Xu, Zhenghong; Ramishetti, Srinivas; Tseng, Yu-Cheng; Guo, Shutao; Wang, Yuhua; Huang, Leaf

    2013-11-28

    Immunotherapy has shown the potential to become an essential component of the successful treatment of various malignancies. In many cases, such as in melanoma, however, induction of a potent and specific T-cell response against the endogenous antigen or self-antigen still remains a major challenge. To induce a potent MHC I-restricted cytotoxic T-lymphocyte (CTL) response, cytosol delivery of an exogenous antigen into dendritic cells is preferred, if not required. Lipid-calcium-phosphate (LCP) nanoparticles represent a new class of intracellular delivery systems for impermeable drugs. We are interested in exploring the potential of LCP NPs for use as a peptide vaccine delivery system for cancer therapy. To increase the encapsulation of Trp2 peptide into the calcium phosphate precipitate core of LCP, two phosphor-serine residues were added to the N-terminal of the peptide (p-Trp2). CpG ODN was also co-encapsulated with p-Trp2 as an adjuvant. The NPs were further modified with mannose to enhance and prolong the cargo deposit into the lymph nodes (LNs), which ensured persistent antigen loading and stimulation. Compared with free Trp2 peptide/CpG, vaccination with LCP encapsulating p-Trp2 and CpG resulted in superior inhibition of tumor growth in both B16F10 subcutaneous and lung metastasis models. An IFN-γ production assay and in vivo CTL response study revealed that the improved efficacy was a result of a Trp2-specific immune response. Thus, encapsulation of phospho-peptide antigens into LCP may be a promising strategy for enhancing the immunogenicity of poorly immunogenic self-antigens for cancer therapy.

  11. Induction of potent local cellular immunity with low dose X4 SHIV{sub SF33A} vaginal exposure

    SciTech Connect

    Tasca, Silvana; Tsai, Lily; Trunova, Nataliya; Gettie, Agegnehu; Saifuddin, Mohammed; Bohm, Rudolf; Chakrabarti, Lisa; Cheng-Mayer, Cecilia

    2007-10-10

    Intravaginal inoculation of rhesus macaques with varying doses of the CXCR4 (X4)-tropic SHIV{sub SF33A} isolate revealed a threshold inoculum for establishment of systemic virus infection and a dose dependency in overall viral burden and CD4+ T cell depletion. While exposure to inoculum size of 1000 or greater 50% tissue infectious dose (TCID{sub 50}) resulted in high viremia and precipitous CD4+ T cell loss, occult infection was observed in seven of eight macaques exposed to 500 TCID{sub 50} of the same virus. The latter was characterized by intermittent detection of low level virus with no evidence of seroconversion or CD4+ T cell decline, but with signs of an ongoing antiviral T cell immune response. Upon vaginal re-challenge with the same limiting dose 11-12 weeks after the first, classic pathogenic X4 SHIV{sub SF33A} infection was established in four of the seven previously exposed seronegative macaques, implying enhanced susceptibility to systemic infection with prior exposure. Pre-existing peripheral SIV gag-specific CD4+ T cells were more readily demonstrable in macaques that became systemically infected following re-exposure than those that were not. In contrast, early presence of circulating polyfunctional cytokine secreting CD8+ T cells or strong virus-specific proliferative responses in draining lymph nodes and in the gut associated lymphoid tissue (GALT) following the first exposure was associated with protection from systemic re-infection. These studies identify the gut and lymphoid tissues proximal to the genital tract as sites of robust CD8 T lymphocyte responses that contribute to containment of virus spread following vaginal transmission.

  12. The role of cytokines in immune changes induced by spaceflight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Miller, E. S.

    1993-01-01

    It has become apparent that spaceflight alters many immune responses. Among the regulatory components of the immune response that have been shown to be affected by spaceflight is the cytokine network. Spaceflight, as well as model systems of spaceflight, have been shown to affect the production and action of various cytokines including interferons, interleukins, colony stimulating factors, and tumor necrosis factors. These changes have been shown not to involve a general shutdown of the cytokine network but, rather, to involve selective alterations of specific cytokine functions by spaceflight. The full breadth of changes in cytokines induced by spaceflight, as well as mechanisms, duration, adaptation, reversibility, and significance to resistance to infection and neoplastic diseases, remains to be established.

  13. The effect of induced hyperthermia on the immune system.

    PubMed

    Dieing, Annette; Ahlers, Olaf; Hildebrandt, Bert; Kerner, Thoralf; Tamm, Ingo; Possinger, Kurt; Wust, Peter

    2007-01-01

    Therapeutical hyperthermia has been considered for cancer therapy since William Coley observed tumour remission after induction of fever by bacterial toxins at the end of the 19th century. Because fever is associated with a variety of immunological reactions, it has been suspected, that therapeutical hyperthermia might also activate the immune system in a reproducible manner and thereby positively influence the course of the disease. During the last decade, new insight has been gained regarding the immunological changes taking place during therapeutic hyperthermia. In this chapter, we review the most relevant data known about the effect of hyperthermia on the immune system with special focus on alterations induced by therapeutical whole-body hyperthermia (WBH) in cancer patients.

  14. Influence of orally administered Lactobacillus GG on respiratory immune response in a murine model of diet-induced obesity.

    PubMed

    Miyazawa, Kenji; Yoda, Kazutoyo; Kawase, Manabu; Harata, Gaku; He, Fang

    2015-02-01

    Mice with diet-induced obesity were fed with Lactobacillus rhamnosus GG (LGG) suspended in saline or saline alone (control mice). Pulmonary mRNA expression of IFN-γ; IFN-α receptor 1; CD247 antigen; killer cell lectin-like receptor subfamily K, member 1; TNF-α; IL-12 receptor β1 and IL-2 receptor β, and the proportion of Lactobacillales in feces were significantly greater in the LGG group than in the control mice (P < 0.05 and P < 0.01, respectively). These results suggest that LGG alters the respiratory immunity of obese subjects through having a potent impact on intestinal immunity.

  15. Trypanosoma cruzi adjuvants potentiate T cell-mediated immunity induced by a NY-ESO-1 based antitumor vaccine.

    PubMed

    Junqueira, Caroline; Guerrero, Ana Tereza; Galvão-Filho, Bruno; Andrade, Warrison A; Salgado, Ana Paula C; Cunha, Thiago M; Ropert, Catherine; Campos, Marco Antônio; Penido, Marcus L O; Mendonça-Previato, Lúcia; Previato, José Oswaldo; Ritter, Gerd; Cunha, Fernando Q; Gazzinelli, Ricardo T

    2012-01-01

    Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR)4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4(+) T and CD8(+) T cell responses elicited by a specific immunological adjuvant.

  16. Role of Baicalin in Anti-Influenza Virus A as a Potent Inducer of IFN-Gamma.

    PubMed

    Chu, Ming; Xu, Lan; Zhang, Ming-Bo; Chu, Zheng-Yun; Wang, Yue-Dan

    2015-01-01

    Baicalin (BA) is a flavonoid compound purified from Scutellaria baicalensis Georgi and has been shown to possess a potent inhibitory activity against viruses. However, the role of BA in anti-influenza virus has not been extensively studied, and the immunological mechanism of BA in antiviral activity remains unknown. Here, we observed that BA could protect mice from infection by influenza virus A/PR/8/34 (H1N1), associated with increasing IFN-γ production, but presented no effects in IFN-γ or IFN-γ receptor deficient mice. Further study indicated that BA could inhibit A/PR/8/34 replication through IFN-γ in human PBMC. Moreover, BA can directly induce IFN-γ production in human CD4(+) and CD8(+) T cells and NK cells, and activate JAK/STAT-1 signaling pathway. Collectively, BA exhibited anti-influenza virus A (H1N1) activity in vitro and in vivo as a potent inducer of IFN-γ in major IFN-γ producing cells. PMID:26783516

  17. Diffuse traumatic brain injury induces prolonged immune dysregulation and potentiates hyperalgesia following a peripheral immune challenge

    PubMed Central

    Rowe, Rachel K; Ellis, Gavin I; Harrison, Jordan L; Bachstetter, Adam D; Corder, Gregory F; Van Eldik, Linda J; Taylor, Bradley K; Marti, Francesc

    2016-01-01

    Background Nociceptive and neuropathic pain occurs as part of the disease process after traumatic brain injury (TBI) in humans. Central and peripheral inflammation, a major secondary injury process initiated by the traumatic brain injury event, has been implicated in the potentiation of peripheral nociceptive pain. We hypothesized that the inflammatory response to diffuse traumatic brain injury potentiates persistent pain through prolonged immune dysregulation. Results To test this, adult, male C57BL/6 mice were subjected to midline fluid percussion brain injury or to sham procedure. One cohort of mice was analyzed for inflammation-related cytokine levels in cortical biopsies and serum along an acute time course. In a second cohort, peripheral inflammation was induced seven days after surgery/injury with an intraplantar injection of carrageenan. This was followed by measurement of mechanical hyperalgesia, glial fibrillary acidic protein and Iba1 immunohistochemical analysis of neuroinflammation in the brain, and flow cytometric analysis of T-cell differentiation in mucosal lymph. Traumatic brain injury increased interleukin-6 and chemokine ligand 1 levels in the cortex and serum that peaked within 1–9 h and then resolved. Intraplantar carrageenan produced mechanical hyperalgesia that was potentiated by traumatic brain injury. Further, mucosal T cells from brain-injured mice showed a distinct deficiency in the ability to differentiate into inflammation-suppressing regulatory T cells (Tregs). Conclusions We conclude that traumatic brain injury increased the inflammatory pain associated with cutaneous inflammation by contributing to systemic immune dysregulation. Regulatory T cells are immune suppressors and failure of T cells to differentiate into regulatory T cells leads to unregulated cytokine production which may contribute to the potentiation of peripheral pain through the excitation of peripheral sensory neurons. In addition, regulatory T cells are

  18. Potent and Broadly Reactive HIV-2 Neutralizing Antibodies Elicited by a Vaccinia Virus Vector Prime-C2V3C3 Polypeptide Boost Immunization Strategy▿ †

    PubMed Central

    Marcelino, José Maria; Borrego, Pedro; Rocha, Cheila; Barroso, Helena; Quintas, Alexandre; Novo, Carlos; Taveira, Nuno

    2010-01-01

    Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism. PMID:20844029

  19. Potent and broadly reactive HIV-2 neutralizing antibodies elicited by a vaccinia virus vector prime-C2V3C3 polypeptide boost immunization strategy.

    PubMed

    Marcelino, José Maria; Borrego, Pedro; Rocha, Cheila; Barroso, Helena; Quintas, Alexandre; Novo, Carlos; Taveira, Nuno

    2010-12-01

    Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism. PMID:20844029

  20. Radiation-induced immune responses: mechanisms and therapeutic perspectives

    PubMed Central

    Jeong, Hoibin; Bok, Seoyeon; Hong, Beom-Ju; Choi, Hyung-Seok

    2016-01-01

    Recent advancement in the radiotherapy technology has allowed conformal delivery of high doses of ionizing radiation precisely to the tumors while sparing large volume of the normal tissues, which have led to better clinical responses. Despite this technological advancement many advanced tumors often recur and they do so within the previously irradiated regions. How could tumors recur after receiving such high ablative doses of radiation? In this review, we outlined how radiation can elicit anti-tumor responses by introducing some of the cytokines that can be induced by ionizing radiation. We then discuss how tumor hypoxia, a major limiting factor responsible for failure of radiotherapy, may also negatively impact the anti-tumor responses. In addition, we highlight how there may be other populations of immune cells including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) that can be recruited to tumors interfering with the anti-tumor immunity. Finally, the impact of irradiation on tumor hypoxia and the immune responses according to different radiotherapy regimen is also delineated. It is indeed an exciting time to see that radiotherapy is being combined with immunotherapy in the clinic and we hope that this review can add an excitement to the field. PMID:27722125

  1. Targeted approaches to induce immune tolerance for Pompe disease therapy

    PubMed Central

    Doerfler, Phillip A; Nayak, Sushrusha; Corti, Manuela; Morel, Laurence; Herzog, Roland W; Byrne, Barry J

    2016-01-01

    Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease. PMID:26858964

  2. Targeted approaches to induce immune tolerance for Pompe disease therapy.

    PubMed

    Doerfler, Phillip A; Nayak, Sushrusha; Corti, Manuela; Morel, Laurence; Herzog, Roland W; Byrne, Barry J

    2016-01-01

    Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease. PMID:26858964

  3. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages

    PubMed Central

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto

    2016-01-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5. Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. PMID:27183578

  4. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    PubMed

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages.

  5. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    PubMed

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  6. Immunological aspects of the immune response induced by mosquito allergens.

    PubMed

    Cantillo, José Fernando; Fernández-Caldas, Enrique; Puerta, Leonardo

    2014-01-01

    Allergies caused by mosquito bites may produce local or systemic reactions. The inhalation of mosquito allergens may also cause asthma and/or allergic rhinoconjunctivitis in sensitized individuals. The mechanisms implicated in the development of these immune responses involve IgE antibodies, different subtypes of IgG and proinflammatory cytokines as well as basophils, eosinophils and mast cells. Several allergenic components have been identified in the saliva and bodies of mosquitoes and some of these are present in different mosquito species. The most common species implicated in allergic reactions belong to the genera Aedes, Culex and Anopheles. Several Aedes aegypti allergens have been cloned and sequenced. The recombinant molecules show IgE reactivity similar to that of the native allergens, making them good candidates for the diagnosis of mosquito allergies. Allergen-specific immunotherapy with mosquito extracts induces a protective response characterized by a decreased production of IgE antibodies, increased IgG levels, a reduction in the severity of cutaneous and respiratory symptoms and the need for medication. The aims of this review are to summarize the progress made in the characterization of mosquito allergens and discuss the types of immune responses induced by mosquito bites and the inhalation of mosquito allergens in atopic individuals.

  7. Dolichyl phosphate, a potent inducer of apoptosis in rat glioma C6 cells.

    PubMed

    Yasugi, E; Yokoyama, Y; Seyama, Y; Kano, K; Hayashi, Y; Oshima, M

    1995-11-22

    Exposure of rat glioma C6 cells to dolichyl phosphate resulted in cell shrinkage followed by nuclear fragmentation and internucleosomal cleavage of genomic DNA, yielding ladder patterns of oligonucleosomal fragments, all characteristics of apoptosis. This phenomenon occurred in a dose and time dependent manner. Dolichol and prenol failed to induce apoptosis. The inhibitors of N-glycosylation, tunicamycin and swainsonine had no apparent effect on dolichyl phosphate-induced apoptosis. Apoptotic changes were also observed in HL-60 cells, SIRC cells and HeLa cells. Thus, dolichyl phosphate functions as a potential apoptosis inducer as well as an essential carrier lipid in the biosynthesis of N-linked glycoprotein.

  8. Parenteral monofluorophosphate (MFP) is a more potent inducer of enamel fluorotic defects in neonatal hamster molars than sodium fluoride.

    PubMed

    Lyaruu, Donacian M; Schoonderwoerd, Mark; Tio, Dane; Tse, Chukan; Bervoets, Theodore J; DenBesten, Pamela; Bronckers, Antonius L J J

    2014-07-01

    Supra-optimal intake of sodium fluoride (NaF) during early childhood results in formation of irreversible enamel defects. Monofluorophosphate (MFP) was considered as less toxic than NaF but equally cariostatic. We compared the potency of MFP and NaF to induce pre-eruptive sub-ameloblastic cysts and post-eruptive white spots and pits in developing hamster enamel. Hamster pups were injected subcutaneously with either NaF or MFP in equimolar doses of either 9 mg or 18 mg F/kg body weight. At 9 mg F/kg, MFP induced more but smaller sub-ameloblastic cysts with a collective cyst volume twice as large as that induced by NaF. Eight days after F injection, all F-injected groups had formed 4-6 white spots per molar, with an additional 2 pits per molar in the low MFP group. Twenty-eight days after injection, most white spots had turned into pits (5-6 per molar) and only the high MFP group still contained 2 white spots per molar. We conclude that parenterally applied MFP is more potent in inducing enamel defects than NaF. Most white spots formed turn into pits by functional use of the dentition. The higher potency of parenteral MFP may be associated with sustained elevated F levels in the enamel organ by enzymatic hydrolysis of MFP by alkaline phosphatase activity.

  9. Complementary Effects of Interleukin-15 and Alpha Interferon Induce Immunity in Hepatitis B Virus Transgenic Mice

    PubMed Central

    Di Scala, Marianna; Otano, Itziar; Gil-Fariña, Irene; Vanrell, Lucia; Hommel, Mirja; Olagüe, Cristina; Vales, Africa; Galarraga, Miguel; Guembe, Laura; Ortiz de Solorzano, Carlos; Ghosh, Indrajit; Maini, Mala K.; Prieto, Jesús

    2016-01-01

    ABSTRACT In chronic hepatitis B (CHB), failure to control hepatitis B virus (HBV) is associated with T cell dysfunction. HBV transgenic mice mirror many features of the human disease, including T cell unresponsiveness, and thus represent an appropriate model in which to test novel therapeutic strategies. To date, the tolerant state of CD8+ T cells in these animals could be altered only by strong immunogens or by immunization with HBV antigen-pulsed dendritic cells; however, the effectors induced were unable to suppress viral gene expression or replication. Because of the known stimulatory properties of alpha interferon (IFN-α) and interleukin-15 (IL-15), this study explored the therapeutic potential of liver-directed gene transfer of these cytokines in a murine model of CHB using adeno-associated virus (AAV) delivery. This combination not only resulted in a reduction in the viral load in the liver and the induction of an antibody response but also gave rise to functional and specific CD8+ immunity. Furthermore, when splenic and intrahepatic lymphocytes from IFN-α- and IL-15-treated animals were transferred to new HBV carriers, partial antiviral immunity was achieved. In contrast to previous observations made using either cytokine alone, markedly attenuated PD-L1 induction in hepatic tissue was observed upon coadministration. An initial study with CHB patient samples also gave promising results. Hence, we demonstrated synergy between two stimulating cytokines, IL-15 and IFN-α, which, given together, constitute a potent approach to significantly enhance the CD8+ T cell response in a state of immune hyporesponsiveness. Such an approach may be useful for treating chronic viral infections and neoplastic conditions. IMPORTANCE With 350 million people affected worldwide and 600,000 annual deaths due to HBV-induced liver cirrhosis and/or hepatocellular carcinoma, chronic hepatitis B (CHB) is a major health problem. However, current treatment options are costly and not

  10. Sodium orthovanadate (vanadate), a potent mitigator of radiation-induced damage to the hematopoietic system in mice

    PubMed Central

    Wang, Bing; Tanaka, Kaoru; Morita, Akinori; Ninomiya, Yasuharu; Maruyama, Kouichi; Fujita, Kazuko; Hosoi, Yoshio; Nenoi, Mitsuru

    2013-01-01

    Previous in vitro and in vivo studies have shown that sodium orthovanadate (vanadate), an inorganic vanadium compound, could effectively suppress radiation-induced p53-mediated apoptosis via both transcription-dependent and transcription-independent pathways. As a potent radiation protector administered at a dose of 20 mg/kg body weight (20 mg/kg) prior to total body irradiation (TBI) by intra-peritoneal (ip) injection, it completely protected mice from hematopoietic syndrome and partially from gastrointestinal syndrome. In the present study, radiation mitigation effects from vanadate were investigated by ip injection of vanadate after TBI in mice. Results showed that a single administration of vanadate at a dose of 20 mg/kg markedly improved the 30-day survival rate and the peripheral blood hemogram, relieved bone marrow aplasia and decreased occurrence of the bone marrow micronucleated erythrocytes in the surviving animals. The dose reduction factor was 1.2 when a single dose of 20 mg/kg was administered 15 min after TBI in mice using the 30-day survival test as the endpoint. Results also showed that either doubling the vanadate dose (40 mg/kg) in a single administration or continuing the vanadate treatment (after a single administration at 20 mg/kg) from the following day at a dose of 5 mg/kg per day for 4 consecutive days further significantly improved the efficacy for rescuing bone marrow failure in the 30-day survival test. Taken together, these findings indicate that vanadate would be a potent mitigator suppressing the acute lethality (hematopoietic syndrome) and minimizing the detrimental effects (anhematopoiesis and delayed genotoxic effects) induced by TBI in mice. PMID:23349341

  11. Stimulatory effects of Cuminum cyminum and flavonoid glycoside on Cyclosporine-A and restraint stress induced immune-suppression in Swiss albino mice.

    PubMed

    Chauhan, Prashant Singh; Satti, Naresh Kumar; Suri, Krishan Avtar; Amina, Musarat; Bani, Sarang

    2010-04-15

    Many herbs and spices are known to modulate the immune system and have been shown to restore the immunity in immuno-compromised individuals. Spices generally used to increase the taste and flavor of food also has the history of usage as an ayurvedic medicine. Therefore to explore the health modulating effects of Cuminum cyminum and to identify the active compound, immunomodulatory properties were evaluated using flowcytometry and ELISA in normal and immune-suppressed animals. C. cyminum and compound 1 stimulated the T cells and Th1 cytokines expression in normal animals. Swiss albino mice subjected to Cyclosporine-A induced immune-suppression were dosed orally with C. cyminum (25, 50, 100 and 200 mg/kg) on consecutive days. The results showed that administration significantly increased T cells (CD4 and CD8) count and Th1 predominant immune response in a dose dependent manner thereby suggesting immunomodulatory activity through modulation of T lymphocytes expression. In restraint stress induced immune-suppressed animals, compound 1 countered the depleted T lymphocytes, decreased the elevated corticosterone levels and size of adrenal glands and increased the weight of thymus and spleen. Based on the data we may conclude that C. cyminum is a potent immunomodulator and may develop as a lead to recover the immunity of immuno-compromised individuals.

  12. Chronic hepatitis C viral infection subverts vaccine‐induced T‐cell immunity in humans

    PubMed Central

    Kelly, Christabel; Swadling, Leo; Capone, Stefania; Brown, Anthony; Richardson, Rachel; Halliday, John; von Delft, Annette; Oo, Ye; Mutimer, David; Kurioka, Ayako; Hartnell, Felicity; Collier, Jane; Ammendola, Virginia; Sorbo, Mariarosaria Del; Grazioli, Fabiana; Esposito, Maria Luisa; Marco, Stefania Di; Siani, Loredana; Traboni, Cinzia; Hill, Adrian V.S.; Colloca, Stefano; Nicosia, Alfredo; Cortese, Riccardo; Folgori, Antonella; Klenerman, Paul

    2016-01-01

    Adenoviral vectors encoding hepatitis C virus (HCV) nonstructural (NS) proteins induce multispecific, high‐magnitude, durable CD4+ and CD8+ T‐cell responses in healthy volunteers. We assessed the capacity of these vaccines to induce functional HCV‐specific immune responses and determine T‐cell cross‐reactivity to endogenous virus in patients with chronic HCV infection. HCV genotype 1‐infected patients were vaccinated using heterologous adenoviral vectors (ChAd3‐NSmut and Ad6‐NSmut) encoding HCV NS proteins in a dose escalation, prime‐boost regimen, with and without concomitant pegylated interferon‐α/ribavirin therapy. Analysis of immune responses ex vivo used human leukocyte antigen class I pentamers, intracellular cytokine staining, and fine mapping in interferon‐γ enzyme‐linked immunospot assays. Cross‐reactivity of T cells with population and endogenous viral variants was determined following viral sequence analysis. Compared to healthy volunteers, the magnitude of HCV‐specific T‐cell responses following vaccination was markedly reduced. CD8+ HCV‐specific T‐cell responses were detected in 15/24 patients at the highest dose, whereas CD4+ T‐cell responses were rarely detectable. Analysis of the host circulating viral sequence showed that T‐cell responses were rarely elicited when there was sequence homology between vaccine immunogen and endogenous virus. In contrast, T cells were induced in the context of genetic mismatch between vaccine immunogen and endogenous virus; however, these commonly failed to recognize circulating epitope variants and had a distinct partially functional phenotype. Vaccination was well tolerated but had no significant effect on HCV viral load. Conclusion: Vaccination with potent HCV adenoviral vectored vaccines fails to restore T‐cell immunity except where there is genetic mismatch between vaccine immunogen and endogenous virus; this highlights the major challenge of overcoming T‐cell exhaustion

  13. Polynuclear platinum anticancer drugs are more potent than cisplatin and induce cell cycle arrest in glioma1

    PubMed Central

    Billecke, Christine; Finniss, Susan; Tahash, Laura; Miller, Cathie; Mikkelsen, Tom; Farrell, Nicholas P.; Bögler, Oliver

    2006-01-01

    We have evaluated the efficacy of the multinuclear platinum chemotherapeutics BBR3464, BBR3571, and BBR3610 against glioma cells in culture and animal models and investigated their mechanism of action at the cellular level. In a clonogenic assay, BBR3610, the most potent compound, had an IC90 dose (achieving 90% colony formation inhibition) that was 250 times lower than that of cisplatin for both LNZ308 and LN443 glioma cells. In subcutaneous xenografts of U87MG glioma cells, BBR3610 approximately doubled the time it took for a tumor to reach a predetermined size and significantly extended survival when these cells were implanted intracranially. Analysis of apoptosis and cell cycle distribution showed that BBR compounds induced G2/M arrest in the absence of cell death, while cisplatin predominantly induced apoptosis. Interestingly, the BBR compounds and cisplatin both induced extracellular signal-regulated kinase 1/2 phosphorylation, and inhibition of this pathway at the level of MEK antagonized the induction of G2/M arrest or apoptosis, respectively. Analysis of Chk1 and Chk2 status did not show any differential effects of the drugs, and it is thus unlikely to underlie the difference in response. Similarly, the drugs did not differentially modulate survivin levels, and knockdown of survivin did not convert the response to BBR3610 to apoptosis. Together, these findings support continued development of BBR3610 for clinical use against glioma and provide a framework for future investigation of mechanism of action. PMID:16723633

  14. Selective Induced Altered Coccidians to Immunize and Prevent Enteritis

    PubMed Central

    2016-01-01

    Microbiomic flora in digestive tract is pivotal to the state of our health and disease. Antibiotics affect GI, control composition of microbiome, and shift equilibrium from health into disease status. Coccidiosis causes gastrointestinal inflammation. Antibiotic additives contaminate animal products and enter food chain, consumed by humans with possible allergic, antibiotic resistance and enigmatic side effects. Purposed study induced nonpathogenic, immunogenic organisms to protect against disease and abolish antibiotics' use in food animals and side effects in man. Diverse species of Coccidia were used as model. Immature organisms were treated with serial purification procedure prior to developmental stages to obtain altered strains. Chicks received oral gavage immunized with serial low doses of normal or altered organisms or sham treatment and were challenged with high infective normal organisms to compare pathogenicity and immunogenicity. Mature induced altered forms of E. tenella and E. necatrix lacked developmental stage of “sporocysts” and contained free sporozoites. In contrast, E. maxima progressed to normal forms or did not mature at all. Animals that received altered forms were considerably protected with higher weight gain and antibody titers against challenge infection compared to those that received normal organisms (p < 0.05). This is the first report to induce selected protective altered organisms for possible preventive measures to minimize antibiotic use in food animals. PMID:27721824

  15. Steric-electronic effects in malarial peptides inducing sterile immunity

    SciTech Connect

    Moreno-Vranich, Armando; Patarroyo, Manuel E.

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Is it evident that the residues position are relevant regarding of {phi} angular value. Black-Right-Pointing-Pointer The geometry considered for detailing the alterations undergone by HABPs. Black-Right-Pointing-Pointer The inter planar interactions ruled by clashes between the atoms making them up. -- Abstract: Conserved Plasmodium falciparum high activity binding peptides' (HABPs) most relevant proteins involved in malaria parasite invasion are immunologically silent; critical binding residues must therefore be specifically replaced to render them highly immunogenic and protection-inducing. Such changes have a tremendous impact on these peptides' steric-electronic effects, such as modifications to peptide length peptide bonds and electronic orbitals' disposition, to allow a better fit into immune system MHCII molecules and better interaction with the TCR which might account for the final immunological outcome.

  16. Chronic NT69L potently prevents drug-induced disruption of prepulse inhibition without causing tolerance

    PubMed Central

    Briody, Siobhan; Boules, Mona; Oliveros, Alfredo; Fauq, Irfan; Richelson, Elliott

    2009-01-01

    NT69L is a neurotensin receptor agonist with antipsychotic-like activity. NT69L blocks apomorphine-induced climbing in rats with no effect on stereotypic behavior, attenuates d-amphetamine-induced hyperactivity, and blocks pharmacologically-induced disruption of prepulse inhibition (PPI) of the startle response. Repeated administration of NT69L results in tolerance to some, but not to all of its effects. Because schizophrenic patients require long term treatment, chronic (21-day) administration of NT69L was tested in PPI with comparisons to chronic haloperidol and clozapine treatment. Sprague-Dawley rats received acute or 21 daily, subcutaneous injections of NT69L (1.0 mg/kg). On days one and 21 the NT69L injection was followed 30 min later by treatment with either saline; the dopamine agonist, d-amphetamine (5.0 mg/kg); or the serotonin 5-HT2A psychotomimetic receptor agonist [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane] DOI (0.5 mg/kg). Experiments were repeated with either haloperidol (1 mg/kg) or clozapine (20 mg/kg) in place of NT69L. Acute injection of NT69L significantly blocked d-amphetamine and DOI disruption of PPI. As with the acute injection, 21 daily administrations of NT69L also blocked d-amphetamine- and DOI-induced disruption of PPI. The data show that animals do not develop tolerance to the antipsychotic-like effects of NT69L when tested in the PPI of the startle response. The persistent efficacy of NT69L with chronic treatment provides further support for the therapeutic use of neurotensin agonists to treat schizophrenia and possibly other disorders that are characterized by PPI deficits. The modulatory role of NT69L on the dopaminergic and serotonergic neurotransmission systems both of which are implicated in the pathophysiology of schizophrenia is discussed. PMID:19800922

  17. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers.

    PubMed

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-04-15

    B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article, we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result, activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus, for the first time, to our knowledge, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells.

  18. Laminin 411 acts as a potent inducer of umbilical cord mesenchymal stem cell differentiation into insulin-producing cells

    PubMed Central

    2014-01-01

    T1DM rats. Conclusions Our results demonstrate that laminin 411 acts as a potent differentiation inducer of IPCs from UC-MSCs via the Pdx1 and Ngn3 signaling pathways. Moreover, transfusion of laminin 411 induced-IPCs more efficiently improves symptoms and survival of T1DM rats. These novel finding highlights a potential clinical application of laminin 411 induced-IPCs in the treatment of T1DM, which calls for further studies. PMID:24885418

  19. Full-Length Plasmodium falciparum Circumsporozoite Protein Administered with Long-Chain Poly(I·C) or the Toll-Like Receptor 4 Agonist Glucopyranosyl Lipid Adjuvant-Stable Emulsion Elicits Potent Antibody and CD4+ T Cell Immunity and Protection in Mice

    PubMed Central

    Kastenmüller, Kathrin; Espinosa, Diego A.; Trager, Lauren; Stoyanov, Cristina; Salazar, Andres M.; Pokalwar, Santosh; Singh, Sanjay; Dutta, Sheetij; Ockenhouse, Christian F.; Zavala, Fidel

    2013-01-01

    The Plasmodium falciparum circumsporozoite (CS) protein (CSP) is a major vaccine target for preventing malaria infection. Thus, developing strong and durable antibody and T cell responses against CSP with novel immunogens and potent adjuvants may improve upon the success of current approaches. Here, we compare four distinct full-length P. falciparum CS proteins expressed in Escherichia coli or Pichia pastoris for their ability to induce immunity and protection in mice when administered with long-chain poly(I·C) [poly(I·C)LC] as an adjuvant. CS proteins expressed in E. coli induced high-titer antibody responses against the NANP repeat region and potent CSP-specific CD4+ T cell responses. Moreover, E. coli-derived CS proteins in combination with poly(I·C)LC induced potent multifunctional (interleukin 2-positive [IL-2+], tumor necrosis factor alpha-positive [TNF-α+], gamma interferon-positive [IFN-γ+]) CD4+ effector T cell responses in blood, in spleen, and particularly in liver. Using transgenic Plasmodium berghei expressing the repeat region of P. falciparum CSP [Pb-CS(Pf)], we showed that there was a 1- to 4-log decrease in malaria rRNA in the liver following a high-dose challenge and ∼50% sterilizing protection with a low-dose challenge compared to control levels. Protection was directly correlated with high-level antibody titers but not CD4+ T cell responses. Finally, protective immunity was also induced using the Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) as the adjuvant, which also correlated with high antibody titers yet CD4+ T cell immunity that was significantly less potent than that with poly(I·C)LC. Overall, these data suggest that full-length CS proteins and poly(I·C)LC or GLA-SE offer a simple vaccine formulation to be used alone or in combination with other vaccines for preventing malaria infection. PMID:23275094

  20. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  1. Immunizations

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  2. Potent hepatoprotective effect in CCl4-induced hepatic injury in mice of phloroacetophenone from Myrcia multiflora

    PubMed Central

    Ferreira, Eduardo Antonio; Gris, Eliana Fortes; Felipe, Karina Bettega; Correia, João Francisco Gomes; Cargnin-Ferreira, Eduardo; Wilhelm Filho, Danilo; Pedrosa, Rozangela Curi

    2010-01-01

    Background This study investigated the hepatoprotective effect and antioxidant properties of phloroacetophenone (2′,4′,6′-trihydroxyacetophenone – THA), an acetophenone derived from the plant Myrcia multiflora. Material & Method The free radical scavenging activity in vitro and induction of oxidative hepatic damage by carbon tetrachloride (CCl4) (0.5 ml/kg, i.p.) were tested in male Swiss mice (25±5 g). Results This compound exhibited in vitro antioxidant effects on FeCl2–ascorbate-induced lipid peroxidation (LPO) in mouse liver homogenate, scavenging hydroxyl and superoxide radicals, and 2,2-diphenyl-1-picrylhydrazyl. The in vivo assays showed that THA significantly (p<0.01) prevented the increases of hepatic LPO as measured by the levels of thiobarbituric acid-reactive substances, mitochondrial swelling. It also protected hepatocytes against protein carbonylation and oxidative DNA damage. Consistent with these observations, THA pre-treatment normalized the activities of antioxidant enzymes, such as catalase, glutathione peroxidase, and superoxide dismutase, and increased the levels of reduced glutathione (GSH) in CCl4-treated mice. In addition, THA treatment significantly prevented the elevation of serum enzymatic activities of alanine amino transferase, aspartate amino transferase, and lactate dehydrogenase, as well as histological alterations induced by CCl4. Silymarin (SIL) (24 mg/kg), a known hepatoprotective drug used for comparison, led to a significant decrease (p<0.01) in activities of theses enzymes in way very similar to that observed in pre-treatment with THA. Conclusion These results suggest that the protective effects are due to reduction of oxidative damage induced by CCl4 resulting from the antioxidant properties of THA. PMID:21483585

  3. A lysophosphatidic acid analogue is revealed as a potent inhibitor of phosphatidylcholine synthesis, inducing apoptosis.

    PubMed Central

    Gueguen, Geneviéve; Granci, Virginie; Rogalle, Pierre; Briand-Mésange, Fabienne; Wilson, Michéle; Klaébé, Alain; Tercé, François; Chap, Hugues; Salles, Jean-Pierre; Simon, Marie-Françoise; Gaits, Frédérique

    2002-01-01

    A previous study demonstrated that cross-desensitization experiments performed with the lysophosphatidic acid (LPA) analogues (R)- and (S)-N-palmitoyl-norleucinol 1-phosphate (PNPAs) inhibited LPA-induced platelet aggregation without any stereospecificity. Here we report opposite biological effects of the two enantiomers on mitogenesis of IMR-90 fibroblasts in relation to their respective metabolism. (R)PNPA was proliferative, while (S)PNPA induced apoptosis by specifically inhibiting phosphatidylcholine biosynthesis at the last step of the CDP-choline pathway controlled by cholinephosphotransferase. This effect was not direct but required dephosphorylation of PNPAs by ecto-lipid phosphate phosphatase before cellular uptake of the generated N-palmitoyl-norleucinols (PNOHs). Inhibition of cholinephosphotransferase by the derivative (S)PNOH was confirmed by an in vitro assay. (S)PNPA proapoptotic effects led us to clarify the mechanism linking cholinephosphotransferase inhibition to apoptosis. Three proapoptotic responses were observed: the activation of caspase-3, the production of ceramides from newly synthesized pools (as demonstrated by the inhibitor Fumonisin B1) and finally the activation of stress-activated protein kinase, p38 and c-Jun N-terminal kinases 1/2, as a result of ceramide increase. Thus our data demonstrate that synthetic analogues of LPA might display stereospecific effects leading to apoptosis independently of classical LPA-activated pathways. PMID:12197836

  4. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration

    PubMed Central

    Haynes, Tracy; Luz-Madrigal, Agustin; Reis, Edimara S.; Echeverri Ruiz, Nancy P.; Grajales-Esquivel, Erika; Tzekou, Apostolia; Tsonis, Panagiotis A.; Lambris, John D.; Del Rio-Tsonis, Katia

    2013-01-01

    Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field. PMID:23942241

  5. Dominant-Negative CK2α Induces Potent Effects on Circadian Rhythmicity

    PubMed Central

    Smith, Elaine M; Lin, Jui-Ming; Meissner, Rose-Anne; Allada, Ravi

    2008-01-01

    Circadian clocks organize the precise timing of cellular and behavioral events. In Drosophila, circadian clocks consist of negative feedback loops in which the clock component PERIOD (PER) represses its own transcription. PER phosphorylation is a critical step in timing the onset and termination of this feedback. The protein kinase CK2 has been linked to circadian timing, but the importance of this contribution is unclear; it is not certain where and when CK2 acts to regulate circadian rhythms. To determine its temporal and spatial functions, a dominant negative mutant of the catalytic alpha subunit, CK2αTik, was targeted to circadian neurons. Behaviorally, CK2αTik induces severe period lengthening (∼33 h), greater than nearly all known circadian mutant alleles, and abolishes detectable free-running behavioral rhythmicity at high levels of expression. CK2αTik, when targeted to a subset of pacemaker neurons, generates period splitting, resulting in flies exhibiting both long and near 24-h periods. These behavioral effects are evident even when CK2αTik expression is induced only during adulthood, implicating an acute role for CK2α function in circadian rhythms. CK2αTik expression results in reduced PER phosphorylation, delayed nuclear entry, and dampened cycling with elevated trough levels of PER. Heightened trough levels of per transcript accompany increased protein levels, suggesting that CK2αTik disturbs negative feedback of PER on its own transcription. Taken together, these in vivo data implicate a central role of CK2α function in timing PER negative feedback in adult circadian neurons. PMID:18208335

  6. Among-lake reciprocal transplants induce convergent expression of immune genes in threespine stickleback.

    PubMed

    Stutz, William E; Schmerer, Matthew; Coates, Jessica L; Bolnick, Daniel I

    2015-09-01

    Geographic variation in parasite communities can drive evolutionary divergence in host immune genes. However, biotic and abiotic environmental variation can also induce plastic differences in immune function among populations. At present, there is little information concerning the relative magnitudes of heritable vs. induced immune divergence in natural populations. We examined immune gene expression profiles of threespine stickleback (Gasterosteus aculeatus) from six lakes on Vancouver Island, British Columbia. Parasite community composition differs between lake types (large or small, containing limnetic- or benthic-like stickleback) and between watersheds. We observed corresponding differences in immune gene expression profiles among wild-caught stickleback, using a set of seven immune genes representing distinct branches of the immune system. To evaluate the role of environmental effects on this differentiation, we experimentally transplanted wild-caught fish into cages in their native lake, or into a nearby foreign lake. Transplanted individuals' immune gene expression converged on patterns typical of their destination lake, deviating from their native expression profile. Transplant individuals' source population had a much smaller effect, suggesting relatively weak genetic underpinning of population differences in immunity, as viewed through gene expression. This strong environmental regulation of immune gene expression provides a counterpoint to the large emerging literature documenting microevolution and genetic diversification of immune function. Our findings illustrate the value of studying immunity in natural environmental settings where the immune system has evolved and actively functions. PMID:26118468

  7. Among-lake reciprocal transplants induce convergent expression of immune genes in threespine stickleback.

    PubMed

    Stutz, William E; Schmerer, Matthew; Coates, Jessica L; Bolnick, Daniel I

    2015-09-01

    Geographic variation in parasite communities can drive evolutionary divergence in host immune genes. However, biotic and abiotic environmental variation can also induce plastic differences in immune function among populations. At present, there is little information concerning the relative magnitudes of heritable vs. induced immune divergence in natural populations. We examined immune gene expression profiles of threespine stickleback (Gasterosteus aculeatus) from six lakes on Vancouver Island, British Columbia. Parasite community composition differs between lake types (large or small, containing limnetic- or benthic-like stickleback) and between watersheds. We observed corresponding differences in immune gene expression profiles among wild-caught stickleback, using a set of seven immune genes representing distinct branches of the immune system. To evaluate the role of environmental effects on this differentiation, we experimentally transplanted wild-caught fish into cages in their native lake, or into a nearby foreign lake. Transplanted individuals' immune gene expression converged on patterns typical of their destination lake, deviating from their native expression profile. Transplant individuals' source population had a much smaller effect, suggesting relatively weak genetic underpinning of population differences in immunity, as viewed through gene expression. This strong environmental regulation of immune gene expression provides a counterpoint to the large emerging literature documenting microevolution and genetic diversification of immune function. Our findings illustrate the value of studying immunity in natural environmental settings where the immune system has evolved and actively functions.

  8. Modified Vaccinia Virus Ankara Encoding Influenza Virus Hemagglutinin Induces Heterosubtypic Immunity in Macaques

    PubMed Central

    Florek, Nicholas W.; Weinfurter, Jason T.; Jegaskanda, Sinthujan; Brewoo, Joseph N.; Powell, Tim D.; Young, Ginger R.; Das, Subash C.; Hatta, Masato; Broman, Karl W.; Hungnes, Olav; Dudman, Susanne G.; Kawaoka, Yoshihiro; Kent, Stephen J.; Stinchcomb, Dan T.

    2014-01-01

    ABSTRACT Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4+ and CD8+ T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging

  9. Immune mechanisms in acetaminophen-induced acute liver failure.

    PubMed

    Krenkel, Oliver; Mossanen, Jana C; Tacke, Frank

    2014-12-01

    An overdose of acetaminophen (N-acetyl-p-aminophenol, APAP), also termed paracetamol, can cause severe liver damage, ultimately leading to acute liver failure (ALF) with the need of liver transplantation. APAP is rapidly taken up from the intestine and metabolized in hepatocytes. A small fraction of the metabolized APAP forms cytotoxic mitochondrial protein adducts, leading to hepatocyte necrosis. The course of disease is not only critically influenced by dose of APAP and the initial hepatocyte damage, but also by the inflammatory response following acetaminophen-induced liver injury (AILI). As revealed by mouse models of AILI and corresponding translational studies in ALF patients, necrotic hepatocytes release danger-associated-molecular patterns (DAMPs), which are recognized by resident hepatic macrophages, Kupffer cell (KC), and neutrophils, leading to the activation of these cells. Activated hepatic macrophages release various proinflammatory cytokines, such as TNF-α or IL-1β, as well as chemokines (e.g., CCL2) thereby further enhancing inflammation and increasing the influx of immune cells, like bone-marrow derived monocytes and neutrophils. Monocytes are mainly recruited via their receptor CCR2 and aggravate inflammation. Infiltrating monocytes, however, can mature into monocyte-derived macrophages (MoMF), which are, in cooperation with neutrophils, also involved in the resolution of inflammation. Besides macrophages and neutrophils, distinct lymphocyte populations, especially γδ T cells, are also linked to the inflammatory response following an APAP overdose. Natural killer (NK), natural killer T (NKT) and T cells possibly further perpetuate inflammation in AILI. Understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression is essential to identify novel therapeutic targets for human disease. PMID:25568858

  10. Differences in immune responses against Leishmania induced by infection and by immunization with killed parasite antigen: implications for vaccine discovery.

    PubMed

    Mendonça, Sergio C F

    2016-01-01

    The leishmaniases are a group of diseases caused by different species of the protozoan genus Leishmania and transmitted by sand fly vectors. They are a major public health problem in almost all continents. There is no effective control of leishmaniasis and its geographical distribution is expanding in many countries. Great effort has been made by many scientists to develop a vaccine against leishmaniasis, but, so far, there is still no effective vaccine against the disease. The only way to generate protective immunity against leishmaniasis in humans is leishmanization, consisting of the inoculation of live virulent Leishmania as a means to acquire long-lasting immunity against subsequent infections. At present, all that we know about human immune responses to Leishmania induced by immunization with killed parasite antigens came from studies with first generation candidate vaccines (killed promastigote extracts). In the few occasions that the T cell-mediated immune responses to Leishmania induced by infection and immunization with killed parasite antigens were compared, important differences were found both in humans and in animals. This review discusses these differences and their relevance to the development of a vaccine against leishmaniasis, the major problems involved in this task, the recent prospects for the selection of candidate antigens and the use of attenuated Leishmania as live vaccines. PMID:27600664

  11. The Proteasome Inhibitor Bortezomib Is a Potent Inducer of Zinc Finger AN1-type Domain 2a Gene Expression

    PubMed Central

    Rossi, Antonio; Riccio, Anna; Coccia, Marta; Trotta, Edoardo; La Frazia, Simone; Santoro, M. Gabriella

    2014-01-01

    The zinc finger AN1-type domain 2a gene, also known as arsenite-inducible RNA-associated protein (AIRAP), was recently identified as a novel human canonical heat shock gene strictly controlled by heat shock factor (HSF) 1. Little is known about AIRAP gene regulation in human cells. Here we report that bortezomib, a proteasome inhibitor with anticancer and antiangiogenic properties used in the clinic for treatment of multiple myeloma, is a potent inducer of AIRAP expression in human cells. Using endothelial cells as a model, we unraveled the molecular mechanism regulating AIRAP expression during proteasome inhibition. Bortezomib induces AIRAP expression at the transcriptional level early after treatment, concomitantly with polyubiquitinated protein accumulation and HSF activation. AIRAP protein is detected at high levels for at least 48 h after bortezomib exposure, together with the accumulation of HSF2, a factor implicated in differentiation and development regulation. Different from heat-mediated induction, in bortezomib-treated cells, HSF1 and HSF2 interact directly, forming HSF1-HSF2 heterotrimeric complexes recruited to a specific heat shock element in the AIRAP promoter. Interestingly, whereas HSF1 has been confirmed to be critical for AIRAP gene transcription, HSF2 was found to negatively regulate AIRAP expression after bortezomib treatment, further emphasizing an important modulatory role of this transcription factor under stress conditions. AIRAP function is still not defined. However, the fact that AIRAP is expressed abundantly in primary human cells at bortezomib concentrations comparable with plasma levels in treated patients suggests that AIRAP may participate in the regulatory network controlling proteotoxic stress during bortezomib treatment. PMID:24619424

  12. A fibrin antibody binding to fibronectin induces potent inhibition of angiogenesis.

    PubMed

    El-Ayoubi, Fida; Amiral, Jean; Pascaud, Juliette; Charrin, Stéphanie; Tassel, Bénédicte; Uzan, Georges; Gurewich, Victor

    2015-01-01

    Antiserum from rabbits immunised with pure human fibrinogen was affinity purified on immobilised fibrin fragment E (FFE). This FFE antibody (Ab) induced significant growth inhibition of a human cancer xenograft in mice and suppression of tumour angiogenesis, leaving no formed vessels and only CD31-staining endothelial fragments in place. Tubule formation of HUVEC on MatrigelTM was also significantly inhibited by FFE Ab. Since MatrigelTM is fibrin-free, this effect implicated a different FFE Ab binding site than FFE. Flow cytometry of HUVEC showed that FFE Ab bound to HUVEC, but with a broad range of 55-98 %. Immunofluorescent staining of HUVEC explained this range, since FFE Ab was seen not to bind to human umbilical vein endothelial cells (HUVEC) directly but instead to a matrix protein variably adherent to HUVEC. This protein was identified as fibronectin (FN) by appearance, staining with FN Ab, and by a FN knockdown study. Neither HUVEC nor matrix reacted with fibrin D-dimer (DD) Ab. Immunofluorescent stains of HUVEC matrix with FFE and FN Ab's showed that these Ab's bound to the same epitopes on FN, as also seen on Western blots of purified FN. These findings indicate the presence of an antigenic determinant in fibrinogen/FFE that is homologous with an epitope(s) in FN recognised by FFE Ab, and critical for angiogenesis in this xenograft. The FN epitope(s) remains to be identified, but the present findings can be used for the selection of the appropriate clones from mice immunised with fibrinogen which can facilitate this identification, and which may also be of clinical use. PMID:25252851

  13. LXXLL Peptide Converts Transportan 10 to a Potent Inducer of Apoptosis in Breast Cancer Cells

    PubMed Central

    Tints, Kairit; Prink, Madis; Neuman, Toomas; Palm, Kaia

    2014-01-01

    Degenerate expression of transcription coregulator proteins is observed in most human cancers. Therefore, in targeted anti-cancer therapy development, intervention at the level of cancer-specific transcription is of high interest. The steroid receptor coactivator-1 (SRC-1) is highly expressed in breast, endometrial, and prostate cancer. It is present in various transcription complexes, including those containing nuclear hormone receptors. We examined the effects of a peptide that contains the LXXLL-motif of the human SRC-1 nuclear receptor box 1 linked to the cell-penetrating transportan 10 (TP10), hereafter referred to as TP10-SRC1LXXLL, on proliferation and estrogen-mediated transcription of breast cancer cells in vitro. Our data show that TP10-SRC1LXXLL induced dose-dependent cell death of breast cancer cells, and that this effect was not affected by estrogen receptor (ER) status. Surprisingly TP10-SRC1LXXLL severely reduced the viability and proliferation of hormone-unresponsive breast cancer MDA-MB-231 cells. In addition, the regulation of the endogenous ERα direct target gene pS2 was not affected by TP10-SRC1LXXLL in estrogen-stimulated MCF-7 cells. Dermal fibroblasts were similarly affected by treatment with higher concentrations of TP10-SRC1LXXLL and this effect was significantly delayed. These results suggest that the TP10-SRC1LXXLL peptide may be an effective drug candidate in the treatment of cancers with minimal therapeutic options, for example ER-negative tumors. PMID:24705462

  14. Effect of rifampin, a potent inducer of drug-metabolizing enzymes, on the pharmacokinetics of raltegravir.

    PubMed

    Wenning, Larissa A; Hanley, William D; Brainard, Diana M; Petry, Amelia S; Ghosh, Kalyan; Jin, Bo; Mangin, Eric; Marbury, Thomas C; Berg, Jolene K; Chodakewitz, Jeffrey A; Stone, Julie A; Gottesdiener, Keith M; Wagner, John A; Iwamoto, Marian

    2009-07-01

    Raltegravir is a human immunodeficiency virus type 1 integrase strand transfer inhibitor that is metabolized by glucuronidation via UGT1A1 and may be affected by inducers of UGT1A1, such as rifampin (rifampicin). Two pharmacokinetic studies were performed in healthy subjects: study 1 examined the effect of administration of 600-mg rifampin once daily on the pharmacokinetics of a single dose of 400-mg raltegravir, and study 2 examined the effect of 600-mg rifampin once daily on the pharmacokinetics of 800-mg raltegravir twice daily compared to 400-mg raltegravir twice daily without rifampin. Raltegravir coadministered with rifampin resulted in lower plasma raltegravir concentrations: in study 1, the geometric mean ratios (GMRs) and 90% confidence intervals (90% CIs) for the plasma raltegravir concentration determined 12 h postdose (C(12)), area under the concentration-time curve from 0 h to infinity (AUC(0-infinity)), and maximum concentration of drug in plasma (C(max)) (400-mg raltegravir plus rifampin/400-mg raltegravir) were 0.39 (0.30, 0.51), 0.60 (0.39, 0.91), and 0.62 (0.37, 1.04), respectively. In study 2, the GMRs and 90% CIs for raltegravir C(12), AUC(0-12), and C(max) (800-mg raltegravir plus rifampin/400-mg raltegravir) were 0.47 (0.36, 0.61), 1.27 (0.94, 1.71), and 1.62 (1.12, 2.33), respectively. Doubling the raltegravir dose to 800 mg when coadministered with rifampin therefore compensates for the effect of rifampin on raltegravir exposure (AUC(0-12)) but does not overcome the effect of rifampin on raltegravir trough concentrations (C(12)). Coadministration of rifampin and raltegravir is not contraindicated; however, caution should be used, since raltegravir trough concentrations in the presence of rifampin are likely to be at the lower limit of clinical experience. PMID:19433563

  15. Potent inhibition of peroxynitrite-induced DNA strand breakage by ethanol: possible implications for ethanol-mediated cardiovascular protection.

    PubMed

    Cao, Zhuoxiao; Li, Yunbo

    2004-07-01

    Epidemiological studies have conclusively demonstrated that moderate consumption of ethanol is causally associated with a significant reduction in cardiovascular events. However, the exact mechanisms underlying the ethanol-mediated cardiovascular protection remain to be elucidated. Because peroxynitrite has been extensively implicated in the pathogenesis of various forms of cardiovascular disorders via its cytotoxic effects, this study was undertaken to investigate if ethanol could inhibit peroxynitrite-induced DNA strand breaks, a critical event leading to peroxynitrite-elicited cytotoxicity. Toward this goal, phiX-174 RF I plasmid DNA was used as an in vitro model to determine the protective effects of ethanol on peroxynitrite-induced DNA strand breaks. Incubation of phiX-174 plasmid DNA with the peroxynitrite generator, 3-morpholinosydnonimine (SIN-1) led to the formation of both single- and double-stranded DNA breaks in a concentration- and time-dependent fashion. The presence of ethanol at concentrations ranging from 0.01 to 1% (w/v) resulted in a significant inhibition of SIN-1-induced DNA strand breaks. Ethanol also showed inhibitory effects on SIN-1-induced DNA strand breakage in the presence of bicarbonate. The inhibition of SIN-1-induced DNA strand breaks by ethanol exhibited a concentration-dependent manner. Notably, a marked inhibition of SIN-1-elicited DNA strand breaks was observed with 0.01% ethanol. Ethanol at 0.01-1% was unable to affect SIN-1-mediated oxygen consumption, indicating that ethanol did not affect the auto-oxidation of SIN-1 to form peroxynitrite. Furthermore, incubation of the plasmid DNA with authentic peroxynitrite resulted in a significant formation of DNA strand breaks, which could be dramatically inhibited by the presence of 0.02-0.1% ethanol. Taken together, this study demonstrates for the first time that ethanol at physiologically relevant concentrations can potently inhibit peroxynitrite-induced DNA strand breakage. In view of

  16. Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges

    PubMed Central

    Khattar, Sunil K.; Manoharan, Vinoth; Bhattarai, Bikash; LaBranche, Celia C.; Montefiori, David C.

    2015-01-01

    ABSTRACT Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. PMID:26199332

  17. Effect of helminth-induced immunity on infections with microbial pathogens

    PubMed Central

    2016-01-01

    Helminth infections are ubiquitous worldwide and can trigger potent immune responses that differ from and potentially antagonize host protective responses to microbial pathogens. In this Review we focus on the three main killers in infectious disease—AIDS, tuberculosis and malaria—and critically assesses whether helminths adversely influence host control of these diseases. We also discuss emerging concepts for how M2 macrophages and helminth-modulated dendritic cells can potentially influence the protective immune response to concurrent infections. Finally, we present evidence advocating for more efforts to determine how and to what extent helminths interfere with the successful control of specific concurrent coinfections. PMID:24145791

  18. An injectable, low-toxicity phospholipid-based phase separation gel that induces strong and persistent immune responses in mice.

    PubMed

    Han, Lu; Xue, Jiao; Wang, Luyao; Peng, Ke; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2016-10-01

    Sustained antigen delivery using incomplete Freund's adjuvant (IFA) can induce strong, long-term immune response, but it can also cause severe side effects. Here we describe an injectable, phospholipid-based phase separation gel (PPSG) that readily transforms in situ into a drug depot. PPSG loaded with the model antigen ovalbumin (OVA) supported sustained OVA release in mice that lasted nearly one month. Immunizing mice with a single injection of PPSG/OVA elicited a strong and persistent increase in titers of OVA-specific IgG, IgG1 and IgG2a. Co-administering CpG-ODN further increased antibody titers. Such co-administration recruited dendritic cells to injection sites and activated dendritic cells in the draining lymph nodes. Moreover, immunization with PPSG/OVA/CpG resulted in potent memory antibody responses and high frequency of memory T cells. Remarkably, PPSG/OVA/CpG was associated with much lower toxicity at injection sites than IFA/OVA/CpG, and it showed no systemic toxicity such as to lymph nodes or spleen. These findings illustrate the potential of injectable PPSG for sustained, minimally toxic delivery of antigens and adjuvants. PMID:27522253

  19. Modulation of peanut-induced allergic immune responses by oral lactic acid bacteria-based vaccines in mice.

    PubMed

    Ren, Chengcheng; Zhang, Qiuxiang; Wang, Gang; Ai, Chunqing; Hu, Mengsha; Liu, Xiaoming; Tian, Fengwei; Zhao, Jianxin; Chen, Yongquan; Wang, Miao; Zhang, Hao; Chen, Wei

    2014-01-01

    Peanut allergy (PNA) has becoming a non-negligible health concern worldwide. Thus far, allergen-specific immunotherapy aimed at inducing mucosal tolerance has widely been regarded as a major management strategy for PNA. The safety profiles and the intrinsic probiotic properties of lactic acid bacteria (LAB) render them attractive delivery vehicles for mucosal vaccines. In the present study, we exploited genetically modified Lactococcus lactis to produce peanut allergen Ara h 2 via different protein-targeting systems and their immunomodulatory potency for allergic immune responses in mice were investigated. By comparison with the strain expressing the cytoplasmic form of Ara h 2 (LL1), the strains expressing the secreted and anchored forms of Ara h 2 (LL2 and LL3) were more potent in redirecting a Th2-polarized to a non-allergic Th1 immune responses. Induction of SIgA and regulatory T cells were also observed at the local levels by orally administration of recombinant L. lactis. Our results indicate that allergen-producing L. lactis strains modulated allergic immune responses and may be developed as promising mucosal vaccines for managing allergic diseases.

  20. The Lymphatic Immune Response Induced by the Adjuvant AS01: A Comparison of Intramuscular and Subcutaneous Immunization Routes.

    PubMed

    Neeland, Melanie R; Shi, Wei; Collignon, Catherine; Taubenheim, Nadine; Meeusen, Els N T; Didierlaurent, Arnaud M; de Veer, Michael J

    2016-10-01

    The liposome-based adjuvant AS01 incorporates two immune stimulants, 3-O-desacyl-4'-monophosphoryl lipid A and the saponin QS-21. AS01 is under investigation for use in several vaccines in clinical development. i.m. injection of AS01 enhances immune cell activation and dendritic cell (DC) Ag presentation in the local muscle-draining lymph node. However, cellular and Ag trafficking in the lymphatic vessels that connect an i.m. injection site with the local lymph node has not been investigated. The objectives of this study were: 1) to quantify the in vivo cellular immune response induced by AS01 in an outbred ovine model, 2) to develop a lymphatic cannulation model that directly collects lymphatic fluid draining the muscle, and 3) to investigate the function of immune cells entering and exiting the lymphatic compartments after s.c. or i.m. vaccination with AS01 administered with hepatitis B surface Ag (HBsAg). We show that HBsAg-AS01 induces a distinct immunogenic cellular signature within the blood and draining lymphatics following both immunization routes. We reveal that MHCII(high) migratory DCs, neutrophils, and monocytes can acquire Ag within muscle and s.c. afferent lymph, and that HBsAg-AS01 uniquely induces the selective migration of Ag-positive neutrophils, monocytes, and an MHCII(high) DC-like cell type out of the lymph node via the efferent lymphatics that may enhance Ag-specific immunity. We report the characterization of the immune response in the lymphatic network after i.m. and s.c. injection of a clinically relevant vaccine, all in real time using a dose and volume comparable with that administered in humans. PMID:27549170

  1. Potent effects of the total saponins from Dioscorea nipponica Makino against streptozotocin-induced type 2 diabetes mellitus in rats.

    PubMed

    Yu, Hao; Zheng, Lingli; Xu, Lina; Yin, Lianhong; Lin, Yuan; Li, Hua; Liu, Kexin; Peng, Jinyong

    2015-02-01

    The aim of the present paper was to investigate the effects and possible mechanisms of the total saponins from Dioscorea nipponica Makino (TSDN) against type 2 diabetes mellitus. Streptozotocin (STZ) with high-fat diet induced type 2 diabetes mellitus (T2DM) rats were treated with TSDN. Some biochemical parameters, target proteins and genes were investigated. The results showed that TSDN decreased the levels of food/water intake, fasting blood glucose and serum lipid parameters, ameliorated oral glucose and insulin tolerance test levels, markedly increased body weight and serum insulin, reduced excess free radicals and affected ossification and renal protection. Histopathological examination indicated that TSDN increased liver glycogen, decreased the production of lipid vacuoles and lightened liver damage. Further investigation showed that TSDN down-regulated the protein expressions of NF-κB, GRP78, ATF6, eIF2 and the levels of MAPK phosphorylation and up-regulated the protein expressions of IRS-1, GLUT-4, p-Akt and p-AMPK. In addition, TSDN obviously decreased the gene expressions of TNF-a, IL-6, PEPCK, G6Pase, GSK-3β and GSK-3β activity, and increased the gene expressions of PFK, PK and GK activity. These findings show the anti-diabetic activity of total saponins from D. nipponica Makino, which should be developed as a new potent drug for treatment of diabetes mellitus in future.

  2. Green tea catechins are potent anti-oxidants that ameliorate sodium iodate-induced retinal degeneration in rats

    PubMed Central

    Yang, Yaping; Qin, Yong Jie; Yip, Yolanda W. Y.; Chan, Kwok Ping; Chu, Kai On; Chu, Wai Kit; Ng, Tsz Kin; Pang, Chi Pui; Chan, Sun On

    2016-01-01

    Green tea extracts exhibit anti-oxidative and anti-inflammatory actions in different disease conditions. We hypothesized that green tea extract and its catechin constituents ameliorate sodium iodate-induced retinal degeneration in rats by counteracting oxidative stress. In this study, adult Sprague-Dawley rats were intravenously injected with a single dose of sodium iodate. Green tea extract (GTE; Theaphenon-E) or combinations of its catechin constituents, including (−)-epigallocatechin gallate (EGCG), were administered intra-gastrically before injection. Live imaging analysis using confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography showed a progressive increase of degenerating profile across the retinal surface and decrease in thickness of outer nuclear layer (ONL) at Day-14 of post-injection. These lesions were significantly ameliorated by Theaphenon-E and catechin combinations with EGCG. Catechins with exclusion of EGCG did not show obvious protective effect. Histological analyses confirmed that Theaphenon-E and catechins containing EGCG protect the retina by reducing ONL disruption. Retinal protective effects were associated with reduced expression of superoxide dismutase, glutathione peroxidase and caspase-3, and suppression of 8-iso-Prostaglandin F2α generation in the retina. In summary, GTE and its catechin constituents are potent anti-oxidants that offer neuroprotection to the outer retinal degeneration after sodium iodate insult, among which EGCG is the most active constituent. PMID:27383468

  3. A potentized homeopathic drug, Arsenicum Album 200, can ameliorate genotoxicity induced by repeated injections of arsenic trioxide in mice.

    PubMed

    Banerjee, P; Biswas, S J; Belon, P; Khuda-Bukhsh, A R

    2007-09-01

    Groundwater arsenic contamination has become a menacing global problem. No drug is available until now to combat chronic arsenic poisoning. To examine if a potentized homeopathic remedy, Arsenicum Album-200, can effectively combat chronic arsenic toxicity induced by repeated injections of Arsenic trioxide in mice, the following experimental design was adopted. Mice (Mus musculus) were injected subcutaneously with 0.016% arsenic trioxide at the rate of 1 ml/100 g body weight, at an interval of 7 days until they were killed at day 30, 60, 90 or 120 and were divided into three groups: (i) one receiving a daily dose of Arsenicum Album-200 through oral administration, (ii) one receiving the same dose of diluted succussed alcohol (Alcohol-200) and (iii) another receiving neither drug, nor succussed alcohol. The remedy or the placebo, as the case may be, was fed from the next day onwards after injection until the day before the next injection, and the cycle was repeated until the mice were killed. Two other control groups were also maintained: one receiving only normal diet, and the other receiving normal diet and succussed alcohol. Several toxicity assays, such as cytogenetical (chromosome aberrations, micronuclei, mitotic index, sperm head anomaly) and biochemical (acid and alkaline phosphatases, lipid peroxidation), were periodically made. Compared with controls, the drug fed mice showed reduced toxicity at statistically significant levels in respect of all the parameters studied, thereby indicating protective potentials of the homeopathic drug against chronic arsenic poisoning.

  4. Design and synthesis of 4'-O-alkylamino-tethered-benzylideneindolin-2-ones as potent cytotoxic and apoptosis inducing agents.

    PubMed

    Senwar, Kishna Ram; Reddy, T Srinivasa; Thummuri, Dinesh; Sharma, Pankaj; Bharghava, Suresh K; Naidu, V G M; Shankaraiah, Nagula

    2016-08-15

    A series of new 4'-O-alkylamino-tethered-benzylideneindolin-2-one derivatives has been synthesized and evaluated for their anti-proliferative activity against selected human cancer cell lines of lung (A549), prostate (DU-145), breast (BT549 and MDA-MB-231) and normal breast epithelial cells (MCF-10A). Gratifyingly, the compounds 5j, 5o and 5r exhibited potent cytotoxicity against breast cancer cell lines (BT549 and MDA-MB-231) with IC50 values in the range of 1.26-2.77μM, and are found to be safer with lesser cytotoxicity on normal breast epithelial cells (MCF-10A). Further, experiments were conducted with these compounds 5j, 5o and 5r on MDA-MB-231 cancer cells to study the mechanism of growth inhibition and apoptosis inducing effect. Treatment of MDA-MB-231 cells with test compounds resulted in inhibition of cell migration through disorganization and disruption of F-actin capping protein. The flow-cytometry analysis results showed that the compound 5o arrested MDA-MB-231 cells in G0/G1 phase of cell cycle in a dose dependent manner. Hoechst staining study revealed that the test compounds inhibited tumor cell proliferation through induction of apoptosis. In addition, the mitochondrial membrane potential (DΨm) was affected and the increased level of reactive oxygen species (ROS) was noted in MDA-MB-231 cells. PMID:27397498

  5. Specific antibodies induced by inactivated parapoxvirus ovis potently enhance oxidative burst in canine blood polymorphonuclear leukocytes and monocytes.

    PubMed

    Schütze, Nicole; Raue, Rüdiger; Büttner, Mathias; Köhler, Gabriele; McInnes, Colin J; Alber, Gottfried

    2010-01-01

    We have recently shown that inactivated parapoxvirus ovis (iPPVO) effectively stimulates canine blood phagocytes. However, a potential link between innate and adaptive immunity induced by iPPVO remained open. The objective of this study was to define the effects of repeated iPPVO treatment of dogs to evaluate (i) iPPVO-specific antibody production, and (ii) modulation of iPPVO-induced oxidative burst by anti-iPPVO antibodies. Serum analysis of dogs treated repeatedly with iPPVO (Zylexis) showed transient production of non-neutralising iPPVO-specific IgG. There was a correlation between iPPVO-specific IgG levels and enhanced oxidative burst rates in vitro upon transfer of immune sera. Even four years after Zylexis treatment considerably stronger oxidative burst rates in response to iPPVO were observed in monocytes and PMN, whereas only moderate burst rates were detected in monocytes, but not in PMN, from dogs treated with a placebo. Depletion of serum IgG by protein A-sepharose or by parapoxvirus ovis coupled to sepharose abolished the increase of oxidative burst responses and resulted in burst rates similar to blood leukocytes from control dogs. However, uptake of viral particles was found to be independent of iPPVO-specific IgG and restricted to cells with dendritic and monocytic morphology. These data demonstrate that non-neutralising iPPVO-specific IgG is produced during treatment with Zylexis. Moreover, for the first time the interaction of iPPVO with antibodies is shown to enhance oxidative burst.

  6. Inducible viral receptor, A possible concept to induce viral protection in primitive immune animals.

    PubMed

    Pasharawipas, Tirasak

    2011-01-01

    A pseudolysogen (PL) is derived from the lysogenic Vibrio harveyi (VH) which is infected with the VHS1 (Vibrio harveyi Siphoviridae-like 1) bacteriophage. The lysogenic Vibrio harveyi undergoes an unequivalent division of the extra-chromosomal VHS1 phage genome and its VH host chromosome and produces a true lysogen (TL) and pseudolysogen (PL). The PL is tolerant to super-infection of VHS1, as is of the true lysogen (TL), but the PL does not contain the VHS1 phage genome while the TL does. However, the PL can become susceptible to VHS1 phage infection if the physiological state of the PL is changed. It is postulated that this is due to a phage receptor molecule which can be inducible to an on-and-off regulation influence by an alternating condition of the bacterial host cell. This characteristic of the PL leads to speculate that this phenomenon can also occur in high organisms with low immunity such as shrimp. This article proposes a hypothesis that the viral receptor molecule on the target cell can play a crucial role in which the invertebrate aquaculture animals can become tolerant to viral infection. A possible mechanism may be that the target cell disrupts the viral receptor molecule to prevent super infection. This concept can explain a mechanism for the prevention of viral infection in invertebrate animals which do not have acquired immunity in response to pathogens. It can guide us to develop a mechanism of immunity to viral infection in low-evolved-immune animals. Also, it can be an additional mechanism that exists in high immune organism, as in human for the prevention of viral infection. PMID:21711515

  7. Recombinant lentivector as a genetic immunization vehicle for antitumor immunity

    PubMed Central

    He, Yukai; Munn, David; Falo, Louis D

    2011-01-01

    Summary Encouraged by remarkable successes in preventing infectious diseases and by the well established potential of immune system for controlling tumor growth, active therapeutic immunization approaches hold great promise for treating malignant tumors. In recent years, engineered recombinant viral vectors have been carefully examined as genetic immunization vehicles and have been demonstrated to induce potent T cell mediated immune responses that can control tumor growth. Very recent efforts suggest that lentivectors possess important advantages over other candidate recombinant viral vectors for genetic immunization. Here we review the development of recombinant lentivectors and the characteristics of T cell immune responses elicited by lentivector immunization, including the mechanism of T cell priming with a focus on the role of skin dendritic cells (DC) and potential applications for tumor immunotherapy. PMID:18377355

  8. M. tuberculosis induces potent activation of IDO-1, but this is not essential for the immunological control of infection.

    PubMed

    Blumenthal, Antje; Nagalingam, Gayathri; Huch, Jennifer H; Walker, Lara; Guillemin, Gilles J; Smythe, George A; Ehrt, Sabine; Britton, Warwick J; Saunders, Bernadette M

    2012-01-01

    Indoleamine 2,3-dioxygenesae-1 (IDO-1) catalyses the initial, rate-limiting step in tryptophan metabolism, thereby regulating tryptophan availability and the formation of downstream metabolites, including picolinic and quinolinic acid. We found that Mycobacterium tuberculosis infection induced marked upregulation of IDO-1 expression in both human and murine macrophages in vitro and in the lungs of mice following aerosol challenge with M. tuberculosis. The absence of IDO-1 in dendritic cells enhanced the activation of mycobacteria-specific T cells in vitro. Interestingly, IDO-1-deficiency during M. tuberculosis infection in mice was not associated with altered mycobacteria-specific T cell responses in vivo. The bacterial burden of infected organs, pulmonary inflammatory responses, and survival were also comparable in M. tuberculosis-infected IDO-1 deficient and wild type animals. Tryptophan is metabolised into either picolinic acid or quinolinic acid, but only picolinic acid inhibited the growth of M. tuberculosis in vitro. By contrast macrophages infected with pathogenic mycobacteria, produced quinolinic, rather than picolinic acid, which did not reduce M. tuberculosis growth in vitro. Therefore, although M. tuberculosis induces robust expression of IDO-1 and activation of tryptophan metabolism, IDO-1-deficiency fails to impact on the immune control and the outcome of the infection in the mouse model of tuberculosis.

  9. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria.

    PubMed

    Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya

    2015-12-01

    In this study, we developed human immune system (HIS) mice that possess functional human CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various human cytokines and human B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting human hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of human CD4+ T and B cells resembles to that of humans, produced a significant level of human IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in humans, are functional, since PfCS protein-specific human CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the parasite invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective human anti-malaria immunity, consisting of human IgG and human CD4+ T cell responses both specific for a human malaria antigen.

  10. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria.

    PubMed

    Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya

    2015-12-01

    In this study, we developed human immune system (HIS) mice that possess functional human CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various human cytokines and human B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting human hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of human CD4+ T and B cells resembles to that of humans, produced a significant level of human IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in humans, are functional, since PfCS protein-specific human CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the parasite invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective human anti-malaria immunity, consisting of human IgG and human CD4+ T cell responses both specific for a human malaria antigen. PMID:26410104

  11. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response.

    PubMed

    Surace, Laura; Lysenko, Veronika; Fontana, Andrea Orlando; Cecconi, Virginia; Janssen, Hans; Bicvic, Antonela; Okoniewski, Michal; Pruschy, Martin; Dummer, Reinhard; Neefjes, Jacques; Knuth, Alexander; Gupta, Anurag; van den Broek, Maries

    2015-04-21

    Radiotherapy induces DNA damage and cell death, but recent data suggest that concomitant immune stimulation is an integral part of the therapeutic action of ionizing radiation. It is poorly understood how radiotherapy supports tumor-specific immunity. Here we report that radiotherapy induced tumor cell death and transiently activated complement both in murine and human tumors. The local production of pro-inflammatory anaphylatoxins C3a and C5a was crucial to the tumor response to radiotherapy and concomitant stimulation of tumor-specific immunity. Dexamethasone, a drug frequently given during radiotherapy, limited complement activation and the anti-tumor effects of the immune system. Overall, our findings indicate that anaphylatoxins are key players in radiotherapy-induced tumor-specific immunity and the ensuing clinical responses.

  12. Autoantibody formation after alloimmunization inducing bystander immune hemolysis.

    PubMed

    Mota, M; Bley, C; Aravechia, M G; Hamerschlak, N; Sakashita, A; Kutner, J M; Castiho, L

    2009-01-01

    The development of RBC autoantibodies resulting from or associated with allogeneic blood transfusions is not an easily determined complication of RBC transfusions. This report discusses one patient who developed RBC autoantibodies in association with an allogeneic blood transfusion and alloimmunization leading to a temporary bystander immune hemolysis. A 72-year-old woman was hospitalized as a result of severe anemia and received two units of ABO- and D-compatible RBCs. She had a history of two pregnancies 40 years before, but no history of RBC transfusion, and her antibody screen was negative. On the tenth day after transfusion her hemoglobin dropped, and alloanti-c was identified in her serum and eluate. At this time she received another two units of compatible blood according to her phenotype (group O, R1R1, K:-1). After 48 hours, she developed joint pain, pyrexia, and hemoglobinuria, and her Hb dropped from 9.2 g/dL to 5.3 g/ dL. The direct antiglobulin test was positive, an IgG autoantibody was present in the eluate, and the antibody investigation revealed the presence of anti-Jk(b) in addition to the previously identified alloanti-c. Her genotype was determined, and, based on the findings, two additional units were selected, found to be compatible, and transfused without incident. Transfusions were discontinued, and she was treated with IVIG and corticosteroids. Her Hb increased to 9.7 g/dL, and the patient made an uneventful recovery. It was concluded that transfusion of incompatible RBCs induced the formation of an autoantibody in this patient, resulting in lysis of bystander RBCs. The need for additional blood transfusion was successfully avoided by treatment with IVIG, steroid therapy, and rituximab.

  13. The angular structure of ONC201, a TRAIL pathway-inducing compound, determines its potent anti-cancer activity

    PubMed Central

    Wagner, Jessica; Kline, Christina Leah; Pottorf, Richard S.; Nallaganchu, Bhaskara Rao; Olson, Gary L.; Dicker, David T.; Allen, Joshua E.; El-Deiry, Wafik S.

    2014-01-01

    We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers. PMID:25587031

  14. Thermally labile components of aqueous humor potently induce osteogenic potential in adipose-derived mesenchymal stem cells.

    PubMed

    Morgan, Joshua T; Kwon, Heung Sun; Wood, Joshua A; Borjesson, Dori L; Tomarev, Stanislav I; Murphy, Christopher J; Russell, Paul

    2015-06-01

    Adipose-derived mesenchymal stem cells (ASCs) hold promise for use in cell-based therapies. Their intrinsic anti-inflammatory properties are potentially useful for treatments of inflammatory conditions such as uveitis, while their ability to differentiate along multiple cell lineages suggests use in regenerating damaged or degenerated tissue. However, how ASCs will respond to the intraocular environment is poorly studied. We have recently reported that aqueous humor (AH), the fluid that nourishes the anterior segment of the eye, potently increases alkaline phosphatase (ALP) activity of ASCs, indicating osteogenic differentiation. Here, we expand on our previous findings to better define the nature of this response. To this end, we cultured ASCs in the presence of 0, 5, 10, and 20% AH and assayed them for ALP activity. We found ALP activity correlates with increasing AH concentrations from 5 to 20%, and that longer treatments result in increased ALP activity. By using serum free media and pretreating AH with dextran-coated charcoal, we found that serum and charcoal-adsorbable AH components augment but are not required for this response. Further, by heat-treating the AH, we established that thermally labile components are required for the osteogenic response. Finally, we showed myocilin, a protein present in AH, could induce ALP activity in ASCs. However, this was to a lesser extent than untreated 5% AH, and myocilin could only partially rescue the effect after heat treatment, documenting there were additional thermally labile constituents of AH involved in the osteogenic response. Our work adds to the understanding of the induction of ALP in ASCs following exposure to AH, providing important insight in how ASCs will be influenced by the ocular environment. In conclusion, increased osteogenic potential upon exposure to AH represents a potential challenge to developing ASC cell-based therapies directed at the eye.

  15. Ameliorating effect of microdoses of a potentized homeopathic drug, Arsenicum Album, on arsenic-induced toxicity in mice

    PubMed Central

    Mallick, P; Chakrabarti Mallick, J; Guha, B; Khuda-Bukhsh, AR

    2003-01-01

    Background Arsenic in groundwater and its accumulation in plants and animals have assumed a menacing proportion in a large part of West Bengal, India and adjoining areas of Bangladesh. Because of the tremendous magnitude of the problem, there seems to be no way to tackle the problem overnight. Efforts to provide arsenic free water to the millions of people living in these dreaded zones are being made, but are awfully inadequate. In our quest for finding out an easy, safe and affordable means to combat this problem, a homeopathic drug, Arsenicum Album-30, appears to yield promising results in mice. The relative efficacies of two micro doses of this drug, namely, Arsenicum Album-30 and Arsenicum Album-200, in combating arsenic toxicity have been determined in the present study on the basis of some accepted biochemical protocols. Methods Mice were divided into different sets of control (both positive and negative) and treated series (As-intoxicated, As-intoxicated plus drug-fed). Alanine amino transferase (ALT) and aspartate amino transferase (AST) activities and reduced glutathione (GSH) level in liver and blood were analyzed in the different series of mice at six different fixation intervals. Results Both Arsenicum Album-30 and Arsenicum Album-200 ameliorated arsenic-induced toxicity to a considerable extent as compared to various controls. Conclusions The results lend further support to our earlier views that microdoses of potentized Arsenicum Album are capable of combating arsenic intoxication in mice, and thus are strong candidates for possible use in human subjects in arsenic contaminated areas under medical supervision. PMID:14570596

  16. An HIV-1 Mini Vaccine Induced Long-lived Cellular and Humoral Immune Responses

    PubMed Central

    Mahdavi, Mehdi; Ebtekar, Massoumeh; Hassan, Zuhair Mohammad; Faezi, Sobhan; Khorram Khorshid, Hamidreza; Taghizadeh, Morteza; Azadmanesh, Keyhan

    2015-01-01

    Memory formation is the most important aspect of a vaccine which can guarantee long-lasting immunity and protection. The main aim of the present study was to evaluate the memory immune responses after immunization with a mini vaccine. Mice were immunized with human immunodeficiency virus-1 P24-Nef fusion peptide and then cellular and humoral immune responses were evaluated. In order to determine long-lived memory, immune responses were monitored for 20 weeks after final immunization. The results showed that the candidate vaccine induced proliferation and cytotoxic T lymphocyte responses and shifted cytokine patterns to T helper-1 profile. Evaluation of humoral immune responses also showed an increase in total peptide specific-IgG titer and a shift to IgG2a humoral response. Monitoring of immune responses at weeks 4, 12 and 20 after last immunization showed that immunologic parameters have been sustained for 20 weeks. Our findings support the notion that long-lived memory responses were achieved using a mini vaccine immunization. PMID:27014646

  17. Intestinal infection with Trichinella spiralis induces distinct, regional immune responses

    PubMed Central

    Blum, L.K.; Mohanan, S.; Fabre, M.V.; Yafawi, R.E.; Appleton, J.A.

    2013-01-01

    The aim of this study was to evaluate differences between the small and large intestines (SI and LI) with regard to colonization and immunity during infection with Trichinella spiralis. In orally infected C57BL/6 mice, the gender ratios of worms differed among the SI, cecum, and LI. Mucosal mastocytosis developed in the SI but not in the LI, consistent with reduced IL-9 and IL-13 production by explants from the LI. Despite these differences, worms were cleared at the same rate from both sites. Furthermore, IL-10 production was reduced in the LI, yet it was instrumental in limiting local inflammation. Finally, passive immunization of rat pups with tyvelose-specific antibodies effectively cleared fist-stage larvae from all intestinal regions. We conclude that despite regional differences in immune responsiveness and colonization, immune mechanisms that clear T. spiralis operate effectively throughout the intestinal tract. PMID:23465441

  18. Tumor Presence Induces Global Immune Changes and Enhances Nanoparticle Clearance.

    PubMed

    Kai, Marc P; Brighton, Hailey E; Fromen, Catherine A; Shen, Tammy W; Luft, J Christopher; Luft, Yancey E; Keeler, Amanda W; Robbins, Gregory R; Ting, Jenny P Y; Zamboni, William C; Bear, James E; DeSimone, Joseph M

    2016-01-26

    Long-circulating nanoparticles are essential for increasing tumor accumulation to provide therapeutic efficacy. While it is known that tumor presence can alter the immune system, very few studies have explored this impact on nanoparticle circulation. In this report, we demonstrate how the presence of a tumor can change the local and global immune system, which dramatically increases particle clearance. We found that tumor presence significantly increased clearance of PRINT hydrogel nanoparticles from the circulation, resulting in increased accumulation in the liver and spleen, due to an increase in M2-like macrophages. Our findings highlight the need to better understand interactions between immune status and nanoparticle clearance, and suggest that further consideration of immune function is required for success in preclinical and clinical nanoparticle studies.

  19. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific.

  20. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. PMID:26476140

  1. Molecular design, synthesis and biological research of novel pyridyl acridones as potent DNA-binding and apoptosis-inducing agents.

    PubMed

    Zhang, Bin; Chen, Kang; Wang, Ning; Gao, Chunmei; Sun, Qinsheng; Li, Lulu; Chen, Yuzong; Tan, Chunyan; Liu, Hongxia; Jiang, Yuyang

    2015-03-26

    A series of novel pyridyl acridone derivatives comprised of a pseudo-five-cyclic system to extend the π-conjugated acridone chromophore, were designed and synthesized as potent DNA binding antitumor compounds. Most synthesized compounds displayed good activity against human leukemia K562 cells in MTT tests, with compound 6d exhibiting the highest activity with IC50 value at 0.46 μM. Moreover, 6d showed potent activities against solid tumor cell lines (0.16-3.79 μM). Several experimental studies demonstrated that the antitumor mode of action of compound 6d involves DNA intercalation, topoisomerase I inhibition, and apoptosis induction through the mitochondrial pathway. In summary, compound 6d represents a novel and promising lead structure for the development of new potent anticancer DNA-binding agents.

  2. Protection against hepatitis E virus infection by naturally acquired and vaccine-induced immunity.

    PubMed

    Zhang, J; Zhang, X-F; Zhou, C; Wang, Z-Z; Huang, S-J; Yao, X; Liang, Z-L; Wu, T; Li, J-X; Yan, Q; Yang, C-L; Jiang, H-M; Huang, H-J; Xian, Y-L; Shih, J W-K; Ng, M-H; Li, Y-M; Wang, J-Z; Zhu, F-C; Xia, N-S

    2014-06-01

    Immunity acquired from infection or vaccination protects humans from symptomatic hepatitis E. However, whether the risk of hepatitis E virus (HEV) infection is reduced by the immunity remains unknown. To understand this issue, a cohort with 12 409 participants randomized to receive the hepatitis E vaccine Hecolin(®) or placebo were serologically followed up for 2 years after vaccination. About half (47%) of participants were initially seropositive. A total of 139 infection episodes, evidenced by four-fold or greater rise of anti-HEV level or positive seroconversion, occurred in participants who received three doses of treatment. Risk of infection was highest among the baseline seronegative placebo group participants (2.04%). Pre-existing immunity and vaccine-induced immunity lower the risk significantly, to 0.52% and 0.30%, respectively. In conclusion, both vaccine-induced and naturally acquired immunity can effectively protect against HEV infection. PMID:24118636

  3. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

    PubMed

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-08-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses.

  4. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium

    PubMed Central

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-01-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4+ T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses. PMID:21631497

  5. Stress-induced immune changes in the oyster Crassostrea gigas.

    PubMed

    Lacoste, Arnaud; Malham, Shelagh K; Gélébart, Florence; Cueff, Anne; Poulet, Serge A

    2002-01-01

    Information concerning the effect of stress on invertebrate immune functions are scarce. The present study investigated the consequences of a 15-min mechanical disturbance on immune parameters in oysters Crassostrea gigas. As indicated by noradrenaline and dopamine measurements, the mechanical disturbance caused a transient state of stress in oysters. The number of circulating hemocytes, the migratory and phagocytic activities and reactive oxygen species production of hemocytes were measured before, during and after application of the stressor. Results show that all immune functions were significantly downregulated during stress and a transient period of immunostimulation was observed 30-240 min after the end of the disturbance. Taken together, these results suggest that stress can exert a profound influence on oyster immune functions and they may explain why stress and the outbreak of disease are often linked in shellfish culture. Furthermore, the present study strongly suggests that checking the stress status of animals may be necessary to avoid biases when studying oyster immune responses in vivo.

  6. Stress-induced immune changes in the oyster Crassostrea gigas.

    PubMed

    Lacoste, Arnaud; Malham, Shelagh K; Gélébart, Florence; Cueff, Anne; Poulet, Serge A

    2002-01-01

    Information concerning the effect of stress on invertebrate immune functions are scarce. The present study investigated the consequences of a 15-min mechanical disturbance on immune parameters in oysters Crassostrea gigas. As indicated by noradrenaline and dopamine measurements, the mechanical disturbance caused a transient state of stress in oysters. The number of circulating hemocytes, the migratory and phagocytic activities and reactive oxygen species production of hemocytes were measured before, during and after application of the stressor. Results show that all immune functions were significantly downregulated during stress and a transient period of immunostimulation was observed 30-240 min after the end of the disturbance. Taken together, these results suggest that stress can exert a profound influence on oyster immune functions and they may explain why stress and the outbreak of disease are often linked in shellfish culture. Furthermore, the present study strongly suggests that checking the stress status of animals may be necessary to avoid biases when studying oyster immune responses in vivo. PMID:11687258

  7. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  8. Long-term persistence of immunity induced by OVA-coupled gas-filled microbubble vaccination partially protects mice against infection by OVA-expressing Listeria.

    PubMed

    Bioley, Gilles; Lassus, Anne; Terrettaz, Jacques; Tranquart, François; Corthésy, Blaise

    2015-07-01

    Vaccination aims at generating memory immune responses able to protect individuals against pathogenic challenges over long periods of time. Subunit vaccine formulations based on safe, but poorly immunogenic, antigenic entities must be combined with adjuvant molecules to make them efficient against infections. We have previously shown that gas-filled microbubbles (MB) are potent antigen-delivery systems. This study compares the ability of various ovalbumin-associated MB (OVA-MB) formulations to induce antigen-specific memory immune responses and evaluates long-term protection toward bacterial infections. When initially testing dendritic cells reactivity to MB constituents, palmitic acid exhibited the highest degree of activation. Subcutaneous immunization of naïve wild-type mice with the OVA-MB formulation comprising the highest palmitic acid content and devoid of PEG2000 was found to trigger the more pronounced Th1-type response, as reflected by robust IFN-γ and IL-2 production. Both T cell and antibody responses persisted for at least 6 months after immunization. At that time, systemic infection with OVA-expressing Listeria monocytgenes was performed. Partial protection of vaccinated mice was demonstrated by reduction of the bacterial load in both the spleen and liver. We conclude that antigen-bound MB exhibit promising properties as a vaccine candidate ensuring prolonged maintenance of protective immunity.

  9. SIV antigen immunization induces transient antigen-specific T cell responses and selectively activates viral replication in draining lymph nodes in retroviral suppressed rhesus macaques

    PubMed Central

    2011-01-01

    Background HIV infection causes a qualitative and quantitative loss of CD4+ T cell immunity. The institution of anti-retroviral therapy (ART) restores CD4+ T cell responses to many pathogens, but HIV-specific responses remain deficient. Similarly, therapeutic immunization with HIV antigens of chronically infected, ART treated subjects results in poor induction of HIV-specific CD4 responses. In this study, we used a macaque model of ART treatment during chronic infection to study the virologic consequences of SIV antigen stimulation in lymph nodes early after immunization. Rhesus CMV (RhCMV) seropositive, Mamu A*01 positive rhesus macaques were chronically infected with SIVmac251 and treated with ART. The immune and viral responses to SIV gag and RhCMV pp65 antigen immunization in draining lymph nodes and peripheral blood were analyzed. Animals were immunized on contralateral sides with SIV gag and RhCMV pp65 encoding plasmids, which allowed lymph nodes draining each antigen to be obtained at the same time from the same animal for direct comparison. Results We observed that both SIV and RhCMV immunizations stimulated transient antigen-specific T cell responses in draining lymph nodes. The RhCMV-specific responses were potent and sustained (50 days post-immunization) in the periphery, while the SIV-specific responses were transient and extinguished quickly. The SIV antigen stimulation selectively induced transient SIV replication in draining lymph nodes. Conclusions The data are consistent with a model whereby viral replication in response to SIV antigen stimulation limits the generation of SIV antigen-specific responses and suggests a potential mechanism for the early loss and poor HIV-specific CD4+ T cell response observed in HIV-infected individuals. PMID:21752277

  10. Opioid-induced central immune signaling: implications for opioid analgesia

    PubMed Central

    Grace, Peter M.; Maier, Steven F.; Watkins, Linda R.

    2015-01-01

    Despite being the mainstay of pain management, opioids are limited in their clinical utility by adverse effects, such as tolerance and paradoxical hyperalgesia. Research of the past 15 years has extended beyond neurons, to implicate central nervous system immune signaling in these adverse effects. This article will provide an overview of these central immune mechanisms in opioid tolerance and paradoxical hyperalgesia, including those mediated by toll like receptor 4, purinergic, ceramide and chemokine signaling. Challenges for the future, as well as new lines of investigation will be highlighted. PMID:25833219

  11. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva

    PubMed Central

    CH Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-01-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates. PMID:27192936

  12. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    PubMed

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  13. Effect of PD 128763, a new potent inhibitor of poly(ADP-ribose) polymerase, on X-ray-induced cellular recovery processes in Chinese hamster V79 cells

    SciTech Connect

    Arundel-Suto, C.M.; Scavone, S.V.; Turner, W.R.; Suto, M.J.; Sebolt-Leopold, J.S. )

    1991-06-01

    The modifying effects of PD 128763 (3,4-dihydro-5-methyl-1(2H)-isoquinolinone), a potent inhibitor of poly(adenosine-diphosphate (ADP)-ribose) polymerase, on radiation-induced cell killing were examined in Chinese hamster V79 cells. This compound has an IC50 value against the purified enzyme approximately 50X lower than 3-aminobenzamide (3-AB), a widely used specific inhibitor of the enzyme. Exposure of exponentially growing cells to a noncytotoxic concentration (0.5 mM) of PD 128763 for 2 h immediately following X irradiation increased their radiation sensitivity, modifying both the shoulder and the slope of the survival curve. When recovery from sublethal damage and potentially lethal damage was examined in exponential and plateau-phase cells, respectively, postirradiation incubation with 0.5 mM PD 128763 was found not only to inhibit both these processes fully, but also to enhance further the level of radiation-induced cell killing. This is in contrast to the slight effect seen with the less potent inhibitor, 3-AB. The results presented suggest that the mechanism of radiosensitization by PD 128763 is related to the potent inhibition of poly(ADP-ribose) polymerase by this compound.

  14. Inhibition of class I histone deacetylases by romidepsin potently induces Epstein-Barr virus lytic cycle and mediates enhanced cell death with ganciclovir.

    PubMed

    Hui, Kwai Fung; Cheung, Arthur Kwok Leung; Choi, Chung King; Yeung, Po Ling; Middeldorp, Jaap M; Lung, Maria Li; Tsao, Sai Wah; Chiang, Alan Kwok Shing

    2016-01-01

    Pan-histone deacetylase (HDAC) inhibitors, which inhibit 11 HDAC isoforms, are widely used to induce Epstein-Barr virus (EBV) lytic cycle in EBV-associated cancers in vitro and in clinical trials. Here, we hypothesized that inhibition of one or several specific HDAC isoforms by selective HDAC inhibitors could potently induce EBV lytic cycle in EBV-associated malignancies such as nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). We found that inhibition of class I HDACs, particularly HDAC-1, -2 and -3, was sufficient to induce EBV lytic cycle in NPC and GC cells in vitro and in vivo. Among a panel of selective HDAC inhibitors, the FDA-approved HDAC inhibitor romidepsin was found to be the most potent lytic inducer, which could activate EBV lytic cycle at ∼0.5 to 5 nM (versus ∼800 nM achievable concentration in patients' plasma) in more than 75% of cells. Upregulation of p21(WAF1) , which is negatively regulated by class I HDACs, was observed before the induction of EBV lytic cycle. The upregulation of p21(WAF1) and induction of lytic cycle were abrogated by a specific inhibitor of PKC-δ but not the inhibitors of PI3K, MEK, p38 MAPK, JNK or ATM pathways. Interestingly, inhibition of HDAC-1, -2 and -3 by romidepsin or shRNA knockdown could confer susceptibility of EBV-positive epithelial cells to the treatment with ganciclovir (GCV). In conclusion, we demonstrated that inhibition of class I HDACs by romidepsin could potently induce EBV lytic cycle and mediate enhanced cell death with GCV, suggesting potential application of romidepsin for the treatment of EBV-associated cancers.

  15. A mechanism for trauma induced muscle wasting and immune dysfunction

    NASA Astrophysics Data System (ADS)

    Madihally, S.; Toner, M.; Yarmush, M.; Mitchell, R.

    A diverse physiological conditions lead to a hypercatabolic state marked by the loss of proteins, primarily derived from skeletal muscle. The sustained loss of proteins results in loss of muscle mass and strength, poor healing, and long-term hospitalization. These problems are further compounded by the deterioration of immunity to infection which is a leading cause of morbidity and mortality of traumatic patients. In an attempt to understand the signal propagation mechanism(s), we tested the role of Interferon-? (IFN-? ) in an animal burn injury model; IFN-? is best conceptualized as a macrophage activating protein and known to modulate a variety of intracellular processes potentially relevant to muscle wasting and immune dysfunction. Mice congenitally -deficient in IFN-? , and IFN-? -Receptor, and wild type (WT) animals treated with IFN-? neutralizing antibody received either a 20% total body surface area burn or a control sham treatment. At days 1, 2, and 7 following treatment, skeletal muscle, peripheral blood, and spleen were harvested from both groups. Overall body weight, protein turnovers, changes in the lymphocyte subpopulations and alterations in the major histocompatibility complex I expression (MHC I) and proliferation capacity of lymphocytes was measured using mixed lymphocyte reaction (MLR). These results indicate that we can prevent both muscle wasting and immune dysfunction. Based on these observations and our previous other animal model results (using insulin therapy), a novel mechanism of interactions leading to muscle wasting and immune dysfunction will be discussed. Further, implications of these findings on future research and clinical therapies will be discussed in detail.

  16. Mycobacterial infection induces a specific human innate immune response

    PubMed Central

    Blischak, John D.; Tailleux, Ludovic; Mitrano, Amy; Barreiro, Luis B.; Gilad, Yoav

    2015-01-01

    The innate immune system provides the first response to infection and is now recognized to be partially pathogen-specific. Mycobacterium tuberculosis (MTB) is able to subvert the innate immune response and survive inside macrophages. Curiously, only 5–10% of otherwise healthy individuals infected with MTB develop active tuberculosis (TB). We do not yet understand the genetic basis underlying this individual-specific susceptibility. Moreover, we still do not know which properties of the innate immune response are specific to MTB infection. To identify immune responses that are specific to MTB, we infected macrophages with eight different bacteria, including different MTB strains and related mycobacteria, and studied their transcriptional response. We identified a novel subset of genes whose regulation was affected specifically by infection with mycobacteria. This subset includes genes involved in phagosome maturation, superoxide production, response to vitamin D, macrophage chemotaxis, and sialic acid synthesis. We suggest that genetic variants that affect the function or regulation of these genes should be considered candidate loci for explaining TB susceptibility. PMID:26586179

  17. Epitope spreading induced by immunization with synthetic SSB peptides

    PubMed Central

    DING, MIN; ZHANG, JIANZHONG

    2016-01-01

    Sjogren's syndrome type B (SSB)/La antibody is an autoantibody generally observed in connective tissue diseases whereas double-stranded deoxyribonucleic acid (dsDNA) antibodies are the most characteristic autoantibodies found in systemic lupus erythematosus (SLE) patients. The relationship of these autoantibodies remains unclear. The aim of the study was to determine the profile of antibody production in rabbits immunized with synthetic SSB peptides alone or with dsDNA. For this purpose, 214–225aa peptide of SSB antigen was synthesized based on the organic chemistry solid-phase peptide synthesis. Rabbits were immunized with the following antigens: i) synthetic SSB peptides linked with keyhole limpet hemocyanin (KLH); ii) dsDNA; iii) SSB plus dsDNA; iv) KLH; and v) phosphate-buffered saline. SSB peptide antibody was measured using the enzyme-linked immunosorbent assay while extractable nuclear antigens (ENA) antibody and dsDNA antibody were measured by immunoblotting and immunofluorescence, respectively. The results showed that a specific anti-SSB peptide antibody was produced following immunization with SSB epitope alone or with dsDNA. The SSB peptide antibody titer in the coimmunization group was higher than that of the SSB alone group. In addition, antibodies against ribonucleoprotein (RNP), Smith and/or dsDNA were detected in rabbits of the coimmunization group. The presence of anti-dsDNA antibodies in the rabbits immunized with SSB peptide suggested the induction of epitope spreading. In conclusions, SSB antibodies were produced in rabbits immunized with SSB peptide or SSB+dsDNA, whereas SSB antibody titers were higher in the coimmunization group. Furthermore, coimmunization was associated with epitope spreading. PMID:27347030

  18. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression.

    PubMed

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X; Walterscheid, Jeffrey P; Ullrich, Stephen E

    2004-03-15

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependent manner. The release of biological response modifiers, particularly prostaglandin E2 (PGE2), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE2 secretion. Jet fuel-induced PGE2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin. PMID:15020195

  19. Fetal immunization of baboons induces a fetal-specific antibody response.

    PubMed

    Watts, A M; Stanley, J R; Shearer, M H; Hefty, P S; Kennedy, R C

    1999-04-01

    Neonates face a high risk of infection because of the immaturity of their immune systems. Although the transplacental transfer of maternal antibodies to the fetus may convey improved postnatal immunity, this transfer occurs late in gestation and may fail to prevent in utero infection. Both fetal immunization and in utero exposure to antigen can result in a state of immunologic tolerance in the neonate. Tolerance induction of fetal and premature infant lymphocytes has become a paradigm for neonatal responsiveness. However, fetal IgM responses have been demonstrated to maternal immunization with tetanus toxoid and to congenital infections such as rubella, toxoplasma, cytomegalovirus and human immunodeficiency virus. Moreover, 1-week-old infants can respond to standard pediatric vaccination, and neonates immunized with polysaccharide antigens do not develop immunologic tolerance. Here, direct immunization of the baboon fetus with recombinant hepatitis B surface antigen produced a specific fetal IgG antibody response. No specific maternal antibody response was detected, eliminating the possibility of vertical antibody transmission to the fetus. Some infants also responded to later vaccinations with hepatitis B surface antigen, indicating that no immunological tolerance was induced by prior fetal immunization. These results characterize the ability of the fetal immune system to respond to in utero vaccination. We demonstrate that active fetal immunization can serve as a safe and efficient vaccination strategy for the fetus and neonate. PMID:10202933

  20. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.

  1. Pavlovian conditioning of morphine-induced alterations of immune status: evidence for opioid receptor involvement.

    PubMed

    Coussons-Read, M E; Dykstra, L A; Lysle, D T

    1994-12-01

    Prior work in our laboratory has shown that morphine's immunomodulatory effects can become conditioned to environmental stimuli that predict drug administration. These immune alterations include conditioned changes in natural killer cell activity, interleukin-2 production, and mitogen-induced lymphocyte proliferation. The present study examined the involvement of opioid receptor activity in the establishment and expression of conditioned morphine-induced alterations of immune status. During the training phase of the experiment, Lewis rats received two conditioning sessions during which a subcutaneous injection of 15 mg/kg morphine sulfate was paired with exposure to a distinctive environment. On the test day, animals were re-exposed to the distinctive environment alone prior to sacrifice. Saline or naltrexone (0.3, 1.0, 3.0 or 10.0 mg/kg) was administered during either the training or the test session. Administration of naltrexone prior to training antagonized the development of all of the conditioned alterations of immune status including changes in the mitogenic responsiveness of splenocytes, suppression of natural killer cell activity, and interleukin-2 production by splenocytes. Naltrexone administration prior to testing also was effective in antagonizing the expression of a subset of morphine-induced conditioned alterations in immune status. Taken together, these studies indicate that opioid receptor activity is involved in the establishment of conditioned morphine-induced immune alterations, as well as in the expression of a subset of these conditioned alterations of immune status.

  2. DAMP Signaling is a Key Pathway Inducing Immune Modulation after Brain Injury

    PubMed Central

    Dalpke, Alexander; Mracsko, Eva; Antoine, Daniel J.; Roth, Stefan; Zhou, Wei; Yang, Huan; Na, Shin-Young; Akhisaroglu, Mustafa; Fleming, Thomas; Eigenbrod, Tatjana; Nawroth, Peter P.; Tracey, Kevin J.

    2015-01-01

    Acute brain lesions induce profound alterations of the peripheral immune response comprising the opposing phenomena of early immune activation and subsequent immunosuppression. The mechanisms underlying this brain-immune signaling are largely unknown. We used animal models for experimental brain ischemia as a paradigm of acute brain lesions and additionally investigated a large cohort of stroke patients. We analyzed release of HMGB1 isoforms by mass spectrometry and investigated its inflammatory potency and signaling pathways by immunological in vivo and in vitro techniques. Features of the complex behavioral sickness behavior syndrome were characterized by homecage behavior analysis. HMGB1 downstream signaling, particularly with RAGE, was studied in various transgenic animal models and by pharmacological blockade. Our results indicate that the cytokine-inducing, fully reduced isoform of HMGB1 was released from the ischemic brain in the hyperacute phase of stroke in mice and patients. Cytokines secreted in the periphery in response to brain injury induced sickness behavior, which could be abrogated by inhibition of the HMGB1-RAGE pathway or direct cytokine neutralization. Subsequently, HMGB1-release induced bone marrow egress and splenic proliferation of bone marrow-derived suppressor cells, inhibiting the adaptive immune responses in vivo and vitro. Furthermore, HMGB1-RAGE signaling resulted in functional exhaustion of mature monocytes and lymphopenia, the hallmarks of immune suppression after extensive ischemia. This study introduces the HMGB1-RAGE-mediated pathway as a key mechanism explaining the complex postischemic brain-immune interactions. PMID:25589753

  3. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity

    PubMed Central

    Vanpouille-Box, Claire; Hindré, François

    2012-01-01

    Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome. PMID:23087900

  4. DDA adjuvant induces a mixed Th1/Th2 immune response when associated with BBG2Na, a respiratory syncytial virus potential vaccine.

    PubMed

    Klinguer-Hamour, Christine; Libon, Christine; Plotnicky-Gilquin, Hélène; Bussat, Marie Claire; Revy, Lydie; Nguyen, Thien; Bonnefoy, Jean Yves; Corvaïa, Nathalie; Beck, Alain

    2002-06-21

    Human respiratory syncytial virus (hRSV) is one of the most common causes of respiratory infection in infants and the elderly. Previous attempts to vaccinate children against RSV failed and the induction of an aberrant Th2-type immune response was shown to induce severe to fatal pulmonary disease characterised in part by eosinophilia. BBG2Na is a promising human RSV subunit vaccine candidate which successfully passed phase II clinical trials in adults in association with Adju-Phos((R)). However, this formulation is not the most suitable for use in children since aluminium salts are known to induce a Th2-based immune response. In this study, we describe a potent and safe adjuvant formulation for BBG2Na in dimethyldioctadecylammonium bromide (DDA) that induces a mixed Th1/Th2 immune response in BALB/c mice. Furthermore, BBG2Na showed the same protective efficacy against RSV challenge when formulated either in DDA or in alum in mice and cotton rats. PMID:12034101

  5. Low doses of paclitaxel potently induce apoptosis in human retinoblastoma Y79 cells by up-regulating E2F1.

    PubMed

    Drago-Ferrante, Rosa; Santulli, Andrea; Di Fiore, Riccardo; Giuliano, Michela; Calvaruso, Giuseppe; Tesoriere, Giovanni; Vento, Renza

    2008-10-01

    Paclitaxel (PTX) is an anticancer drug currently in phase II clinical trials. This study shows for the first time that low doses of PTX (5 nM) potently induce apoptosis in human retinoblastoma Y79 cells. The effect of PTX is accompanied by a potent induction of E2F1 which appears to play a critical role in the effects induced by PTX. PTX induced a dose- and time-dependent effect, with G2/M arrest, cyclines A, E and B1 accumulation and a marked modification in the status of Cdc2-cyclin B1 complex, the major player of the G2/M checkpoint. Apoptosis followed G2/M arrest. An early and prolonged increase in p53 expression with its stabilization by phosphorylation and acetylation and its nuclear translocation occurred. Consistently, PTX increased p21WAF1, bax and MDM2 levels, suggesting that p53 is transcriptionally active. p53 accumulated following both E2F1 up-regulation and increase in the levels of p14ARF which interacts with MDM2 preventing ubiquitination and proteosomal degradation of p53. Both extrinsic (E2F1/Fas/JNK/caspase-2 activation) and intrinsic (Bcl-2 phosphorylation, Bid fragmentation and Bax increase) pathways seemed to be involved. Loss of mitochondrial potential and activation of apoptosome and executive caspase-3,-6 and-7 was shown. Incubation with either the irreversible pan-caspase inhibitors Z-VAD-FMK, or SP600125, a selective inhibitor of JNK, or pifithrin alpha, a potent p53 inhibitor, significantly inhibited the effects induced by PTX. PMID:18813780

  6. T-cell mediated immunity and the role of TRAIL in sepsis-induced immunosuppression

    PubMed Central

    Condotta, Stephanie A.; Cabrera-Perez, Javier; Badovinac, Vladimir P.; Griffith, Thomas S.

    2013-01-01

    Sepsis is the leading cause of death in most intensive care units, and the death of septic patients usually does not result from the initial septic event but rather from subsequent nosocomial infections. Patients who survive severe sepsis often display severely compromised immune function. Not only is there significant apoptosis of lymphoid and myeloid cells that depletes critical components of the immune system during sepsis, there is also decreased function of the remaining immune cells. Studies in animals and humans suggest the immune defects that occur during sepsis may be critical to the pathogenesis and subsequent mortality. This review is focused on sepsis-induced alterations with the CD8 T-cell compartment that can affect the control of secondary heterologous infections. Understanding how a septic event directly influences CD8 T-cell populations through apoptotic death and homeostatic proliferation and indirectly by immune-mediated suppression will provide valuable starting points for developing new treatment options. PMID:23510024

  7. Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates

    PubMed Central

    Flynn, Barbara J.; Kastenmüller, Kathrin; Wille-Reece, Ulrike; Tomaras, Georgia D.; Alam, Munir; Lindsay, Ross W.; Salazar, Andres M.; Perdiguero, Beatriz; Gomez, Carmen E.; Wagner, Ralf; Esteban, Mariano; Park, Chae G.; Trumpfheller, Christine; Keler, Tibor; Pantaleo, Giuseppe; Steinman, Ralph M.; Seder, Robert

    2011-01-01

    Protein vaccines, if rendered immunogenic, would facilitate vaccine development against HIV and other pathogens. We compared in nonhuman primates (NHPs) immune responses to HIV Gag p24 within 3G9 antibody to DEC205 (“DEC-HIV Gag p24”), an uptake receptor on dendritic cells, to nontargeted protein, with or without poly ICLC, a synthetic double stranded RNA, as adjuvant. Priming s.c. with 60 μg of both HIV Gag p24 vaccines elicited potent CD4+ T cells secreting IL-2, IFN-γ, and TNF-α, which also proliferated. The responses increased with each of three immunizations and recognized multiple Gag peptides. DEC-HIV Gag p24 showed better cross-priming for CD8+ T cells, whereas the avidity of anti-Gag antibodies was ∼10-fold higher with nontargeted Gag 24 protein. For both protein vaccines, poly ICLC was essential for T- and B-cell immunity. To determine whether adaptive responses could be further enhanced, animals were boosted with New York vaccinia virus (NYVAC)-HIV Gag/Pol/Nef. Gag-specific CD4+ and CD8+ T-cell responses increased markedly after priming with both protein vaccines and poly ICLC. These data reveal qualitative differences in antibody and T-cell responses to DEC-HIV Gag p24 and Gag p24 protein and show that prime boost with protein and adjuvant followed by NYVAC elicits potent cellular immunity. PMID:21467219

  8. Glucose supplement reverses the fasting-induced suppression of cellular immunity in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2011-10-01

    Glucose plays an important role in immunity. Three day fasting will decrease cellular immunity and blood glucose levels in Mongolian gerbils (Meriones unguiculatus). In the present study, we tested the hypothesis that glucose supplement can reverse the fasting-induced suppression in cellular immunity in gerbils. Twenty-eight male gerbils were selected and randomly divided into fed and fasting groups. Half of the gerbils in each group were then provided with either 10% glucose water or pure water. After 66 h, each gerbil was injected with phytohaemagglutinin (PHA) solution to challenge cellular immunity. Results showed that glucose supplement restored blood glucose levels in fasted gerbils to those of the fed controls. It also recovered cellular immunity, body fat mass and serum leptin levels in fasted gerbils to the values of the fed controls. Blood glucose levels were positively correlated with body fat mass, leptin levels and cellular immune responses. Thymus and spleen masses, and white blood cells in fasted gerbils were not affected by glucose supplement. In general, our data demonstrate that glucose supplement could reverse fasting-induced suppression of cellular immunity in Mongolian gerbils. PMID:21885265

  9. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    PubMed

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  10. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    PubMed

    Patra, VijayKumar; Byrne, Scott N; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin's microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  11. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    PubMed Central

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  12. Strain-Specific Protective Effect of the Immunity Induced by Live Malarial Sporozoites under Chloroquine Cover

    PubMed Central

    Wijayalath, Wathsala; Cheesman, Sandra; Tanabe, Kazuyuki; Handunnetti, Shiroma; Carter, Richard; Pathirana, Sisira

    2012-01-01

    The efficacy of a whole-sporozoite malaria vaccine would partly be determined by the strain-specificity of the protective responses against malarial sporozoites and liver-stage parasites. Evidence from previous reports were inconsistent, where some studies have shown that the protective immunity induced by irradiated or live sporozoites in rodents or humans were cross-protective and in others strain-specific. In the present work, we have studied the strain-specificity of live sporozoite-induced immunity using two genetically and immunologically different strains of Plasmodium cynomolgi, Pc746 and PcCeylon, in toque monkeys. Two groups of monkeys were immunized against live sporozoites of either the Pc746 (n = 5), or the PcCeylon (n = 4) strain, by the bites of 2–4 sporozoite-infected Anopheles tessellates mosquitoes per monkey under concurrent treatments with chloroquine and primaquine to abrogate detectable blood infections. Subsequently, a group of non-immunized monkeys (n = 4), and the two groups of immunized monkeys were challenged with a mixture of sporozoites of the two strains by the bites of 2–5 infective mosquitoes from each strain per monkey. In order to determine the strain-specificity of the protective immunity, the proportions of parasites of the two strains in the challenge infections were quantified using an allele quantification assay, Pyrosequencing™, based on a single nucleotide polymorphism (SNP) in the parasites’ circumsporozoite protein gene. The Pyrosequencing™ data showed that a significant reduction of parasites of the immunizing strain in each group of strain-specifically immunized monkeys had occurred, indicating a stronger killing effect on parasites of the immunizing strain. Thus, the protective immunity developed following a single, live sporozoite/chloroquine immunization, acted specifically against the immunizing strain and was, therefore, strain-specific. As our experiment does not allow us to determine the

  13. Protective immunity induced by tumor vaccines requires interaction between CD40 and its ligand, CD154.

    PubMed

    Mackey, M F; Gunn, J R; Ting, P P; Kikutani, H; Dranoff, G; Noelle, R J; Barth, R J

    1997-07-01

    Interactions between CD40 and its ligand, CD154 (CD40L, gp39), have been shown to play a central role in the regulation of humoral immunity. Recent evidence suggests that this ligand-receptor pair also plays an important role in the induction of cell-mediated immune responses, including those directed against viral pathogens, intracellular parasites, and alloantigens. The contribution of this ligand-receptor pair to the development of protective immunity against syngeneic tumors was evaluated by blocking the in vivo function of CD154 or by studying tumor resistance in mice genetically deficient in CD40 expression (CD40-/-). In the former case, anti-CD154 monoclonal antibody treatment inhibited the generation of protective immune responses after the administration of three potent tumor vaccines: irradiated MCA 105, MCA 105 admixed with Corynebacterium parvum adjuvant, and irradiated B16 melanoma cells transduced with the gene for granulocyte macrophage colony-stimulating factor. Confirmation of the role of CD40/CD154 interactions in tumor immunity was provided by the overt tumor susceptibility in CD40-deficient mice as compared to that in CD40+/+ mice. In this case, wild-type but not CD40-deficient mice could be readily protected against live TS/A tumor challenge by preimmunization with TS/A admixed with C. parvum. These findings suggest a critical role for CD40/CD154 interactions in the induction of cellular immunity by tumor vaccines and may have important implications for future approaches to cell-based cancer therapies. PMID:9205055

  14. Mechanism of Hbγ-35-induced an increase in the activation of the human immune system by endotoxins.

    PubMed

    Heinbockel, Lena; Palacios-Chaves, Leyre; Alexander, Christian; Rietschel, Ernst; Behrends, Jochen; Correa, Wilmar; Fukuoka, Satoshi; Gutsmann, Thomas; Ulmer, Artur J; Brandenburg, Klaus

    2015-04-01

    Endotoxins (LPS) are highly potent immune stimulatory molecules and are mainly known for triggering Gram-negative sepsis. However, besides their toxic effects, this stimulatory function may be advantageous, for example when used as an adjuvant during vaccination. Thus, there is always a narrow range between the useful wake-up of the immune system and its overwhelming reaction, which can lead to diseases like sepsis. This raises the question of which conformational properties are responsible for making the LPS aggregates more or less potent. As described previously, the size, type and form of LPS aggregates play a major role in their immune stimulatory activity. In this study we investigate the role of these parameters. On the one hand, we use a peptide (Pep19-2.5; Aspidasept) that causes a change of the LPS aggregate structure into a less toxic state; on the other hand, we use a potent immune stimulating peptide (Hbγ-35), leading to higher toxicity. We have found opposing effects on LPS aggregate conformations allowing a better understanding of the processes of immune stimulation. PMID:25034969

  15. New betulinic acid derivatives induce potent and selective antiproliferative activity through cell cycle arrest at the S phase and caspase dependent apoptosis in human cancer cells.

    PubMed

    Santos, Rita C; Salvador, Jorge A R; Cortés, Roldán; Pachón, Gisela; Marín, Silvia; Cascante, Marta

    2011-06-01

    New semisynthetic derivatives of betulinic acid (BA) RS01, RS02 and RS03 with 18-45 times improved cytotoxic activity against HepG2 cells, were tested for their ability to induce apoptosis and cell cycle arrest in HepG2, HeLa and Jurkat cells. All the compounds induced significant increase in the population at the S phase more effectively than BA. RS01, RS02 and RS03 were also found to be potent inducers of apoptosis with RS01 being markedly more potent than BA, suggesting that the introduction of the imidazolyl moiety is crucial for enhancing the induction of apoptosis and the cell cycle arrest. The mechanism of apoptosis induction has been studied in HepG2 cells and found to be mediated by activation of the postmitochondrial caspases-9 and -3 cascade and possibly by mitochondrial amplification loop involving caspase-8. These facts were corroborated by detection of mitochondrial cytochrome c release and DNA fragmentation. Because RS01, RS02 and RS03 exhibited significant improved antitumor activity with respect to BA, they may be promising new agents for the treatment of cancer. In particular, RS01 is the most promising compound with an IC(50) value 45 times lower than BA on HepG2 cells and 61 times lower than the one found for the non-tumoral Chang liver cells.

  16. Effects of potent antiretroviral therapy on the immune activation marker soluble CD27 in patients infected with HIV-1 subtypes A-D.

    PubMed

    Atlas, Ann; Thanh Ha, Tran Thi; Lindström, Anna; Nilsson, Anna; Alaeus, Annette; Chiodi, Francesca; De Milito, Angelo

    2004-03-01

    HIV-1 genetic subtypes might have a different impact on disease progression and response to antiretroviral therapy (ART). Few data are available on the immune activation profile in patients with different HIV-1 subtypes. We have tested by ELISA the plasma levels of an immune activation marker, soluble CD27 (sCD27), in a cohort of 64 patients infected with HIV-1 subtypes A-D, at baseline and after 1 year of virologically successful ART. Plasma sCD27 was significantly higher in the whole HIV-1-infected population as compared to healthy subjects [522 U/ml (188-1,307) vs. 285 U/ml (174-397), P < 0.001]. Among the four different HIV-1 subtypes, patients with subtype C virus had significantly higher plasma sCD27 [684 U/ml, (188-1228)] as compared to patients with subtype A [428 U/ml (247-1307), P < 0.05] and B [454 (211-925), P < 0.05]. After 1 year of ART, plasma sCD27 significantly decreased in all groups but patients with subtype C viruses had the largest reduction of sCD27 from baseline. The data indicate that a similar immune activation profile is present in patients infected with HIV-1 subtypes A, B, and D and that in presence of successful ART these subtypes respond similarly in terms of immune activation. Intriguingly, subtype C infection seems to be associated with higher levels of plasma sCD27, suggesting that HIV-1 genetic subtype C may have a different impact on disease outcome and response to therapy.

  17. Nasal immunization with major epitope-containing ApxIIA toxin fragment induces protective immunity against challenge infection with Actinobacillus pleuropneumoniae in a murine model.

    PubMed

    Seo, Ki-Weon; Kim, Sae-Hae; Park, Jisang; Son, Youngok; Yoo, Han Sang; Lee, Kyung-Yeol; Jang, Yong-Suk

    2013-01-15

    Actinobacillus pleuropneumoniae is an infective agent that leads to porcine pleuropneumonia, a disease that causes severe economic losses in the swine industry. Based on the fact that the respiratory tract is the primary site for bacterial infection, it has been suggested that bacterial exclusion in the respiratory tract through mucosal immune induction is the most effective disease prevention strategy. ApxIIA is a vaccine candidate against A. pleuropneumoniae infection, and fragment #5 (aa. 439-801) of ApxIIA contains the major epitopes for effective vaccination. In this study, we used mice to verify the efficacy of intranasal immunization with fragment #5 in the induction of protective immunity against nasal challenge with A. pleuropneumoniae and compared its efficacy with that of subcutaneous immunization. Intranasal immunization of the fragment induced significantly higher systemic and mucosal immune responses measured at the levels of antigen-specific antibodies, cytokine-secreting cells after antigen exposure, and antigen-specific lymphocyte proliferation. Intranasal immunization not only efficiently inhibited the bacterial colonization in respiratory organs, but also prevented alveolar tissue damage in infectious condition similar to that of a contaminated pig. Moreover, intranasal immunization with fragment #5 provided acquired protective immunity against intranasal challenge with A. pleuropneumoniae serotype 2. In addition, it conferred cross-protection against serotype 5, a heterologous pathogen that causes severe disease by ApxI and ApxII secretion. Collectively, intranasal immunization with fragment #5 of ApxIIA can be considered an efficient protective immunization procedure against A. pleuropneumoniae infection.

  18. Exercise training and immune crosstalk in breast cancer microenvironment: exploring the paradigms of exercise-induced immune modulation and exercise-induced myokines

    PubMed Central

    Goh, Jorming; Niksirat, Negin; Campbell, Kristin L

    2014-01-01

    Observational research suggests that exercise may reduce the risk of breast cancer and improve survival. One proposed mechanism for the protective effect of aerobic exercise related to cancer risk and outcomes, but has not been examined definitively, is the immune response to aerobic exercise. Two prevailing paradigms are proposed. The first considers the host immune response as modifiable by aerobic exercise training. This exercise-modulated immune-tumor crosstalk in the mammary microenvironment may alter the balance between tumor initiation and progression versus tumor suppression. The second paradigm considers the beneficial role of exercise-induced, skeletal muscle-derived cytokines, termed “myokines”. These myokines exert endocrine-like effects on multiple organs, including the mammary glands. In this systematic review, we i) define the role of macrophages and T-cells in breast cancer initiation and progression; ii) address the two paradigms that support exercise-induced immunomodulation; iii) systematically assessed the literature for exercise intervention that assessed biomarkers relevant to both paradigms in human intervention trials of aerobic exercise training, in healthy women and women with breast cancer; iv) incorporated pre-clinical animal studies and non-RCTs for background discussion of putative mechanisms, through which aerobic exercise training modulates the immunological crosstalk, or the myokine-tumor interaction in the tumor microenvironment; and v) speculated on the potential biomarkers and mechanisms that define an exercise-induced, anti-tumor “signature”, with a view toward developing relevant biomarkers for future aerobic exercise intervention trials. PMID:25360210

  19. Attenuation of endotoxin-induced multiple organ dysfunction by 1-amino-2-hydroxy-guanidine, a potent inhibitor of inducible nitric oxide synthase.

    PubMed Central

    Ruetten, H.; Southan, G. J.; Abate, A.; Thiemermann, C.

    1996-01-01

    1. We have investigated the effects of (i) several guanidines on the activity of the inducible isoform of nitric oxide (NO) synthase (iNOS) in murine cultured macrophages and rat aortic vascular smooth muscle cells (RASM); and (ii) 1-amino-2-hydroxy-guanidine, the most potent inhibitor of iNOS activity discovered, on haemodynamics, multiple organ (liver, renal, and pancreas) dysfunction and iNOS activity in rats with endotoxic shock. 2. The synthesized guanidine analogues caused concentration-dependent inhibitions of the increase in nitrite formation caused by lipopolysaccaride (LPS, 1 microgram ml-1) in J774.2 macrophages and RASM cells with the following rank order of potency: 1-amino-2-hydroxy-guanidine > 1-amino-2-methyl-guanidine > 1-amino-1-methyl-guanidine > 1-amino-1,2-dimethyl-guanidine. Interestingly, 1-amino-2-hydroxy-guanidine (IC50: J774.2, 68 microM; RASM, 114 microM) was more potent in inhibiting nitrite formation caused by LPS than NG-methyl-L-arginine, but less potent than aminoethyl-isothiourea. 3. In the anaesthetized rat, LPS caused a fall in mean arterial blood pressure (MAP) from 115 +/- 4 mmHg (time 0) to 98 +/- 5 mmHg at 2 h (P < 0.05, n = 10) and 69 +/- 5 mmHg at 6 h (P < 0.05, n = 10). The pressor effect of noradrenaline (NA, 1 mg kg-1, i.v.) was also significantly reduced at 1 to 6 h after LPS (vascular hyporeactivity). Treatment of LPS-rats with 1-amino-2-hydroxy-guanidine (10 mg kg-1, i.v. plus 10 mg kg-1 h-1 starting at 2 h after LPS) prevented the delayed hypotension and vascular hyporeactivity seen in LPS-rats. However, 1-amino-2-hydroxy-guanidine had no effect on either MAP or the pressor effect elicited by NA in rats infused with saline rather than LPS. 4. Endotoxaemia for 6 h caused a significant rise in the serum levels of aspartate or alanine aminotransferase (i.e. GOT or GPT) and bilirubin, and hence, liver dysfunction. Treatment of LPS-rats with 1-amino-2-hydroxy-guanidine significantly attenuated the liver dysfunction caused

  20. Infection-Induced Interaction between the Mosquito Circulatory and Immune Systems

    PubMed Central

    King, Jonas G.; Hillyer, Julián F.

    2012-01-01

    Insects counter infection with innate immune responses that rely on cells called hemocytes. Hemocytes exist in association with the insect's open circulatory system and this mode of existence has likely influenced the organization and control of anti-pathogen immune responses. Previous studies reported that pathogens in the mosquito body cavity (hemocoel) accumulate on the surface of the heart. Using novel cell staining, microdissection and intravital imaging techniques, we investigated the mechanism of pathogen accumulation in the pericardium of the malaria mosquito, Anopheles gambiae, and discovered a novel insect immune tissue, herein named periostial hemocytes, that sequesters pathogens as they flow with the hemolymph. Specifically, we show that there are two types of endocytic cells that flank the heart: periostial hemocytes and pericardial cells. Resident periostial hemocytes engage in the rapid phagocytosis of pathogens, and during the course of a bacterial or Plasmodium infection, circulating hemocytes migrate to the periostial regions where they bind the cardiac musculature and each other, and continue the phagocytosis of invaders. Periostial hemocyte aggregation occurs in a time- and infection dose-dependent manner, and once this immune process is triggered, the number of periostial hemocytes remains elevated for the lifetime of the mosquito. Finally, the soluble immune elicitors peptidoglycan and β-1,3-glucan also induce periostial hemocyte aggregation, indicating that this is a generalized and basal immune response that is induced by diverse immune stimuli. These data describe a novel insect cellular immune response that fundamentally relies on the physiological interaction between the insect circulatory and immune systems. PMID:23209421

  1. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    PubMed

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2014-06-01

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. PMID:24318927

  2. Hydralazine-induced pauci-immune glomerulonephritis: intriguing case series with misleading diagnoses

    PubMed Central

    Babar, Faizan; Posner, Jeffery N.; Obah, Eugene A.

    2016-01-01

    Hydralazine has been used since the 1950s for the management of hypertension. Evidence for hydralazine-associated vasculitis dates to pre-ANCA (antineutrophil cytoplasmic antibodies) era. This abstract describes two cases of ANCA-positive pauci-immune glomerulonephritis (GN) in challenging scenarios where diagnosis was misconstrued. A comprehensive literature review was done to understand the pathogenesis of drug-induced pauci-immune GN. We have described key diagnostic features that are helpful in distinguishing idiopathic ANCA vasculitis from drug-induced vasculitis. Additionally, we have also described different treatments meant to provide therapy options with the least side effects. PMID:27124161

  3. Macrophage migration inhibitory factor of Sciaenops ocellatus regulates immune cell trafficking and is involved in pathogen-induced immune response.

    PubMed

    Qiu, Reng; Li, Jun; Xiao, Zhi-Zhong; Sun, Li

    2013-01-01

    Macrophage migration inhibitory factor (MIF) is a multi-functional cytokine involved in immunoregulation and inflammation. In this study, we examined the expression and biological function of a MIF, SoMIF, from red drum Sciaenops ocellatus. SoMIF is composed of 115 residues and shares 85-99% overall sequence identities with the MIF of a number of teleost. SoMIF expression was detected in a wide range of tissues and upregulated by bacterial and viral infection in a time-dependent manner. In head kidney (HK) leukocytes, pathogen infection induced SoMIF expression, and the expressed SoMIF was secreted into the extracellular milieu. Recombinant SoMIF (rSoMIF) purified from Escherichia coli inhibited the migration of both HK monocytes and lymphocytes, and this inhibitory effect was abolished by the presence of anti-rSoMIF antibodies. When rSoMIF was administered into red drum, it stimulated the production of reactive oxygen species in HK monocytes both in the presence and absence of pathogen infection. In vivo infection study showed that compared to untreated fish, fish pre-treated with rSoMIF before bacterial infection exhibited significantly lower bacterial loads in blood, kidney, spleen, and liver. Taken together, these results indicate that SoMIF is a secreted protein that regulates immune cell trafficking and is involved in pathogen-induced immune response. PMID:23545285

  4. Neonatal Immunization with Respiratory Syncytial Virus Glycoprotein Fragment Induces Protective Immunity in the Presence of Maternal Antibodies in Mice

    PubMed Central

    Noh, Youran; Shim, Byoung-Shik; Cheon, In Su; Rho, Semi; Kim, Hee Joo; Choi, Youngjoo; Kang, Chang-Yuil; Chang, Jun

    2013-01-01

    Abstract Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants and the elderly worldwide. The significant morbidity and mortality associated with this infection underscores the urgent need for development of RSV vaccine. In this study, we first show that intranasal administration of RSV glycoprotein core fragment (Gcf) to neonatal mice can induce systemic humoral immune responses and protective immunity against RSV without causing lung eosinophilia, although antibody response was shifted to a Th2 response. Next, we examined whether the presence of maternal anti-RSV antibodies would affect the responsiveness and protection efficacy of Gcf in newborn mice, since infants can possess RSV-specific maternal antibodies due to frequent RSV re-infections to adults. Intranasal administration of Gcf induced antibody response and increased IFNγ secretion and protected mice against RSV challenge without severe lung eosinophilia, even in the presence of high levels of RSV-specific maternal antibodies. Thus, our findings suggest that Gcf may be an effective and safe RSV vaccine during the neonatal period. PMID:23869549

  5. Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems.

    PubMed

    Yokota, Yosuke; Inoue, Hiroyuki; Matsumura, Yumiko; Nabeta, Haruka; Narusawa, Megumi; Watanabe, Ayumi; Sakamoto, Chika; Hijikata, Yasuki; Iga-Murahashi, Mutsunori; Takayama, Koichi; Sasaki, Fumiyuki; Nakanishi, Yoichi; Yokomizo, Takehiko; Tani, Kenzaburo

    2012-10-25

    BLT1 is a high-affinity receptor for leukotriene B4 (LTB4) that is a potent lipid chemoattractant for myeloid leukocytes. The role of LTB4/BLT1 axis in tumor immunology, including cytokine-based tumor vaccine, however, remains unknown. We here demonstrated that BLT1-deficient mice rejected subcutaneous tumor challenge of GM-CSF gene-transduced WEHI3B (WGM) leukemia cells (KO/WGM) and elicited robust antitumor responses against second tumor challenge with WEHI3B cells. During GM-CSF-induced tumor regression, the defective LTB4/BLT1 signaling significantly reduced tumor-infiltrating myeloid-derived suppressor cells, increased the maturation status of dendritic cells in tumor tissues, enhanced their CD4(+) T-cell stimulation capacity and migration rate of dendritic cells that had phagocytosed tumor-associated antigens into tumor-draining lymph nodes, suggesting a positive impact on GM-CSF-sensitized innate immunity. Furthermore, KO/WGM mice displayed activated adaptive immunity by attenuating regulatory CD4(+) T subsets and increasing numbers of Th17 and memory CD44(hi)CD4(+) T subsets, both of which elicited superior antitumor effects as evidenced by adoptive cell transfer. In vivo depletion assays also revealed that CD4(+) T cells were the main effectors of the persistent antitumor immunity. Our data collectively underscore a negative role of LTB4/BLT1 signaling in effective generation and maintenance of GM-CSF-induced antitumor memory CD4(+) T cells.

  6. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge

    SciTech Connect

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin; Byun, Young-Ho; Seong, Baik Lin; Baek, Yun Hee; Song, Min-Suk; Choi, Young Ki; Na, Yun Jeong; Hwang, Inhwan; Sung, Young Chul; Lee, Chang Geun

    2009-12-20

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8{sup +} T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.

  7. RNAi Induces Innate Immunity through Multiple Cellular Signaling Pathways

    PubMed Central

    Wu, Jun; Pei, Rongjuan; Xu, Yang; Yang, Dongliang; Roggendorf, Michael; Lu, Mengji

    2013-01-01

    Background & Aims Our previous results showed that the knockdown of woodchuck hepatitis virus (WHV) by RNA interference (RNAi) led to upregulation of interferon stimulated genes (ISGs) in primary hepatocytes. In the present study, we tested the hypothesis that the cellular signaling pathways recognizing RNA molecules may be involved the ISG stimulation by RNAi. Methods Primary murine hepatocytes (PMHs) from wild type mice and WHV transgenic (Tg) mice were prepared and treated with defined siRNAs. The mRNA levels of target genes and ISGs were detected by real-time RT-PCR. The involvement of the signaling pathways including RIG-I/MDA5, PKR, and TLR3/7/8/9 was examined by specific inhibition and the analysis of their activation by Western blotting. Results In PMHs from WHV Tg mice, specific siRNAs targeting WHV, mouse β-actin, and GAPDH reduced the levels of targeted mRNAs and increased the mRNA expression of IFN-β, MxA, and IP-10. The enhanced ISG expression by siRNA transfection were abolished by siRNA-specific 2′-O-methyl antisense RNA and the inhibitors 2-AP and chloroquine blocking PKR and other TLR-mediated signaling pathways. Furthermore, Western blotting revealed that RNAi results in an increase in PKR phosphorylation and nuclear translocation of IRF3 and NF-êB, indicating the possible role of IRF3 in the RNAi-directed induction of ISGs. In contrast, silencing of RIG-I and MDA5 failed to block RNAi-mediated MxA induction. Conclusions RNAi is capable of enhancing innate immune responses through the PKR- and TLR-dependent signaling pathways in primary hepatocytes. The immune stimulation by RNAi may contribute to the antiviral activity of siRNAs in vivo. PMID:23700487

  8. Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity

    PubMed Central

    MAGPANTAY, F. M. G.; DE CELLÉS, M. DOMENECH; ROHANI, P.; KING, A. A.

    2016-01-01

    SUMMARY The resurgence of pertussis in some countries that maintain high vaccination coverage has drawn attention to gaps in our understanding of the epidemiological effects of pertussis vaccines. In particular, major questions surround the nature, degree and durability of vaccine protection. To address these questions, we used mechanistic transmission models to examine regional time series incidence data from Italy in the period immediately following the introduction of acellular pertussis (aP) vaccine. Our results concur with recent animal-challenge experiments wherein infections in aP-vaccinated individuals proved as transmissible as those in naive individuals but much less symptomatic. On the other hand, the data provide evidence for vaccine-driven reduction in susceptibility, which we quantify via a synthetic measure of vaccine impact. As to the precise nature of vaccine failure, the data do not allow us to distinguish between leakiness and waning of vaccine immunity, or some combination of these. Across the range of well-supported models, the nature and duration of vaccine protection, the age profile of incidence and the range of projected epidemiological futures differ substantially, underscoring the importance of the remaining unknowns. We identify key data gaps: sources of data that can supply the information needed to eliminate these remaining uncertainties. PMID:26337864

  9. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts.

  10. Longitudinal study of circulating immune complexes in a patient with Staphylococcus albus-induced shunt nephritis.

    PubMed

    Harkiss, G D; Brown, D L; Evans, D B

    1979-08-01

    The direct measurement and partial characterization of circulating immune complexes has been performed in a longitudinal study of a patient with Staphylococcus albus-induced shunt nephritis. The high levels of immune complexes were associated with cryoglobulinaemia and hypocomplementaemia. The activation of complement was found to be via the classical pathway, but the functioning of the alternative pathway may have been impaired in vivo due to very low levels of C3. The host response to the infection was also characterized by the production of a marked macroglobulinaemia, high titres of rheumatoid factor and a typical acute phase increase in the C-reactive protein level. Immune complex levels were persistently elevated many months after the removal of the focus of the infection. A possible explanation for this surprising finding may lie in the nature of the antigens in the immune complexes. It was found that the immune complexes contained both antibodies to and antigens from Staphlococcus albus. In particular, glycerol teichoic acid and staphylococcal nuclease were identified as components of the immune complexes present during the acute phase. Glycerol teichoic acid was also identified in the immune complexes found later although other Staphylococcus albus antigens as yet unidentified were also present and persisted in the circulation for several months.

  11. Waning of vaccine-induced immunity to measles in kidney transplanted children.

    PubMed

    Rocca, Salvatore; Santilli, Veronica; Cotugno, Nicola; Concato, Carlo; Manno, Emma Concetta; Nocentini, Giulia; Macchiarulo, Giulia; Cancrini, Caterina; Finocchi, Andrea; Guzzo, Isabella; Dello Strologo, Luca; Palma, Paolo

    2016-09-01

    Vaccine-preventable diseases are a significant cause of morbidity and mortality in solid organ transplant recipients who undergo immunosuppression after transplantation. Data on immune responses and long-term maintenance after vaccinations in such population are still limited.We cross-sectionally evaluated the maintenance of immune response to measles vaccine in kidney transplanted children on immunosuppressive therapy. Measles-specific enzyme-linked immunosorbent assay and B-cell enzyme-linked immunosorbent spot were performed in 74 kidney transplant patients (Tps) and in 23 healthy controls (HCs) previously vaccinated and tested for humoral protection against measles. The quality of measles antibody response was measured by avidity test. B-cell phenotype, investigated via flow cytometry, was further correlated to the ability of Tps to maintain protective humoral responses to measles over time.We observed the loss of vaccine-induced immunity against measles in 19% of Tps. Nonseroprotected children showed signs of impaired B-cell distribution as well as immune senescence and lower antibody avidity. We further reported as time elapsed between vaccination and transplantation, as well as the vaccine administration during dialysis are clinical factors affecting the maintenance of the immune memory response against measles.Tps present both quantitative and qualitative alterations in the maintenance of protective immunity to measles vaccine. Prospective studies are needed to optimize the vaccination schedules in kidney transplant recipients in order to increase the immunization coverage over time in this population. PMID:27631222

  12. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    PubMed

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity.

  13. Virus-associated activation of innate immunity induces rapid disruption of Peyer's patches in mice.

    PubMed

    Heidegger, Simon; Anz, David; Stephan, Nicolas; Bohn, Bernadette; Herbst, Tina; Fendler, Wolfgang Peter; Suhartha, Nina; Sandholzer, Nadja; Kobold, Sebastian; Hotz, Christian; Eisenächer, Katharina; Radtke-Schuller, Susanne; Endres, Stefan; Bourquin, Carole

    2013-10-10

    Early in the course of infection, detection of pathogen-associated molecular patterns by innate immune receptors can shape the subsequent adaptive immune response. Here we investigate the influence of virus-associated innate immune activation on lymphocyte distribution in secondary lymphoid organs. We show for the first time that virus infection of mice induces rapid disruption of the Peyer's patches but not of other secondary lymphoid organs. The observed effect was not dependent on an active infectious process, but due to innate immune activation and could be mimicked by virus-associated molecular patterns such as the synthetic double-stranded RNA poly(I:C). Profound histomorphologic changes in Peyer's patches were associated with depletion of organ cellularity, most prominent among the B-cell subset. We demonstrate that the disruption is entirely dependent on type I interferon (IFN). At the cellular level, we show that virus-associated immune activation by IFN-α blocks B-cell trafficking to the Peyer's patches by downregulating expression of the homing molecule α4β7-integrin. In summary, our data identify a mechanism that results in type I IFN-dependent rapid but reversible disruption of intestinal lymphoid organs during systemic viral immune activation. We propose that such rerouted lymphocyte trafficking may impact the development of B-cell immunity to systemic viral pathogens. PMID:23823318

  14. Virus-associated activation of innate immunity induces rapid disruption of Peyer's patches in mice.

    PubMed

    Heidegger, Simon; Anz, David; Stephan, Nicolas; Bohn, Bernadette; Herbst, Tina; Fendler, Wolfgang Peter; Suhartha, Nina; Sandholzer, Nadja; Kobold, Sebastian; Hotz, Christian; Eisenächer, Katharina; Radtke-Schuller, Susanne; Endres, Stefan; Bourquin, Carole

    2013-10-10

    Early in the course of infection, detection of pathogen-associated molecular patterns by innate immune receptors can shape the subsequent adaptive immune response. Here we investigate the influence of virus-associated innate immune activation on lymphocyte distribution in secondary lymphoid organs. We show for the first time that virus infection of mice induces rapid disruption of the Peyer's patches but not of other secondary lymphoid organs. The observed effect was not dependent on an active infectious process, but due to innate immune activation and could be mimicked by virus-associated molecular patterns such as the synthetic double-stranded RNA poly(I:C). Profound histomorphologic changes in Peyer's patches were associated with depletion of organ cellularity, most prominent among the B-cell subset. We demonstrate that the disruption is entirely dependent on type I interferon (IFN). At the cellular level, we show that virus-associated immune activation by IFN-α blocks B-cell trafficking to the Peyer's patches by downregulating expression of the homing molecule α4β7-integrin. In summary, our data identify a mechanism that results in type I IFN-dependent rapid but reversible disruption of intestinal lymphoid organs during systemic viral immune activation. We propose that such rerouted lymphocyte trafficking may impact the development of B-cell immunity to systemic viral pathogens.

  15. Adaptive immune response inhibits ectopic mature bone formation induced by BMSCs/BCP/plasma composite in immune-competent mice.

    PubMed

    Bouvet-Gerbettaz, Sébastien; Boukhechba, Florian; Balaguer, Thierry; Schmid-Antomarchi, Heidy; Michiels, Jean-François; Scimeca, Jean-Claude; Rochet, Nathalie

    2014-11-01

    A combination of autologous bone marrow stromal cells (BMSCs) and biomaterials is a strategy largely developed in bone tissue engineering, and subcutaneous implantation in rodents or large animals is often a first step to evaluate the potential of new biomaterials. This study aimed at investigating the influence of the immune status of the recipient animal on BMSCs-induced bone formation. BMSCs prepared from C57BL/6 mice, composed of a mixture of mesenchymal stromal and monocytic cells, were combined with a biomaterial that consisted of biphasic calcium phosphate (BCP) particles and plasma clot. This composite was implanted subcutaneously either in syngenic C57BL/6 immune-competent mice or in T-lymphocyte-deficient Nude (Nude) mice. Using histology, immunohistochemistry, and histomorphometry, we show here that this BMSC/BCP/plasma clot composite implanted in Nude mice induces the formation of mature lamellar bone associated to hematopoietic areas and numerous vessels. Comparatively, implantation in C57BL/6 results in the formation of woven bone without hematopoietic tissue, a lower number of new vessels, and numerous multinucleated giant cells (MNGCs). In situ hybridization, which enabled to follow the fate of the BMSCs, revealed that BMSCs implanted in Nude mice survived longer than BMSCs implanted in C57BL/6 mice. Quantitative expression analysis of 280 genes in the implants indicated that the differences between C57BL/6 and Nude implants corresponded almost exclusively to genes related to the immune response. Gene expression profile in C57BL/6 implants was consistent with a mild chronic inflammation reaction characterized by Th1, Th2, and cytotoxic T-lymphocyte activation. In the implants retrieved from T-deficient Nude mice, Mmp14, Il6st, and Tgfbr3 genes were over-expressed, suggesting their putative role in bone regeneration and hematopoiesis. In conclusion, we show here that the T-mediated inflammatory microenvironment is detrimental to BMSCs-induced bone

  16. Mouse and pig models for studies of natural and vaccine-induced immunity to Bordetella pertussis.

    PubMed

    Mills, Kingston H G; Gerdts, Volker

    2014-04-01

    The increasing incidence of whooping cough in many developed countries has been linked with waning immunity induced after immunization with acellular pertussis (aP) vaccines. The rational design of an improved aP vaccine requires a full understanding of the mechanism of protective immunity and preclinical studies in animal models. Infection of mice and pigs with Bordetella pertussis has many features of the infection seen in humans and has already provided valuable information on the roles of innate and adaptive immune responses in protection. Recent findings in these models have already indicated that it may be possible to develop an improved aP vaccine based on a formulation that includes a Toll-like receptor agonist as an adjuvant.

  17. A fusion protein of HCMV IE1 exon4 and IE2 exon5 stimulates potent cellular immunity in an MVA vaccine vector

    SciTech Connect

    Wang, Z.; Zhou, W.; Srivastava, T.; La Rosa, C.; Mandarino, A.; Forman, S.J.; Zaia, J.A.; Britt, W.J.; Diamond, D.J.

    2008-08-01

    A therapeutic CMV vaccine incorporating an antigenic repertoire capable of eliciting a cellular immune response has yet to be successfully implemented for patients who already have acquired an infection. To address this problem, we have developed a vaccine candidate derived from modified vaccinia Ankara (MVA) that expresses three immunodominant antigens (pp65, IE1, IE2) from CMV. The novelty of this vaccine is the fusion of two adjacent exons from the immediate-early region of CMV, their successful expression in MVA, and robust immunogenicity in both primary and memory response models. Evaluation of the immunogenicity of the viral vaccine in mouse models shows that it can stimulate primary immunity against all three antigens in both the CD4{sup +} and CD8{sup +} T cell subsets. Evaluation of human PBMC from healthy CMV-positive donors or patients within 6 months of receiving hematopoietic cell transplant shows robust stimulation of existing CMV-specific CD4{sup +} and CD8{sup +} T cell subsets.

  18. Prevention effects of Schisandra polysaccharide on radiation-induced immune system dysfunction.

    PubMed

    Zhao, Lian-Mei; Jia, Yun-Long; Ma, Ming; Duan, Yu-Qing; Liu, Li-Hua

    2015-05-01

    In this study, we investigate the efficacy of SP (Schisandra polysaccharide) in prevention of radiation-induced immune dysfunction and discussed the underlying mechanisms with a Bal/bc mouse model. The data demonstrated that SP could reverse the decreases in the number of white blood cells and lymphocytes in peripheral blood. In addition, the immunoglobulin G (IgG) and complement C3 in blood serum were all decreased after radiation and SP could restore this radiation disorder. Furthermore, SP could reverse the deregulation of CD3(+)CD4(+) and CD3(+)CD8(+) T cell subsets in peripheral blood and thymus of mice after radiotherapy. We also performed terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and Immunohistochemistry (IHC) to investigate the apoptosis and underlying mechanisms of SP in thymus. Data showed that radiation-induced apoptosis of thymocytes could be reversed by SP through inducing upregulation of Bcl-2 expression and downregulation of Fas and Bax levels. Furthermore, SP has no any side-effects on immunity of normal mice. In conclusion, our results indicated that SP could effectively prevent immune injury during radiotherapy by protecting the immune system. This valuable information should be of assistance in choosing a rational design for therapeutic interventions of prevention immune system damage in the radiation treatment.

  19. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain

    PubMed Central

    Chan, Mun Chiang; Atasoylu, Onur; Hodson, Emma; Tumber, Anthony; Leung, Ivanhoe K. H.; Chowdhury, Rasheduzzaman; Gómez-Pérez, Verónica; Demetriades, Marina; Rydzik, Anna M.; Holt-Martyn, James; Tian, Ya-Min; Bishop, Tammie; Claridge, Timothy D. W.; Kawamura, Akane; Pugh, Christopher W.; Ratcliffe, Peter J.; Schofield, Christopher J.

    2015-01-01

    As part of the cellular adaptation to limiting oxygen availability in animals, the expression of a large set of genes is activated by the upregulation of the hypoxia-inducible transcription factors (HIFs). Therapeutic activation of the natural human hypoxic response can be achieved by the inhibition of the hypoxia sensors for the HIF system, i.e. the HIF prolyl-hydroxylases (PHDs). Here, we report studies on tricyclic triazole-containing compounds as potent and selective PHD inhibitors which compete with the 2-oxoglutarate co-substrate. One compound (IOX4) induces HIFα in cells and in wildtype mice with marked induction in the brain tissue, revealing that it is useful for studies aimed at validating the upregulation of HIF for treatment of cerebral diseases including stroke. PMID:26147748

  20. Transgenic 4-1BBL-engineered vaccine stimulates potent Gag-specific therapeutic and long-term immunity via increased priming of CD44(+)CD62L(high) IL-7R(+) CTLs with up- and downregulation of anti- and pro-apoptosis genes.

    PubMed

    Wang, Rong; Freywald, Andrew; Chen, Yue; Xu, Jianqing; Tan, Xin; Xiang, Jim

    2015-07-01

    Human immunodeficiency virus type-1 (HIV-1)-specific dendritic cell (DC) vaccines have been used in clinical trials. However, they have been found to only induce some degree of immune responses in these studies. We previously demonstrated that the HIV-1 Gag-specific Gag-Texo vaccine stimulated Gag-specific effector CD8(+) cytotoxic T lymphocyte (CTL) responses, leading to completely protective, but very limited, therapeutic immunity. In this study, we constructed a recombinant adenoviral vector, adenovirus (AdV)4-1BBL, which expressed mouse 4-1BB ligand (4-1BBL), and generated transgenic 4-1BBL-engineered OVA-Texo/4-1BBL and Gag-Texo/4-1BBL vaccines by transfecting ovalbumin (OVA)-Texo and Gag-Texo cells with AdV4-1BBL, respectively. We demonstrate that the OVA-specific OVA-Texo/4-1BBL vaccine stimulates more efficient OVA-specific CTL responses (3.26%) compared to OVA-Texo-activated responses (1.98%) in wild-type C57BL/6 mice and the control OVA-Texo/Null vaccine without transgenic 4-1BBL expression, leading to enhanced therapeutic immunity against 6-day established OVA-expressing B16 melanoma BL6-10OVA cells. OVA-Texo/4-1BBL-stimulated CTLs, which have a CD44(+)CD62L(high) IL-7R(+) phenotype, are likely memory CTL precursors, demonstrating prolonged survival and enhanced differentiation into memory CTLs with functional recall responses and long-term immunity against BL6-10OVA melanoma. In addition, we demonstrate that OVA-Texo/4-1BBL-stimulated CTLs up- and downregulate the expression of anti-apoptosis (Bcl2l10, Naip1, Nol3, Pak7 and Tnfrsf11b) and pro-apoptosis (Casp12, Trp63 and Trp73) genes, respectively, by RT(2) Profiler PCR array analysis. Importantly, the Gag-specific Gag-Texo/4-1BBL vaccine also stimulates more efficient Gag-specific therapeutic and long-term immunity against HLA-A2/Gag-expressing B16 melanoma BL6-10Gag/A2 cells than the control Gag-Texo/Null vaccine in transgenic HLA-A2 mice. Taken together, our novel Gag-Texo/4-1BBL vaccine, which is

  1. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    SciTech Connect

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko; Dohi, Makoto

    2014-01-03

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.

  2. Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response

    PubMed Central

    Jiang, Xiaomo; Kinch, Lisa; Brautigam, Chad A.; Chen, Xiang; Du, Fenghe; Grishin, Nick; Chen, Zhijian J.

    2012-01-01

    SUMMARY RIG-I and MDA5 detect viral RNA in the cytoplasm and activate signaling cascades leading to the production of type-I interferons. RIG-I is activated through sequential binding of viral RNA and unanchored lysine-63 (K63) polyubiquitin chains, but how polyubiquitin activates RIG-I and whether MDA5 is activated through a similar mechanism remain unresolved. Here we showed that the CARD domains of MDA5 bound to K63 polyubiquitin and that this binding was essential for MDA5 to activate the transcription factor IRF3. Mutations of conserved residues in MDA5 and RIG-I that disrupt their ubiquitin binding also abrogated their ability to activate IRF3. Polyubiquitin binding induced the formation of a large complex consisting of four RIG-I and four ubiquitin chains. This hetero-tetrameric complex was highly potent in activating the antiviral signaling cascades. These results suggest a unified mechanism of RIG-I and MDA5 activation and reveal a unique mechanism by which ubiquitin regulates cell signaling and immune response. PMID:22705106

  3. Baculovirus-Vectored Multistage Plasmodium vivax Vaccine Induces Both Protective and Transmission-Blocking Immunities against Transgenic Rodent Malaria Parasites

    PubMed Central

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M.; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E.

    2014-01-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. PMID:25092912

  4. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    NASA Astrophysics Data System (ADS)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  5. Hepatic gene mutations induced in Big Blue rats by both the potent rat liver azo-carcinogen 6BT and its reported noncarcinogenic analogue 5BT.

    PubMed

    Fletcher, K; Soames, A R; Tinwell, H; Lefevre, P A; Ashby, J

    1999-01-01

    The potent rat liver carcinogen 6-p-dimethylaminophenylazobenzthiazole (6BT) and its reported noncarcinogenic analogue 5-p-dimethylaminophenylazobenzthiazole (5BT; evaluated for carcinogenicity under the similar limited bioassay conditions used for 6BT) have been studied in order to seek an explanation for their different carcinogenic activities. Both compounds act as DNA-damaging agents to the rat liver, and both have now been shown to induce lacI (-) gene mutations in the liver of Big Blue(trade mark) transgenic rats. Both compounds were mutagenic following ten daily gavage doses or following administration in diet for 10 days. Neither chemical induced cell proliferation in the liver following repeat gavage administrations. In contrast, dietary administration of 6BT, and to a lesser extent of 5BT, induced hepatic cell proliferation. The carcinogen 6BT, but not the noncarcinogen 5BT, caused proliferation of oval stem cells in the livers by both routes of administration. It is possible that mutations induced in oval cells by 6BT are responsible for its potent carcinogenicity, and that the comparative absence of these cells in 5BT-treated livers may account for the carcinogenic inactivity of 5BT. Equally, the proliferation of the oval cells may reflect changes in liver homeostasis associated with the liver toxicity observed at the dose level of 6BT used (which was, nonetheless, the dose level used in the positive cancer bioassays). It is concluded that the new data presented cannot explain the differing carcinogenic activities of 5BT and 6BT, and that the reported noncarcinogen 5BT may also be carcinogenic when adequately assessed for this activity.

  6. Protective immunity induced in mice by F0 and FII antigens purified from Paracoccidioides brasiliensis.

    PubMed

    Diniz, S N; Reis, B S; Goes, T S; Zouain, C S; Leite, M F; Goes, A M

    2004-01-01

    Paracoccidioides brasiliensis causes a chronic granulomatous mycosis prevalent in South America, and cell-mediated immunity represents the principal mode of protection against this fungal infection. We investigated whether immunization with P. brasiliensis antigens fractionated by anionic chromatography on fast protein liquid chromatography (FPLC) could elicit protective immunity. BALB/c mice were immunized by subcutaneous injection of either 10 microg fractions 0 (F0), II (FII) or III (FIII) in the presence of 100 microg of Corynebacterium parvum and 1 mg of Al(OH)(3) and challenged with pathogenic P. brasiliensis strain. Mice immunized with F0 presented cellular and humoral immune responses with significant production of IFN-gamma, and high levels of IgG2a and IgG3 isotypes. Immunization with FII induced significant production of IFN-gamma and IL-10 associated with high levels of IgG1 and IgG2a. It was demonstrated that immunization with F0 or FII promoted significant decrease of organ colony-forming units (CFUs) in the lung after challenge infection without fungi dissemination to the spleen or liver. In contrast, FIII immunized mice develop a progressive disseminated disease to spleen and liver presented significant levels of INF-gamma, IL-10 or TGF-beta associated with high production of IgG1 and IgG2a with low production of IgG2b and IgG3 after challenge infection. Taken together, these findings suggest that antigens of F0 and FII are reliable vaccine candidates against the paracoccidioidomycosis. PMID:14670331

  7. GMCSF-armed vaccinia virus induces an antitumor immune response.

    PubMed

    Parviainen, Suvi; Ahonen, Marko; Diaconu, Iulia; Kipar, Anja; Siurala, Mikko; Vähä-Koskela, Markus; Kanerva, Anna; Cerullo, Vincenzo; Hemminki, Akseli

    2015-03-01

    Oncolytic Western Reserve strain vaccinia virus selective for epidermal growth factor receptor pathway mutations and tumor-associated hypermetabolism was armed with human granulocyte-macrophage colony-stimulating factor (GMCSF) and a tdTomato fluorophore. As the assessment of immunological responses to human transgenes is challenging in the most commonly used animal models, we used immunocompetent Syrian golden hamsters, known to be sensitive to human GMCSF and semipermissive to vaccinia virus. Efficacy was initially tested in vitro on various human and hamster cell lines and oncolytic potency of transgene-carrying viruses was similar to unarmed virus. The hGMCSF-encoding virus was able to completely eradicate subcutaneous pancreatic tumors in hamsters, and to fully protect the animals from subsequent rechallenge with the same tumor. Induction of specific antitumor immunity was also shown by ex vivo co-culture experiments with hamster splenocytes. In addition, histological examination revealed increased infiltration of neutrophils and macrophages in GMCSF-virus-treated tumors. These findings help clarify the mechanism of action of GMCSF-armed vaccinia viruses undergoing clinical trials.

  8. A VACCINE STRATEGY THAT INDUCES PROTECTIVE IMMUNITY AGAINST HEROIN

    PubMed Central

    Stowe, G. Neil; Vendruscolo, Leandro F.; Edwards, Scott; Schlosburg, Joel E.; Misra, Kaushik K.; Schulteis, Gery; Mayorov, Alexander V.; Zakhari, Joseph S.; Koob, George F.; Janda, Kim D.

    2011-01-01

    Heroin addiction is a wide-reaching problem with a spectrum of damaging social consequences. A vaccine capable of blocking heroin's effects could provide a long-lasting and sustainable adjunct to heroin addiction therapy. Heroin, however, presents a particularly challenging immunotherapeutic target as it is metabolized to multiple psychoactive molecules. To reconcile this dilemma we examined the idea of a singular vaccine with the potential to display multiple drug-like antigens; thus two haptens were synthesized, one heroin-like and another morphine-like in chemical structure. A key feature in this approach is that immunopresentation with the heroin-like hapten is thought to be immunochemically dynamic such that multiple haptens are simultaneously presented to the immune system. We demonstrate the significance of this approach though the extremely rapid generation of robust polyclonal antibody titers with remarkable specificity. Importantly, both the antinociceptive effects of heroin and acquisition of heroin self-administration were blocked in rats vaccinated using the heroin-like hapten. PMID:21692508

  9. T-Cell Immune Response Assessment as a Complement to Serology and Intranasal Protection Assays in Determining the Protective Immunity Induced by Acellular Pertussis Vaccines in Mice

    PubMed Central

    Ausiello, C. M.; Lande, R.; Stefanelli, P.; Fazio, C.; Fedele, G.; Palazzo, R.; Urbani, F.; Mastrantonio, P.

    2003-01-01

    The relative value of antibodies and/or T-cell immune responses to Bordetella pertussis antigens in the immunity induced by acellular pertussis (aP) vaccines is still an open issue, probably due to the incomplete knowledge on the mechanisms of protective immunity to pertussis. The relevance of T-cell immune responses in protection from pertussis has been demonstrated in murine and human models of infection; thus, in this study, the ability of different vaccine preparations of three component (pertussis toxin, filamentous hemagglutinin, and pertactin) aP vaccines to induce T-cell responses was investigated in mice. All vaccine preparations examined passed the immunogenicity control test, based on antibody titer assessment, according to European Pharmacopoeia standards, and protected mice from B. pertussis intranasal challenge, but not all preparations were able to prime T cells to pertussis toxin, the specific B. pertussis antigen. In particular, one vaccine preparation was unable to induce proliferation and gamma interferon (IFN-γ) production while the other two gave borderline results. The evaluation of T-cell responses to pertussis toxin antigen may provide information on the protective immunity induced by aP vaccines in animal models. Considering the critical role of the axis interleukin-12-IFN-γ for protection from pertussis, our results suggest that testing the induction of a key protective cytokine such as IFN-γ could be an additional tool for the evaluation of the immune response induced by aP vaccines. PMID:12853397

  10. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol-3-phosphate (G3P) is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resi...

  11. Fungal innate immunity induced by bacterial microbe-associated molecular patterns (MAMPs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and very little is known about fungal molecular responses to bacteria, a...

  12. Neisseria gonorrhoeae induces a tolerogenic phenotype in macrophages to modulate host immunity.

    PubMed

    Escobar, Alejandro; Candia, Enzo; Reyes-Cerpa, Sebastian; Villegas-Valdes, Bélgica; Neira, Tanya; Lopez, Mercedes; Maisey, Kevin; Tempio, Fabián; Ríos, Miguel; Acuña-Castillo, Claudio; Imarai, Mónica

    2013-01-01

    Neisseria gonorrhoeae is the etiological agent of gonorrhoea, which is a sexually transmitted disease widespread throughout the world. N. gonorrhoeae does not improve immune response in patients with reinfection, suggesting that gonococcus displays several mechanisms to evade immune response and survive in the host. N. gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and dendritic cells. In this study, we determined whether N. gonorrhoeae directly conditions the phenotype of RAW 264.7 murine macrophage cell line and its response. We established that gonococcus was effectively phagocytosed by the RAW 264.7 cells and upregulates production of immunoregulatory cytokines (IL-10 and TGF- β 1) but not the production of proinflammatory cytokine TNF- α , indicating that gonococcus induces a shift towards anti-inflammatory cytokine production. Moreover, N. gonorrhoeae did not induce significant upregulation of costimulatory CD86 and MHC class II molecules. We also showed that N. gonorrhoeae infected macrophage cell line fails to elicit proliferative CD4+ response. This implies that macrophage that can phagocytose gonococcus do not display proper antigen-presenting functions. These results indicate that N. gonorrhoeae induces a tolerogenic phenotype in antigen-presenting cells, which seems to be one of the mechanisms to induce evasion of immune response.

  13. Neisseria gonorrhoeae Induces a Tolerogenic Phenotype in Macrophages to Modulate Host Immunity

    PubMed Central

    Candia, Enzo; Reyes-Cerpa, Sebastian; Villegas-Valdes, Bélgica; Neira, Tanya; Lopez, Mercedes; Maisey, Kevin; Tempio, Fabián; Ríos, Miguel; Acuña-Castillo, Claudio; Imarai, Mónica

    2013-01-01

    Neisseria gonorrhoeae is the etiological agent of gonorrhoea, which is a sexually transmitted disease widespread throughout the world. N. gonorrhoeae does not improve immune response in patients with reinfection, suggesting that gonococcus displays several mechanisms to evade immune response and survive in the host. N. gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and dendritic cells. In this study, we determined whether N. gonorrhoeae directly conditions the phenotype of RAW 264.7 murine macrophage cell line and its response. We established that gonococcus was effectively phagocytosed by the RAW 264.7 cells and upregulates production of immunoregulatory cytokines (IL-10 and TGF-β1) but not the production of proinflammatory cytokine TNF-α, indicating that gonococcus induces a shift towards anti-inflammatory cytokine production. Moreover, N. gonorrhoeae did not induce significant upregulation of costimulatory CD86 and MHC class II molecules. We also showed that N. gonorrhoeae infected macrophage cell line fails to elicit proliferative CD4+ response. This implies that macrophage that can phagocytose gonococcus do not display proper antigen-presenting functions. These results indicate that N. gonorrhoeae induces a tolerogenic phenotype in antigen-presenting cells, which seems to be one of the mechanisms to induce evasion of immune response. PMID:24204097

  14. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under physiological conditions the gut-associated lymphoid tissues not only prevent the induction of a local inflammatory immune response, but also induce systemic tolerance to fed antigens. A notable exception is coeliac disease, where genetically susceptible individuals expressing human leukocyte...

  15. Imidazenil, a non-sedating anticonvulsant benzodiazepine, is more potent than diazepam in protecting against DFP-induced seizures and neuronal damage.

    PubMed

    Kadriu, Bashkim; Guidotti, Alessandro; Costa, Erminio; Auta, James

    2009-02-27

    Organophosphate (OP)-nerve agent poisoning may lead to prolonged epileptiform seizure activity, which can result in irreversible neuronal brain damage. A timely and effective control of seizures with pharmacological agents can minimize the secondary and long-term neuropathology that may result from this damage. Diazepam, the current anticonvulsant of choice in the management of OP poisoning, is associated with unwanted effects such as sedation, amnesia, cardio-respiratory depression, anticonvulsant tolerance, and dependence liabilities. In search for an efficacious and safer anticonvulsant benzodiazepine, we studied imidazenil, a potent anticonvulsant that is devoid of sedative action and has a low intrinsic efficacy at alpha1- but is a high efficacy positive allosteric modulator at alpha5-containing GABA(A) receptors. We compared the potency of a combination of 2 mg/kg, i.p. atropine with: (a) imidazenil 0.05-0.5 mg/kg i.p. or (b) equipotent anti-bicuculline doses of diazepam (0.5-5 mg/kg, i.p.), against diisopropyl fluorophosphate (DFP; 1.5 mg/kg, s.c.)-induced status epilepticus and its associated neuronal damage. The severity and frequency of seizure activities were determined by continuous radio telemetry recordings while the extent of neuronal damage and neuronal degeneration were assessed using the TUNEL-based cleaved DNA end-labeling technique or neuron-specific nuclear protein (NeuN)-immunolabeling and Fluoro-Jade B (FJB) staining, respectively. We report here that the combination of atropine and imidazenil is at least 10-fold more potent and longer lasting than the combination with diazepam at protecting rats from DFP-induced seizures and the associated neuronal damage or ongoing degeneration in the anterior cingulate cortex, CA1 hippocampus, and dentate gyrus. While 0.5 mg/kg imidazenil effectively attenuated DFP-induced neuronal damage and the ongoing neuronal degeneration in the anterior cingulate cortex, dentate gyrus, and CA1 hippocampus, 5 mg/kg or

  16. New triterpenes, myrrhanol A and myrrhanone A, from guggul-gum resins, and their potent anti-inflammatory effect on adjuvant-induced air-pouch granuloma of mice.

    PubMed

    Kimura, I; Yoshikawa, M; Kobayashi, S; Sugihara, Y; Suzuki, M; Oominami, H; Murakami, T; Matsuda, H; Doiphode, V V

    2001-04-23

    Myrrhanol A, a new triterpene isolated from guggul (Balsamodendron or Commiphora mukul Hook.)-gum resin, displays a potent anti-inflammatory effect on exudative pouch fluid, angiogenesis, and granuloma weights in adjuvant-induced air-pouch granuloma of mice. Its effects were more marked than those of hydrocortisone and the 50% aqueous methanolic extract of the crude drug. Myrrhanol A is a plausible candidate for a potent anti-inflammatory agent. PMID:11327606

  17. Feline Leukemia Virus Immunity Induced by Whole Inactivated Virus Vaccination

    PubMed Central

    Torres, Andrea N.; O’Halloran, Kevin P.; Larson, Laurie J.; Schultz, Ronald D.; Hoover, Edward A.

    2009-01-01

    A fraction of cats exposed to feline leukemia virus (FeLV) effectively contain virus and resist persistent antigenemia/viremia. Using real-time PCR (qPCR) to quantitate circulating viral DNA levels, previously we detected persistent FeLV DNA in blood cells of non-antigenemic cats considered to have resisted FeLV challenge. In addition, previously we used RNA qPCR to quantitate circulating viral RNA levels and determined that the vast majority of viral DNA is transcriptionally active, even in the absence of antigenemia. A single comparison of all USDA-licensed commercially available FeLV vaccines using these modern sensitive methods has not been reported. To determine whether FeLV vaccination would prevent nucleic acid persistence, we assayed circulating viral DNA, RNA, antigen, infectious virus, and virus neutralizing (VN) antibody in vaccinated and unvaccinated cats challenged with infectious FeLV. We identified challenged vaccinates with undetectable antigenemia and viremia concomitant with persistent FeLV DNA and/or RNA. Moreover, these studies demonstrated that two whole inactivated virus (WIV) adjuvanted FeLV vaccines (Fort Dodge Animal Health’s Fel-O-Vax Lv-K® and Schering-Plough Animal Health’s FEVAXYN FeLV®) provided effective protection against FeLV challenge. In nearly every recipient of these vaccines, neither viral DNA, RNA, antigen, nor infectious virus could be detected in blood after FeLV challenge. Interestingly, this effective viral containment occurred despite a weak to undetectable VN antibody response. The above findings reinforce the precept of FeLV infection as a unique model of effective retroviral immunity elicited by WIV vaccination, and as such holds valuable insights into retroviral immunoprevention and therapy. PMID:20004483

  18. Waning of vaccine-induced immunity: is it a problem in Africa?

    PubMed

    Aaby, P; Cisse, B; Simondon, F; Samb, B; Soumaré, M; Whittle, H

    1999-02-15

    Strebel et al. misinterpreted the authors' paper on the role of schools in measles transmission. As Strebel et al. noted, the main reason for the outbreak was low vaccine coverage among children aged 5-14 years, together with a marked reduction in the incidence of measles over the past 10 years. Because of the high measles vaccine coverage in younger age groups, many children in Niakhar have gone through their first 5 years of life without being infected with the measles virus. The waning of vaccine-induced immunity has played a role. Strebel et al. believe that there is no indication of waning immunity in the authors' paper and that there is a downward bias in vaccine efficacy due to faulty methodology. Their argument, however, misses the point. The children's ages at vaccination with standard vaccine were completely different in those age groups, with the median age being 295 days for those under age 5 years and 1017 days for those aged 10-14 years. Whether waning immunity will translate into declining vaccine efficacy with age depends upon whether misclassification of vaccination status and measles history is the same in all age groups. Other observations support the existence of waning immunity. The phenomenon of waning vaccine-induced immunity needs to be examined for measles and other vaccine-preventable diseases.

  19. Sulforaphane Epigenetically Regulates Innate Immune Responses of Porcine Monocyte-Derived Dendritic Cells Induced with Lipopolysaccharide

    PubMed Central

    Qu, Xueqi; Pröll, Maren; Neuhoff, Christiane; Zhang, Rui; Cinar, Mehmet Ulas; Hossain, Md. Munir; Tesfaye, Dawit; Große-Brinkhaus, Christine; Salilew-Wondim, Dessie; Tholen, Ernst; Looft, Christian; Hölker, Michael; Schellander, Karl; Uddin, Muhammad Jasim

    2015-01-01

    Histone acetylation, regulated by histone deacetylases (HDACs) is a key epigenetic mechanism controlling gene expressions. Although dendritic cells (DCs) are playing pivotal roles in host immune responses, the effect of epigenetic modulation of DCs immune responses remains unknown. Sulforaphane (SFN) as a HDAC inhibitor has anti-inflammatory properties, which is used to investigate the epigenetic regulation of LPS-induced immune gene and HDAC family gene expressions in porcine monocyte-derived dendritic cells (moDCs). SFN was found to inhibit the lipopolysaccharide LPS induced HDAC6, HDAC10 and DNA methyltransferase (DNMT3a) gene expression, whereas up-regulated the expression of DNMT1 gene. Additionally, SFN was observed to inhibit the global HDAC activity, and suppressed moDCs differentiation from immature to mature DCs through down-regulating the CD40, CD80 and CD86 expression and led further to enhanced phagocytosis of moDCs. The SFN pre-treated of moDCs directly altered the LPS-induced TLR4 and MD2 gene expression and dynamically regulated the TLR4-induced activity of transcription factor NF-κB and TBP. SFN showed a protective role in LPS induced cell apoptosis through suppressing the IRF6 and TGF-ß1 production. SFN impaired the pro-inflammatory cytokine TNF-α and IL-1ß secretion into the cell culture supernatants that were induced in moDCs by LPS stimulation, whereas SFN increased the cellular-resident TNF-α accumulation. This study demonstrates that through the epigenetic mechanism the HDAC inhibitor SFN could modulate the LPS induced innate immune responses of porcine moDCs. PMID:25793534

  20. Brief Report: Immune Microenvironment Determines the Immunogenicity of Induced Pluripotent Stem Cell Derivatives.

    PubMed

    Todorova, Dilyana; Kim, Jinchul; Hamzeinejad, Sara; He, Jingjin; Xu, Yang

    2016-02-01

    The breakthrough of induced pluripotent stem cells (iPSCs) has raised the possibility that patient-specific iPSCs can provide autologous cells for cell therapy without the concern for immune rejection. However, the immunogenicity of iPSC-derived cells remains controversial. Using syngeneic C57BL/6 (B6) mouse transplantation model, several studies indicate that B6 iPSC-derived cells exhibit some levels of immunogenicity when transplanted into B6 mice subcutaneously. In contrast, one recent study has concluded that various lineages of B6 iPSC-derived cells exhibit no immunogenicity when transplanted under the kidney capsule of B6 mice. To resolve the controversy concerning this critical issue of iPSC biology, we used the same B6 transplantation model to demonstrate that the immune response toward antigens is dependent on the immune environment of the transplantation site. Immunogenic antigen-expressing B6 embryonic stem cells (ESCs) as well as B6 iPSCs and their terminally differentiated cells survived under the kidney capsule but are immune rejected when transplanted subcutaneously or intramuscularly. The cotransplantation of mature B6 dendritic cells under the kidney capsule leads to immune rejection of B6 iPSC-derived grafts but not B6 ESC-derived grafts, indicating that the lack of detectable immune response to iPSC-derived grafts under the kidney capsule is due to the lack of functional antigen presenting cells. PMID:26439188

  1. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  2. Commercial sunscreen lotions prevent ultraviolet-radiation-induced immune suppression of contact hypersensitivity.

    PubMed

    Roberts, L K; Beasley, D G

    1995-09-01

    Ultraviolet (UV) radiation suppresses certain immunologic responses, such as contact hypersensitivity (CH). Some previous studies, using sunlamps emitting nonsolar-spectrum UV or excessive UV doses, have questioned the ability of sunscreens to prevent UV-induced immune suppression. Our study evaluated the immune protection capacities of commercial sunscreen lotions in relation to the effects of UV spectrum and dose. C3H mice were exposed to a fixed UV dose from Kodacel-filtered FS sunlamps that caused maximum Langerhans cell depletion and suppression of CH. Kodacel film blocks UV energy below 290 nm, thus eliminating immune-suppressive effects of UVC (200-290 nm) not present in sunlight. CH was equally suppressed in unprotected and placebo-lotion-treated, UV-exposed mice. Mice protected with sun protection factor (SPF)-15 and SPF-30 sunscreens mounted normal CH responses. SPF-4 and SPF-8 sunscreen-protected mice had CH responses significantly greater than those of unprotected mice. Direct effects of UV spectral differences on the immune protection value of an SPF-15 sunscreen were determined by exposing mice to UV radiation from unfiltered and Kodacel-filtered sunlamps and a 1000-W xenon lamp solar simulator (UV spectrum nearly equivalent to sunlight). The sunscreen immune protection value was 30 times the minimum immune suppression dose for the solar simulator, while being 7.5 times this dose for Kodacel-filtered and 2 times the dose for unfiltered sunlamps. These results demonstrate that commercial sunscreen lotions prevent UV-induced immune suppression at a level exceeding the labeled SPF when tested with an environmentally relevant UV source.

  3. Commercial sunscreen lotions prevent ultraviolet-radiation-induced immune suppression of contact hypersensitivity.

    PubMed

    Roberts, L K; Beasley, D G

    1995-09-01

    Ultraviolet (UV) radiation suppresses certain immunologic responses, such as contact hypersensitivity (CH). Some previous studies, using sunlamps emitting nonsolar-spectrum UV or excessive UV doses, have questioned the ability of sunscreens to prevent UV-induced immune suppression. Our study evaluated the immune protection capacities of commercial sunscreen lotions in relation to the effects of UV spectrum and dose. C3H mice were exposed to a fixed UV dose from Kodacel-filtered FS sunlamps that caused maximum Langerhans cell depletion and suppression of CH. Kodacel film blocks UV energy below 290 nm, thus eliminating immune-suppressive effects of UVC (200-290 nm) not present in sunlight. CH was equally suppressed in unprotected and placebo-lotion-treated, UV-exposed mice. Mice protected with sun protection factor (SPF)-15 and SPF-30 sunscreens mounted normal CH responses. SPF-4 and SPF-8 sunscreen-protected mice had CH responses significantly greater than those of unprotected mice. Direct effects of UV spectral differences on the immune protection value of an SPF-15 sunscreen were determined by exposing mice to UV radiation from unfiltered and Kodacel-filtered sunlamps and a 1000-W xenon lamp solar simulator (UV spectrum nearly equivalent to sunlight). The sunscreen immune protection value was 30 times the minimum immune suppression dose for the solar simulator, while being 7.5 times this dose for Kodacel-filtered and 2 times the dose for unfiltered sunlamps. These results demonstrate that commercial sunscreen lotions prevent UV-induced immune suppression at a level exceeding the labeled SPF when tested with an environmentally relevant UV source. PMID:7665909

  4. Repeated stress-induced stimulation of catecholamine response is not followed by altered immune cell redistribution.

    PubMed

    Imrich, Richard; Tibenska, Elena; Koska, Juraj; Ksinantova, Lucia; Kvetnansky, Richard; Bergendiova-Sedlackova, Katarina; Blazicek, Pavol; Vigas, Milan

    2004-06-01

    Stress response is considered an important factor in the modulation of immune function. Neuroendocrine hormones, including catecholamines, affect the process of immune cell redistribution, important for cell-mediated immunity. This longitudinal investigation was aimed at evaluating the effect of repeated stress-induced elevation of catecholamines on immune cell redistribution and expression of adhesive molecules. We assessed the responses of epinephrine (EPI), norepinephrine (NE), cortisol, changes in lymphocytes subpopulations, and percentages of CD11a+, CD11b+, and CD62L+ lymphocytes to a 20-min treadmill exercise of an intensity equal to 80% of the individual's Vo(2)max. The exercise was performed before and after 6 weeks of endurance training consisting of a 1-h run 4 times a week (ET) and after 5 days of bed rest (HDBR) in 10 healthy males. We did not observe any significant changes in the basal levels of EPI, NE, and cortisol in the plasma, nor in the immune parameters after ET and HDBR. The exercise test led to a significant (P <.001) elevation of EPI and NE levels after both ET and HDBR, a significant elevation (P <.01) of cortisol after HDBR, an increase in the absolute numbers of leukocytes, granulocytes, monocytes, CD3+, CD4+, CD8+, CD16+, CD19+ lymphocytes, percentage of CD11a+ and CD11b+ lymphocytes, and to a decrease of CD62L1 before, after ET, and after HDBR. We found comparable changes in all measured immune parameters after ET and HDBR. In conclusion, repeated stress-induced elevation of EPI and NE was not associated with an alteration in immune cell redistribution found in response to the single bout of exercise. PMID:15240377

  5. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral

    NASA Astrophysics Data System (ADS)

    Sheridan, C.; Grosjean, Ph.; Leblud, J.; Palmer, C. V.; Kushmaro, A.; Eeckhaut, I.

    2014-12-01

    High sedimentation rates have been linked to reduced coral health within multiple systems; however, whether this is a direct result of compromised coral immunity has not been previously investigated. The potential effects of sedimentation on immunity of the hard coral Montipora patula were examined by comparing physiological responses of coral fragments inoculated with sterilized marine sediments and those under control conditions. Sediments were collected from terrestrial runoff-affected reefs in SW Madagascar and applied cyclically for a total of 24 h at a rate observed during precipitation-induced sedimentation events. Coral health was determined 24 h after the onset of the sedimentation stress through measuring metabolic proxies of O2 budget and lipid ratios. Immune response of the melanin synthesis pathway was measured by quantifying phenoloxidase activity and melanin deposits. Sedimentation induced both immune and metabolic responses in M. patula. Both phenoloxidase activity and melanin deposition were significantly higher in the sediment treatment compared to controls, indicating an induced immune response. Sediment-treated corals also showed a tendency towards increased respiration (during the night) and decreased photosynthesis (during the day) and a significant depletion of energy reserves as compared to controls. These data highlight that short-term (24 h) sedimentation, free of live microorganisms, compromises the health of M. patula. The energetically costly immune response, potentially elicited by residual endotoxins and other inflammatory particles associated with the sterile sediments, likely contributes to the energy depletion. Overall, exposure to sedimentation adversely affects coral health and continued exposure may lead to resource depletion and an increased susceptibility to disease.

  6. Hesperidin-3'-o-methylether is more potent than hesperidin in phosphodiesterase inhibition and suppression of ovalbumin-induced airway hyperresponsiveness.

    PubMed

    Yang, You-Lan; Hsu, Hsin-Te; Wang, Kuo-Hsien; Wang, Chao-Sian; Chen, Chien-Ming; Ko, Wun-Chang

    2012-01-01

    Hesperidin is present in the traditional Chinese medicine, "Chen Pi," and recently was reported to have anti-inflammatory effects. Therefore, we were interested in comparing the effects of hesperidin and hesperidin-3'-O-methylether on phosphodiesterase inhibition and airway hyperresponsiveness (AHR) in a murine model of asthma. In the present results, hesperidin-3'-O-methylether, but not hesperidin, at 30 μmol/kg (p.o.) significantly attenuated the enhanced pause (P(enh)) value, suppressed the increases in numbers of total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, suppressed total and OVA-specific immunoglobulin (Ig)E levels in the serum and BALF, and enhanced the level of total IgG(2a) in the serum of sensitized and challenged mice, suggesting that hesperidin-3'-O-methylether is more potent than hesperidin in suppression of AHR and immunoregulation. The different potency between them may be due to their aglycons, because these two flavanone glycosides should be hydrolyzed by β-glucosidase after oral administration. Neither influenced xylazine/ketamine-induced anesthesia, suggesting that they may have few or no adverse effects, such as nausea, vomiting, and gastric hypersecretion. In conclusion, hesperidin-3'-O-methylether is more potent in phosphodiesterase inhibition and suppression of AHR and has higher therapeutic (PDE4(H)/PDE4(L)) ratio than hesperidin. Thus, hesperidin-3'-O-methylether may have more potential for use in treating allergic asthma and chronic obstructive pulmonary disease. PMID:23082087

  7. Silibinin suppresses NPM-ALK, potently induces apoptosis and enhances chemosensitivity in ALK-positive anaplastic large cell lymphoma.

    PubMed

    Molavi, Ommoleila; Samadi, Nasser; Wu, Chengsheng; Lavasanifar, Afsaneh; Lai, Raymond

    2016-05-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion protein carrying constitutively active tyrosine kinase, is known to be central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK+ALCL). Here, it is reported that silibinin, a non-toxic naturally-occurring compound, potently suppressed NPM-ALK and effectively inhibited the growth and soft agar colony formation of ALK+ALCL cells. By western blots, it was found that silibinin efficiently suppressed the phosphorylation/activation of NPM-ALK and its key substrates/downstream mediators (including STAT3, MEK/ERK and Akt) in a time- and dose-dependent manner. Correlating with these observations, silibinin suppressed the expression of Bcl-2, survivin and JunB, all of which are found to be upregulated by NPM-ALK and pathogenetically important in ALK+ALCL. Lastly, silibinin augmented the chemosensitivity of ALK+ALCL cells to doxorubicin, particularly the small cell sub-set expressing the transcriptional activity of Sox2, an embryonic stem cell marker. To conclude, the findings suggest that silibinin might be useful in treating ALK+ALCL.

  8. Ajoene exerts potent effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing apoptosis.

    PubMed

    Ambati, Suresh; Yang, Jeong-Yeh; Rayalam, Srujana; Park, Hea Jin; Della-Fera, Mary Anne; Baile, Clifton A

    2009-04-01

    This paper describes effects of several sulfur-containing compounds from garlic on the cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes. In both preadipocytes and mature adipocytes, 100 and 200 microM ajoene significantly decreased cell viability and increased apoptosis. The effect on apoptosis was further confirmed with Hoechst staining. In contrast, diallyl sulfide, diallyl disulfide, diallyl trisulfide, deoxyalliin, and allyl methyl sulfide had no significant effect on cell viability or apoptosis in either preadipocytes or mature adipocytes. In maturing preadipocytes ajoene significantly decreased lipid accumulation in a dose-dependent manner and these results were further confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining. There was no significant change in lipid accumulation in maturing preadipocytes treated with other garlic derivatives. Thus, despite the same source of origin, garlic, ajoene was the only one with potent effects on cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes.

  9. TLR 9 involvement in early protection induced by immunization with rPb27 against Paracoccidioidomycosis.

    PubMed

    Morais, Elis Araujo; Chame, Daniela Ferreira; Melo, Eliza Mathias; de Carvalho Oliveira, Junnia Alvarenga; de Paula, Ana Cláudia Chagas; Peixoto, Andiara Cardoso; da Silva Santos, Lílian; Gomes, Dawidson Assis; Russo, Remo Castro; de Goes, Alfredo Miranda

    2016-02-01

    Paracoccidioidomycosis is caused by fungi of the Paracoccidioides genus and constitutes the most prevalent deep mycosis in Latin America. Toll-like receptors promote immune response against infectious agents. Recently, it was reported that TLR9 is crucial for mice survival during the first 48 h of P. brasiliensis infection. In this study, we used CPG oligodeoxynucleotide motif as an adjuvant with and without rPb27 to immunize mice against Paracoccidioidomycosis. CPG adjuvant induced differential recruitment of lymphocytes in the inflammatory process and a lower recruitment of neutrophils. In addition, CPG induced the production of pro-inflammatory cytokines such as IL-1β, TNF-α, IL-6 and IL-12; increased phagocytic ability and microbicidal activity by macrophages; and induced differential production of lgG2a and lgG2b, subtypes of Ig. Knockout mice for TLR9 and IL-12 showed higher fungal loads and rates of mortality compared to control mice after 30 days of infection. The association between CPG and rPb27 induced a high level of protection against Paracoccidioidomycosis after the first 30 days of infection but not at 60 days. Our findings demonstrate that TLR 9 plays a role in the protection induced by immunization with rPb27 and confirms the importance of TLR9 in the initial protection against Paracoccidioidomycosis. PMID:26597327

  10. The first report of cabergoline-induced immune hemolytic anemia in an adolescent with prolactinoma.

    PubMed

    Gürbüz, Fatih; Yağcı-Küpeli, Begül; Kör, Yılmaz; Yüksel, Bilgin; Zorludemir, Suzan; Gürbüz, Berrak Bilginer; Küpeli, Serhan

    2014-01-01

    Prolactinomas are common pituitary tumors that can cause gonadal dysfunction and infertility related to hyperprolactinemia. Dopamine agonists are the first-line treatment in these patients. Cabergoline leads to significant reduction in serum prolactin levels and tumor size in patients with prolactinoma. Dopamine agonists have been associated with adverse effects such as nausea, vomiting and psychosis. We report here a case with cabergoline-induced immune hemolytic anemia. The patient had cabergoline treatment history for prolactinoma and presented with weakness, fatigue, nausea, and paleness. Laboratory findings revealed severe anemia-related immune hemolysis. There were no causes identified to explain hemolytic anemia except cabergoline. Therefore, cabergoline therapy was stopped and subsequently hemolytic anemia resolved and did not occur again. This is the first reported pediatric case with prolactinoma and cabergoline-induced hemolytic anemia. Clinicians should be watchful for this rare side effect induced by cabergoline.

  11. Essential role of IL-10/STAT3 in chronic stress-induced immune suppression.

    PubMed

    Hu, Dan; Wan, Lei; Chen, Michael; Caudle, Yi; LeSage, Gene; Li, Qinchuan; Yin, Deling

    2014-02-01

    Stress can either enhance or suppress immune functions depending on a variety of factors such as duration of stressful condition. Chronic stress has been demonstrated to exert a significant suppressive effect on immune function. However, the mechanisms responsible for this phenomenon remain to be elucidated. Here, male C57BL/6 mice were placed in a 50-ml conical centrifuge tube with multiple punctures to establish a chronic restraint stress model. Serum IL-10 levels, IL-10 production by the splenocytes, and activation of STAT3 in the mouse spleen were assessed. We demonstrate that IL-10/STAT3 axis was remarkably activated following chronic stress. Moreover, TLR4 and p38 MAPK play a pivotal role in the activation of IL-10/STAT3 signaling cascade. Interestingly, blocking antibody against IL-10 receptor and inhibition of STAT3 by STAT3 inhibitor S3I-201 attenuates stress-induced lymphocyte apoptosis. Inhibition of IL-10/STAT3 dramatically inhibits stress-induced reduction in IL-12 production. Furthermore, disequilibrium of Th1/Th2 cytokine balance caused by chronic stress was also rescued by blocking IL-10/STAT3 axis. These results yield insight into a new mechanism by which chronic stress regulates immune functions. IL-10/STAT3 pathway provides a novel relevant target for the manipulation of chronic stress-induced immune suppression. PMID:24513872

  12. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut.

    PubMed

    Sonnenberg, Gregory F; Monticelli, Laurel A; Elloso, M Merle; Fouser, Lynette A; Artis, David

    2011-01-28

    Fetal CD4(+) lymphoid tissue inducer (LTi) cells play a critical role in the development of lymphoid tissues. Recent studies identified that LTi cells persist in adults and are related to a heterogeneous population of innate lymphoid cells that have been implicated in inflammatory responses. However, whether LTi cells contribute to protective immunity remains poorly defined. We demonstrate that after infection with Citrobacter rodentium, CD4(+) LTi cells were a dominant source of interleukin-22 (IL-22) early during infection. Infection-induced CD4(+) LTi cell responses were IL-23 dependent, and ablation of IL-23 impaired innate immunity. Further, depletion of CD4(+) LTi cells abrogated infection-induced expression of IL-22 and antimicrobial peptides, resulting in exacerbated host mortality. LTi cells were also found to be essential for host protective immunity in lymphocyte-replete hosts. Collectively these data demonstrate that adult CD4(+) LTi cells are a critical source of IL-22 and identify a previously unrecognized function for CD4(+) LTi cells in promoting innate immunity in the intestine.

  13. Degree of Immunity Induced by Killed Vaccines to Experimental Salmonellosis in Mice

    PubMed Central

    Herzberg, Mendel; Nash, Peter; Hino, Sharon

    1972-01-01

    Killed vaccines, deoxycholate-extracted or heated, were shown to induce an effective degree of immunity which protected against death (100%), prevented extensive multiplication, and left the mice with low residual salmonella populations in spleen and liver after intravenous (iv) or intraperitoneal (ip) challenge with virulent Salmonella typhimurium. Protection was most effective against the ip challenge route and less effective against the iv route. A study of the kinetics of the population of bacteria in the spleens and livers of immunized animals showed that after ip challenge there was an initial reduction of 99% at 6 hr after challenge, maintenance of levels of less than 103 bacteria per organ, and a final population of 102 to 103 per organ at 21 days. With iv challenge, after an initial reduction of 90% at 6 hr, growth ensued to levels above 106 bacteria per organ until 8 days, followed by a steady decline yielding residual populations of 103 to 104 in some cases. Organ hypertrophy correlated with bacterial population. Morbidity was prevented (as measured by gain in body weight) by immunization against ip challenge but not against iv challenge. Killed vaccines protected by their ability to induce an immune state which reduced the initial challenge population, prevented extensive multiplication, yet allowed “cellular immunity” to develop due to response to the living challenge infection itself. The consequence was a low-level carrier state similar to that induced by recovery from sublethal virulent infection. PMID:4570987

  14. Systemic but not mucosal immunity induced by AVA prevents inhalational anthrax.

    PubMed

    Klinman, Dennis M; Currie, Debra; Lee, Gloria; Grippe, Vanessa; Merkel, Tod

    2007-10-01

    Improved vaccines and adjuvants are being developed to reduce the threat posed by a terrorist attack involving aerosolized anthrax spores. Nevertheless, uncertainty persists concerning the relative benefits of inducing mucosal vs systemic immunity to host survival following inhalational exposure to anthrax spores. This work examines the effect of delivering the licensed human vaccine (anthrax vaccine adsorbed, AVA) combined with a CpG oligodeoxynucleotide (ODN) adjuvant intraperitoneally or intranasally to A/J mice. Results indicate that protection from inhalational anthrax correlates with the induction of a strong systemic rather than mucosal immune response, and demonstrate that protection is significantly improved and accelerated by the addition of CpG ODN.

  15. Neonatal jaundice, animal-induced injuries, and immunizations.

    PubMed

    Koh, A Y; Bernstein, H H

    2000-08-01

    The authors describe current investigation and most recent developments in three areas of pediatrics commonly faced by the office practitioner. The impetus of earlier newborn discharge places increased emphasis on pediatricians to accurately predict clinically significant jaundice. A better understanding of the pathophysiology of breastfeeding and breast milk jaundice, and the realization that Gilbert's syndrome may play a greater role in neonatal jaundice, only help confirm that the story of neonatal jaundice is still unfolding. Animal (particularly canine) bite injuries continue to be the most common animal-induced injuries, and a thorough review of appropriate antibiotic treatment and rabies prophylaxis guidelines are essential for the pediatric practitioner. During the past year, several major changes involving the use of rotavirus, pneumococcal, polio, meningococcal, and hepatitis A vaccines have taken place, which will have marked impact not only on pediatric office practice, but also on society as a whole. PMID:10943826

  16. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release.

    PubMed

    Ilyinskii, Petr O; Roy, Christopher J; O'Neil, Conlin P; Browning, Erica A; Pittet, Lynnelle A; Altreuter, David H; Alexis, Frank; Tonti, Elena; Shi, Jinjun; Basto, Pamela A; Iannacone, Matteo; Radovic-Moreno, Aleksandar F; Langer, Robert S; Farokhzad, Omid C; von Andrian, Ulrich H; Johnston, Lloyd P M; Kishimoto, Takashi Kei

    2014-05-19

    Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-a and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required.

  17. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release.

    PubMed

    Ilyinskii, Petr O; Roy, Christopher J; O'Neil, Conlin P; Browning, Erica A; Pittet, Lynnelle A; Altreuter, David H; Alexis, Frank; Tonti, Elena; Shi, Jinjun; Basto, Pamela A; Iannacone, Matteo; Radovic-Moreno, Aleksandar F; Langer, Robert S; Farokhzad, Omid C; von Andrian, Ulrich H; Johnston, Lloyd P M; Kishimoto, Takashi Kei

    2014-05-19

    Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-a and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required. PMID:24593999

  18. Rapeseed Oil and Ginseng Saponins Work Synergistically To Enhance Th1 and Th2 Immune Responses Induced by the Foot-and-Mouth Disease Vaccine

    PubMed Central

    Zhang, Cenrong; Wang, Yuemin; Wang, Meng; Su, Xiaoyan; Lu, Yisong; Su, Fei

    2014-01-01

    Previous investigations demonstrated that saponins isolated from the root of Panax ginseng C. A. Meyer (i.e., ginseng root saponin [GS-R]) had adjuvant activity. In the present study, the combined effects of rapeseed oil (RO) and GS-R on the immune responses elicited by foot-and-mouth disease (FMD) vaccine were investigated by measuring FMD virus (FMDV)-specific antibody levels, cytokine levels, lymphocyte proliferation, and long-lived IgG-secreting plasma cells from bone marrow in a mouse model. The results indicated that RO in combination with GS-R significantly enhanced serum IgG and isotype concentrations, gamma interferon (IFN-γ) and interleukin 5 (IL-5) levels, splenocyte proliferative responses to stimulations with concanavalin A (ConA), lipopolysaccharide (LPS), and FMDV antigen, and the numbers of IgG-secreting plasma cells in the bone marrow, suggesting that RO/GS-R enhanced both Th1 and Th2 immune responses. In addition, no significant difference was found between RO/GS-R and the commercial adjuvant oil ISA 206 in the promotion of FMD vaccine-induced immune responses. Considering the vegetable origin of RO and GS-R and the potent adjuvant activity, RO/GS-R should be studied further for the development of veterinary vaccines, especially for use in food animals in order to promote food safety. PMID:24920601

  19. Retinal laser burn (RLB) induced neuropathy leads to substance P dependent loss of ocular immune privilege

    PubMed Central

    Lucas, Kenyatta; Karamichos, Dimitris; Mathew, Rose; Zieske, James D.; Stein-Streilein, Joan

    2012-01-01

    Inflammation in the eye is tightly regulated by multiple mechanisms that together contribute to ocular immune privilege. Many studies have shown that it is very difficult to abrogate the immune privileged mechanism called anterior chamber associated immune deviation (ACAID). Previously, we showed that retinal laser burn (RLB) to one eye abrogated immune privilege (ACAID) bilaterally for an extended period of time. In an effort to explain the inflammation in the non-burned eye, we postulated that neuronal signals initiated inflammation in the contralateral eye. Here, we test the role of substance P, a neuroinflamatory peptide, in RLB-induced loss of ACAID. Histological examination of the retina with and without RLB revealed an increase of the substance P-inducible neurokinin 1 receptor (NK1-R) in the retina of first, the burned eye, and then the contralateral eye. Specific antagonists for NK1-R, given locally with antigen within 24h, but not 3,5, or 7 days post RLB treatment, prevented the bilateral loss of ACAID. Substance P Knockout (KO) mice retained their ability to develop ACAID post RLB. These data support the postulate that substance P transmits early inflammatory signals from the RLB eye to the contralateral eye to induce changes to ocular immune privilege and has a central role in the bilateral loss of ACAID. The possibility is raised that blocking of the substance P pathway with NK1-R antagonists post ocular trauma may prevent unwanted and perhaps extended consequences of trauma-induced inflammation in the eye. PMID:22745377

  20. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level.

    PubMed

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J; Finkenstaedt, Felix W; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas; Schwab, Jan M

    2016-03-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient's environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS ('immune paralysis'), sufficient to propagate clinically relevant infection in an injury level dependent manner.

  1. Immunization with DNA vaccines encoding glycoprotein D or glycoprotein B, alone or in combination, induces protective immunity in animal models of herpes simplex virus-2 disease.

    PubMed

    McClements, W L; Armstrong, M E; Keys, R D; Liu, M A

    1996-10-15

    DNA vaccines expressing herpes simplex virus type 2 (HSV-2) full-length glycoprotein D (gD), or a truncated form of HSV-2 glycoprotein B (gB) were evaluated for protective efficacy in two experimental models of HSV-2 infection. Intramuscular (i.m.) injection of mice showed that each construction induced neutralizing serum antibodies and protected the mice from lethal HSV-2 infection. Dose-titration studies showed that low doses (< or = 1 microgram) of either DNA construction induced protective immunity, and that a single immunization with the gD construction was effective. The two DNAs were then tested in a low-dosage combination in guinea pigs. Immune sera from DNA-injected animals had antibodies to both gD and gB, and virus neutralizing activity. When challenged by vaginal infection with HSV-2, the DNA-immunized animals were significantly protected from primary genital disease.

  2. Intralymphatic immunization enhances DNA vaccination

    NASA Astrophysics Data System (ADS)

    Maloy, Kevin J.; Erdmann, Iris; Basch, Veronique; Sierro, Sophie; Kramps, Thomas A.; Zinkernagel, Rolf M.; Oehen, Stefan; Kündig, Thomas M.

    2001-03-01

    Although DNA vaccines have been shown to elicit potent immune responses in animal models, initial clinical trials in humans have been disappointing, highlighting a need to optimize their immunogenicity. Naked DNA vaccines are usually administered either i.m. or intradermally. The current study shows that immunization with naked DNA by direct injection into a peripheral lymph node enhances immunogenicity by 100- to 1,000-fold, inducing strong and biologically relevant CD8+ cytotoxic T lymphocyte responses. Because injection directly into a lymph node is a rapid and easy procedure in humans, these results have important clinical implications for DNA vaccination.

  3. Study of biomaterial-induced macrophage activation, cell-mediated immune response and molecular oxidative damage in patients with dermal bioimplants.

    PubMed

    Sánchez, Olga; Rodríguez-Sureda, Víctor; Domínguez, Carmen; Fernández-Figueras, Teresa; Vilches, Angel; Llurba, Elisa; Alijotas-Reig, Jaume

    2012-01-01

    Several soft-tissue dermal fillers have been reported to provoke immunogenicity and may cause adverse reactions despite claims regarding their safety. This study aimed to assess biomaterial-induced macrophage activation, cell-mediated immune response and oxidative stress in 169 patients with dermal bioimplants. To this end, we analysed plasma concentrations of myeloperoxidase (MPO), the chitinase-like proteins chitotriosidase and YKL-40 and molecular oxidative damage. The present study shows, for the first time, that the components of innate immunity: chitotriosidase and YKL-40, are significantly higher in patients with certain bioimplants and these markers of monocyte/macrophage activation rose progressively as adverse reactions (AR) evolved. Plasma MPO levels increased 4-fold in filler users with AR and 3-fold in those without. Analysis by filler type showed subjects injected with calcium hydroxylapatite, methacrylate, acrylamides and silicone to have values significantly above those of non-filler subjects for at least two plasma biomarkers, probably because the afore-mentioned biomaterials are permanent and prone to trigger AR in the long term. By contrast, hyaluronic acid alone elicited little immune response. Plasma concentrations of markers of oxidative damage to lipids and proteins were found to be significantly higher in users of four of the nine dermal fillers studied. These diffusible products of molecular peroxidation would stem from the reaction catalysed by MPO that generates potent oxidants, leading to cell oxidative damage which, in turn, may exert deleterious effects on the organism. Overall, the results of this study on the effects of a range of dermal fillers point to chronic activation of the immune response mediated by macrophages and PMNs. The increases in plasma of MPO, chitotriosidase and YKL-40 proteins and products of macromolecular peroxidation suggests that these molecules could serve as blood-based biochemical markers and alert to the

  4. Blockade of central and peripheral luteinizing hormone-releasing hormone (LHRH) receptors in neonatal rats with a potent LHRH-antagonist inhibits the morphofunctional development of the thymus and maturation of the cell-mediated and humoral immune responses.

    PubMed

    Morale, M C; Batticane, N; Bartoloni, G; Guarcello, V; Farinella, Z; Galasso, M G; Marchetti, B

    1991-02-01

    The development of the thymus and the hypothalamic-pituitary-gonadal axis are linked by bidirectional hormonally mediated relationships. In the present study, the direct involvement of the neuropeptide LHRH in the maturation of the thymus and development of the cell-mediated and humoral immune responses were assessed after treatment of neonatal (from post-natal day 1-day 5) female rats with a potent LHRH-antagonist (LHRH-anta, p-Glu-D-Phe 2.6,Pro3-LHRH, 50 micrograms/rat), and the effects compared to those resulting from neonatal castration. Whereas in control animals the maturation of mitogenic potential in thymocyte cultures showed a progressive and age-dependent increase, reaching a maximal activity at 30 days of age and then decreasing after puberty onset, in LHRH-anta-treated rats, the thymocyte's proliferative response was completely blocked at 7 days of age and remained very low at each time interval studied, until 3 months of age. A similar effect of the LHRH-anta treatment on splenocyte cultures was measured. Moreover, a reduced percentage of the T-helper lymphocyte subpopulation followed LHRH-anta administration. By contrast, in neonatally castrated rats, blastogenic activity was significantly higher, compared to control cultures, at each stage studied. Treatment with LHRH-anta produced a significant decrease in thymus wt, an alteration of the maturational pattern characterized by a cellular monomorphism, reduced thymocyte volume, reduction of the cortical area, and depauperation of the epithelial microenvironment. Moreover, a morphometric analysis revealed a selective decrease in the large lymphoid cell population of the subcapsular cortex at 7 and 15 days. On the other hand, neonatal castration produced an opposite effect, leading to a marked hypertrophy of the cortical area, and counteracted the post-puberal thymus atrophy. When LHRH-anta-treated adult (3-month-old) rats were challenged with an antigenic stimulus (multiple sc injections of complete

  5. Transcutaneous immunization with toxin-coregulated pilin A induces protective immunity against Vibrio cholerae O1 El Tor challenge in mice.

    PubMed

    Rollenhagen, Julianne E; Kalsy, Anuj; Cerda, Francisca; John, Manohar; Harris, Jason B; Larocque, Regina C; Qadri, Firdausi; Calderwood, Stephen B; Taylor, Ronald K; Ryan, Edward T

    2006-10-01

    Toxin-coregulated pilin A (TcpA) is the main structural subunit of a type IV bundle-forming pilus of Vibrio cholerae, the cause of cholera. Toxin-coregulated pilus is involved in formation of microcolonies of V. cholerae at the intestinal surface, and strains of V. cholerae deficient in TcpA are attenuated and unable to colonize intestinal surfaces. Anti-TcpA immunity is common in humans recovering from cholera in Bangladesh, and immunization against TcpA is protective in murine V. cholerae models. To evaluate whether transcutaneously applied TcpA is immunogenic, we transcutaneously immunized mice with 100 mug of TcpA or TcpA with an immunoadjuvant (cholera toxin [CT], 50 mug) on days 0, 19, and 40. Mice immunized with TcpA alone did not develop anti-TcpA responses. Mice that received transcutaneously applied TcpA and CT developed prominent anti-TcpA immunoglobulin G (IgG) serum responses but minimal anti-TcpA IgA. Transcutaneous immunization with CT induced prominent IgG and IgA anti-CT serum responses. In an infant mouse model, offspring born to dams transcutaneously immunized either with TcpA and CT or with CT alone were challenged with 10(6) CFU (one 50% lethal dose) wild-type V. cholerae O1 El Tor strain N16961. At 48 h, mice born to females transcutaneously immunized with CT alone had 36% +/- 10% (mean +/- standard error of the mean) survival, while mice born to females transcutaneously immunized with TcpA and CT had 69% +/- 6% survival (P < 0.001). Our results suggest that transcutaneous immunization with TcpA and an immunoadjuvant induces protective anti-TcpA immune responses. Anti-TcpA responses may contribute to an optimal cholera vaccine.

  6. Beryllium-induced immune response in C3H mice

    SciTech Connect

    Benson, J.M.; Bice, D.E.; Nikula, K.J.

    1995-12-01

    Studies conducted at ITRI over the past several years have investigated whether Beagle dogs, monkeys, and mice are suitable models for human chronic beryllium-induced lung disease (CBD). Recent studies have focused on the histopathological and immunopathological changes occurring in A/J and C3H/HeJ mice acutely exposed by inhalation to Be metal. Lung lesions in both strains of mice included focal lymphocyte aggregates comprised primarily of B lymphocytes and lesser amounts of T-helper lymphocytes and microgranulomas consisting chiefly of macrophages and T-helper lymphocytes. The distribution of proliferating cells within the microgranulomas was similar to the distribution of T-helper cells. These results strongly suggested that A/J and C3H/HeJ mice responded to inhaled Be metal in a fashion similar to humans in terms of pulmonary lesions and the apparent in situ proliferation of T-helper cells. Results of these studies confirm lymphocyte involvement in the pulmonary response to inhaled Be metal.

  7. A benzothiophene-carboxamide is a potent inhibitor of IL-1beta induced VCAM-1 gene expression in human endothelial cells.

    PubMed

    Cobb, R R; Felts, K A; McKenzie, T C; Parry, G C; Mackman, N

    1996-03-18

    Vascular endothelial cells respond to cytokines such as IL-1 beta or TNF-alpha by undergoing a number of functional alterations. Among these alterations is the induction of cell surface adhesion molecules, including VCAM-1. In this report, we investigated the effects of a 3-alkoxybenzo[beta]thiophene-2-carboxamide (BZT) on the cytokine induction of VCAM-1 expression and activation of the transcription factor NF-kappa B in human endothelial cells. BZT blocked the IL-1 beta induced cell surface expression of VCAM-1 in human endothelial cells but did not prevent nuclear translocation of NF-kappa B. This study demonstrates that BZT is a potent inhibitor of VCAM-1 expression in human endothelial cells.

  8. A Potent HDAC Inhibitor, 1-Alaninechlamydocin, from a Tolypocladium sp. Induces G2/M Cell Cycle Arrest and Apoptosis in MIA PaCa-2 Cells

    PubMed Central

    2015-01-01

    The cyclic tetrapeptide 1-alaninechlamydocin was purified from a Great Lakes-derived fungal isolate identified as a Tolypocladium sp. Although the planar structure was previously described, a detailed analysis of its spectroscopic data and biological activity are reported here for the first time. Its absolute configuration was determined using a combination of spectroscopic (1H–1H ROESY, ECD, and X-ray diffraction) and chemical (Marfey’s analysis) methods. 1-Alaninechlamydocin showed potent antiproliferative/cytotoxic activities in a human pancreatic cancer cell line (MIA PaCa-2) at low-nanomolar concentrations (GI50 5.3 nM, TGI 8.8 nM, LC50 22 nM). Further analysis revealed that 1-alaninechlamydocin induced G2/M cell cycle arrest and apoptosis. Similar to other cyclic epoxytetrapeptides, the inhibitory effects of 1-alaninechlamydocin are proposed to be produced primarily via inhibition of histone deacetylase (HDAC) activity. PMID:24999749

  9. Characterization of the immune response induced by pertussis OMVs-based vaccine.

    PubMed

    Bottero, D; Gaillard, M E; Zurita, E; Moreno, G; Martinez, D Sabater; Bartel, E; Bravo, S; Carriquiriborde, F; Errea, A; Castuma, C; Rumbo, M; Hozbor, D

    2016-06-14

    For the development of a third generation of pertussis vaccine that could improve the control of the disease, it was proposed that the immune responses induced by the classic whole cell vaccine (wP) or after infection should be used as a reference point. We have recently identified a vaccine candidate based on outer membrane vesicles (OMVs) derived from the disease etiologic agent that have been shown to be safe and protective in mice model of infection. Here we characterized OMVs-mediated immunity and the safety of our new candidate. We also deepen the knowledge of the induced humoral response contribution in pertussis protection. Regarding the safety of the OMVs based vaccine (TdapOMVsBp,) the in vitro whole blood human assay here performed, showed that the low toxicity of OMVs-based vaccine previously detected in mice could be extended to human samples. Stimulation of splenocytes from immunized mice evidenced the presence of IFN-γ and IL-17-producing cells, indicated that OMVs induces both Th1 and Th17 response. Interestingly TdapOMVsBp-raised antibodies such as those induced by wP and commercial acellular vaccines (aP) which contribute to induce protection against Bordetella pertussis infection. As occurs with wP-induced antibodies, the TdapOMVsBp-induced serum antibodies efficiently opsonized B. pertussis. All the data here obtained shows that OMVs based vaccine is able to induce Th1/Th17 and Th2 mixed profile with robust humoral response involved in protection, positioning this candidate among the different possibilities to constitute the third generation of anti-pertussis vaccines.

  10. Characterization of the immune response induced by pertussis OMVs-based vaccine.

    PubMed

    Bottero, D; Gaillard, M E; Zurita, E; Moreno, G; Martinez, D Sabater; Bartel, E; Bravo, S; Carriquiriborde, F; Errea, A; Castuma, C; Rumbo, M; Hozbor, D

    2016-06-14

    For the development of a third generation of pertussis vaccine that could improve the control of the disease, it was proposed that the immune responses induced by the classic whole cell vaccine (wP) or after infection should be used as a reference point. We have recently identified a vaccine candidate based on outer membrane vesicles (OMVs) derived from the disease etiologic agent that have been shown to be safe and protective in mice model of infection. Here we characterized OMVs-mediated immunity and the safety of our new candidate. We also deepen the knowledge of the induced humoral response contribution in pertussis protection. Regarding the safety of the OMVs based vaccine (TdapOMVsBp,) the in vitro whole blood human assay here performed, showed that the low toxicity of OMVs-based vaccine previously detected in mice could be extended to human samples. Stimulation of splenocytes from immunized mice evidenced the presence of IFN-γ and IL-17-producing cells, indicated that OMVs induces both Th1 and Th17 response. Interestingly TdapOMVsBp-raised antibodies such as those induced by wP and commercial acellular vaccines (aP) which contribute to induce protection against Bordetella pertussis infection. As occurs with wP-induced antibodies, the TdapOMVsBp-induced serum antibodies efficiently opsonized B. pertussis. All the data here obtained shows that OMVs based vaccine is able to induce Th1/Th17 and Th2 mixed profile with robust humoral response involved in protection, positioning this candidate among the different possibilities to constitute the third generation of anti-pertussis vaccines. PMID:27151884

  11. Enhanced immunity against classical swine fever in pigs induced by prime-boost immunization using an alphavirus replicon-vectored DNA vaccine and a recombinant adenovirus.

    PubMed

    Sun, Yuan; Li, Na; Li, Hong-Yu; Li, Miao; Qiu, Hua-Ji

    2010-09-15

    Classical swine fever (CSF) - caused by the classical swine fever virus (CSFV) - is a fatal disease of pigs that is responsible for extensive losses to the swine industry worldwide. We had demonstrated previously that a prime-boost vaccination strategy using an alphavirus (Semliki Forest virus, SFV) replicon-vectored DNA vaccine (pSFV1CS-E2) and a recombinant adenovirus (rAdV-E2) expressing the E2 glycoprotein of CSFV induced enhanced immune responses in a mouse model. In this study, we evaluated further the efficacy of the heterologous prime-boost immunization approach in pigs, the natural host of CSFV. The results showed that the pigs (n=5) receiving pSFV1CS-E2/rAdV-E2 heterologous prime-boost immunization developed significantly higher titers of CSFV-specific neutralizing antibodies and comparable CD4(+) and CD8(+) T-cell proliferation, compared to the pigs receiving double immunizations with rAdV-E2 alone. When challenged with virulent CSFV Shimen strain, the pigs of the heterologous prime-boost group did not show clinical symptoms or viremia, which were observed in one of the 5 pigs immunized with rAdV-E2 alone and all the 5 control pigs immunized with an empty adenovirus. The results demonstrate that the heterologous DNA prime and recombinant adenovirus boost strategy can induce solid protective immunity.

  12. Molecular Components of the Sporothrix schenckii Complex that Induce Immune Response.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Romo-Lozano, Yolanda; López-Romero, Everardo; Ruiz-Baca, Estela

    2016-08-01

    Sporotrichosis is a fungal disease caused by the Sporothrix schenckii complex that includes species such as S. brasiliensis, S. schenckii sensu stricto, S. globosa, S. luriei, S. mexicana, and S. pallida, which exhibit different potentially antigenic molecular components. The immune response of susceptible hosts to control infection and disease caused by these fungi has been little studied. Besides, the fungus-host interaction induces the activation of different types of immune response. This mini-review analyzes and discusses existing reports on the identification and functional characterization of molecules from species of the S. schenckii complex with clinical relevance, and the mechanisms that mediate the type and magnitude of the immune response in experimental models in vivo and in vitro. This knowledge is expected to contribute to the development of protective and therapeutic strategies against sporotrichosis and other mycoses. PMID:27117164

  13. [Role of immune alterations induced by papillomavirus in development of cervical cancer ].

    PubMed

    Delvenne, P

    2011-01-01

    Squamous cell cancer of the uterine cervix is associated with a high morbidity and mortality worldwide and in Belgium. The link between cervical cancer and HPV has generated, in recent years, a great interest for studies aiming to better understand the role of the immune system in the control of these infections and for the development of prophylactic anti-HPV vaccines. The purpose of this work was to analyse the immune co-factors implicated in the promotion of the neoplastic process. We have shown that both virus-induced immune alterations and squamous metaplasia in the transformation zone of the uterine cervix play a role to create an immunotolerogenic microenvironment during the cervical carcinogenesis.

  14. Molecular Components of the Sporothrix schenckii Complex that Induce Immune Response.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Romo-Lozano, Yolanda; López-Romero, Everardo; Ruiz-Baca, Estela

    2016-08-01

    Sporotrichosis is a fungal disease caused by the Sporothrix schenckii complex that includes species such as S. brasiliensis, S. schenckii sensu stricto, S. globosa, S. luriei, S. mexicana, and S. pallida, which exhibit different potentially antigenic molecular components. The immune response of susceptible hosts to control infection and disease caused by these fungi has been little studied. Besides, the fungus-host interaction induces the activation of different types of immune response. This mini-review analyzes and discusses existing reports on the identification and functional characterization of molecules from species of the S. schenckii complex with clinical relevance, and the mechanisms that mediate the type and magnitude of the immune response in experimental models in vivo and in vitro. This knowledge is expected to contribute to the development of protective and therapeutic strategies against sporotrichosis and other mycoses.

  15. Hantavirus-induced pathogenesis in mice with a humanized immune system.

    PubMed

    Kobak, Lidija; Raftery, Martin J; Voigt, Sebastian; Kühl, Anja A; Kilic, Ergin; Kurth, Andreas; Witkowski, Peter; Hofmann, Jörg; Nitsche, Andreas; Schaade, Lars; Krüger, Detlev H; Schönrich, Günther

    2015-06-01

    Hantaviruses are emerging zoonotic pathogens that can cause severe disease in humans. Clinical observations suggest that human immune components contribute to hantavirus-induced pathology. To address this issue we generated mice with a humanized immune system. Hantavirus infection of these animals resulted in systemic infection associated with weight loss, decreased activity, ruffled fur and inflammatory infiltrates of lung tissue. Intriguingly, after infection, humanized mice harbouring human leukocyte antigen (HLA) class I-restricted human CD8+ T cells started to lose weight earlier (day 10) than HLA class I-negative humanized mice (day 15). Moreover, in these mice the number of human platelets dropped by 77 % whereas the number of murine platelets did not change, illustrating how differences between rodent and human haemato-lymphoid systems may contribute to disease development. To our knowledge this is the first description of a humanized mouse model of hantavirus infection, and our results indicate a role for human immune cells in hantaviral pathogenesis.

  16. Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses.

    PubMed

    Urrutia, Alejandra; Duffy, Darragh; Rouilly, Vincent; Posseme, Céline; Djebali, Raouf; Illanes, Gabriel; Libri, Valentina; Albaud, Benoit; Gentien, David; Piasecka, Barbara; Hasan, Milena; Fontes, Magnus; Quintana-Murci, Lluis; Albert, Matthew L

    2016-09-01

    Systems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes. PMID:27568558

  17. Regulatory T cells ameliorate acetaminophen-induced immune-mediated liver injury.

    PubMed

    Wang, Xuefu; Sun, Rui; Chen, Yongyan; Lian, Zhe-Xiong; Wei, Haiming; Tian, Zhigang

    2015-04-01

    The contribution of innate immune cells to acetaminophen (APAP)-induced liver injury has been extensively investigated. However, the roles of T cell populations among adaptive immune cells in APAP-induced liver injury remain to be elucidated. Herein, we found that distinct CD4(+) T cell subsets but not CD8(+) T cells modulated APAP-induced liver injury in mice. After APAP challenge, more CD62L(low)CD44(hi)CD4(+) T cells appeared in the liver, accompanied by increased IFN-γ. The removal of CD4(+) T cells by either antibody depletion or genetic deficiency markedly compromised pro-inflammatory cytokine levels and ameliorated liver injury. Meanwhile, we also found that the frequency and absolute number of Treg cells also increased. Treg cell depletion increased hepatic CD62L(low)CD44(hi)CD4(+) T cells, augmented pro-inflammatory cytokines, and exacerbated liver injury, while adoptive transfer of Treg cells ameliorated APAP-induced liver injury. Furthermore, the recruitment of Treg cells into the liver through specific expression of CXCL10 in the liver could ameliorate APAP-induced liver injury. Our investigation suggests that Th1 and Treg subsets are involved in regulating APAP-induced liver injury. Thus, modulating the Th1/Treg balance may be an effective strategy to prevent and/or treat APAP-induced liver injury.

  18. Human Rhinovirus Type 14:Human Immunodeficiency Virus Type 1 (HIV-1) V3 Loop Chimeras from a Combinatorial Library Induce Potent Neutralizing Antibody Responses against HIV-1

    PubMed Central

    Smith, Allen D.; Geisler, Sheila C.; Chen, Anne A.; Resnick, Dawn A.; Roy, Birgit M.; Lewi, Paul J.; Arnold, Edward; Arnold, Gail Ferstandig

    1998-01-01

    In an effort to develop a useful AIDS vaccine or vaccine component, we have generated a combinatorial library of chimeric viruses in which the sequence IGPGRAFYTTKN from the V3 loop of the MN strain of human immunodeficiency virus type 1 (HIV-1) is displayed in many conformations on the surface of human rhinovirus 14 (HRV14). The V3 loop sequence was inserted into a naturally immunogenic site of the cold-causing HRV14, bridged by linkers consisting of zero to three randomized amino acids on each side. The library of chimeric viruses obtained was subjected to a variety of immunoselection schemes to isolate viruses that provided the most useful presentations of the V3 loop sequence for potential use in a vaccine against HIV. The utility of the presentations was assessed by measures of antigenicity and immunogenicity. Most of the immunoselected chimeras examined were potently neutralized by each of the four different monoclonal anti-V3 loop antibodies tested. Seven of eight chimeric viruses were able to elicit neutralizing antibody responses in guinea pigs against the MN and ALA-1 strains of HIV-1. Three of the chimeras elicited HIV neutralization titers that exceeded those of all but a small number of previously described HIV immunogens. These results indicate that HRV14:HIV-1 chimeras may serve as useful immunogens for stimulating immunity against HIV-1. This method can be used to flexibly reconstruct varied immunogens on the surface of a safe and immunogenic vaccine vehicle. PMID:9420270

  19. Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection

    PubMed Central

    Kroetz, Danielle N.; Allen, Ronald M.; Schaller, Matthew A.; Cavallaro, Cleyton; Ito, Toshihiro; Kunkel, Steven L.

    2015-01-01

    Influenza A virus (IAV) is an airborne pathogen that causes significant morbidity and mortality each year. Macrophages (Mϕ) are the first immune population to encounter IAV virions in the lungs and are required to control infection. In the present study, we explored the mechanism by which cytokine signaling regulates the phenotype and function of Mϕ via epigenetic modification of chromatin. We have found that type I interferon (IFN-I) potently upregulates the lysine methyltransferase Setdb2 in murine and human Mϕ, and in turn Setdb2 regulates Mϕ-mediated immunity in response to IAV. The induction of Setdb2 by IFN-I was significantly impaired upon inhibition of the JAK-STAT signaling cascade, and chromatin immunoprecipitation revealed that both STAT1 and interferon regulatory factor 7 bind upstream of the transcription start site to induce expression. The generation of Setdb2LacZ reporter mice revealed that IAV infection results in systemic upregulation of Setdb2 in myeloid cells. In the lungs, alveolar Mϕ expressed the highest level of Setdb2, with greater than 70% lacZ positive on day 4 post-infection. Silencing Setdb2 activity in Mϕ in vivo enhanced survival in lethal IAV infection. Enhanced host protection correlated with an amplified antiviral response and less obstruction to the airways. By tri-methylating H3K9, Setdb2 silenced the transcription of Mx1 and Isg15, antiviral effectors that inhibit IAV replication. Accordingly, a reduced viral load in knockout mice on day 8 post-infection was linked to elevated Isg15 and Mx1 transcript in the lungs. In addition, Setdb2 suppressed the expression of a large number of other genes with proinflammatory or immunomodulatory function. This included Ccl2, a chemokine that signals through CCR2 to regulate monocyte recruitment to infectious sites. Consistently, knockout mice produced more CCL2 upon IAV infection and this correlated with a 2-fold increase in the number of inflammatory monocytes and alveolar Mϕ in the

  20. Romidepsin (FK228) and its analogs directly inhibit phosphatidylinositol 3-kinase activity and potently induce apoptosis as histone deacetylase/phosphatidylinositol 3-kinase dual inhibitors.

    PubMed

    Saijo, Ken; Katoh, Tadashi; Shimodaira, Hideki; Oda, Akifumi; Takahashi, Ohgi; Ishioka, Chikashi

    2012-11-01

    Activation of phosphatidylinositol 3-kinase (PI3K) signaling is involved in carcinogenesis and cancer progression. The PI3K inhibitors are considered candidate drugs for cancer treatment. Here, we describe a drug screening system for novel PI3K inhibitors using Saccharomyces cerevisiae strains with deleterious mutations in the ATP-binding cassette transporter genes, because wild-type S. cerevisiae uses drug efflux pumps for reducing intracellular drug concentrations. By screening the chemical library of the Screening Committee of Anticancer Drugs, we identified the histone deacetylase (HDAC) inhibitor romidepsin (FK228) and its novel analogs. In vitro PI3K activity assays confirmed that these compounds directly inhibit PI3K activity at μM-range concentrations. FK-A5 analog was the most potent inhibitor. Western blotting revealed that these compounds inhibit phosphorylation of protein kinase B and downstream signaling components. Molecular modeling of the PI3K-FK228 complex indicated that FK228 binds to the ATP-binding pocket of PI3K. At μM-range concentrations, FK228 and FK-A5 show potent cytotoxicity, inducing apoptosis even in HDAC inhibitor-resistant cells. Furthermore, HDAC/PI3K dual inhibition by FK228 and FK-A5 at μM-range concentrations potentiates the apoptosis induction, mimicking the effect of combining specific HDAC and PI3K inhibitors. In this study, we showed that FK228 and its analogs directly inhibit PI3K activity and induce apoptosis at μM-range concentrations, similar to HDAC/PI3K dual inhibition. In future, optimizing the potency of FK228 and its analogs against PI3K may contribute to the development of novel HDAC/PI3K dual inhibitors for cancer treatment.

  1. NY-ESO-1 protein glycosylated by yeast induces enhanced immune responses.

    PubMed

    Wadle, Andreas; Mischo, Axel; Strahl, Sabine; Nishikawa, Hiroyoshi; Held, Gerhard; Neumann, Frank; Wullner, Beate; Fischer, Eliane; Kleber, Sascha; Karbach, Julia; Jager, Elke; Shiku, Hiroshi; Odunsi, Kunle; Shrikant, Protul A; Knuth, Alexander; Cerundolo, Vincenzo; Renner, Christoph

    2010-11-01

    Vaccine strategies that target dendritic cells to elicit potent cellular immunity are the subject of intense research. Here we report that the genetically engineered yeast Saccharomyces cerevisiae, expressing the full-length tumour-associated antigen NY-ESO-1, is a versatile host for protein production. Exposing dendritic cells (DCs) to soluble NY-ESO-1 protein linked to the yeast a-agglutinin 2 protein (Aga2p) protein resulted in protein uptake, processing and MHC class I cross-presentation of NY-ESO-1-derived peptides. The process of antigen uptake and cross-presentation was dependent on the glycosylation pattern of NY-ESO-1-Aga2p protein and the presence of accessible mannose receptors. In addition, NY-ESO-1-Aga2p protein uptake by dendritic cells resulted in recognition by HLA-DP4 NY-ESO-1-specific CD4(+) T cells, indicating MHC class II presentation. Finally, vaccination of mice with yeast-derived NY-ESO-1-Aga2p protein led to an enhanced humoral and cellular immune response, when compared to the bacterially expressed NY-ESO-1 protein. Together, these data demonstrate that yeast-derived full-length NY-ESO-1-Aga2p protein is processed and presented efficiently by MHC class I and II complexes and warrants clinical trials to determine the potential value of S. cerevisiae as a host for cancer vaccine development.

  2. The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen

    PubMed Central

    Canal, Clinton E.; Olaghere da Silva, Uade B.; Gresch, Paul J.; Watt, Erin E.; Sanders-Bush, Elaine

    2010-01-01

    Rationale Hallucinogenic serotonin 2A (5-HT2A) receptor partial agonists, such as (±)-1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane hydrochloride (DOI), induce a frontal cortex-dependent head-twitch response (HTR) in rodents, a behavioral proxy of a hallucinogenic response that is blocked by 5-HT2A receptor antagonists. In addition to 5-HT2A receptors, DOI and most other serotonin-like hallucinogens have high affinity and potency as partial agonists at 5-HT2C receptors. Objectives We tested for involvement of 5-HT2C receptors in the HTR induced by DOI. Results Comparison of 5-HT2C receptor knockout and wild-type littermates revealed an approximately 50% reduction in DOI-induced HTR in knockout mice. Also, pretreatment with either the 5-HT2C receptor antagonist SB206553 or SB242084 eradicated a twofold difference in DOI-induced HTR between the standard inbred mouse strains C57BL/6J and DBA/2J, and decreased the DOI-induced HTR by at least 50% in both strains. None of several measures of 5-HT2A receptors in frontal cortex explained the strain difference, including 5-HT2A receptor density, Gαq or Gαi/o protein levels, phospholipase C activity, or DOI-induced expression of Egr1 and Egr2. 5-HT2C receptor density in the brains of C57BL/6J and DBA/2J was also equivalent, suggesting that 5-HT2C receptor-mediated intracellular signaling or other physiological modulators of the HTR may explain the strain difference in response to DOI. Conclusions We conclude that the HTR to DOI in mice is strongly modulated by 5-HT2C receptor activity. This novel finding invites reassessment of hallucinogenic mechanisms involving 5-HT2 receptors. PMID:20165943

  3. Contrasting effects of an aminobisphosphonate, a potent inhibitor of bone resorption, on lipopolysaccharide-induced production of interleukin-1 and tumour necrosis factor α in mice

    PubMed Central

    Sugawara, Shunji; Shibazaki, Masahiko; Takada, Haruhiko; Kosugi, Hiroshi; Endo, Yasuo

    1998-01-01

    Aminobisphosphonates (aminoBPs), potent inhibitors of bone resorption, have been reported to induce inflammatory reactions such as fever and an increase in acute phase proteins in human patients, and to induce the histamine-forming enzyme, histidine decarboxylase, in mice. In the present study, we examined the effect of aminoBP, 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid (AHBuBP), on the production of the pro-inflammatory cytokines, IL-1 and TNFα, in mice.Intraperitoneal injection of AHBuBP did not itself produce detectable levels of IL-1 (α and β) and TNFα in the serum. However, the elevation of serum IL-1 induced by lipopolysaccharide (LPS) was greatly augmented in mice injected with AHBuBP 3 days before the LPS injection, whereas the LPS-induced elevation of serum TNFα was almost completely abolished.Spleen and bone marrow cells taken from mice injected with AHBuBP produced IL-1β in vitro spontaneously, and the production was augmented following the addition of LPS. Cells that accumulated in the peritoneal cavity in response to AHBuBP produced a particularly large amount of IL-1β. However, AHBuBP treatment of mice did not lead to an impairment of the in vitro production of TNFα by these three types of cells.Liposomes encapsulating dichloromethylene bisphosphonate (a non-amino BP) selectively deplete phagocytic macrophages. When an intraperitoneal injection of these liposomes was given 2 days after an injection of AHBuBP, there was a marked decrease in the LPS-induced elevation of serum IL-1 (α and β) (LPS being injected 3 days after the injection of AHBuBP).These results indicate that AHBuBP has contrasting effects on the in vivo LPS-induced production of IL-1 and TNFα in mice, enhancing the production of IL-1 by phagocytic macrophages and suppressing the production of TNFα, although underling mechanisms remain to be clarified. PMID:9831909

  4. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    PubMed

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-01

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production. PMID:24365491

  5. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    PubMed

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-01

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production.

  6. Involvement of the TNF-α/TGF-β/IDO axis in IVIg-induced immune tolerance.

    PubMed

    Loubaki, Lionel; Chabot, Dominique; Bazin, Renée

    2015-02-01

    The immune tolerance induced by IVIg treatment is generally attributed to its capacity to modulate the functions of antigen presenting cells and to induce the expansion of regulatory T cells by mechanisms that are not well-defined. Herein, we investigated the contribution of the TNF-α/TGF-β/IDO axis to IVIg-induced immune tolerance. We show that high dose IVIg is able to markedly increase the expression (>3 fold) of the well-known tolerogenic cytokine TGF-β in monocytes. In addition, the expression of TNF-α, a pleiotropic cytokine that controls TGF-β-induced tolerogenic effects, as well as of its cognate receptors (TNF-R1 and TNF-R2) is also significantly increased following IVIg treatment. Along with TNF-α, the expression of the enzyme and signaling protein IDO, known to mediate TGF-β dependant tolerogenic effect, is similarly increased following IVIg treatment. We thus propose that the complex interplay between plasticity of immune cells and environmental modifications in which the TNF-α/TGF-β/IDO axis may represent a new mechanism contributing to the development of tolerance in IVIg-treated patients.

  7. Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure.

    PubMed

    Li, Xuan; Yin, Daqiang; Yin, Jiaoyang; Chen, Qiqing; Wang, Rui

    2014-10-01

    The antagonism between selenium (Se) and mercury (Hg) has been widely recognized, however, the protective role of Se against methylmercury (MeHg) induced immunotoxicity and the underlying mechanism is still unclear. In the current study, MeHg exposure (0.01 mM via drinking water) significantly inhibited the lymphoproliferation and NK cells functions of the female Balb/c mice, while dietary Se supplementation (as Se-rich yeast) partly or fully recovered the observed immunotoxicity, indicating the protective role of Se against MeHg-induced immune suppression in mice. Besides, MeHg exposure promoted the generation of the reactive oxygen species (ROS), reduced the levels of nonenzymic and enzymic antioxidants in target organs, while dietary Se administration significantly diminished the MeHg-induced oxidative stress and subsequent cellular dysfunctions (lipid peroxidation and protein oxidation). Two possible mechanisms of Se's protective effects were further revealed. Firstly, the reduction of mercury concentrations (less than 25%, modulated by Se supplementation) in the target organs might contribute, but not fully explain the alleviated immune suppression. Secondly and more importantly, Se could help to maintain/or elevate the activities of several key antioxidants, therefore protect the immune cells against MeHg-induced oxidative damage.

  8. Optimization of a Fragment-Based Screening Hit toward Potent DOT1L Inhibitors Interacting in an Induced Binding Pocket.

    PubMed

    Scheufler, Clemens; Möbitz, Henrik; Gaul, Christoph; Ragot, Christian; Be, Céline; Fernández, César; Beyer, Kim S; Tiedt, Ralph; Stauffer, Frédéric

    2016-08-11

    Mixed lineage leukemia (MLL) gene rearrangement induces leukemic transformation by ectopic recruitment of disruptor of telomeric silencing 1-like protein (DOT1L), a lysine histone methyltransferase, leading to local hypermethylation of H3K79 and misexpression of genes (including HoxA), which drive the leukemic phenotype. A weak fragment-based screening hit identified by SPR was cocrystallized with DOT1L and optimized using structure-based ligand optimization to yield compound 8 (IC50 = 14 nM). This series of inhibitors is structurally not related to cofactor SAM and is not interacting within the SAM binding pocket but induces a pocket adjacent to the SAM binding site.

  9. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    PubMed

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination.

  10. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    PubMed

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  11. In Vivo Delivery of Antigens by Adenovirus Dodecahedron Induces Cellular and Humoral Immune Responses to Elicit Antitumor Immunity

    PubMed Central

    Villegas-Mendez, Ana; Garin, Marina I; Pineda-Molina, Estela; Veratti, Eugenia; Bueren, Juan A; Fender, Pascal; Lenormand, Jean-Luc

    2010-01-01

    Cancer vaccines based on virus-like particles (VLPs) vectors may offer many advantages over other antigen-delivery systems and represent an alternative to the ex vivo cell therapy approach. In this study, we describe the use of penton-dodecahedron (Pt-Dd) VLPs from human adenovirus type 3 (Ad3) as cancer vaccine vehicle for specific antigens, based on its unique cellular internalization properties. WW domains from the ubiquitin ligase Nedd4 serve as an adapter to bind the antigen to Pt-Dd. By engineering fusion partners of WW with the model antigen ovalbumin (OVA), Pt-Dd can efficiently deliver WW-OVA in vitro and the Pt-Dd/WW complex can be readily internalized by dendritic cells (DCs). Immunization with WW-OVA/Pt-Dd results in 90% protection against B16-OVA melanoma implantation in syngeneic mice. This high level of protection correlates with the development of OVA-specific CD8+ T cells. Moreover, vaccination with WW-OVA Pt-Dd induces robust humoral responses in mice as shown by the high levels of anti-OVA antibodies (Abs) detected in serum. Importantly, treatment of mice bearing B16-OVA tumors with WW-OVA/Pt-Dd results in complete tumor regression in 100% of cases. Thus, our data supports a dual role of Pt-Dd as antigen-delivery vector and natural adjuvant, able to generate integrated cellular and humoral responses of broad immunogenic complexity to elicit specific antitumor immunity. Antigen delivery by Pt-Dd vector is a promising novel strategy for development of cancer vaccines with important clinical applications. PMID:20179681

  12. Identification of immune inducible genes from the velvet worm Epiperipatus biolleyi (Onychophora).

    PubMed

    Altincicek, Boran; Vilcinskas, Andreas

    2008-01-01

    Onychophora are the next relatives of Arthropoda and, hence, represent an important taxon to unravel relationships among Insecta, Crustacea, Arachnida, and Myriapoda. Here, we screened for immune inducible genes from the onychophoran Epiperipatus biolleyi (Peripatidae) by injecting crude bacterial LPS and applying the suppression subtractive hybridization technique. Our analysis of 288 cDNAs resulted in identification of 36 novel genes in E. biolleyi whose potential homologues from other animals are known to mediate immune-related signaling (e.g. mitogen-activated protein kinase kinase 1 and immunoglobulin enhancer binding protein), to be involved in cellular processes (e.g. perilipin and myosin light chain), or to act as immune effector molecules (e.g. lysosomal beta-galactosidase, a putative antimicrobial peptide and a potential thiolester containing protein). Comparisons with homologous genes from other animals including the two most favored ecdysozoan model organisms of innate immunity research, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, provide further insights into the origin and evolution of Arthropoda immunity. PMID:18598713

  13. Intrahepatic DNA vaccination: unexpected increased resistance against murine cysticercosis induced by non-specific enhanced immunity.

    PubMed

    Cruz-Revilla, C; Sonabend, A M; Rosas, G; Toledo, A; Meneses, G; Lopez-Casillas, F; Hernández, B; Fragoso, G; Sciutto, E

    2006-06-01

    Experimental murine cysticercosis caused by Taenia crassiceps has proved to be a useful model with which to test the efficacy of new vaccine candidates and delivery systems against pig cysticercosis. A high level of protection against murine cysticercosis was previously observed by intramuscular or intradermal DNA immunization with the use of the sequence of the recombinant KETc7 antigen cloned in pcDNA3 (pTc-sp7). To determine the effect of KETc7 differential expression in DNA vaccination, KETc7 was cloned in pGEM 11Zf(+) under the control of the tissue-specific regulatory promoter phosphoenolpyruvate carboxykinase (pPc-sp7). A high level of protection was induced by intrahepatic immunization with pPc-sp7, pTc-sp7 and the empty vector in the absence of any specific immunity. The empty vector pGEM 11Zf(+), the plasmid with the highest content of CpG sequences, provided to the most efficient protection. This protection was related to an increased number of splenocytes, enhanced nonspecific splenocyte proliferation, and intensified intrahepatic INF-gamma production. Overall, intrahepatic plasmid CpG-DNA immunization provokes an exacerbated nonspecific immune response that can effectively control Taenia crassiceps cysticercosis.

  14. Identification of immune inducible genes from the velvet worm Epiperipatus biolleyi (Onychophora).

    PubMed

    Altincicek, Boran; Vilcinskas, Andreas

    2008-01-01

    Onychophora are the next relatives of Arthropoda and, hence, represent an important taxon to unravel relationships among Insecta, Crustacea, Arachnida, and Myriapoda. Here, we screened for immune inducible genes from the onychophoran Epiperipatus biolleyi (Peripatidae) by injecting crude bacterial LPS and applying the suppression subtractive hybridization technique. Our analysis of 288 cDNAs resulted in identification of 36 novel genes in E. biolleyi whose potential homologues from other animals are known to mediate immune-related signaling (e.g. mitogen-activated protein kinase kinase 1 and immunoglobulin enhancer binding protein), to be involved in cellular processes (e.g. perilipin and myosin light chain), or to act as immune effector molecules (e.g. lysosomal beta-galactosidase, a putative antimicrobial peptide and a potential thiolester containing protein). Comparisons with homologous genes from other animals including the two most favored ecdysozoan model organisms of innate immunity research, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, provide further insights into the origin and evolution of Arthropoda immunity.

  15. Circulating and localized immune complexes in experimental mycoplasma-induced arthritis-associated ocular inflammation.

    PubMed Central

    Thirkill, C E; Tyler, N K; Roth, A M

    1992-01-01

    Ocular deposits of immune complexes are believed to contribute to the anterior segment inflammations observed in association with the human arthritides. Arthritis-related ocular inflammations may be reproduced in animals by infection with certain species of mycoplasma. To evaluate the role of immune complexes in the production of ocular lesions, we studied their involvement in the rodent model of experimental arthritis-associated ocular inflammation induced by Mycoplasma arthritidis. Sprague-Dawley rats were infected with viable concentrates of M. arthritidis and monitored for the production of related circulating and intraocular immune complexes. Circulating immune complexes were monitored by antigen capture systems, and localized intraocular complexes were identified by indirect immunohistochemistry. Polyacrylamide gel immunoblot analysis of captured complexes confirmed the antigen(s) involved as proteins derived from M. arthritidis. Indirect immunofluorescence revealed localized complexes containing mycoplasma antigens within the ciliary-iris vasculature. Concentrations of the generated complexes diminished rapidly over a 30-day period. While complex deposits within ocular tissues could represent a contributing cause to the localized anterior segment inflammation reported in this rodent model, secondary challenge with viable M. arthritidis, which reproduced high concentrations of intraocular and circulating immune complexes, failed to elicit any ocular response. Images PMID:1730469

  16. Efficient Qualitative and Quantitative Determination of Antigen-induced Immune Responses*

    PubMed Central

    2016-01-01

    To determine the effectiveness of immunization strategies used in therapeutic antibody or vaccine development, it is critical to assess the quality of immunization-induced polyclonal antibody responses. Here, we developed a workflow that uses sensitive methods to quantitatively and qualitatively assess immune responses against foreign antigens with regard to antibody binding affinity and epitope diversity. The application of such detailed assessments throughout an immunization campaign can significantly reduce the resources required to generate highly specific antibodies. Our workflow consists of the following two steps: 1) the use of surface plasmon resonance to quantify antigen-specific antibodies and evaluate their apparent binding affinities, and 2) the recovery of serum IgGs using an automated small scale purification system, followed by the determination of their epitope diversity using hydrogen deuterium exchange coupled with mass spectrometry. We showed that these methods were sensitive enough to detect antigen-specific IgGs in the nanogram/μl range and that they provided information for differentiating the antibody responses of the various immunized animals that could not be obtained by conventional methods. We also showed that this workflow can guide the selection of an animal that produces high affinity antibodies with a desired epitope coverage profile, resulting in the generation of potential therapeutic monoclonal antibody clones with desirable functional profiles. We postulate that this workflow will be an important tool in the development of effective vaccines to combat the highly sophisticated evasion mechanisms of pathogens. PMID:27288409

  17. Basophils help establish protective immunity induced by irradiated larval vaccination for filariasis.

    PubMed

    Torrero, Marina N; Morris, C Paul; Mitre, Blima K; Hübner, Marc P; Fox, Ellen M; Karasuyama, Hajime; Mitre, Edward

    2013-08-12

    Basophils are increasingly recognized as playing important roles in the immune response toward helminths. In this study, we evaluated the role of basophils in vaccine-mediated protection against filariae, tissue-invasive parasitic nematodes responsible for diseases such as elephantiasis and river blindness. Protective immunity and immunological responses were assessed in BALB/c mice vaccinated with irradiated L3 stage larvae and depleted of basophils with weekly injections of anti-CD200R3 antibody. Depletion of basophils after administration of the vaccination regimen but before challenge infection did not alter protective immunity. In contrast, basophil depletion initiated prior to vaccination and continued after challenge infection significantly attenuated the protective effect conferred by vaccination. Vaccine-induced cellular immune responses to parasite antigen were substantially decreased in basophil-depleted mice, with significant decreases in CD4(+) T-cell production of IL-4, IL-5, IL-10, and IFN-γ. Interestingly, skin mast cell numbers, which increased significantly after vaccination with irradiated L3 larvae, were unchanged after vaccination in basophil-depleted mice. These findings demonstrate that basophils help establish the immune responses responsible for irradiated L3 vaccine protection.

  18. Tim-3 induces Th2-biased immunity and alternative macrophage activation during Schistosoma japonicum infection.

    PubMed

    Hou, Nan; Piao, Xianyu; Liu, Shuai; Wu, Chuang; Chen, Qijun

    2015-08-01

    T cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) has been regarded as an important regulatory factor in both adaptive and innate immunity. Recently, Tim-3 was reported to be involved in Th2-biased immune responses in mice infected with Schistosoma japonicum, but the exact mechanism behind the involvement of Tim-3 remains unknown. The present study aims to understand the role of Tim-3 in the immune response against S. japonicum infection. Tim-3 expression was determined by flow cytometry, and increased Tim-3 expression was observed on CD4(+) and CD8(+) T cells, NK1.1(+) cells, and CD11b(+) cells from the livers of S. japonicum-infected mice. However, the increased level of Tim-3 was lower in the spleen than in the liver, and no increase in Tim-3 expression was observed on splenic CD8(+) T cells or CD11b(+) cells. The schistosome-induced upregulation of Tim-3 on natural killer (NK) cells was accompanied by reduced NK cell numbers in vitro and in vivo. Tim-3 antibody blockade led to upregulation of inducible nitric oxide synthase and interleukin-12 (IL-12) mRNA in CD11b(+) cells cocultured with soluble egg antigen and downregulation of Arg1 and IL-10, which are markers of M2 macrophages. In summary, we observed schistosome-induced expression of Tim-3 on critical immune cell populations, which may be involved in the Th2-biased immune response and alternative activation of macrophages during infection.

  19. Immune System Modifications Induced in a Mouse Model of Chronic Exposure to (90)Sr.

    PubMed

    Synhaeve, Nicholas; Musilli, Stefania; Stefani, Johanna; Nicolas, Nour; Delissen, Olivia; Dublineau, Isabelle; Bertho, Jean-Marc

    2016-03-01

    Strontium 90 ((90)Sr) remains in the environment long after a major nuclear disaster occurs. As a result, populations living on contaminated land are potentially exposed to daily ingesting of low quantities of (90)Sr. The potential long-term health effects of such chronic contamination are unknown. In this study, we used a mouse model to evaluate the effects of (90)Sr ingestion on the immune system, the animals were chronically exposed to (90)Sr in drinking water at a concentration of 20 kBq/l, for a daily ingestion of 80-100 Bq/day. This resulted in a reduced number of CD19(+) B lymphocytes in the bone marrow and spleen in steady-state conditions. In contrast, the results from a vaccine experiment performed as a functional test of the immune system showed that in response to T-dependent antigens, there was a reduction in IgG specific to tetanus toxin (TT), a balanced Th1/Th2 response inducer antigen, but not to keyhole limpet hemocyanin (KLH), a strong Th2 response inducer antigen. This was accompanied by a reduction in Th1 cells in the spleen, consistent with the observed reduction in specific IgG concentration. The precise mechanisms by which (90)Sr acts on the immune system remain to be elucidated. However, our results suggest that (90)Sr ingestion may be responsible for some of the reported effects of internal contamination on the immune system in civilian populations exposed to the Chernobyl fallout.

  20. Influence of TLR-2 in the immune response in the infection induced by fungus Sporothrix schenckii.

    PubMed

    de C Negrini, Thais; Ferreira, Lucas S; Arthur, Rodrigo A; Alegranci, Pâmela; Placeres, Marisa C P; Spolidorio, Luis C; Carlos, Iracilda Z

    2014-01-01

    Toll-like receptors (TLRs) play an important role in immunity, since they bind to pathogen surface antigens and initiate the immune response. However, little is known about the role of TLR-2 in the recognition of S. schenckii and in the subsequent immune response. Therefore, the aim of this study was to evaluate the involvement of TLR-2 in the immune response induced by S. schenckii. C57BL/6 mice (WT) and C57BL/6 TLR-2 knockout (TLR-2-/-) were used to evaluate, over a period of 10 weeks of sporotrichotic infection, the influence of TLR-2 over macrophages production of IL-1β, IL-12 and TNF-α, their stimulation level by NO release and the production of IFN -γ, IL-6, IL-17 and TGF-β by spleen cells. The results showed that the production of pro-inflammatory mediators and NO, TLR-2 interference is striking, since its absence completely inhibited it. IL-17 production was independent of TLR-2. The absence of Th1 response in TLR2-/- animals was concomitant with IL-17 production. Therefore, it can be suggested that TLR-2 absence interferes with the course of the infection induced by the fungus S. schenckii.

  1. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    PubMed Central

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms. PMID:27054895

  2. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity.

    PubMed

    Hamilton, Jennifer R; Sachs, David; Lim, Jean K; Langlois, Ryan A; Palese, Peter; Heaton, Nicholas S

    2016-04-01

    A brief window of antigen-nonspecific protection has been observed after influenza A virus (IAV) infection. Although this temporary immunity has been assumed to be the result of residual nonspecific inflammation, this period of induced immunity has not been fully studied. Because IAV has long been characterized as a cytopathic virus (based on its ability to rapidly lyse most cell types in culture), it has been a forgone conclusion that directly infected cells could not be contributing to this effect. Using a Cre recombinase-expressing IAV, we have previously shown that club cells can survive direct viral infection. We show here not only that these cells can eliminate all traces of the virus and survive but also that they acquire a heightened antiviral response phenotype after surviving. Moreover, we experimentally demonstrate temporary nonspecific viral immunity after IAV infection and show that surviving cells are required for this phenotype. This work characterizes a virally induced modulation of the innate immune response that may represent a new mechanism to prevent viral diseases.

  3. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    PubMed

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms.

  4. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine.

    PubMed

    Kim, Kwang Soon; Hong, Sung-Wook; Han, Daehee; Yi, Jaeu; Jung, Jisun; Yang, Bo-Gie; Lee, Jun Young; Lee, Minji; Surh, Charles D

    2016-02-19

    Dietary antigens are normally rendered nonimmunogenic through a poorly understood "oral tolerance" mechanism that involves immunosuppressive regulatory T (Treg) cells, especially Treg cells induced from conventional T cells in the periphery (pTreg cells). Although orally introducing nominal protein antigens is known to induce such pTreg cells, whether a typical diet induces a population of pTreg cells under normal conditions thus far has been unknown. By using germ-free mice raised and bred on an elemental diet devoid of dietary antigens, we demonstrated that under normal conditions, the vast majority of the small intestinal pTreg cells are induced by dietary antigens from solid foods. Moreover, these pTreg cells have a limited life span, are distinguishable from microbiota-induced pTreg cells, and repress underlying strong immunity to ingested protein antigens.

  5. Intracerebral Mycobacterium bovis bacilli Calmette-Guerin infection-induced immune responses in the CNS 1

    PubMed Central

    Lee, JangEun; Ling, Changying; Kosmalski, Michelle M.; Hulseberg, Paul; Schreiber, Heidi A.; Sandor, Matyas; Fabry, Zsuzsanna

    2010-01-01

    To study whether cerebral mycobacterial infection induces granuloma and protective immunity similar to systemic infection, we intracerebrally infected mice with Mycobacterium bovis bacilli Calmette-Guerin. Granuloma and IFN-γ+CD4+ T cell responses are induced in the central nervous system (CNS) similar to periphery, but the presence of IFN-γIL-17 double-positive CD4+ T cells is unique to the CNS. The major CNS source of TNF-α is microglia, with modest production by CD4+ T cells and macrophage. Protective immunity is accompanied by accumulation of Foxp3+CD4+ T cells and PD-L2+ dendritic cells, suggesting that both inflammatory and anti-inflammatory responses develop in the CNS following mycobacterial infection. PMID:19535154

  6. Effect of prostacyclin (PGI2) on immune-complex-induced neutropenia.

    PubMed Central

    Camussi, G; Bussolino, F; Tetta, C; Caligaris Cappio, F; Coda, R; Macchiorlatti, E; Alberton, M; Roffinello, C; Segoloni, G

    1983-01-01

    This study reports the results of in vitro and in vivo investigations on the effect of prostacyclin (PGI2) on polymorphonuclear neutrophils (PMN) challenged with immune complexes (IC). In vitro, PGI2 does not affect the interaction of IC with PMN membrane receptors, but prevents the ensuing PMN aggregation and secretion of platelet-activating factor, a lipid mediator responsible for immune-induced PMN aggregation. In vivo, the infusion of PGI2 in New Zealand white rabbits injected with IC prevents IC-induced neutropenia and thrombocytopenia as well as the embolization of PMN into the pulmonary peripheral capillary network. These results suggest a physiological role for PGI2 in modulating the interaction between IC and PMN. Images Figure 1 Figure 3 PMID:6339375

  7. Nonimmunogenic radiation-induced lymphoma: immunity induction by a somatic cell hybrid

    SciTech Connect

    Yefenof, E.; Goldapfel, M.; Ber, R.

    1982-05-01

    The cell line designated PIR-2 is a nonimmunogenic X-ray-induced thymoma of C57BL/6 origin that is unable to induce antitumor immunity in syngeneic lymphocytes in vitro and in mice in vivo. Fusion of PIR-2 with an allogeneic universal fuser A9HT (clone 3c) resulted in the establishment of a somatic cell hybrid designated A9/PIR. C57BL/6 lymphocytes sensitized in vitro with A9/PIR could lyse parental PIR-2 cells, as well as other syngeneic tumors. However, immunization of mice with the hybrid significantly enhanced PIR-2 tumor takes while it partially protected the animals against a challenge with unrelated syngeneic tumors. The results imply that somatic cell hybridization can increase the immunogenicity of an otherwise nonimmunogenic tumor. However, in view of the enhancing effects of hybrid preimmunization on parental tumor cell growth, the possible application of this approach for immunotherapy is questionable.

  8. Cholera toxin, a potent inducer of epidermal hyperplasia but with no tumor promoting activity in mouse skin carcinogenesis

    SciTech Connect

    Kuroki, T.; Chida, K.; Munakata, K.; Murakami, Y.

    1986-05-29

    Intracutaneous injection of cholera toxin into mice induced epidermal hyperplasia to a greater extent than 12-O-tetra-decanoylphorbol-13-acetate. It also induced adenylate cyclase and through weakly, ornithine decarboxylase of the epidermis. Cholera toxin, however, showed no tumor promoting activity in mouse skin carcinogenesis. In the single stage promotion, cholera toxin (50 ng) was injected once a week for 10 weeks into the skin of SENCAR mice initiated with 25 ..mu..g 7,12-dimethyl-benz(a)anthracene, but no tumors developed. In the two-stage promotion test, cholera toxin (10-100 ng) was injected for one or two weeks into the initiated skin and then mezerein (4 ..mu..g) was applied twice a week for 18 weeks, but the toxin did not increase incidence or numbers of papillomas.

  9. Equipotent generation of protective antitumor immunity by various methods of dendritic cell loading with whole cell tumor antigens.

    PubMed

    Lambert, L A; Gibson, G R; Maloney, M; Barth, R J

    2001-01-01

    Multiple clinically applicable methods have been used to induce dendritic cells (DCs) to express whole cell tumor antigens, including pulsing DCs with tumor lysate, and mixing DCs with apoptotic or live tumor cells. Herein we demonstrate, using two different tumor systems, that these methods are equipotent inducers of systemic antitumor immunity. Furthermore, tumor lysate pulsed DC vaccines generate more potent antitumor immunity than immunization with irradiated tumor cells plus the classic adjuvant, Corynebacterium parvum. PMID:11394500

  10. Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers.

    PubMed

    Ubillos, Luis; Freire, Teresa; Berriel, Edgardo; Chiribao, María Laura; Chiale, Carolina; Festari, María Florencia; Medeiros, Andrea; Mazal, Daniel; Rondán, Mariella; Bollati-Fogolín, Mariela; Rabinovich, Gabriel A; Robello, Carlos; Osinaga, Eduardo

    2016-04-01

    Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, has anticancer effects mediated, at least in part, by parasite-derived products which inhibit growth of tumor cells. We investigated whether immunity to T. cruzi antigens could induce antitumor activity, using two rat models which reproduce human carcinogenesis: colon cancer induced by 1,2-dimethylhydrazine (DMH), and mammary cancer induced by N-nitroso-N-methylurea (NMU). We found that vaccination with T. cruzi epimastigote lysates strongly inhibits tumor development in both animal models. Rats immunized with T. cruzi antigens induce activation of both CD4(+) and CD8(+) T cells and splenocytes from these animals showed higher cytotoxic responses against tumors as compared to rats receiving adjuvant alone. Tumor-associated immune responses included increasing number of CD11b/c(+) His48(-) MHC II(+) cells corresponding to macrophages and/or dendritic cells, which exhibited augmented NADPH-oxidase activity. We also found that T. cruzi lysate vaccination developed antibodies specific for colon and mammary rat cancer cells, which were capable of mediating antibody-dependent cellular cytotoxicity (ADCC) in vitro. Anti-T. cruzi antibodies cross-reacted with human colon and breast cancer cell lines and recognized 41/60 (68%) colon cancer and 38/63 (60%) breast cancer samples in a series of 123 human tumors. Our results suggest that T. cruzi antigens can evoke an integrated antitumor response involving both the cellular and humoral components of the immune response and provide novel insights into the understanding of the intricate relationship between parasite infection and tumor growth.

  11. Intravaginal HPV DNA vaccination with electroporation induces local CD8+ T-cell immune responses and antitumor effects against cervicovaginal tumors.

    PubMed

    Sun, Y; Peng, S; Qiu, J; Miao, J; Yang, B; Jeang, J; Hung, C-F; Wu, T-C

    2015-07-01

    Therapeutic human papillomavirus (HPV) vaccines have the potential to inhibit the progression of an established HPV infection to precancer and cancer lesions by targeting HPV oncoproteins. We have previously developed a therapeutic DNA vaccine encoding calreticulin (CRT) linked to E7, CRT/E7 DNA vaccine, for use in the treatment of HPV-associated lesions. Since the transfection efficiency of DNA vaccines administered in vivo is typically low, we examined the use of electroporation as well as different routes of administration to enhance antigen-specific tumor control. We tested the effects of the CRT/E7 DNA vaccine administered intramuscularly or intravaginally, with or without electroporation, on the generation of CD8+ T-cell immunity and therapeutic antitumor effects in HPV16 E7-expressing cervicovaginal tumor-bearing mice. We found that intravaginal vaccination of CRT/E7 DNA followed by electroporation-induced potent E7-specific CD8(+) T-cell responses in the cervicovaginal tract, compared with intramuscular injection followed by electroporation. Furthermore, tumor-bearing mice vaccinated intravaginally followed by electroporation had an enhanced survival, antitumor effects and local production of IFN-γ+CD8+ T cells compared with those vaccinated intramuscularly with electroporation. Thus, we show that intravaginal CRT/E7 DNA vaccination followed by electroporation generates the most potent therapeutic antitumor effects against an orthotopic E7-expressing tumor model. The current study will have significant clinical implications once a clinically applicable electroporation device for intravaginal use becomes available.

  12. An immune pathological and ultrastructural skin analysis for rhododenol-induced leukoderma patients.

    PubMed

    Tanemura, Atsushi; Yang, Lingli; Yang, Fei; Nagata, Yuiko; Wataya-Kaneda, Mari; Fukai, Kazuyoshi; Tsuruta, Daisuke; Ohe, Rintaro; Yamakawa, Mitsunori; Suzuki, Tamio; Katayama, Ichiro

    2015-03-01

    As reported in the mass media on July 2013, numerous consumers who had used the cosmetic ingredient containing rhododendrol (4-(4-hydroxyphenyl)-2-butanol, Trade name; rhododenol), which is a melanin inhibitor isolated from Acer nikoense Maxim, released from Kanebo Cosmetics Inc. (Tokyo, Japan) noticed leukoderma patches on their face, neck and hands. We have experienced 32 cases that developed leukoderma after using such cosmetics so far and skin biopsy samples in some cases were obtained from both leukoderma and pigmented lesions. A histopathological analysis for skin lesions obtained from such patients notably showed basal hypo-pigmentation, melanin incontinence, and remaining melanocytes in most patients which is not relevant in vitiligo vulgaris. Subsequently, we comprehensively carried out immunohistochemical analyses of immune-competent cells infiltration to assess the effect of the cellular immune response to inducible hypopigmentation. Furthermore, detailed morphological observations performed by electron-microscopy notably showed the presence of melanocytes with only a small number of melanosomes, dermal fibroblasts containing melanosome globules and melanophages whereas no damage associated with melanosome transfer and the basal layer apparatus. These findings provide a cue to diagnose as rhododenol-induced leukoderma differentiate from vitiligo vulgaris and for rhododendrol to induce local immunity in addition to melanocyte damage.

  13. Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells

    PubMed Central

    Tomić, Sergej; Kokol, Vanja; Mihajlović, Dušan; Mirčić, Aleksandar; Čolić, Miodrag

    2016-01-01

    Cellulose nanofibrills (CNFs) are attractive biocompatible, natural nanomaterials for wide biomedical applications. However, the immunological mechanisms of CNFs have been poorly investigated. Considering that dendritic cells (DCs) are the key immune regulatory cells in response to nanomaterials, our aim was to investigate the immunological mechanisms of CNFs in a model of DC-mediated immune response. We found that non-toxic concentrations of CNFs impaired the differentiation, and subsequent maturation of human monocyte-derived (mo)-DCs. In a co-culture with CD4+T cells, CNF-treated mo-DCs possessed a weaker allostimulatory and T helper (Th)1 and Th17 polarizing capacity, but a stronger capacity to induce Th2 cells and CD4+CD25hiFoxP3hi regulatory T cells. This correlated with an increased immunoglobulin-like transcript-4 and indolamine dioxygenase-1 expression by CNF-treated mo-DCs, following the partial internalization of CNFs and the accumulation of CD209 and actin bundles at the place of contacts with CNFs. Cumulatively, we showed that CNFs are able to induce an active immune tolerance by inducing tolerogenic DCs, which could be beneficial for the application of CNFs in wound healing and chronic inflammation therapies. PMID:27558765

  14. Toxoplasma gondii GRA7-Induced TRAF6 Activation Contributes to Host Protective Immunity

    PubMed Central

    Yuk, Jae-Min; Lee, Young-Ha; Jo, Eun-Kyeong

    2015-01-01

    The intracellular parasite Toxoplasma gondii has unique dense granule antigens (GRAs) that are crucial for host infection. Emerging evidence suggests that GRA7 of T. gondii is a promising serodiagnostic marker and an effective toxoplasmosis vaccine candidate; however, little is known about the intracellular regulatory mechanisms involved in the GRA7-induced host responses. Here we show that GRA7-induced MyD88 signaling through the activation of TRAF6 and production of reactive oxygen species (ROS) is required for the induction of NF-κB-mediated proinflammatory responses by macrophages. GRA7 stimulation resulted in the rapid activation of mitogen-activated protein kinases and an early burst of ROS in macrophages in a MyD88-dependent manner. GRA7 induced a physical association between GRA7 and TRAF6 via MyD88. Remarkably, the C terminus of GRA7 (GRA7-V) was sufficient for interaction with and ubiquitination of the RING domain of TRAF6, which is capable of inflammatory cytokine production. Interestingly, the generation of ROS and TRAF6 activation are mutually dependent on GRA7/MyD88-mediated signaling in macrophages. Furthermore, mice immunized with GRA7-V showed markedly increased Th1 immune responses and protective efficacy against T. gondii infection. Collectively, these results provide novel insight into the crucial role of GRA7-TRAF6 signaling in innate immune responses. PMID:26553469

  15. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344.

    PubMed

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A; Melotto, Maeli

    2013-04-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity, an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 compared with SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis, resulting in low bacterial titers in the plant apoplast and suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies.

  16. Maize prolamins could induce a gluten-like cellular immune response in some celiac disease patients.

    PubMed

    Ortiz-Sánchez, Juan P; Cabrera-Chávez, Francisco; de la Barca, Ana M Calderón

    2013-10-21

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet.

  17. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    PubMed Central

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  18. Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells

    NASA Astrophysics Data System (ADS)

    Tomić, Sergej; Kokol, Vanja; Mihajlović, Dušan; Mirčić, Aleksandar; Čolić, Miodrag

    2016-08-01

    Cellulose nanofibrills (CNFs) are attractive biocompatible, natural nanomaterials for wide biomedical applications. However, the immunological mechanisms of CNFs have been poorly investigated. Considering that dendritic cells (DCs) are the key immune regulatory cells in response to nanomaterials, our aim was to investigate the immunological mechanisms of CNFs in a model of DC-mediated immune response. We found that non-toxic concentrations of CNFs impaired the differentiation, and subsequent maturation of human monocyte-derived (mo)-DCs. In a co-culture with CD4+T cells, CNF-treated mo-DCs possessed a weaker allostimulatory and T helper (Th)1 and Th17 polarizing capacity, but a stronger capacity to induce Th2 cells and CD4+CD25hiFoxP3hi regulatory T cells. This correlated with an increased immunoglobulin-like transcript-4 and indolamine dioxygenase-1 expression by CNF-treated mo-DCs, following the partial internalization of CNFs and the accumulation of CD209 and actin bundles at the place of contacts with CNFs. Cumulatively, we showed that CNFs are able to induce an active immune tolerance by inducing tolerogenic DCs, which could be beneficial for the application of CNFs in wound healing and chronic inflammation therapies.

  19. Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells.

    PubMed

    Tomić, Sergej; Kokol, Vanja; Mihajlović, Dušan; Mirčić, Aleksandar; Čolić, Miodrag

    2016-01-01

    Cellulose nanofibrills (CNFs) are attractive biocompatible, natural nanomaterials for wide biomedical applications. However, the immunological mechanisms of CNFs have been poorly investigated. Considering that dendritic cells (DCs) are the key immune regulatory cells in response to nanomaterials, our aim was to investigate the immunological mechanisms of CNFs in a model of DC-mediated immune response. We found that non-toxic concentrations of CNFs impaired the differentiation, and subsequent maturation of human monocyte-derived (mo)-DCs. In a co-culture with CD4(+)T cells, CNF-treated mo-DCs possessed a weaker allostimulatory and T helper (Th)1 and Th17 polarizing capacity, but a stronger capacity to induce Th2 cells and CD4(+)CD25(hi)FoxP3(hi) regulatory T cells. This correlated with an increased immunoglobulin-like transcript-4 and indolamine dioxygenase-1 expression by CNF-treated mo-DCs, following the partial internalization of CNFs and the accumulation of CD209 and actin bundles at the place of contacts with CNFs. Cumulatively, we showed that CNFs are able to induce an active immune tolerance by inducing tolerogenic DCs, which could be beneficial for the application of CNFs in wound healing and chronic inflammation therapies. PMID:27558765

  20. Basophils as a primary inducer of the T helper type 2 immunity in ovalbumin-induced allergic airway inflammation

    PubMed Central

    Zhong, Wenwei; Su, Wen; Zhang, Yanjie; Liu, Qi; Wu, Jinhong; Di, Caixia; Zhang, Zili; Xia, Zhenwei

    2014-01-01

    Antigen-induced allergic airway inflammation is mediated by T helper type 2 (Th2) cells and their cytokines, but the mechanism that initiates the Th2 immunity is not fully understood. Recent studies show that basophils play important roles in initiating Th2 immunity in some inflammatory models. Here we explored the role of basophils in ovalbumin (OVA) -induced airway allergic inflammation in BALB/c mice. We found that OVA sensitization and challenge resulted in a significant increase in the amount of basophils in blood and lung, along with the up-regulation of activation marker of CD200R. However, depletion of basophils with MAR-1 or Ba103 antibody attenuated airway inflammation, represented by the significantly decreased amount of the Th2 subset in spleen and draining lymph nodes, interlukin-4 level in lung and OVA-special immunoglobulin E (sIgE) levels in serum. On the other hand, adoptive transfer of basophils from OVA-challenged lung tissue to naive BALB/c mice provoked the Th2 immune response. In addition, pulmonary basophils from OVA-challenged mice were able to uptake DQ-OVA and express MHC class II molecules and CD40 in vivo, as well as to release interleukin-4 following stimulation by IgE–antigen complexes and promote Th2 polarization in vitro. These findings demonstrate that basophils may participate in Th2 immune responses in antigen-induced allergic airway inflammation and that they do so through facilitating antigen presentation and providing interleukin-4. PMID:24383680

  1. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    PubMed

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future. PMID:26478541

  2. Effect of Phlebodium Decumanum on the Immune Response Induced by Training in Sedentary University Students

    PubMed Central

    Gonzalez-Jurado, Jose A.; Pradas, Francisco; Molina, Edgardo S.; de Teresa, Carlos

    2011-01-01

    Exercise training is considered a good model to provoke different degrees of immune dysfunction affecting physical performance and some physiological responses related to oxidative stress and low grade inflammation. Phlebodium decumanum is a polypodiaceae may induce shown immunomodulating effects, specifically directed to the release of proinflammatory cytokines by macrophages in response to various stimuli, as reported different in vitro studies. The aim of this study was to evaluate the modulating effect of phlebodium decumanum, on the immune response induced by physical exercise. Thirty-one subjects (males only) were randomly divided into two groups: Group PD (n = 18); age: 22.1 ± 1.81, weight 74.21 ± 8.74 kg) that was treated with phlebodium decumanum; Group P (n = 13); age: 22.5 ± 1.63, weight 78 ± 12.5 kg) that was treated with a placebo. Before and after one month training program performed by both groups (three times a week), the following performance parameters and immune response variables were measured: Dynamic Maximum Force; Interval-Training; Tennis test; pro-inflammatory (TNF , IL6) and anti-inflammatory (TNFα-IIrs, IL1-ra) cytokines levels. Data were statistically analyzed with Mann- Whitney U test and Wilcoxon paired test (p < 0.05). Statistically significant differences were recorded within groups before and after the training program. PD group showed a significant improvement in the performance parameters (Strength Muscle Test: dorsal: p < 0.002; deltoids: p < 0.03; and pectorals: p < 0.07; Interval Training: p < 0.06; Tennis Test: p < 0.02). Cytokine levels resulted in a more positive profile in the PD group rather than in the P group, in which higher levels of IL-6 (p < 0.02) and a reduction of TNF-IIrs (p < 0.003) and IL1-ra (p < 0.03) were recorded. In this study the use of phlebodium decumanum demonstrated beneficial effects in the modulation of the immune response during physical performance. Key points Practicing sport or physical

  3. Are Basophils Important Mediators for Helminth-Induced Th2 Immune Responses? A Debate

    PubMed Central

    Leon-Cabrera, Sonia; Flisser, Ana

    2012-01-01

    Helminth parasites induce Th2 immune responses. Immunological mechanisms leading to Th2 induction are mainly dependent on IL-4. However, early source of IL-4 has not been precisely identified. Noticeably, basophils seem to be important mediators for inducing and maintaining the Th2 response probably because they secrete IL-4 and exert functions similar to APCs. Nevertheless, recent experimental evidence points that DCs could be also significant participants during this process. The involvement of basophils during memory responses is also discussed. PMID:22500083

  4. Immune response induced by conjunctival immunization with polymeric antigen BLSOmp31 using a thermoresponsive and mucoadhesive in situ gel as vaccine delivery system for prevention of ovine brucellosis.

    PubMed

    Díaz, Alejandra Graciela; Quinteros, Daniela Alejandra; Gutiérrez, Silvina Elena; Rivero, Mariana Alejandra; Palma, Santiago Daniel; Allemandi, Daniel Alberto; Pardo, Romina Paola; Zylberman, Vanesa; Goldbaum, Fernando Alberto; Estein, Silvia Marcela

    2016-10-01

    Control of ovine brucellosis with subcellular vaccines can solve some drawbacks associated with the use of Brucella melitensis Rev.1. Previous studies have demonstrated that the polymeric antigen BLSOmp31 administered by parenteral route was immunogenic and conferred significant protection against B. ovis in rams. Immunization with BLSOmp31 by conjunctival route could be efficient for the induction of mucosal and systemic immune responses. In this work, we evaluated the conjunctival immunization using a thermoresponsive and mucoadhesive in situ gel composed of Poloxamer 407 (P407) and chitosan (Ch) as vaccine delivery system for BLSOmp31 in rams. Serum samples, saliva, lacrimal, preputial and nasal secretions were analyzed to measure specific IgG and IgA antibodies. Cellular immune response was evaluated in vivo and in vitro. Immunization with BLSOmp31-P407-Ch induced high IgG antibody levels in serum and preputial secretions which remained at similar levels until the end of the experiment. Levels of IgG in saliva, lacrimal and nasal secretions were also higher compared to unvaccinated control group but decreased more rapidly. IgA antibodies were only detected in nasal and preputial secretions. BLSOmp31-P407-Ch stimulated a significant cellular immune response in vivo and in vitro. The induction of systemic and local immune responses indicates a promising potential of P407-Ch for the delivery of BLSOmp31 by conjunctival route.

  5. Immune response induced by conjunctival immunization with polymeric antigen BLSOmp31 using a thermoresponsive and mucoadhesive in situ gel as vaccine delivery system for prevention of ovine brucellosis.

    PubMed

    Díaz, Alejandra Graciela; Quinteros, Daniela Alejandra; Gutiérrez, Silvina Elena; Rivero, Mariana Alejandra; Palma, Santiago Daniel; Allemandi, Daniel Alberto; Pardo, Romina Paola; Zylberman, Vanesa; Goldbaum, Fernando Alberto; Estein, Silvia Marcela

    2016-10-01

    Control of ovine brucellosis with subcellular vaccines can solve some drawbacks associated with the use of Brucella melitensis Rev.1. Previous studies have demonstrated that the polymeric antigen BLSOmp31 administered by parenteral route was immunogenic and conferred significant protection against B. ovis in rams. Immunization with BLSOmp31 by conjunctival route could be efficient for the induction of mucosal and systemic immune responses. In this work, we evaluated the conjunctival immunization using a thermoresponsive and mucoadhesive in situ gel composed of Poloxamer 407 (P407) and chitosan (Ch) as vaccine delivery system for BLSOmp31 in rams. Serum samples, saliva, lacrimal, preputial and nasal secretions were analyzed to measure specific IgG and IgA antibodies. Cellular immune response was evaluated in vivo and in vitro. Immunization with BLSOmp31-P407-Ch induced high IgG antibody levels in serum and preputial secretions which remained at similar levels until the end of the experiment. Levels of IgG in saliva, lacrimal and nasal secretions were also higher compared to unvaccinated control group but decreased more rapidly. IgA antibodies were only detected in nasal and preputial secretions. BLSOmp31-P407-Ch stimulated a significant cellular immune response in vivo and in vitro. The induction of systemic and local immune responses indicates a promising potential of P407-Ch for the delivery of BLSOmp31 by conjunctival route. PMID:27496742

  6. Co-expression of Interleukin-15 Enhances the Protective Immune Responses Induced by Immunization with a Murine Malaria MVA-Based Vaccine Encoding the Circumsporozoite Protein.

    PubMed

    Parra, Marcela; Liu, Xia; Derrick, Steven C; Yang, Amy; Molina-Cruz, Alvaro; Barillas-Mury, Carolina; Zheng, Hong; Thao Pham, Phuong; Sedegah, Martha; Belmonte, Arnel; Litilit, Dianne D; Waldmann, Thomas A; Kumar, Sanjai; Morris, Sheldon L; Perera, Liyanage P

    2015-01-01

    Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)-based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies.

  7. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells

    PubMed Central

    Cohen, Evan N.; Gao, Hui; Anfossi, Simone; Mego, Michal; Reddy, Neelima G.; Debeb, Bisrat; Giordano, Antonio; Tin, Sanda; Wu, Qiong; Garza, Raul J.; Cristofanilli, Massimo; Mani, Sendurai A.; Croix, Denise A.; Ueno, Naoto T.; Woodward, Wendy A.; Luthra, Raja; Krishnamurthy, Savitri; Reuben, James M.

    2015-01-01

    Inflammatory breast cancer (IBC) is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT) in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1), a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction. PMID:26207636

  8. Ablative Tumor Radiation Can Change the Tumor Immune Cell Microenvironment to Induce Durable Complete Remissions

    PubMed Central

    Filatenkov, Alexander; Baker, Jeanette; Mueller, Antonia M.S.; Kenkel, Justin; Ahn, G-One; Dutt, Suparna; Zhang, Nigel; Kohrt, Holbrook; Jensen, Kent; Dejbakhsh-Jones, Sussan; Shizuru, Judith A.; Negrin, Robert N.; Engleman, Edgar G.; Strober, Samuel

    2015-01-01

    Purpose The goals of the study were to elucidate the immune mechanisms that contribute to desirable complete remissions of murine colon tumors treated with single radiation dose of 30 Gy. This dose is at the upper end of the ablative range used clinically to treat advanced or metastatic colorectal, liver, and non-small cell lung tumors. Experimental design Changes in the tumor immune microenvironment of single tumor nodules exposed to radiation were studied using 21 day (>1 cm in diameter) CT26 and MC38 colon tumors. These are well-characterized weakly immunogenic tumors. Results We found that the high dose radiation transformed the immunosuppressive tumor microenvironment resulting in an intense CD8+ T cell tumor infiltrate, and a loss of myeloid derived suppressor cells (MDSCs). The change was dependent on antigen cross-presenting CD8+ dendritic cells, secretion of IFN-γ, and CD4+ T cells expressing CD40L. Anti-tumor CD8+ T cells entered tumors shortly after radiotherapy, reversed MDSC infiltration, and mediated durable remissions in an IFN-γ dependent manner. Interestingly, extended fractionated radiation regimen did not result in robust CD8+ T cell infiltration. Conclusion For immunologically sensitive tumors, these results indicate that remissions induced by a short course of high dose radiation therapy depend on the development of anti-tumor immunity that is reflected by the nature and kinetics of changes induced in the tumor cell microenvironment. These results suggest that systematic examination of the tumor immune microenvironment may help in optimizing the radiation regimen used to treat tumors by adding a robust immune response. PMID:25869387

  9. Partially Protective Immunity Induced by a 20 kDa Protein Secreted by Trichinella spiralis Stichocytes

    PubMed Central

    Wang, Lei; Gu, Yuan; Zhan, Bin; Zhu, Xinping

    2015-01-01

    Background Trichinella spiralis infection induces protective immunity against re-infection in animal models. Identification of the antigens eliciting acquired immunity during infection is important for vaccine development against Trichinella infection and immunodiagnosis. Methods and Findings The T. spiralis adult cDNA library was immunoscreened with sera from pigs experimentally infected with 20,000 infective T. spiralis larvae. Total 43 positive clones encoding for 28 proteins were identified; one of the immunodominant proteins was 20 kDa Ts-ES-1 secreted by Trichinella stichocytes and existing in the excretory/secretory (ES) products of T. spiralis adult and muscle larval worms. Ts-ES-1 contains 172 amino acids with a typical signal peptide in the first 20 amino acids. The expression of Ts-ES-1 was detected in both the adult and muscle larval stages at the mRNA and protein expression levels. Mice immunized with recombinant Ts-ES-1 (rTs-ES-1) formulated with ISA50v2 adjuvant exhibited a significant worm reduction in both the adult worm (27%) and muscle larvae burden (42.1%) after a challenge with T. spiralis compared to the adjuvant control group (p<0.01). The rTs-ES-1-induced protection was associated with a high level of specific anti-Ts-ES-1 IgG antibodies and a Th1/Th2 mixed immune response. Conclusion The newly identified rTs-ES-1 is an immunodominant protein secreted by Trichinella stichocytes during natural infection and enables to the induction of partial protective immunity in vaccinated mice against Trichinella infection. Therefore, rTs-ES-1 is a potential candidate for vaccine development against trichinellosis. PMID:26288365

  10. Modulation of innate immunity in chickens induced by in vivo administration of baculovirus.

    PubMed

    Chimeno Zoth, Silvina; Carballeda, Juan Manuel; Gómez, Evangelina; Gravisaco, María José; Carrillo, Elisa; Berinstein, Analía

    2012-01-15

    Baculoviruses stimulate cytokine production in mammalian cells. They induce a strong innate immune response in animals and have adjuvant properties. The purpose of this work was to study the in vivo effect of baculovirus on chicken innate immune response. SPF chickens were inoculated intravenously with Autographa californica nuclear polyhedrosis virus (BV). Three hours later, chickens were bled, euthanized and their spleen, duodenum and cecal tonsils were excised in order to take samples for RNA extraction and real time PCR, and to isolate lymphocytes, which were stained and analyzed by flow cytometry. The results obtained showed that baculovirus inoculation up-regulates the expression of IFN-γ, IL-6 and LITAF in spleen cells. This result (IFN-γ) correlated with that obtained by ELISA which showed a very strong increase of IFN-γ in chicken plasma. Flow cytometry analysis revealed that BV inoculation induced in spleen an increase in the percentage of monocyte/macrophage population together with an increase in CD3(+)CD4(+) T lymphocytes. On the other hand, BV inoculation decreased the percentage of CD3(+)CD4(+) T lymphocytes and increased the percentage of NK cells in cecal tonsils. However, intraepithelial lymphocytes of the gut did not show differences between BV and control treated animals. Even though further studies in order to understand the mechanisms by which BVs affect the avian immune response are needed, results obtained in the present work demonstrate the ability of BVs to stimulate the innate immunity in chickens, modifying the expression pattern of related genes and the profile of the immune cells involved. PMID:22142984

  11. Potent inhibitory effect of Foeniculum vulgare Miller extract on osteoclast differentiation and ovariectomy-induced bone loss.

    PubMed

    Kim, Tae-Ho; Kim, Hyun-Ju; Lee, Sang-Han; Kim, Shin-Yoon

    2012-06-01

    Inhibition of osteoclast differentiation and bone resorption is considered an effective therapeutic approach to the treatment of postmenopausal bone loss. To find natural compounds that may inhibit osteoclastogenesis, we screened herbal extracts on bone marrow cultures. In this study, we found that an aqueous extract of Foeniculum vulgare Miller seed (FvMs) at low concentration, which has traditionally been used as a treatment for a variety of ailments, inhibits the osteoclast differentiation and bone resorptive activity of mature osteoclasts. We further investigated the effects of FvMs on ovariectomy (OVX)-induced bone loss using microcomputed tomography, biomechanical tests and serum marker assays for bone remodeling. Oral administration of FvMs (30 mg or 100 mg/kg/day) for 6 weeks had an intermediary effect on the prevention of femoral bone mineral density (BMD), bone mineral content (BMC), and other parameters compared to OVX controls. In addition, FvMs slightly decreased bone turnover markers that were accelerated by OVX. The bone-protective effects of FvMs may be due to suppression of an OVX-induced increase in bone turnover. Collectively, our findings indicate that FvMs have potential in preventing bone loss in postmenopausal osteoporosis by reducing both osteoclast differentiation and function.

  12. Highly Potent Extracts from Pea (Pisum sativum) and Maize (Zea mays) Roots Can Be Used to Induce Quiescence in Entomopathogenic Nematodes.

    PubMed

    Jaffuel, Geoffrey; Hiltpold, Ivan; Turlings, Ted C J

    2015-09-01

    Root exudates can play an important role in plant-nematode interactions. Recent studies have shown that the root cap exudates obtained from several plant species trigger a state of dormancy or quiescence in various genera of nematodes. This phenomenon is not only of fundamental ecological interest, but also has application potential if the plant-produced compound(s) could be used to control harmful nematodes or help to prolong the shelf-life of beneficial entomopathogenic nematodes (EPNs). The identification of the compound(s) involved in quiescence induction has proven to be a major challenge and requires large amounts of active material. Here, we present a high-throughput method to obtain bioactive root extracts from flash-frozen root caps of green pea and maize. The root cap extract obtained via this method was considerably more potent in inducing quiescence than exudate obtained by a previously used method, and consistently induced quiescence in the EPN Heterorhabditis megidis, even after a 30-fold dilution. Extracts obtained from the rest of the root were equally effective in inducing quiescence. Infective juveniles (IJs) of H. megidis exposed to these extracts readily recovered from their quiescent state as soon as they were placed in moist soil, and they were at least as infectious as the IJs that had been stored in water. Excessive exposure of IJs to air interfered with the triggering of quiescence. The implications of these results and the next steps towards identification of the quiescence-inducing compound(s) are discussed from the perspective of applying EPN against soil-dwelling insect pests. PMID:26364294

  13. Highly Potent Extracts from Pea (Pisum sativum) and Maize (Zea mays) Roots Can Be Used to Induce Quiescence in Entomopathogenic Nematodes.

    PubMed

    Jaffuel, Geoffrey; Hiltpold, Ivan; Turlings, Ted C J

    2015-09-01

    Root exudates can play an important role in plant-nematode interactions. Recent studies have shown that the root cap exudates obtained from several plant species trigger a state of dormancy or quiescence in various genera of nematodes. This phenomenon is not only of fundamental ecological interest, but also has application potential if the plant-produced compound(s) could be used to control harmful nematodes or help to prolong the shelf-life of beneficial entomopathogenic nematodes (EPNs). The identification of the compound(s) involved in quiescence induction has proven to be a major challenge and requires large amounts of active material. Here, we present a high-throughput method to obtain bioactive root extracts from flash-frozen root caps of green pea and maize. The root cap extract obtained via this method was considerably more potent in inducing quiescence than exudate obtained by a previously used method, and consistently induced quiescence in the EPN Heterorhabditis megidis, even after a 30-fold dilution. Extracts obtained from the rest of the root were equally effective in inducing quiescence. Infective juveniles (IJs) of H. megidis exposed to these extracts readily recovered from their quiescent state as soon as they were placed in moist soil, and they were at least as infectious as the IJs that had been stored in water. Excessive exposure of IJs to air interfered with the triggering of quiescence. The implications of these results and the next steps towards identification of the quiescence-inducing compound(s) are discussed from the perspective of applying EPN against soil-dwelling insect pests.

  14. Antidiabetic and Antilipidemic Effect of Musa balbisiana Root Extract: A Potent Agent for Glucose Homeostasis in Streptozotocin-Induced Diabetic Rat.

    PubMed

    Kalita, Himadri; Boruah, Dulal C; Deori, Meetali; Hazarika, Ankita; Sarma, Rahul; Kumari, Sima; Kandimalla, Raghuram; Kotoky, Jibon; Devi, Rajlakshmi

    2016-01-01

    Folklore studies have revealed that Musa balbisiana Colla (MB; Family: Musaceae) has high medicinal properties. The purpose of the present study is to evaluate antihyperglycemic, and antioxidant activity of MB extracts in streptozotocin (STZ) induced diabetic rats. In vitro antioxidant and antidiabetic activity of MB extracts, i.e., root extract (RE), shoot extract and inflorescence extract were determined by using various methods viz 1,-1-diphenyl-2-picrylhydrazyl (DPPH) and a method to assess their possible effect on glucose diffusion across gastrointestinal tract and identify bioactive compound of potent extract. In vivo antilipidemic and antidiabetic activity was evaluated by administrating oral dose of RE for 15 days on STZ- induced diabetic rat. RE showed highest antioxidant activity by scavenging DPPH radical (IC50 32.96 μg/ml) and inhibit 30% glucose movement in vitro. The methanol extract of root showed the presence of calyx [4] arene category of the compound. Furthermore, RE treated rat revealed a reduction in fasting blood glucose (62.5%), serum total cholesterol (36.2%), triglyceride (54.5%), and low-density lipoprotein (50.94%) after 15 days as compared to STZ treated animal. There was an initiation of regenerative structures of the affected organs after 15 days of RE treatment. Histopathological observations clearly differentiate the structural changes in pancreas, liver, and kidney of STZ and RE treated group. The presence of calyx [4] arene class of compound may be responsible for its antioxidant and antidiabetic properties by absorbing glucose in vivo. PMID:27199747

  15. Antidiabetic and Antilipidemic Effect of Musa balbisiana Root Extract: A Potent Agent for Glucose Homeostasis in Streptozotocin-Induced Diabetic Rat

    PubMed Central

    Kalita, Himadri; Boruah, Dulal C.; Deori, Meetali; Hazarika, Ankita; Sarma, Rahul; Kumari, Sima; Kandimalla, Raghuram; Kotoky, Jibon; Devi, Rajlakshmi

    2016-01-01

    Folklore studies have revealed that Musa balbisiana Colla (MB; Family: Musaceae) has high medicinal properties. The purpose of the present study is to evaluate antihyperglycemic, and antioxidant activity of MB extracts in streptozotocin (STZ) induced diabetic rats. In vitro antioxidant and antidiabetic activity of MB extracts, i.e., root extract (RE), shoot extract and inflorescence extract were determined by using various methods viz 1,-1-diphenyl-2-picrylhydrazyl (DPPH) and a method to assess their possible effect on glucose diffusion across gastrointestinal tract and identify bioactive compound of potent extract. In vivo antilipidemic and antidiabetic activity was evaluated by administrating oral dose of RE for 15 days on STZ- induced diabetic rat. RE showed highest antioxidant activity by scavenging DPPH radical (IC50 32.96 μg/ml) and inhibit 30% glucose movement in vitro. The methanol extract of root showed the presence of calyx [4] arene category of the compound. Furthermore, RE treated rat revealed a reduction in fasting blood glucose (62.5%), serum total cholesterol (36.2%), triglyceride (54.5%), and low-density lipoprotein (50.94%) after 15 days as compared to STZ treated animal. There was an initiation of regenerative structures of the affected organs after 15 days of RE treatment. Histopathological observations clearly differentiate the structural changes in pancreas, liver, and kidney of STZ and RE treated group. The presence of calyx [4] arene class of compound may be responsible for its antioxidant and antidiabetic properties by absorbing glucose in vivo. PMID:27199747

  16. The single-chain immunotoxin MCSP-ETA’, targeting melanoma-associated chondroitin sulfate proteoglycan, is a potent inducer of apoptosis in cultured human melanoma cells

    PubMed Central

    Schwenkert, Michael; Birkholz, Katrin; Schwemmlein, Michael; Kellner, Christian; Peipp, Matthias; Nettelbeck, Dirk M.; Schuler-Thurner, Beatrice; Schaft, Niels; Dörrie, Jan; Ferrone, Soldano; Kämpgen, Eckhart; Fey, Georg H.

    2009-01-01

    A recombinant immunotoxin was constructed by fusing a single-chain Fv (scFv) antibody fragment, specific for the melanoma-associated chondroitin sulfate proteoglycan (MCSP), to a truncated variant of Pseudomonas Exotoxin A (ETA’), carrying a C-terminal KDEL peptide for improved intracellular transport. The resulting immunotoxin, MCSP-ETA’, induced antigen-specific, potent apoptosis in the cultured human melanoma-derived cell lines A2058 and A375M, and treatment with a single dose of the agent eliminated up to 80 % of these cells within 72 h. The dose needed for half-maximum killing (EC50) was approximately 1 nM for both cell lines. MCSP-ETA’ also displayed cytotoxic activity against cultured primary melanoma cells from patients with advanced disease, with net cell death reaching up to 70 % within 96 h after treatment with a single dose of 14 nM. MCSP-ETA’ induced cell death synergistically with Cyclosporin A (CsA), both in established human melanoma cell lines and cultured primary melanoma cells. The distinctive antigen-restricted induction of apoptosis and the synergy with CsA justify further evaluation of this novel agent with regard to its potential applications for the treatment of melanoma and other MCSP-positive malignancies. PMID:18337643

  17. Advanced Glycation End Products (AGE) Potently Induce Autophagy through Activation of RAF Protein Kinase and Nuclear Factor κB (NF-κB).

    PubMed

    Verma, Neeharika; Manna, Sunil K

    2016-01-15

    Advanced glycation end products (AGE) accumulate in diabetic patients and aging people because of high amounts of three- or four-carbon sugars derived from glucose, thereby causing multiple consequences, including inflammation, apoptosis, obesity, and age-related disorders. It is important to understand the mechanism of AGE-mediated signaling leading to the activation of autophagy (self-eating) that might result in obesity. We detected AGE as one of the potent inducers of autophagy compared with doxorubicin and TNF. AGE-mediated autophagy is inhibited by suppression of PI3K and potentiated by the autophagosome maturation blocker bafilomycin. It increases autophagy in different cell types, and that correlates with the expression of its receptor, receptor for AGE. LC3B, the marker for autophagosomes, is shown to increase upon AGE stimulation. AGE-mediated autophagy is partially suppressed by inhibitor of NF-κB, PKC, or ERK alone and significantly in combination. AGE increases sterol regulatory element binding protein activity, which leads to an increase in lipogenesis. Although AGE-mediated lipogenesis is affected by autophagy inhibitors, AGE-mediated autophagy is not influenced by lipogenesis inhibitors, suggesting that the turnover of lipid droplets overcomes the autophagic clearance. For the first time, we provide data showing that AGE induces several cell signaling cascades, like NF-κB, PKC, ERK, and MAPK, that are involved in autophagy and simultaneously help with the accumulation of lipid droplets that are not cleared effectively by autophagy, therefore causing obesity.

  18. Potent ameliorating effect of Hypoxia-inducible factor 1α (HIF-1α) antagonist YC-1 on combined allergic rhinitis and asthma syndrome (CARAS) in Rats.

    PubMed

    Wang, Xu; Liu, Chun; Wu, Liucheng; Zhu, Shunxing

    2016-10-01

    Recent studies have implicated that Hypoxia-inducible factor 1α (HIF-1α) plays an integral role in the pathogenesis of allergic rhinitis and asthma. In the present study, we showed that HIF-1α antagonist YC-1, 3-(5-hydroxymethyl-2-furyl)-1-benzylindazole, elicited a potent allergy-ameliorating effect in a rat model of ovalbumin (OVA)-sensitized combined allergic rhinitis and asthma syndrome (CARAS). We revealed that YC-1 administration markedly impaired the total number and percentage of eosinophil in bronchoalveolar lavage fluid (BAL Fluid) of the rats, suggesting that YC-1 might attenuate lung and nasal mucosal inflammation in OVA-sensitized rats. Moreover, histological examination found that OVA-induced pathological alterations were evidently attenuated following YC-1 administration. In addition, immunohistochemistrial analysis indicated that YC-1 treatment decreased the expression of HIF-1α in rat lungs and nasal mucosa. Notably, Nuclear factor kappa B (NF-κB) p65 and Peroxisome proliferator-activated receptor α (PPARα), two important regulators of inflammatory responses, were also significantly down-regulated following YC-1 administration. Real-time PCR analysis confirmed that YC-1 impaired the expression of HIF-1α, NF-κB and PPARα in CARAS model. These findings together indicated that YC-1 exerted remarkable anti-allergic effects through the modulation of inflammatory pathways, implying that YC-1 may potentially serve as a novel anti-CARAS medicine in clinical patients. PMID:27498367

  19. Immune regulation toward immunomodulation for neuroprotection in glaucoma.

    PubMed

    Tezel, Gülgün

    2013-02-01

    Although the immune system functions to preserve and restore tissue homeostasis, accumulating risk factors, prolonged glial activation, and sustained release of pro-inflammatory mediators in glaucoma may lead to a failure in the regulation of stress-induced immune response, and innate immune cells, autoreactive T cells, autoantibodies, and excess complement attack may exhibit potent stimuli that harm retinal ganglion cell somas, axons, and synapses. Identification of the cellular and molecular components of immune response pathways can provide immunomodulatory treatment strategies to attenuate neuroinflammation, protect neural tissue from collateral injury, and enhance endogenous recovery processes. This review highlights the current knowledge of molecular mechanisms regulating neuroinflammation in glaucoma. PMID:23084793

  20. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression.

    PubMed

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-04-14

    Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells

  1. Four-segmented Rift Valley fever virus induces sterile immunity in sheep after a single vaccination.

    PubMed

    Wichgers Schreur, Paul J; Kant, Jet; van Keulen, Lucien; Moormann, Rob J M; Kortekaas, Jeroen

    2015-03-17

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 10(5) or 10(6) tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 10(5) TCID50 via the IM route provided sterile immunity, whereas a 10(6) dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route.

  2. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    SciTech Connect

    Tong Tiezhu; Fan Huiying; Tan Yadi; Xiao Shaobo; Ling Jieyu; Chen Huanchun; Guo Aizhen . E-mail: aizhen@mail.hzau.edu.cn

    2006-09-08

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28{sub 4} were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d{sub 3} DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD{sub 5}) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d{sub 3} DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response.

  3. Role of Bacterial Exopolysaccharides as Agents in Counteracting Immune Disorders Induced by Herpes Virus

    PubMed Central

    Gugliandolo, Concetta; Spanò, Antonio; Maugeri, Teresa L.; Poli, Annarita; Arena, Adriana; Nicolaus, Barbara

    2015-01-01

    Extreme marine environments, such as the submarine shallow vents of the Eolian Islands (Italy), offer an almost unexplored source of microorganisms producing unexploited and promising biomolecules for pharmaceutical applications. Thermophilic and thermotolerant bacilli isolated from Eolian vents are able to produce exopolysaccharides (EPSs) with antiviral and immunomodulatory effects against Herpes simplex virus type 2 (HSV-2). HSV-2 is responsible for the most common and continuously increasing viral infections in humans. Due to the appearance of resistance to the available treatments, new biomolecules exhibiting different mechanisms of action could provide novel agents for treating viral infections. The EPSs hinder the HSV-2 replication in human peripheral blood mononuclear cells (PBMC) but not in WISH (Wistar Institute Susan Hayflic) cells line, indicating that cell-mediated immunity was involved in the antiviral activity. High levels of Th1-type cytokines were detected in PBMC treated with all EPSs, while Th2-type cytokines were not induced. These EPSs are water soluble exopolymers able to stimulate the immune response and thus contribute to the antiviral immune defense, acting as immunomodulators. As stimulants of Th1 cell-mediated immunity, they could lead to the development of novel drugs as alternative in the treatment of herpes virus infections, as well as in immunocompromised host.

  4. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis.

    PubMed

    Cecchini, Nicolás M; Jung, Ho Won; Engle, Nancy L; Tschaplinski, Timothy J; Greenberg, Jean T

    2015-04-01

    Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively.

  5. Role of Bacterial Exopolysaccharides as Agents in Counteracting Immune Disorders Induced by Herpes Virus

    PubMed Central

    Gugliandolo, Concetta; Spanò, Antonio; Maugeri, Teresa L.; Poli, Annarita; Arena, Adriana; Nicolaus, Barbara

    2015-01-01

    Extreme marine environments, such as the submarine shallow vents of the Eolian Islands (Italy), offer an almost unexplored source of microorganisms producing unexploited and promising biomolecules for pharmaceutical applications. Thermophilic and thermotolerant bacilli isolated from Eolian vents are able to produce exopolysaccharides (EPSs) with antiviral and immunomodulatory effects against Herpes simplex virus type 2 (HSV-2). HSV-2 is responsible for the most common and continuously increasing viral infections in humans. Due to the appearance of resistance to the available treatments, new biomolecules exhibiting different mechanisms of action could provide novel agents for treating viral infections. The EPSs hinder the HSV-2 replication in human peripheral blood mononuclear cells (PBMC) but not in WISH (Wistar Institute Susan Hayflic) cells line, indicating that cell-mediated immunity was involved in the antiviral activity. High levels of Th1-type cytokines were detected in PBMC treated with all EPSs, while Th2-type cytokines were not induced. These EPSs are water soluble exopolymers able to stimulate the immune response and thus contribute to the antiviral immune defense, acting as immunomodulators. As stimulants of Th1 cell-mediated immunity, they could lead to the development of novel drugs as alternative in the treatment of herpes virus infections, as well as in immunocompromised host. PMID:27682100

  6. Immunity induced by a broad class of inorganic crystalline materials is directly controlled by their chemistry

    PubMed Central

    Williams, Gareth R.; Fierens, Kaat; Preston, Stephen G.; Lunn, Daniel; Rysnik, Oliwia; De Prijck, Sofie; Kool, Mirjam; Buckley, Hannah C.; O’Hare, Dermot; Austyn, Jonathan M.

    2014-01-01

    There is currently no paradigm in immunology that enables an accurate prediction of how the immune system will respond to any given agent. Here we show that the immunological responses induced by members of a broad class of inorganic crystalline materials are controlled purely by their physicochemical properties in a highly predictable manner. We show that structurally and chemically homogeneous layered double hydroxides (LDHs) can elicit diverse human dendritic cell responses in vitro. Using a systems vaccinology approach, we find that every measured response can be modeled using a subset of just three physical and chemical properties for all compounds tested. This correlation can be reduced to a simple linear equation that enables the immunological responses stimulated by newly synthesized LDHs to be predicted in advance from these three parameters alone. We also show that mouse antigen–specific antibody responses in vivo and human macrophage responses in vitro are controlled by the same properties, suggesting they may control diverse responses at both individual component and global levels of immunity. This study demonstrates that immunity can be determined purely by chemistry and opens the possibility of rational manipulation of immunity for therapeutic purposes. PMID:24799501

  7. Characterization of antibodies induced by paternal lymphocyte immunization in couples with recurrent spontaneous abortion.

    PubMed

    Lubinski, J; Vrdoljak, V J; Beaman, K D; Kwak, J Y; Beer, A E; Gilman-Sachs, A

    1993-07-01

    This study was designed to identify and characterize the allo- and autoantibodies induced following successful paternal lymphocyte immunization to prevent recurrent spontaneous abortion. Firstly the titers of maternal anti-paternal antibodies in women with successful pregnancies as determined by the flow cytometry crossmatch (FCXM) were highly variable; however, in all cases, the initial pre-immunization titers were negative and the post-immunization titers were positive by the FCXM in successfully treated women. Secondly, the specificities of maternal alloantibodies to paternal HLA antigens (immunogen) were evaluated. No all predicted antibodies to mismatched paternal HLA antigens were found by microlymphocytotoxicity (MCX) assays and the specificities varied. Thirdly, antibodies in post- but not preimmunization sera reacted with two lymphoid cell lines, SupT1 and SB; in addition, the rise and fall of the titers of these sera with paternal cells seemed to be reflected with the cell lines by the FCXM. Fourthly, autoantibodies to activated lymphocytes were detected and seemed to correlate with successful immunization since women who had another abortion following immunotherapy lacked these autoantibodies. These findings suggest that the antibody response following successful immunotherapy is complex and needs to be studied further to understand the mechanism of this treatment.

  8. Characterization of immune responses induced by immunization with the HA DNA vaccines of two antigenically distinctive H5N1 HPAIV isolates.

    PubMed

    Gao, Yulong; Wen, Zhiyuan; Dong, Ke; Zhong, Gongxun; Wang, Xiaomei; Bu, Zhigao; Chen, Hualan; Ye, Ling; Yang, Chinglai

    2012-01-01

    The evolution of the H5N1 highly pathogenic avian influenza virus (HPAIV) has resulted in high sequence variations and diverse antigenic properties in circulating viral isolates. We investigated immune responses induced by HA DNA vaccines of two contemporary H5N1 HPAIV isolates, A/bar-headed goose/Qinghai/3/2005 (QH) and A/chicken/Shanxi/2/2006 (SX) respectively, against the homologous as well as the heterologous virus isolate for comparison. Characterization of antibody responses induced by immunization with QH-HA and SX-HA DNA vaccines showed that the two isolates are antigenically distinctive. Interestingly, after immunization with the QH-HA DNA vaccine, subsequent boosting with the SX-HA DNA vaccine significantly augmented antibody responses against the QH isolate but only induced low levels of antibody responses against the SX isolate. Conversely, after immunization with the SX-HA DNA vaccine, subsequent boosting with the QH-HA DNA vaccine significantly augmented antibody responses against the SX isolate but only induced low levels of antibody responses against the QH isolate. In contrast to the antibody responses, cross-reactive T cell responses are readily detected between these two isolates at similar levels. These results indicate the existence of original antigenic sin (OAS) between concurrently circulating H5N1 HPAIV strains, which may need to be taken into consideration in vaccine development against the potential H5N1 HPAIV pandemic.

  9. Identification of 2-[4-[(4-Methoxyphenyl)methoxy]-phenyl]acetonitrile and Derivatives as Potent Oct3/4 Inducers.

    PubMed

    Cheng, Xinlai; Dimou, Eleni; Alborzinia, Hamed; Wenke, Frank; Göhring, Axel; Reuter, Stefanie; Mah, Nancy; Fuchs, Heiko; Andrade-Navarro, Miguel A; Adjaye, James; Gul, Sheraz; Harms, Christoph; Utikal, Jochen; Klipp, Edda; Mrowka, Ralf; Wölfl, Stefan

    2015-06-25

    Reprogramming somatic cells into induced-pluripotent cells (iPSCs) provides new access to all somatic cell types for clinical application without any ethical controversy arising from the use of embryonic stem cells (ESCs). Established protocols for iPSCs generation based on viral transduction with defined factors are limited by low efficiency and the risk of genetic abnormality. Several small molecules have been reported as replacements for defined transcriptional factors, but a chemical able to replace Oct3/4 allowing the generation of human iPSCs is still unavailable. Using a cell-based High Throughput Screening (HTS) campaign, we identified that 2-[4-[(4-methoxyphenyl)methoxy]phenyl]acetonitrile (1), termed O4I1, enhanced Oct3/4 expression. Structural verification and modification by chemical synthesis showed that O4I1 and its derivatives not only promoted expression and stabilization of Oct3/4 but also enhanced its transcriptional activity in diverse human somatic cells, implying the possible benefit from using this class of compounds in regenerative medicine. PMID:25898186

  10. C1, a highly potent novel curcumin derivative, binds to tubulin, disrupts microtubule network and induces apoptosis

    PubMed Central

    Srivastava, Shalini; Mishra, Satyendra; Surolia, Avadhesha; Panda, Dulal

    2016-01-01

    We have synthesized a curcumin derivative, 4-{5-(4-hydroxy-3-methoxy-phenyl)-2-[3-(4-hydroxy-3-methoxy-phenyl)-acryloyl]-3-oxo-penta-1,4-dienyl}-piperidine-1-carboxylic acid tert-butyl ester (C1) that displays much stronger antiproliferative activity against various types of cancer cells including multidrug resistance cells than curcumin. C1 depolymerized both interphase and mitotic microtubules in MCF-7 cells and also inhibited the reassembly of microtubules in these cells. C1 inhibited the polymerization of purified tubulin, disrupted the lattice structure of microtubules and suppressed their GTPase activity in vitro. The compound bound to tubulin with a dissociation constant of 2.8±1 μM and perturbed the secondary structures of tubulin. Further, C1 treatment reduced the expression of Bcl2, increased the expression of Bax and down regulated the level of a key regulator of p53, murine double minute 2 (Mdm2) (S166), in MCF-7 cells. C1 appeared to induce p53 mediated apoptosis in MCF-7 cells. Interestingly, C1 showed more stability in aqueous buffer than curcumin. The results together showed that C1 perturbed microtubule network and inhibited cancer cells proliferation more efficiently than curcumin. The strong antiproliferative activity and improved stability of C1 indicated that the compound may have a potential as an anticancer agent. PMID:26980197

  11. Active Immunity Induced by Passive IgG Post-Exposure Protection against Ricin

    PubMed Central

    Hu, Charles Chen; Yin, Junfei; Chau, Damon; Cherwonogrodzky, John W.; Hu, Wei-Gang

    2014-01-01

    Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab’)2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab’)2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab’)2 could rescue 100% of the mice by one dose (3 nmol) administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50), only the IgG-treated mice survived; the F(ab’)2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection. PMID:24451844

  12. Plasmepsin 4-Deficient Plasmodium berghei Are Virulence Attenuated and Induce Protective Immunity against Experimental Malaria

    PubMed Central

    Spaccapelo, Roberta; Janse, Chris J.; Caterbi, Sara; Franke-Fayard, Blandine; Bonilla, J. Alfredo; Syphard, Luke M.; Di Cristina, Manlio; Dottorini, Tania; Savarino, Andrea; Cassone, Antonio; Bistoni, Francesco; Waters, Andrew P.; Dame, John B.; Crisanti, Andrea

    2010-01-01

    Plasmodium parasites lacking plasmepsin 4 (PM4), an aspartic protease that functions in the lysosomal compartment and contributes to hemoglobin digestion, have only a modest decrease in the asexual blood-stage growth rate; however, PM4 deficiency in the rodent malaria parasite Plasmodium berghei results in significantly less virulence than that for the parental parasite. P. berghei Δpm4 parasites failed to induce experimental cerebral malaria (ECM) in ECM-susceptible mice, and ECM-resistant mice were able to clear infections. Furthermore, after a single infection, all convalescent mice were protected against subsequent parasite challenge for at least 1 year. Real-time in vivo parasite imaging and splenectomy experiments demonstrated that protective immunity acted through antibody-mediated parasite clearance in the spleen. This work demonstrates, for the first time, that a single Plasmodium gene disruption can generate virulence-attenuated parasites that do not induce cerebral complications and, moreover, are able to stimulate strong protective immunity against subsequent challenge with wild-type parasites. Parasite blood-stage attenuation should help identify protective immune responses against malaria, unravel parasite-derived factors involved in malarial pathologies, such as cerebral malaria, and potentially pave the way for blood-stage whole organism vaccines. PMID:20019192

  13. Dengue virus type 1 DNA vaccine induces protective immune responses in rhesus macaques.

    PubMed

    Raviprakash, K; Porter, K R; Kochel, T J; Ewing, D; Simmons, M; Phillips, I; Murphy, G S; Weiss, W R; Hayes, C G

    2000-07-01

    A candidate DNA vaccine expressing dengue virus type 1 pre-membrane and envelope proteins was used to immunize rhesus macaques. Monkeys were immunized intramuscularly (i.m.) or intradermally (i.d.) by three or four 1 mg doses of vaccine, respectively. Monkeys that were inoculated i.m. seroconverted more quickly and had higher antibody levels than those that were inoculated i.d. The sera exhibited virus-neutralizing activity, which declined over time. Four of the eight i.m.-inoculated monkeys were protected completely from developing viraemia when challenged 4 months after the last dose with homologous dengue virus. The other four monkeys had reduced viraemia compared with the control immunized monkeys. The i.d. -inoculated monkeys showed no reduction in viraemia when challenged with the virus. All vaccinated monkeys showed an anamnestic antibody response, indicating that they had established immunological memory. Vaccine-induced antibody had an avidity index similar to that of antibody induced by virus infection; however, no clear correlation was apparent between antibody avidity and virus neutralization titres.

  14. Type I Interferons Induce T Regulatory 1 Responses and Restrict Humoral Immunity during Experimental Malaria

    PubMed Central

    Zander, Ryan A.; Guthmiller, Jenna J.; Graham, Amy C.; Burke, Bradly E.; Carr, Daniel J.J.

    2016-01-01

    CD4 T cell-dependent antibody responses are essential for limiting Plasmodium parasite replication and the severity of malaria; however, the factors that regulate humoral immunity during highly inflammatory, Th1-biased systemic infections are poorly understood. Using genetic and biochemical approaches, we show that Plasmodium infection-induced type I interferons limit T follicular helper accumulation and constrain anti-malarial humoral immunity. Mechanistically we show that CD4 T cell-intrinsic type I interferon signaling induces T-bet and Blimp-1 expression, thereby promoting T regulatory 1 responses. We further show that the secreted effector cytokines of T regulatory 1 cells, IL-10 and IFN-γ, collaborate to restrict T follicular helper accumulation, limit parasite-specific antibody responses, and diminish parasite control. This circuit of interferon-mediated Blimp-1 induction is also operational during chronic virus infection and can occur independently of IL-2 signaling. Thus, type I interferon-mediated induction of Blimp-1 and subsequent expansion of T regulatory 1 cells represent generalizable features of systemic, inflammatory Th1-biased viral and parasitic infections that are associated with suppression of humoral immunity. PMID:27732671

  15. Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation

    PubMed Central

    Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou

    2014-01-01

    IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361

  16. Hydralazine-induced ANCA-positive pauci-immune glomerulonephritis: a case report and literature review.

    PubMed

    Dobre, Mirela; Wish, Jay; Negrea, Lavinia

    2009-01-01

    We report a case of hydralazine-induced alveolar hemorrhage and anti-neutrophil cytoplasmic antibody (ANCA)-positive pauci-immune glomerulonephritis, with serum anti-histone antibodies present, features not previously described in the literature with this drug. A 50-year-old Caucasian female had hypertension treated with hydralazine 75mg TID for three years, and a lung nodule followed up periodically with chest-computed tomographies. She was admitted to the hospital for hemoptysis and newly discovered diffuse pulmonary ground-glass opacities. Transbronchial lung biopsy showed alveolar hemorrhage. Serum creatinine was 3.5 mg/dL and urinalysis showed 2+blood, 30-50RBC/hpf and red blood cell casts. ANCA against myeloperoxidase were present. Anti-double-stranded DNA, ANA, and anti-histone antibodies were positive. Serum complements were normal. Renal biopsy revealed focal crescentic necrotizing glomerulonephritis with negative immunofluorescence, consistent with pauci-immune ANCA-positive vasculitis. Serum creatinine returned to baseline three days after hydralazine was discontinued, and the hemoptysis resolved after treatment with cyclophosphamide and prednisone was started. We concluded that this case represents a hydralazine-induced small vessel vasculitis rather than an idiopathic one. The possibility of hydralazine-induced vasculitis should be considered when patients treated with hydralazine develop a pulmonary-renal syndrome. Anti-histone antibodies may be present in the absence of full classification criteria of drug-induced lupus.

  17. The role of the immune system in hexachlorobenzene-induced toxicity.

    PubMed Central

    Michielsen, C C; van Loveren, H; Vos, J G

    1999-01-01

    Hexachlorobenzene (HCB) is a persistent environmental pollutant. The toxicity of HCB has been extensively studied after an accidental human poisoning in Turkey and more recently it has been shown that HCB has immunotoxic properties in laboratory animals and probably also in man. Oral exposure of rats to HCB showed stimulatory effects on spleen and lymph node weights and histology, increased serum IgM levels, and an enhancement of several parameters of immune function. Moreover, more recent studies indicate that HCB-induced effects in the rat may be related to autoimmunity. In Wistar rats exposed to HCB, IgM antibodies against several autoantigens were elevated; in the Lewis rat, HCB differently modulated two experimental models of autoimmune disease. Oral exposure of rats to HCB induces skin and lung pathology in the rat. Recently several studies have been conducted to investigate whether these skin and lung lesions can be related to HCB-induced immunomodulation, and these studies will be discussed in this review. HCB-induced skin and lung lesions probably have a different etiology; pronounced strain differences and correlation of skin lesions with immune parameters suggest a specific involvement of the immune system in HCB-induced skin lesions. The induction of lung lesions by HCB was thymus independent. Thymus-dependent T cells were not likely to be required for the induction of skin lesions, although T cells enhanced the rate of induction and the progression of the skin lesions. No deposition of autoantibodies was observed in nonlesional or lesional skin of HCB-treated rats. Therefore, we concluded that it is unlikely that the mechanism by which most allergic or autoimmunogenic chemicals work, i.e., by binding to macromolecules of the body and subsequent T- and B-cell activation, is involved in the HCB-induced immunopathology in the rat. Such a thymus-independent immunopathology is remarkable, as HCB strongly modulates T-cell-mediated immune parameters. This

  18. Netupitant, a Potent and Highly Selective NK1 Receptor Antagonist, Alleviates Acetic Acid-Induced Bladder Overactivity in Anesthetized Guinea-Pigs.

    PubMed

    Palea, Stefano; Guilloteau, Véronique; Rekik, Moéz; Lovati, Emanuela; Guerard, Marc; Guardia, Maria-Alba; Lluel, Philippe; Pietra, Claudio; Yoshiyama, Mitsuharu

    2016-01-01

    Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant) on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe). Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060) were studied in anesthetized guinea-pigs using two experimental models, the isovolumetric bladder contractions and a model of bladder overactivity induced by intravesical administration of acetic acid (AA). Methods and Results. Detrusor muscle strips were mounted in 5 mL organ baths and isometric contractions to cumulative concentrations of SP-OME were recorded before and after incubation with increasing concentrations of netupitant. In anesthetized female guinea-pigs, reflex bladder activity was examined under isovolumetric conditions with the bladder distended with saline or during cystometry using intravesical infusion of AA. After a 30 min stabilization period, netupitant (0.1-3 mg/kg, i.v.) or L-733,060 (3-10 mg/kg, i.v.) were administered. In the detrusor muscle, netupitant produced a concentration-dependent inhibition (mean pKB = 9.24) of the responses to SP-OMe. Under isovolumetric conditions, netupitant or L-733,060 reduced bladder contraction frequency in a dose-dependent manner, but neither drug changed bladder contraction amplitude. In the AA model, netupitant dose-dependently increased intercontraction interval (ICI) but had no effect on the amplitude of micturition (AM). L-733,060 dose-dependently increased ICI also but this effect was paralleled by a significant reduction of AM. Conclusion. Netupitant decreases the frequency of reflex bladder contractions without altering their amplitude, suggesting that this drug targets the afferent limb of the micturition reflex circuit

  19. Netupitant, a Potent and Highly Selective NK1 Receptor Antagonist, Alleviates Acetic Acid-Induced Bladder Overactivity in Anesthetized Guinea-Pigs

    PubMed Central

    Palea, Stefano; Guilloteau, Véronique; Rekik, Moéz; Lovati, Emanuela; Guerard, Marc; Guardia, Maria-Alba; Lluel, Philippe; Pietra, Claudio; Yoshiyama, Mitsuharu

    2016-01-01

    Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant) on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe). Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060) were studied in anesthetized guinea-pigs using two experimental models, the isovolumetric bladder contractions and a model of bladder overactivity induced by intravesical administration of acetic acid (AA). Methods and Results. Detrusor muscle strips were mounted in 5 mL organ baths and isometric contractions to cumulative concentrations of SP-OME were recorded before and after incubation with increasing concentrations of netupitant. In anesthetized female guinea-pigs, reflex bladder activity was examined under isovolumetric conditions with the bladder distended with saline or during cystometry using intravesical infusion of AA. After a 30 min stabilization period, netupitant (0.1–3 mg/kg, i.v.) or L-733,060 (3–10 mg/kg, i.v.) were administered. In the detrusor muscle, netupitant produced a concentration-dependent inhibition (mean pKB = 9.24) of the responses to SP-OMe. Under isovolumetric conditions, netupitant or L-733,060 reduced bladder contraction frequency in a dose-dependent manner, but neither drug changed bladder contraction amplitude. In the AA model, netupitant dose-dependently increased intercontraction interval (ICI) but had no effect on the amplitude of micturition (AM). L-733,060 dose-dependently increased ICI also but this effect was paralleled by a significant reduction of AM. Conclusion. Netupitant decreases the frequency of reflex bladder contractions without altering their amplitude, suggesting that this drug targets the afferent limb of the micturition reflex

  20. Potent homocysteine-induced ERK phosphorylation in cultured neurons depends on self-sensitization via system Xc{sup -}

    SciTech Connect

    Gu Li; Hu Xiaoling; Xue Zhanxia; Yang Jun; Wan Lishu; Ren Yan; Hertz, Leif; Peng Liang

    2010-01-15

    Homocysteine is increased during pathological conditions, endangering vascular and cognitive functions, and elevated homocysteine during pregnancy may be correlated with an increased incidence of schizophrenia in the offspring. This study showed that millimolar homocysteine concentrations in saline medium cause phosphorylation of extracellular-signal regulated kinases 1 and 2 (ERK{sub 1/2}) in cerebellar granule neurons, inhibitable by metabotropic but not ionotropic glutamate receptor antagonists. These findings are analogous to observations by , that similar concentrations cause neuronal death. However, these concentrations are much higher than those occurring clinically during hyperhomocysteinemia. It is therefore important that a approx 10-fold increase in potency occurred in the presence of the glutamate precursor glutamine, when ERK{sub 1/2} phosphorylation became inhibitable by NMDA or non-NMDA antagonists and dependent upon epidermal growth factor (EGF) receptor transactivation. However, glutamate release to the medium was reduced, suggesting that reversal of the cystine/glutamate antiporter, system X{sub c}{sup -} could be involved in potentiation of the response by causing a localized release of initially accumulated homocysteine. In agreement with this hypothesis further enhancement of ERK{sub 1/2} phosphorylation occurred in the additional presence of cystine. Pharmacological inhibition of system X{sub c}{sup -} prevented the effect of micromolar homocysteine concentrations, and U0126-mediated inhibition of ERK{sub 1/2} phosphorylation enhanced homocysteine-induced death. In conclusion, homocysteine interacts with system X{sub c}{sup -} like quisqualate (Venkatraman et al. 1994), by 'self-sensitization' with initial accumulation and subsequent release in exchange with cystine and/or glutamate, establishing high local homocysteine concentrations, which activate adjacent ionotropic glutamate receptors and cause neurotoxicity.

  1. Thiolates Chemically Induce Redox Activation of BTZ043 and Related Potent Nitro Aromatic Anti-Tuberculosis Agents

    PubMed Central

    Tiwari, Rohit; Moraski, Garrett C.; Krchňák, Viktor; Miller, Patricia A.; Colon-Martinez, Mariangelli; Herrero, Eliza; Oliver, Allen G.; Miller, Marvin J.

    2013-01-01

    The development of multidrug resistant (MDR) and extensively drug resistant (XDR) forms of tuberculosis (TB) has stimulated research efforts globally to expand the new drug pipeline. Nitro aromatic compounds, including 1, 3-Benzothiazin-4-ones (BTZs) and related agents, are a promising new class for the treatment of TB. Research has shown that the nitroso intermediates of BTZs that are generated in vivo cause suicide inhibition of decaprenylphosphoryl-β-D-ribose 2′ oxidase (DprE1), which is responsible for cell wall arabinogalactan biosynthesis. We have designed and synthesized novel anti-TB agents inspired from BTZs and other nitroaromatic compounds. Computational studies indicated that the unsubstituted aromatic carbons of BTZ043 and related nitroaromatic compounds are the most electron deficient and might be prone to nucleophilic attack. Our chemical studies on BTZ043 and the additional nitro aromatic compounds synthesized by us and the others confirmed the postulated reactivity. The results indicate that nucleophiles such as thiolates, cyanide and hydride induce non-enzymatic reduction of the nitro groups present in these compounds to the corresponding nitroso intermediates by addition at the unsubstituted electron deficient aromatic carbon present in these compounds. Furthermore we demonstrate here that these compounds are good candidates for the classical von Richter reaction. These chemical studies offer an alternate hypotheses for the mechanism of action of nitro aromatic anti-TB agents in that the cysteine thiol(ate) or a hydride source at the active site of DprE1 may trigger the reduction of the nitro groups in a manner similar to the von Richter reaction to the nitroso intermediates, to initiate the inhibition of DprE1. PMID:23402278

  2. Characterizing the Infection-Induced Transcriptome of Nasonia vitripennis Reveals a Preponderance of Taxonomically-Restricted Immune Genes

    PubMed Central

    Sackton, Timothy B.; Werren, John H.; Clark, Andrew G.

    2013-01-01

    The innate immune system in insects consists of a conserved core signaling network and rapidly diversifying effector and recognition components, often containing a high proportion of taxonomically-restricted genes. In the absence of functional annotation, genes encoding immune system proteins can thus be difficult to identify, as homology-based approaches generally cannot detect lineage-specific genes. Here, we use RNA-seq to compare the uninfected and infection-induced transcriptome in the parasitoid wasp Nasonia vitripennis to identify genes regulated by infection. We identify 183 genes significantly up-regulated by infection and 61 genes significantly down-regulated by infection. We also produce a new homology-based immune catalog in N. vitripennis, and show that most infection-induced genes cannot be assigned an immune function from homology alone, suggesting the potential for substantial novel immune components in less well-studied systems. Finally, we show that a high proportion of these novel induced genes are taxonomically restricted, highlighting the rapid evolution of immune gene content. The combination of functional annotation using RNA-seq and homology-based annotation provides a robust method to characterize the innate immune response across a wide variety of insects, and reveals significant novel features of the Nasonia immune response. PMID:24386321

  3. Vaccination with Legionella pneumophila membranes induces cell-mediated and protective immunity in a guinea pig model of Legionnaires' disease. Protective immunity independent of the major secretory protein of Legionella pneumophila.

    PubMed Central

    Blander, S J; Horwitz, M A

    1991-01-01

    We have examined the capacity of Legionella pneumophila membranes to induce cell-mediated immune responses and protective immunity in a guinea pig model of Legionnaires' disease. Guinea pigs immunized by aerosol with L. pneumophila membranes developed strong cell-mediated immune responses to L. pneumophila membranes as demonstrated by cutaneous delayed-type hypersensitivity and in vitro splenic lymphocyte proliferation. Guinea pigs immunized by aerosol or by subcutaneous inoculation with L. pneumophila membranes developed strong protective immunity against lethal aerosol challenge with L. pneumophila. Overall, in six independent experiments, 39 of 49 (80%) guinea pigs immunized with L. pneumophila membranes survived challenge compared with 2 of 40 (5%) sham-immunized controls (P = 2 x 10(-13). In contrast, guinea pigs immunized by aerosol with formalin-killed L. pneumophila did not develop either a strong cell-mediated immune response to L. pneumophila antigens or protective immunity to lethal aerosol challenge. The capacity of L. pneumophila membranes to induce protective immunity was independent of the major secretory protein of L. pneumophila, which we previously demonstrated is an immunoprotective molecule. Purified L. pneumophila membranes did not contain detectable major secretory protein (MSP) on immunoblots; immunization of guinea pigs with L. pneumophila membranes did not induce anti-MSP antibody; and guinea pigs developed comparable protective immunity after immunization with membranes from either an L. pneumophila strain that secretes the major secretory protein or an isogenic mutant that does not. This study demonstrates that (a) immunization with L. pneumophila membranes but not formalin-killed L. pneumophila induces strong cell-mediated immune responses and protective immunity, (b) L. pneumophila membranes contain immunoprotective molecules distinct from the major secretory protein of L. pneumophila, and (c) L. pneumophila membranes have potential as

  4. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs).

    PubMed

    Ipcho, Simon; Sundelin, Thomas; Erbs, Gitte; Kistler, H Corby; Newman, Mari-Anne; Olsson, Stefan

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals.

  5. Inactivation of conserved genes induces microbial aversion, drug detoxification, and innate immunity in C.elegans

    PubMed Central

    Melo, Justine A.; Ruvkun, Gary

    2012-01-01

    Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807

  6. Ovaria