Science.gov

Sample records for induces protective responses

  1. The Dose Window for Radiation-Induced Protective Adaptive Responses

    PubMed Central

    Mitchel, Ronald E. J.

    2009-01-01

    Adaptive responses to low doses of low LET radiation occur in all organisms thus far examined, from single cell lower eukaryotes to mammals. These responses reduce the deleterious consequences of DNA damaging events, including radiation-induced or spontaneous cancer and non-cancer diseases in mice. The adaptive response in mammalian cells and mammals operates within a certain window that can be defined by upper and lower dose thresholds, typically between about 1 and 100 mGy for a single low dose rate exposure. However, these thresholds for protection are not a fixed function of total dose, but also vary with dose rate, additional radiation or non-radiation stressors, tissue type and p53 functional status. Exposures above the upper threshold are generally detrimental, while exposures below the lower threshold may or may not increase either cancer or non-cancer disease risk. PMID:20585438

  2. Platelets protect lung from injury induced by systemic inflammatory response

    PubMed Central

    Luo, Shuhua; Wang, Yabo; An, Qi; Chen, Hao; Zhao, Junfei; Zhang, Jie; Meng, Wentong; Du, Lei

    2017-01-01

    Systemic inflammatory responses can severely injure lungs, prompting efforts to explore how to attenuate such injury. Here we explored whether platelets can help attenuate lung injury in mice resulting from extracorporeal circulation (ECC)-induced systemic inflammatory responses. Mice were subjected to ECC for 30 min, then treated with phosphate-buffered saline, platelets, the GPIIb/IIIa inhibitor Tirofiban, or the combination of platelets and Tirofiban. Blood and lung tissues were harvested 60 min later, and lung injury and inflammatory status were assessed. As expected, ECC caused systemic inflammation and pulmonary dysfunction, and platelet transfusion resulted in significantly milder lung injury and higher lung function. It also led to greater numbers of circulating platelet-leukocyte aggregates and greater platelet accumulation in the lung. Platelet transfusion was associated with higher production of transforming growth factor-β and as well as lower levels of tumour necrosis factor-α and neutrophil elastase in plasma and lung. None of these platelet effects was observed in the presence of Tirofiban. Our results suggest that, at least under certain conditions, platelets can protect lung from injury induced by systemic inflammatory responses. PMID:28155889

  3. Protective responses induced by herbicide safeners in wheat.

    PubMed

    Taylor, Victoria L; Cummins, Ian; Brazier-Hicks, Melissa; Edwards, Robert

    2013-04-01

    Safeners are agrochemicals which enhance tolerance to herbicides in cereals including wheat (Triticum aestivum L.) by elevating the expression of xenobiotic detoxifying enzymes, such as glutathione transferases (GSTs). When wheat plants were spray-treated with three safener chemistries, namely cloquintocet mexyl, mefenpyr diethyl and fenchlorazole ethyl, an apparently identical subset of GSTs derived from the tau, phi and lambda classes accumulated in the foliage. Treatment with the closely related mefenpyr diethyl and fenchlorazole ethyl enhanced seedling shoot growth, but this effect was not determined with the chemically unrelated cloquintocet mexyl. Focussing on cloquintocet mexyl, treatments were found to only give a transient induction of GSTs, with the period of elevation being dose dependent. Examining the role of safener metabolism in controlling these responses, it was determined that cloquintocet mexyl was rapidly hydrolysed to the respective carboxylic acid. Studies with cloquintocet showed that the acid was equally effective at inducing GSTs as the ester and appeared to be the active safener. Studies on the tissue induction of GSTs showed that whilst phi and tau class enzymes were induced in all tissues, the induction of the lambda enzymes was restricted to the meristems. To test the potential protective effects of cloquintocet mexyl in wheat on chemicals other than herbicides, seeds were pre-soaked in safeners prior to sowing on soil containing oil and a range of heavy metals. Whilst untreated seeds were unable to germinate on the contaminated soil, safener treatments resulted in seedlings briefly growing before succumbing to the pollutants. Our results show that safeners exert a range of protective and growth promoting activities in wheat that extend beyond enhancing tolerance to herbicides.

  4. Protective responses induced by herbicide safeners in wheat

    PubMed Central

    Taylor, Victoria L.; Cummins, Ian; Brazier-Hicks, Melissa; Edwards, Robert

    2013-01-01

    Safeners are agrochemicals which enhance tolerance to herbicides in cereals including wheat (Triticum aestivum L.) by elevating the expression of xenobiotic detoxifying enzymes, such as glutathione transferases (GSTs). When wheat plants were spray-treated with three safener chemistries, namely cloquintocet mexyl, mefenpyr diethyl and fenchlorazole ethyl, an apparently identical subset of GSTs derived from the tau, phi and lambda classes accumulated in the foliage. Treatment with the closely related mefenpyr diethyl and fenchlorazole ethyl enhanced seedling shoot growth, but this effect was not determined with the chemically unrelated cloquintocet mexyl. Focussing on cloquintocet mexyl, treatments were found to only give a transient induction of GSTs, with the period of elevation being dose dependent. Examining the role of safener metabolism in controlling these responses, it was determined that cloquintocet mexyl was rapidly hydrolysed to the respective carboxylic acid. Studies with cloquintocet showed that the acid was equally effective at inducing GSTs as the ester and appeared to be the active safener. Studies on the tissue induction of GSTs showed that whilst phi and tau class enzymes were induced in all tissues, the induction of the lambda enzymes was restricted to the meristems. To test the potential protective effects of cloquintocet mexyl in wheat on chemicals other than herbicides, seeds were pre-soaked in safeners prior to sowing on soil containing oil and a range of heavy metals. Whilst untreated seeds were unable to germinate on the contaminated soil, safener treatments resulted in seedlings briefly growing before succumbing to the pollutants. Our results show that safeners exert a range of protective and growth promoting activities in wheat that extend beyond enhancing tolerance to herbicides. PMID:23564986

  5. Radioadaptive response for protection against radiation-induced teratogenesis.

    PubMed

    Okazaki, Ryuji; Ootsuyama, Akira; Norimura, Toshiyuki

    2005-03-01

    To clarify the characteristics of the radioadaptive response in mice, we compared the incidence of radiation-induced malformations in ICR mice. Pregnant ICR mice were exposed to a priming dose of 2 cGy (667 muGy/min) on day 9.5 of gestation and to a challenging dose of 2 Gy (1.04 Gy/min) 4 h later and were killed on day 18.5 of gestation. The incidence of malformations and prenatal death and fetal body weights were studied. The incidence of external malformations was significantly lower (by approximately 10%) in the primed (2 cGy + 2 Gy) mice compared to the unprimed (2 Gy alone) mice. However, there were no differences in the incidence of prenatal death or the skeletal malformations or the body weights between primed and unprimed mice. These results suggest that primary conditioning with low doses of radiation suppresses radiation-induced teratogenesis.

  6. The Acetic Acid Tolerance Response induces cross-protection to salt stress in Salmonella typhimurium.

    PubMed

    Greenacre, E J; Brocklehurst, T F

    2006-10-15

    Salmonella typhimurium induces an Acid Tolerance Response (ATR) upon exposure to mildly acidic conditions in order to protect itself against severe acid shock. This response can also induce cross-protection to other stresses such as heat and salt. We investigated whether both the acetic acid induced and lactic acid induced ATR in S. typhimurium provided cross-protection to a salt stress at 20 degrees C. Acid-adapted cells were challenged with both a sodium chloride (NaCl) and potassium chloride (KCl) shock and their ability to survive ascertained. Acetic acid adaptation provided cells with protection against both NaCl and KCl stress. However, lactic acid adaptation did not protect against either osmotic stressor and rendered cells hypersensitive to NaCl. These results have implications for the food industry where hurdle technology means multiple sub-lethal stresses such as mild pH and low salt are commonly used in the preservation of products.

  7. Parenteral Vaccination Can Be an Effective Means of Inducing Protective Mucosal Responses

    PubMed Central

    Freytag, Lucy C.

    2016-01-01

    The current paradigm in vaccine development is that nonreplicating vaccines delivered parenterally fail to induce immune responses in mucosal tissues. However, both clinical and experimental data have challenged this concept, and numerous studies have shown that induction of mucosal immune responses after parenteral vaccination is not a rare occurrence and might, in fact, significantly contribute to the protection against mucosal infections afforded by parenteral vaccines. While the mechanisms underlying this phenomenon are not well understood, the realization that parenteral vaccination can be an effective means of inducing protective mucosal responses is paradigm-shifting and has potential to transform the way vaccines are designed and delivered. PMID:27122485

  8. Sulforaphane protects Microcystin-LR-induced toxicity through activation of the Nrf2-mediated defensive response

    SciTech Connect

    Gan Nanqin; Mi Lixin; Sun Xiaoyun; Dai Guofei; Chung Funglung; Song Lirong

    2010-09-01

    Microcystins (MCs), a cyclic heptapeptide hepatotoxins, are mainly produced by the bloom-forming cyanobacerium Microcystis, which has become an environmental hazard worldwide. Long term consumption of MC-contaminated water may induce liver damage, liver cancer, and even human death. Therefore, in addition to removal of MCs in drinking water, novel strategies that prevent health damages are urgently needed. Sulforaphane (SFN), a natural-occurring isothiocyanate from cruciferous vegetables, has been reported to reduce and eliminate toxicities from xenobiotics and carcinogens. The purpose of the present study was to provide mechanistic insights into the SFN-induced antioxidative defense system against MC-LR-induced cytotoxicity. We performed cell viability assays, including MTS assay, colony formation assay and apoptotic cell sorting, to study MC-LR-induced cellular damage and the protective effects by SFN. The results showed that SFN protected MC-LR-induced damages at a nontoxic and physiological relevant dose in HepG2, BRL-3A and NIH 3 T3 cells. The protection was Nrf2-mediated as evident by transactivation of Nrf2 and activation of its downstream genes, including NQO1 and HO-1, and elevated intracellular GSH level. Results of our studies indicate that pretreatment of cells with 10 {mu}M SFN for 12 h significantly protected cells from MC-LR-induced damage. SFN-induced protective response was mediated through Nrf2 pathway.

  9. Role of Humoral versus Cellular Responses Induced by a Protective Dengue Vaccine Candidate

    PubMed Central

    Zellweger, Raphaël M.; Miller, Robyn; Eddy, William E.; White, Laura J.; Johnston, Robert E.; Shresta, Sujan

    2013-01-01

    With 2.5 billion people at risk, dengue is a major emerging disease threat and an escalating public health problem worldwide. Dengue virus causes disease ranging from a self-limiting febrile illness (dengue fever) to the potentially fatal dengue hemorrhagic fever/dengue shock syndrome. Severe dengue disease is associated with sub-protective levels of antibody, which exacerbate disease upon re-infection. A dengue vaccine should generate protective immunity without increasing severity of disease. To date, the determinants of vaccine-mediated protection against dengue remain unclear, and additional correlates of protection are urgently needed. Here, mice were immunized with viral replicon particles expressing the dengue envelope protein ectodomain to assess the relative contribution of humoral versus cellular immunity to protection. Vaccination with viral replicon particles provided robust protection against dengue challenge. Vaccine-induced humoral responses had the potential to either protect from or exacerbate dengue disease upon challenge, whereas cellular immune responses were beneficial. This study explores the immunological basis of protection induced by a dengue vaccine and suggests that a safe and efficient vaccine against dengue should trigger both arms of the immune system. PMID:24204271

  10. Pathogen-activated induced resistance of cucumber: response of arthropod herbivores to systemically protected leaves.

    PubMed

    Apriyanto, Dwinardi; Potter, Daniel A

    1990-11-01

    Restricted (non-systemic) inoculation of cucurbits, green bean, tobacco, and other plants with certain viruses, bacteria, or fungi has been shown to induce persistent, systemic resistance to a wide range of diseases caused by diverse pathogens. The non-specificity of this response has fueled speculation that it may also affect plant suitability for arthropod herbivores, and there is limited evidence, mainly from work with tobacco, which suggests that this may indeed occur. Young cucumber plants were immunized by restricted infection of a lower leaf with tobacco necrosis virus (TNV), and upper leaves were later challenged with anthracnose fungus, Colletotrichum lagenarium, to confirm induction of systemic resistance to a different pathogen. The response of arthropod herbivores was simultaneously measured on non-infected, systemically protected leaves of the same plants. As has been reported before, immunization with TNV gave a high degree of protection from C. lagenarium, reducing the number of lesions and the area of fungal necrosis by 65-93%. However, there was no systemic effect on population growth of twospotted spider mites, Tetranychus urticae Koch, on upper leaves, nor did restricted TNV infection of leaf tissue on one side of the mid-vein systemically affect mite performance on the opposite, virus-free side of the leaf. Similarly, there were no effects on growth rate, pupal weight, or survival when fall armyworm larvae were reared on systemically protected leaves from induced plants. In free-choice tests, greenhouse whiteflies oviposited indiscriminately on induced and control plants. Feeding preference of fall armyworms was variable, but striped cucumber beetles consistently fed more on induced than on control plants. There was no increase in levels of cucurbitacins, however, in systemically-protected foliage of induced plants. These findings indicate that pathogen-activated induced resistance of cucumber is unlikely to provide significant protection from

  11. Artemisitene activates the Nrf2-dependent antioxidant response and protects against bleomycin-induced lung injury.

    PubMed

    Chen, Weimin; Li, Shanshan; Li, Jinwei; Zhou, Wen; Wu, Shouhai; Xu, Shengmei; Cui, Ke; Zhang, Donna D; Liu, Bo

    2016-07-01

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulator of the cellular antioxidant response and xenobiotic metabolism. Activation of the Nrf2 signaling pathway has been demonstrated to confer protection against environmental insults and prevent disease or inhibit the progression of diseases related to oxidative stress. In an attempt to identify novel improved Nrf2 inducers for systemic protection against tissue damage by environmental insults, we identified artemisitene as a novel Nrf2 activator using antioxidant responsive element luciferase assay in MDA-MB-231 cells. Further studies suggest that artemisitene activates Nrf2 by decreasing Nrf2 ubiquitination and increasing its stability. In Nrf2 wild-type mice, systemic administration of artemisitene strongly inhibits bleomycin-induced lung damage. Artemisitene represents a novel class of Nrf2 inducer, and artemisitene-based therapeutic approach targeting Nrf2 may also provide antioxidant protection for humans against tissue damage by toxic chemicals.-Chen, W., Li, S., Li, J., Zhou, W., Wu, S., Xu, S., Cui, K., Zhang, D. D., Liu, B. Artemisitene activates the Nrf2-dependent antioxidant response and protects against bleomycin-induced lung injury.

  12. Correlation between genetic regulation of antibody responsiveness and protective immunity induced by Plasmodium berghei vaccination.

    PubMed Central

    Heumann, A M; Stiffel, C; Monjour, L; Bucci, A; Biozzi, G

    1979-01-01

    High (H) and low (L) antibody responder lines of mice were produced by two independent bidirectional selective breedings for quantitative antibody responsiveness to heterologous erythrocytes (selection I and selection II). In both selections the antibody response to P. berghei antigens was 8- to 10-fold higher in H than in L lines. The character "high response" presents an incomplete dominance o- 18% in selection I and 67% in selection II. In selection II the variance analysis indicates that at least three independent loci intervene in the regulation of responsiveness to P. berghei antigens. The innate resistance and the protective efficacy of vaccination against P. berghei infection induced by parasitized erythrocytes was measured in H and L lines and in the interline hybrids F1, BcH, and BcL of selections I and II. No very significant difference was observed in the innate resistance to P. berghei infection between H and L mice of both selections. Vaccination induced a very efficient protection in the two H lines (94 and 95% survival), whereas only a weak protection was induced in the two L lines (16 and 31% survival); the degree of protection is intermediate in interline hybrids F1, BcH, and BcL. In both selections a good linear correlation was demonstrated between the level of vaccination-induced antibody and the degree of resistance measured as percentage of survival. The present results indicate that the vaccination-induced P. berghei immunity is essentially due to the antibody response, whereas the bactericidal activity of macrophages and the cell-mediated immunity do not play a determinant role. PMID:112057

  13. Picroside II protects myocardium from ischemia/reperfusion-induced injury through inhibition of the inflammatory response

    PubMed Central

    Li, Jian-Zhe; Xie, Mei-Qing; Mo, Dan; Zhao, Xiao-Fang; Yu, Shu-Yi; Liu, Li-Juan; Wu, Cheng; Yang, Yang

    2016-01-01

    The inflammatory response is important in the pathogenesis of myocardial ischemia/reperfusion (I/R) injury. Picroside II, the primary active constituent of Picrorhizae, has been reported to protect the myocardium from I/R-induced injury, however, the exact mechanism underlying these protective effects remains unclear. The aim of the present study was to investigate the mechanism underlying the protective effects of picroside II on I/R-induced myocardial injury. Adult male Sprague-Dawley rats underwent 1 h left coronary artery occlusion followed by 3 h reperfusion. Picroside II was administered (10 mg/kg) via the tail vein 30 min prior to left coronary artery occlusion. The results revealed that pretreatment of picroside II could significantly alleviate I/R-induced myocardial injury concomitantly with a decrease in inflammatory factor production. In addition, picroside II was also able to decrease high mobility group box 1 (HMGB1) expression, and release and downregulate the expression of the receptor for advanced glycation end products (RAGE), toll-like receptor (TLR)-2 and TLR-4. Furthermore, picroside II was able to inhibit nuclear factor-κB (NF-κB) activation. The results indicated that the protective effect of picroside II on I/R-induced myocardial injury was associated, at least partly, with inhibition of the inflammatory response by suppressing the HMGB1-RAGE/TLR-2/TLR-4-NF-κB signaling pathway. PMID:28105084

  14. Montanide ISA™ 201 adjuvanted FMD vaccine induces improved immune responses and protection in cattle.

    PubMed

    Dar, Pervaiz; Kalaivanan, Ramya; Sied, Nuru; Mamo, Bedaso; Kishore, Subodh; Suryanarayana, V V S; Kondabattula, Ganesh

    2013-07-18

    Despite significant advancements in modern vaccinology, inactivated whole virus vaccines for foot-and-mouth disease (FMD) remain the mainstay for prophylactic and emergency uses. Many efforts are currently devoted to improve the immune responses and protective efficacy of these vaccines. Adjuvants, which are often used to potentiate immune responses, provide an excellent mean to improve the efficacy of FMD vaccines. This study aimed to evaluate three oil adjuvants namely: Montanide ISA-201, ISA-206 (SEPPIC, France) and GAHOL (an in-house developed oil-adjuvant) for adjuvant potential in inactivated FMD vaccine. Groups of cattle (n=6) were immunized once intramuscularly with monovalent FMDV 'O' vaccine formulated in these adjuvants, and humoral (serum neutralizing antibody, IgG1 and IgG2) and cellular (lymphoproliferation) responses were measured. Montanide ISA-201 adjuvanted vaccine induced earlier and higher neutralizing antibody responses as compared to the two other adjuvants. All the adjuvants induced mainly serum IgG1 isotype antibody responses against FMDV. However, Montanide ISA-201 induced relatively higher IgG2 responses than the other two adjuvants. Lymphoproliferative responses to recall FMDV antigen were relatively higher with Montanide ISA-201, although not always statistically significant. On homologous FMDV challenge at 30 days post-vaccination, 100% (6/6) of the cattle immunized with Montanide-201 adjuvanted vaccine were protected, which was superior to those immunized with ISA-206 (66.6%, 4/6) or GAHOL adjuvanted vaccine (50%, 3/6). Virus replication following challenge infection, as determined by presence of the viral genome in oropharynx and non-structural protein serology, was lowest with Montanide ISA-201 adjuvant. Collectively, these results indicate that the Montanide ISA-201 adjuvanted FMD vaccine induces enhanced immune responses and protective efficacy in cattle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Protective effect of resveratrol in endotoxemia-induced acute phase response in rats.

    PubMed

    Sebai, Hichem; Ben-Attia, Mossadok; Sani, Mamane; Aouani, Ezzedine; Ghanem-Boughanmi, Néziha

    2009-04-01

    Lipopolysaccharide (LPS), a glycolipid component of the cell wall of gram-negative bacteria can elicit a systemic inflammatory process leading to septic shock and death. Acute phase response is characterized by fever, leucocytosis, thrombocytopenia, altered metabolic responses and redox balance by inducing excessive reactive oxygen species (ROS) generation. Resveratrol (trans-3,5,4' trihydroxystilbene) is a natural polyphenol exhibiting antioxidant and anti-inflammatory properties. We investigated the protective effect of resveratrol on endotoxemia-induced acute phase response in rats. When acutely administered by i.p. route, resveratrol (40 mg/kg b.w.) counteracted the effect of a single injection of LPS (4 mg/kg b.w.) which induced fever, a decrease in white blood cells (WBC) and platelets (PLT) counts. When i.p. administered during 7 days at 20 mg/kg per day (subacute treatment), resveratrol abrogated LPS-induced erythrocytes lipoperoxidation and catalase (CAT) activity depression to control levels. In the plasma compartment, LPS increased malondialdehyde (MDA) via nitric monoxide (NO) elevation and decreased iron level. All these deleterious LPS effects were reversed by a subacute resveratrol pre-treatment via a NO independent way. Resveratrol exhibited potent protective effect on LPS-induced acute phase response in rats.

  16. Total Leishmania antigens with Poly(I:C) induce Th1 protective response.

    PubMed

    Sanchez, M V; Eliçabe, R J; Di Genaro, M S; Germanó, M J; Gea, S; García Bustos, M F; Salomón, M C; Scodeller, E A; Cargnelutti, D E

    2017-11-01

    Our proposal was to develop a vaccine based on total Leishmania antigens (TLA) adjuvanted with polyinosinic-polycytidylic acid [Poly(I:C)] able to induce a Th1 response which can provide protection against Leishmania infection. Mice were vaccinated with two doses of TLA-Poly(I:C) administered by subcutaneous route at 3-week interval. Humoral and cellular immune responses induced by the immunization were measured. The protective efficacy of the vaccine was evaluated by challenging mice with infective promastigotes of Leishmania (Leishmania) amazonensis into the footpad. Mice vaccinated with TLA-Poly(I:C) showed a high anti-Leishmania IgG titre, as well as increased IgG1 and IgG2a subclass titres compared with mice vaccinated with the TLA alone. The high IgG2a indicated a Th1 bias response induced by the TLA-Poly(I:C) immunization. Accordingly, the cellular immune response elicited by the formulation was characterized by an increased production of IFN-γ and no significant production of IL-4. The TLA-Poly(I:C) immunization elicited good protection, which was associated with decreased footpad swelling, a lower parasite load and a reduced histopathological alteration in the footpad. Our findings demonstrate a promising vaccine against cutaneous leishmaniasis that is relatively economic and easy to develop and which should be taken into account for preventing leishmaniasis in developing countries. © 2017 John Wiley & Sons Ltd.

  17. Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells.

    PubMed

    Cano, Marisol; Wang, Lei; Wan, Jun; Barnett, Bradley P; Ebrahimi, Katayoon; Qian, Jiang; Handa, James T

    2014-04-01

    How cells degenerate from oxidative stress in aging-related disease is incompletely understood. This study's intent was to identify key cytoprotective pathways activated by oxidative stress and determine the extent of their protection. Using an unbiased strategy with microarray analysis, we found that retinal pigmented epithelial (RPE) cells treated with cigarette smoke extract (CSE) had overrepresented genes involved in the antioxidant and unfolded protein response (UPR). Differentially expressed antioxidant genes were predominantly located in the cytoplasm, with no induction of genes that neutralize superoxide and H2O2 in the mitochondria, resulting in accumulation of superoxide and decreased ATP production. Simultaneously, CSE induced the UPR sensors IRE1α, p-PERK, and ATP6, including CHOP, which was cytoprotective because CHOP knockdown decreased cell viability. In mice given intravitreal CSE, the RPE had increased IRE1α and decreased ATP and developed epithelial-mesenchymal transition, as suggested by decreased LRAT abundance, altered ZO-1 immunolabeling, and dysmorphic cell shape. Mildly degenerated RPE from early age-related macular degeneration (AMD) samples had prominent IRE1α, but minimal mitochondrial TOM20 immunolabeling. Although oxidative stress is thought to induce an antioxidant response with cooperation between the mitochondria and the ER, herein we show that mitochondria become impaired sufficiently to induce epithelial-mesenchymal transition despite a protective UPR. With similar responses in early AMD samples, these results suggest that mitochondria are vulnerable to oxidative stress despite a protective UPR during the early phases of aging-related disease.

  18. Mycobacterium-Induced Potentiation of Type 1 Immune Responses and Protection against Malaria Are Host Specific

    PubMed Central

    Page, Kathleen R.; Jedlicka, Anne E.; Fakheri, Benjamin; Noland, Gregory S.; Kesavan, Anup K.; Scott, Alan L.; Kumar, Nirbhay; Manabe, Yukari C.

    2005-01-01

    Malaria and tuberculosis are endemic in many regions of the world, and coinfection with the two pathogens is common. In this study, we examined the effects of long- and short-term infection with Mycobacterium tuberculosis on the course of a lethal form of murine malaria in resistant (C57BL/6) and susceptible (BALB/c) mice. C57BL/6 mice coinfected with M. tuberculosis CDC1551 and Plasmodium yoelii 17XL had a lower peak parasitemia and increased survival compared to mice infected with P. yoelii 17XL alone. Splenic microarray analysis demonstrated potentiation of type 1 immune responses in coinfected C57BL/6 mice, which was especially prominent 5 days after infection with P. yoelii 17XL. Splenocytes from coinfected C57BL/6 mice produced higher levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha than splenocytes from mice infected with either pathogen alone. Interestingly, mycobacterium-induced protection against lethal P. yoelii is mouse strain specific. BALB/c mice were significantly more susceptible than C57BL/6 mice to infection with P. yoelii 17XL and were not protected against lethal malaria by coinfection with M. tuberculosis. In addition, M. tuberculosis did not augment IFN-γ responses in BALB/c mice subsequently infected with P. yoelii 17XL. These data indicate that M. tuberculosis-induced potentiation of type 1 immune responses is associated with protection against lethal murine malaria. PMID:16299335

  19. Adaptive antioxidant response protects dermal fibroblasts from UVA-induced phototoxicity.

    PubMed

    Meewes, C; Brenneisen, P; Wenk, J; Kuhr, L; Ma, W; Alikoski, J; Poswig, A; Krieg, T; Scharffetter-Kochanek, K

    2001-02-01

    In response to the attack of reactive oxygen species (ROS) produced upon UV irradiation, the skin has developed a complex antioxidant defense system. Here we report that, in addition to the previously published induction of manganese superoxide dismutase (MnSOD) activity, single and, to a higher extent, repetitive low-dose UVA irradiation also leads to a substantial upregulation of glutathione peroxidase (GPx) activity. This concomitant adaptive response of two antioxidant enzymes acting in the same detoxification pathway coincided with the protection from high-UVA-dose-induced cytotoxicity conferred by low-dose UVA preirradiation. Whereas an interval of 24 h did not, an interval of 12 h did lead to the induction of MnSOD activity and, under selenium-supplemented conditions, of GPx activity as well, conferring definite cellular protection from UVA-induced phototoxicity. Moreover, under selenium-deficient conditions, which abrogate the UVA-mediated induction of GPx activity, adaptive protection against the cytotoxic effects of high UVA doses was significantly lower compared with selenium supplementation. Isolated 4.6-fold overexpression of MnSOD activity in stably transfected fibroblasts led to specific resistance from UVA-mediated phototoxicity under selenium-deficient conditions. Collectively, these data indicate that the concomitant induction of MnSOD and GPx activity is related to the optimal adaptive protection from photooxidative damage. This adaptive antioxidant protection clearly depends on the irradiation interval and a sufficient selenium concentration, findings that may have important implications for the improvement of photoprotective and phototherapeutic strategies in medicine.

  20. Immune responses and protection induced by Brucella suis S2 bacterial ghosts in mice.

    PubMed

    Liu, Jun; Li, Yi; Sun, Yang; Ji, Xue; Zhu, Lingwei; Guo, Xuejun; Zhou, Wei; Zhou, Bo; Liu, Shuang; Zhang, Ruian; Feng, Shuzhang

    2015-08-15

    With the purpose of generating Brucella suis bacterial ghosts and investigating the immunogenicity of bacterial ghosts as a vaccine candidate, the lysis gene E and temperature-sensitive regulator cassette were cloned into a shuttle plasmid, pBBR1MCS-2, for construction of a recombinant temperature-sensitive shuttle lysis plasmid, pBBR1MCS-E. pBBR1MCS-E was then introduced into attenuated B. suis live vaccine S2 bacteria, and the resultant transformants were used for production of B. suis ghosts (BSGs) by inducing lysis gene E expression. The BSGs were characterized by observing their morphology by transmission electron microscopy. The safety and immunogenicity of BSGs were further evaluated using a murine model, the result suggested that BSG was as safe as formalin-killed B. suis. In mice, BSG demonstrated a similar capacity of inducing pathogen-specific serum IgG antibody response, spleen CD3(+) and CD4(+) T cell responses, induce secretion of gamma interferon and interleukin-4, and protection levels against Brucella melitensis 16M challenge, as the attenuated B. suis live vaccine. These data suggesting that BSG could confer protection against Brucella infection in a mouse model of disease and may be developed as a new vaccine candidate against Brucella infection.

  1. Protective effects of leucine against lipopolysaccharide-induced inflammatory response in Labeo rohita fingerlings.

    PubMed

    Giri, Sib Sankar; Sen, Shib Sankar; Jun, Jin Woo; Sukumaran, Venkatachalam; Park, Se Chang

    2016-05-01

    The present study investigated the protective effects of leucine against lipopolysaccharide (LPS)-induced inflammatory responses in Labeo rohita (rohu) in vivo and in vitro. Primary hepatocytes, isolated from the hepatopancreas, were exposed to different concentrations of LPS for 24 h to induce an inflammatory response, and the protective effects of leucine against LPS-induced inflammation were studied. Finally, we investigated the efficiency of dietary leucine supplementation in attenuating an immune challenge induced by LPS in vivo. Exposure of cells to 10-25 μg mL(-1) of LPS for 24 h resulted in a significant production of nitric oxide and release of lactate dehydrogenase to the medium, whereas cell viability and protein content were reduced (p < 0.05). LPS exposure (10 μg mL(-1)) increased mRNA levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-8 in vitro (p < 0.05). However, pretreatment with leucine prevented the LPS-induced upregulation of TNF-α, IL-1β and IL-8 mRNAs by downregulating TLR4, MyD88, NF-κBp65, and MAPKp38 mRNA expression. Interestingly, mRNA expression of the anti-inflammatory cytokine, IL-10, which was increased by LPS treatment, was further enhanced (p < 0.05) by leucine pretreatment. The enhanced expression of IL-10 might inhibit the production of other pro-inflammatory cytokines. It was found that leucine pretreatment attenuated the excessive activation of LPS-induced TLR4-MyD88 signaling as manifested by lower level of TLR4, MyD88, MAPKp38, NF-κBp65 and increased level of IκB-α protein in leucine pre-treatment group. In vivo experiments demonstrated that leucine pre-supplementation could protect fish against LPS-induced inflammation through an attenuation of TLR4-MyD88 signaling pathway. Taken together, we propose that leucine pre-supplementation decreases LPS-induced immune damage in rohu by enhancing the expression of IL-10 and by regulating the TLR4-MyD88 signaling pathways.

  2. Role of type I interferon in inducing a protective immune response: perspectives for clinical applications.

    PubMed

    Rizza, Paola; Moretti, Franca; Capone, Imerio; Belardelli, Filippo

    2015-04-01

    Type I IFNs (IFN-I) are antiviral cytokines endowed with many biological effects, including antitumor activity. Over the last 15 years, an ensemble of studies has revealed that these cytokines play a crucial role in the induction of a protective antitumor immune response. Early in vivo studies in mouse models have been instrumental for understanding the IFN-I-induced host-mediated mechanisms. IFN-α is currently recognized as a powerful inducer of the differentiation/activation of dendritic cells (DCs) and today IFN-α-conditioned DCs represent promising DC candidates for the development of therapeutic cancer vaccines. Moreover, data from pilot clinical trials support the concept of using IFN-α as an enhancer of the response of patients to cancer vaccines. Notably, endogenous IFN-I production does also play a critical role in the antitumor response to some chemotherapeutic agents. Thus, we can now envisage new strategies of clinical use of IFN-α, based on the injection of IFN-conditioned cells as well as the usage of these cytokines as cancer vaccine adjuvants, alone or in combination with other treatments (including epigenetic drugs) to induce an immunogenic cell death and a long lasting antitumor response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    PubMed

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish

    PubMed Central

    Saade, Carole J.; Alvarez-Delfin, Karen; Fadool, James M.

    2013-01-01

    Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second order neurons, bipolar cells and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6cw59 larval retina but not rod degeneration in the Xops:mCFPq13 line. In adults, rods and cones are present in approximately equal numbers, and in pde6cw59 mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once-blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2bp22bbtl or six7 morpholino-injected larvae protect from pde6cw59-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease. PMID:23365220

  5. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish.

    PubMed

    Saade, Carole J; Alvarez-Delfin, Karen; Fadool, James M

    2013-01-30

    Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry, and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second-order neurons, bipolar cells, and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6c(w59) larval retina but not rod degeneration in the Xops:mCFP(q13) line. In adults, rods and cones are present in approximately equal numbers, and in pde6c(w59) mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2b(p25bbtl) or six7 morpholino-injected larvae protect from pde6c(w59)-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes, provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease.

  6. Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis

    PubMed Central

    Kaushal, Deepak; Foreman, Taylor W.; Gautam, Uma S.; Alvarez, Xavier; Adekambi, Toidi; Rangel-Moreno, Javier; Golden, Nadia A.; Johnson, Ann-Marie F.; Phillips, Bonnie L.; Ahsan, Muhammad H.; Russell-Lodrigue, Kasi E.; Doyle, Lara A.; Roy, Chad J.; Didier, Peter J.; Blanchard, James L.; Rengarajan, Jyothi; Lackner, Andrew A.; Khader, Shabaana A.; Mehra, Smriti

    2015-01-01

    Tuberculosis (TB) is a global pandaemic, partially due to the failure of vaccination approaches. Novel anti-TB vaccines are therefore urgently required. Here we show that aerosol immunization of macaques with the Mtb mutant in SigH (MtbΔsigH) results in significant recruitment of inducible bronchus-associated lymphoid tissue (iBALT) as well as CD4+ and CD8+ T cells expressing activation and proliferation markers to the lungs. Further, the findings indicate that pulmonary vaccination with MtbΔsigH elicited strong central memory CD4+ and CD8+ T-cell responses in the lung. Vaccination with MtbΔsigH results in significant protection against a lethal TB challenge, as evidenced by an approximately three log reduction in bacterial burdens, significantly diminished clinical manifestations and granulomatous pathology and characterized by the presence of profound iBALT. This highly protective response is virtually absent in unvaccinated and BCG-vaccinated animals after challenge. These results suggest that future TB vaccine candidates can be developed on the basis of MtbΔsigH. PMID:26460802

  7. Oxidative stress response induced by atrazine in Palaemonetes argentinus: the protective effect of vitamin E.

    PubMed

    Griboff, Julieta; Morales, David; Bertrand, Lidwina; Bonansea, Rocío Inés; Monferrán, Magdalena Victoria; Asis, Ramón; Wunderlin, Daniel Alberto; Amé, María Valeria

    2014-10-01

    The widespread contamination and persistence of the herbicide atrazine residues in the environment resulted in the exposure of non-target organisms. The present study was undertaken to investigate the effect of atrazine in the response of oxidative stress biomarkers in the freshwater shrimp Palaemonetes argentinus and the protective effect of vitamin-E against atrazine-induced toxicity. Therefore, two batches of P. argentinus were fed for 21 days with a commercial food enriched in proteins (D1) or with D2, composed of D1 enriched with vitamin-E (6.8 and 16.0mg% of vitamin-E, respectively). Subsequently, half of the individuals of each group were exposed to atrazine (0.4mgL(-1)) for 24h and the others remained as controls. Atrazine promoted oxidative stress response in P. argentinus fed with D1 as indicated by enhanced H2O2 content and induction of superoxide dismutase, glutathione-S-transferases and glutathione reductase. This antioxidant activity would prevent the increment of thiobarbituric acid reactive substances in the shrimp tissues. P. argentinus fed with D2 reversed the response of the biomarkers measured. However, the activation of antioxidants response had an energetic cost, which was revealed by a decrease in lipids storage in shrimps. These results show the modulatory effect of vit-E on oxidative stress and its potential use as an effective antioxidant to be applied in chemoprotection strategies during aquaculture.

  8. The protective immune response against infectious bronchitis virus induced by multi-epitope based peptide vaccines.

    PubMed

    Yang, Tai; Wang, Hong-Ning; Wang, Xue; Tang, Jun-Ni; Lu, Dan; Zhang, Yun-Fei; Guo, Zi-Cheng; Li, Yu-Ling; Gao, Rong; Kang, Run-Min

    2009-07-01

    Peptide vaccine was found to be an effective and powerful approach to a variety of pathogens. To explore multi-epitope based peptide vaccines against infectious bronchitis virus (IBV), the immunogenic peptides were fused to the 3' terminal of glutathione S transferase gene (GST) and expressed in Escherichia coli. ELISA and Western blot analysis showed that the purified fusion proteins had excellent immune activity with chicken anti-IBV serum. During the vaccination course, the candidate peptide vaccines induced strong humoral and cellular response, and provided up to 80.0% immune protection, while all non-immunized chickens in the negative control group manifested obvious typical symptoms and died after virus challenge. Our finding provides a new way to develop multi-epitope based peptide vaccine against IBV.

  9. Immunization with truncated envelope protein of Zika virus induces protective immune response in mice.

    PubMed

    Han, Jian-Feng; Qiu, Yang; Yu, Jiu-Yang; Wang, Hong-Jiang; Deng, Yong-Qiang; Li, Xiao-Feng; Zhao, Hui; Sun, Han-Xiao; Qin, Cheng-Feng

    2017-08-30

    The global spread of Zika virus (ZIKV) as well as its unexpected link to infant microcephaly have resulted in serious public health concerns. No antiviral drugs against ZIKV is currently available, and vaccine development is of high priority to prepare for potential ZIKV pandemic. In the present study, a truncated E protein with the N-terminal 90% region reserved (E90) from a contemporary ZIKV strain was cloned and expressed in Escherichia coli, purified by a Ni-NTA column, and characterized by Western blotting assays. Immunization with recombinant E90 induced robust ZIKV-specific humoral response in adult BALB/c mice. Passive transfer of the antisera from E90-immunized mice conferred full protection against lethal ZIKV challenge in a neonatal mice model. Our results indicate that recombinant ZIKV E90 described here represents as a promising ZIKV subunit vaccine that deserves further clinical development.

  10. A peptide mimotope of type 8 pneumococcal capsular polysaccharide induces a protective immune response in mice.

    PubMed

    Buchwald, Ulrike K; Lees, Andrew; Steinitz, Michael; Pirofski, Liise-Anne

    2005-01-01

    Increasing antibiotic resistance and a rising patient population at risk for infection due to impaired immunity underscore the importance of vaccination against pneumococci. However, available capsular polysaccharide vaccines are often poorly immunogenic in patients at risk for pneumococcal disease. The goal of this study was to explore the potential of peptide mimotopes to function as alternative vaccine antigens to elicit a type-specific antibody response to pneumococci. We used a human monoclonal immunoglobulin A (IgA) antibody (NAD) to type 8 Streptococcus pneumoniae capsular polysaccharide (type 8 PS) to screen a phage display library, and the phage PUB1 displaying the peptide FHLPYNHNWFAL was selected after three rounds of biopanning. Inhibition studies with phage-displayed peptide or the peptide PUB1 and type 8 PS showed that PUB1 is a mimetic of type 8 PS. PUB1 conjugated to tetanus toxoid (PUB1-TT) induced a type 8 PS-specific antibody response in BALB/c mice, further defining it as a mimotope of type 8 PS. The administration of immune sera obtained from PUB1-TT-immunized mice earlier (days 14 and 21) and later (days 87 and 100) after primary and reimmunization resulted in a highly significant prolongation of the survival of naive mice after pneumococcal challenge compared to controls. The survival of PUB1-TT-immunized mice was also prolonged after pneumococcal challenge nearly 4 months after primary immunization. The efficacy of PUB1-TT-induced immune sera provides proof of principle that a mimotope-induced antibody response can protect against pneumococci and suggests that peptide mimotopes selected by type-specific human antibodies could hold promise as immunogens for pneumococci.

  11. Borrelia burgdorferi-pulsed dendritic cells induce a protective immune response against tick-transmitted spirochetes.

    PubMed Central

    Mbow, M L; Zeidner, N; Panella, N; Titus, R G; Piesman, J

    1997-01-01

    Borrelia burgdorferi-pulsed dendritic cells and epidermal cells were able to initiate the production of anti-outer surface protein A (OspA) antibody in vitro with normal T and B cells from either BALB/c or C3H/HeJ mice. Inhibition of anti-B. burgdorferi antibody production was observed after 3 days, but not after 2 days, of exposure of the antigen-presenting cells to tumor necrosis factor alpha +/- granulocyte-macrophage colony-stimulating factor. Furthermore, splenic dendritic cells pulsed in vitro with live B. burgdorferi spirochetes and then adoptively transferred into naive syngeneic mice mediated a protective immune response against tick-transmitted spirochetes. This protection appeared not to be due to killing of spirochetes in the feeding ticks, since ticks fed to repletion on B. burgdorferi-pulsed dendritic cell-sensitized mice still harbored live spirochetes. Western blot analysis of the sera collected from dendritic cell-sensitized mice demonstrated that the mice responded to a limited set of B. burgdorferi antigens, including OspA, -B, and -C compared to control groups that either had received unpulsed dendritic cells or were not treated. Finally, mice in the early stage of B. burgdorferi infection were able to develop anti-OspA antibody following injection with B. burgdorferi-pulsed dendritic cells. Our results demonstrate for the first time that adoptive transfer of B. burgdorferi-pulsed dendritic cells induces a protective immune response against tick-transmitted B. burgdorferi and stimulates the production of antibodies specific for a limited set of B. burgdorferi antigens in vivo. PMID:9234802

  12. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses.

    PubMed

    Chowdhury, Sayantani; Sinha, Krishnendu; Banerjee, Sharmistha; Sil, Parames C

    2016-11-12

    Oxidative stress, ER stress, inflammation, and apoptosis results in the pathogenesis of cisplatin-induced cardiotoxicity. The present study was designed to investigate the signaling mechanisms involved in the ameliorating effect of taurine, a conditionally essential amino acid, against cisplatin-mediated cardiac ER stress dependent apoptotic death and inflammation. Mice were simultaneously treated with taurine (150 mg kg(-1) body wt, i.p.) and cisplatin (10 mg kg(-1) body wt, i.p.) for a week. Cisplatin exposure significantly altered serum creatine kinase and troponin T levels. In addition, histological studies revealed disintegration in the normal radiation pattern of cardiac muscle fibers. However, taurine administration could abate such adverse effects of cisplatin. Taurine administration significantly mitigated the reactive oxygen species production, alleviated the overexpression of nuclear factor-κB (NF-κB), and inhibited the elevation of proinflammatoy cytokines, adhesion molecules, and chemokines. Cisplatin exposure resulted in the unfolded protein response (UPR)-regulated CCAAT/enhancer binding protein (CHOP) up-regulation, induction of GRP78: a marker of ER stress and eIF2α signaling. Increase in calpain-1 expression level, activation of caspase-12 and caspase-3, cleavage of the PARP protein as well as the inhibition of antiapoptotic protein Bcl-2 were reflected on cisplatin-triggered apoptosis. Taurine could, however, combat against such cisplatin induced cardiac-abnormalities. The above mentioned findings suggest that taurine plays a beneficial role in providing protection against cisplatin-induced cardiac damage by modulating inflammatory responses and ER stress. © 2016 BioFactors, 42(6):647-664, 2016.

  13. Biofilm Matrix Exoproteins Induce a Protective Immune Response against Staphylococcus aureus Biofilm Infection

    PubMed Central

    Gil, Carmen; Solano, Cristina; Burgui, Saioa; Latasa, Cristina; García, Begoña; Toledo-Arana, Alejandro

    2014-01-01

    The Staphylococcus aureus biofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation of S. aureus biofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response against S. aureus infections. By using proteomic approaches, we characterized the exoproteomes of exopolysaccharide-based and protein-based biofilm matrices produced by two clinical S. aureus strains. Remarkably, results showed that independently of the nature of the biofilm matrix, a common core of secreted proteins is contained in both types of exoproteomes. Intradermal administration of an exoproteome extract of an exopolysaccharide-dependent biofilm induced a humoral immune response and elicited the production of interleukin 10 (IL-10) and IL-17 in mice. Antibodies against such an extract promoted opsonophagocytosis and killing of S. aureus. Immunization with the biofilm matrix exoproteome significantly reduced the number of bacterial cells inside a biofilm and on the surrounding tissue, using an in vivo model of mesh-associated biofilm infection. Furthermore, immunized mice also showed limited organ colonization by bacteria released from the matrix at the dispersive stage of the biofilm cycle. Altogether, these data illustrate the potential of biofilm matrix exoproteins as a promising candidate multivalent vaccine against S. aureus biofilm-associated infections. PMID:24343648

  14. Regulatory T cells are protective in systemic inflammation response syndrome induced by zymosan in mice.

    PubMed

    Jia, Wenyuan; Cao, Li; Yang, Shuangwen; Dong, Hailong; Zhang, Yun; Wei, Haidong; Jing, Wei; Hou, Lichao; Wang, Chen

    2013-01-01

    Systemic inflammation response syndrome (SIRS) is a key and mainly detrimental process in the pathophysiology of multiple organ dysfunction syndrome. The balance of pro-inflammation and anti-inflammation controls the initiation and development of SIRS. However, the endogenous counterregulatory immune mechanisms that are involved in the development of SIRS are not well understood. CD4(+)CD25(+)Foxp3 (forkhead box P3)(+) regulatory T lymphocytes (Treg cells) play a key role in the immunological balance of the body. Thus, our aim was to investigate the contribution of these key immunomodulators (Treg cells) to the immune dysfunction that is observed in zymosan-induced SIRS in mice. We first evaluated the level of Treg cells in the lung of mice 6 h, 1 d, 2 d, 3 d, 5 d, and 7 d after the injection of zymosan or normal saline by western blot, real-time PCR and flow cytometry. We found that the number of Treg cells and the levels of the Treg cell-related transcription factor (Foxp3) and cytokines (IL-10) in the zymosan-treated group significantly decreased on day 1 and day 2 and significantly increased on day 5 compared with the NS-treated group. In the next experiment, the mice were injected with 200 μg of anti-CD25 mAb (clone PC61) to deplete the Treg cells and then injected with zymosan 2 days later. The number of Treg cells decreased by more than 50% after the injection of the PC61 mAb. In addition, the expression of the anti-inflammatory cytokine IL-10 also decreased. Moreover, the depletion of the Treg cells profoundly increased the mice'mortality and the degree of lung tissue injury. In conclusion, Treg cells tend to play a protective role in pathogenesis of the zymosan-induced generalized inflammation, and IL-10 signaling is associated with their immunomodulatory effect.

  15. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.

    PubMed

    Schützendübel, Andres; Polle, Andrea

    2002-05-01

    cadmium results in unspecific necrosis. Plants in certain mycorrhizal associations are less sensitive to cadmium stress than non-mycorrhizal plants. Data about antioxidative systems in mycorrhizal fungi in pure culture and in symbiosis are scarce. The present results indicate that mycorrhization stimulated the phenolic defence system in the Paxillus-Pinus mycorrhizal symbiosis. Cadmium-induced changes in mycorrhizal roots were absent or smaller than those in non-mycorrhizal roots. These observations suggest that although changes in rhizospheric conditions were perceived by the root part of the symbiosis, the typical Cd-induced stress responses of phenolics were buffered. It is not known whether mycorrhization protected roots from Cd-induced injury by preventing access of cadmium to sensitive extra- or intracellular sites, or by excreted or intrinsic metal-chelators, or by other defence systems. It is possible that mycorrhizal fungi provide protection via GSH since higher concentrations of this thiol were found in pure cultures of the fungi than in bare roots. The development of stress-tolerant plant-mycorrhizal associations may be a promising new strategy for phytoremediation and soil amelioration measures.

  16. Sublingual Immunization Protects against Helicobacter pylori Infection and Induces T and B Cell Responses in the Stomach▿

    PubMed Central

    Raghavan, Sukanya; Östberg, Anna Karin; Flach, Carl-Fredrik; Ekman, Annelie; Blomquist, Margareta; Czerkinsky, Cecil; Holmgren, Jan

    2010-01-01

    Sublingual (SL) immunization has been described as an effective novel way to induce mucosal immune responses in the respiratory and genital tracts. We examined the potential of SL immunization against Helicobacter pylori to stimulate immune responses in the gastrointestinal mucosa and protect against H. pylori infection. Mice received two SL immunizations with H. pylori lysate antigens and cholera toxin as an adjuvant, and after challenge with live H. pylori bacteria, their immune responses and protection were evaluated, as were immune responses prior to challenge. SL immunization induced enhanced proliferative responses to H. pylori antigens in cervicomandibular lymph nodes and provided at least the same level of immune responses and protection as corresponding intragastric immunization. Protection in SL-immunized mice was associated with strong H. pylori-specific serum IgG and IgA antibody responses in the stomach and intestine, with strong proliferation and gamma interferon (IFN-γ) and interleukin-17 (IL-17) production by spleen and mesenteric lymph node T cells stimulated with H. pylori antigens in vitro, and with increased IFN-γ and IL-17 gene expression in the stomach compared to levels in infected unimmunized mice. Immunohistochemical studies showed enhanced infiltration of CD4+ T cells and CD19+ B cells into the H. pylori-infected stomach mucosa of SL-immunized but not unimmunized H. pylori-infected mice, which coincided with increased expression of the mucosal addressin cell adhesion molecule (MAdCAM-1) and T and B cell-attracting chemokines CXCL10 and CCL28. We conclude that, in mice, SL immunization can effectively induce protection against H. pylori infection in association with strong T and B cell infiltration into the stomach. PMID:20696831

  17. Immunization with Escherichia coli outer membrane vesicles protects bacteria-induced lethality via Th1 and Th17 cell responses.

    PubMed

    Kim, Oh Youn; Hong, Bok Sil; Park, Kyong-Su; Yoon, Yae Jin; Choi, Seng Jin; Lee, Won Hee; Roh, Tae-Young; Lötvall, Jan; Kim, Yoon-Keun; Gho, Yong Song

    2013-04-15

    Outer membrane vesicles (OMVs), secreted from Gram-negative bacteria, are spherical nanometer-sized proteolipids enriched with outer membrane proteins. OMVs, also known as extracellular vesicles, have gained interests for use as nonliving complex vaccines and have been examined for immune-stimulating effects. However, the detailed mechanism on how OMVs elicit the vaccination effect has not been studied extensively. In this study, we investigated the immunological mechanism governing the protective immune response of OMV vaccines. Immunization with Escherichia coli-derived OMVs prevented bacteria-induced lethality and OMV-induced systemic inflammatory response syndrome. As verified by adoptive transfer and gene-knockout studies, the protective effect of OMV immunization was found to be primarily by the stimulation of T cell immunity rather than B cell immunity, especially by the OMV-Ag-specific production of IFN-γ and IL-17 from T cells. By testing the bacteria-killing ability of macrophages, we also demonstrated that IFN-γ and IL-17 production is the main factor promoting bacterial clearances. Our findings reveal that E. coli-derived OMV immunization effectively protects bacteria-induced lethality and OMV-induced systemic inflammatory response syndrome primarily via Th1 and Th17 cell responses. This study therefore provides a new perspective on the immunological detail regarding OMV vaccination.

  18. Protective role of systemic furin in immune response-induced arthritis.

    PubMed

    Lin, Hilène; Ah Kioon, Marie-Dominique; Lalou, Claude; Larghero, Jerome; Launay, Jean-Marie; Khatib, Abdel-Majid; Cohen-Solal, Martine

    2012-09-01

    Rheumatoid arthritis (RA) is an autoimmune joint disease associated with chronic inflammation of the synovium that causes profound damage of joints. Inflammation results in part from the influx of immune cells secreting inflammatory cytokines and the reduction in the number of Treg cells. We undertook this study to assess the effect of furin, a proteinase implicated in the proteolytic activity of various precursor proteins and involved in the regulation of both proteinase maturation and immune cells, in an experimental model of RA. The effect of furin and its inhibitor α1-PDX was tested in mice with collagen-induced arthritis (CIA). Joints were processed for histology and protein expression. Levels of cytokines were measured in joint tissue, and Treg cell numbers were measured in spleens. Furin expression and activity were high in the synovial pannus in RA patients and mice with CIA. Systemic administration of furin prevented increases in the arthritis score, joint destruction, and bone loss, in contrast to systemic administration of the furin inhibitor α1-PDX, which enhanced these parameters. By preventing the development of synovial pannus, furin reduced the expression of metalloproteinases in the joints. In contrast, α1-PDX enhanced synovial proliferation and the expression and activity of matrix metalloproteinases. Furthermore, furin reversed the local Th1/Th2 balance and restored the number of Treg cells in the spleen, indicating mediation by immune cells. These findings show the protective role of exogenous furin against RA, mediated by an immune response. The data suggest the potential therapeutic use of furin or its derivatives in autoimmune diseases including RA. Copyright © 2012 by the American College of Rheumatology.

  19. PTEN Activation by DNA Damage Induces Protective Autophagy in Response to Cucurbitacin B in Hepatocellular Carcinoma Cells

    PubMed Central

    Niu, Yanan; Sun, Wen; Lu, Jin-Jian; Pei, Lixia

    2016-01-01

    Cucurbitacin B (Cuc B), a natural product, induced both protective autophagy and DNA damage mediated by ROS while the detailed mechanisms remain unclear. This study explored the mechanism of Cuc B-induced DNA damage and autophagy. Cuc B decreased cell viability in concentration- and time-dependent manners. Cuc B caused long comet tails and increased expression of γ-H2AX, phosphorylation of ATM/ATR, and Chk1/Chk2. Cuc B induced autophagy as evidenced by monodansylcadaverine (MDC) staining, increased expression of LC3II, phosphorylated ULK1, and decreased expression of phosphorylated AKT, mTOR. Cuc B induced apoptosis mediated by Bcl-2 family proteins and caspase activation. Furthermore, Cuc B induced ROS formation, which was inhibited by N-acetyl-L-cysteine (NAC). NAC pretreatment dramatically reversed Cuc B-induced DNA damage, autophagy, and apoptosis. Cuc B-induced apoptosis was reversed by NAC but enhanced by 3-methyladenine (3-MA), chloroquine (CQ), and silencing phosphatase and tensin homolog (PTEN). 3-MA and CQ showed no effect on Cuc B-induced DNA damage. In addition, Cuc B increased PTEN phosphorylation and silence PTEN restored Cuc B-induced autophagic protein expressions without affecting DNA damage. In summary, Cuc B induced DNA damage, apoptosis, and protective autophagy mediated by ROS. PTEN activation in response to DNA damage bridged DNA damage and prosurvival autophagy. PMID:28042385

  20. The Recall Response Induced by Genital Challenge with Chlamydia muridarum Protects the Oviduct from Pathology but Not from Reinfection

    PubMed Central

    Riley, Melissa M.; Zurenski, Matthew A.; Frazer, Lauren C.; O'Connell, Catherine M.; Andrews, Charles W.; Mintus, Margaret

    2012-01-01

    The significant morbidities of ectopic pregnancy and infertility observed in women after Chlamydia trachomatis genital infection result from ascension of the bacteria from the endocervix to the oviduct, where an overly aggressive inflammatory response leads to chronic scarring and Fallopian tube obstruction. A vaccine to prevent chlamydia-induced disease is urgently needed. An important question for vaccine development is whether sterilizing immunity at the level of the oviduct is essential for protection because of the possibility that a chlamydial component drives a deleterious anamnestic T cell response upon oviduct reinfection. We show that mice inoculated with attenuated plasmid-cured strains of Chlamydia muridarum are protected from oviduct pathology upon challenge with wild-type C. muridarum Nigg despite induction of a response that did not prevent reinfection of the oviduct. Interestingly, repeated abbreviated infections with Nigg also elicited recall responses that protected the oviduct from pathology despite low-level reinfection of this vulnerable tissue site. Challenged mice displayed significant decreases in tissue infiltration of inflammatory leukocytes with marked reductions in frequencies of neutrophils but significant increases in frequencies of CD4 Th1 and CD8 T cells. An anamnestic antibody response was also detected. These data indicate that exposure to a live attenuated chlamydial vaccine or repeated abbreviated genital infection with virulent chlamydiae promotes anamnestic antibody and T cell responses that protect the oviduct from pathology despite a lack of sterilizing immunity at the site. PMID:22431649

  1. The recall response induced by genital challenge with Chlamydia muridarum protects the oviduct from pathology but not from reinfection.

    PubMed

    Riley, Melissa M; Zurenski, Matthew A; Frazer, Lauren C; O'Connell, Catherine M; Andrews, Charles W; Mintus, Margaret; Darville, Toni

    2012-06-01

    The significant morbidities of ectopic pregnancy and infertility observed in women after Chlamydia trachomatis genital infection result from ascension of the bacteria from the endocervix to the oviduct, where an overly aggressive inflammatory response leads to chronic scarring and Fallopian tube obstruction. A vaccine to prevent chlamydia-induced disease is urgently needed. An important question for vaccine development is whether sterilizing immunity at the level of the oviduct is essential for protection because of the possibility that a chlamydial component drives a deleterious anamnestic T cell response upon oviduct reinfection. We show that mice inoculated with attenuated plasmid-cured strains of Chlamydia muridarum are protected from oviduct pathology upon challenge with wild-type C. muridarum Nigg despite induction of a response that did not prevent reinfection of the oviduct. Interestingly, repeated abbreviated infections with Nigg also elicited recall responses that protected the oviduct from pathology despite low-level reinfection of this vulnerable tissue site. Challenged mice displayed significant decreases in tissue infiltration of inflammatory leukocytes with marked reductions in frequencies of neutrophils but significant increases in frequencies of CD4 Th1 and CD8 T cells. An anamnestic antibody response was also detected. These data indicate that exposure to a live attenuated chlamydial vaccine or repeated abbreviated genital infection with virulent chlamydiae promotes anamnestic antibody and T cell responses that protect the oviduct from pathology despite a lack of sterilizing immunity at the site.

  2. Immune responses and protection in children in developing countries induced by oral vaccines.

    PubMed

    Qadri, Firdausi; Bhuiyan, Taufiqur Rahman; Sack, David A; Svennerholm, Ann-Mari

    2013-01-07

    Oral mucosal vaccines have great promise for generating protective immunity against intestinal infections for the benefit of large numbers of people especially young children. There however appears to be a caveat since these vaccines have to overcome the inbuilt resistance of mucosal surfaces and secretions to inhibit antigen stimulation and responses. Unfortunately, these vaccines are not equally immunogenic nor protective in different populations. When compared to industrialized countries, children living in developing countries appear to have lower responses, but the reasons for these lowered responses are not clearly defined. The most likely explanations relate to undernutrition, micronutrient deficiencies, microbial overload on mucosal surfaces, alteration of microbiome and microbolom and irreversible changes on the mucosa as well as maternal antibodies in serum or breast milk may alter the mucosal pathology and lower immune responses to interventions using oral vaccines. The detrimental effect of adverse environment and malnutrition may bring about irreversible changes in the mucosa of children especially in the first 1000 days of life from conception to after birth and up to two years of age. This review aims to summarize the information available on lowered immune responses to mucosal vaccines and on interventions that may help address the constraints of these vaccines when they are used for children living under the greatest stress and under harmful adverse circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. CD8 T Cell Response Maturation Defined by Anentropic Specificity and Repertoire Depth Correlates with SIVΔnef-induced Protection

    PubMed Central

    Adnan, Sama; Colantonio, Arnaud D.; Yu, Yi; Gillis, Jacqueline; Wong, Fay E.; Becker, Ericka A.; Reeves, R. Keith; Lifson, Jeffrey D.; O’Connor, Shelby L.; Johnson, R. Paul

    2015-01-01

    The live attenuated simian immunodeficiency virus (LASIV) vaccine SIVΔnef is one of the most effective vaccines in inducing protection against wild-type lentiviral challenge, yet little is known about the mechanisms underlying its remarkable protective efficacy. Here, we exploit deep sequencing technology and comprehensive CD8 T cell epitope mapping to deconstruct the CD8 T cell response, to identify the regions of immune pressure and viral escape, and to delineate the effect of epitope escape on the evolution of the CD8 T cell response in SIVΔnef-vaccinated animals. We demonstrate that the initial CD8 T cell response in the acute phase of SIVΔnef infection is mounted predominantly against more variable epitopes, followed by widespread sequence evolution and viral escape. Furthermore, we show that epitope escape expands the CD8 T cell repertoire that targets highly conserved epitopes, defined as anentropic specificity, and generates de novo responses to the escaped epitope variants during the vaccination period. These results correlate SIVΔnef-induced protection with expanded anentropic specificity and increased response depth. Importantly, these findings render SIVΔnef, long the gold standard in HIV/SIV vaccine research, as a proof-of-concept vaccine that highlights the significance of the twin principles of anentropic specificity and repertoire depth in successful vaccine design. PMID:25688559

  4. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection.

    PubMed

    White, Laura J; Sariol, Carlos A; Mattocks, Melissa D; Wahala M P B, Wahala; Yingsiwaphat, Vorraphun; Collier, Martha L; Whitley, Jill; Mikkelsen, Rochelle; Rodriguez, Idia V; Martinez, Melween I; de Silva, Aravinda; Johnston, Robert E

    2013-03-01

    Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.

  5. An Alphavirus Vector-Based Tetravalent Dengue Vaccine Induces a Rapid and Protective Immune Response in Macaques That Differs Qualitatively from Immunity Induced by Live Virus Infection

    PubMed Central

    Sariol, Carlos A.; Mattocks, Melissa D.; Wahala M. P. B., Wahala; Yingsiwaphat, Vorraphun; Collier, Martha L.; Whitley, Jill; Mikkelsen, Rochelle; Rodriguez, Idia V.; Martinez, Melween I.; de Silva, Aravinda; Johnston, Robert E.

    2013-01-01

    Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans. PMID:23302884

  6. Mechanisms of protective immune responses induced by the Plasmodium falciparum circumsporozoite protein-based, self-assembling protein nanoparticle vaccine

    PubMed Central

    2013-01-01

    Background A lack of defined correlates of immunity for malaria, combined with the inability to induce long-lived sterile immune responses in a human host, demonstrate a need for improved understanding of potentially protective immune mechanisms for enhanced vaccine efficacy. Protective sterile immunity (>90%) against the Plasmodium falciparum circumsporozoite protein (CSP) has been achieved using a transgenically modified Plasmodium berghei sporozoite (Tg-Pb/PfCSP) and a self-assembling protein nanoparticle (SAPN) vaccine presenting CSP epitopes (PfCSP-SAPN). Here, several possible mechanisms involved in the independently protective humoral and cellular responses induced following SAPN immunization are described. Methods Inbred mice were vaccinated with PfCSP-SAPN in PBS. Serum antibodies were harvested and effects on P. falciparum sporozoites mobility and integrity were examined using phase contrast microscopy. The functionality of SAPN-induced antibodies on inhibition of sporozoite invasion and growth within primary human hepatocytes was also examined. The internal processing of SAPN by bone marrow-derived dendritic cells (BMDDC), using organelle-specific, fluorescent-tagged antibody or gold-encapsulated SAPN, was observed using confocal or electron microscopy, respectively. Results The results of this work demonstrate that PfCSP-SAPN induces epitope-specific antibody titers, predominantly of the Th2 isotype IgG1, and that serum antibodies from PfCSP-SAPN-immunized mice appear to target P. falciparum sporozoites via the classical pathway of complement. This results in sporozoite death as indicated by cessation of motility and the circumsporozoite precipitation reaction. Moreover, PfCSP-SAPN-induced antibodies are able to inhibit wild-type P. falciparum sporozoite invasion and growth within cultured primary human hepatocytes. In addition, the observation that PfCSP-SAPN are processed (and presented) to the immune system by dendritic cells in a slow and continuous

  7. Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers.

    PubMed

    Ubillos, Luis; Freire, Teresa; Berriel, Edgardo; Chiribao, María Laura; Chiale, Carolina; Festari, María Florencia; Medeiros, Andrea; Mazal, Daniel; Rondán, Mariella; Bollati-Fogolín, Mariela; Rabinovich, Gabriel A; Robello, Carlos; Osinaga, Eduardo

    2016-04-01

    Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, has anticancer effects mediated, at least in part, by parasite-derived products which inhibit growth of tumor cells. We investigated whether immunity to T. cruzi antigens could induce antitumor activity, using two rat models which reproduce human carcinogenesis: colon cancer induced by 1,2-dimethylhydrazine (DMH), and mammary cancer induced by N-nitroso-N-methylurea (NMU). We found that vaccination with T. cruzi epimastigote lysates strongly inhibits tumor development in both animal models. Rats immunized with T. cruzi antigens induce activation of both CD4(+) and CD8(+) T cells and splenocytes from these animals showed higher cytotoxic responses against tumors as compared to rats receiving adjuvant alone. Tumor-associated immune responses included increasing number of CD11b/c(+) His48(-) MHC II(+) cells corresponding to macrophages and/or dendritic cells, which exhibited augmented NADPH-oxidase activity. We also found that T. cruzi lysate vaccination developed antibodies specific for colon and mammary rat cancer cells, which were capable of mediating antibody-dependent cellular cytotoxicity (ADCC) in vitro. Anti-T. cruzi antibodies cross-reacted with human colon and breast cancer cell lines and recognized 41/60 (68%) colon cancer and 38/63 (60%) breast cancer samples in a series of 123 human tumors. Our results suggest that T. cruzi antigens can evoke an integrated antitumor response involving both the cellular and humoral components of the immune response and provide novel insights into the understanding of the intricate relationship between parasite infection and tumor growth. © 2015 UICC.

  8. The Respiratory Syncytial Virus G Protein Conserved Domain Induces a Persistent and Protective Antibody Response in Rodents

    PubMed Central

    Nguyen, Thien N.; Power, Ultan F.; Robert, Alain; Haeuw, Jean-François; Helffer, Katia; Perez, Amadeo; Asin, Miguel-Angel; Corvaia, Nathalie; Libon, Christine

    2012-01-01

    Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130–230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130–230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 µg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation. PMID:22479601

  9. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses

    PubMed Central

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M.; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-01-01

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy. PMID:27886076

  10. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses.

    PubMed

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-11-23

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy.

  11. CD47 Plays a Role as a Negative Regulator in Inducing Protective Immune Responses to Vaccination against Influenza Virus.

    PubMed

    Lee, Young-Tae; Ko, Eun-Ju; Lee, Youri; Lee, Yu-Na; Bian, Zhen; Liu, Yuan; Kang, Sang-Moo

    2016-08-01

    An integrin-associated protein CD47, which is a ligand for the inhibitory receptor signal regulatory protein α, is expressed on B and T cells, as well as on most innate immune cells. However, the roles of CD47 in the immune responses to viral infection or vaccination remain unknown. We investigated the role of CD47 in inducing humoral immune responses after intranasal infection with virus or immunization with influenza virus-like particles (VLPs). Virus infection or vaccination with VLPs containing hemagglutinin from A/PR8/34 influenza virus induced higher levels of antigen-specific IgG2c isotype dominant antibodies in CD47-deficient (CD47KO) mice than in wild-type (WT) mice. CD47KO mice with vaccination showed greater protective efficacy against lethal challenge, as evidenced by no loss in body weight and reduced lung viral titers compared to WT mice. In addition, inflammatory responses which include cytokine production, leukocyte infiltrates, and gamma interferon-producing CD4(+) T cells, as well as an anti-inflammatory cytokine (interleukin-10), were reduced in the lungs of vaccinated CD47KO mice after challenge with influenza virus. Analysis of lymphocytes indicated that GL7(+) germinal center B cells were induced at higher levels in the draining lymph nodes of CD47KO mice compared to those in WT mice. Notably, CD47KO mice exhibited significant increases in the numbers of antigen-specific memory B cells in spleens and plasma cells in bone marrow despite their lower levels of background IgG antibodies. These results suggest that CD47 plays a role as a negative regulator in inducing protective immune responses to influenza vaccination. Molecular mechanisms that control B cell activation to produce protective antibodies upon viral vaccination remain poorly understood. The CD47 molecule is known to be a ligand for the inhibitory receptor signal regulatory protein α and expressed on the surfaces of most immune cell types. CD47 was previously demonstrated to play

  12. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense.

    PubMed

    Winter, Thorsten R; Rostás, Michael

    2008-09-01

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels.

  13. Sulforaphane protects against acrolein-induced oxidative stress and inflammatory responses: modulation of Nrf-2 and COX-2 expression

    PubMed Central

    Deng, Yu-Hui; Cui, Fa-Cai

    2016-01-01

    Introduction Acrolein (2-propenal) is a reactive α, β-unsaturated aldehyde which causes a health hazard to humans. The present study focused on determining the protection offered by sulforaphane against acrolein-induced damage in peripheral blood mononuclear cells (PBMC). Material and methods Acrolein-induced oxidative stress was determined through evaluating the levels of reactive oxygen species, protein carbonyl and sulfhydryl content, thiobarbituric acid reactive species, total oxidant status and antioxidant status (total antioxidant capacity, glutathione, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase activity). Also, Nrf-2 expression levels were determined using western blot analysis. Acrolein-induced inflammation was determined through analyzing expression of cyclooxygenase-2 by western blot and PGE2 levels by ELISA. The protection offered by sulforaphane against acrolein-induced oxidative stress and inflammation was studied. Results Acrolein showed a significant (p < 0.001) increase in the levels of oxidative stress parameters and down-regulated Nrf-2 expression. Acrolein-induced inflammation was observed through upregulation (p < 0.001) of COX-2 and PGE2 levels. Pretreatment with sulforaphane enhanced the antioxidant status through upregulating Nrf-2 expression (p < 0.001) in PBMC. Acrolein-induced inflammation was significantly inhibited through suppression of COX-2 (p < 0.001) and PGE2 levels (p < 0.001). Conclusions The present study provides clear evidence that pre-treatment with sulforaphane completely restored the antioxidant status and prevented inflammatory responses mediated by acrolein. Thus the protection offered by sulforaphane against acrolein-induced damage in PBMC is attributed to its anti-oxidant and anti-inflammatory potential. PMID:27478470

  14. A mimotope from a solid-phase peptide library induces a measles virus-neutralizing and protective antibody response.

    PubMed

    Steward, M W; Stanley, C M; Obeid, O E

    1995-12-01

    A solid-phase 8-mer random combinatorial peptide library was used to generate a panel of mimotopes of an epitope recognized by a monoclonal antibody to the F protein of measles virus (MV). An inhibition immunoassay was used to show that these peptides were bound by the monoclonal antibody with different affinities. BALB/c mice were coimmunized with the individual mimotopes and a T-helper epitope peptide (from MV fusion protein), and the reactivity of the induced anti-mimotope antibodies with the corresponding peptides and with MV was determined. The affinities of the antibodies with the homologous peptides ranged from 8.9 x 10(5) to 4.4 x 10(7) liters/mol. However, only one of the anti-mimotope antibodies cross-reacted with MV in an enzyme-linked immunosorbent assay and inhibited MV plaque formation. Coimmunization of mice with this mimotope and the T-helper epitope peptide induced an antibody response which conferred protection against fatal encephalitis induced following challenge with MV and with the structurally related canine distemper virus. These results indicate that peptide libraries can be used to identify mimotopes of conformational epitopes and that appropriate immunization with these mimotopes can induce protective antibody responses.

  15. HI responses induced by seasonal influenza vaccination are associated with clinical protection and with seroprotection against non-homologous strains.

    PubMed

    Luytjes, Willem; Enouf, Vincent; Schipper, Maarten; Gijzen, Karlijn; Liu, Wai Ming; van der Lubben, Mariken; Meijer, Adam; van der Werf, Sylvie; Soethout, Ernst C

    2012-07-27

    Vaccination against influenza induces homologous as well as cross-specific hemagglutination inhibiting (HI) responses. Induction of cross-specific HI responses may be essential when the influenza strain does not match the vaccine strain, or even to confer a basic immune response against a pandemic influenza virus. We carried out a clinical study to evaluate the immunological responses after seasonal vaccination in healthy adults 18-60 years of age, receiving the yearly voluntary vaccination during the influenza season 2006/2007. Vaccinees of different age groups were followed for laboratory confirmed influenza (LCI) and homologous HI responses as well as cross-specific HI responses against the seasonal H1N1 strain of 2008 and pandemic H1N1 virus of 2009 (H1N1pdm09) were determined. Homologous HI titers that are generally associated with protection (i.e. seroprotective HI titers ≥40) were found in more than 70% of vaccinees. In contrast, low HI titers before and after vaccination were significantly associated with seasonal LCI. Cross-specific HI titers ≥40 against drifted seasonal H1N1 were found in 69% of vaccinees. Cross-specific HI titers ≥40 against H1N1pdm09 were also significantly induced, especially in the youngest age group. More specifically, cross-specific HI titers ≥40 against H1N1pdm09 were inversely correlated with age. We did not find a correlation between the subtype of influenza which was circulating at the age of birth of the vaccinees and cross-specific HI response against H1N1pdm09. These data indicate that the HI titers before and after vaccination determine the vaccination efficacy. In addition, in healthy adults between 18 and 60 years of age, young adults appear to be best able to mount a cross-protective HI response against H1N1pdm09 or drifted seasonal influenza after seasonal vaccination.

  16. Moderate-Intensity Physical Exercise Protects Against Experimental 6-Hydroxydopamine-Induced Hemiparkinsonism Through Nrf2-Antioxidant Response Element Pathway.

    PubMed

    Aguiar, Aderbal Silva; Duzzioni, Marcelo; Remor, Aline Pertile; Tristão, Fabrine Sales Massafera; Matheus, Filipe C; Raisman-Vozari, Rita; Latini, Alexandra; Prediger, Rui Daniel

    2016-02-01

    Exercise improves the motor symptoms of patients with Parkinson disease in a palliative manner. Existing evidence demonstrates that exercise induces neuroprotection based on the neurotrophic properties. We investigated the effect of exercise on mitochondrial physiology and oxidative stress in an animal model of hemiparkinsonism. C57BL/6 mice completed a 6-week exercise program on a treadmill. We injected 6-hydroxydopamine (6-OHDA; 4 μg/2 μl) into the midstriatum. The animals progressively developed bradykinesia and R(-)-apomorphine-induced rotations that were attenuated by exercise. Transcriptional activation of protective genes is mediated by the antioxidant response element (ARE). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) binds to ARE. We investigated the Nrf2-ARE pathway in the striatum of animals. Exercise protected 6-OHDA-induced loss of tyrosine hydroxylase immunolabeling and activated the Nrf2-ARE pathway in the nigrostriatal pathway. Exercise stimulated mitochondrial biogenesis in the striatum of animals that was more resistant to oxidant 6-OHDA and nitric oxide donor (±)-S-nitroso-N-acetylpenicillamine. In mice, exercise activated Nrf2-ARE signaling in the nigrostriatal pathway that was protective against the development of hemiparkinsonism.

  17. Outer Membrane Protein A (OmpA) of Shigella flexneri 2a, Induces Protective Immune Response in a Mouse Model

    PubMed Central

    Pore, Debasis; Mahata, Nibedita; Pal, Amit; Chakrabarti, Manoj K.

    2011-01-01

    Background In our earlier studies 34 kDa outer membrane protein (OMP) of Shigella flexneri 2a has been identified as an efficient immunostimulant. Key Results In the present study MALDI-TOF MS analysis of the purified 34 kDa OMP of Shigella flexneri 2a shows considerable sequence homology (Identity 65%) with the OmpA of S. flexneri 2a. By using the specific primers, the gene of interest has been amplified from S. flexneri 2a (N.Y-962/92) genomic DNA, cloned in pET100/D-TOPO® vector and expressed using induction with isopropyl thiogalactoside (IPTG) for the first time. Immunogenicity and protective efficacy of the recombinant OmpA has been evaluated in an intranasally immunized murine pulmonary model. The recombinant protein induces significantly enhanced protein specific IgG and IgA Abs in both mucosal and systemic compartments and IgA secreting cells in the systemic compartment (spleen). The mice immunized with OmpA have been protected completely from systemic challenge with a lethal dose of virulent S. flexneri 2a. Immunization with the protein causes mild polymorphonuclear neutrophil infiltration in the lung, without inducing the release of large amounts of proinflammatory cytokines. Conclusion These results suggest that the OmpA of S. flexneri 2a can be an efficacious mucosal immunogen inducing protective immune responses. Our findings also demonstrate that antibodies and Th1 immune response may be associated with the marked protective efficacy of immunized mice after intranasal shigellae infection. PMID:21818362

  18. The responsibility to protect.

    PubMed

    Deutscher, Matt

    2005-01-01

    The decision whether, if ever, to intervene in the affairs of a sovereign state with military force has become a critical issue of the post Cold War era. In 2000 the Canadian government launched the International Commission on Intervention and State Sovereignty (ICISS), which in 2001 published its findings in The Responsibility to Protect. The Commission found broad support for the notion of sovereignty not only as a right, but also a responsibility, the responsibility of a state to provide protection for its people. The primary responsibility for protecting citizens rests with states. But when states are unable or unwilling to provide this protection, or are themselves the perpetrators of atrocities, the Commission argues that the international community has a responsibility temporarily to step in, forcefully if necessary. The Commission resisted the temptation to identify human rights violations falling short of outright killing or ethnic cleansing. This eliminates the possibility of intervening on the basis of systematic oppression of human rights or intervening to remove a military dictatorship. The intention of the report was to provoke debate; to strengthen the role of the United Nations and ensure that such interventions were multilateral and meeting the wider needs of a region and not the interests of major powers. There is an ongoing need to ensure that the Security Council is effective and that resources match the political will. These debates must continue within a UN framework.

  19. SIRT1 protects osteoblasts against particle-induced inflammatory responses and apoptosis in aseptic prosthesis loosening.

    PubMed

    Deng, Zhantao; Wang, Zhenheng; Jin, Jiewen; Wang, Yong; Bao, Nirong; Gao, Qian; Zhao, Jianning

    2017-02-01

    We hypothesized that SIRT1 downregulation in osteoblasts induced by wear particles was one of the reasons for particle-induced osteolysis (PIO) in total joint arthroplasty failure. In the present study, the expression of SIRT1 was examined in osteoblasts treated with TiAl6V4 particles (TiPs) and CoCrMo particles (CoPs) from materials used in prosthetics and specimens from PIO animal models. To address whether SIRT1 downregulation triggers inflammatory responses and apoptosis in osteoblasts, the effect of a SIRT1 activator, resveratrol on the expression of inflammatory cytokines and apoptosis in particle-treated osteoblasts was tested. The results demonstrated that SIRT1 expression was significantly downregulated in particle-treated osteoblasts and PIO animal models. Both pharmacological activation and overexpression of SIRT1 dramatically reduced the particle-induced expression of inflammatory cytokines and osteoblast apoptosis through NF-κB and p53 signaling, respectively. Furthermore, in PIO animal models, resveratrol significantly reduced the severity of osteolysis. Collectively, the results of the present study indicated that SIRT1 plays a vital role in the pathogenesis of aseptic loosening, and further treatment targeted at SIRT1 possibly lead to novel approaches for prevention of aseptic prosthesis loosening. Aseptic loosening is the most common cause of total hip arthroplasty (THA) and total knee arthroplasty (TKA) failure and revision surgery. However, there is still no effective therapeutic target in the clinical treatment. Besides, the underlying mechanism of aseptic loosening is largely unknown. The result of our study indicated that SIRT1 has the ability to effectively regulate the wear particle-induced inflammatory responses, apoptosis, osteolysis in particle-stimulated osteoblasts and particle-induced osteolysis animal models. Our study provides a potential target for the prevention and treatment of aseptic loosening and further investigated the

  20. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis

    PubMed Central

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-01-01

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways. PMID:28277539

  1. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    PubMed

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  2. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA) Induce Protective Immune Responses in Dogs

    PubMed Central

    Petitdidier, Elodie; Pagniez, Julie; Papierok, Gérard; Vincendeau, Philippe; Lemesre, Jean-Loup; Bras-Gonçalves, Rachel

    2016-01-01

    Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA) or its carboxy terminal part LaPSA-12S (Cter-rPSA), combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates. PMID:27223609

  3. Fungal β-glucan, a Dectin-1 ligand, promotes protection from type 1 diabetes by inducing regulatory innate immune response.

    PubMed

    Karumuthil-Melethil, Subha; Gudi, Radhika; Johnson, Benjamin M; Perez, Nicolas; Vasu, Chenthamarakshan

    2014-10-01

    β-Glucans are naturally occurring polysaccharides in cereal grains, mushrooms, algae, or microbes, including bacteria, fungi, and yeast. Immune cells recognize these β-glucans through a cell surface pathogen recognition receptor called Dectin-1. Studies using β-glucans and other Dectin-1 binding components have demonstrated the potential of these agents in activating the immune cells for cancer treatment and controlling infections. In this study, we show that the β-glucan from Saccharomyces cerevisiae induces the expression of immune regulatory cytokines (IL-10, TGF-β1, and IL-2) and a tolerogenic enzyme (IDO) in bone marrow-derived dendritic cells as well as spleen cells. These properties can be exploited to modulate autoimmunity in the NOD mouse model of type 1 diabetes (T1D). Treatment of prediabetic NOD mice with low-dose β-glucan resulted in a profound delay in hyperglycemia, and this protection was associated with increase in the frequencies of Foxp3(+), LAP(+), and GARP(+) T cells. Upon Ag presentation, β-glucan-exposed dendritic cells induced a significant increase in Foxp3(+) and LAP(+) T cells in in vitro cultures. Furthermore, systemic coadministration of β-glucan plus pancreatic β cell Ag resulted in an enhanced protection of NOD mice from T1D as compared with treatment with β-glucan alone. These observations demonstrate that the innate immune response induced by low-dose β-glucan is regulatory in nature and can be exploited to modulate T cell response to β cell Ag for inducing an effective protection from T1D. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses.

    PubMed

    Nagai, Katsuhito; Fukuno, Shuhei; Oda, Ayano; Konishi, Hiroki

    2016-01-01

    The organ toxicity of doxorubicin (DOX), an anthracycline antineoplastic agent, narrows the therapeutic window despite its clinical usefulness. In the present study, we determined whether taurine protected against DOX-induced hepatic injury, and explored the molecular mechanisms underlying the suppressive effects of taurine in terms of alterations in oxidative stress and apoptotic responses. DOX-induced body weight loss was completely suppressed by taurine treatment. Elevations in the serum activity levels of lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase by DOX were also dose-dependently attenuated by a concurrent treatment with taurine. Superoxide dismutase activity and reduced glutathione content in the liver were decreased following the administration of DOX, whereas these changes were suppressed when 10 mg/kg taurine was given in combination with DOX. Taurine attenuated the increased expression of mRNAs for Fas and Bax after DOX exposure. Furthermore, the formation of cleaved caspase-3 protein in the group given DOX with taurine was lower than that in the group treated with DOX alone. Our results suggest that taurine can protect against DOX-induced acute hepatic damage, the underlying mechanism of which is attributable to the suppression of oxidative stress and apoptotic responses.

  5. Mucosal innate response stimulation induced by lipopolysaccharide protects against Bordetella pertussis colonization.

    PubMed

    Errea, A; Moreno, G; Sisti, F; Fernández, J; Rumbo, M; Hozbor, Daniela Flavia

    2010-05-01

    Non-specific enhancement of the airways innate response has been shown to impair lung infections in several models of infection such diverse as influenza A, Streptococcus pneumoniae, and Aspergillus niger. Our aim was to evaluate whether a similar event could operate in the context of Bordetella pertussis respiratory infection, not only to enrich the knowledge of host-bacteria interaction but also to establish immunological basis for the development of new control strategies against the pathogen. Using a B. pertussis intranasal infection model and coadministration of different TLR agonists at the moment of the infection, we observed that the enhancement of innate response activation, in a TLR4-dependent way, could efficiently impair B. pertussis colonization (P < 0.001). While LPS from different microbial sources were equally effective in promoting this effect, flagellin and poly I:C coadministration, in spite of inducing expression of innate response markers TNFalpha, CXCL2, CXCL10 and IL6, was not effective to prevent B. pertussis colonization. Our results indicate that during the early stage of infection, specific anti-microbial mechanisms triggered by TLR4 stimulation are able to impair B. pertussis colonization. These findings could complement our current view of the role of TLR4-dependent processes that contribute to anti-pertussis immunity.

  6. Intranasal DNA Vaccination Induces Potent Mucosal and Systemic Immune Responses and Cross-protective Immunity Against Influenza Viruses

    PubMed Central

    Torrieri-Dramard, Lea; Lambrecht, Bénédicte; Ferreira, Helena Lage; Van den Berg, Thierry; Klatzmann, David; Bellier, Bertrand

    2011-01-01

    The induction of potent virus-specific immune responses at mucosal surfaces where virus transmission occurs is a major challenge for vaccination strategies. In the case of influenza vaccination, this has been achieved only by intranasal delivery of live-attenuated vaccines that otherwise pose safety problems. Here, we demonstrate that potent mucosal and systemic immune responses, both cellular and humoral, are induced by intranasal immunization using formulated DNA. We show that formulation with the DNA carrier polyethylenimine (PEI) improved by a 1,000-fold the efficiency of gene transfer in the respiratory track following intranasal administration of luciferase-coding DNA. Using PEI formulation, intranasal vaccination with DNA-encoding hemagglutinin (HA) from influenza A H5N1 or (H1N1)2009 viruses induced high levels of HA-specific immunoglobulin A (IgA) antibodies that were detected in bronchoalveolar lavages (BALs) and the serum. No mucosal responses could be detected after parenteral or intranasal immunization with naked-DNA. Furthermore, intranasal DNA vaccination with HA from a given H5N1 virus elicited full protection against the parental strain and partial cross-protection against a distinct highly pathogenic H5N1 strain that could be improved by adding neuraminidase (NA) DNA plasmids. Our observations warrant further investigation of intranasal DNA as an effective vaccination route. PMID:20959813

  7. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models

    SciTech Connect

    Lee, Wonhwa; Kim, Tae Hoon; Ku, Sae-Kwang; Min, Kyoung-jin; Lee, Hyun-Shik; Kwon, Taeg Kyu; Bae, Jong-Sup

    2012-07-01

    Withaferin A (WFA), an active compound from Withania somnifera, is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. In this study, we first investigated the possible barrier protective effects of WFA against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice induced by high mobility group box 1 protein (HMGB1) and the associated signaling pathways. The barrier protective activities of WFA were determined by measuring permeability, leukocytes adhesion and migration, and activation of pro-inflammatory proteins in HMGB1-activated HUVECs. We found that WFA inhibited lipopolysaccharide (LPS)-induced HMGB1 release and HMGB1-mediated barrier disruption, expression of cell adhesion molecules (CAMs) and adhesion/transendothelial migration of leukocytes to human endothelial cells. WFA also suppressed acetic acid-induced hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Further studies revealed that WFA suppressed the production of interleukin 6, tumor necrosis factor-α (TNF-α) and activation of nuclear factor-κB (NF-κB) by HMGB1. Collectively, these results suggest that WFA protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. -- Highlights: ► Withaferin A inhibited LPS induced HMGB1 release. ► Withaferin A reduced HMGB1-mediated hyperpermeability. ► Withaferin A inhibited HMGB1-mediated adhesion and migration of leukocytes. ► Withaferin A inhibited HMGB1-mediated activation of NF-κB, IL-6 and TNF-α.

  8. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts.

    PubMed

    Tang, Xi-Lan; Liu, Jian-Xun; Dong, Wei; Li, Peng; Li, Lei; Hou, Jin-Cai; Zheng, Yong-Qiu; Lin, Cheng-Ren; Ren, Jun-Guo

    2015-02-01

    Inflammatory response is an important mechanism in the pathogenesis of cardiovascular diseases. Cardiac fibroblasts play a crucial role in cardiac inflammation and might become a potential therapeutic target in cardiovascular diseases. Kaempferol, a flavonoid commonly existing in many edible fruits, vegetables, and Chinese herbs, is well known to possess anti-inflammatory property and thus has a therapeutic potential for the treatment of inflammatory diseases. To date, the effect of kaempferol on cardiac fibroblasts inflammation is unknown. In this study, we investigated the anti-inflammatory effect of kaempferol on lipopolysaccharide (LPS) plus ATP-induced cardiac fibroblasts and explored the underlying mechanisms. Our results showed that kaempferol at concentrations of 12.5 and 25 μg/mL significantly suppressed the release of TNF-α, IL-1β, IL-6, and IL-18 and inhibited activation of NF-κB and Akt in LPS plus ATP-induced cardiac fibroblasts. These findings suggest that kaempferol attenuates cardiac fibroblast inflammation through suppression of activation of NF-κB and Akt.

  9. Protective response of the Ah receptor to ANIT-induced biliary epithelial cell toxicity in see-through medaka.

    PubMed

    Volz, David C; Kullman, Seth W; Howarth, Deanna L; Hardman, Ron C; Hinton, David E

    2008-04-01

    The adaptive role of the aryl hydrocarbon receptor (Ah receptor or AHR) in protecting against disease-related conditions remains unclear in nonmammalian models, particularly teleosts. Therefore, this study focused on the potential role of AHR in response to biliary epithelial cell toxicity and hepatobiliary alteration in medaka. See-through medaka (STII strain) were exposed for 96 h using the biliary toxicant alpha-naphthylisothiocyanate (ANIT) as a reagent, and fish were evaluated daily using histological and ultrastructural analysis, and by imaging directly through the body wall of living fish. Brightfield and transmission electron microscopy showed that a single ANIT dose (40 mg/kg) specifically induced swelling and apoptosis of bile preductular epithelial cells (BPDECs) as early as 6 h after initial exposure. Following ANIT-induced BPDEC toxicity, in vivo imaging of STII medaka showed significant gallbladder discoloration from 48-72 h. Collectively, these pathologic data suggested that ANIT exposure resulted in acute hepatobiliary changes, lasting < 96 h following initial exposure. We then tested the potential role of AHR in response to ANIT-induced hepatobiliary alteration. Overall, we demonstrated that (1) transient AHR activation and cytochrome P450 1A (CYP1A) induction in livers occurred during ANIT-induced hepatobiliary impairment, (2) pretreatment with an AHR agonist partially protected against acute hepatobiliary alteration, and (3) using a luciferase-based reporter assay, the bile pigment bilirubin weakly activated mouse AHR and binding to medaka-specific CYP1A promoter, resulting in AHR element-driven transcription. Given that bile acids and pigments are present in mammalian and fish liver, these studies collectively suggest that bile-induced AHR activation may be conserved between teleosts and rodents.

  10. DNA vaccine expressing the mimotope of GD2 ganglioside induces protective GD2 cross-reactive antibody responses.

    PubMed

    Bolesta, Elizabeth; Kowalczyk, Aleksandra; Wierzbicki, Andrzej; Rotkiewicz, Piotr; Bambach, Barbara; Tsao, Chun-Yen; Horwacik, Irena; Kolinski, Andrzej; Rokita, Hanna; Brecher, Martin; Wang, Xinhui; Ferrone, Soldano; Kozbor, Danuta

    2005-04-15

    The GD2 ganglioside expressed on neuroectodermally derived tumors, including neuroblastoma and melanoma, is weakly immunogenic in tumor-bearing patients and induces predominantly immunoglobulin (Ig)-M antibody responses in the immunized host. Here, we investigated whether interconversion of GD2 into a peptide mimetic form would induce GD2 cross-reactive IgG antibody responses in mice. Screening of the X(15) phage display peptide library with the anti-GD2 monoclonal antibody (mAb) 14G2a led to isolation of mimetic peptide 47, which inhibited the binding of 14G2a antibody to GD2-positive tumor cells. The peptide was also recognized by GD2-specific serum antibodies from a patient with neuroblastoma, suggesting that it bears an internal image of GD2 ganglioside expressed on the tumor cells. The molecular basis for antigenicity of the GD2 mimetic peptide, established by molecular modeling and mutagenesis studies, led to the generation of a 47-LDA mutant with an increased mimicry to GD2. Immunization of mice with peptide 47-LDA-encoded plasmid DNA elicited GD2 cross-reactive IgG antibody responses, which were increased on subsequent boost with GD2 ganglioside. The vaccine-induced antibodies recognized GD2-positive tumor cells, mediated complement-dependent cytotoxicity, and exhibited protection against s.c. human GD2-positive melanoma growth in the severe combined immunodeficient mouse xenograft model. The results from our studies provide insights into approaches for boosting GD2 cross-reactive IgG antibody responses by minigene vaccination with a protective epitope of GD2 ganglioside.

  11. DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice.

    PubMed

    Chi, Hang; Zheng, Xuexing; Wang, Xiwen; Wang, Chong; Wang, Hualei; Gai, Weiwei; Perlman, Stanley; Yang, Songtao; Zhao, Jincun; Xia, Xianzhu

    2017-04-11

    The Middle East respiratory syndrome coronavirus (MERS-CoV), is an emerging pathogen that continues to cause outbreaks in the Arabian peninsula and in travelers from this region, raising the concern that a global pandemic could occur. Here, we show that a DNA vaccine encoding the first 725 amino acids (S1) of MERS-CoV spike (S) protein induces antigen-specific humoral and cellular immune responses in mice. With three immunizations, high titers of neutralizing antibodies (up to 1: 10(4)) were generated without adjuvant. DNA vaccination with the MERS-CoV S1 gene markedly increased the frequencies of antigen-specific CD4(+) and CD8(+) T cells secreting IFN-γ and other cytokines. Both pcDNA3.1-S1 DNA vaccine immunization and passive transfer of immune serum from pcDNA3.1-S1 vaccinated mice protected Ad5-hDPP4-transduced mice from MERS-CoV challenge. These results demonstrate that a DNA vaccine encoding MERS-CoV S1 protein induces strong protective immune responses against MERS-CoV infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Human Metapneumovirus Virus-Like Particles Induce Protective B and T Cell Responses in a Mouse Model

    PubMed Central

    Cox, Reagan G.; Erickson, John J.; Hastings, Andrew K.; Becker, Jennifer C.; Johnson, Monika; Craven, Ryan E.; Tollefson, Sharon J.; Boyd, Kelli L.

    2014-01-01

    ABSTRACT Human metapneumovirus (HMPV) is a leading cause of respiratory disease in infants, children, and the elderly worldwide, yet no licensed vaccines exist. Live-attenuated vaccines present safety challenges, and protein subunit vaccines induce primarily antibody responses. Virus-like particles (VLPs) are an attractive alternative vaccine approach because of reduced safety concerns compared with live vaccines. We generated HMPV VLPs by expressing viral proteins in suspension-adapted human embryonic kidney epithelial (293-F) cells and found that the viral matrix (M) and fusion (F) proteins were sufficient to form VLPs. We previously reported that the VLPs resemble virus morphology and incorporate fusion-competent F protein (R. G. Cox, S. B. Livesay, M. Johnson, M. D. Ohi, and J. V. Williams, J. Virol. 86:12148–12160, 2012), which we hypothesized would elicit F-specific antibody and T cell responses. In this study, we tested whether VLP immunization could induce protective immunity to HMPV by using a mouse model. C57BL/6 mice were injected twice intraperitoneally with VLPs alone or with adjuvant and subsequently challenged with HMPV. Mice were euthanized 5 days postinfection, and virus titers, levels of neutralizing antibodies, and numbers of CD3+ T cells were quantified. Mice immunized with VLPs mounted an F-specific antibody response and generated CD8+ T cells recognizing an F protein-derived epitope. VLP immunization induced a neutralizing-antibody response that was enhanced by the addition of either TiterMax Gold or α-galactosylceramide adjuvant, though adjuvant reduced cellular immune responses. Two doses of VLPs conferred complete protection from HMPV replication in the lungs of mice and were not associated with a Th2-skewed cytokine response. These results suggest that nonreplicating VLPs are a promising vaccine candidate for HMPV. IMPORTANCE Human metapneumovirus (HMPV) is a leading cause of acute respiratory infection in infants, children, and the

  13. Lipoxin A4 protects against lipopolysaccharide-induced sepsis by promoting innate response activator B cells generation.

    PubMed

    Cheng, Qiong; Wang, Zheng; Ma, Ruihua; Chen, Yongtao; Yan, Yan; Miao, Shuo; Jiao, Jingyu; Cheng, Xue; Kong, Lingfei; Ye, Duyun

    2016-10-01

    Sepsis is a serious disease that leads to severe inflammation, dysregulation of immune system, multi-organ failure and death. Innate response activator (IRA) B cells, which produce granulocyte-macrophage colony-stimulating factor (GM-CSF), protect against microbial sepsis. Lipid mediator lipoxin A4 (LXA4) exerts anti-inflammatory and immunoregulatory effects, and it has been reported that LXA4 receptor ALX/FPR2 is expressed on B cells. Here, we investigated the potential role of LXA4 on IRA B cells in lipopolysaccharide (LPS)-induced sepsis. We found that LXA4 significantly promoted the expansion of splenic IRA B cells and increased GM-CSF expression in splenic B cells with LPS stimulation. After splenectomy, LXA4 treatment did not change the serum or peritoneal IL-1β, IL-6 and TNF-α levels in LPS-induced sepsis. LXA4 accelerated the migration of peritoneal B cells to spleen for their differentiation into IRA B cells, whereas this effect was independent of peritoneal macrophage. Furthermore, LXA4 enhanced the phosphorylation level of signal transducer and activator of transcription 5 (STAT5) in splenic B cells. These results suggest that LXA4 protects against LPS-induced sepsis by promoting the generation and migration of splenic IRA B cells, and the underlying molecular mechanism may be related to STAT5 activation. It might provide new insights and therapeutic approaches for treating sepsis.

  14. Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis

    PubMed Central

    Zhao, Zhiqing; Guan, Rui; Song, Shaohua; Zhang, Mingjian; Liu, Fang; Guo, Meng; Guo, Wenyuan; Yu, Qilin; Zhang, Luding; Wang, Quanxing

    2013-01-01

    Sinomenine (SIN) is a purified alkaloid from the Chinese herb Sinomenium acutum. Previous studies demonstrated that SIN possesses anti-inflammatory and anti-apoptotic properties. We thus in the present report conducted studies to examine its impact on ischemia reperfusion (IR) induced renal injury. Precondition of mice with 200 mg/kg of SIN provided significant protection for mice against IR-induced renal injury as manifested by the attenuated serum creatinine (Cre) and blood urea nitrogen (BUN) along with less severity for histological changes and tubular cell apoptosis. In line with these results, treatment of mice with SIN suppressed IR-induced inflammatory infiltration and the expression of chemokine CXCL-10, adhesion molecule ICAM-1, and cytokines TNF-а/IL-6. Mechanistic studies revealed that SIN inhibits NF-κB transcriptional activity to suppress IR-induced inflammatory response in the kidney, while it attenuates MAP kinase signaling to prevent tubular cells undergoing apoptosis after IR insult. Altogether, our data support that SIN could be a useful therapeutic agent for prevention and treatment of IR-induced renal injury in the clinical settings. PMID:24040435

  15. Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis.

    PubMed

    Zhao, Zhiqing; Guan, Rui; Song, Shaohua; Zhang, Mingjian; Liu, Fang; Guo, Meng; Guo, Wenyuan; Yu, Qilin; Zhang, Luding; Wang, Quanxing

    2013-01-01

    Sinomenine (SIN) is a purified alkaloid from the Chinese herb Sinomenium acutum. Previous studies demonstrated that SIN possesses anti-inflammatory and anti-apoptotic properties. We thus in the present report conducted studies to examine its impact on ischemia reperfusion (IR) induced renal injury. Precondition of mice with 200 mg/kg of SIN provided significant protection for mice against IR-induced renal injury as manifested by the attenuated serum creatinine (Cre) and blood urea nitrogen (BUN) along with less severity for histological changes and tubular cell apoptosis. In line with these results, treatment of mice with SIN suppressed IR-induced inflammatory infiltration and the expression of chemokine CXCL-10, adhesion molecule ICAM-1, and cytokines TNF-а/IL-6. Mechanistic studies revealed that SIN inhibits NF-κB transcriptional activity to suppress IR-induced inflammatory response in the kidney, while it attenuates MAP kinase signaling to prevent tubular cells undergoing apoptosis after IR insult. Altogether, our data support that SIN could be a useful therapeutic agent for prevention and treatment of IR-induced renal injury in the clinical settings.

  16. Progranulin protects against endotoxin-induced acute kidney injury by downregulating renal cell death and inflammatory responses in mice.

    PubMed

    Xu, Xiaoying; Gou, Linfeng; Zhou, Meng; Yang, Fusheng; Zhao, Yihan; Feng, Tingting; Shi, Peikun; Ghavamian, Armin; Zhao, Weiming; Yu, Yuan; Lu, Yi; Yi, Fan; Liu, Guangyi; Tang, Wei

    2016-09-01

    Progranulin (PGRN), a pluripotent secreted growth factor, is involved in various physiologic and disease processes. However, the role of PGRN in endotoxin-induced septic acute kidney injury (AKI) remains unknown. The objective of this study is to investigate the protective effects of PGRN on an endotoxin-induced AKI mouse model by using PGRN-deficient mice and recombinant PGRN (rPGRN) pretreatment. PGRN levels were increased in kidneys of wild-type (WT) mice at 6 and 24h after lipopolysaccharide (LPS) injection. Renal function detection, hematoxylin and eosin staining, immunohistochemical staining, ELISA and in situ terminal deoxynucleotidyl transferase-mediated uridine triphosphate nick-end labeling were used to reveal tissue injury, inflammatory cell infiltration, production of inflammatory mediators and cell death in mouse kidneys after LPS injection. PGRN deficiency resulted in severe kidney injury and increased apoptotic death, inflammatory cell infiltration, production of pro-inflammatory mediators and the expression and nucleus-to-cytoplasmic translocation of HMGB1 in the kidney. In addition, rPGRN administration before LPS treatment ameliorated the endotoxin-induced AKI in WT mice. PGRN may be a novel biologic agent with therapeutic potential for endotoxin-induced septic AKI possibly by inhibiting LPS-induced renal cell death and inflammatory responses in mice.

  17. Infection with Syphacia obvelata (pinworm) induces protective Th2 immune responses and influences ovalbumin-induced allergic reactions.

    PubMed

    Michels, Chesney; Goyal, Prem; Nieuwenhuizen, Natalie; Brombacher, Frank

    2006-10-01

    Infections with pinworms are common in rodent animal facilities. In this study, we show the consequence of an outbreak in a transgenic barrier facility of infection by Syphacia obvelata, a murine pinworm gastrointestinal nematode. Immune responses were defined in experimental infection studies with BALB/c mice. Infection with S. obvelata induced a transient Th2-type immune response with elevated interleukin 4 (IL-4), IL-5, and IL-13 cytokine production and parasite-specific immunoglobulin G1 (IgG1). In contrast, BALB/c mice deficient in IL-13, IL-4/13, or the IL-4 receptor alpha chain showed chronic disease, with a >100-fold higher parasite burden, increased gamma interferon production, parasite-specific IgG2b, and a default Th2 response. Interestingly, infected IL-4-/- BALB/c mice showed only slightly elevated parasite burdens compared to the control mice, suggesting that IL-13 plays the dominant role in the control of S. obvelata. The influence that pinworm infection has on the allergic response to a dietary antigen was found to be important. Helminth-infected mice immunized against ovalbumin (Ova) elicited more severe anaphylactic shock with reduced Ova-specific IL-4 and IL-5 than did noninfected controls, demonstrating that S. obvelata infection is able to influence nonrelated laboratory experiments. The latter outcome highlights the importance of maintaining mice for use as experimental models under pinworm-free conditions.

  18. Protective immune response in mice induced by a suicidal DNA vaccine encoding NTPase-II gene of Toxoplasma gondii.

    PubMed

    Zheng, Lina; Hu, Yue; Hua, Qianqian; Luo, Fangjun; Xie, Guizhen; Li, Xiangzhi; Lin, Jiaxin; Wan, Yujing; Ren, Shoufeng; Pan, Changwang; Tan, Feng

    2017-02-01

    DNA-based alphaviral RNA replicon vectors, also called suicidal DNA vectors, have been employed to alleviate biosafety concerns attribution to its ability to induce apoptotic cell death of the transfected cells. Toxoplasma gondii nucleoside triphosphate hydrolase-II (TgNTPase-II), which facilitates the parasite to salvage purines from the host cell for survival and replication, have been demonstrated to be a potential vaccine candidate for toxoplasmosis. Herein, we evaluated the immunogenic potential of a suicidal DNA vaccine encoding TgNTPase-II gene, pDREP-TgNTPase-II, delivered intramuscularly in combination with electroporation. Immunization of mice with pDREP-TgNTPase-II elicited specific humoral responses, with high IgG antibody titers and a mixed IgG1/IgG2a response. The cellular immune response was associated with high level production of IFN-γ, IL-2, IL-10 cytokines and low level IL-4 production as well as the increase of the percentage of CD8+ T cells, indicating that a Th1 predominant response was elicited. Furthermore, mice vaccinated with this suicidal DNA vaccine displayed partial protection against acute infection with the virulent RH strain as well as chronic infection with PRU cyst, which shows 77.7% and 71.4% reduction in brain cyst burden in comparison to PBS and pDREP-eGFP control group, respectively. Based on the cellular and antibody responses, the suicidal DNA vaccine elicited a Th1-predominant immune response against T. gondii challenge.

  19. Cellular and humoral immune responses and protection against schistosomes induced by a radiation-attenuated vaccine in chimpanzees.

    PubMed

    Eberl, M; Langermans, J A; Frost, P A; Vervenne, R A; van Dam, G J; Deelder, A M; Thomas, A W; Coulson, P S; Wilson, R A

    2001-09-01

    The radiation-attenuated Schistosoma mansoni vaccine is highly effective in rodents and primates but has never been tested in humans, primarily for safety reasons. To strengthen its status as a paradigm for a human recombinant antigen vaccine, we have undertaken a small-scale vaccination and challenge experiment in chimpanzees (Pan troglodytes). Immunological, clinical, and parasitological parameters were measured in three animals after multiple vaccinations, together with three controls, during the acute and chronic stages of challenge infection up to chemotherapeutic cure. Vaccination induced a strong in vitro proliferative response and early gamma interferon production, but type 2 cytokines were dominant by the time of challenge. The controls showed little response to challenge infection before the acute stage of the disease, initiated by egg deposition. In contrast, the responses of vaccinated animals were muted throughout the challenge period. Vaccination also induced parasite-specific immunoglobulin M (IgM) and IgG, which reached high levels at the time of challenge, while in control animals levels did not rise markedly before egg deposition. The protective effects of vaccination were manifested as an amelioration of acute disease and overall morbidity, revealed by differences in gamma-glutamyl transferase level, leukocytosis, eosinophilia, and hematocrit. Moreover, vaccinated chimpanzees had a 46% lower level of circulating cathodic antigen and a 38% reduction in fecal egg output, compared to controls, during the chronic phase of infection.

  20. Inducible protective processes in animal systems: adaptive response to a low dose of methyl methanesulfonate in mouse bone marrow cells.

    PubMed

    Mahmood, R; Vasudev, V; Harish, S K; Guruprasad, K P

    1996-06-01

    To investigate the induction of adaptive response (inducible protective processes) in mitotic cells of Swiss albino mouse, a monofunctional alkylating agent methyl methanesulfonate (MMS) was employed. When the animals treated with a low dose of 50 mg/kg body weight were challenged with a subsequent high (challenging) dose of 150 mg/kg body weight, after different time lags (2,5,8 or 10 hr), the yield of chromosomal aberrations in bone marrow cells was found to be significantly reduced compared to the additive effects of both conditioning and challenging doses. It seems, therefore, that the low dose of MMS employed has made the cells less sensitive against further clastogenic effect of challenge dose of MMS. The data clearly suggest that the phenomenon of adaptive response to methylating agents can be encountered in in vivo mammalian cells. Furthermore, it is also observed that ethylating agent EMS is a poor inducer of adaptive response than its corresponding methylating agent MMS in the bone marrow cells of mouse.

  1. Protective Antibody and CD8+ T-Cell Responses to the Plasmodium falciparum Circumsporozoite Protein Induced by a Nanoparticle Vaccine

    PubMed Central

    Kaba, Stephen A.; McCoy, Margaret E.; Doll, Tais A. P. F.; Brando, Clara; Guo, Qin; Dasgupta, Debleena; Yang, Yongkun; Mittelholzer, Christian; Spaccapelo, Roberta; Crisanti, Andrea; Burkhard, Peter; Lanar, David E.

    2012-01-01

    Background The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8+ and CD4+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN) vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects. Methodology/Principal Findings To establish the basis for a SAPN-based vaccine, B- and CD8+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP) and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids) that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP). We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year) protective antibody and poly-functional (IFNγ+, IL-2+) long-lived central memory CD8+ T-cells. Furthermore, we demonstrated that these Ab or CD8+ T–cells can independently provide sterile protection against a lethal challenge of the transgenic parasites. Conclusion The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP) and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP. PMID:23144750

  2. Quercetin protects against perfluorooctanoic acid-induced liver injury by attenuating oxidative stress and inflammatory response in mice.

    PubMed

    Zou, Weiying; Liu, Wenwen; Yang, Bei; Wu, Lei; Yang, Jianhua; Zou, Ting; Liu, Fangming; Xia, Liping; Zhang, Dalei

    2015-09-01

    The aim of the present study was to investigate the protective effect of quercetin (Que) against perfluorooctanoic acid (PFOA)-induced liver injury in mice and its possible mechanisms of action. Mice were intragastrically administered PFOA (10mg/kg/day) alone or in combination with Que (75 mg/kg/day) for 14 consecutive days. The hepatic injury was evaluated by measuring morphological changes, liver function, oxidative stress, inflammatory response and hepatocellular apoptosis. Compared with mice treated with PFOA alone, simultaneous supplementation of Que significantly decreased serum levels of liver injury indicators alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase and total bile acids. Moreover, Que treatment inhibited the production of oxidative stress biomarkers malondialdehyde, hydrogen peroxide and 8-hydroxy-2'-deoxyguanosine, reduced the levels of proinflammatory cytokines interleukin 6, cyclooxygenase-2 and C-reactive protein, and decreased the number of TUNEL-positive cells in the liver of PFOA-treated mice. These results combined with liver histopathology demonstrated that Que exhibited a potential protective effect against PFOA-induced liver damage via mechanisms involving the attenuation of oxidative stress, alleviation of inflammation and inhibition of hepatocellular apoptosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A Nonhuman Primate Scrub Typhus Model: Protective Immune Responses Induced by pKarp47 DNA Vaccination in Cynomolgus Macaques

    PubMed Central

    Chattopadhyay, Suchismita; Jiang, Ju; Nawtaisong, Pruksa; Lee, John S.; Tan, Esterlina; Dela Cruz, Eduardo; Burgos, Jasmin; Abalos, Rodolfo; Blacksell, Stuart D.; Lombardini, Eric; Turner, Gareth D.; Day, Nicholas P. J.; Richards, Allen L.

    2015-01-01

    We developed an intradermal (ID) challenge cynomolgus macaque (Macaca fascicularis) model of scrub typhus, the leading cause of treatable undifferentiated febrile illness in tropical Asia, caused by the obligate intracellular bacterium, Orientia tsutsugamushi. A well-characterized animal model is required for the development of clinically relevant diagnostic assays and evaluation of therapeutic agents and candidate vaccines. We investigated scrub typhus disease pathophysiology and evaluated two O. tsutsugamushi 47-kDa, Ag-based candidate vaccines, a DNA plasmid vaccine (pKarp47), and a virus-vectored vaccine (Kp47/47-Venezuelan equine encephalitis virus replicon particle) for safety, immunogenicity, and efficacy against homologous ID challenge with O. tsutsugamushi Karp. Control cynomolgus macaques developed fever, classic eschars, lymphadenopathy, bacteremia, altered liver function, increased WBC counts, pathogen-specific Ab (IgM and IgG), and cell-mediated immune responses. Vaccinated macaques receiving the DNA plasmid pKarp47 vaccine had significantly increased O. tsutsugamushi–specific, IFN-γ–producing PBMCs (p = 0.04), reduced eschar frequency and bacteremia duration (p ≤ 0.01), delayed bacteremia onset (p < 0.05), reduced circulating bacterial biomass (p = 0.01), and greater reduction of liver transaminase levels (p < 0.03) than controls. This study demonstrates a vaccine-induced immune response capable of conferring sterile immunity against high-dose homologous ID challenge of O. tsutsugamushi in a nonhuman primate model, and it provides insight into cell-mediated immune control of O. tsutsugamushi and dissemination dynamics, highlights the importance of bacteremia indices for evaluation of both natural and vaccine-induced immune responses, and importantly, to our knowledge, has determined the first phenotypic correlates of immune protection in scrub typhus. We conclude that this model is suitable for detailed investigations into vaccine-induced

  4. Glycoprotein E2 of classical swine fever virus expressed by baculovirus induces the protective immune responses in rabbits.

    PubMed

    Zhang, Huawei; Li, Xiangmin; Peng, Guiqing; Tang, Chenkai; Zhu, Shixuan; Qian, Suhong; Xu, Jinfang; Qian, Ping

    2014-11-20

    Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious and devastating disease that affects the pig industry worldwide. The glycoprotein E2 of CSFV is the principal immunogenic protein that induces neutralizing antibodies and protective immunity. Several CSFV genotypes, including 1.1, 2.1, 2.2, and 2.3, have been identified in Mainland China. The glycoprotein E2 of genotypes 1.1 and 2.1 was expressed by using a baculovirus system and tested for its protective immunity in rabbits to develop novel CSF vaccines that elicit a broad immune response. Twenty CSFV seronegative rabbits were randomly divided into five groups. Each rabbit was intramuscularly immunized with E2 of genotypes 1.1 (CSFV-1.1E2), 2.1 (CSFV-2.1E2), or their combination (CSFV-1.1 + 2.1E2). A commercial CSF vaccine (C-strain) and phosphate-buffered saline (PBS) were used as positive or negative controls, respectively. All animals were challenged with CSFV C-strain at 4 weeks and then boosted with the same dose. All rabbits inoculated with CSFV-1.1E2, CSFV-2.1E2, and CSFV-1.1 + 2.1E2 elicited high levels of ELISA antibody, neutralizing antibody, and lymphocyte proliferative responses to CSFV. The rabbits inoculated with CSFV-1.1E2 and CSFV-1.1 + 2.1E2 received complete protection against CSFV C-strain. Two of the four rabbits vaccinated with CSFV-2.1E2 were completely protected. These results demonstrate that CSFV-1.1E2 and CSFV-1.1 + 2.1E2 not only elicit humoral and cell-mediated immune responses but also confer complete protection against CSFV C-strain in rabbits. Therefore, CSFV-1.1E2 and CSFV-1.1 + 2.1E2 are promising candidate subunit vaccines against CSF.

  5. TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models.

    PubMed

    McCormick, Alison A; Corbo, Tina A; Wykoff-Clary, Sherri; Nguyen, Long V; Smith, Mark L; Palmer, Kenneth E; Pogue, Gregory P

    2006-09-29

    Fusion of peptides to viral carriers has proven an effective method for improving cellular immunity. In this study we explore the ability of a plant virus, Tobacco mosaic virus (TMV), to stimulate cellular immunity by interacting directly with immune cells. Fluorescently labeled TMV was incubated in vitro with murine spleen or lymph node cells, and near quantitative labeling of lymphocytes was achieved after 2 h, which persisted for up to 48 h. Direct TMV uptake and upregulation of the CD86 activation marker was measured in nearly all dendritic cells (DCs) by flow cytometry. To demonstrate that TMV can also provide functional antigen delivery and immune stimulation in vivo, two well-characterized T-cell epitopes that provide protection against tumor challenge in mice were fused to TMV coat protein by genetic manipulation, or by chemical conjugation. Vaccination of C57BL/6 mice elicited measurable cellular responses by interferon gamma (IFN gamma) ELISpot and resulted in significantly improved protection from tumor challenge in both the EG.7-Ova and B16 melanoma models. From these results we conclude that TMV was an effective antigen carrier for inducing cellular immune responses to less than 1 microg of peptide.

  6. Protective immune responses induced by different recombinant vaccine regimes to Rift Valley fever.

    PubMed

    Wallace, D B; Ellis, C E; Espach, A; Smith, S J; Greyling, R R; Viljoen, G J

    2006-11-30

    The glycoprotein (GP) and nucleocapsid (NC) genes of Rift Valley fever virus (RVFV) were expressed in different expression systems and were evaluated for their ability to protect mice from virulent challenge using a prime-boost regime. Mice vaccinated with a lumpy skin disease virus-vectored recombinant vaccine (rLSDV-RVFV) expressing the two RVFV glycoproteins (G1 and G2) developed neutralising antibodies and were fully protected when challenged, as were those vaccinated with a crude extract of truncated G2 glycoprotein (tG2). By contrast mice vaccinated with a DNA vaccine expressing G1 and G2 did not sero-convert with only 20% of them surviving challenge. Mice vaccinated with the DNA vaccine and boosted with rLSDV-RVFV also failed to sero-convert but 40% survived challenge. Surprisingly, although none of the mice immunised with the purified NC protein sero-converted, 60% of them survived virulent challenge. The rLSDV-RVFV construct was then further evaluated in sheep for its dual protective abilities against RVFV and sheeppox virus (SPV). Vaccinated sheep sero-converted for both viruses and were protected against RVFV challenge, however, neither the immunised or negative control animals showed any significant reactions to the virulent SPV challenge.

  7. Immunization with Attenuated Equine Herpesvirus 1 Strain KyA Induces Innate Immune Responses That Protect Mice from Lethal Challenge

    PubMed Central

    Shakya, Akhalesh K.; O'Callaghan, Dennis J.

    2016-01-01

    ABSTRACT Equine herpesvirus 1 (EHV-1) is a major pathogen affecting equines worldwide. The virus causes respiratory disease, abortion, and, in some cases, neurological disease. EHV-1 strain KyA is attenuated in the mouse and equine, whereas wild-type strain RacL11 induces severe inflammation of the lung, causing infected mice to succumb at 4 to 6 days postinfection. Our previous results showed that KyA immunization protected CBA mice from pathogenic RacL11 challenge at 2 and 4 weeks postimmunization and that KyA infection elicited protective humoral and cell-mediated immune responses. To investigate the protective mechanisms of innate immune responses to KyA, KyA-immunized mice were challenged with RacL11 at various times postvaccination. KyA immunization protected mice from RacL11 challenge at 1 to 7 days postimmunization. Immunized mice lost less than 10% of their body weight and rapidly regained weight. Virus titers in the lungs of KyA-immunized mice were 1,000-fold lower at 2 days post-RacL11 challenge than virus titers in the lungs of nonimmunized mice, indicating accelerated virus clearance. Affymetrix microarray analysis revealed that gamma interferon (IFN-γ) and 16 antiviral interferon-stimulated genes (ISGs) were upregulated 3.1- to 48.2-fold at 8 h postchallenge in the lungs of RacL11-challenged mice that had been immunized with KyA. Murine IFN-γ inhibited EHV-1 infection of murine alveolar macrophages and protected mice against lethal EHV-1 challenge, suggesting that IFN-γ expression is important in mediating the protection elicited by KyA immunization. These results suggest that EHV-1 KyA may be used as a live attenuated EHV-1 vaccine as well as a prophylactic agent in horses. IMPORTANCE Viral infection of cells initiates a signal cascade of events that ultimately attempts to limit viral replication and prevent infection through the expression of host antiviral proteins. In this study, we show that EHV-1 KyA immunization effectively protected CBA

  8. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    PubMed Central

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  9. Evaluation of adaptive immune responses and heterologous protection induced by inactivated bluetongue virus vaccines.

    PubMed

    Breard, Emmanuel; Belbis, Guillaume; Viarouge, Cyril; Nomikou, Kyriaki; Haegeman, Andy; De Clercq, Kris; Hudelet, Pascal; Hamers, Claude; Moreau, Francis; Lilin, Thomas; Durand, Benoit; Mertens, Peter; Vitour, Damien; Sailleau, Corinne; Zientara, Stéphan

    2015-01-15

    Eradication of bluetongue virus is possible, as has been shown in several European countries. New serotypes have emerged, however, for which there are no specific commercial vaccines. This study addressed whether heterologous vaccines would help protect against 2 serotypes. Thirty-seven sheep were randomly allocated to 7 groups of 5 or 6 animals. Four groups were vaccinated with commercial vaccines against BTV strains 2, 4, and 9. A fifth positive control group was given a vaccine against BTV-8. The other 2 groups were unvaccinated controls. Sheep were then challenged by subcutaneous injection of either BTV-16 (2 groups) or BTV-8 (5 groups). Taken together, 24/25 sheep from the 4 experimental groups developed detectable antibodies against the vaccinated viruses. Furthermore, sheep that received heterologous vaccines showed significantly reduced viraemia and clinical scores for BTV-16 when compared to unvaccinated controls. Reductions in clinical signs and viraemia among heterologously vaccinated sheep were not as common after challenge with BTV-8. This study shows that heterologous protection can occur, but that it is difficult to predict if partial or complete protection will be achieved following inactivated-BTV vaccination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Mitochondrial DNA-Induced Inflammatory Responses and Lung Injury in Thermal Injury Rat Model: Protective Effect of Epigallocatechin Gallate.

    PubMed

    Liu, Ruiqi; Xu, Fei; Si, Si; Zhao, Xueshan; Bi, Siwei; Cen, Ying

    Lungs are easily damaged by the inflammatory responses induced after extensive burns. The aim here was to investigate the protective role of epigallocatechin gallate (EGCG) in mitochondrial DNA (mtDNA)-mediated inflammatory responses and acute respiratory distress syndrome (ARDS) in a rat model of thermal injury. Male Sprague-Dawley rats were randomly assigned to five groups. In the first experiment, a full-thickness thermal injury or control procedure, covering 30% of the TBSA, was inflicted on three groups designated as the thermal injury, EGCG, and sham control groups. In the second experiment, another two groups were established by transfusion with either mtDNA (mtDNA group) or phosphate-buffered saline (phosphate-buffered saline group). Blood samples and lung tissue from all five groups were collected and the plasma concentrations of mtDNA and inflammatory mediators were measured. Bronchoalveolar lavage fluid was collected and histological analysis of the lung tissue was performed to evaluate the severity of ARDS. Significant increases in mtDNA and inflammatory mediator plasma concentrations were seen in the thermal injury and EGCG groups when compared with controls (P < .05). The plasma concentrations of mtDNA and inflammatory mediators were significantly decreased after the administration of EGCG (P < .05). EGCG also significantly reduced the severity of acute lung injury (P < .05). Intravenous administration of mtDNA significantly increased concentrations of inflammatory mediators and caused severe ARDS (P < .05). Our results suggest that mtDNA is important for thermal injury-induced inflammation and associated ARDS. EGCG possesses anti-inflammatory and lung-protective properties, and might act by limiting mtDNA release after thermal injury.

  11. Exogenous Fatty Acids Protect Enterococcus faecalis from Daptomycin-Induced Membrane Stress Independently of the Response Regulator LiaR

    PubMed Central

    Harp, John R.; Saito, Holly E.; Bourdon, Allen K.; Reyes, Jinnethe; Arias, Cesar A.

    2016-01-01

    ABSTRACT Enterococcus faecalis is a commensal bacterium of the gastrointestinal tract that can cause nosocomial infections in immunocompromised humans. The hallmarks of this organism are its ability to survive in a variety of stressful habitats and, in particular, its ability to withstand membrane damage. One strategy used by E. faecalis to protect itself from membrane-damaging agents, including the antibiotic daptomycin, involves incorporation of exogenous fatty acids from bile or serum into the cell membrane. Additionally, the response regulator LiaR (a member of the LiaFSR [lipid II-interacting antibiotic response regulator and sensor] system associated with cell envelope stress responses) is required for the basal level of resistance E. faecalis has to daptomycin-induced membrane damage. This study aimed to determine if membrane fatty acid changes could provide protection against membrane stressors in a LiaR-deficient strain of E. faecalis. We noted that despite the loss of LiaR, the organism readily incorporated exogenous fatty acids into its membrane, and indeed growth in the presence of exogenous fatty acids increased the survival of LiaR-deficient cells when challenged with a variety of membrane stressors, including daptomycin. Combined, our results suggest that E. faecalis can utilize both LiaR-dependent and -independent mechanisms to protect itself from membrane damage. IMPORTANCE Enterococcus faecalis is responsible for a significant number of nosocomial infections. Worse, many of the antibiotics used to treat E. faecalis infection are no longer effective, as this organism has developed resistance to them. The drug daptomycin has been successfully used to treat some of these resistant strains; however, daptomycin-resistant isolates have been identified in hospitals. Many daptomycin-resistant isolates are found to harbor mutations in the genetic locus liaFSR, which is involved in membrane stress responses. Another mechanism shown to increase tolerance to

  12. Low dose revaccination induces robust protective anti-HBs antibody response in the majority of healthy non-responder neonates.

    PubMed

    Jafarzadeh, A; Zarei, S; Shokri, F

    2008-01-10

    A sizeable proportion (1-10%) of healthy adults and to lesser extent neonates vaccinated with triple 10 microg hepatitis B (HB) vaccine fail to mount a protective antibody response. Revaccination with the same vaccine dose has proved to be effective in a significant number of primary non-responders. The influence of revaccination with lower vaccine doses however has not been studied adequately in non-responder neonates. This study was conducted to evaluate the influence of supplementary vaccination with a single low and standard dose of a recombinant hepatitis B (HB) vaccine in healthy Iranian non-responder neonates to primary vaccination. Iranian neonates unable to respond to primary vaccination with 10, 5 or 2.5 microg doses of recombinant HB vaccine were revaccinated with a single additional dose of the same concentration. Serum anti-HBs antibody titer was measured by sandwich ELISA. Administration of a single additional dose induced seroprotection (anti-HBs> or =10IU/L) in 10/12 (83%), 10/12 (83%) and 21/24 (87.5%) of non-responder neonates in 10, 5 and 2.5 microg vaccine recipients with geometric mean titers (and 95% confidence limits) of 1358 (258-7142), 401 (79-2038) and 164 (62-433) IU/L, respectively. The log-transformed antibody titer obtained for the 10 microg dose recipients was significantly higher than that of the 2.5 microg dose vaccinees (p=0.028). No significant differences in anti-HBs titer were observed between other groups of vaccinees. However, the total seroprotection rates obtained after administration of four low doses of 2.5 and 5 microg were significantly higher than that obtained after administration of the classical three 10 microg doses (p=0.029 and p=0.006, respectively). The total seroprotection rates were similar between all groups of vaccines receiving four doses of 2.5, 5 and 10 microg vaccine doses. These results indicate that a significant proportion of non-responder neonates can be induced to develop a protective anti

  13. Recombinant VP1 protein expressed in Pichia pastoris induces protective immune responses against EV71 in mice.

    PubMed

    Wang, Man; Jiang, Shuai; Wang, Yefu

    2013-01-04

    Human enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease and is also associated with serious neurological diseases in children. Currently, there are no effective antiviral drugs or vaccines against EV71 infection. VP1, one of the major immunogenic capsid proteins of EV71, is widely considered to be the candidate antigen for an EV71 vaccine. In this study, VP1 of EV71 was expressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris, and purified by Ni-NTA affinity chromatography. Immunogenicity and vaccine efficacy of the recombinant VP1 were assessed in mouse models. The results showed that the recombinant VP1 could efficiently induce anti-VP1 antibodies in BALB/c mice, which were able to neutralize EV71 viruses in an in vitro neutralization assay. Passive protection of neonatal mice further confirmed the prophylactic efficacy of the antisera from VP1 vaccinated mice. Furthermore, VP1 vaccination induced strong lymphoproliferative and Th1 cytokine responses. Taken together, our study demonstrated that the yeast-expressed VP1 protein retained good immunogenicity and was a potent EV71 vaccine candidate.

  14. Inflammasome Activation Is Critical to the Protective Immune Response during Chemically Induced Squamous Cell Carcinoma

    PubMed Central

    Gasparoto, Thais Helena; de Oliveira, Carine Ervolino; de Freitas, Luisa Thomazini; Pinheiro, Claudia Ramos; Hori, Juliana Issa; Garlet, Gustavo Pompermaier; Cavassani, Karen Angélica; Schillaci, Roxana; da Silva, João Santana; Zamboni, Dario Simões; Campanelli, Ana Paula

    2014-01-01

    Chronic inflammation affects most stages of tumorigenesis, including initiation, promotion, malignant differentiation, invasion and metastasis. Inflammasomes have been described as involved with persistent inflammation and are known to exert both pro and antitumour effects. We evaluated the influence of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase (CASP)-1 in the antitumor immune response using a multistage model of squamous cell carcinoma (SCC) development. Absence of ASC and CASP-1 resulted in an earlier incidence and increased number of papilloma. Loss of inflammassome function in mice resulted in decreased presence of natural killer (NK), dendritic (DC), CD4+, CD8+ and CD45RB+ T cells in the tumor lesions as well as in lymph nodes (LN) compared with WT mice. Increased percentage of CD4+CD25+Foxp3+ T cells was associated with association with inflammasome loss of function. Moreover, significant differences were also found with neutrophils and macrophage infiltrating the lesions. Myeloperoxidase (MPO), but not elastase (ELA), activity oscillated among the groups during the SCC development. Levels of proinflammatory cytokines IL-1β, IL-18, Tumor Necrosis Factor (TNF)-α and Interferon (IFN)-γ were decreased in the tumor microenvironment in the absence of inflammasome proteins. These observations suggest a link between inflammasome function and SCC tumorigenesis, indicating an important role for inflammasome activation in the control of SCC development. PMID:25268644

  15. Inflammasome activation is critical to the protective immune response during chemically induced squamous cell carcinoma.

    PubMed

    Gasparoto, Thais Helena; de Oliveira, Carine Ervolino; de Freitas, Luisa Thomazini; Pinheiro, Claudia Ramos; Hori, Juliana Issa; Garlet, Gustavo Pompermaier; Cavassani, Karen Angélica; Schillaci, Roxana; da Silva, João Santana; Zamboni, Dario Simões; Campanelli, Ana Paula

    2014-01-01

    Chronic inflammation affects most stages of tumorigenesis, including initiation, promotion, malignant differentiation, invasion and metastasis. Inflammasomes have been described as involved with persistent inflammation and are known to exert both pro and antitumour effects. We evaluated the influence of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase (CASP)-1 in the antitumor immune response using a multistage model of squamous cell carcinoma (SCC) development. Absence of ASC and CASP-1 resulted in an earlier incidence and increased number of papilloma. Loss of inflammassome function in mice resulted in decreased presence of natural killer (NK), dendritic (DC), CD4(+), CD8(+) and CD45RB(+) T cells in the tumor lesions as well as in lymph nodes (LN) compared with WT mice. Increased percentage of CD4(+)CD25(+)Foxp3(+) T cells was associated with association with inflammasome loss of function. Moreover, significant differences were also found with neutrophils and macrophage infiltrating the lesions. Myeloperoxidase (MPO), but not elastase (ELA), activity oscillated among the groups during the SCC development. Levels of proinflammatory cytokines IL-1β, IL-18, Tumor Necrosis Factor (TNF)-α and Interferon (IFN)-γ were decreased in the tumor microenvironment in the absence of inflammasome proteins. These observations suggest a link between inflammasome function and SCC tumorigenesis, indicating an important role for inflammasome activation in the control of SCC development.

  16. Protective and disease-enhancing immune responses induced by recombinant modified vaccinia Ankara (MVA) expressing respiratory syncytial virus proteins.

    PubMed

    Olszewska, Wieslawa; Suezer, Yasemin; Sutter, Gerd; Openshaw, Peter J M

    2004-11-25

    Modified vaccinia Ankara (MVA) recombinants expressing single or multiple RSV surface proteins (F or G) are promising potential vaccines. We studied humoral and cellular responses induced by MVA-F and MVA-G in mice, comparing them to a formalin inactivated RSV preparation (FI-RSV) known to increase disease severity. MVA-F or MVA-G vaccination enhanced weight loss during RSV challenge, but did not show the lung eosinophilia seen after FI-RSV vaccination. FI-RSV induced a stronger total RSV IgG response than the MVA recombinants, but very little IgG2a. MVA recombinants induced cytokine responses biased towards IFNgamma and IL-12, while FI-RSV induced strong IL-4/5 responses in the lungs during RSV challenge. Thus, MVA vaccines induce a favourable immune profile in RSV disease but retain the potential to enhance disease.

  17. Sm29, but Not Sm22.6 Retains its Ability to Induce a Protective Immune Response in Mice Previously Exposed to a Schistosoma mansoni Infection

    PubMed Central

    Alves, Clarice Carvalho; Araujo, Neusa; dos Santos, Viviane Cristina Fernandes; Couto, Flávia Bubula; Assis, Natan R. G.; Morais, Suellen B.; Oliveira, Sérgio Costa; Fonseca, Cristina Toscano

    2015-01-01

    Background A vaccine against schistosomiasis would have a great impact in disease elimination. Sm29 and Sm22.6 are two parasite tegument proteins which represent promising antigens to compose a vaccine. These antigens have been associated with resistance to infection and reinfection in individuals living in endemic area for the disease and induced partial protection when evaluated in immunization trials using naïve mice. Methodology/principals findings In this study we evaluated rSm29 and rSm22.6 ability to induce protection in Balb/c mice that had been previously infected with S. mansoni and further treated with Praziquantel. Our results demonstrate that three doses of the vaccine containing rSm29 were necessary to elicit significant protection (26%–48%). Immunization of mice with rSm29 induced a significant production of IL-2, IFN-γ, IL-17, IL-4; significant production of specific antibodies; increased percentage of CD4+ central memory cells in comparison with infected and treated saline group and increased percentage of CD4+ effector memory cells in comparison with naïve Balb/c mice immunized with rSm29. On the other hand, although immunization with Sm22.6 induced a robust immune response, it failed to induce protection. Conclusion/significance Our results demonstrate that rSm29 retains its ability to induce protection in previously infected animals, reinforcing its potential as a vaccine candidate. PMID:25723525

  18. Vaccination-induced protection of lambs against the parasitic nematode Haemonchus contortus correlates with high IgG antibody responses to the LDNF glycan antigen.

    PubMed

    Vervelde, Lonneke; Bakker, Nicole; Kooyman, Frans N J; Cornelissen, Albert W C A; Bank, Christine M C; Nyame, A Kwame; Cummings, Richard D; van Die, Irma

    2003-11-01

    Lambs respond to vaccination against bacteria and viruses but have a poor immunological response to nematodes. Here we report that they are protected against the parasitic nematode Haemonchus contortus after vaccination with excretory/secretory (ES) glycoproteins using Alhydrogel as an adjuvant. Lambs immunized with ES in Alhydrogel and challenged with 300 L3 larvae/kg body weight had a reduction in cumulative egg output of 89% and an increased percentage protection of 54% compared with the adjuvant control group. Compared to the adjuvant dimethyl dioctadecyl ammonium bromide, Alhydrogel induced earlier onset and significantly higher ES- specific IgG, IgA, and IgE antibody responses. In all vaccinated groups a substantial proportion of the antibody response was directed against glycan epitopes, irrespective of the adjuvant used. In lambs vaccinated with ES in Alhydrogel but not in any other group a significant increase was found in antibody levels against the GalNAcbeta1,4 (Fucalpha1,3)GlcNAc (fucosylated LacdiNAc, LDNF) antigen, a carbohydrate antigen that is also involved in the host defense against the human parasite Schistosoma mansoni. In lambs the LDNF-specific response increased from the first immunization onward and was significantly higher in protected lambs. In addition, an isotype switch from LDNF-specific IgM to IgG was induced that correlated with protection. These data demonstrate that hyporesponsiveness of lambs to H. contortus can be overcome by vaccination with ES glycoproteins in a strong T-helper 2 type response-inducing aluminum adjuvant. This combination generated high and specific antiglycan antibody responses that may contribute to the vaccination-induced protection.

  19. A subunit vaccine based on rH-NS induces protection against Mycobacterium tuberculosis infection by inducing the Th1 immune response and activating macrophages.

    PubMed

    Liu, Yuan; Chen, Suting; Pan, Bowen; Guan, Zhu; Yang, Zhenjun; Duan, Linfei; Cai, Hong

    2016-10-01

    Mycobacterium tuberculosis (Mtb) is a Gram-positive pathogen which causes tuberculosis in both animals and humans. All tested rH-NS formulations induced a specific Th1 response, as indicated by increased production of interferon γ (IFN-γ) and interleukin 2 (IL-2) by lymphocytes in the spleen of mice which were immunized with rH-NS alone or with rH-NS and the adjuvant cyclic GMP-AMP (cGAMP). Serum from mice immunized with rH-NS with or without adjuvant also had higher levels of IL-12p40 and TNF-α, compared with those from control mice immunized with phosphate-buffered saline. Both vaccines increased protective efficacy in mice which were challenged with Mtb H37Rv, as measured by reduced relative CFU counts in the lungs. We found that rH-NS induced the production of TNF-α, IL-6, and IL-12p40, which relied on the activation of mitogen-activated protein kinases by stimulating the rapid phosphorylation of ERK1/2, p38, and JNK, and on the activation of transcription factor NF-κB in macrophages. Additionally, we also found that rH-NS could interact with TLR2 but not TLR4 in pull-down assays. The rH-NS-induced cytokine production from TLR2-silenced RAW264.7 cells was lower than that from BALB/c macrophages. Prolonged exposure (>24 h) of RAW264.7 cells to rH-NS resulted in a significant enhancement in IFN-γ-induced MHC II expression, which was not found in shTLR2-treated RAW264.7 cells. These results suggest that rH-NS is a TLR2 agonist which induces the production of cytokines by macrophages and up-regulates macrophage function.

  20. Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice

    PubMed Central

    Zhu, Qing; Egelston, Colt; Gagnon, Susan; Sui, Yongjun; Belyakov, Igor M.; Klinman, Dennis M.; Berzofsky, Jay A.

    2010-01-01

    TLR ligands are promising candidates for the development of novel vaccine adjuvants that can elicit protective immunity against emerging infectious diseases. Adjuvants have been used most frequently to increase the quantity of an immune response. However, the quality of a T cell response can be more important than its quantity. Stimulating certain pairs of TLRs induces a synergistic response in terms of activating dendritic cells and eliciting/enhancing T cell responses through clonal expansion, which increases the number of responding T cells. Here, we have found that utilizing ligands for 3 TLRs (TLR2/6, TLR3, and TLR9) greatly increased the protective efficacy of vaccination with an HIV envelope peptide in mice when compared with using ligands for only any 2 of these TLRs; surprisingly, increased protection was induced without a marked increase in the number of peptide-specific T cells. Rather, the combination of these 3 TLR ligands augmented the quality of the T cell responses primarily by amplifying their functional avidity for the antigen, which was necessary for clearance of virus. The triple combination increased production of DC IL-15 along with its receptor, IL-15Rα, which contributed to high avidity, and decreased expression of programmed death–ligand 1 and induction of Tregs. Therefore, selective TLR ligand combinations can increase protective efficacy by increasing the quality rather than the quantity of T cell responses. PMID:20101095

  1. Dried Plum Protects From Radiation-Induced Bone Loss by Attenuating Pro-Osteoclastic and Oxidative Stress Responses

    NASA Technical Reports Server (NTRS)

    Globus, Ruth

    2015-01-01

    Future space explorations beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure plays a major role in progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Our long-term goals are to define the mechanisms and risk of bone loss in the spaceflight environment and to facilitate the development of effective countermeasures. We had previously reported that exposure to low or high-LET radiation correlates with an acute increase in the expression of pro-osteoclastic and oxidative stress genes in bone during the early response to radiation followed by pathological changes in skeletal structure. We then conducted systematic screening for potential countermeasures against bone loss where we tested the ability of various antioxidants to mitigate the radiation-induced increase in expression of these markers. For the screen, 16-week old C57Bl6J mice were treated with a dietary antioxidant cocktail, injectable DHLA or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs radiation and one day later, marrow cells were collected and the relevant genes analyzed for expression levels. Among the candidate countermeasures tested, DP was most effective in reducing the expression of genes associated with bone loss. Furthermore, analysis of skeletal structure by microcomputed tomography (microCT) revealed that DP also prevents the radiation-induced deterioration in skeletal microarchitecture as indicated by parameters such as percent bone volume (BVTV), trabecular spacing and trabecular number. We also found that DP has similar protective effects on skeletal structure in a follow-up study using 1 Gy of

  2. Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide induced acute lung injury via reducing inflammatory response.

    PubMed

    Liu, Tian-Yin; Chen, Shi-Biao

    2016-12-01

    Sarcandra glabra (Chinese name, Zhongjiefeng) is an important herb widely used in traditional Chinese medicine. Lycopene has been shown to be a powerful antioxidant. This study aims to test the hypothesis that Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide (LPS) induced acute lung injury (ALI). Metabolomics approach combined with pathological inspection, serum biochemistry examination, enzyme-linked immunosorbent assay and western blotting were used to explore the protective effects of Sarcandra glabra and lycopene on LPS-induced ALI, and to elucidate the underlying mechanisms. Results showed that Sarcandra glabra and lycopene could significantly ameliorate LPS-induced histopathological injuries, improve the anti-oxidative activities of rats, decrease the levels of TNF-α and IL-6, suppress the activations of MAPK and transcription factor NF-κB and reverse the disturbed metabolism towards the normal status. Taken together, this integrated study revealed that Sarcandra glabra combined with lycopene had great potential in protecting rats from LPS-induced ALI, which would be helpful to guide the clinical medication.

  3. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    PubMed

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Butyrate protects against disruption of the blood-milk barrier and moderates inflammatory responses in a model of mastitis induced by lipopolysaccharide.

    PubMed

    Wang, Jing-Jing; Wei, Zheng-Kai; Zhang, Xu; Wang, Ya-Nan; Fu, Yun-He; Yang, Zheng-Tao

    2017-08-11

    Short-chain fatty acids are fermentation end products produced by gut bacteria, which have been shown to ameliorate inflammatory bowel diseases and allergic asthma. However, the mechanism involved remains largely unknown. Here, we investigate the protective effects and mechanisms of sodium butyrate (SB) on LPS-induced mastitis model. Effects of increasing doses of SB on blood-milk barrier function and inflammation are studied in BALB/c mice with LPS-induced mastitis. The underlying mechanisms of anti-inflammatory effects of SB were further investigated in LPS-stimulated mouse mammary epithelial cells (mMECs). The results show that SB decreased LPS-induced disruption in mammary tissues, infiltration of inflammatory cells and the levels of TNF-α, IL-6 and IL-1β. SB up-regulated the tight junction proteins occludin and claudin-3 and reduced blood-milk barrier permeability in LPS-induced mastitis. Studies in vitro revealed that SB inhibited LPS-induced inflammatory response by inhibition of the NF-κB signalling pathway and histone deacetylases in LPS-stimulated mMECs. In our model, SB protected against LPS-induced mastitis by preserving blood-milk barrier function and depressing pro-inflammatory responses, suggesting the potential use of SB as a prophylactic agent to protect blood-milk barrier function in mastitis. © 2017 The British Pharmacological Society.

  5. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    SciTech Connect

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  6. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury.

    PubMed

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  7. Activation of unfolded protein response protects osteosarcoma cells from cisplatin-induced apoptosis through NF-κB pathway

    PubMed Central

    Yan, Mingming; Ni, Jiangdong; Song, Deye; Ding, Muliang; Huang, Jun

    2015-01-01

    The aim of this study was to uncover that unfolded protein response (UPR) contributed to the development of cisplatin resistance in osteosarcoma. MG-63 cells and SaOS-2 cells were exposed to cisplatin at presence or absence of 4-phenylbutyrayte (4-pba) and then analyzed by MTT assay and flow cytometry to determine the cell survival rates and apoptosis. Levels of glucose regulated protein 78KD (GRP78), C/EBP homologus protein (CHOP), cytoplasmic and nuclear NF-κB were detected by Western blot. Further, MG-63 cells and SaOS-2 cells were subjected to cisplatin with or without Bay 11-7082, a well-known inhibitor of NF-κB. After that, MTT assay and flow cytometry were used to determine the cell survival rates and apoptosis. Cisplatin and 4-PBA co-treatment significantly enhanced the cell apoptosis. Administration of cisplatin substantially increased the levels of GRP78 and CHOP. Moreover, mechanistic investigation uncovered that cisplatin promoted the levels of nuclear NF-κB whereas 4-PBA administration suppressed the cisplatin-induced accumulation of nuclear NF-κB level in osteosarcoma cells. Cisplatin combined with Bay 11-7082 obviously augmented MG-63 cells and SaOS-2 cells apoptosis when compared to that in osteosarcoma cells treated by cisplatin alone. Taken together, our data show that UPR protects osteosarcoma from cisplatin-mediated apoptosis through activation of NF-κB pathway. Therefore, targeting UPR may be a potential strategy to improve the osteosarcoma therapy. PMID:26617729

  8. Outer membrane vesicles derived from Salmonella Typhimurium mutants with truncated LPS induce cross-protective immune responses against infection of Salmonella enterica serovars in the mouse model.

    PubMed

    Liu, Qiong; Liu, Qing; Yi, Jie; Liang, Kang; Liu, Tian; Roland, Kenneth L; Jiang, Yanlong; Kong, Qingke

    2016-12-01

    Salmonella enterica cause diarrheal and systemic diseases and are of considerable concern worldwide. Vaccines that are cross-protective against multiple serovars could provide effective control of Salmonella-mediated diseases. Bacteria-derived outer membrane vesicles (OMVs) are highly immunogenic and are capable of eliciting protective immune responses. Alterations in lipopolysaccharide (LPS) length can result in outer membrane remodeling and composition of outer membrane proteins (OMPs) changing. In this study, we investigated the impact of truncated LPS on both the production and immunogenicity of Salmonella OMVs, including the ability of OMVs to elicit cross-protection against challenge by heterologous Salmonella strains. We found that mutations in waaJ and rfbP enhanced vesiculation, while mutations in waaC, waaF and waaG inhibited this process. Animal experiments indicated that OMVs from waaC, rfaH and rfbP mutants induced stronger serum immune responses compared to OMVs from the parent strain, while all elicited protective responses against the wild-type S. Typhimurium challenge. Furthermore, intranasal or intraperitoneal immunization with OMVs derived from the waaC and rfbP mutants elicited significantly higher cross-reactive IgG responses and provided enhanced cross-protection against S. Choleraesuis and S. Enteritidis challenge than the wild-type OMVs. These results indicate that truncated-LPS OMVs are capable of conferring cross protection against multiple serotypes of Salmonella infection.

  9. Antigen delivery to CD11c+CD8- dendritic cells induces protective immune responses against experimental melanoma in mice in vivo.

    PubMed

    Neubert, Kirsten; Lehmann, Christian H K; Heger, Lukas; Baranska, Anna; Staedtler, Anna Maria; Buchholz, Veit R; Yamazaki, Sayuri; Heidkamp, Gordon F; Eissing, Nathalie; Zebroski, Henry; Nussenzweig, Michel C; Nimmerjahn, Falk; Dudziak, Diana

    2014-06-15

    Dendritic cells (DCs) are central modulators of immune responses and, therefore, interesting target cells for the induction of antitumor immune responses. Ag delivery to select DC subpopulations via targeting Abs to DC inhibitory receptor 2 (DCIR2, clone 33D1) or to DEC205 was shown to direct Ags specifically to CD11c(+)CD8(-) or CD11c(+)CD8(+) DCs, respectively, in vivo. In contrast to the increasing knowledge about the induction of immune responses by efficiently cross-presenting CD11c(+)CD8(+) DCs, little is known about the functional role of Ag-presenting CD11c(+)CD8(-) DCs with regard to the initiation of protective immune responses. In this study, we demonstrate that Ag targeting to the CD11c(+)CD8(-) DC subpopulation in the presence of stimulating anti-CD40 Ab and TLR3 ligand polyinosinic-polycytidylic acid induces protective responses against rapidly growing tumor cells in naive animals under preventive and therapeutic treatment regimens in vivo. Of note, this immunization protocol induced a mixed Th1/Th2-driven immune response, irrespective of which DC subpopulation initially presented the Ag. Our results provide important information about the role of CD11c(+)CD8(-) DCs, which have been considered to be less efficient at cross-presenting Ags, in the induction of protective antitumor immune responses. Copyright © 2014 by The American Association of Immunologists, Inc.

  10. Echinacoside Protects against 6-Hydroxydopamine-Induced Mitochondrial Dysfunction and Inflammatory Responses in PC12 Cells via Reducing ROS Production

    PubMed Central

    Wang, Yue-Hua; Xuan, Zhao-Hong; Tian, Shuo; Du, Guan-Hua

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction and inflammatory responses are involved in the mechanism of cell damage in PD. 6-Hydroxydopamine (6-OHDA), a dopamine analog, specifically damages dopaminergic neurons. Echinacoside (ECH) is a phenylethanoid glycoside isolated from the stems of Cistanche salsa, showing a variety of neuroprotective effects in previous studies. The present study was to investigate its effect against 6-OHDA-induced neurotoxicity and possible mechanisms in PC12 cells. The results showed that 6-OHDA reduced cell viability, decreased oxidation-reduction activity, decreased mitochondrial membrane potential, and induced mitochondria-mediated apoptosis compared with untreated PC12 cells. However, echinacoside treatment significantly attenuated these changes induced by 6-OHDA. In addition, echinacoside also could significantly alleviate the inflammatory responses induced by 6-OHDA. Further research showed that echinacoside could reduce 6-OHDA-induced ROS production in PC12 cells. These results suggest that the underlying mechanism of echinacoside against 6-OHDA-induced neurotoxicity may be involve in attenuating mitochondrial dysfunction and inflammatory responses by reducing ROS production. PMID:25788961

  11. Characterization of Immune Responses Induced by Ebola Virus Glycoprotein (GP) and Truncated GP Isoform DNA Vaccines and Protection Against Lethal Ebola Virus Challenge in Mice.

    PubMed

    Li, Wenfang; Ye, Ling; Carrion, Ricardo; Mohan, Gopi S; Nunneley, Jerritt; Staples, Hilary; Ticer, Anysha; Patterson, Jean L; Compans, Richard W; Yang, Chinglai

    2015-10-01

    In addition to its surface glycoprotein (GP), Ebola virus directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. We recently reported that sGP actively diverts host antibody responses against the epitopes that it shares with GP and thereby allows itself to absorb anti-GP antibodies, a phenomenon we termed "antigenic subversion." To investigate the effect of antigenic subversion by sGP on protection against virus infection, we compared immune responses induced by different prime-boost immunization regimens with GP and sGP DNA vaccines in mice and their efficacy against lethal Ebola virus challenge. Similar levels of anti-GP antibodies were induced by 2 immunizations with sGP and GP DNA vaccines. However, 2 immunizations with GP but not sGP DNA vaccine fully protected mice from lethal challenge. Boosting with sGP or GP DNA vaccine in mice that had been primed by GP or sGP DNA vaccine augmented the levels of anti-GP antibody responses and further improved protective efficacy against Ebola virus infection. These results show that both the quality and the levels of anti-GP antibody responses affect the efficacy of protection against Ebola virus infection.

  12. Characterization of Immune Responses Induced by Ebola Virus Glycoprotein (GP) and Truncated GP Isoform DNA Vaccines and Protection Against Lethal Ebola Virus Challenge in Mice

    PubMed Central

    Li, Wenfang; Ye, Ling; Carrion, Ricardo; Mohan, Gopi S.; Nunneley, Jerritt; Staples, Hilary; Ticer, Anysha; Patterson, Jean L.; Compans, Richard W.; Yang, Chinglai

    2015-01-01

    In addition to its surface glycoprotein (GP), Ebola virus directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. We recently reported that sGP actively diverts host antibody responses against the epitopes that it shares with GP and thereby allows itself to absorb anti-GP antibodies, a phenomenon we termed “antigenic subversion.” To investigate the effect of antigenic subversion by sGP on protection against virus infection, we compared immune responses induced by different prime-boost immunization regimens with GP and sGP DNA vaccines in mice and their efficacy against lethal Ebola virus challenge. Similar levels of anti-GP antibodies were induced by 2 immunizations with sGP and GP DNA vaccines. However, 2 immunizations with GP but not sGP DNA vaccine fully protected mice from lethal challenge. Boosting with sGP or GP DNA vaccine in mice that had been primed by GP or sGP DNA vaccine augmented the levels of anti-GP antibody responses and further improved protective efficacy against Ebola virus infection. These results show that both the quality and the levels of anti-GP antibody responses affect the efficacy of protection against Ebola virus infection. PMID:25877553

  13. Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection

    PubMed Central

    Gillis, Jacqueline; Wong, Fay E.; Yu, Yi; Camp, Jeremy V.; Li, Qingsheng; Connole, Michelle; Li, Yuan; Lifson, Jeffrey D.; Li, Wenjun; Keele, Brandon F.; Kozlowski, Pamela A.; Desrosiers, Ronald C.; Haase, Ashley T.

    2016-01-01

    Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination. PMID:27959961

  14. Archaeosome Adjuvant Overcomes Tolerance to Tumor-Associated Melanoma Antigens Inducing Protective CD8+ T Cell Responses

    PubMed Central

    Krishnan, Lakshmi; Deschatelets, Lise; Stark, Felicity C.; Gurnani, Komal; Sprott, G. Dennis

    2010-01-01

    Vesicles comprised of the ether glycerolipids of the archaeon Methanobrevibacter smithii (archaeosomes) are potent adjuvants for evoking CD8+ T cell responses. We therefore explored the ability of archaeosomes to overcome immunologic tolerance to self-antigens. Priming and boosting of mice with archaeosome-antigen evoked comparable CD8+ T cell response and tumor protection to an alternate boosting strategy utilizing live bacterial vectors for antigen delivery. Vaccination with melanoma antigenic peptides TRP181-189 and Gp10025-33 delivered in archaeosomes resulted in IFN-γ producing antigen-specific CD8+ T cells with strong cytolytic capability and protection against subcutaneous B16 melanoma. Targeting responses against multiple antigens afforded prolonged median survival against melanoma challenge. Entrapment of multiple peptides within the same vesicle or admixed formulations were both effective at evoking CD8+ T cells against each antigen. Melanoma-antigen archaeosome formulations also afforded therapeutic protection against established B16 tumors when combined with depletion of T-regulatory cells. Overall, we demonstrate that archaeosome adjuvants constitute an effective choice for formulating cancer vaccines. PMID:21318177

  15. Alphavirus-based vaccines encoding nonstructural proteins of hepatitis C virus induce robust and protective T-cell responses.

    PubMed

    Ip, Peng Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W; Daemen, Toos

    2014-04-01

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all- or a part of the conserved nonstructural proteins (nsPs) of HCV. We demonstrated that an rSFV vector was able to encode a transgene as large as 6.1 kb without affecting its vaccine immunogenicity. Prime-boost immunizations of mice with rSFV expressing all nsPs induced strong and long-lasting NS3-specific CD8(+) T-cell responses. The strength and functional heterogeneity of the T-cell response was similar to that induced with rSFV expressing only NS3/4A. Furthermore this leads to a significant growth delay and negative selection of HCV-expressing EL4 tumors in an in vivo mouse model. In general, as broad-spectrum T-cell responses are only seen in patients with resolved HCV infection, this rSFV-based vector, which expresses all nsPs, inducing robust T-cell activity has a potential for the treatment of HCV infections.

  16. A novel mucosal vaccine targeting Peyer's patch M cells induces protective antigen-specific IgA responses.

    PubMed

    Shima, Hideaki; Watanabe, Takashi; Fukuda, Shinji; Fukuoka, Shin-Ichi; Ohara, Osamu; Ohno, Hiroshi

    2014-11-01

    Mucosal vaccines can induce mucosal immunity, including antigen-specific secretory IgA production, to protect from invasion by pathogens and to neutralize toxins at mucosal surfaces. We established an effective antigen-delivering fusion protein, anti-GP2-SA, as a mucosal vaccine. The anti-GP2-SA consists of streptavidin (SA) fused to the antigen-binding fragment region from a mAb against glycoprotein 2 (GP2), an antigen-uptake receptor specifically expressed on M cells. Anti-GP2-SA targets antigen-sampling M cells in the follicle-associated epithelium covering Peyer's patches. Immunofluorescence showed that anti-GP2-SA specifically bound to M cells. Orally administered biotinylated ovalbumin peptide (bOVA) conjugated with anti-GP2-SA more efficiently induced OVA-specific fecal IgA secretion compared with bOVA alone or bOVA conjugated with SA. Furthermore, mice immunized by oral administration of the biotinylated Salmonella enterica serovar Typhimurium (S. Typhimurium) lysate conjugated with anti-GP2-SA were significantly better protected from subsequent infection by virulent S. Typhimurium than mice treated with the bacterial lysate alone or conjugated with SA. These results suggest that anti-GP2-SA-based M-cell-targeting vaccines are a novel strategy for inducing efficient mucosal immunity.

  17. A Curcumin Derivative That Inhibits Vinyl Carbamate-Induced Lung Carcinogenesis via Activation of the Nrf2 Protective Response

    PubMed Central

    Shen, Tao; Jiang, Tao; Long, Min; Chen, Jun; Ren, Dong-Mei; Wong, Pak Kin

    2015-01-01

    Abstract Aims: Lung cancer has a high worldwide morbidity and mortality. The employment of chemopreventive agents is effective to reduce lung cancer. Nuclear factor erythroid 2-related factor 2 (Nrf2) mitigates insults from both exogenous and endogenous sources and thus has been verified as a target for chemoprevention. Curcumin has long been recognized as a chemopreventive agent, but poor bioavailability and weak Nrf2 induction have prohibited clinical application. Thus, we have developed new curcumin derivatives and tested their Nrf2 induction. Results: Based on curcumin, we synthesized curcumin analogs with five carbon linkages and established a structure–activity relationship for Nrf2 induction. Among these derivatives, bis[2-hydroxybenzylidene]acetone (BHBA) was one of the most potent Nrf2 inducers with minimal toxicity and improved pharmacological properties and was thus selected for further investigation. BHBA activated the Nrf2 pathway in the canonical Keap1-Cys151-dependent manner. Furthermore, BHBA was able to protect human lung epithelial cells against sodium arsenite [As(III)]-induced cytotoxicity. More importantly, in an in vivo vinyl carbamate-induced lung cancer model in A/J mice, preadministration of BHBA significantly reduced lung adenocarcinoma, while curcumin failed to show any effects even at high doses. Innovation: The curcumin derivative, BHBA, is a potent inducer of Nrf2. It was demonstrated to protect against As(III) toxicity in lung epithelial cells in an Nrf2-dependent manner. Furthermore, compared with curcumin, BHBA displayed improved chemopreventive activities in a carcinogen-induced lung cancer model. Conclusion: Taken together, our results demonstrate that BHBA, a curcumin analog with improved Nrf2-activating and chemopreventive activities both in vitro and in vivo, could be developed into a chemoprotective pharmacological agent. Antioxid. Redox Signal. 23, 651–664. PMID:25891177

  18. Wedelolactone protects human bronchial epithelial cell injury against cigarette smoke extract-induced oxidant stress and inflammation responses through Nrf2 pathway.

    PubMed

    Ding, Shumin; Hou, Xuefeng; Yuan, Jiarui; Tan, Xiaobin; Chen, Juan; Yang, Nan; Luo, Yi; Jiang, Ziyu; Jin, Ping; Dong, Zibo; Feng, Liang; Jia, Xiaobin

    2015-12-01

    Cigarette smoke is the leading cause of the development of various lung diseases including lung cancer through triggering oxidant stress and inflammatory responses which contributed to the lesions of normal human bronchial epithelial (NHBE) cell. Wedelolactone (WEL), a natural compound from Eclipta prostrata L., has been found to possess the inhibitive effects on the proliferation and growth of cancers. In the present study, we investigated the effects of WEL on NHBE cell injury induced by cigarette smoke extract (CSE) in vitro. It showed that the pretreatment WEL (2.5-20μM) resulted in a significant protective effect on 10% CSE-induced cell death in NHBE cells. The pretreatment with WEL dose-dependently and significantly reversed the activities of SOD, CAT, GSH and the level of MDA to normal level. We also found that the protein expression levels of COX-2 and ICAM-1 which are related to inflammatory response were remarkably reduced by WEL compared with 10% CSE treatment. Additionally, WEL also reduced the expressions of antioxidases including NAD(P)H dehydrogenase:Quinone 1 (NQO1) and heme oxygenase-1 (HO-1). Moreover, Nrf2 inhibitor all-trans-retinoic acid (ATRA) decreased remarkably their expressions. These results suggest that WEL protects NHBE cell against CSE-induced injury through modulating Nrf2 pathway. Our study indicates that WEL may be a new potential protective agent against CSE-induced lung injury.

  19. Rabbit hemorrhagic disease virus capsid, a versatile platform for foreign B-cell epitope display inducing protective humoral immune responses.

    PubMed

    Moreno, Noelia; Mena, Ignacio; Angulo, Iván; Gómez, Yolanda; Crisci, Elisa; Montoya, María; Castón, José R; Blanco, Esther; Bárcena, Juan

    2016-08-23

    Virus-like particles (VLPs), comprised of viral structural proteins devoid of genetic material, are tunable nanoparticles that can be chemically or genetically engineered, to be used as platforms for multimeric display of foreign antigens. Here, we report the engineering of chimeric VLPs, derived from rabbit hemorrhagic disease virus (RHDV) for presentation of foreign B-cell antigens to the immune system. The RHDV capsid comprises 180 copies of a single capsid subunit (VP60). To evaluate the ability of chimeric RHDV VLPs to elicit protective humoral responses against foreign antigens, we tested two B-cell epitopes: a novel neutralizing B-cell epitope, derived from feline calicivirus capsid protein, and a well characterized B-cell epitope from the extracellular domain of influenza A virus M2 protein (M2e). We generated sets of chimeric RHDV VLPs by insertion of the foreign B-cell epitopes at three different locations within VP60 protein (which involved different levels of surface accessibility) and in different copy numbers per site. The immunogenic potential of the chimeric VLPs was analyzed in the mouse model. The results presented here indicated that chimeric RHDV VLPs elicit potent protective humoral responses against displayed foreign B-cell epitopes, demonstrated by both, in vitro neutralization and in vivo protection against a lethal challenge.

  20. Rabbit hemorrhagic disease virus capsid, a versatile platform for foreign B-cell epitope display inducing protective humoral immune responses

    PubMed Central

    Moreno, Noelia; Mena, Ignacio; Angulo, Iván; Gómez, Yolanda; Crisci, Elisa; Montoya, María; Castón, José R.; Blanco, Esther; Bárcena, Juan

    2016-01-01

    Virus-like particles (VLPs), comprised of viral structural proteins devoid of genetic material, are tunable nanoparticles that can be chemically or genetically engineered, to be used as platforms for multimeric display of foreign antigens. Here, we report the engineering of chimeric VLPs, derived from rabbit hemorrhagic disease virus (RHDV) for presentation of foreign B-cell antigens to the immune system. The RHDV capsid comprises 180 copies of a single capsid subunit (VP60). To evaluate the ability of chimeric RHDV VLPs to elicit protective humoral responses against foreign antigens, we tested two B-cell epitopes: a novel neutralizing B-cell epitope, derived from feline calicivirus capsid protein, and a well characterized B-cell epitope from the extracellular domain of influenza A virus M2 protein (M2e). We generated sets of chimeric RHDV VLPs by insertion of the foreign B-cell epitopes at three different locations within VP60 protein (which involved different levels of surface accessibility) and in different copy numbers per site. The immunogenic potential of the chimeric VLPs was analyzed in the mouse model. The results presented here indicated that chimeric RHDV VLPs elicit potent protective humoral responses against displayed foreign B-cell epitopes, demonstrated by both, in vitro neutralization and in vivo protection against a lethal challenge. PMID:27549017

  1. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components.

    PubMed

    Strowig, Till; Gurer, Cagan; Ploss, Alexander; Liu, Yi-Fang; Arrey, Frida; Sashihara, Junji; Koo, Gloria; Rice, Charles M; Young, James W; Chadburn, Amy; Cohen, Jeffrey I; Münz, Christian

    2009-06-08

    Many pathogens that cause human disease infect only humans. To identify the mechanisms of immune protection against these pathogens and also to evaluate promising vaccine candidates, a small animal model would be desirable. We demonstrate that primary T cell responses in mice with reconstituted human immune system components control infection with the oncogenic and persistent Epstein-Barr virus (EBV). These cytotoxic and interferon-gamma-producing T cell responses were human leukocyte antigen (HLA) restricted and specific for EBV-derived peptides. In HLA-A2 transgenic animals and similar to human EBV carriers, T cell responses against lytic EBV antigens dominated over recognition of latent EBV antigens. T cell depletion resulted in elevated viral loads and emergence of EBV-associated lymphoproliferative disease. Both loss of CD4(+) and CD8(+) T cells abolished immune control. Therefore, this mouse model recapitulates features of symptomatic primary EBV infection and generates T cell-mediated immune control that resists oncogenic transformation.

  2. Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging.

    PubMed

    Briganti, Stefania; Wlaschek, Meinhard; Hinrichs, Christina; Bellei, Barbara; Flori, Enrica; Treiber, Nicolai; Iben, Sebastian; Picardo, Mauro; Scharffetter-Kochanek, Karin

    2008-09-01

    Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.

  3. Boosting BCG-primed mice with chimeric DNA vaccine HG856A induces potent multifunctional T cell responses and enhanced protection against Mycobacterium tuberculosis.

    PubMed

    Ji, Ping; Hu, Zhi-Dong; Kang, Han; Yuan, Qin; Ma, Hui; Wen, Han-Li; Wu, Juan; Li, Zhong-Ming; Lowrie, Douglas B; Fan, Xiao-Yong

    2016-02-01

    The tuberculosis pandemic continues to rampage despite widespread use of the current Bacillus Calmette-Guerin (BCG) vaccine. Because DNA vaccines can elicit effective antigen-specific immune responses, including potent T cell-mediated immunity, they are promising vehicles for antigen delivery. In a prime-boost approach, they can supplement the inadequate anti-TB immunological memory induced by BCG. Based on this, a chimeric DNA vaccine HG856A encoding Mycobacterium tuberculosis (M. tuberculosis) immunodominant antigen Ag85A plus two copies of ESAT-6 was constructed. Potent humoral immune responses, as well as therapeutic effects induced by this DNA vaccine, were observed previously in M. tuberculosis-infected mice. In this study, we further evaluated the antigen-specific T cell immune responses and showed that repeated immunization with HG856A gave modest protection against M. tuberculosis challenge infection and significantly boosted the immune protection primed by BCG vaccination. Enhanced protection was accompanied by increased multifunctional Th1 CD4(+) T cell responses, most notably by an elevated frequency of M. tuberculosis antigen-specific IL-2-producing CD4(+) T cells post-vaccination. These data confirm the potential of chimeric DNA vaccine HG856A as an anti-TB vaccine candidate.

  4. Mycobacterial Membrane Vesicles Administered Systemically in Mice Induce a Protective Immune Response to Surface Compartments of Mycobacterium tuberculosis

    PubMed Central

    Carreño, Leandro J.; Batista-Gonzalez, Ana; Baena, Andres; Venkataswamy, Manjunatha M.; Xu, Jiayong; Yu, Xiaobo; Wallstrom, Garrick; Magee, D. Mitchell; LaBaer, Joshua; Achkar, Jacqueline M.; Jacobs, William R.; Chan, John; Porcelli, Steven A.; Casadevall, Arturo

    2014-01-01

    ABSTRACT Pathogenic and nonpathogenic species of bacteria and fungi release membrane vesicles (MV), containing proteins, polysaccharides, and lipids, into the extracellular milieu. Previously, we demonstrated that several mycobacterial species, including bacillus Calmette-Guerin (BCG) and Mycobacterium tuberculosis, release MV containing lipids and proteins that subvert host immune response in a Toll-like receptor 2 (TLR2)-dependent manner (R. Prados-Rosales et al., J. Clin. Invest. 121:1471–1483, 2011, doi:10.1172/JCI44261). In this work, we analyzed the vaccine potential of MV in a mouse model and compared the effects of immunization with MV to those of standard BCG vaccination. Immunization with MV from BCG or M. tuberculosis elicited a mixed humoral and cellular response directed to both membrane and cell wall components, such as lipoproteins. However, only vaccination with M. tuberculosis MV was able to protect as well as live BCG immunization. M. tuberculosis MV boosted BCG vaccine efficacy. In summary, MV are highly immunogenic without adjuvants and elicit immune responses comparable to those achieved with BCG in protection against M. tuberculosis. PMID:25271291

  5. Adjuvant effect of Cliptox on the protective immune response induced by an inactivated vaccine against foot and mouth disease virus in mice.

    PubMed

    Batista, A; Quattrocchi, V; Olivera, V; Langellotti, C; Pappalardo, J S; Di Giacomo, S; Mongini, C; Portuondo, D; Zamorano, P

    2010-08-31

    Foot and Mouth Disease (FMD) is an acute disease caused by Foot and Mouth Disease Virus (FMDV) which causes important economy losses, this is why it is necessary to obtain a vaccine that stimulates a rapid and long-lasting protective immune response. Cliptox is a mineral microparticle that in earlier studies has shown adjuvant activity against different antigens. In this study we have examined the effects of Cliptox on the magnitude and type of immunity elicited in response to inactivated FMDV (iFMDV) vaccine. It was demonstrated that iFMDV-Cliptox stimulates a specific antibody response detected in mucosal and in sera. The different isotype profiles elicited by inoculation with this vaccine indicate a Th1/Th2 response. Also, an increase in dendritic cells and macrophages in the spleen in comparison with the iFMDV vaccine iFMDV-Cliptox was detected. The Cliptox-iFMDV formulation was non toxic by using egg embryos and yielded increased protection against challenge with FMDV in the murine model. Our results show that the incorporation of Cliptox into FMDVi vaccine induces an increase of the specific protective immune response in mice and clearly indicate that Cliptox TM exert an (important) up-regulation on DC and MPhi. Additionally, Cliptox TM adjuvant can be used in vaccines for induction of mucosal immune response.

  6. Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death

    PubMed Central

    Ding, Boxiao; Parmigiani, Anita; Divakaruni, Ajit S.; Archer, Kellie; Murphy, Anne N.; Budanov, Andrei V.

    2016-01-01

    Sestrin2 is a member of a family of stress responsive proteins, which controls cell viability via antioxidant activity and regulation of the mammalian target of rapamycin protein kinase (mTOR). Sestrin2 is induced by different stress insults, which diminish ATP production and induce energetic stress in the cells. Glucose is a critical substrate for ATP production utilized via glycolysis and mitochondrial respiration as well as for glycosylation of newly synthesized proteins in the endoplasmic reticulum (ER) and Golgi. Thus, glucose starvation causes both energy deficiency and activation of ER stress followed by the unfolding protein response (UPR). Here, we show that UPR induces Sestrin2 via ATF4 and NRF2 transcription factors and demonstrate that Sestrin2 protects cells from glucose starvation-induced cell death. Sestrin2 inactivation sensitizes cells to necroptotic cell death that is associated with a decline in ATP levels and can be suppressed by Necrostatin 7. We propose that Sestrin2 protects cells from glucose starvation-induced cell death via regulation of mitochondrial homeostasis. PMID:26932729

  7. Propionate Protects against Lipopolysaccharide-Induced Mastitis in Mice by Restoring Blood-Milk Barrier Disruption and Suppressing Inflammatory Response.

    PubMed

    Wang, Jingjing; Wei, Zhengkai; Zhang, Xu; Wang, Yanan; Yang, Zhengtao; Fu, Yunhe

    2017-01-01

    Mastitis, an inflammation of the mammary glands, is a major disease affecting dairy animal worldwide. Propionate is one of the main short-chain fatty acid that can exert multiple effects on the inflammatory process. The purpose of this study is to investigate the mechanisms underlying the protective effects of sodium propionate against lipopolysaccharide (LPS)-induced mastitis model in mice. The data mainly confirm that inflammation and blood-milk barrier breakdown contribute to progression of the disease in this model. In mice with LPS, sodium propionate attenuates the LPS-induced histopathological changes, inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) production, myeloperoxidase activity in mammary tissues. Given their importance in the blood-milk barrier, tight junction proteins occludin and claudin-3 are further investigated. Our results show that sodium propionate strikingly increases the expressions of occludin and claudin-3 and reduces the blood-milk barrier permeability in this model. Furthermore, in LPS-stimulated mouse mammary epithelial cells (mMECs), LPS increased the expressions of phosphorylated (p)-p65, p-IκB proteins, which is attenuated by sodium propionate. Finally, we examine the possibility that propionate acts as a histone deacetylase (HDAC) inhibitor, the results show that both sodium propionate and trichostatin A increase the level of histone H3 acetylation and inhibit the increased production of TNF-α, IL-6, and IL-1β in LPS-stimulated mMECs. These data suggest that sodium propionate protects against LPS-induced mastitis mainly by restoring blood-milk barrier disruption and suppressing inflammation via NF-κB signaling pathway and HDAC inhibition.

  8. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity

    PubMed Central

    Palm, Noah W.; Rosenstein, Rachel K.; Yu, Shuang; Schenten, Dominik; Florsheim, Esther; Medzhitov, Ruslan

    2013-01-01

    SUMMARY Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin. PMID:24210353

  9. Protective effect of antiasthma drugs on late asthmatic reactions and increased airway responsiveness induced by toluene diisocyanate in sensitized subjects.

    PubMed

    Mapp, C; Boschetto, P; dal Vecchio, L; Crescioli, S; de Marzo, N; Paleari, D; Fabbri, L M

    1987-12-01

    To determine whether 4 drugs used in the treatment of asthma inhibit the late asthmatic reaction and the associated increase in airway responsiveness induced by toluene diisocyanate (TDI), we studied 24 sensitized subjects divided into 4 groups. Beclomethasone aerosol (1 mg bid), slow-release theophylline (6.5 mg/kg bid), slow-release verapamil (120 mg bid), and cromolyn (20 mg qid via spinhaler), were administered for 7 days, respectively, to 1 of the 4 groups, according to a double-blind, crossover, placebo-controlled study design. When the subjects were treated with placebo, verapamil, or cromolyn, FEV1 markedly decreased and airway responsiveness increased after exposure to TDI. By contrast, beclomethasone prevented the late asthmatic reaction and the associated increase in airway responsiveness to methacholine induced by TDI. Slow-release theophylline partially inhibited both the immediate and the late asthmatic reactions but had no effect on airway hyperresponsiveness to methacholine. These results suggest that only high-dose inhaled steroids can completely block TDI-induced late asthmatic reactions.

  10. Upregulation of HIF-1α via activation of ERK and PI3K pathway mediated protective response to microwave-induced mitochondrial injury in neuron-like cells.

    PubMed

    Zhao, Li; Yang, Yue-Feng; Gao, Ya-Bing; Wang, Shui-Ming; Wang, Li-Feng; Zuo, Hong-Yan; Dong, Ji; Xu, Xin-Ping; Su, Zhen-Tao; Zhou, Hong-Mei; Zhu, Ling-Ling; Peng, Rui-Yun

    2014-12-01

    Microwave-induced learning and memory deficits in animal models have been gaining attention in recent years, largely because of increasing public concerns on growing environmental influences. The data from our group and others have showed that the injury of mitochondria, the major source of cellular adenosine triphosphate (ATP) in primary neurons, could be detected in the neuron cells of microwave-exposed rats. In this study, we provided some insights into the cellular and molecular mechanisms behind mitochondrial injury in PC12 cell-derived neuron-like cells. PC12 cell-derived neuron-like cells were exposed to 30 mW/cm(2) microwave for 5 min, and damages of mitochondrial ultrastructure could be observed by using transmission electron microscopy. Impairments of mitochondrial function, indicated by decrease of ATP content, reduction of succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activities, decrease of mitochondrial membrane potential (MMP), and increase of reactive oxygen species (ROS) production, could be detected. We also found that hypoxia-inducible factor-1 (HIF-1α), a key regulator responsible for hypoxic response of the mammalian cells, was upregulated in microwave-exposed neuron-like cells. Furthermore, HIF-1α overexpression protected mitochondria from injury by increasing the ATP contents and MMP, while HIF-1α silence promoted microwave-induced mitochondrial damage. Finally, we demonstrated that both ERK and PI3K signaling activation are required in microwave-induced HIF-1α activation and protective response. In conclusion, we elucidated a regulatory connection between impairments of mitochondrial function and HIF-1α activation in microwave-exposed neuron-like cells. By modulating mitochondrial function and protecting neuron-like cells against microwave-induced mitochondrial injury, HIF-1α represents a promising therapeutic target for microwave radiation injury.

  11. Combined Alphavirus Replicon Particle Vaccine Induces Durable and Cross-Protective Immune Responses against Equine Encephalitis Viruses

    PubMed Central

    Glass, Pamela J.; Bakken, Russell R.; Barth, James F.; Lind, Cathleen M.; da Silva, Luis; Hart, Mary Kate; Rayner, Jonathan; Alterson, Kim; Custer, Max; Dudek, Jeanne; Owens, Gary; Kamrud, Kurt I.; Parker, Michael D.; Smith, Jonathan

    2014-01-01

    surface proteins of all three viruses. In this report we demonstrate in both mice and macaques that this combined vaccine is safe, generates a strong immune response, and protects against aerosol challenge with the viruses that cause Venezuelan equine encephalitis, western equine encephalitis, and eastern equine encephalitis. PMID:25122801

  12. Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses

    PubMed Central

    Ruane, Darren; Chorny, Alejo; Lee, Haekyung; Faith, Jeremiah; Pandey, Gaurav; Shan, Meimei; Simchoni, Noa; Rahman, Adeeb; Garg, Aakash; Weinstein, Erica G.; Oropallo, Michael; Gaylord, Michelle; Ungaro, Ryan; Cunningham-Rundles, Charlotte; Alexandropoulos, Konstantina; Mucida, Daniel; Merad, Miriam; Cerutti, Andrea

    2016-01-01

    Protective immunoglobulin A (IgA) responses to oral antigens are usually orchestrated by gut dendritic cells (DCs). Here, we show that lung CD103+ and CD24+CD11b+ DCs induced IgA class-switch recombination (CSR) by activating B cells through T cell–dependent or –independent pathways. Compared with lung DCs (LDC), lung CD64+ macrophages had decreased expression of B cell activation genes and induced significantly less IgA production. Microbial stimuli, acting through Toll-like receptors, induced transforming growth factor-β (TGF-β) production by LDCs and exerted a profound influence on LDC-mediated IgA CSR. After intranasal immunization with inactive cholera toxin (CT), LDCs stimulated retinoic acid–dependent up-regulation of α4β7 and CCR9 gut-homing receptors on local IgA-expressing B cells. Migration of these B cells to the gut resulted in IgA-mediated protection against an oral challenge with active CT. However, in germ-free mice, the levels of LDC-induced, CT–specific IgA in the gut are significantly reduced. Herein, we demonstrate an unexpected role of the microbiota in modulating the protective efficacy of intranasal vaccination through their effect on the IgA class-switching function of LDCs. PMID:26712806

  13. Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses.

    PubMed

    Ruane, Darren; Chorny, Alejo; Lee, Haekyung; Faith, Jeremiah; Pandey, Gaurav; Shan, Meimei; Simchoni, Noa; Rahman, Adeeb; Garg, Aakash; Weinstein, Erica G; Oropallo, Michael; Gaylord, Michelle; Ungaro, Ryan; Cunningham-Rundles, Charlotte; Alexandropoulos, Konstantina; Mucida, Daniel; Merad, Miriam; Cerutti, Andrea; Mehandru, Saurabh

    2016-01-11

    Protective immunoglobulin A (IgA) responses to oral antigens are usually orchestrated by gut dendritic cells (DCs). Here, we show that lung CD103(+) and CD24(+)CD11b(+) DCs induced IgA class-switch recombination (CSR) by activating B cells through T cell-dependent or -independent pathways. Compared with lung DCs (LDC), lung CD64(+) macrophages had decreased expression of B cell activation genes and induced significantly less IgA production. Microbial stimuli, acting through Toll-like receptors, induced transforming growth factor-β (TGF-β) production by LDCs and exerted a profound influence on LDC-mediated IgA CSR. After intranasal immunization with inactive cholera toxin (CT), LDCs stimulated retinoic acid-dependent up-regulation of α4β7 and CCR9 gut-homing receptors on local IgA-expressing B cells. Migration of these B cells to the gut resulted in IgA-mediated protection against an oral challenge with active CT. However, in germ-free mice, the levels of LDC-induced, CT-specific IgA in the gut are significantly reduced. Herein, we demonstrate an unexpected role of the microbiota in modulating the protective efficacy of intranasal vaccination through their effect on the IgA class-switching function of LDCs. © 2016 Ruane et al.

  14. Stroke volume changes induced by a recruitment maneuver predict fluid responsiveness in patients with protective ventilation in the operating theater

    PubMed Central

    De Broca, Bruno; Garnier, Jeremie; Fischer, Marc-Olivier; Archange, Thomas; Marc, Julien; Abou-Arab, Osama; Dupont, Hervé; Lorne, Emmanuel; Guinot, Pierre-grégoire

    2016-01-01

    Abstract During abdominal surgery, the use of protective ventilation with a low tidal volume, positive expiratory pressure (PEEP) and recruitment maneuvers (RMs) may limit the applicability of dynamic preload indices. The objective of the present study was to establish whether or not the variation in stroke volume (SV) during an RM could predict fluid responsiveness. We prospectively included patients receiving protective ventilation (tidal volume: 6 mL kg−1, PEEP: 5–7 cmH2O; RMs). Hemodynamic variables, such as heart rate, arterial pressure, SV, cardiac output (CO), respiratory variation in SV (ΔrespSV) and pulse pressure (ΔrespPP), and the variation in SV (ΔrecSV) as well as pulse pressure (ΔrecPP) during an RM were measured at baseline, at the end of the RM, and after fluid expansion. Responders were defined as patients with an SV increase of at least 15% after infusion of 500 mL of crystalloid solution. Thirty-seven (62%) of the 60 included patients were responders. Responders and nonresponders differed significantly in terms of the median ΔrecSV (26% [19–37] vs 10% [4–12], respectively; P < 0.0001). A ΔrecSV value more than 16% predicted fluid responsiveness with an area under the receiver-operating characteristic curve (AU) of 0.95 (95% confidence interval [CI]: 0.91–0.99; P < 0.0001) and a narrow gray zone between 15% and 17%. The area under the curve values for ΔrecPP and ΔrespSV were, respectively, 0.81 (95%CI: 0.7–0.91; P = 0.0001) and 0.80 (95%CI: 0.70–0.94; P < 0.0001). ΔrespPP did not predict fluid responsiveness. During abdominal surgery with protective ventilation, a ΔrecSV value more than 16% accurately predicted fluid responsiveness and had a narrow gray zone (between 15% and 17%). ΔrecPP and ΔrespSV (but not ΔrespPP) were also predictive. PMID:27428237

  15. Stroke volume changes induced by a recruitment maneuver predict fluid responsiveness in patients with protective ventilation in the operating theater.

    PubMed

    De Broca, Bruno; Garnier, Jeremie; Fischer, Marc-Olivier; Archange, Thomas; Marc, Julien; Abou-Arab, Osama; Dupont, Hervé; Lorne, Emmanuel; Guinot, Pierre-Grégoire

    2016-07-01

    During abdominal surgery, the use of protective ventilation with a low tidal volume, positive expiratory pressure (PEEP) and recruitment maneuvers (RMs) may limit the applicability of dynamic preload indices. The objective of the present study was to establish whether or not the variation in stroke volume (SV) during an RM could predict fluid responsiveness.We prospectively included patients receiving protective ventilation (tidal volume: 6 mL kg, PEEP: 5-7 cmH2O; RMs). Hemodynamic variables, such as heart rate, arterial pressure, SV, cardiac output (CO), respiratory variation in SV (ΔrespSV) and pulse pressure (ΔrespPP), and the variation in SV (ΔrecSV) as well as pulse pressure (ΔrecPP) during an RM were measured at baseline, at the end of the RM, and after fluid expansion. Responders were defined as patients with an SV increase of at least 15% after infusion of 500 mL of crystalloid solution.Thirty-seven (62%) of the 60 included patients were responders. Responders and nonresponders differed significantly in terms of the median ΔrecSV (26% [19-37] vs 10% [4-12], respectively; P < 0.0001). A ΔrecSV value more than 16% predicted fluid responsiveness with an area under the receiver-operating characteristic curve (AU) of 0.95 (95% confidence interval [CI]: 0.91-0.99; P < 0.0001) and a narrow gray zone between 15% and 17%. The area under the curve values for ΔrecPP and ΔrespSV were, respectively, 0.81 (95%CI: 0.7-0.91; P = 0.0001) and 0.80 (95%CI: 0.70-0.94; P < 0.0001). ΔrespPP did not predict fluid responsiveness.During abdominal surgery with protective ventilation, a ΔrecSV value more than 16% accurately predicted fluid responsiveness and had a narrow gray zone (between 15% and 17%). ΔrecPP and ΔrespSV (but not ΔrespPP) were also predictive.

  16. Protective effect of tert-butylhydroquinone on the quinolinic-acid-induced toxicity in rat striatal slices: role of the Nrf2-antioxidant response element pathway.

    PubMed

    Tasset, Inmaculada; Pérez-De La Cruz, Verónica; Elinos-Calderón, Diana; Carrillo-Mora, Paul; González-Herrera, Irma Gabriela; Luna-López, Armando; Konigsberg, Mina; Pedraza-Chaverrí, José; Maldonado, Perla D; Ali, Syed F; Túnez, Isaac; Santamaría, Abel

    2010-01-01

    Tert-butylhydroquinone (tBHQ) is a xenobiotic with reported antioxidant properties. tBHQ has been shown to induce nuclear translocation of the transcription factor NF-E2-related factor 2 (Nrf2) to further activate the antioxidant response element (ARE). In turn, the Nrf2/ARE pathway is responsible for the induction of phase 2 antioxidant enzymes that detoxify oxidant promoters from different toxic insults. In this work, the antioxidant and protective actions of tBHQ were explored for the first time on different biomarkers of the neurotoxic model produced by the excitotoxic and pro-oxidant molecule quinolinic acid (QUIN) in rat striatal slices. For comparison purposes, 3-nitropropionic acid was used as reference model. Our results show that tBHQ (25 μM) prevented the QUIN-induced lipid peroxidation and mitochondrial dysfunction. In addition, tBHQ enhanced glutathione-S-transferase activity, partially recovering its depletion induced by QUIN treatment. Our results also demonstrated that tBHQ was able to induce nuclear accumulation of Nrf2 and further antioxidant protection: while QUIN alone decreased the nuclear Nrf2, a treatment with tBHQ preserved the nuclear levels Nrf2 in the presence of QUIN. Therefore, the tBHQ-mediated Nrf2/ARE induction constitutes a signaling-mediated antioxidant strategy and therapeutic tool to be tested in different neurotoxic models. Copyright © 2009 S. Karger AG, Basel.

  17. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa.

    PubMed

    Parfitt, D A; Aguila, M; McCulley, C H; Bevilacqua, D; Mendes, H F; Athanasiou, D; Novoselov, S S; Kanuga, N; Munro, P M; Coffey, P J; Kalmar, B; Greensmith, L; Cheetham, M E

    2014-05-22

    Retinitis pigmentosa (RP) is a group of inherited diseases that cause blindness due to the progressive death of rod and cone photoreceptors in the retina. There are currently no effective treatments for RP. Inherited mutations in rhodopsin, the light-sensing protein of rod photoreceptor cells, are the most common cause of autosomal-dominant RP. The majority of mutations in rhodopsin, including the common P23H substitution, lead to protein misfolding, which is a feature in many neurodegenerative disorders. Previous studies have shown that upregulating molecular chaperone expression can delay disease progression in models of neurodegeneration. Here, we have explored the potential of the heat-shock protein co-inducer arimoclomol to ameliorate rhodopsin RP. In a cell model of P23H rod opsin RP, arimoclomol reduced P23H rod opsin aggregation and improved viability of mutant rhodopsin-expressing cells. In P23H rhodopsin transgenic rat models, pharmacological potentiation of the stress response with arimoclomol improved electroretinogram responses and prolonged photoreceptor survival, as assessed by measuring outer nuclear layer thickness in the retina. Furthermore, treated animal retinae showed improved photoreceptor outer segment structure and reduced rhodopsin aggregation compared with vehicle-treated controls. The heat-shock response (HSR) was activated in P23H retinae, and this was enhanced with arimoclomol treatment. Furthermore, the unfolded protein response (UPR), which is induced in P23H transgenic rats, was also enhanced in the retinae of arimoclomol-treated animals, suggesting that arimoclomol can potentiate the UPR as well as the HSR. These data suggest that pharmacological enhancement of cellular stress responses may be a potential treatment for rhodopsin RP and that arimoclomol could benefit diseases where ER stress is a factor.

  18. Protective role of ascorbic acid isolated from Cissus quadrangularis on NSAID induced toxicity through immunomodulating response and growth factors expression.

    PubMed

    Jainu, Mallika; Mohan, Kunju Vijai

    2008-12-20

    The present study investigate the effect of ascorbic acid, the major bioactive component isolated from Cissus quadrangularis extract (CAA) on inflammatory cytokines and growth factors in non-steroidal anti-inflammatory drug (NSAID) induced gastric ulcer. Analysis of serum cytokine profile using enzymelinked immunosorbent assay (ELISA) showed a drastic increase in interleukin (IL)-1beta, IL-6, tumour necrosis factor-alpha (TNF)-alpha, interferon-gamma (IFN-gamma) and decrease in IL-10, Il-4 and prostaglandin E2 (PGE2) levels in NSAID (aspirin) treated rats. The reduction of growth factors such as transforming growth factor-alpha (TGF)-alpha and vascular endothelial cell growth factor (VEGF) by aspirin was determined by immunohistochemistry method. Administration of CAA produced significant protection against aspirin induced gastric toxicity by showing significant increase in PGE2, TGF-alpha, VEGF expression and accompanied by a significant inhibition of nitric oxide and regulating the levels of cytokines in rats. These findings suggest that CAA prevents gastric ulcer formation due to its immunomodulatory effect, antioxidant activity along with the ability to modulate PG synthesis and up-regulation of the growth factors.

  19. Leptin induces the phagocytosis and protective immune response in Leishmania donovani infected THP-1 cell line and human PBMCs.

    PubMed

    Dayakar, Alti; Chandrasekaran, Sambamurthy; Veronica, Jalaja; Maurya, Radheshyam

    2016-01-01

    Visceral leishmaniasis (VL) is an infectious disease responsible for several deaths in malnourished children due to impaired cell-mediated immunity, which is accompanied by low circulating leptin levels. The cytokine function of leptin is implicated for several immune regulation activities such as hematopoiesis, angiogenesis, innate and adaptive immunity. Its deficiency associated with polarization of Th2 response, which coincides with VL pathogenesis. To determine the cytokine role of leptin in case of experimental VL, we tested the leptin associated Th1/Th2 type cytokine profile at mRNA level from Leishmania donovani infected human monocytic leukemia cell line (THP-1) and peripheral blood mononuclear cells (PBMCs). We also tested the effect of leptin on macrophages activation (viz. studying the phosphorylation of signaling moieties), phagocytic activity and intracellular reactive oxygen species (ROS) production during infection. We observed that leptin induced Th1 specific response by upregulation of IL-1α, IL-1β, IL-8 and TNF-α in THP-1 and IFN-γ, IL-12 and IL-2 in PBMCs. We also observed the downregulation of Th2 type cytokine i.e. IL-10 in THP-1 and unaltered expression of cytokines i.e. TGF-β, IL-10 and IL-4 in PBMCs. In addition, leptin stimulates the macrophages by inducing phosphorylation of Erk1/2 and Akt which are usually dephosphorylated in L. donovani infection. In concordance, leptin also induces the macrophage phagocytic activity by enhancing the intracellular ROS generation which helps in phagolysosome formation and oxidative killing of the parasite. In compilation, leptin is able to maintain the defensive environment against L. donovani infection through the classical macrophage activity.

  20. A Combination of Recombinant Mycobacterium bovis BCG Strains Expressing Pneumococcal Proteins Induces Cellular and Humoral Immune Responses and Protects against Pneumococcal Colonization and Sepsis.

    PubMed

    Goulart, Cibelly; Rodriguez, Dunia; Kanno, Alex I; Converso, Thiago Rojas; Lu, Ying-Jie; Malley, Richard; Leite, Luciana C C

    2017-10-01

    Pneumococcal diseases remain a substantial cause of mortality in young children in developing countries. The development of potentially serotype-transcending vaccines has been extensively studied; ideally, such a vaccine should include antigens that are able to induce protection against colonization (likely mediated by interleukin-17A [IL-17A]) and invasive disease (likely mediated by antibody). The use of strong adjuvants or alternative delivery systems that are able to improve the immunological response of recombinant proteins has been proposed but poses potential safety and practical concerns in children. We have previously constructed a recombinant Mycobacterium bovis BCG strain expressing a pneumococcal surface protein A (PspA)-PdT fusion protein (rBCG PspA-PdT) that was able to induce an effective immune response and protection against sepsis in a prime-boost strategy. Here, we constructed two new rBCG strains expressing the pneumococcal proteins SP 0148 and SP 2108, which confer IL-17A-dependent protection against pneumococcal colonization in mouse models. Immunization of mice with rBCG 0148 or rBCG 2108 in a prime-boost strategy induced IL-17A and gamma interferon (IFN-γ) production. The combination of these rBCG strains with rBCG PspA-PdT (rBCG Mix), followed by a booster dose of the combined recombinant proteins (rMix) induced an IL-17A response against SP 0148 and SP 2108 and a humoral response characterized by increased levels of IgG2c against PspA and functional antibodies against pneumolysin. Furthermore, immunization with the rBCG Mix prime/rMix booster (rBCG Mix/rMix) provides protection against pneumococcal colonization and sepsis. These results suggest the use of combined rBCG strains as a potentially serotype-transcending pneumococcal vaccine in a prime-boost strategy, which could provide protection against pneumococcal colonization and sepsis. Copyright © 2017 American Society for Microbiology.

  1. Intradermal DNA Electroporation Induces Cellular and Humoral Immune Response and Confers Protection against HER2/neu Tumor

    PubMed Central

    Lamolinara, Alessia; Stramucci, Lorenzo; Hysi, Albana; Iezzi, Manuela; Marchini, Cristina; Mariotti, Marianna; Amici, Augusto; Curcio, Claudia

    2015-01-01

    Skin represents an attractive target for DNA vaccine delivery because of its natural richness in APCs, whose targeting may potentiate the effect of vaccination. Nevertheless, intramuscular electroporation is the most common delivery method for ECTM vaccination. In this study we assessed whether intradermal administration could deliver the vaccine into different cell types and we analyzed the evolution of tissue infiltrate elicited by the vaccination protocol. Intradermal electroporation (EP) vaccination resulted in transfection of different skin layers, as well as mononuclear cells. Additionally, we observed a marked recruitment of reactive infiltrates mainly 6–24 hours after treatment and inflammatory cells included CD11c+. Moreover, we tested the efficacy of intradermal vaccination against Her2/neu antigen in cellular and humoral response induction and consequent protection from a Her2/neu tumor challenge in Her2/neu nontolerant and tolerant mice. A significant delay in transplantable tumor onset was observed in both BALB/c (p ≤ 0,0003) and BALB-neuT mice (p = 0,003). Moreover, BALB-neuT mice displayed slow tumor growth as compared to control group (p < 0,0016). In addition, while in vivo cytotoxic response was observed only in BALB/c mice, a significant antibody response was achieved in both mouse models. Our results identify intradermal EP vaccination as a promising method for delivering Her2/neu DNA vaccine. PMID:26247038

  2. Brucella spp. Lumazine Synthase Induces a TLR4-Mediated Protective Response against B16 Melanoma in Mice

    PubMed Central

    Rossi, Andrés H.; Farias, Ana; Fernández, Javier E.; Bonomi, Hernán R.; Goldbaum, Fernando A.; Berguer, Paula M.

    2015-01-01

    Brucella Lumazine Synthase (BLS) is a highly immunogenic decameric protein which can accept the fusion of foreign proteins at its ten N-termini. These chimeras are very efficient to elicit systemic and oral immunity without adjuvants. BLS signaling via Toll-Like Receptor 4 (TLR4) regulates innate and adaptive immune responses, inducing dendritic cell maturation and CD8+ T-cell cytotoxicity. In this work we study the effect induced by BLS in TLR4-expressing B16 melanoma. In order to evaluate the effectiveness of BLS as a preventive vaccine, C57BL/6J mice were immunized with BLS or BLS-OVA, and 35 days later were subcutaneously inoculated with B16-OVA melanoma. BLS or BLS-OVA induced a significant inhibition of tumor growth, and 50% of mice immunized with the highest dose of BLS did not develop visible tumors. This effect was not observed in TLR4-deficient mice. For treatment experiments, mice were injected with BLS or BLS-OVA 2 days after the inoculation of B16 cells. Both treatments induced significant and equal tumor growth delay and increased survival. Moreover, BLS and BLS-OVA stimulation were also effective in TLR4-deficient mice. In order to study whether BLS has a direct effect on tumor cells, B16 cells were preincubated with BLS, and after 48h, cells were inoculated. Tumors induced by BLS-stimulated cells had inhibited growth and survival was increased. In the BLS group, 40% of mice did not develop tumors. This effect was abolished by the addition of TLR4/MD2 blocking antibody to cells before BLS stimulation. Our work demonstrates that BLS immunization induces a preventive antitumor response that depends on mice TLR4. We also show that BLS generates a therapeutic effect in mice inoculated with B16 cells. Our results show that BLS acts directly in cultured tumor cells via TLR4, highly suggesting that BLS elicits its therapeutic effects acting on the TLR4 from B16 melanoma cells. PMID:25973756

  3. Brucella spp. Lumazine Synthase Induces a TLR4-Mediated Protective Response against B16 Melanoma in Mice.

    PubMed

    Rossi, Andrés H; Farias, Ana; Fernández, Javier E; Bonomi, Hernán R; Goldbaum, Fernando A; Berguer, Paula M

    2015-01-01

    Brucella Lumazine Synthase (BLS) is a highly immunogenic decameric protein which can accept the fusion of foreign proteins at its ten N-termini. These chimeras are very efficient to elicit systemic and oral immunity without adjuvants. BLS signaling via Toll-Like Receptor 4 (TLR4) regulates innate and adaptive immune responses, inducing dendritic cell maturation and CD8(+) T-cell cytotoxicity. In this work we study the effect induced by BLS in TLR4-expressing B16 melanoma. In order to evaluate the effectiveness of BLS as a preventive vaccine, C57BL/6J mice were immunized with BLS or BLS-OVA, and 35 days later were subcutaneously inoculated with B16-OVA melanoma. BLS or BLS-OVA induced a significant inhibition of tumor growth, and 50% of mice immunized with the highest dose of BLS did not develop visible tumors. This effect was not observed in TLR4-deficient mice. For treatment experiments, mice were injected with BLS or BLS-OVA 2 days after the inoculation of B16 cells. Both treatments induced significant and equal tumor growth delay and increased survival. Moreover, BLS and BLS-OVA stimulation were also effective in TLR4-deficient mice. In order to study whether BLS has a direct effect on tumor cells, B16 cells were preincubated with BLS, and after 48h, cells were inoculated. Tumors induced by BLS-stimulated cells had inhibited growth and survival was increased. In the BLS group, 40% of mice did not develop tumors. This effect was abolished by the addition of TLR4/MD2 blocking antibody to cells before BLS stimulation. Our work demonstrates that BLS immunization induces a preventive antitumor response that depends on mice TLR4. We also show that BLS generates a therapeutic effect in mice inoculated with B16 cells. Our results show that BLS acts directly in cultured tumor cells via TLR4, highly suggesting that BLS elicits its therapeutic effects acting on the TLR4 from B16 melanoma cells.

  4. Attenuated Salmonella Typhimurium delivery of a novel DNA vaccine induces immune responses and provides protection against duck enteritis virus.

    PubMed

    Liu, Xueyan; Liu, Qing; Xiao, Kangpeng; Li, Pei; Liu, Qiong; Zhao, Xinxin; Kong, Qingke

    2016-04-15

    DNA vaccines are widely used to prevent and treat infectious diseases, cancer and autoimmune diseases; however, their relatively low immunogenicity is an obstacle to their use. In this study, we constructed a novel and universal DNA vaccine vector (pSS898) that can be used to build DNA vaccines against duck enteritis virus (DEV) and other viruses that require DNA vaccines to provide protection. This vaccine vector has many advantages, including innate immunogenicity, efficient nuclear trafficking and resistance to attack from nucleases. UL24 and tgB from DEV were chosen as the antigens, and the heat labile enterotoxin B subunit (LTB) from Escherichia coli and the IL-2 gene (DuIL-2) from duck were used as adjuvants for the construction of DNA vaccine plasmids. Ducklings that were orally immunized with S739 (Salmonella Typhimurium Δasd-66 Δcrp-24 Δcya-25) and harboring these DEV DNA vaccines produced strong mucosal and systemic immune responses, and they resisted an otherwise lethal DEV challenge. More importantly, S739 (UL24-LTB) provided 90% protection after a priming-boost immunization. This study shows that our novel and universal DNA vaccine vector can be used efficiently in practical applications and may provide a promising method of orally inoculating ducks with a DEV DNA vaccine delivered by attenuated Salmonella Typhimurium for prevention of DVE.

  5. Novel Intervention in the Aging Population: A Primary Meningococcal Vaccine Inducing Protective IgM Responses in Middle-Aged Adults.

    PubMed

    van der Heiden, Marieke; Boots, Annemieke M H; Bonacic Marinovic, Axel A; de Rond, Lia G H; van Maurik, Marjan; Tcherniaeva, Irina; Berbers, Guy A M; Buisman, Anne-Marie

    2017-01-01

    Vaccine responses are often reduced in the elderly, leaving part of the elderly population vulnerable to infectious diseases. Timely vaccination may offer a solution for strengthening memory immunity before reaching old age, which classifies middle-aged persons as a target age group for vaccine interventions. However, knowledge regarding the immunogenicity of primary immunizations in middle-aged adults is lacking. We determined the immunogenicity of a primary meningococcal vaccine towards which no or (very) low pre-vaccination immunity exists in middle-aged adults (NTR4636). A vaccine containing multiple meningococcal groups (tetravalent) conjugated to tetanus toxoid (MenACWY-TT) was administered to middle-aged adults (50-65 years of age, N = 204) in a phase IV single-center and open-label study. Blood samples were taken pre-, 7 days, 28 days, and 1 year post-vaccination. Functional antibody titers were measured with the serum bactericidal assay (SBA). Meningococcal- and tetanus-specific antibody responses were determined with a fluorescent bead-based multiplex immunoassay. A bi-exponential decay model was used to estimate long-term protection. In the majority of the participants, the meningococcal vaccine clearly induced naïve responses to meningococci W (MenW) and meningococci Y (MenY) as compared to a booster response to meningococci C (MenC). After 28 days, 94, 99, and 97% of the participants possessed a protective SBA titer for MenC, MenW, and MenY, respectively, which was maintained in 76, 94, and 86% 1 year post-vaccination. At this 1-year time point, significantly lower SBA titers were found in participants without a pre-vaccination SBA titer. Overall, protective antibody titers were predicted to persist after 10 years in 40-60% of the participants. The SBA titers correlated well with the meningococcal-specific IgM responses, especially for MenW and MenY. Interestingly, these IgM responses were negatively correlated with age. Primary

  6. Translational repression protects human keratinocytes from UVB-induced apoptosis through a discordant eIF2 kinase stress response

    PubMed Central

    Collier, Ann E.; Wek, Ronald C.; Spandau, Dan F

    2015-01-01

    This study delineates the mechanisms by which ultraviolet B (UVB) regulates protein synthesis in human keratinocytes and the importance of translational control in cell survival. Translation initiation is regulated by phosphorylation of eukaryotic initiation factor 2 (eIF2~P), which causes decreased global protein synthesis coincident with enhanced translation of selected stress-related transcripts, such as ATF4. ATF4 is a transcriptional activator of the Integrated Stress Response (ISR), which has cytoprotective functions as well as apoptotic signals through the downstream transcriptional regulator CHOP (GADD153/DDIT3). We determined that UVB irradiation is a potent inducer of eIF2~P in keratinocytes, leading to decreased levels of translation initiation. However, expression of ATF4 or CHOP was not induced by UVB as compared to traditional ISR activators. The rationale for this discordant response is that ATF4 mRNA is reduced by UVB, and despite its ability to be preferentially translated there are diminished levels of available transcript. Forced expression of ATF4 and CHOP protein prior to UVB irradiation significantly enhanced apoptosis, suggesting that this portion of the ISR is deleterious in keratinocytes following UVB. Inhibition of eIF2~P and translational control reduced viability following UVB, which was alleviated by cycloheximide, indicating that translation repression through eIF2~P is central to keratinocyte survival. PMID:25950825

  7. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity.

    PubMed

    Nguyen-Hoai, Tam; Kobelt, Dennis; Hohn, Oliver; Vu, Minh D; Schlag, Peter M; Dörken, Bernd; Norley, Steven; Lipp, Martin; Walther, Wolfgang; Pezzutto, Antonio; Westermann, Jörg

    2012-12-01

    DNA vaccines are potential tools for the induction of immune responses against both infectious disease and cancer. The dermal application of DNA vaccines is of particular interest since the epidermal and dermal layers of the skin are characterized by an abundance of antigen-presenting cells (APCs). The aim of our study was to compare tumor protection as obtained by two different methods of intradermal DNA delivery (gene gun and jet injector) in a well-established HER2/neu mouse tumor model. BALB/c mice were immunized twice with a HER2/neu-coding plasmid by gene gun or jet injector. Mice were then subcutaneously challenged with HER2/neu(+) syngeneic D2F2/E2 tumor cells. Protection against subsequent challenges with tumor cells as well as humoral and T-cell immune responses induced by the vaccine were monitored. Gene gun immunization was far superior to jet injector both in terms of tumor protection and induction of HER2/neu-specific immune responses. After gene gun immunization, 60% of the mice remained tumor-free until day 140 as compared with 25% after jet injector immunization. Furthermore, gene gun vaccination was able to induce both a strong T(H)1-polarized T-cell response with detectable cytotoxic T-lymphocyte (CTL) activity and a humoral immune response against HER2/neu, whereas the jet injector was not. Although the disadvantages that were associated with the use of the jet injector in our model may be overcome with methodological modifications and/or in larger animals, which exhibit a thicker skin and/or subcutaneous muscle tissue, we conclude that gene gun delivery constitutes the method of choice for intradermal DNA delivery in preclinical mouse models and possibly also for the clinical development of DNA-based vaccines.

  8. Enhanced and durable protective immune responses induced by a cocktail of recombinant BCG strains expressing antigens of multistage of Mycobacterium tuberculosis.

    PubMed

    Liang, Jinping; Teng, Xindong; Yuan, Xuefeng; Zhang, Ying; Shi, Chunwei; Yue, Tingting; Zhou, Lei; Li, Jianrong; Fan, Xionglin

    2015-08-01

    Although Bacillus Calmette-Guérin (BCG) vaccine confers protection from Mycobacterium tuberculosis infection in children, its immune protection gradually wanes over time, and consequently leads to an inability to prevent the reactivation of latent infection of M. tuberculosis. Therefore, improving BCG for better control of tuberculosis (TB) is urgently needed. We thus hypothesized that recombinant BCG overexpressing immunodominant antigens expressed at different growth stages of M. tuberculosis could provide a more comprehensive protection against primary and latent M. tuberculosis infection. Here, a novel cocktail of recombinant BCG (rBCG) strains, namely ABX, was produced by combining rBCG::85A, rBCG::85B, and rBCG::X, which overexpressed respective multistage antigens Ag85A, Ag85B, and HspX of M. tuberculosis. Our results showed that ABX was able to induce a stronger immune protection than individual rBCGs or BCG against primary TB infection in C57BL/6 mice. Mechanistically, the immune protection was attributed to stronger antigen-specific CD4(+) Th1 responses, higher numbers of IFN-γ(+) CD4(+) TEM and IL-2(+) CD8(+) TCM cells elicited by ABX. These findings thus provide a novel strategy for the improvement of BCG efficacy and potentially a promising prophylactic TB vaccine candidate, warranting further investigation.

  9. Protective effects of the polyphenol sesamin on allergen-induced T(H)2 responses and airway inflammation in mice.

    PubMed

    Lin, Ching-Huei; Shen, Mei-Lin; Zhou, Ning; Lee, Chen-Chen; Kao, Shung-Te; Wu, Dong Chuan

    2014-01-01

    Allergic asthma is a lifelong airway condition that affects people of all ages. In recent decades, asthma prevalence continues to increase globally, with an estimated number of 250,000 annual deaths attributed to the disease. Although inhaled corticosteroids and β-adrenergic receptor agonists are the primary therapeutic avenues that effectively reduce asthma symptoms, profound side effects may occur in patients with long-term treatments. Therefore, development of new therapeutic strategies is needed as alternative or supplement to current asthma treatments. Sesamin is a natural polyphenolic compound with strong anti-oxidative effects. Several studies have reported that sesamin is effective in preventing hypertension, thrombotic tendency, and neuroinflammation. However, it is still unknown whether sesamin can reduce asthma-induced allergic inflammation and airway hyperresponsiveness (AHR). Our study has revealed that sesamin exhibited significant anti-inflammatory effects in ovalbumin (OVA)-induced murine asthma model. We found that treatments with sesamin after OVA sensitization and challenge significantly decreased expression levels of interleukin-4 (IL-4), IL-5, IL-13, and serum IgE. The numbers of total inflammatory cells and eosinophils in BALF were also reduced in the sesamin-treated animals. Histological results demonstrated that sesamin attenuated OVA-induced eosinophil infiltration, airway goblet cell hyperplasia, mucus occlusion, and MUC5AC expression in the lung tissue. Mice administered with sesamin showed limited increases in AHR compared with mice receiving vehicle after OVA challenge. OVA increased phosphorylation levels of IκB-α and nuclear expression levels of NF-κB, both of which were reversed by sesamin treatments. These data indicate that sesamin is effective in treating allergic asthma responses induced by OVA in mice.

  10. Fungal β-glucan, a Dectin-1 ligand, promotes protection from Type 1 Diabetes by inducing regulatory innate immune response1

    PubMed Central

    Karumuthil-Melethil, Subha; Gudi, Radhika; Johnson, Benjamin M.; Perez, Nicolas; Vasu, Chenthamarakshan

    2014-01-01

    Beta-glucans (β-glucans) are naturally occurring polysaccharides in cereal grains, mushrooms, algae, or microbes including bacteria, fungi, and yeast. Immune cells recognize these β-glucans through a cell surface pathogen recognition receptor (PRR) called Dectin-1. Studies using β-glucans and other Dectin-1 binding components have demonstrated the potential of these agents in activating the immune cells for cancer treatment and controlling infections. Here, we show that the β-glucan from Saccharomyces cerevisiae induces the expression of immune regulatory cytokines (IL-10, TGF-β1 and IL-2) and a tolerogenic enzyme (Indoleamine 2, 3-dioxygenase; IDO) in bone marrow derived DCs (BM DCs) as well as spleen cells. These properties can be exploited to modulate autoimmunity in non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D). Treatment of pre-diabetic NOD mice with low dose β-glucan resulted in a profound delay in hyperglycemia and this protection was associated with increase in the frequencies of Foxp3-, LAP-, and GARP-positive T cells. Upon antigen presentation, β-glucan-exposed DCs induced a significant increase in Foxp3− and LAP− positive T cells in in vitro cultures. Further, systemic co-administration of β-glucan plus pancreatic β-cell-Ag resulted in an enhanced protection of NOD mice from T1D as compared to treatment with β-glucan alone. These observations demonstrate that the innate immune response induced by low dose β-glucan is regulatory in nature and can be exploited to modulate T cell response to β-cell-Ag for inducing an effective protection from T1D. PMID:25143443

  11. Phthalate-Induced Liver Protection against Deleterious Effects of the Th1 Response: A Potentially Serious Health Hazard.

    PubMed

    Badr, Mostafa Z; Shnyra, Alexander; Zoubine, Mikhail; Norkin, Maxim; Herndon, Betty; Quinn, Tim; Miranda, Roberto N; Cunningham, Michael L; Molteni, Agostino

    2007-01-01

    Infection with Mycobacterium tuberculosis (TB) induces pulmonary immunopathology mediated by classical Th1 type of acquired immunity with hepatic involvement in up to 80% of disseminated cases. Since PPAR agonists cause immune responses characterized by a decrease in the secretion of Th1 cytokines, we investigated the impact of activating these receptors on hepatic pathology associated with a well-characterized model of Th1-type pulmonary response. Male Fischer 344 rats were either maintained on a drug-free diet (groups I and II), or a diet containing diethylhexylphthalate (DEHP), a compound transformed in vivo to metabolites known to activate PPARs, for 21 days (groups III and IV). Subsequently, animals were primed with Mycobacterium bovis purified protein derivative (PPD) in a Complete Freund's Adjuvant. Fifteen days later, animals in groups II and IV were challenged with Sepharose 4B beads covalently coupled with PPD, while animals in groups I and III received blank Sepharose beads. Animals with Th1 response (group II) showed a marked structural disruption in the hepatic lobule. Remarkably, these alterations were conspicuously absent in animals which received DEHP (group IV), despite noticeable accumulation of T cells in the periportal triads. Immunostaining and confocal microscopy revealed hepatic accumulation of IFNgamma+ Th1 and IL-4+ Th2 cells in animals from groups II and IV, respectively. Our data suggest a PPARalpha-mediated suppression of the development of a Th1 immune response in the liver, resulting in hepatoprotective effect. However, potentially negative consequences of PPAR activation, such as decreased ability of the immune system to fight infection and interference with the efficacy of vaccines designed to evoke Th1 immune responses, remain to be investigated.

  12. Phthalate-Induced Liver Protection against Deleterious Effects of the Th1 Response: A Potentially Serious Health Hazard

    PubMed Central

    Badr, Mostafa Z.; Shnyra, Alexander; Zoubine, Mikhail; Norkin, Maxim; Herndon, Betty; Quinn, Tim; Miranda, Roberto N.; Cunningham, Michael L.; Molteni, Agostino

    2007-01-01

    Infection with Mycobacterium tuberculosis (TB) induces pulmonary immunopathology mediated by classical Th1 type of acquired immunity with hepatic involvement in up to 80% of disseminated cases. Since PPAR agonists cause immune responses characterized by a decrease in the secretion of Th1 cytokines, we investigated the impact of activating these receptors on hepatic pathology associated with a well-characterized model of Th1-type pulmonary response. Male Fischer 344 rats were either maintained on a drug-free diet (groups I and II), or a diet containing diethylhexylphthalate (DEHP), a compound transformed in vivo to metabolites known to activate PPARs, for 21 days (groups III and IV). Subsequently, animals were primed with Mycobacterium bovis purified protein derivative (PPD) in a Complete Freund's Adjuvant. Fifteen days later, animals in groups II and IV were challenged with Sepharose 4B beads covalently coupled with PPD, while animals in groups I and III received blank Sepharose beads. Animals with Th1 response (group II) showed a marked structural disruption in the hepatic lobule. Remarkably, these alterations were conspicuously absent in animals which received DEHP (group IV), despite noticeable accumulation of T cells in the periportal triads. Immunostaining and confocal microscopy revealed hepatic accumulation of IFNγ+ Th1 and IL-4+ Th2 cells in animals from groups II and IV, respectively. Our data suggest a PPARα-mediated suppression of the development of a Th1 immune response in the liver, resulting in hepatoprotective effect. However, potentially negative consequences of PPAR activation, such as decreased ability of the immune system to fight infection and interference with the efficacy of vaccines designed to evoke Th1 immune responses, remain to be investigated. PMID:18566640

  13. DNA vaccine encoding type IV pilin of Actinobacillus pleuropneumoniae induces strong immune response but confers limited protective efficacy against serotype 2 challenge.

    PubMed

    Lu, Yu-Chun; Li, Min-Chen; Chen, Yi-Min; Chu, Chun-Yen; Lin, Shuen-Fuh; Yang, Wen-Jen

    2011-10-13

    Actinobacillus pleuropneumoniae is a gram-negative bacterial pathogen that causes swine pleuropneumonia, a highly contagious and often fatal disease that occurs worldwide. Our previous study showed that DNA vaccines encoding Apx exotoxin structural proteins ApxIA and/or ApxIIA, are a promising novel approach for immunization against the lethal challenge of A. pleuropneumoniae serotype 1. Vaccination against A. pleuropneumoniae is impeded by the lack of vaccines inducing reliable cross-serotype protection. Type IV fimbrial protein ApfA has been shown to be present and highly conserved in various serotypes of A. pleuropneumoniae. A novel DNA vaccine encoding ApfA (pcDNA-apfA) was constructed to evaluate the protective efficacy against infection with A. pleuropneumoniae serotype 2. A significant antibody response against pilin was generated following pcDNA-apfA immunization, suggesting that it was expressed in vivo. The IgG subclass (IgG1 and IgG2a) analysis indicates that the pcDNA-apfA vaccine induces both Th1 and Th2 immune responses. The IgA analysis shows that mucosal immunity could be enhanced by this DNA vaccine. Nevertheless, the strong antibody response induced by pcDNA-apfA vaccine only provided limited 30% protective efficacy against the serotype 2 challenge. These results in this study do not coincide with that the utility of type IV pilin is a good vaccine candidate against other infectious pathogens. It indicates that pilin should play a limited role in the development of a vaccine against A. pleuropneumoniae infection.

  14. Depletion of the cereblon gene activates the unfolded protein response and protects cells from ER stress-induced cell death.

    PubMed

    Lee, Kwang Min; Yang, Seung-Joo; Park, Sojung; Choi, Yoo Duk; Shin, Hwa Kyoung; Pak, Jhang Ho; Park, Chul-Seung; Kim, Inki

    2015-02-27

    Previous studies showed that cereblon (CRBN) binds to various cellular target proteins, implying that CRBN regulates a wide range of cell responses. In this study, we found that deletion of the Crbn gene desensitized mouse embryonic fibroblast cells to various cell death-promoting stimuli, including endoplasmic reticulum stress inducers. Mechanistically, deletion of Crbn activates pathways involved in the unfolded protein response prior to ER stress induction. Loss of Crbn activated PKR-like ER kinase (PERK) with enhanced phosphorylation of eIF2α. Following ER stress induction, loss of Crbn delayed dephosphorylation of eIF2α, while reconstitution of Crbn reversed enhanced phosphorylation of PERK and eIF2α. Lastly, we found that activation of the PERK/eIF2α pathway following Crbn deletion is caused by activation of AMP-activated protein kinase (AMPK). We propose that CRBN plays a role in cellular stress signaling, including the unfolded protein response, by controlling the activity of AMPK.

  15. Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice

    PubMed Central

    Carey, John B.; Pearson, Frances E.; Vrdoljak, Anto; McGrath, Marie G.; Crean, Abina M.; Walsh, Patrick T.; Doody, Timothy; O'Mahony, Conor; Hill, Adrian V. S.; Moore, Anne C.

    2011-01-01

    Background Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8+ T cell responses to a malaria antigen induced by a live vaccine. Methodology and Findings Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. Conclusions/Significance This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction

  16. Therapeutic DNA Vaccine Induces Broad T Cell Responses in the Gut and Sustained Protection from Viral Rebound and AIDS in SIV-Infected Rhesus Macaques

    PubMed Central

    Fuller, Deborah Heydenburg; Rajakumar, Premeela; Che, Jenny W.; Narendran, Amithi; Nyaundi, Julia; Michael, Heather; Yager, Eric J.; Stagnar, Cristy; Wahlberg, Brendon; Taber, Rachel; Haynes, Joel R.; Cook, Fiona C.; Ertl, Peter; Tite, John; Amedee, Angela M.; Murphey-Corb, Michael

    2012-01-01

    Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2–4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans. PMID:22442716

  17. Recombinant gp90 protein expressed in Pichia pastoris induces a protective immune response against reticuloendotheliosis virus in chickens.

    PubMed

    Li, Kai; Gao, Honglei; Gao, Li; Qi, Xiaole; Gao, Yulong; Qin, Liting; Wang, Yongqiang; Wang, Xiaomei

    2012-03-16

    Reticuloendotheliosis virus (REV) causes an oncogenic, immunosuppressive and runting syndrome in multiple avian hosts worldwide. In this study, the gp90 protein of REV was secretory expressed in Pichia pastoris with high production level and good antigenicity. To fully utilize the expression potential of the P. pastoris expression system, a panel of Pichia clones carrying increasing copies of the gp90 expression cassette was created using an in vitro multimerization approach and the effects of gene dosage on gp90 expression were investigated. Results demonstrated that an increase in gp90 copy number can significantly improve the yields of gp90 protein. Following expression and scale-up, the gp90 protein production level could reach up to 400mg/L, and the protein could be detected by gp90-specific monoclonal antibody. Investigations of its vaccine efficacy demonstrated that the recombinant gp90 protein was able to induce sustained high levels of antibodies against REV as being detected by ELISA and virus neutralizing test. Furthermore, immunization of chickens with the recombinant gp90 vaccine fully protected the animals from viremia after REV infection. Overall, the yeast-expressed gp90 protein retains good immunogenicity and could be used as a potential subunit vaccine candidate for REV prevention.

  18. BALB/c mice display more enhanced BCG vaccine induced Th1 and Th17 response than C57BL/6 mice but have equivalent protection.

    PubMed

    Garcia-Pelayo, M Carmen; Bachy, Véronique S; Kaveh, Daryan A; Hogarth, Philip J

    2015-01-01

    It is generally assumed that the inbred mouse strains BALB/c (H-2(d)) and C57BL/6 (H-2(b)) respond to mycobacterial infection with distinct polarisation of T helper responses, with C57BL/6 predisposed to Th1 and BALB/c to Th2. We investigated this in a BCG-immunisation, Mycobacterium bovis challenge model. Following immunisation, lung and spleen cell cytokine responses to in vitro re-stimulation with a cocktail of seven secreted, immunogenic, recombinant mycobacterial proteins were determined. In both lung and spleen, BALB/c cells produced at least 2-fold more IFN-γ, and up to 7-fold more IL-2 and IL-17 than C57BL/6 cells, whereas IL-10 production was reciprocally increased in C57BL/6 mice. These data suggest that, contrary to reports in the literature, specific mycobacterial antigens are able to induce strong Th1 and Th17 responses in BALB/c mice following BCG vaccination, whilst in C57BL/6 mice, the Th1 response is partly counterbalanced by IL-10. After subsequent M. bovis low dose challenge, protection, as measured in the lungs and dissemination to the spleen, was equivalent in BALB/c and C57BL/6 mice, indicating that BCG-induced immunity was equivalent in both strains. Thus, the differential immune responses do not appear to have a role in protection, but further, as yet unidentified, specific immune responses play a significant role. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Expression of VP7, a Bluetongue Virus Group Specific Antigen by Viral Vectors: Analysis of the Induced Immune Responses and Evaluation of Protective Potential in Sheep

    PubMed Central

    Bouet-Cararo, Coraline; Contreras, Vanessa; Caruso, Agathe; Top, Sokunthea; Szelechowski, Marion; Bergeron, Corinne; Viarouge, Cyril; Desprat, Alexandra; Relmy, Anthony; Guibert, Jean-Michel; Dubois, Eric; Thiery, Richard; Bréard, Emmanuel; Bertagnoli, Stephane; Richardson, Jennifer; Foucras, Gilles; Meyer, Gilles; Schwartz-Cornil, Isabelle; Zientara, Stephan; Klonjkowski, Bernard

    2014-01-01

    Bluetongue virus (BTV) is an economically important Orbivirus transmitted by biting midges to domestic and wild ruminants. The need for new vaccines has been highlighted by the occurrence of repeated outbreaks caused by different BTV serotypes since 1998. The major group-reactive antigen of BTV, VP7, is conserved in the 26 serotypes described so far, and its role in the induction of protective immunity has been proposed. Viral-based vectors as antigen delivery systems display considerable promise as veterinary vaccine candidates. In this paper we have evaluated the capacity of the BTV-2 serotype VP7 core protein expressed by either a non-replicative canine adenovirus type 2 (Cav-VP7 R0) or a leporipoxvirus (SG33-VP7), to induce immune responses in sheep. Humoral responses were elicited against VP7 in almost all animals that received the recombinant vectors. Both Cav-VP7 R0 and SG33-VP7 stimulated an antigen-specific CD4+ response and Cav-VP7 R0 stimulated substantial proliferation of antigen-specific CD8+ lymphocytes. Encouraged by the results obtained with the Cav-VP7 R0 vaccine vector, immunized animals were challenged with either the homologous BTV-2 or the heterologous BTV-8 serotype and viral burden in plasma was followed by real-time RT-PCR. The immune responses triggered by Cav-VP7 R0 were insufficient to afford protective immunity against BTV infection, despite partial protection obtained against homologous challenge. This work underscores the need to further characterize the role of BTV proteins in cross-protective immunity. PMID:25364822

  20. Molecular Mechanisms of Lipoic Acid Protection against Aflatoxin B1-Induced Liver Oxidative Damage and Inflammatory Responses in Broilers

    PubMed Central

    Ma, Qiugang; Li, Yan; Fan, Yu; Zhao, Lihong; Wei, Hua; Ji, Cheng; Zhang, Jianyun

    2015-01-01

    Alpha-lipoic acid (α-LA) was evaluated in this study for its molecular mechanisms against liver oxidative damage and inflammatory responses induced by aflatoxin B1 (AFB1). Birds were randomly allocated into four groups with different diets for three weeks: a basal diet, a 300 mg/kg α-LA supplementation in a basal diet, a diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in a diet containing 74 μg/kg AFB1. In the AFB1 group, the expression of GSH-PX mRNA was down-regulated (p < 0.05), and the levels of lipid peroxide and nitric oxide were increased (p < 0.05) in the chicken livers compared to those of the control group. Additionally, the mRNA level of the pro-inflammatory factor interleukin-6 was up-regulated significantly (p < 0.05), the protein expressions of both the nuclear factor kappa B (NF-κB) p65 and the inducible nitric oxide synthase were enhanced significantly (p < 0.05) in the AFB1 group. All of these negative effects were inhibited by α-LA. These results indicate that α-LA may be effective in preventing hepatic oxidative stress, down-regulating the expression of hepatic pro-inflammatory cytokines, as well as inhibiting NF-κB expression. PMID:26694462

  1. Protective immune response induced by co-immunization with the Trichinella spiralis recombinant Ts87 protein and a Ts87 DNA vaccine.

    PubMed

    Yang, Yaping; Yang, Xiaodi; Gu, Yuan; Wang, Yunyun; Zhao, Xi; Zhu, Xinping

    2013-05-20

    Ts87 is an immunodominant antigen that induces protective immunity against Trichinella spiralis larval challenge in mice. To determine if a combination of recombinant Ts87 protein and its coding DNA induces a stronger immune response in female C57BL/6 mice were immunized with 100 μg of recombinant Ts87 protein plus its coding DNA cloned in vector pVAX1, or the same amount of recombinant protein or DNA only. Mouse subclass IgG responses showed that both co-immunized and single-immunized mice produced a balanced IgG2a/IgG1 (Th1/Th2) response. T-cell proliferation in co-immunized animals was significantly higher than in single-immunized mice. Cytokine profiling in the co-immunization group showed a significant increase in the levels of IL-2, IL-4, IL-6 and IFN-γ in the splenocytes of mice upon stimulation with the recombinant Ts87 protein; however, the expression of IL-17 was down-regulated. Challenge results showed that mice immunized with the recombinant Ts87 protein and its coding DNA produced reduced the muscle larval burden to a greater extent (43.8%) than the groups immunized with only the protein (39.7%) or the DNA (9.7%). A better Th1/Th2 immune response and consequent protection induced by co-immunization with the recombinant Ts87 protein and its coding DNA may result from an adjuvant effect of DNA and a specific persistent expression of Ts87.

  2. Recombinant adenoviral vector expressing HCV NS4 induces protective immune responses in a mouse model of Vaccinia-HCV virus infection: a dose and route conundrum.

    PubMed

    Singh, Shakti; Vedi, Satish; Li, Wen; Samrat, Subodh Kumar; Kumar, Rakesh; Agrawal, Babita

    2014-05-13

    Hepatitis C virus (HCV) leads to chronic infection in the majority of infected patients presumably due to failure or inefficiency of the immune responses generated. Both antibody and cellular immune responses have been suggested to be important in viral clearance. Non-replicative adenoviral vectors expressing antigens of interest are considered as attractive vaccine vectors for a number of pathogens. In this study, we sought to evaluate cellular and humoral immune responses against HCV NS4 protein using recombinant adenovirus as a vaccine vector expressing NS4 antigen. We have also measured the effect of antigen doses and routes of immunization on the quality and extent of the immune responses, especially their role in viral load reduction, in a recombinant Vaccinia-HCV (Vac-HCV) infection mouse model. Our results show that an optimum dose of adenovirus vector (2×10(7)pfu/mouse) administered intramuscularly (i.m.) induces high T cell proliferation, granzyme B-expressing CD8(+) T cells, pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-2 and IL-6, and antibody responses that can significantly reduce the Vac-HCV viral load in the ovaries of female C57BL/6 mice. Our results demonstrate that recombinant adenovirus vector can induce both humoral and cellular protective immunity against HCV-NS4 antigen, and that immunity is intricately controlled by route and dose of immunizing vector.

  3. Virus-Like Particles Produced in Pichia Pastoris Induce Protective Immune Responses Against Coxsackievirus A16 in Mice

    PubMed Central

    Feng, Qianjin; He, Yaqing; Lu, Jiahai

    2016-01-01

    Background Coxsackievirus A16 (CA16) is one of the main causative agents of hand, foot, and mouth disease (HFMD), and the development of a safe and effective vaccine has been a top priority among CA16 researchers. Material/Methods In this study, we developed a Pichia pastoris yeast system for secretory expression of the virus-like particles (VLPs) for CA16 by co-expression of the P1 and 3CD proteins of CA16. SDS-PAGE, Western blot, and transmission electron microscopy (TEM) were performed to identify the formation of VLPs. Immunogenicity and vaccine efficacy of the CA16 VLPs were assessed in BABL/c mouse models. Results Biochemical and biophysical analysis showed that the yeast-expressed CA16 VLPs were composed of VP0, VP1, and VP3 capsid subunit proteins, and present spherical particles with a diameter of 30 nm, similar to the parental infectious CA16 virus. Furthermore, CA16 VLPs elicited potent humoral and cellular immune responses, and VLPs-immunized sera conferred efficient protection to neonatal mice against lethal CA16 challenge. Conclusions Our results demonstrate that VLPs produced in Pichia pastoris represent a safe and effective vaccine strategy for CA16. PMID:27659054

  4. Genetically modified rabies virus ERA strain is safe and induces long-lasting protective immune response in dogs after oral vaccination.

    PubMed

    Shuai, Lei; Feng, Na; Wang, Xijun; Ge, Jinying; Wen, Zhiyuan; Chen, Weiye; Qin, Lide; Xia, Xianzhu; Bu, Zhigao

    2015-09-01

    Oral immunization in free-roaming dogs is one of the most practical approaches to prevent rabies for developing countries. The safe, efficient and long-lasting protective oral rabies vaccine for dogs is highly sought. In this study, rabies virus (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain wild-type (rERA) and a genetically modified type (rERAG333E) containing a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) were generated by reverse genetic. The recombinant virus rERAG333E retained growth properties of similar to the parent strain rERA in BHK-21 cell culture. The G333E mutation showed genetic stability during passage into neuroblastoma cells and in the brains of suckling mice and was significantly reduced the virulence of rERA in mice. rERAG333E was immunogenic in dogs by intramuscular inoculation. Mice orally vaccinated with rERAG333E induced strong and one year longer virus neutralizing antibodies (VNA) to RABV, and were completely protected from challenge with lethal street virus at 12months after immunization. Dogs received oral vaccination with rERAG333E induced strong protective RABV VNA response, which lasted for over 3years, and moderate saliva RABV-specific IgA. Moreover, sizeable booster responses to RABV VNA were induced by a second oral dose 1year after the first dose. These results demonstrated that the genetically modified ERA vaccine strain has the potential to serve as a safe and efficient oral live vaccine against rabies in dogs.

  5. A specific CpG oligodeoxynucleotide induces protective antiviral responses against grass carp reovirus in grass carp Ctenopharyngodon idella.

    PubMed

    Su, Hang; Yuan, Gailing; Su, Jianguo

    2016-07-01

    CpG oligodeoxynucleotides (ODNs) show strong immune stimulatory activity in vertebrate, however, they possess specific sequence feature among species. In this study, we screened out an optimal CpG ODN sequence for grass carp (Ctenopharyngodon idella), 1670A 5'-TCGAACGTTTTAACGTTTTAACGTT-3', from six published sequences and three sequences designed by authors based on grass carp head kidney mononuclear cells and CIK (C. idella kidney) cells proliferation. VP4 mRNA expression was strongly inhibited by CpG ODN 1670A in CIK cells with GCRV infection, showing its strong antiviral activity. The mechanism via toll-like receptor 9 (TLR9)-mediated signaling pathway was measured by real-time quantitative RT-PCR, and TLR21 did not play a role in the immune response to CpG ODN. The late up-regulation of CiRIG-I mRNA expression indicated that RIG-I-like receptors (RLRs) signaling pathway participated in the immune response to CpG ODN which is the first report on the interaction between CpG and RLRs. We also found that the efficient CpG ODN can activates interferon system. Infected with GCRV, type I interferon expression was reduced and type II interferon was induced by the efficient CpG ODN in CIK cells, especially IFNγ2, suggesting that IFNγ2 played an important role in response to the efficient CpG ODN. These results provide a theoretical basis and new development trend for further research on CpG and the application of CpG vaccine adjuvant in grass carp disease control.

  6. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice

    SciTech Connect

    Valdes, Iris; Bernardo, Lidice; Pavon, Alekis; Guzman, Maria G.

    2009-11-25

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4{sup +} and CD8{sup +} cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  7. Treatment with IP-10 induces host-protective immune response by regulating the T regulatory cell functioning in Leishmania donovani-infected mice.

    PubMed

    Gupta, Gaurav; Majumdar, Saikat; Adhikari, Anupam; Bhattacharya, Parna; Mukherjee, Asok Kumar; Majumdar, Suchandra Bhattacharyya; Majumdar, Subrata

    2011-11-01

    Visceral leishmaniasis (VL), caused by the protozoan parasite, Leishmania donovani, is characterized by an infection in the liver and spleen. The failure of the first-line drugs has led to the development of new strategies for combating VL. Recently, our group has shown that interferon-γ-inducible protein (IP)-10, a CXC chemokine, renders protection against VL. In the present study, we have elucidated the mechanism by which IP-10 renders protection in in vivo L. donovani infection. We observed that IP-10-treated parasitized BALB/c mice showed a strong host-protective T helper cell (Th) 1 immune response along with marked decrease in immunosuppressive cytokines, tumor growth factor (TGF)-β, and interleukin (IL)-10 secreting CD4(+) T cells. This IP-10-mediated decrease in immunosuppressive cytokines was correlated with the reduction in the elevated frequency of CD4(+)CD25(+) T regulatory (Treg) cells along with the reduced TFG-β production from these Treg cells in Leishmania-infected mice. This reduction in TGF-β production was due to effective modulation of TGF-β signaling by IP-10, which reduced the immunosuppressive activity of Treg cells. Thus, these findings put forward a detailed mechanistic insight into IP-10-mediated regulation of the Treg cell functioning during experimental VL, which might be helpful in combating Leishmania-induced pathogenesis.

  8. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice.

    PubMed

    Valdés, Iris; Bernardo, Lidice; Gil, Lázaro; Pavón, Alekis; Lazo, Laura; López, Carlos; Romero, Yaremis; Menendez, Ivón; Falcón, Viviana; Betancourt, Lázaro; Martín, Jorge; Chinea, Glay; Silva, Ricardo; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2009-11-25

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4(+) and CD8(+) cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  9. Mechanism of protection of bystander cells by exogenous carbon monoxide: impaired response to damage signal of radiation-induced bystander effect.

    PubMed

    Han, W; Yu, K N; Wu, L J; Wu, Y C; Wang, H Z

    2011-05-10

    A protective effect of exogenous carbon monoxide (CO), generated by CO releasing molecule ticarbonyldichlororuthenium (II) dimer (CORM-2), on the bystander cells from the toxicity of radiation-induced bystander effect (RIBE) was revealed in our previous study. In the present work, a possible mechanism of this CO effect was investigated. The results from medium transfer experiments showed that α-particle irradiated Chinese hamster ovary (CHO) cells would release nitric oxide (NO), which was detected with specific NO fluorescence probe, to induce p53 binding protein 1 (BP1) formation in the cell population receiving the medium, and the release peak was found to be at 1h post irradiation. Treating the irradiated or bystander cells separately with CO (CORM-2) demonstrated that CO was effective in the bystander cells but not the irradiated cells. Measurements of NO production and release with a specific NO fluorescence probe also showed that CO treatment did not affect the production and release of NO by irradiated cells. Protection of CO on cells to peroxynitrite, an oxidizing free radical from NO, suggested that CO might protect bystander cells via impaired response of bystander cells to NO, a RIBE signal in our research system. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The ATP-binding cassette transporter ABCG2 protects against pressure overload-induced cardiac hypertrophy and heart failure by promoting angiogenesis and antioxidant response.

    PubMed

    Higashikuni, Yasutomi; Sainz, Julie; Nakamura, Kazuto; Takaoka, Minoru; Enomoto, Soichiro; Iwata, Hiroshi; Tanaka, Kimie; Sahara, Makoto; Hirata, Yasunobu; Nagai, Ryozo; Sata, Masataka

    2012-03-01

    ATP-binding cassette transporter subfamily G member 2 (ABCG2), expressed in microvascular endothelial cells in the heart, has been suggested to regulate several tissue defense mechanisms. This study was performed to elucidate its role in pressure overload-induced cardiac hypertrophy. Pressure overload was induced in 8- to 12-week-old wild-type and Abcg2-/- mice by transverse aortic constriction (TAC). Abcg2-/- mice showed exaggerated cardiac hypertrophy and ventricular remodeling after TAC compared with wild-type mice. In the early phase after TAC, functional impairment in angiogenesis and antioxidant response in myocardium was found in Abcg2-/- mice. In vitro experiments demonstrated that ABCG2 regulates transport of glutathione, an important endogenous antioxidant, from microvascular endothelial cells. Besides, glutathione transported from microvascular endothelial cells in ABCG2-dependent manner ameliorated oxidative stress-induced cardiomyocyte hypertrophy. In vivo, glutathione levels in plasma and the heart were increased in wild-type mice but not in Abcg2-/- mice after TAC. Treatment with the superoxide dismutase mimetic ameliorated cardiac hypertrophy in Abcg2-/- mice after TAC to the same extent as that in wild-type mice, although cardiac dysfunction with impaired angiogenesis was observed in Abcg2-/- mice. ABCG2 protects against pressure overload-induced cardiac hypertrophy and heart failure by promoting angiogenesis and antioxidant response.

  11. Stimulation of the Glucocorticoid-Induced TNF Receptor Family-Related Receptor on CD8 T Cells Induces Protective and High-Avidity T Cell Responses to Tumor-Specific Antigens

    PubMed Central

    Côté, Anik L.; Zhang, Peisheng; O’Sullivan, Jeremy A.; Jacobs, Valerie L.; Clemis, Carli R.; Sakaguchi, Shimon; Guevara-Patiño, José A.; Turk, Mary Jo

    2011-01-01

    Treatment of tumor-bearing mice with a stimulatory Ab to glucocorticoid-induced TNFR family-related receptor (GITR) has previously been shown to elicit protective T cell responses against poorly immunogenic tumors. However, the role of GITR stimulation on CD8 T cells and the nature of tumor rejection Ags have yet to be determined. In this study, we show that a stimulatory mAb to GITR (clone DTA-1) acts directly on CD8 T cells, but not on CD4+CD25+ regulatory T (Treg) cells, in B16 tumor-bearing mice to induce concomitant immunity against secondary B16 tumors, as well as protective memory following surgical excision of the primary tumor. Melanoma growth itself induced GITR expression on tumor-specific CD8 T cells, providing a mechanism whereby these cells may respond to stimulatory anti-GITR. Unexpectedly, in contrast to Treg cell depletion therapy with anti-CD4, GITR stimulation induced very weak CD8 T cell responses to melanocyte differentiation Ags expressed by the tumor, and did not induce autoimmune vitiligo. Accordingly, GITR-stimulated hosts that were primed with B16 melanoma rejected B16, but not the unrelated JBRH melanoma, indicating that tumor rejection Ags are tumor-specific rather than shared. In support of this, we show that GITR stimulation induces CD8 T cell responses to a tumor-specific Ag, and that these responses are of higher functional avidity compared with those induced by Treg cell depletion. We conclude that stimulation of GITR on effector CD8 T cells results in high-avidity T cell responses to tumor-specific Ags, thereby inducing potent antitumor immunity in the absence of auto-immunity. PMID:21106849

  12. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ⁺ CMI responses protects against a genital infection in minipigs.

    PubMed

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter; Follmann, Frank

    2016-02-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1 is a novel immunogen based on the variant domain (VD) 4 region from major outer membrane protein (MOMP) serovar (Sv) D, SvE and SvF, and CTH93 is a fusion molecule of three antigens (CT043, CT414 and MOMP). Pigs were immunized twice intramuscularly with either Hirep1+CTH93/CAF01, UV-inactivated Chlamydia trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity in vitro. Both Hirep1+CTH93/CAF01 and UV-SvD/CAF01 vaccination protected pigs against a vaginal C. trachomatis SvD infection. In conclusion, the Hirep1+CTH93/CAF01 vaccine proved highly immunogenic and equally protective as UV-SvD/CAF01 showing promise for the development of a subunit vaccine against Chlamydia.

  13. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ+ CMI responses protects against a genital infection in minipigs

    PubMed Central

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter; Follmann, Frank

    2016-01-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1 is a novel immunogen based on the variant domain (VD) 4 region from major outer membrane protein (MOMP) serovar (Sv) D, SvE and SvF, and CTH93 is a fusion molecule of three antigens (CT043, CT414 and MOMP). Pigs were immunized twice intramuscularly with either Hirep1+CTH93/CAF01, UV-inactivated Chlamydia trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity in vitro. Both Hirep1+CTH93/CAF01 and UV-SvD/CAF01 vaccination protected pigs against a vaginal C. trachomatis SvD infection. In conclusion, the Hirep1+CTH93/CAF01 vaccine proved highly immunogenic and equally protective as UV-SvD/CAF01 showing promise for the development of a subunit vaccine against Chlamydia. PMID:26268662

  14. A Multiple Antigenic Peptide Mimicking Peptidoglycan Induced T Cell Responses to Protect Mice from Systemic Infection with Staphylococcus aureus

    PubMed Central

    Wang, Xiang-Yu; Huang, Zhao-Xia; Chen, Yi-Guo; Lu, Xiao; Zhu, Ping; Wen, Kun; Fu, Ning; Liu, Bei-Yi

    2015-01-01

    Due to the enormous capacity of Staphylococcus aureus to acquire antibiotic resistance, it becomes imperative to develop vaccines for decreasing the risk of its life-threatening infections. Peptidoglycan (PGN) is a conserved and major component of S. aureus cell wall. However, it has not been used as a vaccine candidate since it is a thymus-independent antigen. In this study, we synthesized a multiple antigenic peptide, named MAP27, which comprised four copies of a peptide that mimics the epitope of PGN. After immunization with MAP27 five times and boosting with heat-inactivated bacterium one time, anti-MAP27 serum bound directly to S. aureus or PGN. Immunization with MAP27 decreased the bacterial burden in organs of BALB/c mice and significantly prolonged their survival time after S. aureus lethal-challenge. The percentage of IFN-γ+CD3+ T cells and IL-17+CD4+ T cells in spleen, as well as the levels of IFN-γ, IL-17A/F and CCL3 in spleen and lung, significantly increased in the MAP27-immunized mice after infection. Moreover, in vitro incubation of heat-inactivated S. aureus with splenocytes isolated from MAP27-immunized mice stimulated the production of IFN-γ and IL-17A/F. Our findings demonstrated that MAP27, as a thymus-dependent antigen, is efficient at eliciting T cell-mediated responses to protect mice from S. aureus infection. This study sheds light on a possible strategy to design vaccines against S. aureus. PMID:26317210

  15. Tanshinone I Activates the Nrf2-Dependent Antioxidant Response and Protects Against As(III)-Induced Lung Inflammation In Vitro and In Vivo

    PubMed Central

    Tao, Shasha; Zheng, Yi; Lau, Alexandria; Jaramillo, Melba C.; Chau, Binh T.; Lantz, R. Clark; Wong, Pak K.

    2013-01-01

    Abstract Aims: The NF-E2 p45-related factor 2 (Nrf2) signaling pathway regulates the cellular antioxidant response and activation of Nrf2 has recently been shown to limit tissue damage from exposure to environmental toxicants, including As(III). In an attempt to identify improved molecular agents for systemic protection against environmental insults, we have focused on the identification of novel medicinal plant-derived Nrf2 activators. Results: Tanshinones [tanshinone I (T-I), tanshinone IIA, dihydrotanshinone, cryptotanshinone], phenanthrenequinone-based redox therapeutics derived from the medicinal herb Salvia miltiorrhiza, have been tested as experimental therapeutics for Nrf2-dependent cytoprotection. Using a dual luciferase reporter assay overexpressing wild-type or mutant Kelch-like ECH-associated protein-1 (Keap1), we demonstrate that T-I is a potent Keap1-C151-dependent Nrf2 activator that stabilizes Nrf2 by hindering its ubiquitination. In human bronchial epithelial cells exposed to As(III), T-I displays pronounced cytoprotective activity with upregulation of Nrf2-orchestrated gene expression. In Nrf2 wild-type mice, systemic administration of T-I attenuates As(III) induced inflammatory lung damage, a protective effect not observed in Nrf2 knockout mice. Innovation: Tanshinones have been identified as a novel class of Nrf2-inducers for antioxidant tissue protection in an in vivo As(III) inhalation model, that is relevant to low doses of environmental exposure. Conclusion: T-I represents a prototype Nrf2-activator that displays cytoprotective activity upon systemic administration targeting lung damage originating from environmental insults. T-I based Nrf2-directed systemic intervention may provide therapeutic benefit in protecting other organs against environmental insults. Antioxid. Redox Signal. 19, 1647–1661. PMID:23394605

  16. Prime-booster vaccination of cattle with an influenza viral vector Brucella abortus vaccine induces a long-term protective immune response against Brucella abortus infection.

    PubMed

    Tabynov, Kaissar; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Kydyrbayev, Zhailaubay; Kozhamkulov, Yerken; Inkarbekov, Dulat; Sansyzbay, Abylai

    2016-01-20

    This study analyzed the duration of the antigen-specific humoral and T-cell immune responses and protectiveness of a recently-developed influenza viral vector Brucella abortus (Flu-BA) vaccine expressing Brucella proteins Omp16 and L7/L12 and containing the adjuvant Montadine Gel01 in cattle. At 1 month post-booster vaccination (BV), both humoral (up to 3 months post-BV; GMT IgG ELISA titer 214±55 to 857±136, with a prevalence of IgG2a over IgG1 isotype antibodies) and T-cell immune responses were observed in vaccinated heifers (n=35) compared to control animals (n=35, injected with adjuvant/PBS only). A pronounced T-cell immune response was induced and maintained for 12 months post-BV, as indicated by the lymphocyte stimulation index (2.7±0.4 to 10.1±0.9 cpm) and production of IFN-γ (13.7±1.7 to 40.0±3.0 ng/ml) at 3, 6, 9, and 12 months post-BV. Prime-boost vaccination provided significant protection against B. abortus infection at 3, 6, 9 and 12 months (study duration) post-BV (7 heifers per time point; alpha=0.03-0.01 vs. control group). Between 57.1 and 71.4% of vaccinated animals showed no signs of B. abortus infection (or Brucella isolation) at 3, 6, 9 and 12 months post-BV; the severity of infection, as indicated by the index of infection (P=0.0003 to <0.0001) and rates of Brucella colonization (P=0.03 to <0.0001), was significantly lower for vaccinated diseased animals than appropriate control animals. Good protection from B. abortus infection was also observed among pregnant vaccinated heifers (alpha=0.03), as well as their fetuses and calves (alpha=0.01), for 12 months post-BV. Additionally, 71.4% of vaccinated heifers calved successfully whereas all pregnant control animals aborted (alpha=0.01). Prime-boost vaccination of cattle with Flu-BA induces an antigen-specific humoral and pronounced T cell immune response and most importantly provides good protectiveness, even in pregnant heifers, for at least 12 months post-BV.

  17. Recombinant HPV16 E7 assembled into particles induces an immune response and specific tumour protection administered without adjuvant in an animal model

    PubMed Central

    2011-01-01

    Background The HPV16 E7 protein is both a tumour-specific and a tumour-rejection antigen, the ideal target for developing therapeutic vaccines for the treatment of HPV16-associated cancer and its precursor lesions. E7, which plays a key role in virus-associated carcinogenesis, contains 98 amino acids and has two finger-type structures which bind a Zn++ ion. The ability of an Escherichia coli-produced E7-preparation, assembled into particles, to induce protective immunity against a HPV16-related tumour in the TC-1-C57BL/6 mouse tumour model, was evaluated. Methods E7 was expressed in E. coli, purified via a one-step denaturing protocol and prepared as a soluble suspension state after dialysis in native buffer. The presence in the E7 preparation of particulate forms was analysed by non-reducing SDS-PAGE and negative staining electron microscopy (EM). The Zn++ ion content was analysed by mass-spectrometry. Ten μg of protein per mouse was administered to groups of animals, once, twice or three times without adjuvant. The E7-specific humoral response was monitored in mice sera using an E7-based ELISA while the cell-mediated immune response was analysed in mice splenocytes with lymphoproliferation and IFN-γ ELISPOT assays. The E7 immunized mice were challenged with TC-1 tumour cells and the tumour growth monitored for two months. Results In western blot analysis E7 appears in multimers and high molecular mass oligomers. The EM micrographs show the protein dispersed as aggregates of different shape and size. The protein appears clustered in micro-, nano-aggregates, and structured particles. Mice immunised with this protein preparation show a significant E7-specific humoral and cell-mediated immune response of mixed Th1/Th2 type. The mice are fully protected from the tumour growth after vaccination with three E7-doses of 10 μg without any added adjuvant. Conclusions This report shows that a particulate form of HPV16 E7 is able to induce, without adjuvant, an E7-specific

  18. Synthetic nanoparticle vaccines produced by layer-by-layer assembly of artificial biofilms induce potent protective T-cell and antibody responses in vivo.

    PubMed

    Powell, Thomas J; Palath, Naveen; DeRome, Mary E; Tang, Jie; Jacobs, Andrea; Boyd, James G

    2011-01-10

    Nanoparticle vaccines induce potent immune responses in the absence of conventional adjuvant due to the recognition by immune cells of the particle structures, which mimic natural pathogens such as viruses and bacteria. Nanoparticle vaccines were fabricated by constructing artificial biofilms using layer-by-layer (LbL) deposition of oppositely charged polypeptides and target designed peptides on CaCO(3) cores. LbL nanoparticles were efficiently internalized by dendritic cells in vitro by a mechanism that was at least partially phagocytic, and induced DC maturation without triggering secretion of inflammatory cytokines. LbL nanoparticle delivery of designed peptides to DC resulted in potent cross-presentation to CD8+ T-cells and more efficient presentation to CD4+ T-cells compared to presentation of soluble peptide. A single immunization of mice with LbL nanoparticles containing designed peptide induced vigorous T-cell responses characterized by a balanced effector (IFNγ) and Th2 (IL-4) ELISPOT profile and in vivo CTL activity. Mice immunized with LbL nanoparticles bearing ovalbumin-derived designed peptides were protected from challenge with Listeria monocytogenes ectopically expressing ovalbumin, confirming the relevance of the CTL/effector T-cell responses. LbL nanoparticles also elicited antibody responses to the target epitope but not to the matrix components of the nanoparticle, avoiding the vector or carrier affect that hampers utility of other vaccine platforms. The potency and efficacy of LbL nanoparticles administered in aqueous suspension without adjuvant or other formulation additive, and the absence of immune responses to the matrix components, suggest that this strategy may be useful in producing novel vaccines against multiple diseases.

  19. Protective and curative effects of topically applied CX-659S, a novel diaminouracil derivative, on chronic picryl chloride-induced contact hypersensitivity responses.

    PubMed

    Inoue, Y; Isobe, M; Shiohara, T; Goto, Y; Hayashi, H

    2002-10-01

    CX-659S, a newly discovered anti-inflammatory compound, exerts inhibitory effects against acute contact hypersensitivity responses (CHRs) induced by picryl chloride (PC), oxazolone and dinitrochlorobenzene. The murine model of chronic CHR induced by repeated application of PC is known to mimic many, if not all, events occurring within the lesional skin of patients with atopic dermatitis (AD). To investigate the ability of CX-659S to inhibit PC-induced chronic CHR in mice. The protective and curative effects of CX-659S were tested on PC-treated ears of BALB/c mice, and were compared with those of prednisolone. Effects were quantified by measurements of ear thickness, serum IgE and cytokine mRNA expression. Both protectively applied and curatively applied CX-659S significantly inhibited increases in ear thickness and total serum IgE. Inhibition was dose-dependent. Although protectively applied prednisolone showed similar activities to CX-659S against chronic CHR, curatively applied prednisolone did not affect the serum IgE level despite inhibiting increases in ear thickness and inflammatory cell infiltration. Consistent with these results, CX-659S reduced mRNA expression of interleukin (IL)-4 and IL-10 but not of interferon (IFN)-gamma, whereas prednisolone inhibited not only mRNA expression of IL-4 and IL-10 but also that of IFN-gamma in the ear lesion. In contrast to prednisolone, CX-659S did not show any side-effect such as atrophy, alopecia or telangiectasia. CX-659S is the first promising compound having inhibitory activities against chronic CHR accompanied by a diminishing effect on elevated serum IgE, without any other side-effect. Therefore, CX-659S may be a promising candidate for management of patients with recurring AD who require long-term therapy.

  20. Activation of Estrogen Response Element-Independent ERα Signaling Protects Female Mice From Diet-Induced Obesity.

    PubMed

    Yasrebi, Ali; Rivera, Janelle A; Krumm, Elizabeth A; Yang, Jennifer A; Roepke, Troy A

    2017-02-01

    17β-estradiol (E2) regulates central and peripheral mechanisms that control energy and glucose homeostasis predominantly through estrogen receptor α (ERα) acting via receptor binding to estrogen response elements (EREs). ERα signaling is also involved in mediating the effects of E2 on diet-induced obesity (DIO), although the roles of ERE-dependent and -independent ERα signaling in reducing the effects of DIO remain largely unknown. We hypothesize that ERE-dependent ERα signaling is necessary to ameliorate the effects of DIO. We addressed this question using ERα knockout (KO) and ERα knockin/knockout (KIKO) female mice, the latter expressing an ERα that lacks a functional ERE binding domain. Female mice were ovariectomized, fed a low-fat diet (LFD) or a high-fat diet (HFD), and orally dosed with vehicle or estradiol benzoate (EB) (300 μg/kg). After 9 weeks, body composition, glucose and insulin tolerance, peptide hormone and inflammatory cytokine levels, and hypothalamic arcuate nucleus and liver gene expression were assessed. EB reduced body weight and body fat in wild-type (WT) female mice, regardless of diet, and in HFD-fed KIKO female mice, in part by reducing energy intake and feeding efficiency. EB reduced fasting glucose levels in KIKO mice fed both diets but augmented glucose tolerance only in HFD-fed KIKO female mice. Plasma insulin and interleukin 6 were elevated in KIKO and KO female mice compared with LFD-fed WT female mice. Expression of arcuate neuropeptide and receptor genes and liver fatty acid biosynthesis genes was altered by HFD and by EB through ERE-dependent and -independent mechanisms. Therefore, ERE-independent signaling mechanisms in both the brain and peripheral organs mediate, in part, the effects of E2 during DIO. Copyright © 2017 by the Endocrine Society.

  1. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes

    SciTech Connect

    Shterzer, Naama; Heyman, Dariya; Shapiro, Beny; Yaniv, Abraham; Jackman, Anna; Serour, Francis; Chaouat, Malka; Gonen, Pinhas; Tommasino, Massimo; Sherman, Levana

    2014-11-15

    In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis. - Highlights: • Primary keratinocytes were used to evaluate transforming and carcinogenic abilities of cutaneous HPVs. • E6E7 of cancer associated β HPV types transform primary human keratinocytes. • E6 proteins of cancer and wart associated HPVs inhibit UVB induced cell death. • E6s of cancer and wart associated HPVs attenuate UVB induced proliferation arrest. • E6s of cancer and wart associated HPVs attenuate UVB induced apoptosis signaling.

  2. Antibody response is required for protection from Theiler's virus-induced encephalitis in C57BL/6 mice in the absence of CD8+ T cells.

    PubMed

    Kang, Bong-Su; Palma, Joann P; Lyman, Michael A; Dal Canto, Mauro; Kim, Byung S

    2005-09-15

    Intracerebral infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease and this system serves as a relevant infectious model for human multiple sclerosis. It was previously shown that beta2M-deficient C57BL/6 mice lacking functional CD8+ T cells display increased viral persistence and enhanced susceptibility to TMEV-induced demyelination, and yet the majority of mice are free of clinical signs. To understand the mechanisms involved in this general resistance of C57BL/6 mice in the absence of CTL responses, mice (muMT) deficient in the B-cell compartment lacking membrane IgM molecules were treated with anti-CD8 antibody and then infected with TMEV. Although little difference in the proliferative responses of peripheral T cells to UV-inactivated TMEV and the resistance to demyelinating disease was observed between virus-infected muMT and control B6 mice, the levels of CD4(+) T cells were higher in the CNS of muMT mice. However, after treatment with anti-CD8 antibody, 100% of the mice displayed clinical gray matter disease and prolonged viral persistence in muMT mice, while only 10% of B6 mice showed clinical symptoms and very low viral persistence. Transfusion of sera from TMEV-infected B6 mice into anti-CD8 antibody-treated muMT mice partially restored resistance to virus-induced encephalitis. These results indicate that the early anti-viral antibody response is also important in the protection from TMEV-induced encephalitis particularly in the absence of CD8+ T cells.

  3. Antibody response is required for protection from Theiler's virus-induced encephalitis in C57BL/6 mice in the absence of CD8{sup +} T cells

    SciTech Connect

    Kang, B.-S.; Palma, Joann P.; Lyman, Michael A.; Dal Canto, Mauro; Kim, Byung S. . E-mail: bskim@northwestern.edu

    2005-09-15

    Intracerebral infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease and this system serves as a relevant infectious model for human multiple sclerosis. It was previously shown that {beta}{sub 2}M-deficient C57BL/6 mice lacking functional CD8{sup +} T cells display increased viral persistence and enhanced susceptibility to TMEV-induced demyelination, and yet the majority of mice are free of clinical signs. To understand the mechanisms involved in this general resistance of C57BL/6 mice in the absence of CTL responses, mice ({mu}MT) deficient in the B-cell compartment lacking membrane IgM molecules were treated with anti-CD8 antibody and then infected with TMEV. Although little difference in the proliferative responses of peripheral T cells to UV-inactivated TMEV and the resistance to demyelinating disease was observed between virus-infected {mu}MT and control B6 mice, the levels of CD4{sup +} T cells were higher in the CNS of {mu}MT mice. However, after treatment with anti-CD8 antibody, 100% of the mice displayed clinical gray matter disease and prolonged viral persistence in {mu}MT mice, while only 10% of B6 mice showed clinical symptoms and very low viral persistence. Transfusion of sera from TMEV-infected B6 mice into anti-CD8 antibody-treated {mu}MT mice partially restored resistance to virus-induced encephalitis. These results indicate that the early anti-viral antibody response is also important in the protection from TMEV-induced encephalitis particularly in the absence of CD8{sup +} T cells.

  4. The bovine viral diarrhea virus E2 protein formulated with a novel adjuvant induces strong, balanced immune responses and provides protection from viral challenge in cattle.

    PubMed

    Snider, Marlene; Garg, Ravendra; Brownlie, Robert; van den Hurk, Jan V; van Drunen Littel-van den Hurk, Sylvia

    2014-11-28

    Bovine viral diarrhea virus (BVDV) is still one of the most serious pathogens in cattle, meriting the development of improved vaccines. Recently, we developed a new adjuvant consisting of poly[di(sodium carboxylatoethylphenoxy)]-phosphazene (PCEP), either CpG ODN or poly(I:C), and an immune defense regulator (IDR) peptide. As this adjuvant has been shown to mediate the induction of robust, balanced immune responses, it was evaluated in an E2 subunit vaccine against BVDV in lambs and calves. The BVDV type 2 E2 protein was produced at high levels in a mammalian expression system and purified. When formulated with either CpG ODN or poly(I:C), together with IDR and PCEP, the E2 protein elicited high antibody titers and production of IFN-γ secreting cells in lambs. As the immune responses were stronger when poly(I:C) was used, the E2 protein with poly(I:C), IDR and PCEP was subsequently tested in cattle. Robust virus neutralizing antibodies as well as cell-mediated immune responses, including CD8(+) cytotoxic T cell (CTL) responses, were induced. The fact that CTL responses were demonstrated in calves vaccinated with an E2 protein subunit vaccine indicates that this adjuvant formulation promotes cross-presentation. Furthermore, upon challenge with a high dose of virulent BVDV-2, the vaccinated calves showed almost no temperature response, weight loss, leukopenia or virus replication, in contrast to the control animals, which had severe clinical disease. These data suggest that this E2 subunit formulation induces significant protection from BVDV-2 challenge, and thus is a promising BVDV vaccine candidate; in addition, the adjuvant platform has applications in bovine vaccines in general.

  5. An attenuated duck plague virus (DPV) vaccine induces both systemic and mucosal immune responses to protect ducks against virulent DPV infection.

    PubMed

    Huang, Juan; Jia, Renyong; Wang, Mingshu; Shu, Bing; Yu, Xia; Zhu, Dekang; Chen, Shun; Yin, Zhongqiong; Chen, Xiaoyue; Cheng, Anchun

    2014-04-01

    Duck plague (DP) is a severe disease caused by DP virus (DPV). Control of the disease is recognized as one of the biggest challenges in avian medicine. Vaccination is an efficient way to control DPV, and an attenuated vaccine is the main routine vaccine. The attenuated DPV vaccine strain CHa is a modified live vaccine, but the systemic and mucosal immune responses induced by this vaccine have been poorly understood. In this study, the immunogenicity and efficacy of the vaccine were evaluated after subcutaneous immunization of ducks. CD4(+) and CD8(+) T cells were counted by flow cytometry, and humoral and mucosal Ig antibodies were analyzed by enzyme-linked immunosorbent assay (ELISA). The results showed that high levels of T cells and Ig antibodies were present postimmunization and that there were more CD4(+) T cells than CD8(+) T cells. Titers of humoral IgG were higher than those of humoral IgA. Local IgA was found in each sample, whereas local IgG was found only in the spleen, thymus, bursa of Fabricius, harderian gland, liver, bile, and lung. In a protection assay, the attenuated DPV vaccine completely protected ducks against 1,000 50% lethal doses (LD50) of the lethal DPV strain CHv via oral infection. These data suggest that this subcutaneous vaccine elicits sufficient systemic and mucosal immune responses against lethal DPV challenge to be protective in ducks. This study provides broad insights into understanding the immune responses to the attenuated DPV vaccine strain CHa through subcutaneous immunization in ducks.

  6. Evaluation of protective immune responses induced by DNA vaccines encoding Toxoplasma gondii surface antigen 1 (SAG1) and 14-3-3 protein in BALB/c mice.

    PubMed

    Meng, Min; He, Shenyi; Zhao, Guanghui; Bai, Yang; Zhou, Huaiyu; Cong, Hua; Lu, Gang; Zhao, Qunli; Zhu, Xing-Quan

    2012-11-26

    Toxoplasmosis, caused by an obligate intracellular protozoan parasite Toxoplasma gondii, has been a serious clinical and veterinary problem. Effective DNA vaccines against T. gondii can prevent and control the spread of toxoplasmosis, which is important for both human health and the farming industry. The T. gondii 14-3-3 protein has been proved to be antigenic and immunogenic and was a potential vaccine candidate against toxoplasmosis. In this study, we evaluated the immune responses induced by recombinant plasmids encoding T. gondii surface antigen 1 (SAG1) and 14-3-3 protein by immunizing BALB/c mice intramuscularly. In the present study, BALB/c mice were randomly divided into five groups, including three experimental groups (pSAG1, p14-3-3 and pSAG1/14-3-3) and two control groups (PBS and pBudCE4.1), and were immunized intramuscularly three times. The levels of IgG antibodies and cytokine production in mouse sera were determined by enzyme-linked immunosorbent assays (ELISA). Two weeks after the last immunization, all mice were challenged intraperitoneally (i.p.) with 1×10(4) tachyzoites of T. gondii and the survival time of mice was observed and recorded every day. Mice vaccinated with pSAG1, p14-3-3 or pSAG1/14-3-3 developed high levels of IgG2a and gamma interferon (IFN-γ) and low levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) compared to control groups (PBS or pBudCE4.1), which suggested a modulated Th1 type immune response (P<0.05). After intraperitoneal challenge with 1×10(4) tachyzoites of T. gondii (RH strain), the survival time of mice in experimental groups was longer than control groups (P<0.05). Mouse immunized with pSAG1/14-3-3 induced a higher level of IgG antibody response and significantly prolonged the survival time when compared with pSAG1 or p14-3-3 (P<0.05). The study suggested that T. gondii 14-3-3 protein can induce effective immune responses in BALB/c mice and was a novel DNA vaccine candidate against toxoplasmosis, and the

  7. Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses.

    PubMed

    Bergholz, Teresa M; Bowen, Barbara; Wiedmann, Martin; Boor, Kathryn J

    2012-04-01

    The food-borne pathogen Listeria monocytogenes experiences osmotic stress in many habitats, including foods and the gastrointestinal tract of the host. During transmission, L. monocytogenes is likely to experience osmotic stress at different temperatures and may adapt to osmotic stress in a temperature-dependent manner. To understand the impact of temperature on the responses this pathogen uses to adapt to osmotic stress, we assessed genome-wide changes in the L. monocytogenes H7858 transcriptome during short-term and long-term adaptation to salt stress at 7°C and 37°C. At both temperatures, the short-term response to salt stress included increased transcript levels of sigB and SigB-regulated genes, as well as mrpABCDEFG, encoding a sodium/proton antiporter. This antiporter was found to play a role in adaptation to salt stress at both temperatures; ΔmrpABCDEFG had a significantly longer lag phase than the parent strain in BHI plus 6% NaCl at 7°C and 37°C. The short-term adaptation to salt stress at 7°C included increased transcript levels of two genes encoding carboxypeptidases that modify peptidoglycan. These carboxypeptidases play a role in the short-term adaptation to salt stress only at 7°C, where the deletion mutants had significantly different lag phases than the parent strain. Changes in the transcriptome at both temperatures suggested that exposure to salt stress could provide cross-protection to other stresses, including peroxide stress. Short-term exposure to salt stress significantly increased H(2)O(2) resistance at both temperatures. These results provide information for the development of knowledge-based intervention methods against this pathogen, as well as provide insight into potential mechanisms of cross-protection.

  8. Enhanced mucosal immunoglobulin A response and solid protection against foot-and-mouth disease virus challenge induced by a novel dendrimeric peptide.

    PubMed

    Cubillos, Carolina; de la Torre, Beatriz G; Jakab, Annamaria; Clementi, Giorgia; Borrás, Eva; Bárcena, Juan; Andreu, David; Sobrino, Francisco; Blanco, Esther

    2008-07-01

    The successful use of a dendrimeric peptide to protect pigs against challenge with foot-and-mouth disease virus (FMDV), which causes the most devastating animal disease worldwide, is described. Animals were immunized intramuscularly with a peptide containing one copy of a FMDV T-cell epitope and branching out into four copies of a B-cell epitope. The four immunized pigs did not develop significant clinical signs upon FMDV challenge, neither systemic nor mucosal FMDV replication, nor was its transmission to contact control pigs observed. The dendrimeric construction specifically induced high titers of FMDV-neutralizing antibodies and activated FMDV-specific T cells. Interestingly, a potent anti-FMDV immunoglobulin A response (local and systemic) was observed, despite the parenteral administration of the peptide. On the other hand, peptide-immunized animals showed no antibodies specific of FMDV infection, which qualifies the peptide as a potential marker vaccine. Overall, the dendrimeric peptide used elicited an immune response comparable to that found for control FMDV-infected pigs that correlated with a solid protection against FMDV challenge. Dendrimeric designs of this type may hold substantial promise for peptide subunit vaccine development.

  9. Adaptive response of low linear energy transfer X-rays for protection against high linear energy transfer accelerated heavy ion-induced teratogenesis.

    PubMed

    Wang, Bing; Ninomiya, Yasuharu; Tanaka, Kaoru; Maruyama, Kouichi; Varès, Guillaume; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru

    2012-12-01

    Adaptive response (AR) of low linear energy transfer (LET) irradiations for protection against teratogenesis induced by high LET irradiations is not well documented. In this study, induction of AR by X-rays against teratogenesis induced by accelerated heavy ions was examined in fetal mice. Irradiations of pregnant C57BL/6J mice were performed by delivering a priming low dose from X-rays at 0.05 or 0.30 Gy on gestation day 11 followed one day later by a challenge high dose from either X-rays or accelerated heavy ions. Monoenergetic beams of carbon, neon, silicon, and iron with the LET values of about 15, 30, 55, and 200 keV/μm, respectively, were examined. Significant suppression of teratogenic effects (fetal death, malformation of live fetuses, or low body weight) was used as the endpoint for judgment of a successful AR induction. Existence of AR induced by low-LET X-rays against teratogenic effect induced by high-LET accelerated heavy ions was demonstrated. The priming low dose of X-rays significantly reduced the occurrence of prenatal fetal death, malformation, and/or low body weight induced by the challenge high dose from either X-rays or accelerated heavy ions of carbon, neon or silicon but not iron particles. Successful AR induction appears to be a radiation quality event, depending on the LET value and/or the particle species of the challenge irradiations. These findings would provide a new insight into the study on radiation-induced AR in utero. © 2012 Wiley Periodicals, Inc.

  10. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine

    PubMed Central

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-01-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity. PMID:22407649

  11. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine.

    PubMed

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Li, Xiaolin; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-06-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity.

  12. Dietary Supplement Attenuates Radiation-Induced Osteoclastogenic and Oxidative Stress-Related Responses and Protects Adult Mice from Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Globus, Ruth; Schreurs, Ann-Sofie; Tahimic, Candice; Shirazi-Fard, Yasaman; Alwood, Joshua; Shahnazari, Mohammed; Halloran, Bernard

    2015-01-01

    Our central hypothesis is that oxidative stress plays a key role in cell dysfunction and progressive bone loss caused by radiation exposure during spaceflight. In animal studies, excess free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. We previously reported that exposure to low or high-LET radiation rapidly increases expression levels of pro-osteoclastogenic and oxidative stress-related genes in bone and marrow, followed by pathological changes in skeletal structure. To screen various antioxidants for radioprotective effects on bone, 4 month old, male C57Bl6/J mice were treated with a dietary antioxidant cocktail, injectable alpha-lipoic acid, or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs total body radiation and one day later marrow cells were collected and the relevant genes analyzed for expression levels. Of the candidates tested, DP was most effective in reducing bone resorption-related gene expression. Microcomputed tomography revealed that DP also prevented the radiation-induced deterioration of skeletal microarchitecture, as indicated by percent bone volume, trabecular spacing and trabecular number. DP had similar protective effects on skeletal structure after sequential exposure to protons (0.5 Gy, 150MeV/n) and 56Fe 0.5Gy, 600 MeV/n). When cultured ex vivo under osteogenic conditions, bone marrow-derived cells from DP-fed animals exhibited increased colony numbers compared to control diet-fed animals. These findings suggest that DP exerted pro-osteogenic effects apart from previously identified anti-resorptive actions, which may contribute to radioprotection of skeletal tissue. In conclusion, a diet enriched in certain types of antioxidants and polyphenols such as DP may be useful as an intervention to protect tissues from degenerative effects of ionizing radiation.

  13. Mucosal, Cellular, and Humoral Immune Responses Induced by Different Live Infectious Bronchitis Virus Vaccination Regimes and Protection Conferred against Infectious Bronchitis Virus Q1 Strain

    PubMed Central

    Chhabra, Rajesh; Forrester, Anne; Lemiere, Stephane; Awad, Faez; Chantrey, Julian

    2015-01-01

    The objectives of the present study were to assess the mucosal, cellular, and humoral immune responses induced by two different infectious bronchitis virus (IBV) vaccination regimes and their efficacy against challenge by a variant IBV Q1. One-day-old broiler chicks were vaccinated with live H120 alone (group I) or in combination with CR88 (group II). The two groups were again vaccinated with CR88 at 14 days of age (doa). One group was kept as the control (group III). A significant increase in lachrymal IgA levels was observed at 4 doa and then peaked at 14 doa in the vaccinated groups. The IgA levels in group II were significantly higher than those in group I from 14 doa. Using immunohistochemistry to examine changes in the number of CD4+ and CD8+ cells in the trachea, it was found that overall patterns of CD8+ cells were dominant compared to those of CD4+ cells in the two vaccinated groups. CD8+ cells were significantly higher in group II than those in group I at 21 and 28 doa. All groups were challenged oculonasally with a virulent Q1 strain at 28 doa, and their protection was assessed. The two vaccinated groups gave excellent ciliary protection against Q1, although group II's histopathology lesion scores and viral RNA loads in the trachea and kidney showed greater levels of protection than those in group I. These results suggest that greater protection is achieved from the combined vaccination of H120 and CR88 of 1-day-old chicks, followed by CR88 at 14 doa. PMID:26202435

  14. CXCL10 Is Critical for the Generation of Protective CD8 T Cell Response Induced by Antigen Pulsed CpG-ODN Activated Dendritic Cells

    PubMed Central

    Majumder, Saikat; Bhattacharjee, Surajit; Paul Chowdhury, Bidisha; Majumdar, Subrata

    2012-01-01

    The visceral form of leishmaniasis is the most severe form of the disease and of particular concern due to the emerging problem of HIV/visceral leishmaniasis (VL) co-infection in the tropics. Till date miltefosine, amphotericin B and pentavalent antimony compounds remain the main treatment regimens for leishmaniasis. However, because of severe side effects, there is an urgent need for alternative improved therapies to combat this dreaded disease. In the present study, we have used the murine model of leishmaniasis to evaluate the potential role played by soluble leishmanial antigen (SLA) pulsed-CpG-ODN stimulated dendritic cells (SLA-CpG-DCs) in restricting the intracellular leishmanial growth. We found that mice vaccinated with a single dose of SLA-pulsed DC stimulated by CpG-ODN were protected against a subsequent leishmanial challenge and had a dramatic reduction in parasite burden along with the generation of parasite specific cytotoxic T lymphocytes. Moreover, we demonstrate that the induction of protective immunity conferred by SLA-CpG-DCs depends entirely on the CXC chemokine IFN-γ-inducible protein 10 (CXCL10; IP-10). CXCL10 is directly involved in the generation of a parasite specific CD8+ T cell-mediated immune response. We observed significant reduction of CD8+ T cells in mice depleted of CXCL10 suggesting a direct role of CXCL10 in the generation of CD8+ T cells in SLA-CpG-DCs vaccinated mice. CXCL10 also contributed towards the generation of perforin and granzyme B, two important cytolytic mediators of CD8+ T cells, following SLA-CpG-DCs vaccination. Together, these findings strongly demonstrate that CXCL10 is critical for rendering a protective cellular immunity during SLA-CpG-DC vaccination that confers protection against Leishmania donovani infection. PMID:23144947

  15. Multispecific Aspergillus T cells selected by CD137 or CD154 induce protective immune responses against the most relevant mold infections.

    PubMed

    Stuehler, Claudia; Nowakowska, Justyna; Bernardini, Claudia; Topp, Max S; Battegay, Manuel; Passweg, Jakob; Khanna, Nina

    2015-04-15

    Aspergillus and Mucorales species cause severe infections in patients after hematopoietic stem cell transplantation (HSCT). Induction of antifungal CD4(+) T-helper type 1 (Th1) immunity is an appealing strategy to combat these infections. Immunotherapeutic approaches are so far limited because of a lack of antigens inducing protective T cells, their elaborate production, and the need of targeting a broad spectrum of pathogenic fungi. We examined the response to different Aspergillus fumigatus proteins in healthy individuals and patients after HSCT and compared rapid selection protocols for fungus-specific T cells based on CD137 or CD154 expression. The A. fumigatus proteins Crf1, Gel1, and Pmp20 induced strong Th1 responses in healthy individuals. T cells specific for these antigens expanded in patients with active invasive aspergillosis, indicating their contribution to infection control. Th1 cells specific for the 3 proteins can be selected with similar specificity within 24 hours, based on CD137 or CD154 expression. These cells recognize naturally processed A. fumigatus and the multispecific T-cell lines, directed against all 3 proteins, especially those selected by CD154, additionally cross-react to different Aspergillus and Mucorales species. These findings may form the basis for adoptive T-cell transfer for prophylaxis or treatment in patients with these devastating infections. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Alginate microspheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN induced partial protection and enhanced immune response against murine model of leishmaniasis.

    PubMed

    Tafaghodi, Mohsen; Eskandari, Maryam; Khamesipour, Ali; Jaafari, Mahmoud R

    2011-10-01

    A suitable adjuvant and delivery system are needed to enhance efficacy of vaccines against leishmaniasis. In this study, alginate microspheres as an antigen delivery system and CpG-ODN as an immunoadjuvant were used to enhance immune response and induce protection against an experimental autoclaved Leishmania major (ALM) vaccine. Alginate microspheres were prepared by an emulsification technique and the characteristics of the preparation such as size, encapsulation efficiency and release profile of encapsulates were studied. Mean diameter of microspheres was determined using SEM (Scanning Electron Microscopy) and particle size analyzer. The encapsulation efficiency was determined using Lowry protein assay method. The integrity of ALM antigens was assessed using SDS-PAGE. Mean diameter of microspheres was 1.8±1.0μm. BALB/c mice were immunized three times in 3-weeks intervals with ALM+CpG-ODN loaded microspheres [(ALM+CpG)(ALG)], ALM encapsulated alginate microspheres [(ALM)(ALG)], (ALM)(ALG)+CpG, ALM+CpG, ALM alone or PBS. The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection was observed in group of mice immunized with (ALM+CpG)(ALG). The groups of mice received (ALM+CpG)(ALG), (ALM)(ALG)+CpG, (ALM)(ALG) and ALM+CpG were also showed a significantly (P<0.05) smaller footpad swelling compared with the group that received either ALM alone or PBS. The mice immunized with (ALM+CpG)(ALG) or ALM+CpG showed the significantly (P<0.05) highest IgG2a/IgG1 ratio. The IFN-γ level was significantly (P<0.0001) highest in group of mice immunized with either (ALM)(ALG)+CpG or ALM+CpG. It is concluded that alginate microspheres and CpG-ODN adjuvant when are used simultaneously induced protection and enhanced immune response against ALM antigen.

  17. Coinduction of GTP cyclohydrolase I and inducible NO synthase in rat osteoblasts during space flight: apoptotic and self-protective response?

    PubMed

    Kumei, Yasuhiro; Morita, Sadao; Nakamura, Hiroshi; Akiyama, Hideo; Hirano, Masahiko; Shimokawa, Hitoyata; Ohya, Kei'ichi

    2003-12-01

    The mechanism underlying space flight-induced osteopenia is unknown. In osteoblasts, the inducible nitric oxide (NO) synthase (iNOS) is involved in the early response to mechanical strain and induction of apoptosis. GTP cyclohydrolase I (GTPCH) is a key enzyme that is essential for iNOS activity. The coordinate expression of GTPCH prevents apoptosis that is induced by iNOS/NO. The purpose of this study was to investigate the effects of space flight on the expression of apoptotic/anti-apoptotic molecules iNOS and GTPCH in rat osteoblasts. Rat osteoblasts were cultured aboard a space shuttle and solubilized on the 4th and 5th days of the mission. The mRNA levels for iNOS and GTPCH in the flight cultures were increased to at least 120-fold and threefold higher than the ground (1 x g) controls, respectively. The amount of cellular DNA per flight culture vessel was 53% and 58% of the ground controls on the 4th and 5th days, respectively. However, the increasing rate of the DNA amount from the 4th to the 5th day was not different between the flight cultures and the ground controls. Morphologically, the cells grew in space as well as on the ground. Co-expression of GTPCH and iNOS may indicate a self-protective mode of action in osteoblasts against the harmful stress under microgravity.

  18. Egg yolk IgY: protection against rotavirus induced diarrhea and modulatory effect on the systemic and mucosal antibody responses in newborn calves.

    PubMed

    Vega, C; Bok, M; Chacana, P; Saif, L; Fernandez, F; Parreño, V

    2011-08-15

    Bovine rotavirus (BRV) is an important cause of diarrhea in newborn calves. Local passive immunity is the most efficient protective strategy to control the disease. IgY technology (the use of chicken egg yolk immunoglobulins) is an economic and practical alternative to prevent BRV diarrhea in dairy calves. The aim of this study was to evaluate the protection and immunomodulation induced by the oral administration of egg yolk enriched in BRV specific IgY to experimentally BRV infected calves. All calves in groups Gp 1, 2 and 3 received control colostrum (CC; BRV virus neutralization Ab titer - VN=65,536; ELISA BRV IgG(1)=16,384) prior to gut closure. After gut closure, calves received milk supplemented with 6% BRV-immune egg yolk [(Gp 1) VN=2048; ELISA IgY Ab titer=4096] or non-immune control egg yolk [(Gp 2) VN<4; ELISA IgY Ab titer<4] twice a day, for 14 days. Calves receiving CC only or colostrum deprived calves (CD) fed antibody (Ab) free milk served as controls (Gp 3 and 4, respectively). Calves were inoculated with 10(5.85)focus forming units (FFU) of virulent BRV IND at 2 days of age. Control calves (Gp 3 and 4) and calves fed control IgY (Gp 2) were infected and developed severe diarrhea. Around 80% calves in Gp 1 (IgY 4096) were infected, but they showed 80% (4/5) protection against BRV diarrhea. Bovine RV-specific IgY Ab were detected in the feces of calves in Gp 1, indicating that avian antibodies (Abs) remained intact after passage through the gastrointestinal tract. At post infection day 21, the duodenum was the major site of BRV specific antibody secreting cells (ASC) in all experimental groups. Mucosal ASC responses of all isotypes were significantly higher in the IgY treated groups, independently of the specificity of the treatment, indicating that egg yolk components modulated the immune response against BRV infection at the mucosal level. These results indicate that supplementing newborn calves' diets for the first 14 days of life with egg yolk

  19. Egg Yolk IgY: Protection against Rotavirus induced Diarrhea and Modulatory effect on the systemic and mucosal antibody responses in newborn calves

    PubMed Central

    Vega, C.; Bok, M.; Chacana, P.; Saif, L.; Fernandez, F.; Parreño, V.

    2011-01-01

    Bovine rotavirus (BRV) is an important cause of diarrhea in newborn calves. Local passive immunity is the most efficient protective strategy to control the disease. IgY technology (the use of chicken egg yolk immunoglobulins) is an economic and practical alternative to prevent BRV diarrhea in dairy calves. The aim of this study was to evaluate the protection and immunomodulation induced by the oral administration of egg yolk enriched in BRV specific IgY to experimentally BRV infected calves. All calves in groups Gp 1, 2 and 3 received control colostrum (CC; BRV virus neutralization Ab titer – VN- =65,536; ELISA BRV IgG1 =16,384) prior to gut closure. After gut closure, calves received milk supplemented with 6% BRV-immune egg yolk [(Gp1) VN=2048; ELISA IgY Ab titer =4096] or non-immune control egg yolk [(Gp2) VN <4; ELISA IgY Ab titer <4) twice a day, for 14 days. Calves receiving CC only or colostrum deprived calves (CD) fed antibody (Ab) free milk served as controls (Gp 3 and 4, respectively). Calves were inoculated with 105.85 focus forming units (FFU) of virulent BRV IND at 2 days of age. Control calves (Gp 3 and 4) and calves fed control IgY (Gp 2) were infected and developed severe diarrhea. Around 80% calves in Gp 1 (IgY 4096) were infected, but they showed 80% (4/5) protection against BRV diarrhea. Bovine RV-specific IgY Ab were detected in the feces of calves in Gp 1, indicating that avian antibodies (Abs) remained intact after passage through the gastrointestinal tract. At post infection day 21, the duodenum was the major site of BRV specific antibody secreting cells (ASC) in all experimental groups. Mucosal ASC responses of all isotypes were significantly higher in the IgY treated groups, independently of the specificity of the treatment, indicating that egg yolk components modulated the immune response against BRV infection at the mucosal level. These results indicate that supplementing newborn calves’ diets for the first 14 days of life with egg

  20. Systemic antibody responses induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters.

    PubMed

    Anosova, Natalie G; Brown, Anna M; Li, Lu; Liu, Nana; Cole, Leah E; Zhang, Jinrong; Mehta, Hersh; Kleanthous, Harry

    2013-09-01

    measurements of pre-challenge sera showed that the median anti-toxin A and anti-toxin B IgG titres in the group of surviving animals were significantly higher than the median values in the group of animals that did not survive challenge. Assessment of the neutralizing activity of these sera revealed a statistically significant difference between the levels of both toxin A and toxin B neutralizing titres in protected versus unprotected animals as the median anti-toxin A and anti-toxin B neutralizing titres from surviving animals were higher than the median values from animals that succumbed to challenge. Statistically significant correlations between the toxin-specific binding titres and toxin neutralizing titres were seen for both toxin A and toxin B responses. The role of circulating anti-toxin antibodies in immunity against disease was evaluated by passive transfer of immune sera against C. difficile toxoids to naïve hamsters. Passively immunized animals were protected against morbidity and mortality associated with C. difficile challenge. Taken together, these results indicate the ability of i.m. immunization with inactivated toxins A and B to induce robust dose-dependent anti-toxin A and anti-toxin B IgG responses, the principal role of circulating anti-toxin antibody in immunity against disease and that antibody toxin binding and neutralization titres can serve as correlates of protection in the hamster challenge model of C. difficile.

  1. Immunization with a DNA Vaccine Cocktail Induces a Th1 Response and Protects Mice Against Mycobacterium avium subsp. paratuberculosis Challenge

    USDA-ARS?s Scientific Manuscript database

    Several novel antigens of Mycobacterium avium subsp. paratuberculosis have been studied as vaccine components and their immunogenicity has been evaluated. Previously, we reported that 85 antigen complex (85A, 85B, and 85C), superoxide dismutase (SOD), and 35kDa protein could induce significant lymph...

  2. Virus-specific intestinal IFN-gamma producing T cell responses induced by human rotavirus infection and vaccines are correlated with protection against rotavirus diarrhea in gnotobiotic pigs.

    PubMed

    Yuan, Lijuan; Wen, Ke; Azevedo, Marli S P; Gonzalez, Ana M; Zhang, Wei; Saif, Linda J

    2008-06-19

    We examined rotavirus-specific IFN-gamma producing CD4+, CD8+ and CD4+CD8+ T cell responses in gnotobiotic pigs infected with a virulent human rotavirus (VirHRV) or vaccinated with an attenuated (Att) HRV vaccine (AttHRV3x or AttHRV2x) or an AttHRV oral priming and 2/6-virus-like particle (VLP) intranasal boosting (AttHRV-2/6VLP) regimen. In VirHRV infected pigs, HRV-specific IFN-gamma producing T cells reside primarily in ileum. AttHRV-2/6VLP induced similar frequencies of intestinal IFN-gamma producing T cells as the VirHRV, whereas AttHRV3x or 2x vaccines were less effective. Protection rates against rotavirus diarrhea upon VirHRV challenge significantly correlated (r=0.97-1.0, p<0.005) with frequencies of intestinal IFN-gamma producing T cells, suggesting their role in protective immunity.

  3. Interleukin-12 Induces a Th1-Like Response to Burkholderia mallei and Limited Protection in BALB/c Mice

    DTIC Science & Technology

    2006-01-01

    dependent on the concentration of IL-12. Mahon et al. [21] demonstrated that IL-12 increased the efficacy of a Bordetella pertussis acellular vaccine...Interleukin-12 is pro- duced by macrophages in response to live or killed Bordetella per- tussis and enhances the efficacy of an acellular pertussis

  4. Interleukin-12 Induces a Th1-like Response to Burkholderia mallei and Limited Protection in BALB/c Mice

    DTIC Science & Technology

    2005-09-02

    which was dependent on the concentration of IL-12. Mahon et al. [21] demonstrated that IL-12 increased the efficacy of a Bordetella pertussis...Mills KHG. Interleukin-12 is pro- duced by macrophages in response to live or killed Bordetella per- tussis and enhances the efficacy of an acellular

  5. An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of Clostridium difficile induces protective antibody responses in vivo.

    PubMed

    Baliban, Scott M; Michael, Amanda; Shammassian, Berje; Mudakha, Shikata; Khan, Amir S; Cocklin, Simon; Zentner, Isaac; Latimer, Brian P; Bouillaut, Laurent; Hunter, Meredith; Marx, Preston; Sardesai, Niranjan Y; Welles, Seth L; Jacobson, Jeffrey M; Weiner, David B; Kutzler, Michele A

    2014-10-01

    Clostridium difficile-associated disease (CDAD) constitutes a large majority of nosocomial diarrhea cases in industrialized nations and is mediated by the effects of two secreted toxins, toxin A (TcdA) and toxin B (TcdB). Patients who develop strong antitoxin antibody responses can clear C. difficile infection and remain disease free. Key toxin-neutralizing epitopes have been found within the carboxy-terminal receptor binding domains (RBDs) of TcdA and TcdB, which has generated interest in developing the RBD as a viable vaccine target. While numerous platforms have been studied, very little data describes the potential of DNA vaccination against CDAD. Therefore, we created highly optimized plasmids encoding the RBDs from TcdA and TcdB in which any putative N-linked glycosylation sites were altered. Mice and nonhuman primates were immunized intramuscularly, followed by in vivo electroporation, and in these animal models, vaccination induced significant levels of both anti-RBD antibodies (blood and stool) and RBD-specific antibody-secreting cells. Further characterization revealed that sera from immunized mice and nonhuman primates could detect RBD protein from transfected cells, as well as neutralize purified toxins in an in vitro cytotoxicity assay. Mice that were immunized with plasmids or given nonhuman-primate sera were protected from a lethal challenge with purified TcdA and/or TcdB. Moreover, immunized mice were significantly protected when challenged with C. difficile spores from homologous (VPI 10463) and heterologous, epidemic (UK1) strains. These data demonstrate the robust immunogenicity and efficacy of a TcdA/B RBD-based DNA vaccine in preclinical models of acute toxin-associated and intragastric, spore-induced colonic disease.

  6. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    PubMed

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future.

  7. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorrhynchus mykiss).

    PubMed

    Ballesteros, Natalia A; Alonso, Marta; Saint-Jean, Sylvia Rodríguez; Perez-Prieto, Sara I

    2015-08-01

    Administered by intramuscular injection, a DNA vaccine (pIRF1A-G) containing the promoter regions upstream of the rainbow trout interferon regulatory factor 1A gene (IRF1A) driven the expression of the infectious hematopoietic necrosis virus (IHNV) glycoprotein (G) elicited protective immune responses in rainbow trout (Oncorhynchus mykiss). However, less laborious and cost-effective routes of DNA vaccine delivery are required to vaccinate large numbers of susceptible farmed fish. In this study, the pIRF1A-G vaccine was encapsulated into alginate microspheres and orally administered to rainbow trout. At 1, 3, 5, and 7 d post-vaccination, IHNV G transcripts were detected by quantitative real-time PCR in gills, spleen, kidney and intestinal tissues of vaccinated fish. This result suggested that the encapsulation of pIRF1A-G in alginate microparticles protected the DNA vaccine from degradation in the fish stomach and ensured vaccine early delivery to the hindgut, vaccine passage through the intestinal mucosa and its distribution thought internal and external organs of vaccinated fish. We also observed that the oral route required approximately 20-fold more plasmid DNA than the injection route to induce the expression of significant levels of IHNV G transcripts in kidney and spleen of vaccinated fish. Despite this limitation, increased IFN-1, TLR-7 and IgM gene expression was detected by qRT-PCR in kidney of vaccinated fish when a 10 μg dose of the oral pIRF1A-G vaccine was administered. In contrast, significant Mx-1, Vig-1, Vig-2, TLR-3 and TLR-8 gene expression was only detected when higher doses of pIRF1A-G (50 and 100 μg) were orally administered. The pIRF1A-G vaccine also induced the expression of several markers of the adaptive immune response (CD4, CD8, IgM and IgT) in kidney and spleen of immunized fish in a dose-dependent manner. When vaccinated fish were challenged by immersion with live IHNV, evidence of a dose-response effect of the oral vaccine could also

  8. Metformin and the ATM DNA damage response (DDR): accelerating the onset of stress-induced senescence to boost protection against cancer.

    PubMed

    Menendez, Javier A; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Martin-Castillo, Begoña; Joven, Jorge; Vellon, Luciano; Vazquez-Martin, Alejandro

    2011-11-01

    By activating the ataxia telangiectasia mutated (ATM)-mediated DNA Damage Response (DDR), the AMPK agonist metformin might sensitize cells against further damage, thus mimicking the precancerous stimulus that induces an intrinsic barrier against carcinogenesis. Herein, we present the new hypothesis that metformin might function as a tissue sweeper of pre-malignant cells before they gain stem cell/tumor initiating properties. Because enhanced glycolysis (the Warburg effect) plays a causal role in the gain of stem-like properties of tumor-initiating cells by protecting them from the pro-senescent effects of mitochondrial respiration-induced oxidative stress, metformin's ability to disrupt the glycolytic metabotype may generate a cellular phenotype that is metabolically protected against immortalization. The bioenergetic crisis imposed by metformin, which may involve enhanced mitochondrial biogenesis and oxidative stress, can lower the threshold for cellular senescence by pre-activating an ATM-dependent pseudo-DDR. This allows an accelerated onset of cellular senescence in response to additional oncogenic stresses. By pushing cancer cells to use oxidative phosphorylation instead of glycolysis, metformin can rescue cell surface major histocompatibility complex class I (MHC-I) expression that is downregulated by oncogenic transformation, a crucial adaptation of tumor cells to avoid the adaptive immune response by cytotoxic T-lymphocytes (CTLs). Aside from restoration of tumor immunosurveillance at the cell-autonomous level, metformin can activate a senescence-associated secretory phenotype (SASP) to reinforce senescence growth arrest, which might trigger an immune-mediated clearance of the senescent cells in a non-cell-autonomous manner. By diminishing the probability of escape from the senescence anti-tumor barrier, the net effect of metformin should be a significant decrease in the accumulation of dysfunctional, pre-malignant cells in tissues, including those with the

  9. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response.

    PubMed

    Zhou, Bin; Liu, Ke; Jiang, Yan; Wei, Jian-Chao; Chen, Pu-Yan

    2011-07-30

    Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV). Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865) and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716), were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF) piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine) than that of mono-epitope peptide(rE2-a or rE2-b). Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals) vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  10. Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Balcázar, José Luis; de Blas, Ignacio; Ruiz-Zarzuela, Imanol; Vendrell, Daniel; Gironés, Olivia; Muzquiz, José Luis

    2007-10-01

    We analysed the effect of probiotic strains on the cellular and humoral immune responses of rainbow trout (Oncorhynchus mykiss), and their capacity to prevent furunculosis during a challenge trial. Probiotic strains (Lactococcus lactis ssp. lactis CLFP 100, Leuconostoc mesenteroides CLFP 196, and Lactobacillus sakei CLFP 202) were administered orally to fish for 2 weeks at 10(6) CFU g(-1) of feed. In comparison to untreated control fish, the phagocytic activity of head kidney leukocytes and the alternative complement activity in serum were significantly greater in all probiotic groups at the end of the second week. With the exception of the group fed with Lactobacillus sakei, superoxide anion production was also significantly increased in the probiotic groups. Analysis of lysozyme activity did not exhibit any significant difference in the probiotic and control groups. Fifteen days after the start of the probiotic feeding, fish were challenged with Aeromonas salmonicida ssp. salmonicida. The fish supplemented with probiotics exhibited survival rates ranging from 97.8% to 100%, whereas survival was 65.6% in fish not treated with the probiotics. These results demonstrate that probiotic supplementation to fish can reduce the severity of furunculosis, and suggest that this reduction may be associated with enhanced humoral and cellular immune response.

  11. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation

    PubMed Central

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D. Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-01-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4–8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.—Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation. PMID:27317670

  12. Protective immune responses in rabbits induced by a suicidal DNA vaccine of the VP60 gene of rabbit hemorrhagic disease virus.

    PubMed

    Cheng, Yingjie; Chen, Zongyan; Li, Chuanfeng; Meng, Chun; Wu, Run; Liu, Guangqing

    2013-03-01

    A suicidal DNA vaccine based on a Semliki Forest virus (SFV) replicon was evaluated for the development of a vaccine against rabbit hemorrhagic disease virus (RHDV). The VP60 gene of RHDV was cloned and inserted into pSCA1, an SFV DNA-based replicon vector. The resultant plasmid, pSCA/VP60, was transfected into BHK-21 cells, and the antigenicity of the expressed protein was confirmed using indirect immunofluorescence and a western blot assay. In addition, immunogenicity was studied in rabbits. Fifteen rabbits were injected intramuscularly twice with pSCA/VP60 at 2-week intervals. They were challenged with an RHDV isolate 2weeks after the second immunization. In all cases, anti-RHDV antibodies were detected by ELISA. Additionally, the lymphocyte proliferation response was tested by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide method, and neutralizing antibodies were measured by microneutralization tests. Our results showed that RHDV-specific antibodies and an RHDV-specific cell-mediated immune response were strongly induced in rabbits. Furthermore, all of the rabbits were protected against challenge with wild type RHDV. In conclusion, we demonstrated that the suicidal DNA vaccine is a promising vaccine candidate that facilitates the prevention of rabbit hemorrhagic disease caused by RHDV.

  13. Brucella abortus Omp19 recombinant protein subcutaneously co-delivered with an antigen enhances antigen-specific T helper 1 memory responses and induces protection against parasite challenge.

    PubMed

    Coria, Lorena M; Ibañez, Andrés E; Pasquevich, Karina A; Cobiello, Paula L González; Frank, Fernanda M; Giambartolomei, Guillermo H; Cassataro, Juliana

    2016-01-20

    The discovery of effective adjuvants for many vaccines especially those with limited commercial appeal, such as vaccines to poverty-related diseases, is required. In this work, we demonstrated that subcutaneous co-administration of mice with the outer membrane protein U-Omp19 from Brucella spp. plus OVA as antigen (Ag) increases Ag-specific T cell proliferation and T helper (Th) 1 immune responses in vitro and in vivo. U-Omp19 treated dendritic cells promote IFN-γ production by specific CD4(+) T cells and increases T cell proliferation. U-Omp19 co-administration induces the production of Ag specific effector memory T cell populations (CD4(+) CD44(high) CD62L(low) T cells). Finally, subcutaneous co-administration of U-Omp19 with Trypanosoma cruzi Ags confers protection against virulent parasite challenge, reducing parasitemia and weight loss while increasing mice survival. These results indicate that the bacterial protein U-Omp19 when delivered subcutaneously could be a suitable component of vaccine formulations against infectious diseases requiring Th1 immune responses.

  14. Challenges of Generating and Maintaining Protective Vaccine-Induced Immune Responses for Foot-and-Mouth Disease Virus in Pigs

    PubMed Central

    Lyons, Nicholas A.; Lyoo, Young S.; King, Donald P.; Paton, David J.

    2016-01-01

    Vaccination can play a central role in the control of outbreaks of foot-and-mouth disease (FMD) by reducing both the impact of clinical disease and the extent of virus transmission between susceptible animals. Recent incursions of exotic FMD virus lineages into several East Asian countries have highlighted the difficulties of generating and maintaining an adequate immune response in vaccinated pigs. Factors that impact vaccine performance include (i) the potency, antigenic payload, and formulation of a vaccine; (ii) the antigenic match between the vaccine and the heterologous circulating field strain; and (iii) the regime (timing, frequency, and herd-level coverage) used to administer the vaccine. This review collates data from studies that have evaluated the performance of foot-and-mouth disease virus vaccines at the individual and population level in pigs and identifies research priorities that could provide new insights to improve vaccination in the future. PMID:27965966

  15. Challenges of Generating and Maintaining Protective Vaccine-Induced Immune Responses for Foot-and-Mouth Disease Virus in Pigs.

    PubMed

    Lyons, Nicholas A; Lyoo, Young S; King, Donald P; Paton, David J

    2016-01-01

    Vaccination can play a central role in the control of outbreaks of foot-and-mouth disease (FMD) by reducing both the impact of clinical disease and the extent of virus transmission between susceptible animals. Recent incursions of exotic FMD virus lineages into several East Asian countries have highlighted the difficulties of generating and maintaining an adequate immune response in vaccinated pigs. Factors that impact vaccine performance include (i) the potency, antigenic payload, and formulation of a vaccine; (ii) the antigenic match between the vaccine and the heterologous circulating field strain; and (iii) the regime (timing, frequency, and herd-level coverage) used to administer the vaccine. This review collates data from studies that have evaluated the performance of foot-and-mouth disease virus vaccines at the individual and population level in pigs and identifies research priorities that could provide new insights to improve vaccination in the future.

  16. Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen

    PubMed Central

    Siddaiah, Chandra Nayaka; Satyanarayana, Niranjan Raj; Mudili, Venkataramana; Kumar Gupta, Vijai; Gurunathan, Selvakumar; Rangappa, Shobith; Huntrike, Shekar Shetty; Srivastava, Rakesh Kumar

    2017-01-01

    Endophytic Trichoderma hamatum UoM 13 isolated from pearl millet roots was evaluated for its efficiency to suppress downy mildew disease. Under laboratory conditions, T. hamatum seed treatment significantly enhanced pearl millet seed germination and seedling vigor. T. hamatum seed treatment resulted in systemic and durable immunity against pearl millet downy mildew disease under greenhouse and field conditions. T. hamatum treated seedlings responded to downy mildew infection with high lignification and callose deposition. Analysis of defense enzymes showed that T. hamatum treatment significantly enhanced the activities of glucanase, peroxidase, phenylalanine ammonia-lyase, and polyphenol oxidase in comparison to untreated control. RT-PCR analysis revealed differentially expressed transcripts of the defense enzymes and PR-proteins in treated, untreated, and checks, wherein PR-1, PR-5, and cell wall defense HRGPs were significantly over expressed in treated seedlings as against their lower expression in controls. T. hamatum treatment significantly stimulated endogenous salicylic acid (SA) levels and significantly upregulated important SA biosynthesis gene isochorismate synthase. The results indicated that T. hamatum UoM13 treatment induces resistance corresponding to significant over expression of endogenous SA, important defense enzymes, PR-proteins, and HRGPs, suggesting that SA biosynthetic pathway is involved in pearl millet for mounting systemic immunity against downy mildew pathogen. PMID:28322224

  17. Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma

    PubMed Central

    Mrad, Marguerite; Imbert, Caroline; Garcia, Virginie; Rambow, Florian; Therville, Nicole; Carpentier, Stéphane; Ségui, Bruno; Levade, Thierry; Azar, Rania; Marine, Jean-Christophe; Diab-Assaf, Mona; Colacios, Céline; Andrieu-Abadie, Nathalie

    2016-01-01

    The infiltration of melanoma tumors by macrophages is often correlated with poor prognosis. However, the molecular signals that regulate the dialogue between malignant cells and the inflammatory microenvironment remain poorly understood. We previously reported an increased expression of sphingosine kinase-1 (SK1), which produces the bioactive lipid sphingosine 1-phosphate (S1P), in melanoma. The present study aimed at defining the role of tumor SK1 in the recruitment and differentiation of macrophages in melanoma. Herein, we show that downregulation of SK1 in melanoma cells causes a reduction in the percentage of CD206highMHCIIlow M2 macrophages in favor of an increased proportion of CD206lowMHCIIhigh M1 macrophages into the tumor. This macrophage differentiation orchestrates T lymphocyte recruitment as well as tumor rejection through the expression of Th1 cytokines and chemokines. In vitro experiments indicated that macrophage migration is triggered by the binding of tumor S1P to S1PR1 receptors present on macrophages whereas macrophage differentiation is stimulated by SK1-induced secretion of TGF-β1. Finally, RNA-seq analysis of human melanoma tumors revealed a positive correlation between SK1 and TGF-β1 expression. Altogether, our findings demonstrate that melanoma SK1 plays a key role in the recruitment and phenotypic shift of the tumor macrophages that promote melanoma growth. PMID:27708249

  18. Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen.

    PubMed

    Siddaiah, Chandra Nayaka; Satyanarayana, Niranjan Raj; Mudili, Venkataramana; Kumar Gupta, Vijai; Gurunathan, Selvakumar; Rangappa, Shobith; Huntrike, Shekar Shetty; Srivastava, Rakesh Kumar

    2017-03-21

    Endophytic Trichoderma hamatum UoM 13 isolated from pearl millet roots was evaluated for its efficiency to suppress downy mildew disease. Under laboratory conditions, T. hamatum seed treatment significantly enhanced pearl millet seed germination and seedling vigor. T. hamatum seed treatment resulted in systemic and durable immunity against pearl millet downy mildew disease under greenhouse and field conditions. T. hamatum treated seedlings responded to downy mildew infection with high lignification and callose deposition. Analysis of defense enzymes showed that T. hamatum treatment significantly enhanced the activities of glucanase, peroxidase, phenylalanine ammonia-lyase, and polyphenol oxidase in comparison to untreated control. RT-PCR analysis revealed differentially expressed transcripts of the defense enzymes and PR-proteins in treated, untreated, and checks, wherein PR-1, PR-5, and cell wall defense HRGPs were significantly over expressed in treated seedlings as against their lower expression in controls. T. hamatum treatment significantly stimulated endogenous salicylic acid (SA) levels and significantly upregulated important SA biosynthesis gene isochorismate synthase. The results indicated that T. hamatum UoM13 treatment induces resistance corresponding to significant over expression of endogenous SA, important defense enzymes, PR-proteins, and HRGPs, suggesting that SA biosynthetic pathway is involved in pearl millet for mounting systemic immunity against downy mildew pathogen.

  19. Transurethral instillation with fusion protein MrpH.FimH induces protective innate immune responses against uropathogenic Escherichia coli and Proteus mirabilis.

    PubMed

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid

    2016-06-01

    Urinary tract infections (UTIs) are among the most common infections in human. Innate immunity recognizes pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) to activate responses against pathogens. Recently, we demonstrated that MrpH.FimH fusion protein consisting of MrpH from Proteus mirabilis and FimH from Uropathogenic Escherichia coli (UPEC) results in the higher immunogenicity and protection, as compared with FimH and MrpH alone. In this study, we evaluated the innate immunity and adjuvant properties induced by fusion MrpH.FimH through in vitro and in vivo methods. FimH and MrpH.FimH were able to induce significantly higher IL-8 and IL-6 responses than untreated or MrpH alone in cell lines tested. The neutrophil count was significantly higher in the fusion group than other groups. After 6 h, IL-8 and IL-6 production reached a peak, with a significant decline at 24 h post-instillation in both bladder and kidney tissues. Mice instilled with the fusion and challenged with UPEC or P. mirabilis showed a significant decrease in the number of bacteria in bladder and kidney compared to control mice. The results of these studies demonstrate that the use of recombinant fusion protein encoding TLR-4 ligand represents an effective vaccination strategy that does not require the use of a commercial adjuvant. Furthermore, MrpH.FimH was presented as a promising vaccine candidate against UTIs caused by UPEC and P. mirabilis. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  20. Protection against electrophile and oxidant stress by induction of the phase 2 response: Fate of cysteines of the Keap1 sensor modified by inducers

    PubMed Central

    Wakabayashi, Nobunao; Dinkova-Kostova, Albena T.; Holtzclaw, W. David; Kang, Moon-Il; Kobayashi, Akira; Yamamoto, Masayuki; Kensler, Thomas W.; Talalay, Paul

    2004-01-01

    Induction of a family of phase 2 genes encoding for proteins that protect against the damage of electrophiles and reactive oxygen intermediates is potentially a major strategy for reducing the risk of cancer and chronic degenerative diseases. Many phase 2 genes are regulated by upstream antioxidant response elements (ARE) that are targets of the leucine zipper transcription factor Nrf2. Under basal conditions, Nrf2 resides mainly in the cytoplasm bound to its cysteine-rich, Kelch domain-containing partner Keap1, which is itself anchored to the actin cytoskeleton and represses Nrf2 activity. Inducers disrupt the Keap1-Nrf2 complex by modifying two (C273 and C288) of the 25 cysteine residues of Keap1. The critical role of C273 and C288 was established by (i) their high reactivity when purified recombinant Keap1 was treated with dexamethasone mesylate and the dexamethasone-modified tryptic peptides were analyzed by mass spectrometry, and (ii) transfection of keap1 and nrf2 gene-deficient mouse embryonic fibroblasts with constructs expressing cysteine to alanine mutants of Keap1, and measurement of the ability of cotransfected Nrf2 to repress an ARE-luciferase reporter. Reaction of Keap1 with inducers results in formation of intermolecular disulfide bridges, probably between C273 of one Keap1 molecule and C288 of a second. Evidence for formation of such dimers was obtained by 2D PAGE of extracts of cells treated with inducers, and by the demonstration that whereas C273A and C288A mutants of Keap1 alone could not repress Nrf2 activation of the ARE-luciferase reporter, an equal mixture of these mutant constructs restored repressor activity. PMID:14764894

  1. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes.

    PubMed

    Shterzer, Naama; Heyman, Dariya; Shapiro, Beny; Yaniv, Abraham; Jackman, Anna; Serour, Francis; Chaouat, Malka; Gonen, Pinhas; Tommasino, Massimo; Sherman, Levana

    2014-11-01

    In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Protective immune responses in guinea pigs and swine induced by a suicidal DNA vaccine of the capsid gene of swine vesicular disease virus.

    PubMed

    Sun, Shi-Qi; Liu, Xiang-Tao; Guo, Hui-Chen; Yin, Shuang-Hui; Shang, You-Jun; Feng, Xia; Liu, Zai-Xin; Xie, Qing-Ge

    2007-03-01

    A suicidal DNA vaccine based on a Semliki Forest virus (SFV) replicon was evaluated for the development of a vaccine against swine vesicular disease virus (SVDV). The 1BCD gene of SVDV was cloned and inserted into pSCA1, an SFV DNA-based replicon vector. The resultant plasmid, pSCA/1BCD, was transfected into BHK-21 cells and the antigenicity of the expressed protein was confirmed using an indirect immunofluorescence assay. Immunogenicity was studied in guinea pigs and swine. Animals were injected intramuscularly three times with pSCA/1BCD at regular intervals. Anti-SVDV antibodies were detected by ELISA, the lymphocyte proliferation response was tested by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide method and neutralizing antibodies were measured by microneutralization tests. The data showed that SVDV-specific antibodies, neutralizing antibodies and lymphocyte proliferation were induced in both guinea pigs and swine. Furthermore, after three successive vaccinations with pSCA/1BCD, half of the pigs were protected against challenge with SVDV. These results should encourage further work towards the development of a DNA vaccine against SVDV.

  3. Is cholesterol and amyloid-β stress induced CD147 expression a protective response? Evidence that extracellular cyclophilin a mediated neuroprotection is reliant on CD147.

    PubMed

    Kanyenda, Limbikani J; Verdile, Guiseppe; Martins, Ralph; Meloni, Bruno P; Chieng, Joanne; Mastaglia, Francis; Laws, Simon M; Anderton, Ryan S; Boulos, Sherif

    2014-01-01

    The CD147 protein is a ubiquitous multifunctional membrane receptor. Expression of CD147, which is regulated by sterol carrier protein, reportedly modulates amyloid-β (Aβ), the neurotoxic peptide implicated in neuronal degeneration in Alzheimer's disease (AD). Given that high fat/cholesterol is linked to amyloid deposition in AD, we investigated if cholesterol and/or Aβ can alter CD147 expression in rat cortical neuronal cultures. Water-soluble cholesterol and Aβ42 dose-dependently increased CD147 protein expression, but reduced FL-AβPP protein expression. Cholesterol and Aβ42 treatment also increased lactate dehydrogenase release but to varying degrees. Upregulation of CD147 expression was probably mediated by oxidative stress, as H2O2 (3 μM) also induced CD147 protein expression in neuronal cultures. In light of these findings, we investigated if CD147 induction was cytoprotective, a compensatory response to injury, or alternatively, a cell death signal. To this end, we used recombinant adenovirus to overexpress human CD147 (in SH-SY5Y cells and primary cortical neurons), and pre-treated cultures with or without recombinant cyclophilin A (rCYPA) protein, prior to Aβ42 exposure. We showed that increased CD147 expression protected against Aβ42, only when rCYPA protein was added to neuronal cultures. Together, our findings reveal potentially important relationships between cholesterol loading, CD147 expression, Aβ toxicity, and the putative involvement of CYPA protein in neuroprotection in AD.

  4. Different responses of vanillic acid, a phenolic compound, in HTC cells: cytotoxicity, antiproliferative activity, and protection from DNA-induced damage.

    PubMed

    Almeida, I V; Cavalcante, F M L; Vicentini, V E P

    2016-12-19

    The consumption of healthy and natural foods has increased over the last few years, primarily because these foods are rich in substances with biological properties of interest, such as exerting anticancer effects and decreasing oxidative stress in living tissues. These foods support adequate nutrition, maintain health, and improve quality of life. Vanillic acid (VA) is a phenolic compound used widely in the food industry as a flavoring, preservative, and food additive. VA can be found in various cereals, whole grains, fruits, herbs, green tea, juices, beers, and wines and possesses antioxidant, hepatoprotective, cardioprotective, and antiapoptotic activities. Studying the cytotoxicity as well as the mutagenic and antimutagenic effects of different concentrations of VA in Rattus norvegicus hepatoma cells (HTC) can identify new cellular activities of this substance. Concentrations up to 100 µM VA are not cytotoxic to HTC cells in a MTT [3-(4,5-dimethilthiazol-2-yl)-2,5-diphenil tetrazolium bromide] assay after 96-h exposure; therefore, VA does not compromise mitochondrial activity. Similarly, concentrations up to 500 µM do not compromise plasma membrane integrity. VA at 10 and 50 µM showed no mutagenic/clastogenic effects, as no significant micronuclei induction was observed. VA 10 µM presented no antiproliferative activity and reduced the cytotoxicity induced by benzo[a]pyrene. The antimutagenic activity of 10 µM VA was observed by the simultaneous, pre-, and post-treatments, as the phenolic compound significantly reduced the frequency of micronuclei induced by the mutagen. These results indicate that VA exerts different responses in HTC cells. Low concentrations present no cytotoxic, mutagenic, or antiproliferative effects and protect cells from DNA damage.

  5. Systemic immunodominant CD8 responses with an effector-like phenotype are induced by intravaginal immunization with attenuated HSV vectors expressing HIV Tat and mediate protection against HSV infection.

    PubMed

    Nicoli, Francesco; Gallerani, Eleonora; Skarlis, Charalampos; Sicurella, Mariaconcetta; Cafaro, Aurelio; Ensoli, Barbara; Caputo, Antonella; Marconi, Peggy C; Gavioli, Riccardo

    2016-04-27

    Mucosal HSV infection remains a public health issue in developing and developed world. However, an effective vaccine is still missing, partly because of the incomplete knowledge of correlates of protection. In this study we have investigated the kinetics and quality of immunity elicited by an attenuated HSV1 vector expressing the immunomodulatory Tat protein of HIV-1 (HSV1-Tat). Animals were immunized by intravaginal (IVag) or intradermal (ID) route with HSV1-Tat or with a control HSV1 vector expressing the LacZ gene (HSV1-LacZ) and immune responses were characterized in different anatomical districts. IVag immunization with HSV1-Tat enhanced both expansion and memory phases of HSV-specific immunodominant CD8 responses at systemic, but not local, level and induced short- and long-term protection against mucosal challenge. Conversely, ID immunization with HSV1-Tat favored HSV-subdominant CD8 responses, which protected mice only at early time points after immunization. IVag immunization, in particular with HSV1-Tat, compared to ID immunization, induced the differentiation of CD8(+) T lymphocytes into short-lived effector (SLEC) and effector memory (Tem) cells, generating more robust recall responses associated with increased control of virus replication. Notably, systemic SLEC and Tem contributed to generate protective local secondary responses, demonstrating their importance for mucosal control of HSV. Finally, IgG responses were observed mostly in IVag HSV1-Tat immunized animals, although seemed dispensable for protection, which occurred even in few IgG negative mice. Thus, HSV1 vectors expressing Tat induce protective anti-HSV1 immune responses.

  6. Immunological responses induced by a DNA vaccine expressing RON4 and by immunogenic recombinant protein RON4 failed to protect mice against chronic toxoplasmosis.

    PubMed

    Rashid, Imran; Hedhli, Dorsaf; Moiré, Nathalie; Pierre, Josette; Debierre-Grockiego, Françoise; Dimier-Poisson, Isabelle; Mévélec, Marie Noëlle

    2011-11-08

    The development of an effective vaccine against Toxoplasma gondii infection is an important issue due to the seriousness of the related public health problems, and the economic importance of this parasitic disease worldwide. Rhoptry neck proteins (RONs) are components of the moving junction macromolecular complex formed during invasion. The aim of this study was to evaluate the vaccine potential of RON4 using two vaccination strategies: DNA vaccination by the intramuscular route, and recombinant protein vaccination by the nasal route. We produced recombinant RON4 protein (RON4S2) using the Schneider insect cells expression system, and validated its antigenicity and immunogenicity. We also constructed optimized plasmids encoding full length RON4 (pRON4), or only the N-terminal (pNRON4), or the C-terminal part (pCRON4) of RON4. CBA/J mice immunized with pRON4, pNRON4 or pCRON4 plus a plasmid encoding the granulocyte-macrophage-colony-stimulating factor showed high IgG titers against rRON4S2. Mice immunized by the nasal route with rRON4S2 plus cholera toxin exhibited low levels of anti-RON4S2 IgG antibodies, and no intestinal IgA antibodies specific to RON4 were detected. Both DNA and protein vaccination generated a mixed Th1/Th2 response polarized towards the IgG1 antibody isotype. Both DNA and protein vaccination primed CD4+ T cells in vivo. In addition to the production of IFN-γ, and IL-2, Il-10 and IL-5 were also produced by the spleen cells of the immunized mice stimulated with RON4S2, suggesting that a mixed Th1/Th2 type immune response occurred in all the immunized groups. No cytokine was detectable in stimulated mesenteric lymph nodes from mice immunized by the nasal route. Immune responses were induced by both DNA and protein vaccination, but failed to protect the mice against a subsequent oral challenge with T. gondii cysts. In conclusion, strategies designed to enhance the immunogenicity and to redirect the cellular response towards a Th1 type response

  7. Secondary metabolites, cytotoxic response by neutral red retention and protective effect against H2O2 induced cytotoxicity of Sedum caespitosum.

    PubMed

    Söhretoğlu, Didem; Sabuncuoğlu, Suna

    2012-01-01

    The EtOAc, n-BuOH and H20 subextracts of the crude MeOH extract of the aerial parts of Sedum caespitosum (cav.) Dc. were screened for cytotoxicity using the neutral red assay in Chinese hamster ovary cells as well as their protective effect against H2O2 induced cytotoxicity in human red blood cells. While the extracts did not show cytotoxicity, they displayed a protective effect compared to a blank and ascorbic acid. Gallic acid (1), kaempferol 3-O-alpha-rhamnopyranoside (2), quercetin 3-O-beta-glucopyranoside (3), quercetin 3-O-alpha-rhamnopyranoside (4) and myricetin 3-O-alpha-rhamnopyranoside (5) were isolated from the EtOAc extract and identified by 1D- and 2D-NMR. The protective effects of the isolated compounds against H2O2 induced cytotoxicity in human red blood cells were evaluated and 5 was the most active.

  8. The effect of the TLR9 ligand CpG-oligodeoxynucleotide on the protective immune response to radiation-induced lung fibrosis in mice.

    PubMed

    Chen, Jing; Tian, Xiaoli; Mei, Zijie; Wang, Yacheng; Yao, Ye; Zhang, Shimin; Li, Xin; Wang, Hui; Zhang, Junhong; Xie, Conghua

    2016-12-01

    CpG-oligodeoxynucleotide (CpG-ODN) is not only reported to protect against airway hyper responsiveness but is also known as a potent vaccine adjuvant for anti-tumor therapy. Little is known about the effect of CpG-ODN in mice with radiation-induced lung fibrosis (RILF), a common late stage form of tissue damage that occurs after thorax radiotherapy (RT). Here, we evaluated the immunomodulatory effects of CpG-ODN on the development of RILF. Mice were divided into four groups: (1) RT, single dose of 12Gy to the whole thorax; (2) CpG, only intraperitoneal injection of CpG-ODN for total 5 weeks; (3) RT+CpG, irradiation plus CpG-ODN treatment before and after irradiation for total 5 weeks; and (4) control (CTL): No RT or CpG-ODN treatment. In this study, we found that CpG-ODN treatment attenuated lung fibrosis and collagen deposition by increasing the number of M1 macrophagocytes, levels of Type-2 cytokines and TGF-β. CpG-ODN administration up-regulated the expression of TLR9 and STAT1 phosphorylation and reversed the expression of Type-2 immune response key transcription factor GATA-3. Activation of the JAK-STAT1 signaling pathway further enhanced M1 macrophage differentiation and Type-1 cytokine production. This study reveals the mitigating effect of early exposure to CpG-ODN on lung injury caused by irradiation in mice. The potential mechanism of action may be related to enhancement of Type-1 immunity. In conclusion, CpG-ODN may be a potential therapeutic target to treat RILF.

  9. Multiple linear epitopes (B-cell, CTL and Th) of JEV expressed in recombinant MVA as multiple epitope vaccine induces a protective immune response.

    PubMed

    Wang, Fengjuan; Feng, Xiuli; Zheng, Qisheng; Hou, Hongyan; Cao, Ruibing; Zhou, Bin; Liu, Qingtao; Liu, Xiaodong; Pang, Ran; Zhao, Jin; Deng, Wenlei; Chen, Puyan

    2012-09-17

    Epitope-based vaccination might play an important role in the protective immunity against Japanese encephalitis virus (JEV) infection. The purpose of the study is to evaluate the immune characteristics of recombinant MVA carrying multi-epitope gene of JEV (rMVA-mep). The synthetic gene containing critical epitopes (B-cell, CTL and Th) of JEV was cloned into the eukaryotic expression vector pGEM-K1L, and the rMVA-mep was prepared. BALB/c mice were immunized with different dosages of purified rMVA-mep and the immune responses were determined in the form of protective response against JEV, antibodies titers (IgG1 and IgG2a), spleen cell lymphocyte proliferation, and the levels of interferon-γ and interleukin-4 cytokines. The results showed that live rMVA-mep elicited strongly immune responses in dose-dependent manner, and the highest level of immune responses was observed from the groups immunized with 107 TCID50 rMVA-mep among the experimental three concentrations. There were almost no difference of cytokines and neutralizing antibody titers among 107 TCID50 rMVA-mep, recombinant ED3 and inactivated JEV vaccine. It was noteworthy that rMVA-mep vaccination potentiates the Th1 and Th2-type immune responses in dose-dependent manner, and was sufficient to protect the mice survival against lethal JEV challenge. These findings demonstrated that rMVA-mep can produce adequate humoral and cellular immune responses, and protection in mice, which suggested that rMVA-mep might be an attractive candidate vaccine for preventing JEV infection.

  10. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine.

    PubMed

    Ye, Ting; Yue, Yan; Fan, Xiangmei; Dong, Chunsheng; Xu, Wei; Xiong, Sidong

    2014-07-31

    Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development.

  11. Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles.

    PubMed

    Sun, Qi; Xu, Xi; Yang, Xiao; Weng, Dan; Wang, Junsong; Zhang, Jianfa

    2017-02-15

    Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines and adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis.

  12. Insight from Molecular, Pathological, and Immunohistochemical Studies on Cellular and Humoral Mechanisms Responsible for Vaccine-Induced Protection of Rainbow Trout against Yersinia ruckeri

    PubMed Central

    Kania, Per W.; Chettri, Jiwan K.; Skov, Jakob; Bojesen, Anders M.; Dalsgaard, Inger; Buchmann, Kurt

    2013-01-01

    The immunological mechanisms associated with protection of vaccinated rainbow trout, Oncorhynchus mykiss, against enteric redmouth disease (ERM), caused by Yersinia ruckeri, were previously elucidated by the use of gene expression methodology and immunochemical methods. That approach pointed indirectly to both humoral and cellular elements being involved in protection. The present study correlates the level of protection in rainbow trout to cellular reactions in spleen and head kidney and visualizes the processes by applying histopathological, immunohistochemical, and in situ hybridization techniques. It was shown that these cellular reactions, which were more prominent in spleen than in head kidney, were associated with the expression of immune-related genes, suggesting a Th2-like response. Y. ruckeri, as shown by in situ hybridization (ISH), was eliminated within a few days in vaccinated fish, whereas nonprotected fish still harbored bacteria for a week after infection. Vaccinated fish reestablished normal organ structure within a few days, whereas nonprotected fish showed abnormalities up to 1 month postinfection. Protection in the early phase of infection was mainly associated with the expression of genes encoding innate factors (complement factors, lysozyme, and acute phase proteins), but in the later phase of infection, increased expression of adaptive immune genes dominated. The histological approach used has shown that the cellular changes correlated with protection of vaccinated fish. They comprised transformation of resident cells into macrophage-like cells and increased occurrence of CD8α and IgM cells, suggesting these cells as main players in protection. Future studies should investigate the causality between these factors and protection. PMID:23966555

  13. Recombinant Bivalent Fusion Protein rVE Induces CD4+ and CD8+ T-Cell Mediated Memory Immune Response for Protection Against Yersinia enterocolitica Infection

    PubMed Central

    Singh, Amit K.; Kingston, Joseph J.; Gupta, Shishir K.; Batra, Harsh V.

    2015-01-01

    Studies investigating the correlates of immune protection against Yersinia infection have established that both humoral and cell mediated immune responses are required for the comprehensive protection. In our previous study, we established that the bivalent fusion protein (rVE) comprising immunologically active regions of Y. pestis LcrV (100–270 aa) and YopE (50–213 aa) proteins conferred complete passive and active protection against lethal Y. enterocolitica 8081 challenge. In the present study, cohort of BALB/c mice immunized with rVE or its component proteins rV, rE were assessed for cell mediated immune responses and memory immune protection against Y. enterocolitica 8081. rVE immunization resulted in extensive proliferation of both CD4 and CD8 T cell subsets; significantly high antibody titer with balanced IgG1: IgG2a/IgG2b isotypes (1:1 ratio) and up-regulation of both Th1 (TNF-α, IFN-γ, IL-2, and IL-12) and Th2 (IL-4) cytokines. On the other hand, rV immunization resulted in Th2 biased IgG response (11:1 ratio) and proliferation of CD4+ T-cell; rE group of mice exhibited considerably lower serum antibody titer with predominant Th1 response (1:3 ratio) and CD8+ T-cell proliferation. Comprehensive protection with superior survival (100%) was observed among rVE immunized mice when compared to the significantly lower survival rates among rE (37.5%) and rV (25%) groups when IP challenged with Y. enterocolitica 8081 after 120 days of immunization. Findings in this and our earlier studies define the bivalent fusion protein rVE as a potent candidate vaccine molecule with the capability to concurrently stimulate humoral and cell mediated immune responses and a proof of concept for developing efficient subunit vaccines against Gram negative facultative intracellular bacterial pathogens. PMID:26733956

  14. Recombinant Bivalent Fusion Protein rVE Induces CD4+ and CD8+ T-Cell Mediated Memory Immune Response for Protection Against Yersinia enterocolitica Infection.

    PubMed

    Singh, Amit K; Kingston, Joseph J; Gupta, Shishir K; Batra, Harsh V

    2015-01-01

    Studies investigating the correlates of immune protection against Yersinia infection have established that both humoral and cell mediated immune responses are required for the comprehensive protection. In our previous study, we established that the bivalent fusion protein (rVE) comprising immunologically active regions of Y. pestis LcrV (100-270 aa) and YopE (50-213 aa) proteins conferred complete passive and active protection against lethal Y. enterocolitica 8081 challenge. In the present study, cohort of BALB/c mice immunized with rVE or its component proteins rV, rE were assessed for cell mediated immune responses and memory immune protection against Y. enterocolitica 8081. rVE immunization resulted in extensive proliferation of both CD4 and CD8 T cell subsets; significantly high antibody titer with balanced IgG1: IgG2a/IgG2b isotypes (1:1 ratio) and up-regulation of both Th1 (TNF-α, IFN-γ, IL-2, and IL-12) and Th2 (IL-4) cytokines. On the other hand, rV immunization resulted in Th2 biased IgG response (11:1 ratio) and proliferation of CD4+ T-cell; rE group of mice exhibited considerably lower serum antibody titer with predominant Th1 response (1:3 ratio) and CD8+ T-cell proliferation. Comprehensive protection with superior survival (100%) was observed among rVE immunized mice when compared to the significantly lower survival rates among rE (37.5%) and rV (25%) groups when IP challenged with Y. enterocolitica 8081 after 120 days of immunization. Findings in this and our earlier studies define the bivalent fusion protein rVE as a potent candidate vaccine molecule with the capability to concurrently stimulate humoral and cell mediated immune responses and a proof of concept for developing efficient subunit vaccines against Gram negative facultative intracellular bacterial pathogens.

  15. MF59- and Al(OH)3-Adjuvanted Staphylococcus aureus (4C-Staph) Vaccines Induce Sustained Protective Humoral and Cellular Immune Responses, with a Critical Role for Effector CD4 T Cells at Low Antibody Titers

    PubMed Central

    Monaci, Elisabetta; Mancini, Francesca; Lofano, Giuseppe; Bacconi, Marta; Tavarini, Simona; Sammicheli, Chiara; Arcidiacono, Letizia; Giraldi, Monica; Galletti, Bruno; Rossi Paccani, Silvia; Torre, Antonina; Fontana, Maria Rita; Grandi, Guido; de Gregorio, Ennio; Bensi, Giuliano; Chiarot, Emiliano; Nuti, Sandra; Bagnoli, Fabio; Soldaini, Elisabetta; Bertholet, Sylvie

    2015-01-01

    Staphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph) with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T-cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T-cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell-deficient mice, we demonstrated that both T and B-cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low-antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen. PMID:26441955

  16. MF59- and Al(OH)3-Adjuvanted Staphylococcus aureus (4C-Staph) Vaccines Induce Sustained Protective Humoral and Cellular Immune Responses, with a Critical Role for Effector CD4 T Cells at Low Antibody Titers.

    PubMed

    Monaci, Elisabetta; Mancini, Francesca; Lofano, Giuseppe; Bacconi, Marta; Tavarini, Simona; Sammicheli, Chiara; Arcidiacono, Letizia; Giraldi, Monica; Galletti, Bruno; Rossi Paccani, Silvia; Torre, Antonina; Fontana, Maria Rita; Grandi, Guido; de Gregorio, Ennio; Bensi, Giuliano; Chiarot, Emiliano; Nuti, Sandra; Bagnoli, Fabio; Soldaini, Elisabetta; Bertholet, Sylvie

    2015-01-01

    Staphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph) with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T-cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T-cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell-deficient mice, we demonstrated that both T and B-cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low-antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen.

  17. Immunogenicity and Protective Response Induced by Recombinant Plasmids Based on the BAB1_0267 and BAB1_0270 Open Reading Frames of Brucella abortus 2308 in BALB/c Mice

    PubMed Central

    Gómez, Leonardo A.; Alvarez, Francisco I.; Fernández, Pablo A.; Flores, Manuel R.; Molina, Raúl E.; Coloma, Roberto F.; Oñate, Angel A.

    2016-01-01

    Immunogenicity induced by recombinant plasmids based on the BAB1_0267 and BAB1_0270 open reading frames (ORFs) of Brucella abortus 2308 was evaluated. Bioinformatics analyses indicate that the BAB1_0267 and BAB1_0270 ORFs encode a protein with a SH3 domain and a Zn-dependent metalloproteinase, respectively. Both ORFs have important effects on intracellular survival and replication of B. abortus 2308, mediated via professional and non-professional phagocytic cells. Our results show that immunization with the recombinant plasmid based on the BAB1_0267 ORF significantly increases the production of IgG1, levels of IFN-γ and the lymphoproliferative response of splenocytes. However, BAB1_0267 did not provide significant levels of protection. The plasmid based on the BAB1_0270 significantly increased IgG2a production, levels of IFN-γ and TNF-α, and the lymphoproliferative response of splenocytes. These results demonstrate that immunization with the BAB1_0270 derived recombinant plasmid induce a Th1-type immune response, correlated with a heightened resistance to B. abortus 2308 infection in mice. It is concluded that the Th1-type immune response against bacterial Zn-dependent metalloproteinase induces a protective response in mice, and that pV270 recombinant plasmid is an effective candidate microbicide against brucellosis. PMID:27747197

  18. Vaccination with heat-killed leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against leishmania major infection.

    PubMed

    Rhee, Elizabeth G; Mendez, Susana; Shah, Javeed A; Wu, Chang-you; Kirman, Joanna R; Turon, Tara N; Davey, Dylan F; Davis, Heather; Klinman, Dennis M; Coler, Rhea N; Sacks, David L; Seder, Robert A

    2002-06-17

    CpG oligodeoxynucleotides (ODN) have potent effects on innate and adaptive cellular immune responses. In this report, the ability of CpG ODN to confer long-term immunity and protection when used as a vaccine adjuvant with a clinical grade of leishmanial antigen, autoclaved Leishmania major (ALM), or a recombinant leishmanial protein was studied. In two different mouse models of L. major infection, vaccination with ALM plus CpG ODN was able to control infection and markedly reduce lesion development in susceptible BALB/c and resistant C57BL/6 (B6) mice, respectively, up to 12 wk after immunization. Moreover, B6 mice immunized with ALM plus CpG ODNs were still protected against infectious challenge even 6 mo after vaccination. In terms of immune correlates of protection, ALM plus CpG ODN-vaccinated mice displayed L. major-specific T helper cell 1 and CD8+ responses. In addition, complete protection was markedly abrogated in mice depleted of CD8+ T cells at the time of vaccination. Similarly, mice vaccinated with a recombinant leishmanial protein plus CpG ODN also had long-term protection that was dependent on CD8+ T cells in vivo. Together, these data demonstrate that CpG ODN, when used as a vaccine adjuvant with either a recombinant protein or heat-killed leishmanial antigen, can induce long-term protection against an intracellular infection in a CD8-dependent manner.

  19. The involvement of Nrf2 in the protective effects of diallyl disulfide on carbon tetrachloride-induced hepatic oxidative damage and inflammatory response in rats.

    PubMed

    Lee, In-Chul; Kim, Sung-Hwan; Baek, Hyung-Seon; Moon, Changjong; Kang, Seong-Soo; Kim, Sung-Ho; Kim, Yun-Bae; Shin, In-Sik; Kim, Jong-Choon

    2014-01-01

    This study investigated the potential effect of diallyl disulfide (DADS) against carbon tetrachloride (CCl4)-induced oxidative hepatic damage and inflammatory response in rat liver. DADS at doses of 50 and 100 mg/kg/day was administered orally once daily for 5 days, prior to CCl4 administration. Pretreatment with DADS attenuated CCl4-induced elevated serum transaminase activities and histopathological alterations in liver. It prevented the hepatocellular apoptotic changes with induction of Bcl-2-associated X (Bax), cytochrome c, and caspase-3 caused by CCl4. An increase in the nuclear translocation of nuclear factor-kappaB (NF-κB) and phosphorylation of I kappaB alpha (IκBα) was observed in the livers of CCl4-treated rats that coincided with induction of inflammatory mediators or cytokines. In contrast, DADS inhibited NF-κB translocation and IκBα phosphorylation, and that subsequently decreased inflammatory mediators. Furthermore, DADS prevented CCl4-induced depletion of cytosolic nuclear factor E2-related factor 2 (Nrf2) and suppression of nuclear translocation of Nrf2, which, in turn, up-regulated phase II/antioxidant enzyme activities. Taken together, these results demonstrate that DADS increases the expression of phase II/antioxidant enzymes and simultaneously decreases the expression of inflammatory mediators in CCl4-induced liver injury. These findings indicate that DADS induces antioxidant defense mechanism by activating Nrf2 pathway and reduces inflammatory response by inhibiting NF-κB activation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Protection and antibody response induced by intramuscular DNA vaccine encoding for viral haemorrhagic septicaemia virus (VHSV) G glycoprotein in turbot (Scophthalmus maximus).

    PubMed

    Pereiro, P; Martinez-Lopez, A; Falco, A; Dios, S; Figueras, A; Coll, J M; Novoa, B; Estepa, A

    2012-06-01

    Turbot (Scophthalmus maximus) is a high-value farmed marine flatfish with growing demand and production levels in Europe susceptible to turbot-specific viral haemorrhagic septicaemia virus (VHSV) strains. To evaluate the possibility of controlling the outbreaks of this infectious disease by means of DNA vaccination, the gpG of a VHSV isolated from farmed turbot (VHSV(860)) was cloned into an expression plasmid containing the human cytomegalovirus (CMV) promoter (pMCV1.4-G(860)). In our experimental conditions, DNA immunised turbots were more than 85% protected against VHSV(860) lethal challenge and showed both VHSV-gpG specific and neutralizing antibodies. To our knowledge this is the first report showing the efficacy of turbot genetic immunisation against a VHSV. Work is in progress to determine the contribution of innate and adaptive immunity to the protective response elicited by the immunization.

  1. Interferon responses in HIV infection: from protection to disease.

    PubMed

    Sivro, Aida; Su, Ruey-Chyi; Plummer, Francis A; Ball, T Blake

    2014-01-01

    Interferons, induced early during viral infections, represent important regulators of both innate and adaptive immune responses, and provide protective effects against a wide range of pathogens, including HIV. Several in vitro studies and some in vivo data from HIV-exposed seronegative cohorts indicate that interferons and interferon-mediated immune responses are crucial in preventing early HIV replication. Following establishment of HIV infection, the uncontrolled (aberrant) activation of the immune system, in part regulated by interferon levels, contributes to HIV-1-induced immune activation and disease progression. Modulation of interferon responses prior to and during HIV infection shows promise for development of novel therapeutics to prevent HIV transmission, clear HIV infection, and dampen chronic immune activation. In this review we discuss the role that interferons play in protection from HIV infection, acute infection, and their role in HIV pathogenesis and disease progression. Lastly, we review recent advances in modulating interferon responses for purposes of developing novel HIV therapeutic approaches.

  2. A Double-Inactivated Severe Acute Respiratory Syndrome Coronavirus Vaccine Provides Incomplete Protection in Mice and Induces Increased Eosinophilic Proinflammatory Pulmonary Response upon Challenge▿

    PubMed Central

    Bolles, Meagan; Deming, Damon; Long, Kristin; Agnihothram, Sudhakar; Whitmore, Alan; Ferris, Martin; Funkhouser, William; Gralinski, Lisa; Totura, Allison; Heise, Mark; Baric, Ralph S.

    2011-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) is an important emerging virus that is highly pathogenic in aged populations and is maintained with great diversity in zoonotic reservoirs. While a variety of vaccine platforms have shown efficacy in young-animal models and against homologous viral strains, vaccine efficacy has not been thoroughly evaluated using highly pathogenic variants that replicate the acute end stage lung disease phenotypes seen during the human epidemic. Using an adjuvanted and an unadjuvanted double-inactivated SARS-CoV (DIV) vaccine, we demonstrate an eosinophilic immunopathology in aged mice comparable to that seen in mice immunized with the SARS nucleocapsid protein, and poor protection against a nonlethal heterologous challenge. In young and 1-year-old animals, we demonstrate that adjuvanted DIV vaccine provides protection against lethal disease in young animals following homologous and heterologous challenge, although enhanced immune pathology and eosinophilia are evident following heterologous challenge. In the absence of alum, DIV vaccine performed poorly in young animals challenged with lethal homologous or heterologous strains. In contrast, DIV vaccines (both adjuvanted and unadjuvanted) performed poorly in aged-animal models. Importantly, aged animals displayed increased eosinophilic immune pathology in the lungs and were not protected against significant virus replication. These data raise significant concerns regarding DIV vaccine safety and highlight the need for additional studies of the molecular mechanisms governing DIV-induced eosinophilia and vaccine failure, especially in the more vulnerable aged-animal models of human disease. PMID:21937658

  3. Qingchangligan formula attenuates the inflammatory response to protect the liver from acute failure induced by d-galactosamine/lipopolysaccharide in mice.

    PubMed

    Zhang, Xiangying; Ding, Jianbo; Gou, Chunyan; Wen, Tao; Li, Li; Wang, Xiaojun; Yang, Huasheng; Liu, Dan; Lou, Jinli; Chen, Dexi; Ren, Feng; Li, Xiuhui

    2017-04-06

    The Qingchangligan formula, a traditional Chinese medicine comprising five herbs, is useful for treatment of patients with liver failure; however, its protective and regulatory mechanisms remain elusive. To test the hypothesis that the Qingchangligan formula protects mice against acute liver failure by inhibiting liver inflammation. Acute liver failure (ALF) was induced by intraperitoneal injection of D-GalN (700mg/kg) plus LPS (10μg/kg). The Qingchangligan formula was administered to mice in three doses of 50mg/kg (on day 1, day 2, and day 3) prior to D-GalN/LPS injection by intragastric administration. The mice in different groups were sacrificed at 6h after D-GalN/LPS injection, and liver samples and blood were collected for analysis. Administration of the Qingchangligan formula not only ameliorated liver injury, as evidenced by reduced transaminase levels and well-preserved liver architecture, but also decreased the lethality in ALF mice. Moreover, in the ALF model, pretreatment with the Qingchangligan formula alleviated liver inflammation and decreased hepatocyte apoptosis. Further demonstrating the protective effects of the Qingchangligan formula, we found that pretreatment with the Qingchangligan formula reduced the expression of inflammatory cytokines by decreasing the expression of components of the mitogen-activated protein kinase (MAPK) pathway and promoting autophagy in vitro and in vivo. Our findings demonstrated that the Qingchangligan formula exerts a protective effect against the pathophysiology of ALF, especially in regulating liver inflammation, and provide a rationale for using the Qingchangligan formula as a potential therapeutic strategy to ameliorate ALF. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Sulforaphane protects against acetaminophen-induced hepatotoxicity.

    PubMed

    Noh, Jung-Ran; Kim, Yong-Hoon; Hwang, Jung Hwan; Choi, Dong-Hee; Kim, Kyoung-Shim; Oh, Won-Keun; Lee, Chul-Ho

    2015-06-01

    Oxidative stress is closely associated with acetaminophen (APAP)-induced toxicity. Heme oxygenase-1 (HO-1), an antioxidant defense enzyme, has been shown to protect against oxidant-induced tissue injury. This study investigated whether sulforaphane (SFN), as a HO-1 inducer, plays a protective role against APAP hepatotoxicity in vitro and in vivo. Pretreatment of primary hepatocyte with SFN induced nuclear factor E2-factor related factor (Nrf2) target gene expression, especially HO-1 mRNA and protein expression, and suppressed APAP-induced glutathione (GSH) depletion and lipid peroxidation, which eventually leads to hepatocyte cell death. A comparable effect was observed in mice treated with APAP. Mice were treated with 300 mg/kg APAP 30 min after SFN (5 mg/kg) administration and were then sacrificed after 6 h. APAP alone caused severe liver injuries as characterized by increased plasma AST and ALT levels, GSH depletion, apoptosis, and 4-hydroxynonenal (4-HNE) formations. This APAP-induced liver damage was significantly attenuated by pretreatment with SFN. Furthermore, while hepatic reactive oxygen species (ROS) levels were increased by APAP exposure, pretreatment with SFN completely blocked ROS formation. These results suggest that SFN plays a protective role against APAP-mediated hepatotoxicity through antioxidant effects mediated by HO-1 induction. SFN has preventive action in oxidative stress-mediated liver injury.

  5. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation.

    PubMed

    Yu, Yinhang; Bai, Fuliang; Wang, Wenfei; Liu, Yaonan; Yuan, Qingyan; Qu, Susu; Zhang, Tong; Tian, Guiyou; Li, Siming; Li, Deshan; Ren, Guiping

    2015-06-01

    Fibroblast growth factor 21 (FGF21) is a hormone secreted predominantly in the liver, pancreas and adipose tissue. Recently, it has been reported that FGF21-Transgenic mice can extend their lifespan compared with wild type counterparts. Thus, we hypothesize that FGF21 may play some roles in aging of organisms. In this study d-galactose (d-gal)-induced aging mice were used to study the mechanism that FGF21 protects mice from aging. The three-month-old Kunming mice were subcutaneously injected with d-gal (180mg·kg(-1)·d(-1)) for 8weeks and administered simultaneously with FGF21 (1, 2 or 5mg·kg(-1)·d(-1)). Our results showed that administration of FGF21 significantly improved behavioral performance of d-gal-treated mice in water maze task and step-down test, reduced brain cell damage in the hippocampus, and attenuated the d-gal-induced production of MDA, ROS and advanced glycation end products (AGEs). At the same time, FGF21 also markedly renewed the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total anti-oxidation capability (T-AOC), and decreased the enhanced total cholinesterase (TChE) activity in the brain of d-gal-treated mice. The expression of aldose reductase (AR), sorbitol dehydrogenase (SDH) and member-anchored receptor for AGEs (RAGE) declined significantly after FGF21 treatment. Furthermore, FGF21 suppressed inflamm-aging by inhibiting IκBα degradation and NF-κB p65 nuclear translocation. The expression levels of pro-inflammatory cytokines, such as TNF-α and IL-6, decreased significantly. In conclusion, these results suggest that FGF21 protects the aging mice brain from d-gal-induced injury by attenuating oxidative stress damage and decreasing AGE formation.

  6. ACTH protects against glucocorticoid-induced osteonecrosis of bone.

    PubMed

    Zaidi, Mone; Sun, Li; Robinson, Lisa J; Tourkova, Irina L; Liu, Li; Wang, Yujuan; Zhu, Ling-Ling; Liu, Xuan; Li, Jianhua; Peng, Yuanzhen; Yang, Guozhe; Shi, Xingming; Levine, Alice; Iqbal, Jameel; Yaroslavskiy, Beatrice B; Isales, Carlos; Blair, Harry C

    2010-05-11

    We report that adrenocorticotropic hormone (ACTH) protects against osteonecrosis of the femoral head induced by depot methylprednisolone acetate (depomedrol). This therapeutic response likely arises from enhanced osteoblastic support and the stimulation of VEGF by ACTH; the latter is largely responsible for maintaining the fine vascular network that surrounds highly remodeling bone. We suggest examining the efficacy of ACTH in preventing human osteonecrosis, a devastating complication of glucocorticoid therapy.

  7. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  8. Novel hemagglutinin nanoparticle influenza vaccine with Matrix-M™ adjuvant induces hemagglutination inhibition, neutralizing, and protective responses in ferrets against homologous and drifted A(H3N2) subtypes.

    PubMed

    Smith, Gale; Liu, Ye; Flyer, David; Massare, Michael J; Zhou, Bin; Patel, Nita; Ellingsworth, Larry; Lewis, Maggie; Cummings, James F; Glenn, Greg

    2017-09-25

    Influenza viruses frequently acquire mutations undergoing antigenic drift necessitating annual evaluation of vaccine strains. Highly conserved epitopes have been identified in the hemagglutinin (HA) head and stem regions, however, current influenza vaccines induce only limited responses to these conserved sites. Here, we describe a novel seasonal recombinant HA nanoparticle influenza vaccine (NIV) formulated with a saponin-based adjuvant, Matrix-M™. NIV induced hemagglutination inhibition (HAI) and microneutralizing (MN) antibodies against a broad range of influenza A(H3N2) subtypes. In a comparison of NIV against standard-dose and high-dose inactivated influenza vaccines (IIV and IIV-HD, respectively) in ferrets NIV elicited HAI and MN responses exceeding those induced by IIV-HD against homologous A(H3N2) by 7 fold, A(H1N1) by 26 fold, and B strain viruses by 2 fold. NIV also induced MN responses against all historic A/H3N2 strains tested, spanning more than a decade of viral evolution from the 2000-2017 influenza seasons whereas IIV and IIV-HD induced HAI and MN responses were largely directed against the homologous A(H3N2), A(H1N1), and B virus strains. NIV induced superior protection compared to IIV and IIV-HD in ferrets challenged with a homologous or 10-year drifted influenza A(H3N2) strain. HAI positive and HAI negative neutralizing monoclonal antibodies derived from mice immunized with NIV were active against homologous and drifted influenza A(H3N2) strains. Taken together these observations suggest that NIV can induce responses to one or more highly conserved HA head and stem epitopes and result in highly neutralizing antibodies against both homologous and drift strains. Copyright © 2017. Published by Elsevier Ltd.

  9. Differential Cultivation of Francisella tularensis Induces Changes in the Immune Response to and Protective Efficacy of Whole Cell-Based Inactivated Vaccines

    PubMed Central

    Kumar, Sudeep; Sunagar, Raju; Pham, Giang; Franz, Brian J.; Rosa, Sarah J.; Hazlett, Karsten R. O.; Gosselin, Edmund J.

    2017-01-01

    Francisella tularensis (Ft) is a category A biothreat agent for which there is no Food and Drug Administration-approved vaccine. Ft can survive in a variety of habitats with a remarkable ability to adapt to changing environmental conditions. Furthermore, Ft expresses distinct sets of antigens (Ags) when inside of macrophages (its in vivo host) as compared to those grown in vitro with Mueller Hinton Broth (MHB). However, in contrast to MHB-grown Ft, Ft grown in Brain-Heart Infusion (BHI) more closely mimics the antigenic profile of macrophage-grown Ft. Thus, we anticipated that when used as a vaccine, BHI-grown Ft would provide better protection compared to MHB-grown Ft, primarily due to its greater antigenic similarity to Ft circulating inside the host (macrophages) during natural infection. Our investigation, however, revealed that inactivated Ft (iFt) grown in MHB (iFt-MHB) exhibited superior protective activity when used as a vaccine, as compared to iFt grown in BHI (iFt-BHI). The superior protection afforded by iFt-MHB compared to that of iFt-BHI was associated with significantly lower bacterial burden and inflammation in the lungs and spleens of vaccinated mice. Moreover, iFt-MHB also induced increased levels of Ft-specific IgG. Further evaluation of early immunological cues also revealed that iFt-MHB exhibits increased engagement of Ag-presenting cells including increased iFt binding to dendritic cells, increased expression of costimulatory markers, and increased secretion of pro-inflammatory cytokines. Importantly, these studies directly demonstrate that Ft growth conditions strongly impact Ft vaccine efficacy and that the growth medium used to produce whole cell vaccines to Ft must be a key consideration in the development of a tularemia vaccine. PMID:28119692

  10. Differential Cultivation of Francisella tularensis Induces Changes in the Immune Response to and Protective Efficacy of Whole Cell-Based Inactivated Vaccines.

    PubMed

    Kumar, Sudeep; Sunagar, Raju; Pham, Giang; Franz, Brian J; Rosa, Sarah J; Hazlett, Karsten R O; Gosselin, Edmund J

    2016-01-01

    Francisella tularensis (Ft) is a category A biothreat agent for which there is no Food and Drug Administration-approved vaccine. Ft can survive in a variety of habitats with a remarkable ability to adapt to changing environmental conditions. Furthermore, Ft expresses distinct sets of antigens (Ags) when inside of macrophages (its in vivo host) as compared to those grown in vitro with Mueller Hinton Broth (MHB). However, in contrast to MHB-grown Ft, Ft grown in Brain-Heart Infusion (BHI) more closely mimics the antigenic profile of macrophage-grown Ft. Thus, we anticipated that when used as a vaccine, BHI-grown Ft would provide better protection compared to MHB-grown Ft, primarily due to its greater antigenic similarity to Ft circulating inside the host (macrophages) during natural infection. Our investigation, however, revealed that inactivated Ft (iFt) grown in MHB (iFt-MHB) exhibited superior protective activity when used as a vaccine, as compared to iFt grown in BHI (iFt-BHI). The superior protection afforded by iFt-MHB compared to that of iFt-BHI was associated with significantly lower bacterial burden and inflammation in the lungs and spleens of vaccinated mice. Moreover, iFt-MHB also induced increased levels of Ft-specific IgG. Further evaluation of early immunological cues also revealed that iFt-MHB exhibits increased engagement of Ag-presenting cells including increased iFt binding to dendritic cells, increased expression of costimulatory markers, and increased secretion of pro-inflammatory cytokines. Importantly, these studies directly demonstrate that Ft growth conditions strongly impact Ft vaccine efficacy and that the growth medium used to produce whole cell vaccines to Ft must be a key consideration in the development of a tularemia vaccine.

  11. Loss of Jak2 selectively suppresses DC-mediated innate immune response and protects mice from lethal dose of LPS-induced septic shock.

    PubMed

    Zhong, Jixin; Yang, Ping; Muta, Kenjiro; Dong, Robert; Marrero, Mario; Gong, Feili; Wang, Cong-Yi

    2010-03-09

    Given the importance of Jak2 in cell signaling, a critical role for Jak2 in immune cells especially dendritic cells (DCs) has long been proposed. The exact function for Jak2 in DCs, however, remained poorly understood as Jak2 deficiency leads to embryonic lethality. Here we established Jak2 deficiency in adult Cre(+/+)Jak2(fl/fl) mice by tamoxifen induction. Loss of Jak2 significantly impaired DC development as manifested by reduced BMDC yield, smaller spleen size and reduced percentage of DCs in total splenocytes. Jak2 was also crucial for the capacity of DCs to mediate innate immune response. Jak2(-/-) DCs were less potent in response to inflammatory stimuli and showed reduced capacity to secrete proinflammatory cytokines such as TNFalpha and IL-12. As a result, Jak2(-/-) mice were defective for the early clearance of Listeria after infection. However, their potency to mediate adaptive immune response was not affected. Unlike DCs, Jak2(-/-) macrophages showed similar capacity secretion of proinflammatory cytokines, suggesting that Jak2 selectively modulates innate immune response in a DC-dependent manner. Consistent with these results, Jak2(-/-) mice were remarkably resistant to lethal dose of LPS-induced septic shock, a deadly sepsis characterized by the excessive innate immune response, and adoptive transfer of normal DCs restored their susceptibility to LPS-induced septic shock. Mechanistic studies revealed that Jak2/SATA5 signaling is pivotal for DC development and maturation, while the capacity for DCs secretion of proinflammatory cytokines is regulated by both Jak2/STAT5 and Jak2/STAT6 signaling.

  12. Constitutive or Inducible Protective Mechanisms against UV-B Radiation in the Brown Alga Fucus vesiculosus? A Study of Gene Expression and Phlorotannin Content Responses.

    PubMed

    Creis, Emeline; Delage, Ludovic; Charton, Sophie; Goulitquer, Sophie; Leblanc, Catherine; Potin, Philippe; Ar Gall, Erwan

    2015-01-01

    A role as UV sunscreens has been suggested for phlorotannins, the phenolic compounds that accumulate in brown algae in response to a number of external stimuli and take part in cell wall structure. After exposure of the intertidal brown alga Fucus vesiculosus to artificial UV-B radiation, we examined its physiological responses by following the transcript level of the pksIII gene encoding a phloroglucinol synthase, likely to be involved in the first step of phlorotannins biosynthesis. We also monitored the expression of three targeted genes, encoding a heat shock protein (hsp70), which is involved in global stress responses, an aryl sulfotransferase (ast), which could be involved in the sulfation of phlorotannins, and a vanadium bromoperoxidase (vbpo), which can potentially participate in the scavenging of Reactive Oxygen Species (ROS) and in the cross-linking and condensation of phlorotannins. We investigated whether transcriptional regulation of these genes is correlated with an induction of phlorotannin accumulation by establishing metabolite profiling of purified fractions of low molecular weight phlorotannins. Our findings demonstrated that a high dose of UV-B radiation induced a significant overexpression of hsp70 after 12 and 24 hours following the exposure to the UV-B treatment, compared to control treatment. The physiological performance of algae quantified by the photosynthetic efficiency (Fv/Fm) was slightly reduced. However UV-B treatment did not induce the accumulation of soluble phlorotannins in F. vesiculosus during the kinetics of four weeks, a result that may be related to the lack of induction of the pksIII gene expression. Taken together these results suggest a constitutive accumulation of phlorotannins occurring during the development of F.vesiculosus, rather than inducible processes. Gene expression studies and phlorotannin profiling provide here complementary approaches to global quantifications currently used in studies of phenolic compounds

  13. Constitutive or Inducible Protective Mechanisms against UV-B Radiation in the Brown Alga Fucus vesiculosus? A Study of Gene Expression and Phlorotannin Content Responses

    PubMed Central

    Creis, Emeline; Delage, Ludovic; Charton, Sophie; Goulitquer, Sophie; Leblanc, Catherine; Potin, Philippe; Ar Gall, Erwan

    2015-01-01

    A role as UV sunscreens has been suggested for phlorotannins, the phenolic compounds that accumulate in brown algae in response to a number of external stimuli and take part in cell wall structure. After exposure of the intertidal brown alga Fucus vesiculosus to artificial UV-B radiation, we examined its physiological responses by following the transcript level of the pksIII gene encoding a phloroglucinol synthase, likely to be involved in the first step of phlorotannins biosynthesis. We also monitored the expression of three targeted genes, encoding a heat shock protein (hsp70), which is involved in global stress responses, an aryl sulfotransferase (ast), which could be involved in the sulfation of phlorotannins, and a vanadium bromoperoxidase (vbpo), which can potentially participate in the scavenging of Reactive Oxygen Species (ROS) and in the cross-linking and condensation of phlorotannins. We investigated whether transcriptional regulation of these genes is correlated with an induction of phlorotannin accumulation by establishing metabolite profiling of purified fractions of low molecular weight phlorotannins. Our findings demonstrated that a high dose of UV-B radiation induced a significant overexpression of hsp70 after 12 and 24 hours following the exposure to the UV-B treatment, compared to control treatment. The physiological performance of algae quantified by the photosynthetic efficiency (Fv/Fm) was slightly reduced. However UV-B treatment did not induce the accumulation of soluble phlorotannins in F. vesiculosus during the kinetics of four weeks, a result that may be related to the lack of induction of the pksIII gene expression. Taken together these results suggest a constitutive accumulation of phlorotannins occurring during the development of F.vesiculosus, rather than inducible processes. Gene expression studies and phlorotannin profiling provide here complementary approaches to global quantifications currently used in studies of phenolic compounds

  14. Immunization with a replication-deficient mutant of herpes simplex virus type 1 (HSV-1) induces a CD8+ cytotoxic T-lymphocyte response and confers a level of protection comparable to that of wild-type HSV-1.

    PubMed Central

    Brehm, M A; Bonneau, R H; Knipe, D M; Tevethia, S S

    1997-01-01

    Replication-deficient viruses provide an attractive alternative to conventional approaches used in the induction of antiviral immunity. We have quantitatively evaluated both the primary and memory cytotoxic T-lymphocyte (CTL) responses elicited by immunization with a replication-deficient mutant of herpes simplex virus type 1 (HSV-1). In addition, we have examined the potential role of these CTL in protection against HSV infection. Using bulk culture analysis and limiting-dilution analysis, we have shown that a replication-deficient virus, d301, generates a strong primary CTL response that is comparable to the response induced by the wild type-strain, KOS1.1. Furthermore, the CTL induced by d301 immunization recognized the immunodominant, H-2Kb-restricted, CTL recognition epitope gB498-505 to a level similar to that for CTL from KOS1.1-immunized mice. The memory CTL response evoked by d301 was strong and persistent, even though the frequencies of CTL were slightly lower than the frequencies of CTL induced by KOS1.1. Adoptive transfer studies indicated that both the CD8+ and the CD4+ T-cell responses generated by immunization with d301 and KOS1.1 were able to limit the extent of a cutaneous HSV infection to comparable levels. Overall, these results indicate that viral replication is not necessary to elicit a potent and durable HSV-specific immune response and suggest that replication-deficient viruses may be effective in eliciting protection against viral pathogens. PMID:9094625

  15. Melatonin protects rats from radiotherapy-induced small intestine toxicity.

    PubMed

    Fernández-Gil, Beatriz; Moneim, Ahmed E Abdel; Ortiz, Francisco; Shen, Ying-Qiang; Soto-Mercado, Viviana; Mendivil-Perez, Miguel; Guerra-Librero, Ana; Acuña-Castroviejo, Darío; Molina-Navarro, María M; García-Verdugo, José M; Sayed, Ramy K A; Florido, Javier; Luna, Juan D; López, Luis Carlos; Escames, Germaine

    2017-01-01

    Radiotherapy-induced gut toxicity is among the most prevalent dose-limiting toxicities following radiotherapy. Prevention of radiation enteropathy requires protection of the small intestine. However, despite the prevalence and burden of this pathology, there are currently no effective treatments for radiotherapy-induced gut toxicity, and this pathology remains unclear. The present study aimed to investigate the changes induced in the rat small intestine after external irradiation of the tongue, and to explore the potential radio-protective effects of melatonin gel. Male Wistar rats were subjected to irradiation of their tongues with an X-Ray YXLON Y.Tu 320-D03 irradiator, receiving a dose of 7.5 Gy/day for 5 days. For 21 days post-irradiation, rats were treated with 45 mg/day melatonin gel or vehicle, by local application into their mouths. Our results showed that mitochondrial oxidative stress, bioenergetic impairment, and subsequent NLRP3 inflammasome activation were involved in the development of radiotherapy-induced gut toxicity. Oral treatment with melatonin gel had a protective effect in the small intestine, which was associated with mitochondrial protection and, consequently, with a reduced inflammatory response, blunting the NF-κB/NLRP3 inflammasome signaling activation. Thus, rats treated with melatonin gel showed reduced intestinal apoptosis, relieving mucosal dysfunction and facilitating intestinal mucosa recovery. Our findings suggest that oral treatment with melatonin gel may be a potential preventive therapy for radiotherapy-induced gut toxicity in cancer patients.

  16. Melatonin protects rats from radiotherapy-induced small intestine toxicity

    PubMed Central

    Fernández-Gil, Beatriz; Moneim, Ahmed E. Abdel; Ortiz, Francisco; Shen, Ying-Qiang; Soto-Mercado, Viviana; Mendivil-Perez, Miguel; Guerra-Librero, Ana; Acuña-Castroviejo, Darío; Molina-Navarro, María M.; García-Verdugo, José M.; Sayed, Ramy K. A.; Florido, Javier; Luna, Juan D.; López, Luis Carlos; Escames, Germaine

    2017-01-01

    Radiotherapy-induced gut toxicity is among the most prevalent dose-limiting toxicities following radiotherapy. Prevention of radiation enteropathy requires protection of the small intestine. However, despite the prevalence and burden of this pathology, there are currently no effective treatments for radiotherapy-induced gut toxicity, and this pathology remains unclear. The present study aimed to investigate the changes induced in the rat small intestine after external irradiation of the tongue, and to explore the potential radio-protective effects of melatonin gel. Male Wistar rats were subjected to irradiation of their tongues with an X-Ray YXLON Y.Tu 320-D03 irradiator, receiving a dose of 7.5 Gy/day for 5 days. For 21 days post-irradiation, rats were treated with 45 mg/day melatonin gel or vehicle, by local application into their mouths. Our results showed that mitochondrial oxidative stress, bioenergetic impairment, and subsequent NLRP3 inflammasome activation were involved in the development of radiotherapy-induced gut toxicity. Oral treatment with melatonin gel had a protective effect in the small intestine, which was associated with mitochondrial protection and, consequently, with a reduced inflammatory response, blunting the NF-κB/NLRP3 inflammasome signaling activation. Thus, rats treated with melatonin gel showed reduced intestinal apoptosis, relieving mucosal dysfunction and facilitating intestinal mucosa recovery. Our findings suggest that oral treatment with melatonin gel may be a potential preventive therapy for radiotherapy-induced gut toxicity in cancer patients. PMID:28403142

  17. Edaravone protects against oxygen-glucose-serum deprivation/restoration-induced apoptosis in spinal cord astrocytes by inhibiting integrated stress response

    PubMed Central

    Dai, Bin; Yan, Ting; Shen, Yi-xing; Xu, You-jia; Shen, Hai-bin; Chen, Dong; Wang, Jin-rong; He, Shuang-hua; Dong, Qi-rong; Zhang, Ai-liang

    2017-01-01

    We previously found that oxygen-glucose-serum deprivation/restoration (OGSD/R) induces apoptosis of spinal cord astrocytes, possibly via caspase-12 and the integrated stress response, which involves protein kinase R-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2-alpha (eIF2α) and activating transcription factor 4 (ATF4). We hypothesized that edaravone, a low molecular weight, lipophilic free radical scavenger, would reduce OGSD/R-induced apoptosis of spinal cord astrocytes. To test this, we established primary cultures of rat astrocytes, and exposed them to 8 hours/6 hours of OGSD/R with or without edaravone (0.1, 1, 10, 100 μM) treatment. We found that 100 μM of edaravone significantly suppressed astrocyte apoptosis and inhibited the release of reactive oxygen species. It also inhibited the activation of caspase-12 and caspase-3, and reduced the expression of homologous CCAAT/enhancer binding protein, phosphorylated (p)-PERK, p-eIF2α, and ATF4. These results point to a new use of an established drug in the prevention of OGSD/R-mediated spinal cord astrocyte apoptosis via the integrated stress response. PMID:28400812

  18. Toxin ζ Reversible Induces Dormancy and Reduces the UDP-N-Acetylglucosamine Pool as One of the Protective Responses to Cope with Stress

    PubMed Central

    Tabone, Mariangela; Ayora, Silvia; Alonso, Juan C.

    2014-01-01

    Toxins of the ζ/PezT family, found in the genome of major human pathogens, phosphorylate the peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG) leading to unreactive UNAG-3P. Transient over-expression of a PezT variant impairs cell wall biosynthesis and triggers autolysis in Escherichia coli. Conversely, physiological levels of ζ reversibly induce dormancy produce a sub-fraction of membrane-compromised cells, and a minor subpopulation of Bacillus subtilis cells become tolerant of toxin action. We report here that purified ζ is a strong UNAG-dependent ATPase, being GTP a lower competitor. In vitro, ζ toxin phosphorylates a fraction of UNAG. In vivo, ζ-mediated inactivation of UNAG by phosphorylation does not deplete the active UNAG pool, because expression of the toxin enhances the efficacy of genuine cell wall inhibitors (fosfomycin, vancomycin or ampicillin). Transient ζ expression together with fosfomycin treatment halt cell proliferation, but ε2 antitoxin expression facilitates the exit of ζ-induced dormancy, suggesting that there is sufficient UNAG for growth. We propose that ζ induces diverse cellular responses to cope with stress, being the reduction of the UNAG pool one among them. If the action of ζ is not inhibited, e.g., by de novo ε2 antitoxin synthesis, the toxin markedly enhances the efficacy of antimicrobial treatment without massive autolysis in Firmicutes. PMID:25238046

  19. Bortezomib-induced heat shock response protects multiple myeloma cells and is activated by heat shock factor 1 serine 326 phosphorylation

    PubMed Central

    Shah, Shardule P.; Nooka, Ajay K.; Jaye, David L.; Bahlis, Nizar J.; Lonial, Sagar; Boise, Lawrence H.

    2016-01-01

    Proteasome inhibitors such as bortezomib are highly active in multiple myeloma by affecting signaling cascades and leading to a toxic buildup of misfolded proteins. Bortezomib-treated cells activate the cytoprotective heat shock response (HSR), including upregulation of heat shock proteins (HSPs). Here we inhibited the bortezomib-induced HSR by silencing its master regulator, Heat Shock Factor 1 (HSF1). HSF1 silencing led to bortezomib sensitization. In contrast, silencing of individual and combination HSPs, except HSP40β, did not result in significant bortezomib sensitization. However, HSP40β did not entirely account for increased bortezomib sensitivity upon HSF1 silencing. To determine the mechanism of HSF1 activation, we assessed phosphorylation and observed bortezomib-inducible phosphorylation in cell lines and patient samples. We determined that this bortezomib-inducible event is phosphorylation at serine 326. Prior clinical use of HSP inhibitors in combination with bortezomib has been disappointing in multiple myeloma therapy. Our results provide a rationale for targeting HSF1 activation in combination with bortezomib to enhance multiple myeloma treatment efficacy. PMID:27487129

  20. Coenzyme Q10 protects renal proximal tubule cells against nicotine-induced apoptosis through induction of p66(shc)-dependent antioxidant responses.

    PubMed

    Arany, Istvan; Carter, Anthony; Hall, Samuel; Fulop, Tibor; Dixit, Mehul

    2017-02-01

    Chronic nicotine exposure (via smoking, E-cigarettes) increases oxidative stress in the kidney that sensitizes it to additional injury in experimental models and in the renal patient. The pro-apoptotic p66(shc) protein-via serine36 phosphorylation that facilitates its mitochondrial translocation and therein cytochrome c binding-generates oxidative stress that leads to injury of renal proximal tubule cells during chronic nicotine exposure. Coenzyme Q10-a clinically safe antioxidant-has been used against nicotine/smoke extract-associated oxidative stress in various non-renal cells. This study explored the anti-oxidant/anti-apoptotic effect of Coenzyme Q10 on nicotine-induced oxidative stress and its impact on p66shc in cultured rat renal proximal tubule cells (NRK52E). We studied the anti-oxidant effect of 10 µM Coenzyme Q10 using various mutants of the p66shc gene and also determined the induction of selected anti-oxidant entities (antioxidant response element, promoter of the manganese superoxide dismutase gene) in reporter luciferase assay during oxidative stress induced by 200 µM nicotine. Our studies revealed that Coenzyme Q10 strongly inhibits nicotine-mediated production of reactive oxygen species and consequent apoptosis that requires serine36 phosphorylation but not mitochondrial translocation/cytochrome c binding of p66(shc). While both nicotine and Coenzyme Q10 stimulates the p66shc promoter, only nicotine exposure results in mitochondrial translocation of p66(shc). In contrast, the Coenzyme Q10-stimulated and non-mitochondrial p66(shc) activates the anti-oxidant manganese superoxide dismutase promoter via the antioxidant response elements and hence, rescues cells from nicotine-induced oxidative stress and consequent apoptosis.

  1. Parity-Induced Protection Against Breast Cancer

    DTIC Science & Technology

    2000-07-01

    release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is...novel insight into additional pathways involved in this process . 14. SUBJECT TERMS 15. NUMBER OF PAGES Breast Cancer, Parity-Induced Protection...additional pathways involved in this process . 5 Proprietary Data BODY SPECIFIC AIMS: Aim I. Identify molecular markers demonstrating parity-related

  2. Commercial Building Motor Protection Response Report

    SciTech Connect

    James, Daniel P.; Kueck, John

    2015-06-17

    When voltages recover, motors may immediately reenergize and reaccelerate, or delay for a few minutes, or stay stalled. The estimated motor response is given for both the voltage sag magnitude and voltage sag duration. These response estimates are based on experience and available test data. Good data is available for voltage sag response for many components such as relays and contactors, but little data is available for both voltage sag and recovery response. The tables in Appendix A include data from recent voltage sag and recovery tests performed by SCE and BPA on air conditioners and energy management systems. The response of the motor can vary greatly depending on the type of protection and control. The time duration for the voltage sag consists of those times that are of interest for bulk power system modelers.

  3. Report on the first WHO integrated meeting on development and clinical trials of influenza vaccines that induce broadly protective and long-lasting immune responses: Hong Kong SAR, China, 24-26 January 2013.

    PubMed

    Girard, Marc P; Tam, John S; Pervikov, Yuri; Katz, Jacqueline M

    2013-08-20

    On January 24-26, 2013, the World Health Organization convened the first integrated meeting on "The development and clinical trials of vaccines that induce broadly protective and long-lasting immune responses" to review the current status of development and clinical evaluation of novel influenza vaccines as well as strategies to produce and deliver vaccines in novel ways. Special attention was given to the development of possible universal influenza vaccines. Other topics that were addressed included an update on clinical trials of pandemic and seasonal influenza vaccines in high-risk groups and vaccine safety, as well as regulatory issues.

  4. Thermal response properties of protective clothing fabrics

    SciTech Connect

    Baitinger, W.F.

    1995-12-31

    In the industrial workplace, it becomes increasingly incumbent upon employers to require employees to use suitable protective equipment and to wear protective apparel. When workers may be subjected to accidental radiant, flame, or electric arc heat sources, work clothing should be used that does not become involved in burning. It is axiomatic that work clothing should not become a primary fuel source, adding to the level of heat exposure, since clothing is usually in intimate contact with the skin. Further, clothing should provide sufficient insulation to protect the skin from severe burn injury. If the worker receives such protection from clothing, action then may be taken to escape the confronted thermal hazard. Published laboratory test methods are used to measure flame resistance and thermal responses of flame resistant fabrics in protective clothing. The purpose of this article is to review these test methods, to discuss certain limitations in application, and to suggest how flame resistant cotton fabrics may be used to enhance worker safety.

  5. Evaluation of Protective Immune Responses Induced by Recombinant TrxLp and ENO2 Proteins against Toxoplasma gondii Infection in BALB/c Mice

    PubMed Central

    Wang, Meng; Yang, Xiao-Yu; Zhang, De-Lin

    2016-01-01

    Toxoplasma gondii is an obligate intracellular parasitic protozoan that can infect almost all species of warm-blooded animals. As any chemical-based drugs could not act against the tissue cyst stage of T. gondii, vaccination may be one of the ideal control strategies. In the present study, two new vaccine candidates, named TgENO2 and TgTrxLp, were purified from Escherichia coli with pET-30a(+) expression system and then were injected into BALB/c mice to evaluate the protective efficacy against acute and chronic toxoplasmosis. The results showed that both the recombinant proteins, either alone or in combination, could elicit strong humoral and cellular immune responses with a higher level of IgG antibodies, IFN-γ, IL-2, CD4+, and CD8+ T cells as compared to those in mice from control groups. After acute challenge with tachyzoites of the GJS strain, mice immunized with rTgTrxLp (8 ± 2.77 d), rTgENO2 (7.4 ± 1.81 d), and rTgTrxLp + rTgENO2 (8.38 ± 4.57 d) proteins showed significantly longer survival time than those that received Freund's adjuvant (6.78 ± 2.08 d) and PBS (6.38 ± 4.65 d) (χ2 = 9.687, df = 4, P = 0.046). The protective immunity of rTgTrxLp, rTgENO2, and rTgTrxLp + rTgENO2 proteins against chronic T. gondii infection showed 69.77%, 58.14%, and 20.93% brain cyst reduction as compared to mice that received PBS. The present study suggested that both TgENO2 and TgTrxLp were potential candidates for the development of multicomponent vaccines against toxoplasmosis. PMID:27803923

  6. Analysis of tick-borne encephalitis virus-induced host responses in human cells of neuronal origin and interferon-mediated protection.

    PubMed

    Selinger, Martin; Wilkie, Gavin S; Tong, Lily; Gu, Quan; Schnettler, Esther; Grubhoffer, Libor; Kohl, Alain

    2017-08-01

    Tick-borne encephalitis virus (TBEV) is a member of the genus Flavivirus. It can cause serious infections in humans that may result in encephalitis/meningoencephalitis. Although several studies have described the involvement of specific genes in the host response to TBEV infection in the central nervous system (CNS), the overall network remains poorly characterized. Therefore, we investigated the response of DAOY cells (human medulloblastoma cells derived from cerebellar neurons) to TBEV (Neudoerfl strain, Western subtype) infection to characterize differentially expressed genes by transcriptome analysis. Our results revealed a wide panel of interferon-stimulated genes (ISGs) and pro-inflammatory cytokines, including type III but not type I (or II) interferons (IFNs), which are activated upon TBEV infection, as well as a number of non-coding RNAs, including long non-coding RNAs. To obtain a broader view of the pathways responsible for eliciting an antiviral state in DAOY cells we examined the effect of type I and III IFNs and found that only type I IFN pre-treatment inhibited TBEV production. The cellular response to TBEV showed only partial overlap with gene expression changes induced by IFN-β treatment - suggesting a virus-specific signature - and we identified a group of ISGs that were highly up-regulated following IFN-β treatment. Moreover, a high rate of down-regulation was observed for a wide panel of pro-inflammatory cytokines upon IFN-β treatment. These data can serve as the basis for further studies of host-TBEV interactions and the identification of ISGs and/or lncRNAs with potent antiviral effects in cases of TBEV infection in human neuronal cells.

  7. BAD Modulates Counterregulatory Responses to Hypoglycemia and Protective Glucoprivic Feeding

    PubMed Central

    Osundiji, Mayowa A.; Godes, Marina L.; Evans, Mark L.; Danial, Nika N.

    2011-01-01

    Hypoglycemia or glucoprivation triggers protective hormonal counterregulatory and feeding responses to aid the restoration of normoglycemia. Increasing evidence suggests pertinent roles for the brain in sensing glucoprivation and mediating counterregulation, however, the precise nature of the metabolic signals and molecular mediators linking central glucose sensing to effector functions are not fully understood. Here, we demonstrate that protective hormonal and feeding responses to hypoglycemia are regulated by BAD, a BCL-2 family protein with dual functions in apoptosis and metabolism. BAD-deficient mice display impaired glycemic and hormonal counterregulatory responses to systemic glucoprivation induced by 2-deoxy-D-glucose. BAD is also required for proper counterregulatory responses to insulin-induced hypoglycemia as evident from significantly higher glucose infusion rates and lower plasma epinephrine levels during hyperinsulinemic hypoglycemic clamps. Importantly, RNA interference-mediated acute knockdown of Bad in the brain provided independent genetic evidence for its relevance in central glucose sensing and proper neurohumoral responses to glucoprivation. Moreover, BAD deficiency is associated with impaired glucoprivic feeding, suggesting that its role in adaptive responses to hypoglycemia extends beyond hormonal responses to regulation of feeding behavior. Together, these data indicate a previously unappreciated role for BAD in the control of central glucose sensing. PMID:22162752

  8. A novel recombinant Leishmania donovani p45, a partial coding region of methionine aminopeptidase, generates protective immunity by inducing a Th1 stimulatory response against experimental visceral leishmaniasis.

    PubMed

    Gupta, Reema; Kushawaha, Pramod K; Tripathi, Chandra Dev Pati; Sundar, Shyam; Dube, Anuradha

    2012-05-01

    The development of a vaccine against visceral leishmaniasis (VL) conferring long-lasting immunity remains a challenge. Identification and proteomic characterization of parasite proteins led to the detection of p45, a member of the methionine aminopeptidase family. To our knowledge the present study is the first known report that describes the molecular and immunological characterization of p45. Recombinant Leishmania donovani p45 (rLdp45) induced cellular responses in cured hamsters and generated Th1-type cytokines from peripheral blood mononuclear cells of cured/endemic VL patients. Immunization with rLdp45 exerted considerable prophylactic efficacy (∼85%) supported by an increase in mRNA expression of iNOS, IFN-γ, TNF-α and IL-12 and decrease in TGF-β and IL-4, indicating its potential as a vaccine candidate against VL.

  9. Poly I:C induces a protective antiviral immune response in the Pacific oyster (Crassostrea gigas) against subsequent challenge with Ostreid herpesvirus (OsHV-1 μvar).

    PubMed

    Green, Timothy J; Montagnani, Caroline

    2013-08-01

    In-vivo studies were carried out to investigate the protective effect of a synthetic viral analogue (poly I:C) against Ostreid herpes virus (OsHV-1 μvar). Pacific oysters (Crassostrea gigas) were immune-primed by intramuscular injection of 240 μg of poly I:C or sterile seawater at 1 day prior to infection with OsHV-1 μvar. Poly I:C injection induced an antiviral state in C. gigas as the percentage of viral-infected oysters at 48 h post infection was significantly lower in the poly I:C treatment (11%) compared to seawater controls (100%). In an additional experiment, we demonstrated that the protective role of poly I:C is reproducible and elicits a specific antiviral response as immune-priming with heat-killed Vibrio splendidus provided no protection against subsequent viral infection. In both experiments, genes homologous to a toll-like receptor (TLR), MyD88, interferon regulatory factor (IRF) and protein kinase R (PKR) were up-regulated in oysters immune-primed with poly I:C compared to seawater controls (p < 0.05). The MyD88, IRF and PKR genes were also significantly up-regulated in response to OsHV-1 μvar infection (p < 0.05), which is suggestive that they are implicated in the antiviral response of C. gigas. Our results demonstrate that C. gigas can recognise double-strand RNA to initiate an innate immune response that inhibits viral infection. The observed response has striking similarities to the hallmarks of the type-1 interferon response of vertebrates.

  10. Protective action of the immunomodulator ginsan against carbon tetrachloride-induced liver injury via control of oxidative stress and the inflammatory response

    SciTech Connect

    Shim, Ji-Young; Kim, Mi-Hyoung; Kim, Hyung-Doo; Ahn, Ji-Yeon; Yun, Yeon-Sook; Song, Jie-Young

    2010-02-01

    The aim of the present study was to evaluate immunomodulator ginsan, a polysaccharide extracted from Panax ginseng, on carbon tetrachloride (CCl{sub 4})-induced liver injury. BALB/c mice were injected i.p. with ginsan 24 h prior to CCl{sub 4} administration. Serum liver enzyme levels, histology, expression of antioxidant enzymes, and several cytokines/chemokines were subsequently evaluated. Ginsan treatment markedly suppressed the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and hepatic histological necrosis increased by CCl{sub 4} treatment. Ginsan inhibited CCl{sub 4} induced lipid peroxidation through the cytochrome P450 2E1 (CYP2E1) downregulation. The hepatoprotective effect of ginsan was attributed to induction of anti-oxidant protein contents, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) as well as restoration of the hepatic glutathione (GSH) concentration. The marked increase of proinflammatory cytokines (IL-1beta, IFN-gamma) and chemokines (MCP-1, MIP-2beta, KC) in CCl{sub 4} treated mice was additionally attenuated by ginsan, thereby preventing leukocyte infiltration and local inflammation. Our results suggest that ginsan effectively prevent liver injury, mainly through downregulation of oxidative stress and inflammatory response.

  11. Malathion-induced changes in the haematological profile, the immune response, and the oxidative/antioxidant status of Cyprinus carpio carpio: protective role of propolis.

    PubMed

    Yonar, Serpil Mişe; Ural, Mevlüt Şener; Silici, Sibel; Yonar, M Enis

    2014-04-01

    The present study investigated the potential ameliorative effects of propolis against malathion toxicity in the blood and various tissues of carp. The fish were exposed to sublethal concentrations of malathion (0.5 and 1 mg/L) for 10 days, and propolis (10 mg/kg of fish weight) was simultaneously administered. Blood and tissue (liver, kidney, and gill) samples were collected at the end of the experiment and analysed to determine the haematological profile (red blood cell count, haemoglobin concentration, haematocrit level, and erythrocyte indices: mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration), immune response (white blood cell count, oxidative radical production, nitroblue tetrazolium (NBT) activity, total plasma protein and total immunoglobulin levels, and the phagocytic activity), and oxidant/antioxidant status (malondialdehyde and reduced glutathione levels and superoxide dismutase, catalase, and glutathione peroxidase activities) of the fish. The findings of this study demonstrate that malathion has a negative effect on the haematological parameters, immune response, and antioxidant enzyme activities of the fish. However, the administration of propolis ameliorated the malathion-induced toxic effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine.

    PubMed

    Poston, Taylor B; Darville, Toni

    2016-04-01

    Chlamydia trachomatis is the most common cause of sexually transmitted bacterial infection globally. These infections translate to a significant public health burden, particularly women's healthcare costs due to serious disease sequelae such as pelvic inflammatory disease (PID), tubal factor infertility, chronic pelvic pain, and ectopic pregnancy. There is no evidence that natural immunity can provide complete, long-term protection necessary to prevent chronic pathology, making human vaccine development critical. Vaccine design will require careful consideration of protective versus pathological host-response mechanisms in concert with elucidation of optimal antigens and adjuvants. Evidence suggests that a Th1 response, facilitated by IFN-γ-producing CD4 T cells, will be instrumental in generating long-term, sterilizing immunity. Although the role of antibodies is not completely understood, they have exhibited a protective effect by enhancing chlamydial clearance. Future work will require investigation of broadly neutralizing antibodies and antibody-augmented cellular immunity to successfully design a vaccine that potently elicits both arms of the immune response. Sterilizing immunity is the ultimate goal. However, vaccine-induced partial immunity that prevents upper genital tract infection and inflammation would be cost-effective compared to current screening and treatment strategies. In this chapter, we examine evidence from animal and human studies demonstrating protective adaptive immune responses to Chlamydia and discuss future challenges and prospects for vaccine development.

  13. Dietary sodium protects fish against copper-induced olfactory impairment.

    PubMed

    Azizishirazi, Ali; Dew, William A; Bougas, Berenice; Bernatchez, Louis; Pyle, Greg G

    2015-04-01

    Exposure to low concentrations of copper impairs olfaction in fish. To determine the transcriptional changes in the olfactory epithelium induced by copper exposure, wild yellow perch (Perca flavescens) were exposed to 20 μg/L of copper for 3 and 24h. A novel yellow perch microarray with 1000 candidate genes was used to measure differential gene transcription in the olfactory epithelium. While three hours of exposure to copper changed the transcription of only one gene, the transcriptions of 70 genes were changed after 24h of exposure to copper. Real-time PCR was utilized to determine the effect of exposure duration on two specific genes of interest, two sub-units of Na/K-ATPase. At 24 and 48 h, Na/K-ATPase transcription was down-regulated by copper at olfactory rosettes. As copper-induced impairment of Na/K-ATPase activity in gills can be ameliorated by increased dietary sodium, rainbow trout (Oncorhynchus mykiss) were used to determine if elevated dietary sodium was also protective against copper-induced olfactory impairment. Measurement of the olfactory response of rainbow trout using electro-olfactography demonstrated that sodium was protective of copper-induced olfactory dysfunction. This work demonstrates that the transcriptions of both subunits of Na/K-ATPase in the olfactory epithelium of fish are affected by Cu exposure, and that dietary Na protects against Cu-induced olfactory dysfunction.

  14. Breadth of humoral response and antigenic targets of sporozoite-inhibitory antibodies associated with sterile protection induced by controlled human malaria infection

    PubMed Central

    Peng, Kaitian; Goh, Yun Shan; Siau, Anthony; Franetich, Jean-François; Chia, Wan Ni; Ong, Alice Soh Meoy; Malleret, Benoit; Wu, Ying Ying; Snounou, Georges; Hermsen, Cornelus C.; Adams, John H.; Mazier, Dominique; Preiser, Peter R.; Sauerwein, Robert W.; Grüner, Anne-Charlotte; Rénia, Laurent

    2017-01-01

    The development of an effective malaria vaccine has remained elusive even until today. This is due to our incomplete understanding of the immune mechanisms that confer and/or correlate with protection. Human volunteers have been protected experimentally from a subsequent challenge by immunization with Plasmodium falciparum sporozoites under drug cover. Here, we demonstrate that sera from the protected individuals contain neutralizing antibodies against the pre erythrocytic stage. To identify the antigen(s) recognized by these antibodies, a newly developed library of P. falciparum antigens was screened with the neutralizing sera. Antibodies from protected individuals recognized a broad antigenic repertoire of which three antigens, PfMAEBL, PfTRAP and PfSEA1 were recognized by most protected individuals. As a proof of principle, we demonstrated that anti-PfMAEBL antibodies block liver stage development in human hepatocytes. Thus, these antigens identified are promising targets for vaccine development against malaria. PMID:27130708

  15. Enhancement of protective immune responses induced by Toxoplasma gondii dense granule antigen 7 (GRA7) against toxoplasmosis in mice using a prime-boost vaccination strategy.

    PubMed

    Min, Juan; Qu, Daofeng; Li, Changzheng; Song, Xilin; Zhao, Qunli; Li, Xin-ai; Yang, Yongmei; Liu, Qi; He, Shenyi; Zhou, Huaiyu

    2012-08-17

    Effective vaccines against Toxoplasma gondii may contribute to preventing and controlling the spread of toxoplasmosis, which is important for improving outcomes of infections in humans and livestock animals. The dense granule antigen 7 (GRA7) of T. gondii might be an immunodominant antigen for a vaccine candidate. In the present study, a further exploration of its vaccine effect, a heterologous prime-boost vaccination strategy with a recombinant eukaryotic plasmid pEGFP-GRA7 and a recombinant protein GRA7 expressed from a prokaryotic plasmid pET30-GRA7, was performed in BALB/c mice. The data reveal that a DNA prime-protein boost vaccination induces both humoral and cellular immune responses against T. gondii associated with high levels of total IgG, IgG2a isotype and gamma interferon (IFN-γ). Challenge experiments further show that the DNA prime-protein boost vaccination significantly increases survival rate (60%), compared with controls in which all died within 8 days of challenge. Therefore, the DNA prime-protein boost vaccination based on GRA7 might be a promising regimen for further development of an effective vaccine against T. gondii. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Lithium protects ethanol-induced neuronal apoptosis

    SciTech Connect

    Zhong Jin . E-mail: jizhong@iupui.edu; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-12-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3{beta}, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3{beta} (ser9). In addition, the selective GSK-3{beta} inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits.

  17. Nasal immunization with Lactococcus lactis expressing the pneumococcal protective protein A induces protective immunity in mice.

    PubMed

    Medina, Marcela; Villena, Julio; Vintiñi, Elisa; Hebert, Elvira María; Raya, Raúl; Alvarez, Susana

    2008-06-01

    Nisin-controlled gene expression was used to develop a recombinant strain of Lactococcus lactis that is able to express the pneumococcal protective protein A (PppA) on its surface. Immunodetection assays confirmed that after the induction with nisin, the PppA antigen was predictably and efficiently displayed on the cell surface of the recombinant strain, which was termed L. lactis PppA. The production of mucosal and systemically specific antibodies in adult and young mice was evaluated after mice were nasally immunized with L. lactis PppA. Immunoglobulin M (IgM), IgG, and IgA anti-PppA antibodies were detected in the serum and bronchoalveolar lavage fluid of adult and young mice, which showed that PppA expressed in L. lactis was able to induce a strong mucosal and systemic immune response. Challenge survival experiments demonstrated that immunization with L. lactis PppA was able to increase resistance to systemic and respiratory infection with different pneumococcal serotypes, and passive immunization assays of naïve young mice demonstrated a direct correlation between anti-PppA antibodies and protection. The results presented in this study demonstrate three major characteristics of the effectiveness of nasal immunization with PppA expressed as a protein anchored to the cell wall of L. lactis: it elicited cross-protective immunity against different pneumococcal serotypes, it afforded protection against both systemic and respiratory challenges, and it induced protective immunity in mice of different ages.

  18. Peptide-Induced Antiviral Protection by Cytotoxic T Cells

    NASA Astrophysics Data System (ADS)

    Schulz, Manfred; Zinkernagel, Rolf M.; Hengartner, Hans

    1991-02-01

    A specific antiviral cytotoxic immune response in vivo could be induced by the subcutaneous injection of the T-cell epitope of the lymphocytic choriomeningitis virus (LCMV) nucleoprotein as an unmodified free synthetic peptide (Arg-Pro-Gln-Ala-Ser-Gly-Val-Tyr-Met-Gly-Asn-Leu-Thr-Ala-Gln) emulsified in incomplete Freund's adjuvant. This immunization rendered mice into a LCMV-specific protective state as shown by the inhibition of LCMV replication in spleens of such mice. The protection level of these mice correlated with the ability to respond to the peptide challenge by CD8^+ virus-specific cytotoxic T cells. This is a direct demonstration that peptide vaccines can be antivirally protective in vivo, thus encouraging further search for appropriate mixtures of stable peptides that may be used as T-cell vaccines.

  19. Intradermal Immunization of Leishmania donovani Centrin Knock-Out Parasites in Combination with Salivary Protein LJM19 from Sand Fly Vector Induces a Durable Protective Immune Response in Hamsters

    PubMed Central

    Fiuza, Jacqueline Araújo; Dey, Ranadhir; Davenport, Dwann; Abdeladhim, Maha; Meneses, Claudio; Oliveira, Fabiano; Kamhawi, Shaden; Valenzuela, Jesus G.; Gannavaram, Sreenivas; Nakhasi, Hira L.

    2016-01-01

    Background Visceral leishmaniasis (VL) is a neglected tropical disease and is fatal if untreated. There is no vaccine available against leishmaniasis. The majority of patients with cutaneous leishmaniasis (CL) or VL develop a long-term protective immunity after cure from infection, which indicates that development of an effective vaccine against leishmaniasis is possible. Such protection may also be achieved by immunization with live attenuated parasites that do not cause disease. We have previously reported a protective response in mice, hamsters and dogs with Leishmania donovani centrin gene knock-out parasites (LdCen-/-), a live attenuated parasite with a cell division specific centrin1 gene deletion. In this study we have explored the effects of salivary protein LJM19 as an adjuvant and intradermal (ID) route of immunization on the efficacy of LdCen-/- parasites as a vaccine against virulent L. donovani. Methodology/Principal Findings To explore the potential of a combination of LdCen-/- parasites and salivary protein LJM19 as vaccine antigens, LdCen-/- ID immunization followed by ID challenge with virulent L. donovani were performed in hamsters in a 9-month follow up study. We determined parasite burden (serial dilution), antibody production (ELISA) and cytokine expression (qPCR) in these animals. Compared to controls, animals immunized with LdCen-/- + LJM19 induced a strong antibody response, a reduction in spleen and liver parasite burden and a higher expression of pro-inflammatory cytokines after immunization and one month post-challenge. Additionally, a low parasite load in lymph nodes, spleen and liver, and a non-inflamed spleen was observed in immunized animals 9 months after the challenge infection. Conclusions Our results demonstrate that an ID vaccination using LdCen-/-parasites in combination with sand fly salivary protein LJM19 has the capability to confer long lasting protection against visceral leishmaniasis that is comparable to intravenous or

  20. Intradermal Immunization of Leishmania donovani Centrin Knock-Out Parasites in Combination with Salivary Protein LJM19 from Sand Fly Vector Induces a Durable Protective Immune Response in Hamsters.

    PubMed

    Fiuza, Jacqueline Araújo; Dey, Ranadhir; Davenport, Dwann; Abdeladhim, Maha; Meneses, Claudio; Oliveira, Fabiano; Kamhawi, Shaden; Valenzuela, Jesus G; Gannavaram, Sreenivas; Nakhasi, Hira L

    2016-01-01

    Visceral leishmaniasis (VL) is a neglected tropical disease and is fatal if untreated. There is no vaccine available against leishmaniasis. The majority of patients with cutaneous leishmaniasis (CL) or VL develop a long-term protective immunity after cure from infection, which indicates that development of an effective vaccine against leishmaniasis is possible. Such protection may also be achieved by immunization with live attenuated parasites that do not cause disease. We have previously reported a protective response in mice, hamsters and dogs with Leishmania donovani centrin gene knock-out parasites (LdCen-/-), a live attenuated parasite with a cell division specific centrin1 gene deletion. In this study we have explored the effects of salivary protein LJM19 as an adjuvant and intradermal (ID) route of immunization on the efficacy of LdCen-/- parasites as a vaccine against virulent L. donovani. To explore the potential of a combination of LdCen-/- parasites and salivary protein LJM19 as vaccine antigens, LdCen-/- ID immunization followed by ID challenge with virulent L. donovani were performed in hamsters in a 9-month follow up study. We determined parasite burden (serial dilution), antibody production (ELISA) and cytokine expression (qPCR) in these animals. Compared to controls, animals immunized with LdCen-/- + LJM19 induced a strong antibody response, a reduction in spleen and liver parasite burden and a higher expression of pro-inflammatory cytokines after immunization and one month post-challenge. Additionally, a low parasite load in lymph nodes, spleen and liver, and a non-inflamed spleen was observed in immunized animals 9 months after the challenge infection. Our results demonstrate that an ID vaccination using LdCen-/-parasites in combination with sand fly salivary protein LJM19 has the capability to confer long lasting protection against visceral leishmaniasis that is comparable to intravenous or intracardial immunization.

  1. In Vitro and In Vivo Studies for Assessing the Immune Response and Protection-Inducing Ability Conferred by Fasciola hepatica-Derived Synthetic Peptides Containing B- and T-Cell Epitopes

    PubMed Central

    Rojas-Caraballo, Jose; López-Abán, Julio; Pérez del Villar, Luis; Vizcaíno, Carolina; Vicente, Belén; Fernández-Soto, Pedro; del Olmo, Esther; Patarroyo, Manuel Alfonso; Muro, Antonio

    2014-01-01

    Fasciolosis is considered the most widespread trematode disease affecting grazing animals around the world; it is currently recognised by the World Health Organisation as an emergent human pathogen. Triclabendazole is still the most effective drug against this disease; however, resistant strains have appeared and developing an effective vaccine against this disease has increasingly become a priority. Several bioinformatics tools were here used for predicting B- and T-cell epitopes according to the available data for Fasciola hepatica protein amino acid sequences. BALB/c mice were immunised with the synthetic peptides by using the ADAD vaccination system and several immune response parameters were measured (antibody titres, cytokine levels, T-cell populations) to evaluate their ability to elicit an immune response. Based on the immunogenicity results so obtained, seven peptides were selected to assess their protection-inducing ability against experimental infection with F. hepatica metacercariae. Twenty-four B- or T-epitope-containing peptides were predicted and chemically synthesised. Immunisation of mice with peptides so-called B1, B2, B5, B6, T14, T15 and T16 induced high levels of total IgG, IgG1 and IgG2a (p<0.05) and a mixed Th1/Th2/Th17/Treg immune response, according to IFN-γ, IL-4, IL-17 and IL-10 levels, accompanied by increased CD62L+ T-cell populations. A high level of protection was obtained in mice vaccinated with peptides B2, B5, B6 and T15 formulated in the ADAD vaccination system with the AA0029 immunomodulator. The bioinformatics approach used in the present study led to the identification of seven peptides as vaccine candidates against the infection caused by Fasciola hepatica (a liver-fluke trematode). However, vaccine efficacy must be evaluated in other host species, including those having veterinary importance. PMID:25122166

  2. In vitro and in vivo studies for assessing the immune response and protection-inducing ability conferred by Fasciola hepatica-derived synthetic peptides containing B- and T-cell epitopes.

    PubMed

    Rojas-Caraballo, Jose; López-Abán, Julio; Pérez del Villar, Luis; Vizcaíno, Carolina; Vicente, Belén; Fernández-Soto, Pedro; del Olmo, Esther; Patarroyo, Manuel Alfonso; Muro, Antonio

    2014-01-01

    Fasciolosis is considered the most widespread trematode disease affecting grazing animals around the world; it is currently recognised by the World Health Organisation as an emergent human pathogen. Triclabendazole is still the most effective drug against this disease; however, resistant strains have appeared and developing an effective vaccine against this disease has increasingly become a priority. Several bioinformatics tools were here used for predicting B- and T-cell epitopes according to the available data for Fasciola hepatica protein amino acid sequences. BALB/c mice were immunised with the synthetic peptides by using the ADAD vaccination system and several immune response parameters were measured (antibody titres, cytokine levels, T-cell populations) to evaluate their ability to elicit an immune response. Based on the immunogenicity results so obtained, seven peptides were selected to assess their protection-inducing ability against experimental infection with F. hepatica metacercariae. Twenty-four B- or T-epitope-containing peptides were predicted and chemically synthesised. Immunisation of mice with peptides so-called B1, B2, B5, B6, T14, T15 and T16 induced high levels of total IgG, IgG1 and IgG2a (p<0.05) and a mixed Th1/Th2/Th17/Treg immune response, according to IFN-γ, IL-4, IL-17 and IL-10 levels, accompanied by increased CD62L+ T-cell populations. A high level of protection was obtained in mice vaccinated with peptides B2, B5, B6 and T15 formulated in the ADAD vaccination system with the AA0029 immunomodulator. The bioinformatics approach used in the present study led to the identification of seven peptides as vaccine candidates against the infection caused by Fasciola hepatica (a liver-fluke trematode). However, vaccine efficacy must be evaluated in other host species, including those having veterinary importance.

  3. Sappanone A protects mice against cisplatin-induced kidney injury.

    PubMed

    Kang, Lin; Zhao, Huanfen; Chen, Chen; Zhang, Xiuzhi; Xu, Mingtang; Duan, Huijun

    2016-09-01

    Cisplatin (CP) is an anti-cancer drug that often causes nephrotoxicity due to enhanced inflammatory response and oxidative stress. Sappanone A (SA), a homoisoflavanone isolated from the heartwood of Caesalpinia sappan, has been known to have antioxidant and anti-inflammatory effects. In this study, we aimed to investigate the protective effects and mechanism of SA on CP-induced kidney injury in mice. The results showed that treatment of SA improved CP-induced histopathalogical injury and renal dysfunction. SA also inhibited CP-induced MPO, MDA, TNF-α and IL-1β production and up-regulated the activities of SOD and GSH-PX decreased by CP. SA significantly inhibited the apoptosis rate of kidney tissues induced by CP. Furthermore, SA was found to inhibit CP-induced NF-κB activation. Treatment of SA up-regulated the expression of Nrf2 and HO-1 in a dose-dependent manner. In vitro, SA dose-dependently inhibited CP-induced TNF-α and IL-1β production and NF-κB activation in HK-2 cells. In conclusion, these results suggested that SA inhibited CP-induced kidney injury through activating Nrf2 and inhibiting NF-κB activation. SA was a potential therapeutic drug for treating CP-induced kidney injury.

  4. Report on the second WHO integrated meeting on development and clinical trials of influenza vaccines that induce broadly protective and long-lasting immune responses: Geneva, Switzerland, 5-7 May 2014.

    PubMed

    Cox, Nancy J; Hickling, Julian; Jones, Rebecca; Rimmelzwaan, Guus F; Lambert, Linda C; Boslego, John; Rudenko, Larisa; Yeolekar, Leena; Robertson, James S; Hombach, Joachim; Ortiz, Justin R

    2015-11-27

    On 5-7 May 2014, the World Health Organization (WHO) convened the second integrated meeting on "influenza vaccines that induce broadly protective and long-lasting immune responses". Around 100 invited experts from academia, the vaccine industry, research and development funders, and regulatory and public health agencies attended the meeting. Areas covered included mechanisms of protection in natural influenza-virus infection and vaccine-induced immunity, new approaches to influenza-vaccine design and production, and novel routes of vaccine administration. A timely focus was on how this knowledge could be applied to both seasonal influenza and emerging viruses with pandemic potential such as influenza A (H7N9), currently circulating in China. Special attention was given to the development of possible universal influenza vaccines, given that the Global Vaccine Action Plan calls for at least one licensed universal influenza vaccine by 2020. This report highlights some of the topics discussed and provides an update on studies published since the report of the previous meeting. Copyright © 2015. Published by Elsevier Ltd.. All rights reserved.

  5. Beta-cryptoxanthin protection against cigarette smoke-induced inflammatory responses in the lung is due to the action of its own molecule

    USDA-ARS?s Scientific Manuscript database

    Higher intake of the dietary xanthophyll, beta-cryptoxanthin (BCX), has been associated with a lower risk of lung cancer death in smokers. We have previously shown that BCX feeding was effective in reducing both cigarette smoke (CS)-induced lung inflammation in ferrets and carcinogen-induced lung tu...

  6. Protection against Radiotherapy-Induced Toxicity

    PubMed Central

    Hall, Susan; Rudrawar, Santosh; Zunk, Matthew; Bernaitis, Nijole; Arora, Devinder; McDermott, Catherine M; Anoopkumar-Dukie, Shailendra

    2016-01-01

    Radiation therapy is a highly utilized therapy in the treatment of malignancies with up to 60% of cancer patients receiving radiation therapy as a part of their treatment regimen. Radiation therapy does, however, cause a wide range of adverse effects that can be severe and cause permanent damage to the patient. In an attempt to minimize these effects, a small number of compounds have been identified and are in use clinically for the prevention and treatment of radiation associated toxicities. Furthermore, there are a number of emerging therapies being developed for use as agents that protect against radiation-induced toxicities. The aim of this review was to evaluate and summarise the evidence that exists for both the known radioprotectant agents and the agents that show promise as future radioprotectant agents. PMID:27399787

  7. Endogenous epinephrine protects against obesity induced insulin resistance.

    PubMed

    Ziegler, Michael G; Milic, Milos; Sun, Ping; Tang, Chih-Min; Elayan, Hamzeh; Bao, Xuping; Cheung, Wai Wilson; O'Connor, Daniel T

    2011-07-05

    Epinephrine (E) is a hormone released from the adrenal medulla in response to low blood sugar and other stresses. E and related β2-adrenergic agonists are used to treat asthma, but a side effect is high blood sugar. C57BL/6 mice prone to overfeeding induced type II diabetes had the PNMT gene knocked out to prevent E synthesis. These E deficient mice were very similar to control animals on a 14% fat diet. On a 40.6% fat diet they gained 20 to 33% more weight than control animals and increased their blood glucose response to a glucose tolerance test because they became resistant to insulin. Although the short term effect of β2-agonists such as E is to raise blood glucose, some long acting β2-agonists improve muscle glucose uptake. Endogenous E protects against overfeeding induced diabetes. Since adrenal E release can be impaired with aging and diabetes, endogenous E may help prevent adult onset diabetes.

  8. Oral immunotherapy induces local protective mechanisms in the gastrointestinal mucosa

    PubMed Central

    Leonard, Stephanie A.; Martos, Gustavo; Wang, Wei; Nowak-Węgrzyn, Anna; Berin, M. Cecilia

    2012-01-01

    Background Oral immunotherapy (OIT) is a promising treatment for food allergy. Studies are needed to elucidate mechanisms of clinical protection, and to identify safer and potentially more efficacious methods for desensitizing patients to food allergens. Objective We established a mouse model of OIT in order to determine how dose or form of antigen may affect desensitization, and to identify mechanisms of desensitization. Methods Increasing doses of egg white or ovomucoid as OIT were administered orally to sensitized mice. Impact of OIT on anaphylaxis elicited by oral allergen challenge was determined. Allergen-specific antibody and cytokine responses, and mast cell and basophil activation in response to OIT was measured. Gene expression in the small intestine was studied by microarray and real-time PCR. Results OIT resulted in desensitization but not tolerance of mice to the allergen. OIT did not result in desensitization of systemic effector cells, and protection was localized to the gastrointestinal tract. OIT was associated with significant changes in gene expression in the jejunum, including genes expressed by intestinal epithelial cells. Extensively heated ovomucoid that does not trigger anaphylaxis when given orally to sensitized mice was as efficacious as native ovomucoid in desensitizing mice. Conclusions OIT results in clinical protection against food-induced anaphylaxis through a novel mechanism that is localized to the intestinal mucosa and is associated with significant changes in small intestinal gene expression. Extensively heating egg allergen decreases allergenicity and increases safety while still retaining the ability to induce effective desensitization. PMID:22554705

  9. Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy.

    PubMed

    Ichinoseki-Sekine, Noriko; Yoshihara, Toshinori; Kakigi, Ryo; Sugiura, Takao; Powers, Scott K; Naito, Hisashi

    2014-09-01

    Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with the development of respiratory muscle weakness. We hypothesized that a single exposure to whole body heat stress would increase diaphragm expression of heat shock protein 72 (HSP72) and that this treatment would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acutely anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm. Copyright © 2014 the American Physiological Society.

  10. Immunization with Tc52 or its amino terminal domain adjuvanted with c-di-AMP induces Th17+Th1 specific immune responses and confers protection against Trypanosoma cruzi

    PubMed Central

    Matos, Marina N.; Cazorla, Silvia I.; Schulze, Kai; Ebensen, Thomas; Guzmán, Carlos A.; Malchiodi, Emilio L.

    2017-01-01

    The development of new adjuvants enables fine modulation of the elicited immune responses. Ideally, the use of one or more adjuvants should result in the induction of a protective immune response against the specific pathogen. We have evaluated the immune response and protection against Trypanosoma cruzi infection in mice vaccinated with recombinant Tc52 or its N- and C-terminal domains (NTc52 and CTc52) adjuvanted either with the STING (Stimulator of Interferon Genes) agonist cyclic di-AMP (c-di-AMP), a pegylated derivative of α-galactosylceramide (αGC-PEG), or oligodeoxynucleotides containing unmethylated CpG motifs (ODN-CpG). All groups immunized with the recombinant proteins plus adjuvant: Tc52+c-di-AMP, NTc52+c-di-AMP, CTc52+c-di-AMP, NTc52+c-di-AMP+αGC-PEG, NTc52+CpG, developed significantly higher anti-Tc52 IgG titers than controls. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 showed the highest Tc52-specific IgA titers in nasal lavages. All groups immunized with the recombinant proteins plus adjuvant developed a strong specific cellular immune response in splenocytes and lymph node cells with significant differences for groups immunized with c-di-AMP and Tc52, NTc52 or CTc52. These groups also showed high levels of Tc52-specific IL-17 and IFN-γ producing cells, while NTc52+CpG group only showed significant difference with control in IFN-γ producing cells. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 developed predominantly a Th17 and Th1immune response, whereas for NTc52+CpG it was a dominant Th1 response. It was previously described that αGC-PEG inhibits Th17 differentiation by activating NKT cells. Thus, in this work we have also included a group immunized with both adjuvants (NTc52+c-di-AMP+αGC-PEG) with the aim to modulate the Th17 response induced by c-di-AMP. This group showed a significant reduction in the number of Tc52-specific IL-17 producing splenocytes, as compared to the group NTc52+c-di-AMP, which has in turn

  11. Immunization with Tc52 or its amino terminal domain adjuvanted with c-di-AMP induces Th17+Th1 specific immune responses and confers protection against Trypanosoma cruzi.

    PubMed

    Matos, Marina N; Cazorla, Silvia I; Schulze, Kai; Ebensen, Thomas; Guzmán, Carlos A; Malchiodi, Emilio L

    2017-02-01

    The development of new adjuvants enables fine modulation of the elicited immune responses. Ideally, the use of one or more adjuvants should result in the induction of a protective immune response against the specific pathogen. We have evaluated the immune response and protection against Trypanosoma cruzi infection in mice vaccinated with recombinant Tc52 or its N- and C-terminal domains (NTc52 and CTc52) adjuvanted either with the STING (Stimulator of Interferon Genes) agonist cyclic di-AMP (c-di-AMP), a pegylated derivative of α-galactosylceramide (αGC-PEG), or oligodeoxynucleotides containing unmethylated CpG motifs (ODN-CpG). All groups immunized with the recombinant proteins plus adjuvant: Tc52+c-di-AMP, NTc52+c-di-AMP, CTc52+c-di-AMP, NTc52+c-di-AMP+αGC-PEG, NTc52+CpG, developed significantly higher anti-Tc52 IgG titers than controls. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 showed the highest Tc52-specific IgA titers in nasal lavages. All groups immunized with the recombinant proteins plus adjuvant developed a strong specific cellular immune response in splenocytes and lymph node cells with significant differences for groups immunized with c-di-AMP and Tc52, NTc52 or CTc52. These groups also showed high levels of Tc52-specific IL-17 and IFN-γ producing cells, while NTc52+CpG group only showed significant difference with control in IFN-γ producing cells. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 developed predominantly a Th17 and Th1immune response, whereas for NTc52+CpG it was a dominant Th1 response. It was previously described that αGC-PEG inhibits Th17 differentiation by activating NKT cells. Thus, in this work we have also included a group immunized with both adjuvants (NTc52+c-di-AMP+αGC-PEG) with the aim to modulate the Th17 response induced by c-di-AMP. This group showed a significant reduction in the number of Tc52-specific IL-17 producing splenocytes, as compared to the group NTc52+c-di-AMP, which has in turn

  12. Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens.

    PubMed

    Wu, Jianxiang; Yu, Lian; Li, Long; Hu, Jinqiang; Zhou, Jiyong; Zhou, Xueping

    2007-09-01

    The expression of infectious bursal disease virus (IBDV) host-protective immunogen VP2 protein in rice seeds, its immunogenicity and protective capability in chickens were investigated. The VP2 cDNA of IBDV strain ZJ2000 was cloned downstream of the Gt1 promoter of the rice glutelin GluA-2 gene in the binary expression vector, pCambia1301-Gt1. Agrobacterium tumefaciens containing the recombinant vector was used to transform rice embryogenic calli, and 121 transgenic lines were obtained and grown to maturity in a greenhouse. The expression level of VP2 protein in transgenic rice seeds varied from 0.678% to 4.521% microg/mg of the total soluble seed protein. Specific pathogen-free chickens orally vaccinated with transgenic rice seeds expressing VP2 protein produced neutralizing antibodies against IBDV and were protected when challenged with a highly virulent IBDV strain, BC6/85. These results demonstrate that transgenic rice seeds expressing IBDV VP2 can be used as an effective, safe and inexpensive vaccine against IBDV.

  13. Cholecystokinin protects rats against sepsis induced by Staphylococcus aureus.

    PubMed

    Zuelli, Fabiana Maria das Graças Corsi; Cárnio, Evelin Capellari; Saia, Rafael Simone

    2014-06-01

    Staphylococcus aureus is a Gram-positive bacteria described as an important causative agent of sepsis. The contact between host leukocytes and bacteria activates the innate immune response. Nitric oxide, tumor necrosis factor (TNF)-α and interleukin (IL)-1β play a key role in increasing microbicidal activity and controlling cell influx into infectious focus. Contrarily, IL-10 acts as an anti-inflammatory cytokine and bacterial killing suppressor. Immunoregulatory properties have also been attributed to hormones, including cholecystokinin (CCK). CCK protects cardiovascular function and inhibits the inflammatory response induced by lipopolysaccharide, product derived from Gram-negative bacteria. Nevertheless, the role of CCK during Gram-positive infection remains a literature gap. Our aims were to investigate whether CCK protects rats against bacterial dissemination during sepsis induced by S. aureus. We determined whether CCK modulates local and systemic inflammatory response, as well as the cell migration into the infectious focus and the bactericidal capacity of leukocytes. Our results revealed that proglumide (nonselective CCK receptor antagonist) pretreated rats showed higher bacterial counts in blood and peritoneal lavage fluid (PLF) and reduced TNF-α and IL-10 levels in PLF. Moreover, the dissemination of S. aureus may be related to the failure of neutrophil and macrophage migration into the peritoneal cavity. Also, CCK improved the phagocytic and bactericidal ability of these inflammatory cells. Noteworthy is that the adoptive transfer of CCK-treated neutrophils and macrophages in septic rats improved immune defense, reducing bacterial number in blood and PLF. All together, our study clearly demonstrates an important protective role of CCK against sepsis induced by S. aureus.

  14. Effect of Vitamin E and Omega-3 Fatty Acids on Protecting Ambient PM2.5-Induced Inflammatory Response and Oxidative Stress in Vascular Endothelial Cells

    PubMed Central

    Bo, Liang; Jiang, Shuo; Xie, Yuquan; Kan, Haidong; Song, Weimin; Zhao, Jinzhuo

    2016-01-01

    Although the mechanisms linking cardiopulmonary diseases to ambient fine particles (PM2.5) are still unclear, inflammation and oxidative stress play important roles in PM2.5-induced injury. It is well known that inflammation and oxidative stress could be restricted by vitamin E (Ve) or omega-3 fatty acids (Ω-3 FA) consumption. This study investigated the effects of Ve and Ω-3 FA on PM2.5-induced inflammation and oxidative stress in vascular endothelial cells. The underlying mechanisms linking PM2.5 to vascular endothelial injury were also explored. Human umbilical vein endothelial cells (HUVECs) were treated with 50 μg/mL PM2.5 in the presence or absence of different concentrations of Ve and Ω-3 FA. The inflammatory cytokines and oxidative stress markers were determined. The results showed that Ve induced a significant decrease in PM2.5-induced inflammation and oxidative stress. Malondialdehyde (MDA) in supernatant and reactive oxygen species (ROS) in cytoplasm decreased by Ve, while the superoxide dismutase (SOD) activity elevated. The inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) also reduced by Ve. Moreover, Ω-3 FA played the same role on decreasing the inflammation and oxidative stress. IL-6 and TNF-α expressions were significantly lower in combined Ve with Ω-3 FA than treatment with Ve or Ω-3 FA alone. The Ve and Ω-3 FA intervention might abolish the PM2.5-induced oxidative stress and inflammation in vascular endothelial cells. There might be an additive effect of these two nutrients in mediating the PM2.5-induced injury in vascular endothelial cells. The results suggested that inflammation and oxidative stress might be parts of the mechanisms linking PM2.5 to vascular endothelial injury. PMID:27007186

  15. Suramin protects from cisplatin-induced acute kidney injury.

    PubMed

    Dupre, Tess V; Doll, Mark A; Shah, Parag P; Sharp, Cierra N; Kiefer, Alex; Scherzer, Michael T; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G; Beverly, Levi J; Siskind, Leah J

    2016-02-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer.

  16. Induced polarization response of microbial induced sulfideprecipitation

    SciTech Connect

    Ntarlagiannis, Dimitrios; Williams, Kenneth Hurst; Slater, Lee; Hubbard, Susan

    2004-06-04

    A laboratory scale experiment was conducted to examine the use of induced polarization and electrical conductivity to monitor microbial induced sulfide precipitation under anaerobic conditions in sand filled columns. Three columns were fabricated; one for electrical measurements, one for geochemical sampling and a third non-inoculated column was used as a control. A continual upward flow of nutrients and metals in solution was established in each column. Desulfovibrio vulgaris microbes were injected into the middle of the geochemical and electrical columns. Iron and zinc sulfides precipitated along a microbial action front as a result of sulfate reduction due by Desulfovibrio vulgaris. The precipitation front initially developed near the microbial injection location, and subsequently migrated towards the nutrient inlet, as a result of chemotaxis by Desulfovibrio vulgaris. Sampling during and subsequent to the experiment revealed spatiotemporal changes in the biogeochemical measurements associated with microbial sulfate reduction. Conductivity measurements were insensitive to all biogeochemical changes occurred within the column. Changes in the IP response (of up to 14 mrad)were observed to coincide in place and in time with the active microbe respiration/sulfide precipitation front as determined from geochemical sampling. The IP response is correlated with the lactate concentration gradient, an indirect measurement of microbial metabolism, suggesting the potential of IP as a method for monitoring microbial respiration/activity. Post experimental destructive sample analysis and SEM imaging verified the geochemical results and supported our hypothesis that microbe induced sulfide precipitation is directly detectable using electrical methods. Although the processes not fully understood, the IP response appears to be sensitive to this anaerobic microbial precipitation, suggesting a possible novel application for the IP method.

  17. An adjuvanted, tetravalent dengue virus purified inactivated vaccine candidate induces long-lasting and protective antibody responses against dengue challenge in rhesus macaques.

    PubMed

    Fernandez, Stefan; Thomas, Stephen J; De La Barrera, Rafael; Im-Erbsin, Rawiwan; Jarman, Richard G; Baras, Benoît; Toussaint, Jean-François; Mossman, Sally; Innis, Bruce L; Schmidt, Alexander; Malice, Marie-Pierre; Festraets, Pascale; Warter, Lucile; Putnak, J Robert; Eckels, Kenneth H

    2015-04-01

    The immunogenicity and protective efficacy of a candidate tetravalent dengue virus purified inactivated vaccine (TDENV PIV) formulated with alum or an Adjuvant System (AS01, AS03 tested at three different dose levels, or AS04) was evaluated in a 0, 1-month vaccination schedule in rhesus macaques. One month after dose 2, all adjuvanted formulations elicited robust and persisting neutralizing antibody titers against all four dengue virus serotypes. Most of the formulations tested prevented viremia after challenge, with the dengue serotype 1 and 2 virus strains administered at 40 and 32 weeks post-dose 2, respectively. This study shows that inactivated dengue vaccines, when formulated with alum or an Adjuvant System, are candidates for further development.

  18. A rabies vaccine adjuvanted with saponins from leaves of the soap tree (Quillaja brasiliensis) induces specific immune responses and protects against lethal challenge.

    PubMed

    Yendo, Anna Carolina A; de Costa, Fernanda; Cibulski, Samuel P; Teixeira, Thais F; Colling, Luana C; Mastrogiovanni, Mauricio; Soulé, Silvia; Roehe, Paulo M; Gosmann, Grace; Ferreira, Fernando A; Fett-Neto, Arthur G

    2016-04-29

    Quillaja brasiliensis (Quillajaceae) is a saponin producing species native from southern Brazil and Uruguay. Its saponins are remarkably similar to those of Q. saponaria, which provides most of the saponins used as immunoadjuvants in vaccines. The immunostimulating capacities of aqueous extract (AE) and purified saponin fraction (QB-90) obtained from leaves of Q. brasiliensis were favorably comparable to those of a commercial saponin-based adjuvant preparation (Quil-A) in experimental vaccines against bovine herpesvirus type 1 and 5, poliovirus and bovine viral diarrhea virus in mice model. Herein, the immunogenicity and protection efficacy of rabies vaccines adjuvanted with Q. brasiliensis AE and its saponin fractions were compared with vaccines adjuvanted with either commercial Quil-A or Alum. Mice were vaccinated with one or two doses (on days 0 and 14) of one of the different vaccines and serum levels of total IgG, IgG1 and IgG2a were quantified over time. A challenge experiment with a lethal dose of rabies virus was carried out with the formulations. Viral RNA detection in the brain of mice was performed by qPCR, and RNA copy-numbers were quantified using a standard curve of in vitro transcribed RNA. All Q. brasiliensis saponin-adjuvanted vaccines significantly enhanced levels of specific IgG isotypes when compared with the no adjuvant group (P ≤ 0.05). Overall, one or two doses of saponin-based vaccine were efficient to protect against the lethal rabies exposure. Both AE and saponin fractions from Q. brasiliensis leaves proved potent immunological adjuvants in vaccines against a lethal challenge with a major livestock pathogen, hence confirming their value as competitive or complementary sustainable alternatives to saponins of Q. saponaria.

  19. Walnut consumption protects rats against cisplatin-induced neurotoxicity.

    PubMed

    Shabani, Mohammad; Nazeri, Masoud; Parsania, Shahrnaz; Razavinasab, Moazamehosadat; Zangiabadi, Nasser; Esmaeilpour, Khadije; Abareghi, Fatemeh

    2012-10-01

    Walnut is extensively used in traditional medicine for treatment of various ailments. It is described as an anticancer, anti-inflammatory, blood purifier and antioxidant agent. In this study, we investigated whether or not Walnut could protect neurons against cisplatin-induced neurotoxicity in rats. Dietary walnut (6%) was assessed for its neuroprotective effects through the alteration in performance of hippocampus- and cerebellum-related behaviors following chronic cisplatin treatment (5 mg/kg/week for 5 consecutive weeks) in male rats. We also evaluated the effect of cisplatin and walnut administration on nociception. We showed that exposure of adolescent rats to cisplatin resulted in significant decrease in explorative behaviors and memory retention. Walnut consumption improved memory and motor abilities in cisplatin treated rats, while walnut alone did not show any significant changes in these abilities compared to saline. Cisplatin increased latency of response to nociception, and walnut reversed this effect of cisplatin. We conclude that walnuts in the diet following anticancer drugs such as cisplatin might have a protective effect against cisplatin-induced disruptions in motor and cognitive function. However, further studies are needed to elucidate the exact mechanisms of this protective effect of walnut and to explore underlying mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death

    SciTech Connect

    Yao, Jia-Wei; Liu, Jing; Kong, Xiang-Zhen; Zhang, Shou-Guo; Wang, Xiao-Hui; Yu, Miao; Zhan, Yi-Qun; Li, Wei; Xu, Wang-Xiang; Tang, Liu-Jun; Ge, Chang-Hui; Wang, Lin; Li, Chang-Yan; Yang, Xiao-Ming

    2012-03-01

    The antioxidant response elements (ARE) are a cis-acting enhancer sequence located in regulatory regions of antioxidant and detoxifying genes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a member of the Cap ‘n’ Collar family of transcription factors that binds to the ARE and regulates the transcription of specific ARE-containing genes. Under oxidative stress, Nrf2/ARE induction is fundamental to defense against reactive oxygen species (ROS) and serves as a key factor in the protection against toxic xenobiotics. 3-(3-Pyridylmethylidene)-2-Indolinone (PMID) is a derivative of 2-indolinone compounds which act as protein kinase inhibitors and show anti-tumor activity. However, the role of PMID in the oxidative stress remains unknown. In the present study, we showed that PMID induced the activation of ARE-mediated transcription, increased the DNA-binding activity of Nrf2 and then up-regulated the expression of antioxidant genes such as HO-1, SOD, and NQO1. The level of Nrf2 protein was increased in cells treated with PMID by a post-transcriptional mechanism. Under CHX treatment, the stability of Nrf2 protein was enhanced by PMID with decreased turnover rate. We showed that PMID reduced the ubiquitination of Nrf2 and disrupted the Cullin3 (Cul3)-Keap1 interaction. Furthermore, cells treated with PMID showed resistance to cytotoxicity by H{sub 2}O{sub 2} and pro-oxidant 6-OHDA. PMID also up-regulated the antioxidant level in BALB/c mice. Taken together, the compound PMID induces the ARE-mediated gene expression through stabilization of Nrf2 protein and activation of Nrf2/ARE pathway and protects against oxidative stress-mediated cell death. -- Highlights: ► PMID up-regulates ARE-mediated antioxidant gene expression in vitro and in vivo. ► PMID enhances the stabilization of Nrf2 protein, decreasing Nrf2 turnover rate. ► PMID disrupted the Cullin3 (Cul3)-Keap1 interaction. ► PMID protects against cell death induced by H{sub 2}O{sub 2} and pro-oxidant 6

  1. Baicalein protects rat insulinoma INS-1 cells from palmitate-induced lipotoxicity by inducing HO-1.

    PubMed

    Kwak, Hyun Jeong; Yang, Dongki; Hwang, Yongha; Jun, Hee-Sook; Cheon, Hyae Gyeong

    2017-01-01

    β-Cell dysfunction plays a central role in the pathogenesis of type 2 diabetes (T2D), and the identification of novel approaches to improve β-cell function is essential to treat this disease. Baicalein, a flavonoid originally isolated from the root of Scutellaria Baicalensis, has been shown to have beneficial effects on β-cell function. Here, the authors investigated the molecular mechanism responsible for the protective effects of baicalein against palmitate (PA)-induced impaired β-cell function, and placed focus on the role of heme oxygenase (HO)-1. Rat pancreatic β-cell line INS-1 cells or mouse pancreatic islets were cultured with PA (500 μM) to induce lipotoxicity in the presence or absence of baicalein (50 μM), and the expressions of the ER stress markers, ATF-3, CHOP and GRP78 were detected by Western blotting and/or qPCR. The involvement of HO-1 was evaluated by HO-1 siRNA transfection and using the HO-1 inhibitor ZnPP. Baicalein reduced PA-induced ER stress and inflammation and enhanced insulin secretion, and these effects were associated with the induction of HO-1. Furthermore, these protective effects were attenuated by ZnPP and by HO-1 siRNA. Pretreatment of PD98059 (an ERK inhibitor) significantly inhibited the protective effects of baicalein and blocked HO-1 induction. On the other hand, CO production by RuCO (a CO donor) ameliorated PA-induced ER stress, suggesting that CO production followed by HO-1 induction may contribute to the protective effects of baicalein against PA-induced β-cell dysfunction. Baicalein protects pancreatic β-cells from PA-induced ER stress and inflammation via an ERK-HO-1 dependent pathway. The authors suggest HO-1 induction in pancreatic β-cells appears to be a promising therapeutic strategy for T2D.

  2. Environmental Protection Agency Award Recipient Responsibilities

    EPA Pesticide Factsheets

    Itemized Award Phase information. Information about the Recipient's Responsibilities Upon Notification of the Award, The EPA Project Officer Responsibilities, and EPA Grant Specialists Responsibilities.

  3. Vaccination-induced IgG response to Galα1-3GalNAc glycan epitopes in lambs protected against Haemonchus contortus challenge infection

    PubMed Central

    van Stijn, Caroline M.W.; van den Broek, Marloes; Vervelde, Lonneke; Alvarez, Richard A.; Cummings, Richard D.; Tefsen, Boris; van Die, Irma

    2009-01-01

    Lambs vaccinated with Haemonchus contortus excretory/secretory (ES) glycoproteins in combination with the adjuvant Alhydrogel are protected against H. contortus challenge infection. Using glycan microarray analysis we showed that serum from such vaccinated lambs contains IgG antibodies that recognize the glycan antigen Galα1-3GalNAc-R and GalNAcβ1-4(Fucα1-3)GlcNAc-R. Our studies revealed that H. contortus glycoproteins contain Galα1-3Gal-R as well as significant levels of Galα1-3GalNAc-R, which has not been previously reported. Extracts from H. contortus adult worms contain a galactosyltransferase acting on glycan substrates with a terminal GalNAc, indicating that the worms possess the enzymatic potential to synthesize terminal Gal-GalNAc moieties. These data illustrate that glycan microarrays constitute a promising technology for fast and specific analysis of serum anti-glycan antibodies in vaccination studies. In addition, this approach facilitates the discovery of novel, antigenic parasite glycan antigens that may have potential for developing glycoconjugate vaccines or utilization in diagnostics. PMID:19695255

  4. Protective efficacy and immune responses induced by a DNA vaccine encoding codon-optimized PPA1 against Photobacterium damselae subsp. piscicida in Japanese flounder.

    PubMed

    Kato, Goshi; Yamashita, Kozue; Kondo, Hidehiro; Hirono, Ikuo

    2015-02-18

    Photobacterium damselae subsp. piscicida (Pdp) kills many cultured marine fish. As it evolves resistance to existing vaccines, new vaccines are needed. PPA1 is a major antigenic protein of Pdp. Here, DNA vaccines encoding wild-type PPA1 (pPPA1(wt)) and codon-optimized PPA1 (pPPA1(opt)) were constructed and tested against Pdp in Japanese flounder. The mRNA levels of the two antigenic genes at the vaccination site were not different, but the protein level was significantly higher in the pPPA1(opt)-vaccinated fish. In addition, after a bacterial challenge, the levels of interleukin (IL)-1β, IL-6 and IFN-γ mRNA significantly increased in the pPPA1(opt)-vaccinated fish but not in the pPPA1(wt)-vaccinated fish. The relative percent survival (RPS) after the challenge was higher in the pPPA1(opt)-vaccinated fish (90.9) than in the pPPA1(wt)-vaccinated fish (69.2). At the early stage of the infection after the challenge, the number of viable Pdp in the spleen was significantly lower in the pPPA1(opt)-vaccinated fish than in the pPPA1(wt)-vaccinated fish. These data show that codon-optimized DNA vaccine pPPA1(opt) had a strong immunogenicity and conferred protective efficacy against Pdp infection in Japanese flounder.

  5. Nrf2 protects against furosemide-induced hepatotoxicity.

    PubMed

    Qu, Qiang; Liu, Jie; Zhou, Hong-Hao; Klaassen, Curtis D

    2014-10-03

    Furosemide is a diuretic drug, but its reactive intermediates lead to acute liver injury in mice. Given the essential role of Nrf2 as a cellular defense regulator, we investigated whether Nrf2 would protect against furosemide-induced liver injury using the Nrf2 "gene-dose response" mouse model (Nrf2-null with Nrf2 knock-out, wild-type with normal expression of Nrf2, Keap1-KD with enhanced Nrf2 activation and Keap1-HKO mice with maximum Nrf2 activation). Twenty-four hours after furosemide administration (250mg/kg, i.p.), serum ALT activities and histopathological analysis indicated severe hepatotoxicity in Nrf2-null and WT mice, but significantly less in the Nrf2-overexpressing Keap1-KD and Keap1-HKO mice. Furosemide increased the mRNA of genes involved in the acute phase response (hemeoxygenase-1 and metallothionein-1), ER stress (C/Ebp-homologous protein and Growth arrest and DNA-damage-inducible protein), inflammatory cytokine (interleukin 1 beta), chemokines (macrophage inflammatory protein 2 and mouse keratinocyte-derived chemokine), as well as apoptosis (early growth response factor and BCL2-associated X protein) in livers of Nrf2-null and wild-type mice, but these genes increased less in mice with more Nrf2. The two genotypes of over-expressed Nrf2 mice had increased expression of the Nrf2 target genes Gclm, Gclc and Nqo1 prior to furosemide administration, and the expressions of these genes were increased further after furosemide administration. Thus, our findings provide strong evidence that over-expression of Nrf2 in Keap1-KD and Keap1-HKO mice and the increases in mRNA of a number of genes involved in anti-oxidative stress, anti-inflammation, anti-ER stress and anti-apoptosis protect against furosemide-induced hepatotoxicity.

  6. Protective effect of thymoquinone against cisplatin-induced ototoxicity.

    PubMed

    Sagit, Mustafa; Korkmaz, Ferhat; Akcadag, Alper; Somdas, Mehmet Akıf

    2013-08-01

    The aim of this study was to investigate the potential protective effect of thymoquinone against cisplatin-induced ototoxicity. This study is a prospective, controlled experimental animal study. Experiments were performed on 30 healthy female Sprague-Dawley rats. Thirty animals were divided into three groups of 10 animals each. Group 1 received an intraperitoneal (i.p.) injection of cisplatin 15 mg/kg. Group 2 received i.p. thymoquinone 40 mg/kg/day for 2 days prior to cisplatin injection and third day i.p. cisplatin 15 mg/kg was administered concomitantly. Group 2 continued to receive i.p. thymoquinone until fifth day. Group 3 received i.p. thymoquinone 40 mg/kg/day for 5 days. Pretreatment distortion product otoacoustic emissions (DPOAE) and auditory brain stem responses (ABR) testing from both ears were obtained from the animals in all groups. After the baseline measurements, drugs were injected intraperitonally. After an observation period of 3 days, DPOAE measurements and ABR testing were obtained again and compared with the pretreatment values. There was no statistically significant difference between pre and post-treatment DPOAE responses and ABR thresholds group 2 and 3. However, group 1 demonstrated significant deterioration of the ABR thresholds and DPOAE responses. Our results suggest that DPOAE responses and ABR thresholds were preserved in the cisplatin plus TQ-treated group when compared with the group receiving cisplatin alone. According to these results, cisplatin-induced ototoxicity may be prevented by thymoquinone use in rats.

  7. A Single B-repeat of Staphylococcus epidermidis accumulation-associated protein induces protective immune responses in an experimental biomaterial-associated infection mouse model.

    PubMed

    Yan, Lin; Zhang, Lei; Ma, Hongyan; Chiu, David; Bryers, James D

    2014-09-01

    Nosocomial infections are the fourth leading cause of morbidity and mortality in the United States, resulting in 2 million infections and ∼100,000 deaths each year. More than 60% of these infections are associated with some type of biomedical device. Staphylococcus epidermidis is a commensal bacterium of the human skin and is the most common nosocomial pathogen infecting implanted medical devices, especially those in the cardiovasculature. S. epidermidis antibiotic resistance and biofilm formation on inert surfaces make these infections hard to treat. Accumulation-associated protein (Aap), a cell wall-anchored protein of S. epidermidis, is considered one of the most important proteins involved in the formation of S. epidermidis biofilm. A small recombinant protein vaccine comprising a single B-repeat domain (Brpt1.0) of S. epidermidis RP62A Aap was developed, and the vaccine's efficacy was evaluated in vitro with a biofilm inhibition assay and in vivo in a murine model of biomaterial-associated infection. A high IgG antibody response against S. epidermidis RP62A was detected in the sera of the mice after two subcutaneous immunizations with Brpt1.0 coadministered with Freund's adjuvant. Sera from Brpt1.0-immunized mice inhibited in vitro S. epidermidis RP62A biofilm formation in a dose-dependent pattern. After receiving two immunizations, each mouse was surgically implanted with a porous scaffold disk containing 5 × 10(6) CFU of S. epidermidis RP62A. Weight changes, inflammatory markers, and histological assay results after challenge with S. epidermidis indicated that the mice immunized with Brpt1.0 exhibited significantly higher resistance to S. epidermidis RP62A implant infection than the control mice. Day 8 postchallenge, there was a significantly lower number of bacteria in scaffold sections and surrounding tissues and a lower residual inflammatory response to the infected scaffold disks for the Brpt1.0-immunized mice than for of the ovalbumin (Ova

  8. Protective dendritic cell responses against listeriosis induced by the short form of the deubiquitinating enzyme CYLD are inhibited by full-length CYLD.

    PubMed

    Wurm, Rebecca; Just, Sissy; Wang, Xu; Wex, Katharina; Schmid, Ursula; Blanchard, Nicolas; Waisman, Ari; Schild, Hans-Jörg; Deckert, Martina; Naumann, Michael; Schlüter, Dirk; Nishanth, Gopala

    2015-05-01

    The deubiquitinating enzyme CYLD is an important tumor suppressor and inhibitor of immune responses. In contrast to full-length CYLD, the immunological function of the naturally occurring short splice variant of CYLD (sCYLD) is insufficiently described. Previously, we showed that DCs, which lack full-length CYLD but express sCYLD, exhibit augmented NF-κB and DC activation. To explore the function of sCYLD in infection, we investigated whether DC-specific sCYLD regulates the pathogenesis of listeriosis. Upon Listeria monocytogenes infection of CD11c-Cre Cyld(ex7/8 fl/fl) mice, infection of CD8α(+) DCs, which are crucial for the establishment of listeriosis in the spleen, was not affected. However, NF-κB activity of CD11c-Cre Cyld(ex7/8 fl/fl) DCs was increased, while activation of ERK and p38 was normal. In addition, CD11c-Cre Cyld(ex7/8 fl/fl) DCs produced more TNF, IL-10, and IL-12 upon infection, which led to enhanced stimulation of IFN-γ-producing NK cells. In addition CD11c-Cre Cyld(ex7/8 fl/fl) DCs presented Listeria Ag more efficiently to CD8(+) T cells resulting in a stronger pathogen-specific CD8(+) T-cell proliferation and more IFN-γ production. Collectively, the improved innate and adaptive immunity and survival during listeriosis identify the DC-specific FL-CYLD/sCYLD balance as a potential target to modulate NK-cell and Ag-specific CD8(+) T-cell responses.

  9. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism.

    PubMed

    Rejitha, S; Prathibha, P; Indira, M

    2015-03-01

    Objective The study aimed to evaluate the antioxidant property of ethanolic extract of Sida cordifolia (SAE) on alcohol-induced oxidative stress and to elucidate its mechanism of action. Methods Male albino rats of the Sprague-Dawley strain were grouped into four: (1) control, (2) alcohol (4 g/kg body weight), (3) SAE (50 mg/100 g body weight), and (4) alcohol (4 g/kg body weight) + SAE (50 mg/100 g body weight). Alcohol and SAE were given orally each day by gastric intubation. The duration of treatment was 90 days. Results The activities of toxicity markers in liver and serum increased significantly in alcohol-treated rats and to a lesser extent in the group administered SAE + alcohol. The activity of alcohol dehydrogenase and the reactive oxygen species level were increased significantly in alcohol-treated rats but attenuated in the SAE co-administered group. Oxidative stress was increased in alcohol-treated rats as evidenced by the lowered activities of antioxidant enzymes, decreased level of reduced glutathione (GSH), increased lipid peroxidation products, and decreased expression of γ-glutamyl cysteine synthase in liver. The co-administration of SAE with alcohol almost reversed these changes. The activity of glutathione-S-transferase and translocation of Nrf2 from cytosol to nucleus in the liver was increased in both the alcohol and alcohol + SAE groups, but the maximum changes were observed in the latter group. Discussion The SAE most likely elicits its antioxidant potential by reducing oxidative stress, enhancing the translocation of Nrf2 to nucleus and thereby regulating glutathione metabolism, leading to enhanced GSH content.

  10. 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis.

    PubMed

    Kumar, Ajay; Giri, Shailendra; Kumar, Ashok

    2016-12-01

    The retina is considered to be the most metabolically active tissue in the body. However, the link between energy metabolism and retinal inflammation, as incited by microbial infection such as endophthalmitis, remains unexplored. In this study, using a mouse model of Staphylococcus aureus (SA) endophthalmitis, we demonstrate that the activity (phosphorylation) of 5' adenosine monophosphate-activated protein kinase alpha (AMPKα), a cellular energy sensor and its endogenous substrate; acetyl-CoA carboxylase is down-regulated in the SA-infected retina. Intravitreal administration of an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), restored AMPKα and acetyl-CoA carboxylase phosphorylation. AICAR treatment reduced both the bacterial burden and intraocular inflammation in SA-infected eyes by inhibiting NF-kB and MAP kinases (p38 and JNK) signalling. The anti-inflammatory effects of AICAR were diminished in eyes pretreated with AMPK inhibitor, Compound C. The bioenergetics (Seahorse) analysis of SA-infected microglia and bone marrow-derived macrophages revealed an increase in glycolysis, which was reinstated by AICAR treatment. AICAR also reduced the expression of SA-induced glycolytic genes, including hexokinase 2 and glucose transporter 1 in microglia, bone marrow-derived macrophages and the mouse retina. Interestingly, AICAR treatment enhanced the bacterial phagocytic and intracellular killing activities of cultured microglia, macrophages and neutrophils. Furthermore, AMPKα1 global knockout mice exhibited increased susceptibility towards SA endophthalmitis, as evidenced by increased inflammatory mediators and bacterial burden and reduced retinal function. Together, these findings provide the first evidence that AMPK activation promotes retinal innate defence in endophthalmitis by modulating energy metabolism and that it can be targeted therapeutically to treat ocular infections.

  11. Oral immunotherapy induces local protective mechanisms in the gastrointestinal mucosa.

    PubMed

    Leonard, Stephanie A; Martos, Gustavo; Wang, Wei; Nowak-Węgrzyn, Anna; Berin, M Cecilia

    2012-06-01

    Oral immunotherapy (OIT) is a promising treatment for food allergy. Studies are needed to elucidate mechanisms of clinical protection and to identify safer and potentially more efficacious methods for desensitizing patients to food allergens. We established a mouse model of OIT to determine how the dose or form of antigen may affect desensitization and to identify mechanisms of desensitization. Increasing doses of egg white or ovomucoid as OIT were administered orally to sensitized mice. The impact of OIT on anaphylaxis elicited by oral allergen challenge was determined. Allergen-specific antibody and cytokine responses and mast cell and basophil activation in response to OIT were measured. Gene expression in the small intestine was studied by microarray and real-time PCR. OIT resulted in desensitization but not tolerance of mice to the allergen. OIT did not result in desensitization of systemic effector cells, and protection was localized to the gastrointestinal tract. OIT was associated with significant changes in gene expression in the jejunum, including genes expressed by intestinal epithelial cells. Extensively heated ovomucoid that does not trigger anaphylaxis when given orally to sensitized mice was as efficacious as native ovomucoid in desensitizing mice. OIT results in clinical protection against food-induced anaphylaxis through a novel mechanism that is localized to the intestinal mucosa and is associated with significant changes in small intestinal gene expression. Extensively heating egg allergen decreases allergenicity and increases safety while still retaining the ability to induce effective desensitization. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  12. Induction of Protective CTL Responses in Newborn Mice by a Murine Retrovirus

    NASA Astrophysics Data System (ADS)

    Sarzotti, Marcella; Robbins, Deanna S.; Hoffman, Paul M.

    1996-03-01

    The susceptibility of neonates to virus-induced disease is thought to reflect, in part, the immaturity of their immune systems. However, inoculation of newborn mice with low doses of Cas-Br-M murine leukemia virus induced a protective cytotoxic T lymphocyte (CTL) response. The inability of neonates to develop a CTL response to high doses of virus was not the result of immunological immaturity but correlated with the induction of a nonprotective type 2 cytokine response. Thus, the initial viral dose is critical in the development of protective immunity in newborns.

  13. Immune Responses and Protection of Aotus Monkeys Immunized with Irradiated Plasmodium vivax Sporozoites

    DTIC Science & Technology

    2011-01-01

    responses and protective efficacy induced by vacci- nation with irradiated P vivax sporozoites were evaluated in malaria-naive Aotus monkeys. Three groups...received either 10 doses of uninfected salivary gland extract or no inoculations. Immunization resulted in the production low levels of antibodies that...responses. Intravenous challenge with viable sporozoites resulted in partial protection in a dose-dependent manner.l11ese findings suggest that the

  14. Protective immune responses to fungal infections.

    PubMed

    Rivera, A

    2014-09-01

    The incidence of fungal infections has been on the rise over several decades. Fungal infections threaten animals, plants and humans alike and are thus of significant concern to scientists across disciplines. Over the last decade, significant advances on fungal immunology have lead to a better understanding of important mechanisms of host protection against fungi. In this article, I review recent advances of relevant mechanisms of immune-mediated protection to fungal infections.

  15. Delivery of an inactivated avian influenza virus vaccine adjuvanted with poly(D,L-lactic-co-glycolic acid) encapsulated CpG ODN induces protective immune responses in chickens.

    PubMed

    Singh, Shirene M; Alkie, Tamiru N; Nagy, Éva; Kulkarni, Raveendra R; Hodgins, Douglas C; Sharif, Shayan

    2016-09-14

    In poultry, systemic administration of commercial vaccines consisting of inactivated avian influenza virus (AIV) requires the simultaneous delivery of an adjuvant (water-in-oil emulsion). These vaccines are often limited in their ability to induce quantitatively better local (mucosal) antibody responses capable of curtailing virus shedding. Therefore, more efficacious adjuvants with the ability to provide enhanced immunogenicity and protective anti-AIV immunity in chickens are needed. While the Toll-like receptor (TLR) 21 agonist, CpG oligodeoxynucleotides (ODNs) has been recognized as a potential vaccine adjuvant in chickens, poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles, successfully tested as vaccine delivery systems in other species, have not been extensively explored. The present study, therefore, assessed both systemic and mucosal antibody-mediated responses following intramuscular vaccination (administered at 7 and 21days post-hatch) of chickens with PLGA encapsulated H9N2 AIV plus encapsulated CpG ODN 2007 (CpG 2007), and nonencapsulated AIV plus PLGA encapsulated CpG 2007 vaccine formulations. Virus challenge was performed at 2weeks post-secondary vaccination using the oculo-nasal route. Our results showed that chickens vaccinated with the nonencapsulated AIV vaccine plus PLGA encapsulated CpG 2007 developed significantly higher systemic IgY and local (mucosal) IgY antibodies as well as haemagglutination inhibition antibody titres compared to PLGA encapsulated AIV plus encapsulated CpG 2007 vaccinated chickens. Furthermore, chickens that received CpG 2007 as an adjuvant in the vaccine formulation had antibodies exhibiting higher avidity indicating that the TLR21-mediated pathway may enhance antibody affinity maturation qualitatively. Collectively, our data indicate that vaccination of chickens with nonencapsulated AIV plus PLGA encapsulated CpG 2007 results in qualitatively and quantitatively augmented antibody responses leading to a reduction in

  16. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    SciTech Connect

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.; Medeiros, Daniel C.; Ferreira-Vieira, Talita H.; Doria, Juliana G.; Rodrigues, Flávia; Aguiar, Daniele C.; Pereira, Grace S.; Massessini, André R.; Ribeiro, Fabíola M.; Oliveira, Antonio Carlos P. de; Moraes, Marcio F.D.; Moreira, Fabricio A.

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  17. Novel influenza virus vectors expressing Brucella L7/L12 or Omp16 proteins in cattle induced a strong T-cell immune response, as well as high protectiveness against B. abortus infection.

    PubMed

    Tabynov, Kaissar; Kydyrbayev, Zhailaubay; Ryskeldinova, Sholpan; Yespembetov, Bolat; Zinina, Nadezhda; Assanzhanova, Nurika; Kozhamkulov, Yerken; Inkarbekov, Dulat; Gotskina, Tatyana; Sansyzbay, Abylai

    2014-04-11

    This paper presents the results of a study of the immunogenicity and protectiveness of new candidate vector vaccine against Brucella abortus - a bivalent vaccine formulation consisting of a mixture of recombinant influenza A subtype H5N1 or H1N1 (viral constructs vaccine formulation) viruses expressing Brucella ribosomal protein L7/L12 and Omp16, in cattle. To increase the effectiveness of the candidate vaccine, adjuvants such as Montanide Gel01 or chitosan were included in its composition. Immunization of cattle (heifers aged 1-1.5 years, 5 animals per group) with the viral constructs vaccine formulation only, or its combination with adjuvants Montanide Gel01 or chitosan, was conducted via the conjunctival method using cross prime (influenza virus subtype H5N1) and booster (influenza virus subtype H1N1) vaccination schedules at an interval of 28 days. Vaccine candidates were evaluated in comparison with the positive (B. abortus S19) and negative (PBS) controls. The viral constructs vaccine formulations, particularly in combination with Montanide Gel01 adjuvant promoted formation of IgG antibodies (with a predominance of antibodies of isotype IgG2a) against Brucella L7/L12 and Omp16 proteins in ELISA. Moreover, these vaccines in cattle induced a strong antigen-specific T-cell immune response, as indicated by a high number of CD4(+) and CD8(+) cells, as well as the concentration of IFN-γ, and most importantly provided a high level of protectiveness comparable to the commercial B. abortus S19 vaccine and superior to the B. abortus S19 vaccine in combination with Montanide Gel01 adjuvant. Based on these findings, we recommended the bivalent vaccine formulation containing the adjuvant Montanide Gel01 for practical use in cattle.

  18. Influence of adjuvants on protection induced by a recombinant fusion protein against malarial infection.

    PubMed

    Daly, T M; Long, C A

    1996-07-01

    Previously, we described a protective immune response induced by the carboxyl-terminal region of the merozoite surface protein-1 (MSP-1) from the rodent malarial parasite Plasmodium yoelii yoelii 17XL, expressed as a fusion protein and designated glutathione S-transferase (GST)-PYC2. We also demonstrated that the humoral response induced by GST-PYC2 was the primary mechanism by which immunized animals controlled their blood-stage infections. We have now examined the influence of several adjuvants on the immune response to the GST-PYC2 fusion protein. While alum, Freund's adjuvant, Ribi adjuvant system, and TiterMax were efficacious in eliciting a protective response with GST-PYC2 in BALB/c mice, saponin failed to induce protection, although significant levels of PYC2-specific antibodies were produced in all immunized animals. This protection depended on the mouse strain since immunization of Swiss Webster mice with GST-PYC2 in alum did not produce levels of PYC2-specific antibodies comparable to those in BALB/c mice nor did it induce any demonstrable level of protection against parasite challenge. Swiss Webster mice were protected, however, when immunized with GST-PYC2 in other adjuvants. Immunization with PYC2, isolated free of GST induced lower levels of antigen-specific antibody; only those animals given PYC2 in Freund's adjuvant demonstrated a significant degree of protection, suggesting the possibility (of additional cellular effector mechanisms. These findings demonstrate that adjuvant, host genotype, and the fine specificity of the response significantly influence the protection induced by the carboxyl terminus of MSP-1 in vivo and illustrate the need to consider these factors in evaluating MSP-1 as a vaccine component.

  19. Acidic chitinase primes the protective immune response to gastrointestinal nematodes.

    PubMed

    Vannella, Kevin M; Ramalingam, Thirumalai R; Hart, Kevin M; de Queiroz Prado, Rafael; Sciurba, Joshua; Barron, Luke; Borthwick, Lee A; Smith, Allen D; Mentink-Kane, Margaret; White, Sandra; Thompson, Robert W; Cheever, Allen W; Bock, Kevin; Moore, Ian; Fitz, Lori J; Urban, Joseph F; Wynn, Thomas A

    2016-05-01

    Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103(+) dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung.

  20. DNA vaccines as a tool for analysing the protective immune response against rhabdoviruses in rainbow trout.

    PubMed

    Lorenzen, N; Lorenzen, E; Einer-Jensen, K; LaPatra, S E

    2002-05-01

    DNA vaccines based on the glycoprotein genes of the salmonid rhabdoviruses VHSV and IHNV have been demonstrated to be very efficient in inducing a protective immune response against the respective diseases in rainbow trout. Nanogram doses of plasmid DNA delivered by intramuscular injection are sufficient to induce high levels of immunity in fingerling-size fish, whereas larger fish require more vaccine for protection. The protection is long lasting and, more surprisingly, is partly established already 4 days post vaccination. The early protection involves cross-protective anti-viral defence mechanisms, while the long duration immunity is highly specific. The nature of these immune response mechanisms is discussed and it is suggested that the efficacy of the vaccines is related to their ability to activate the innate immune system as it is activated by live virus.

  1. The protective role of tetramethylpyrazine against cisplatin-induced ototoxicity.

    PubMed

    Bayram, Ali; Kaya, Altan; Akay, Ebru; Hıra, İbrahim; Özcan, İbrahim

    2017-03-01

    The aim of the present study was to investigate the protective effect of tetramethylpyrazine (TMP) on cisplatin-induced ototoxicity in rats. Forty healthy, female, 24-week-old, Sprague-Dawley rats (n = 40) were randomly assigned to four groups as follows: group one (n = 10) received intraperitoneal (i.p.) physiological saline at daily doses of 3 mg/kg for seven days; group two (n = 10) received a single dose of i.p. 15 mg/kg cisplatin; group three (n = 10) received i.p. 140 mg/kg TMP daily for seven days plus a single dose of i.p. 15 mg/kg cisplatin on the fourth day; group four (n = 10) received i.p. 140 mg/kg TMP daily for seven days. Auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) measurements were obtained from the animals (40 rats, 80 ears) under general anesthesia before and after drug administration. The temporal bulla of animals were bilaterally removed for immunohistopathological examination. In group two, DPOAE and ABR values were significantly deteriorated after drug administration, whereas there was no statistically significant difference between the pre- and posttreatment DPOAE and ABR values for all frequencies for groups one, three and four. The mean scores for external ciliated cells (ECCs), stria vascularis (SV) and spiral ganglion (SG) injuries in hematoxylin and eosin (H&E) staining, and also caspase-3 immunoreactivity were significantly higher in group two than in the other groups. In the present study, the protective effect of TMP on cisplatin ototoxicity was demonstrated through studies of electrophysiology and immunohistopathology. Co-administration of TMP may have potential protective effects against cisplatin-induced ototoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ascorbate in aqueous humor protects against myeloperoxidase-induced oxidation.

    PubMed Central

    Rosenbaum, J. T.; Howes, E. L.; English, D.

    1985-01-01

    Chemotactic factors can cause polymorphonuclear leukocytes to release the contents of azurophilic granules, including the enzymes beta-glucuronidase and myeloperoxidase. In the presence of aqueous humor from the anterior chamber of the rabbit eye, the supernatant from stimulated leukocytes contains beta-glucuronidase, but myeloperoxidase is not detectable. Studies with aqueous humor and partially purified human myeloperoxidase suggest that this phenomenon is not due to a failure of enzyme release. The factor responsible for the inability to detect MPO in the assay system is heat-labile, dialyzable, and reversed by ascorbate oxidase. Comparable assay inhibition is produced by ascorbic acid at a concentration present in either human or rabbit aqueous humor. The ability of aqueous humor to protect against myeloperoxidase-induced oxidation may contribute to several diverse phenomena, including the susceptibility of the eye to Candida infection and a prolonged half-life for several inflammatory mediators in the anterior chamber. PMID:2992283

  3. Flavokawains A and B from kava (Piper methysticum) activate heat shock and antioxidant responses and protect against hydrogen peroxide-induced cell death in HepG2 hepatocytes.

    PubMed

    Pinner, Keanu D; Wales, Christina T K; Gristock, Rachel A; Vo, Hoa T; So, Nadine; Jacobs, Aaron T

    2016-09-01

    Context Flavokawains are secondary metabolites from the kava plant (Piper methysticum Forst. f., Piperaceae) that have anticancer properties and demonstrated oral efficacy in murine cancer models. However, flavokawains also have suspected roles in rare cases of kava-induced hepatotoxicity. Objective To compare the toxicity flavokawains A and B (FKA, FKB) and monitor the resulting transcriptional responses and cellular adaptation in the human hepatocyte cell line, HepG2. Materials and methods HepG2 were treated with 2-100 μM FKA or FKB for 24-48 h. Cellular viability was measured with calcein-AM and changes in signalling and gene expression were monitored by luciferase reporter assay, real-time PCR and Western blot of both total and nuclear protein extracts. To test for subsequent resistance to oxidative stress, cells were pretreated with 50 μM FKA, 10 μM FKB or 10 μM sulphoraphane (SFN) for 24 h, followed by 0.4-2.8 mM H2O2 for 48 h, and then viability was assessed. Results FKA (≤100 μM) was not toxic to HepG2, whereas FKB caused significant cell death (IC50=23.2 ± 0.8 μM). Both flavokawains activated Nrf2, increasing HMOX1 and GCLC expression and enhancing total glutathione levels over 2-fold (p < 0.05). FKA and FKB also activated HSF1, increasing HSPA1A and DNAJA4 expression. Also, flavokawain pretreatment mitigated cell death after a subsequent challenge with H2O2, with FKA being more effective than FKB, and similar to SFN. Conclusions Flavokawains promote an adaptive cellular response that protects hepatocytes against oxidative stress. We propose that FKA has potential as a chemopreventative or chemotherapeutic agent.

  4. Protective effect of Syzygium cumini against pesticide-induced cardiotoxicity.

    PubMed

    Atale, Neha; Gupta, Khushboo; Rani, Vibha

    2014-01-01

    Pesticide-induced toxicity is a serious issue which has resulted in plethora of diseases all over the world. The organophosphate pesticide malathion has caused many incidents of poisoning such as cardiac manifestations. The present study was designed to evaluate the effect of Syzygium cumini on malathion-induced cardiotoxicity. Dose optimization of malathion and polyphenols such as curcumin, (−)-epicatechin, gallic acid, butylated hydroxyl toluene, etc. was done by MTT cell proliferation assay. Nuclear deformities, ROS production, and integrity of extra cellular matrix components were analyzed by different techniques. S. cumini methanolic pulp extract (MPE), a naturally derived gallic acid-enriched antioxidant was taken to study its effect on malathion-induced toxicity. Nuclear deformities, ROS production, and integrity of extra cellular matrix components were also analyzed. Twenty micrograms per milliliter LD50 dose of malathion was found to cause stress-mediated responses in H9C2 cell line. Among all the polyphenols, gallic acid showed the most significant protection against stress. Gallic acid-enriched methanolic S. cumini pulp extract (MPE) showed 59.76 % ± 0.05, 81.61 % ± 1.37, 73.33 % ± 1.33, 77.19 % ± 2.38 and 64.19 % ± 1.43 maximum inhibition for DPPH, ABTS, NO, H2O2 and superoxide ion, respectively, as compared to ethanolic pulp extract and aqueous pulp extract. Our study suggests that S. cumini MPE has the ability to protect against the malathion-mediated oxidative stress in cardiac myocytes.

  5. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir.

    PubMed

    Hensel, Michael T; Marshall, Jason D; Dorwart, Michael R; Heeke, Darren S; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H; Eisenberg, Roselyn J; Sloan, Derek D

    2017-02-22

    Several prophylactic vaccines targeting HSV-2 have failed in the clinic to demonstrate a sustained depression in viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies, their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the neutralizing antibody (nAb) targets gD and gB, the novel T cell antigen and tegument protein UL40, and we compared this to a whole-inactivated virus vaccine (FI-HSV-2). We evaluated different formulations in combination with several Th1-inducing TLR agonists in vivo. In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted the most robust, functional HSV-2 antigen-specific CD8 T cell responses and high neutralizing antibodies, demonstrating superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)/alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of nAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses.IMPORTANCE Millions of people worldwide are infected with herpes simplex virus type 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on

  6. Antibody response that protects against disseminated candidiasis.

    PubMed Central

    Han, Y; Cutler, J E

    1995-01-01

    We previously showed that surface mannans of Candida albicans function as adhesins during yeast cell attachment to mouse splenic marginal zone macrophages. The mannan adhesin fraction was encapsulated into liposomes and used to vaccinate mice over a 5- to 6-week period. Circulating agglutinins specific for the fraction correlated with increased resistance to disseminated candidiasis. Antiserum from vaccinated animals protected naive BALB/cByJ mice against C. albicans serotype A and B strains and Candida tropicalis. Antiserum also protected SCID mice against disseminated disease. The serum protective ability was stable at 56 degrees C, but this ability was adsorbed by C. albicans cells. The antiserum was divided into three fractions after separation by high-performance liquid chromatography. One fraction contained all of the agglutinin activity and transferred resistance to naive mice. A second fraction also transferred resistance. Two monoclonal antibodies (MAbs) specific for candidal surface determinants were obtained. MAb B6.1 is specific for a mannan epitope in the adhesin fraction, and MAb B6 is specific for a different epitope in the fraction. Both MAbs are immunoglobulin M, and both strongly agglutinate candidal cells, but only MAb B6.1 protected both normal and SCID mice against disseminated candidiasis. In one experiment, 10 normal mice were given MAb B6.1 and challenged with yeast cells. Six mice survived the 67-day observation period; 4 of the survivors were cured as evidenced by the lack of CFU in the kidney and spleen. Our studies show that antibodies against certain cell surface antigens of C. albicans help the host resist disseminated candidiasis. PMID:7790089

  7. Dichotomy of protective cellular immune responses to human visceral leishmaniasis.

    PubMed

    Khalil, E A G; Ayed, N B; Musa, A M; Ibrahim, M E; Mukhtar, M M; Zijlstra, E E; Elhassan, I M; Smith, P G; Kieny, P M; Ghalib, H W; Zicker, F; Modabber, F; Elhassan, A M

    2005-05-01

    Healing/protective responses in human visceral leishmaniasis (VL) are associated with stimulation/production of Th1 cytokines, such as interferon IFN-gamma, and conversion in the leishmanin skin test (LST). Such responses were studied for 90 days in 44 adult healthy volunteers from VL non-endemic areas, with no past history of VL/cutaneous leishmaniasis (CL) and LST non-reactivity following injection with one of four doses of Alum-precipitated autoclaved Leishmania major (Alum/ALM) +/- bacille Calmette-Guerin (BCG), a VL candidate vaccine. The vaccine was well tolerated with minimal localized side-effects and without an increase in antileishmanial antibodies or interleukin (IL)-5. Five volunteers (5/44; 11.4%) had significant IFN-gamma production by peripheral blood mononuclear cells (PBMCs) in response to Leishmania antigens in their prevaccination samples (P = 0.001) but were LST non-reactive. On day 45, more than half the volunteers (26/44; 59.0%) had significantly high LST indurations (mean 9.2 +/- 2.7 mm) and high IFN-gamma levels (mean 1008 +/- 395; median 1247 pg/ml). Five volunteers had significant L. donovani antigen-induced IFN-gamma production (mean 873 +/- 290; median 902; P = 0.001), but were non-reactive in LST. An additional five volunteers (5/44; 11.4%) had low IFN-gamma levels (mean 110 +/- 124 pg/ml; median 80) and were non-reactive in LST (induration = 00 mm). The remaining eight volunteers had low IFN-gamma levels, but significant LST induration (mean 10 +/- 2.9 mm; median 11). By day 90 the majority of volunteers (27/44; 61.4%) had significant LST induration (mean 10.8 +/- 9.9 mm; P < 0.001), but low levels of L. donovani antigen-induced IFN-gamma (mean 66.0 +/- 62 pg/ml; P > 0.05). Eleven volunteers (11/44; 25%) had significantly high levels of IFN-gamma and LST induration, while five volunteers had low levels of IFN-gamma (<100 pg/ml) and no LST reactivity (00 mm). One volunteer was lost to follow-up. In conclusion, it is hypothesized that

  8. Cholinergic stimulation with pyridostigmine protects against exercise induced myocardial ischaemia

    PubMed Central

    Castro, R R T; Porphirio, G; Serra, S M; Nóbrega, A C L

    2004-01-01

    Objective: To determine the acute effects of pyridostigmine bromide, a reversible cholinesterase inhibitor, during exercise in patients with coronary artery disease. Design: Double blind, randomised, placebo controlled, crossover study. Setting: Outpatients evaluated in an exercise test laboratory. Patients: 15 patients with exercise induced myocardial ischaemia. Interventions: Maximal cardiopulmonary exercise test on a treadmill according to an individualised ramp protocol on three days. The first day was used for adaptation to the equipment and to determine exercise tolerance and the presence of exercise induced ischaemia. On the other two days, the cardiopulmonary exercise test was performed two hours after oral administration of pyridostigmine (45 mg) or placebo. All patients were taking their usual medication during the experiments. Main outcome measures: Rate–pressure product and oxygen uptake during exercise. Results: Pyridostigmine inhibited the submaximum chronotropic response (p  =  0.001), delaying the onset of myocardial ischaemia, which occurred at a similar rate–pressure product (mean (SE) placebo 20.55 (1.08) mm Hg × beats/min 103; pyridostigmine 19.75 (1.28) mm Hg × beats/min 103; p  =  0.27) but at a higher exercise intensity (oxygen consumption: placebo 18.6 (1.7) ml/kg/min; pyridostigmine 19.6 (1.8) ml/kg/min; p  =  0.03). Also, pyridostigmine increased peak oxygen consumption (placebo 23.6 (2) ml/kg/min; pyridostigmine 24.8 (2) ml/kg/min; p  =  0.01) and peak oxygen pulse (placebo 12.9 (1) ml/beat; pyridostigmine 13.6 (1) ml/beat; p  =  0.02). Conclusions: Pyridostigmine improved peak exercise tolerance and inhibited the chronotropic response to submaximum exercise, increasing the intensity at which myocardial ischaemia occurred. These results suggest that pyridostigmine can protect against exercise induced myocardial ischaemia. PMID:15367503

  9. CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel - induced cytotoxicity

    PubMed Central

    Qian, David Z.; Rademacher, Brooks L.S.; Pittsenbarger, Janet; Huang, Chung-Ying; Myrthue, Anne; Higano, Celestia S.; Garzotto, Mark; Nelson, Peter S.; Beer, Tomasz M.

    2010-01-01

    Background Metastatic prostate cancer is either inherently resistant to chemotherapy or rapidly acquires this phenotype after chemotherapy exposure. In this study, we identified a docetaxel-induced resistance mechanism centered on CCL2. Methods we compared the gene expression profiles in individual human prostate cancer specimens before and after exposure to chemotherapy collected from previously untreated patients who participated in a clinical trial of preoperative chemotherapy. Subsequently, we used the gain- and loss- of function approach in vitro to identify a potential mechanism underlying chemotherapy resistance. Results Among the molecular signatures associated with treatment, several genes that regulate the inflammatory response and chemokine activity were upregulated including a significant increase in transcripts encoding the CC chemokine CCL2. Docetaxel increased CCL2 expression in prostate cancer cell lines in vitro. CCL2 specific siRNA inhibited LNCaP and LAPC4 cell proliferation and enhanced the growth inhibitory effect of low-dose docetaxel. In contrast, overexpression of CCL2 or recombinant CCL2 protein stimulated prostate cancer cell proliferation and rescued cells from docetaxel-induced cytotoxicity. This protective effect of CCL2 was associated with activation of the ERK/MAP kinase and PI3K/AKT, inhibition of docetaxel-induced Bcl2 phosphorylation at serine 70, phosphorylation of Bad, and activation of caspase-3. The addition of a PI3K/AKT inhibitor Ly294002 reversed the CCL2 protection, and was additive to docetaxel induced toxicity. Conclusion These results support a mechanism of chemotherapy resistance mediated by cellular stress responses involving the induction of CCL2 expression, and suggest that inhibiting CCL2 activity could enhance therapeutic responses to taxane-based therapy. PMID:19866475

  10. A Federal Response: The President's Critical Infrastructure Protection Board.

    ERIC Educational Resources Information Center

    Schmidt, Howard

    2002-01-01

    Outlines the U.S. Critical Infrastructure Protection Board's purpose, budget, principles, and priorities. Describes the board's role in coordinating all federal activities related to protection of information systems and networks supporting critical infrastructures. Also discusses its responsibility in creating a policy and road map for government…

  11. A Federal Response: The President's Critical Infrastructure Protection Board.

    ERIC Educational Resources Information Center

    Schmidt, Howard

    2002-01-01

    Outlines the U.S. Critical Infrastructure Protection Board's purpose, budget, principles, and priorities. Describes the board's role in coordinating all federal activities related to protection of information systems and networks supporting critical infrastructures. Also discusses its responsibility in creating a policy and road map for government…

  12. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity.

    PubMed

    Vilela, Luciano R; Gobira, Pedro H; Viana, Thercia G; Medeiros, Daniel C; Ferreira-Vieira, Talita H; Doria, Juliana G; Rodrigues, Flávia; Aguiar, Daniele C; Pereira, Grace S; Massessini, André R; Ribeiro, Fabíola M; de Oliveira, Antonio Carlos P; Moraes, Marcio F D; Moreira, Fabricio A

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Potential protective effect of honey against paracetamol-induced hepatotoxicity.

    PubMed

    Galal, Reem M; Zaki, Hala F; Seif El-Nasr, Mona M; Agha, Azza M

    2012-11-01

    Paracetamol overdose causes severe hepatotoxicity that leads to liver failure in both humans and experimental animals. The present study investigates the protective effect of honey against paracetamol-induced hepatotoxicity in Wistar albino rats. We have used silymarin as a standard reference hepatoprotective drug. Hepatoprotective activity was assessed by measuring biochemical parameters such as the liver function enzymes, serum alanine aminotransferase (ALT) and serum aspartate aminotransferase (AST). Equally, comparative effects of honey on oxidative stress biomarkers such as malondialdyhyde (MDA), reduced glutathione (GSH) and glutathione peroxidase (GPx) were also evaluated in the rat liver homogenates.  We estimated the effect of honey on serum levels and hepatic content of interleukin-1beta (IL-1β) because the initial event in paracetamol-induced hepatotoxicity has been shown to be a toxic-metabolic injury that leads to hepatocyte death, activation of the innate immune response and upregulation of inflammatory cytokines. Paracetamol caused marked liver damage as noted by significant increased activities of serum AST and ALT as well as the level of Il-1β. Paracetamol also resulted in a significant decrease in liver GSH content and GPx activity which paralleled an increase in Il-1β and MDA levels. Pretreatment with honey and silymarin prior to the administration of paracetamol significantly prevented the increase in the serum levels of hepatic enzyme markers, and reduced both oxidative stress and inflammatory cytokines. Histopathological evaluation of the livers also revealed that honey reduced the incidence of paracetamol-induced liver lesions. Honey can be used as an effective hepatoprotective agent against paracetamol-induced liver damage.

  14. Protective host immune responses to Salmonella infection.

    PubMed

    Pham, Oanh H; McSorley, Stephen J

    2015-01-01

    Salmonella enterica serovars Typhi and Paratyphi are the causative agents of human typhoid fever. Current typhoid vaccines are ineffective and are not widely used in endemic areas. Greater understanding of host-pathogen interactions during Salmonella infection should facilitate the development of improved vaccines to combat typhoid and nontyphoidal Salmonellosis. This review will focus on our current understanding of Salmonella pathogenesis and the major host immune components that participate in immunity to Salmonella infection. In addition, recent findings regarding host immune mechanisms in response to Salmonella infection will be also discussed, providing a new perspective on the utility of improved tools to study the immune response to Salmonella infections.

  15. Protective host immune responses to Salmonella infection

    PubMed Central

    Pham, Oanh H; McSorley, Stephen J.

    2015-01-01

    Salmonella enterica serovars Typhi and Paratyphi are the causative agents of human typhoid fever. Current typhoid vaccines are ineffective and are not widely used in endemic areas. Greater understanding of host–pathogen interactions during Salmonella infection should facilitate the development of improved vaccines to combat typhoid and nontyphoidal Salmonellosis. This review will focus on our current understanding of Salmonella pathogenesis and the major host immune components that participate in immunity to Salmonella infection. In addition, recent findings regarding host immune mechanisms in response to Salmonella infection will be also discussed, providing a new perspective on the utility of improved tools to study the immune response to Salmonella infections. PMID:25598340

  16. Adaptive NK cell and KIR-expressing T cell responses are induced by CMV and are associated with protection against CMV reactivation after allogeneic donor hematopoietic cell transplantation1

    PubMed Central

    Davis, Zachary B.; Cooley, Sarah A.; Cichocki, Frank; Felices, Martin; Wangen, Rose; Luo, Xianghua; DeFor, Todd E.; Bryceson, Yenan T.; Diamond, Don J.; Brunstein, Claudio; Blazar, Bruce R.; Wagner, John E.; Weisdorf, Daniel J.; Horowitz, Amir; Guethlein, Lisbeth A.; Parham, Peter; Verneris, Michael R.; Miller, Jeffrey S.

    2015-01-01

    Cytomegalovirus (CMV) reactivates in >30% of CMV seropositive patients after allogeneic hematopoietic cell transplantation (HCT). Previously, we reported an increase of NK cells expressing NKG2C, CD57 and inhibitory killer-cell immunoglobulin-like receptors (KIRs) in response to CMV reactivation post-HCT. These NK cells persist after the resolution of infection and display ‘adaptive’ or memory properties. Despite these findings, the differential impact of persistent/inactive vs. reactivated CMV on NK vs. T cell maturation following HCT from different graft sources has not been defined. We compared the phenotype of NK and T cells from 292 recipients of allogeneic sibling (n = 118) or umbilical cord blood (UCB; n = 174) grafts based on recipient pre-transplant CMV serostatus and post-HCT CMV reactivation. This cohort was utilized to evaluate CMV-dependent increases in KIR-expressing NK cells exhibiting an ‘adaptive’ phenotype (NKG2C+CD57+). Compared to CMV seronegative recipients, those who reactivated CMV (React+) had the highest adaptive cell frequencies, while intermediate frequencies were observed in CMV seropositive recipients harboring persistent/non-replicating CMV. The same effect was observed in T cells and CD56+ T cells. These adaptive lymphocyte subsets were increased in CMV seropositive recipients of sibling, but not UCB grafts, and correlated with lower rates of CMV reactivation (sibling 33% vs. UCB 51%; p<0.01). These data suggest that persistent/non-replicating recipient CMV induces rapid production of adaptive NK and T cells from mature cells from sibling, but not UCB grafts. These adaptive lymphocytes are associated with protection from CMV reactivation. PMID:26055301

  17. Potato tuber wounding induces responses associated with various healing processes

    USDA-ARS?s Scientific Manuscript database

    Wounding induces an avalanche of biological responses involved in the healing and protection of internal tuber tissues exposed by mechanical damage and seed cutting. Collectively, our studies have framed a portrait of the mechanisms and regulation of potato tuber wound-healing, but much more is req...

  18. Systems analysis of protective immune responses to RTS,S malaria vaccination in humans.

    PubMed

    Kazmin, Dmitri; Nakaya, Helder I; Lee, Eva K; Johnson, Matthew J; van der Most, Robbert; van den Berg, Robert A; Ballou, W Ripley; Jongert, Erik; Wille-Reece, Ulrike; Ockenhouse, Christian; Aderem, Alan; Zak, Daniel E; Sadoff, Jerald; Hendriks, Jenny; Wrammert, Jens; Ahmed, Rafi; Pulendran, Bali

    2017-02-28

    RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4(+) T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.

  19. Protective effects of diallyl sulfide on acetaminophen-induced toxicities.

    PubMed

    Hu, J J; Yoo, J S; Lin, M; Wang, E J; Yang, C S

    1996-10-01

    Diallyl sulfide (DAS), a major flavour component of garlic, is known to modulate drug metabolism and may protect animals from chemically induced toxicity and carcinogenesis. In this study the effects of DAS on the oxidative metabolism and hepatotoxicity induced by acetaminophen (APAP) in rats were investigated. In the hepatotoxicity evaluation of Fischer 344 rats there was a dose-dependent increase in the odds of mortality rate by APAP (P = 0.009); DAS treatment significantly protected rats from APAP-related mortality (P = 0.026). Liver toxicity determined by lactate dehydrogenase activity was significantly increased by APAP treatment (0.75 g/kg). Pretreatment with DAS protected animals from APAP-induced liver toxicity in a time- and dose-dependent fashion. Treatment of DAS (50 mg/kg) 3 hr after APAP dosing significantly (P < 0.05) protected rats from APAP-induced liver toxicity. The metabolism of APAP (50 microM) in vitro was significantly inhibited by DAS (0.3-1 mM) in liver microsomes isolated from F344 rats. As the effect of DAS on APAP-induced hepatotoxicity in vivo was observed only when DAS was administered before or shortly after (< 3 hr) APAP dosing, data suggested that the protective effect of DAS is mainly at the metabolic activation step of APAP. However, the possibility that DAS may also have effects on other drug metabolism systems, such as glutathione (GSH) and glutathione S-transferases, cannot be ruled out.

  20. Minocycline Protection of Neomycin Induced Hearing Loss in Gerbils

    PubMed Central

    Robinson, Alan M.; Vujanovic, Irena; Richter, Claus-Peter

    2015-01-01

    This animal study was designed to determine if minocycline ameliorates cochlear damage is caused by intratympanic injection of the ototoxic aminoglycoside antibiotic neomycin. Baseline auditory-evoked brainstem responses were measured in gerbils that received 40 mM intratympanic neomycin either with 0, 1.2, or 1.5 mg/kg intraperitoneal minocycline. Four weeks later auditory-evoked brainstem responses were measured and compared to the baseline measurements. Minocycline treatments of 1.2 mg/kg and 1.5 mg/kg resulted in significantly lower threshold increases compared to 0 mg/kg, indicating protection of hearing loss between 6 kHz and 19 kHz. Cochleae were processed for histology and sectioned to allow quantification of the spiral ganglion neurons and histological evaluation of organ of Corti. Significant reduction of spiral ganglion neuron density was demonstrated in animals that did not receive minocycline, indicating that those receiving minocycline demonstrated enhanced survival of spiral ganglion neurons, enhanced survival of sensory hairs cells and spiral ganglion neurons, and reduced hearing threshold elevation correlates with minocycline treatment demonstrating that neomycin induced hearing loss can be reduced by the simultaneous application of minocycline. PMID:25950003

  1. Oral immunization with an attenuated vaccine strain of Salmonella typhimurium expressing the serine-rich Entamoeba histolytica protein induces an antiamebic immune response and protects gerbils from amebic liver abscess.

    PubMed Central

    Zhang, T; Stanley, S L

    1996-01-01

    Attenuated salmonellae represent attractive candidates for the delivery of foreign antigens by oral vaccination. In this report, we describe the high-level expression of a recombinant fusion protein containing the serine-rich Entamoeba histolytica protein (SREHP), a protective antigen derived from virulent amebae, and a bacterially derived maltose-binding protein (MBP) in an attenuated strain of Salmonella typhimurium. Mice and gerbils immunized with S. typhimurium expressing SREHP-MBP produced mucosal immunoglobulin A antiamebic antibodies and serum immunoglobulin G antiamebic antibodies. Gerbils vaccinated with S typhimurium SREHP-MBP were protected against amebic liver abscess, the most common extraintestinal complication of amebiasis. Our findings indicate that the induction of mucosal and immune responses to the amebic SREHP antigen is dependent on the level of SREHP-MBP expression in S. typhimurium and establish that oral vaccination with SREHP can produce protective immunity to invasive amebiasis. PMID:8613356

  2. Sulforaphane Attenuates Gentamicin-Induced Nephrotoxicity: Role of Mitochondrial Protection

    PubMed Central

    Huerta-Yepez, Sara; Medina-Campos, Omar Noel; Zatarain-Barrón, Zyanya Lucía; Hernández-Pando, Rogelio; Torres, Ismael; Tapia, Edilia; Pedraza-Chaverri, José

    2013-01-01

    Sulforaphane (SFN), an isothiocyanate naturally occurring in Cruciferae, induces cytoprotection in several tissues. Its protective effect has been associated with its ability to induce cytoprotective enzymes through an Nrf2-dependent pathway. Gentamicin (GM) is a widely used antibiotic; nephrotoxicity is the main side effect of this compound. In this study, it was investigated if SFN is able to induce protection against GM-induced nephropathy both in renal epithelial LLC-PK1 cells in culture and in rats. SFN prevented GM-induced death and loss of mitochondrial membrane potential in LLC-PK1 cells. In addition, it attenuated GM-induced renal injury (proteinuria, increases in serum creatinine, in blood urea nitrogen, and in urinary excretion on N-acetyl-β-D-glucosaminidase, and decrease in creatinine clearance and in plasma glutathione peroxidase activity) and necrosis and apoptosis in rats. The apoptotic death was associated with enhanced active caspase-9. Caspase-8 was unchanged in all the studied groups. In addition, SFN was able to prevent GM-induced protein nitration and decrease in the activity of antioxidant enzymes catalase and glutathione peroxidase in renal cortex. In conclusion, the protective effect of SFN against GM-induced acute kidney injury could be associated with the preservation in mitochondrial function that would prevent the intrinsic apoptosis and nitrosative stress. PMID:23662110

  3. [Mechanism of cytogenetic adaptive response induced by low dose radiation].

    PubMed

    Cai, L; Liu, S

    1990-11-01

    Cytogenetic observation on human lymphocytes indicated that pre-exposure of 10, 50 and 75 mGy X-rays could induced the adaptive response. Experimental results with different temperature treatment showed that the adaptive response induced by low dose radiation could be enhanced by 41 degrees C and 43 degrees C, but inhibited by 4 degrees C in addition the treatment by 41 degrees C for one hour could also cause the adaptive response as did low dose radiation. Results showed that adaptive response induced by low dose radiation (10 or 50 mGy X-rays) could be eliminated by the protein synthesis inhibitor, implying that the adaptive response is related with the metabolism of cells, especially with the production of certain protective proteins.

  4. 14-3-3 Protects against stress-induced apoptosis

    PubMed Central

    Clapp, C; Portt, L; Khoury, C; Sheibani, S; Norman, G; Ebner, P; Eid, R; Vali, H; Mandato, C A; Madeo, F; Greenwood, M T

    2012-01-01

    Expression of human Bax, a cardinal regulator of mitochondrial membrane permeabilization, causes death in yeast. We screened a human cDNA library for suppressors of Bax-mediated yeast death and identified human 14-3-3β/α, a protein whose paralogs have numerous chaperone-like functions. Here, we show that, yeast cells expressing human 14-3-3β/α are able to complement deletion of the endogenous yeast 14-3-3 and confer resistance to a variety of different stresses including cadmium and cycloheximide. The expression of 14-3-3β/α also conferred resistance to death induced by the target of rapamycin inhibitor rapamycin and by starvation for the amino acid leucine, conditions that induce autophagy. Cell death in response to these autophagic stimuli was also observed in the macroautophagic-deficient atg1Δ and atg7Δ mutants. Furthermore, 14-3-3β/α retained its ability to protect against the autophagic stimuli in these autophagic-deficient mutants arguing against so called ‘autophagic death'. In line, analysis of cell death markers including the accumulation of reactive oxygen species, membrane integrity and cell surface exposure of phosphatidylserine indicated that 14-3-3β/α serves as a specific inhibitor of apoptosis. Finally, we demonstrate functional conservation of these phenotypes using the yeast homolog of 14-3-3: Bmh1. In sum, cell death in response to multiple stresses can be counteracted by 14-3-3 proteins. PMID:22785534

  5. Protective immunity against Leishmania major induced by Leishmania tropica infection of BALB/c mice.

    PubMed

    Mahmoudzadeh-Niknam, Hamid; Kiaei, Simin Sadat; Iravani, Davood

    2011-02-01

    Leishmania (L.) tropica is a causative agent of human cutaneous and viscerotropic leishmaniasis. Immune response to L. tropica in humans and experimental animals are not well understood. We previously established that L. tropica infection induces partial protective immunity against subsequent challenge infection with Leishmania major in BALB/c mice. Aim of the present study was to study immunologic mechanisms of protective immunity induced by L. tropica infection, as a live parasite vaccine, in BALB/c mouse model. Mice were infected by L. tropica, and after establishment of the infection, they were challenged by L. major. Our findings shows that L. tropica infection resulted in protection against L. major challenge in BALB/c mice and this protective immunity is associated with: (1) a DTH response, (2) higher IFN-γ and lower IL-10 response at one week post-challenge, (3) lower percentage of CD4(+) lymphocyte at one month post-challenge, and (4) the source of IFN-γ and IL-10 were mainly CD4(-) lymphocyte up to one month post-challenge suggesting that CD4(-) lymphocytes may be responsible for protection induced by L. tropica infection in the studied intervals.

  6. A synthetic peptide induces long-term protection from lethal infection with herpes simplex virus 2

    PubMed Central

    1987-01-01

    Immunization against viral pathogens is generally directed toward the induction of virus neutralizing antibody (VNA) and the maintenance of the potential for a second-set (IgG) response. Indeed, an elevated level of specific antibody is considered a reliable clinical indicator that a state of immunity exists in the host. However, in the case of herpes simplex virus (HSV), the presence of circulating VNA does not necessarily correlate with protection. Thus, it has been found that secondary infections occur in individuals even with high neutralizing titers to HSV, suggesting that antibody to the virus may be useless or even deleterious. In consideration of these facts, we were interested in inducing a T cell response to HSV. We had already shown that synthetic peptides corresponding to the NH3-terminal region of the glycoprotein D (gD) molecule of HSV could induce a strong T cell response when injected into mice, but did not, by themselves, confer protection. In this report, we examined the ability of peptides, covalently coupled to palmitic acid and incorporated into liposomes, to induce virus-specific T cell responses that confer protection against a lethal challenge of HSV-2. We have demonstrated that long-term protective immunity is achieved with a single immunization in the absence of neutralizing antibody when antigen is presented in this form. Furthermore, T cells but not serum from such immune mice can adoptively transfer this protection. PMID:3029270

  7. Clusterin protects the lung from leukocyte-induced injury.

    PubMed

    Heller, Axel R; Fiedler, Fritz; Braun, Philipp; Stehr, Sebastian N; Bödeker, Hans; Koch, Thea

    2003-08-01

    Clusterin (CLU) is a multifunctional 75- to 80-kDa glycoprotein that is upregulated during cellular stress and might represent a defense mechanism during local cellular damage. Mechanisms discussed are antiapoptotic, antioxidative, and anticomplement properties as well as chaperone-like features protecting stressed proteins. The aim of this study was to investigate potential protective effects of CLU on pulmonary vasculature after in situ PMN activation in isolated rabbit lungs. The experiments were performed on 24 isolated and ventilated rabbit lungs that were perfused with 200 mL of Krebs-Henseleit-10% blood buffer with a constant flow of 150 mL/min in a recirculating system. It was tested whether pretreatment with CLU (2.5 microg/ml; n = 8) or catalase (CAT, 5000 U/ml; n = 8) before N-formyl-Met-Leu-Phe (fMLP; 10(-8) M) injection influenced pulmonary artery pressure (PAP) peak airway pressures (PAW) and edema formation as compared with controls (n = 8). Baseline values of PAP were 9-11 mmHg and PAW 11-13 cm H2O. Application of fMLP resulted in an acute significant (P < 0.01) increase of PAP (48 +/- 29 mmHg) within 2 min in the control group and PAW increased to 35 +/- 7 cm H2O within 30 min. Pretreatment with CLU completely suppressed the PAP and PAW response as a result of the fMLP challenge (P < 0.001), whereas a transient PAW increase up to 27 +/- 15 mmHg was observed after CAT. Complement factor C3a release was suppressed by CAT, whereas CLU blocked the complement cascade at the level of C5b-9 formation. Moreover, generation of thromboxane A(2) was reduced after CLU and CAT. Lung edema occurred in the fMLP group but was absent (P < 0.001) after CLU and CAT treatment. Both CLU and CAT prevented fMLP-induced lung injury. Stabilizing effects of CLU, point towards complement regulating features at the level of the terminal complement sequence. Elevated levels of CLU during inflammation could reflect a compensatory organ protective mechanism. Further studies are

  8. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle

    PubMed Central

    2013-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. The format of FMD virus-like particles (VLP) as a non-replicating particulate vaccine candidate is a promising alternative to conventional inactivated FMDV vaccines. In this study, we explored a prokaryotic system to express and assemble the FMD VLP and validated the potential of VLP as an FMDV vaccine candidate. VLP composed entirely of FMDV (Asia1/Jiangsu/China/2005) capsid proteins (VP0, VP1 and VP3) were simultaneously produced as SUMO fusion proteins by an improved SUMO fusion protein system in E. coli. Proteolytic removal of the SUMO moiety from the fusion proteins resulted in the assembly of VLP with size and shape resembling the authentic FMDV. Immunization of guinea pigs, swine and cattle with FMD VLP by intramuscular inoculation stimulated the FMDV-specific antibody response, neutralizing antibody response, T-cell proliferation response and secretion of cytokine IFN-γ. In addition, immunization with one dose of the VLP resulted in complete protection of these animals from homologous FMDV challenge. The 50% protection dose (PD50) of FMD VLP in cattle is up to 6.34. These results suggest that FMD VLP expressed in E. coli are an effective vaccine in guinea pigs, swine and cattle and support further development of these VLP as a vaccine candidate for protection against FMDV. PMID:23826638

  9. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle.

    PubMed

    Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Yang, Shun-Li; Wei, Yan-Quan; Sun, De-Hui; Yin, Shuang-Hui; Ma, Jun-Wu; Liu, Zai-Xin; Guo, Jian-Hong; Luo, Jian-Xun; Yin, Hong; Liu, Xiang-Tao; Liu, Ding Xiang

    2013-07-04

    Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. The format of FMD virus-like particles (VLP) as a non-replicating particulate vaccine candidate is a promising alternative to conventional inactivated FMDV vaccines. In this study, we explored a prokaryotic system to express and assemble the FMD VLP and validated the potential of VLP as an FMDV vaccine candidate. VLP composed entirely of FMDV (Asia1/Jiangsu/China/2005) capsid proteins (VP0, VP1 and VP3) were simultaneously produced as SUMO fusion proteins by an improved SUMO fusion protein system in E. coli. Proteolytic removal of the SUMO moiety from the fusion proteins resulted in the assembly of VLP with size and shape resembling the authentic FMDV. Immunization of guinea pigs, swine and cattle with FMD VLP by intramuscular inoculation stimulated the FMDV-specific antibody response, neutralizing antibody response, T-cell proliferation response and secretion of cytokine IFN-γ. In addition, immunization with one dose of the VLP resulted in complete protection of these animals from homologous FMDV challenge. The 50% protection dose (PD50) of FMD VLP in cattle is up to 6.34. These results suggest that FMD VLP expressed in E. coli are an effective vaccine in guinea pigs, swine and cattle and support further development of these VLP as a vaccine candidate for protection against FMDV.

  10. Protective Properties of Vaccinia Virus-Based Vaccines: Skin Scarification Promotes a Nonspecific Immune Response That Protects against Orthopoxvirus Disease

    PubMed Central

    Rice, Amanda D.; Adams, Mathew M.; Lindsey, Scott F.; Swetnam, Daniele M.; Manning, Brandi R.; Smith, Andrew J.; Burrage, Andrew M.; Wallace, Greg; MacNeill, Amy L.

    2014-01-01

    ABSTRACT The process of vaccination introduced by Jenner generated immunity against smallpox and ultimately led to the eradication of the disease. Procedurally, in modern times, the virus is introduced into patients via a process called scarification, performed with a bifurcated needle containing a small amount of virus. What was unappreciated was the role that scarification itself plays in generating protective immunity. In rabbits, protection from lethal disease is induced by intradermal injection of vaccinia virus, whereas a protective response occurs within the first 2 min after scarification with or without virus, suggesting that the scarification process itself is a major contributor to immunoprotection. IMPORTANCE These results show the importance of local nonspecific immunity in controlling poxvirus infections and indicate that the process of scarification should be critically considered during the development of vaccination protocols for other infectious agents. PMID:24760885

  11. Protective properties of vaccinia virus-based vaccines: skin scarification promotes a nonspecific immune response that protects against orthopoxvirus disease.

    PubMed

    Rice, Amanda D; Adams, Mathew M; Lindsey, Scott F; Swetnam, Daniele M; Manning, Brandi R; Smith, Andrew J; Burrage, Andrew M; Wallace, Greg; MacNeill, Amy L; Moyer, Richard W

    2014-07-01

    The process of vaccination introduced by Jenner generated immunity against smallpox and ultimately led to the eradication of the disease. Procedurally, in modern times, the virus is introduced into patients via a process called scarification, performed with a bifurcated needle containing a small amount of virus. What was unappreciated was the role that scarification itself plays in generating protective immunity. In rabbits, protection from lethal disease is induced by intradermal injection of vaccinia virus, whereas a protective response occurs within the first 2 min after scarification with or without virus, suggesting that the scarification process itself is a major contributor to immunoprotection. importance: These results show the importance of local nonspecific immunity in controlling poxvirus infections and indicate that the process of scarification should be critically considered during the development of vaccination protocols for other infectious agents. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Response of surge protection devices to fast rising pulses

    NASA Technical Reports Server (NTRS)

    Mindel, I. N.

    1980-01-01

    Two types of lightning protection modules incorporating leadless (pill type) Zener like devices were evaluated with regard to their ability to suppress EMP induced transients. Two series of tests were performed to evaluate the ability of these modules to react to fast rate of rise ( 1Kv/ns) transients, and the attenuation introduced and the ability to limit damped sinusoid pulses which may be induced due to an EMP resulting from a nuclear detonation.

  13. Response of surge protection devices to fast rising pulses

    NASA Technical Reports Server (NTRS)

    Mindel, I. N.

    1980-01-01

    Two types of lightning protection modules incorporating leadless (pill type) Zener like devices were evaluated with regard to their ability to suppress EMP induced transients. Two series of tests were performed to evaluate the ability of these modules to react to fast rate of rise ( 1Kv/ns) transients, and the attenuation introduced and the ability to limit damped sinusoid pulses which may be induced due to an EMP resulting from a nuclear detonation.

  14. Atypical adaptive and cross-protective responses against peroxide killing in a bacterial plant pathogen, Agrobacterium tumefaciens.

    PubMed

    Vattanaviboon, Paiboon; Eiamphungporn, Warawan; Mongkolsuk, Skorn

    2003-10-01

    Physiological adaptive and cross-protection responses to oxidants were investigated in Agrobacterium tumefaciens. Exposure of A. tumefaciens to sublethal concentrations of H2O2 induced adaptive protection to lethal concentrations of H2O2. Similar treatments with organic peroxide and menadione did not produce adaptive protection to subsequent exposure to lethal concentrations of these oxidants. Pretreatment of A. tumefaciens with an inducing concentration of menadione conferred cross-protection against H2O2, but not to tert-butyl hydroperoxide (tBOOH), killing. The menadione induced cross-protection to H2O2 was due to the compound's ability to highly induce the peroxide scavenging enzyme, catalase. The levels of catalase directly correlated with the bacterium's ability to survive H2O2 treatment. Some aspects of the oxidative stress response of A. tumefaciens differ from other bacteria, and these differences may be important in plant/microbe interactions.

  15. Protective effect of silymarin against chemical-induced cardiotoxicity

    PubMed Central

    Razavi, Bibi Marjan; Karimi, Gholamreza

    2016-01-01

    Cardiac disorders remain one of the most important causes of death in the world. Oxidative stress has been suggested as one of the molecular mechanisms involved in drug-induced cardiac toxicity. Recently, several natural products have been utilized in different studies with the aim to protect the progression of oxidative stress-induced cardiac disorders. There is a large body of evidence that administration of antioxidants may be useful in ameliorating cardiac toxicity. Silymarin, a polyphenolic flavonoid has been shown to have utility in several cardiovascular disorders. In this review, various studies in scientific databases regarding the preventive effects of silymarin against cardiotoxicity induced by chemicals were introduced. Although there are many studies representing the valuable effects of silymarin in different diseases, the number of researches relating to the possible cardiac protective effects of silymarin against drugs induced toxicity is rather limited. Results of these studies show that silymarin has a broad spectrum of cardiac protective activity against toxicity induced by some chemicals including metals, environmental pollutants, oxidative agents and anticancer drugs. Further studies are needed to establish the utility of silymarin in protection against cardiac toxicity. PMID:27803777

  16. Matrix-M™ adjuvation broadens protection induced by seasonal trivalent virosomal influenza vaccine.

    PubMed

    Cox, Freek; Saeland, Eirikur; Baart, Matthijs; Koldijk, Martin; Tolboom, Jeroen; Dekking, Liesbeth; Koudstaal, Wouter; Lövgren Bengtsson, Karin; Goudsmit, Jaap; Radošević, Katarina

    2015-12-08

    Influenza virus infections are responsible for significant morbidity worldwide and therefore it remains a high priority to develop more broadly protective vaccines. Adjuvation of current seasonal influenza vaccines has the potential to achieve this goal. To assess the immune potentiating properties of Matrix-M™, mice were immunized with virosomal trivalent seasonal vaccine adjuvated with Matrix-M™. Serum samples were isolated to determine the hemagglutination inhibiting (HAI) antibody titers against vaccine homologous and heterologous strains. Furthermore, we assess whether adjuvation with Matrix-M™ broadens the protective efficacy of the virosomal trivalent seasonal vaccine against vaccine homologous and heterologous influenza viruses. Matrix-M™ adjuvation enhanced HAI antibody titers and protection against vaccine homologous strains. Interestingly, Matrix-M™ adjuvation also resulted in HAI antibody titers against heterologous influenza B strains, but not against the tested influenza A strains. Even though the protection against heterologous influenza A was induced by the adjuvated vaccine, in the absence of HAI titers the protection was accompanied by severe clinical scores and body weight loss. In contrast, in the presence of heterologous HAI titers full protection against the heterologous influenza B strain without any disease symptoms was obtained. The results of this study emphasize the promising potential of a Matrix-M™-adjuvated seasonal trivalent virosomal influenza vaccine. Adjuvation of trivalent virosomal vaccine does not only enhance homologous protection, but in addition induces protection against heterologous strains and thus provides overall more potent and broad protective immunity.

  17. Tempol protects human lymphocytes from genotoxicity induced by cisplatin

    PubMed Central

    Khabour, Omar F; Alzoubi, Karem H; Mfady, Doa’a S; Alasseiri, Mohammed; Hasheesh, Taghrid F

    2014-01-01

    The use of cisplatin in treatments of human malignancies is limited by its side effects that include DNA damage and the subsequent risk of developing secondary cancer. In this study, we examined the possible protective effect of Tempol against DNA damage induced by cisplatin in human lymphocytes using chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) assays. Cisplatin induced significant elevation in the frequencies of CAs and SCEs in cultured human lymphocytes (P < 0.01). Treatment of lymphocytes with Tempol significantly lowered CAs and SCEs induced by cisplatin. Tempol alone did not affect spontaneous levels of SCEs and CAs observed in the control group (P > 0.05). In conclusion, Tempol protects human lymphocytes against genotoxicity induced by the anticancer drug cisplatin. PMID:24955171

  18. Significance and nature of bystander responses induced by various agents.

    PubMed

    Verma, Neha; Tiku, Ashu Bhan

    2017-07-01

    Bystander effects in a biological system are the responses shown by non-targeted neighbouring cells/tissues/organisms. These responses are triggered by factors released from targeted cells when exposed to a stress inducing agent. The biological response to stress inducing agents is complex, owing to the diversity of mechanisms and pathways activated in directly targeted and bystander cells. These responses are highly variable and can be either beneficial or hazardous depending on the cell lines tested, dose of agent used, experimental end points and time course selected. Recently non-targeted cells have even been reported to rescue the directly exposed cells by releasing protective signals that might be induced by non-targeted bystander responses. The nature of bystander signal/s is not yet clear. However, there are evidences suggesting involvement of ROS, RNS, protein factors and even DNA molecules leading to the activation of a number of signaling pathways. These can act independently or in a cascade, to induce events leading to changes in gene expression patterns that could elicit detrimental or beneficial effects. Many review articles on radiation induced bystander responses have been published. However, to the best of our knowledge, a comprehensive review on bystander responses induced by other genotoxic chemicals and stress inducing agents has not been published so far. Therefore, the aim of the present review is to give an overview of the literature on different aspects of bystander responses: agents that induce these responses, factors that can modulate bystander responses and the mechanisms involved. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Protective responses to sublytic complement in the retinal pigment epithelium

    PubMed Central

    Tan, Li Xuan; Toops, Kimberly A.; Lakkaraju, Aparna

    2016-01-01

    The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4−/− Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4−/− mice, indicating that they could be effective therapeutic approaches for macular degenerations. PMID:27432952

  20. Sestrin2 protects against acetaminophen-induced liver injury.

    PubMed

    Kim, Seung Jung; Kim, Kyu Min; Yang, Ji Hye; Cho, Sam Seok; Kim, Ji Young; Park, Su Jung; Lee, Sang Kyu; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2017-05-01

    Acetaminophen (APAP) overdose accounts for half of the cases of acute liver failure worldwide. We previously reported that Sestrin2 (Sesn2) protects against d-galactosamine/lipopolysaccharide-induced acute fulminant liver failure. In this study, we demonstrated that Sesn2 protects APAP-induced liver injury in mice, using a recombinant adenovirus encoding Sesn2 (Ad-Sesn2). First, we found that treatment of mice with toxic levels of APAP significantly reduced Sesn2 expression. Tail-vein injection with Ad-Sesn2 inhibited APAP-induced serum alanine aminotransferase and aspartate aminotransferase levels and markedly reduced hepatocyte degeneration and inflammatory cell infiltration. Additionally, APAP-induced glutathione depletion and reactive oxygen species generation were inhibited by Ad-Sesn2 treatment. Consistently, hepatic inflammatory gene expression and proinflammatory cytokine levels were also inhibited in Sesn2-infected mice, and we observed reduced APAP-mediated apoptotic signaling by terminal transferase-mediated dUTP nick-end labeling staining of the hepatic tissue. At a high dose of APAP, the mortality rate of Ad-Sesn2-infected mice was significantly lower than that of control mice. Furthermore, Sesn2 prevented APAP-induced damage through suppression of downstream mitogen-activated protein kinase pathway activation. Therefore, Sesn2 exerted a protective effect against APAP-induced acute liver damage by inhibiting oxidative stress and proinflammatory signaling. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    PubMed

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors.

  2. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    SciTech Connect

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  3. A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP) of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc) Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice.

    PubMed

    Sayeed, Md Abu; Bufano, Meagan Kelly; Xu, Peng; Eckhoff, Grace; Charles, Richelle C; Alam, Mohammad Murshid; Sultana, Tania; Rashu, Md Rasheduzzaman; Berger, Amanda; Gonzalez-Escobedo, Geoffrey; Mandlik, Anjali; Bhuiyan, Taufiqur Rahman; Leung, Daniel T; LaRocque, Regina C; Harris, Jason B; Calderwood, Stephen B; Qadri, Firdausi; Vann, W F; Kováč, Pavol; Ryan, Edward T

    2015-01-01

    Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc). We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg), vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1), effect of an adjuvant, and route of immunization. Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg). We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model. We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens.

  4. A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP) of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc) Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice

    PubMed Central

    Eckhoff, Grace; Charles, Richelle C.; Alam, Mohammad Murshid; Sultana, Tania; Rashu, Md. Rasheduzzaman; Berger, Amanda; Gonzalez-Escobedo, Geoffrey; Mandlik, Anjali; Bhuiyan, Taufiqur Rahman; Leung, Daniel T.; LaRocque, Regina C.; Harris, Jason B.; Calderwood, Stephen B.; Qadri, Firdausi; Vann, W. F.; Kováč, Pavol; Ryan, Edward T.

    2015-01-01

    Background Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). Methodology Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc). We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg), vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1), effect of an adjuvant, and route of immunization. Principle Findings Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg). We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model. Conclusion We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens. PMID:26154421

  5. Correlates of Vaccine-Induced Protection against Mycobacterium tuberculosis Revealed in Comparative Analyses of Lymphocyte Populations

    PubMed Central

    Kurtz, Sherry L.

    2015-01-01

    A critical hindrance to the development of a novel vaccine against Mycobacterium tuberculosis is a lack of understanding of protective correlates of immunity and of host factors involved in a successful adaptive immune response. Studies from our group and others have used a mouse-based in vitro model system to assess correlates of protection. Here, using this coculture system and a panel of whole-cell vaccines with varied efficacy, we developed a comprehensive approach to understand correlates of protection. We compared the gene and protein expression profiles of vaccine-generated immune peripheral blood lymphocytes (PBLs) to the profiles found in immune splenocytes. PBLs not only represent a clinically relevant cell population, but comparing the expression in these populations gave insight into compartmentally specific mechanisms of protection. Additionally, we performed a direct comparison of host responses induced when immune cells were cocultured with either the vaccine strain Mycobacterium bovis BCG or virulent M. tuberculosis. These comparisons revealed host-specific and bacterium-specific factors involved in protection against virulent M. tuberculosis. Most significantly, we identified a set of 13 core molecules induced in the most protective vaccines under all of the conditions tested. Further validation of this panel of mediators as a predictor of vaccine efficacy will facilitate vaccine development, and determining how each promotes adaptive immunity will advance our understanding of antimycobacterial immune responses. PMID:26269537

  6. Protective effects of isothiocyanates on blood-CSF barrier disruption induced by oxidative stress

    PubMed Central

    Alesi, Gina N.; Zhou, Ningna; Keep, Richard F

    2012-01-01

    The choroid plexuses (CPs) form the blood-cerebrospinal fluid (CSF) barrier (BCSFB) and play an important role in maintaining brain normal function and the brain response to injury. Many neurological disorders are associated with oxidative stress that can impact CP function. This study examined the effects of isothiocyanates, an abundant component in cruciferous vegetables, on H2O2-induced BCSFB disruption and CP cell death in vitro. It further examined the potential role of a transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), in isothiocyanate-induced protection. Sulforaphane (SF) significantly reduced H2O2-induced BCSFB disruption as assessed by transepithelial electrical resistance (29 ± 7% reduction vs. 92 ± 2% decrease in controls) and [3H]mannitol permeability. Allyl-isothiocyanate (AITC) had a similar protective effect. H2O2-induced epithelial cell death was also reduced by these isothiocyanates. In primary CP cells, SF and AITC reduced cell death by 42 ± 3% and 53 ± 10%, respectively. Similar protection was found in a CP cell line Z310. Protection was only found with pretreatment for 12–48 h and not with acute exposure (1 h). The protective effects of SF and AITC were associated with Nrf2 nuclear translocation and upregulated expression of antioxidative systems regulated by Nrf2, including heme oxygenase-1, NAD(P)H quinine oxidoreductase, and cysteine/glutamate exchange transporter. Thus isothiocyanates, as diet or medicine, may be a method for protecting BCSFB in neurological disorders. PMID:22573102

  7. Baicalein Protects Human Skin Cells against Ultraviolet B-Induced Oxidative Stress

    PubMed Central

    Oh, Min Chang; Piao, Mei Jing; Fernando, Pattage Madushan Dilhara Jayatissa; Han, Xia; Hewage, Susara Ruwan Kumara Madduma; Park, Jeong Eon; Ko, Mi Sung; Jung, Uhee; Kim, In Gyu; Hyun, Jin Won

    2016-01-01

    Baicalein (5,6,7-trihydroxy-2-phenyl-chromen-4-one) is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis. This study evaluated the protective effects of baicalein against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) radiation in a human keratinocyte cell line (HaCaT). Baicalein absorbed light within the wavelength range of UVB. In addition, baicalein decreased the level of intracellular reactive oxygen species (ROS) in response to UVB radiation. Baicalein protected cells against UVB radiation-induced DNA breaks, 8-isoprostane generation and protein modification in HaCaT cells. Furthermore, baicalein suppressed the apoptotic cell death by UVB radiation. These findings suggest that baicalein protected HaCaT cells against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging ROS. PMID:27257012

  8. Reformulated meat products protect against ischemia-induced cardiac damage.

    PubMed

    Asensio-Lopez, M C; Lax, A; Sanchez-Mas, J; Avellaneda, A; Planes, J; Pascual-Figal, D A

    2016-02-01

    The protective effects of the antioxidants present in food are of great relevance for cardiovascular health. This study evaluates whether the extracts from reformulated meat products with a reduction in fat and/or sodium content exert a cardioprotective effect against ischemia-induced oxidative stress in cardiomyocytes, compared with non-meat foods. Ischemic damage caused loss of cell viability, increased reactive oxygen species and lipid peroxidation and decreased the antioxidant activity. Pretreatment for 24 h with digested or non-digested extracts from reformulated meat products led to protection against ischemia-induced oxidative damage: increased cell viability, reduced oxidative stress and restored the antioxidant activity. Similar results were obtained using extracts from tuna fish, but not with the extracts of green peas, salad or white beans. These results suggest that reformulated meat products have a beneficial impact in protecting cardiac cells against ischemia, and they may represent a source of natural antioxidants with benefits for cardiovascular health.

  9. Recombinant domains III of Tick-Borne Encephalitis Virus envelope protein in combination with dextran and CpGs induce immune response and partial protectiveness against TBE virus infection in mice.

    PubMed

    Ershova, Anna S; Gra, Olga A; Lyaschuk, Alexander M; Grunina, Tatyana M; Tkachuk, Artem P; Bartov, Mikhail S; Savina, Darya M; Sergienko, Olga V; Galushkina, Zoya M; Gudov, Vladimir P; Kozlovskaya, Liubov I; Kholodilov, Ivan S; Gmyl, Larissa V; Karganova, Galina G; Lunin, Vladimir G; Karyagina, Anna S; Gintsburg, Alexander L

    2016-10-07

    E protein of tick-borne encephalitis virus (TBEV) and other flaviviruses is located on the surface of the viral particle. Domain III of this protein seems to be a promising component of subunit vaccines for prophylaxis of TBE and kits for diagnostics of TBEV. Three variants of recombinant TBEV E protein domain III of European, Siberian and Far Eastern subtypes fused with dextran-binding domain of Leuconostoc citreum KM20 were expressed in E. coli and purified. The native structure of domain III was confirmed by ELISA antibody kit and sera of patients with tick-borne encephalitis. Immunogenic and protective properties of the preparation comprising these recombinant proteins immobilized on a dextran carrier with CpG oligonucleotides as an adjuvant were investigated on the mice model. All 3 variants of recombinant proteins immobilized on dextran demonstrate specific interaction with antibodies from the sera of TBE patients. Thus, constructed recombinant proteins seem to be promising for TBE diagnostics. The formulation comprising the 3 variants of recombinant antigens immobilized on dextran and CpG oligonucleotides, induces the production of neutralizing antibodies against TBEV of different subtypes and demonstrates partial protectivity against TBEV infection. Studied proteins interact with the sera of TBE patients, and, in combination with dextran and CPGs, demonstrate immunogenicity and limited protectivity on mice compared with reference "Tick-E-Vac" vaccine.

  10. Immune responses in mice against herpes simplex virus: mechanisms of protection against facial and ganglionic infections.

    PubMed Central

    Zweerink, H J; Martinez, D; Lynch, R J; Stanton, L W

    1981-01-01

    We performed experiments with mice to determine the nature of the immune response(s) that prevents primary infections of the skin and the trigeminal ganglia with herpes simplex virus. Immunization with infectious herpes simplex virus, inactivated virus, or material enriched for viral glycoproteins protected hairless mice against primary facial and ganglionic infections. Live and inactivated viruses induced neutralizing antibodies, whereas glycoprotein material did not. Instead, glycoprotein material induced antibodies that were largely directed against two glycopolypeptides with molecular weights of 120,000 to 130,000. Hairless mice immunized with glycoprotein material responded faster than control mice in the synthesis of neutralizing antibodies after challenge with infectious virus. Congenital athymic BALB/c (nu/nu) mice were protected against primary facial infections after immunization with glycoprotein material, but glycoprotein-specific antibodies were not induced. Images PMID:6260662

  11. Protective Effect of Proanthocyanidins in Cadmium Induced Neurotoxicity in Mice.

    PubMed

    Dong, C

    2015-10-01

    Cadmium (Cd) is a potent neurotoxic heavy metal, known to induce oxidative stress and membrane disturbances in brain. Proanthocyanidins (PACs), the most abundant polyphenol class in the human diet, have protective effects on oxidative stress and other metabolic disorders. Based on the cellular protective effect of PACs, we aimed to investigate whether PACs could protect the neuronal cells from Cd-induced excitotoxicity. The experiment was carried out on mice model and also in primary culture of hippocampal neurons isolated from neonatal mice. The Cd-induced changes in acetylcholinesterase (AChE) activity, oxidative stress markers (lipid peroxidation/lipid hydroperoxidation), antioxidant status and Akt phosphorylation were measured in the mice brain with or without PACs treatment. Mice intoxicated with cadmium (5 mg/kg/day) for 4 weeks had significantly (p<0.05) reduced the AChE levels, elevated the levels of oxidative stress markers along with the significant (p<0.05) decrease in the levels of both enzymatic antioxidants and non-enzymatic antioxidants in mice brain tissue. In contrast, administration of PACs (100 mg/kg/day) for 4 weeks in cadmium-intoxicated mice had significantly (p<0.05) protected the cadmium-mediated changes. In addition, PACs treatment in cultured mice hippocampal neurons had protected Cd-induced excitotoxicity by activating Akt phosphorylation, decreasing the caspase-3 level and improving the neuronal cell survival rate up to 24 h. Altogether, our data suggest that PACs plays a crucial role on neuroprotection in combating the cadmium induced oxidative neurotoxicity in mice brain by influencing the activation of AChE/Akt phosphorylation, antioxidant status, controlling the membrane damage (lipid peroxidation) and apoptotic protein caspase-3. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Protective role of tetrahydrocurcumin against erythromycin estolate-induced hepatotoxicity.

    PubMed

    Pari, L; Murugan, P

    2004-05-01

    Tetrahydrocurcumin (THC), one of the major metabolites of curcumin, was investigated for its possible hepatoprotective effect in Wistar rats against erythromycin estolate-induced toxicity. Oral administration of THC significantly prevented the occurrence of erythromycin estolate-induced liver damage. The increased level of serum enzymes (aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP)), bilirubin, cholesterol, triglycerides, phospholipids, free fatty acids and plasma thiobarbituric acid reactive substances (TBARS) and hydroperoxides observed in rats treated with erythromycin estolate were very much reduced in rats treated with THC and erythromycin estolate. This biochemical observation were supplemented by histopathological examination of liver section. Results of this study revealed that THC could afford a significant protection against erthromycin estolate-induced hepatocellular damage. Tetrahydrocurcumin had a better protective effect when compared with Silymarin, a reference drug.

  13. Promethazine protects against 3-nitropropionic acid-induced neurotoxicity.

    PubMed

    Cleren, Carine; Calingasan, Noel Y; Starkov, Anatoly; Jacquard, Carine; Chen, Junya; Brouillet, Emmanuel; Beal, M Flint

    2010-01-01

    Promethazine (PMZ), an FDA-approved antihistaminergic drug, was identified as a potentially neuroprotective compound in a NINDS screening program. It was shown to protect against ischemia in mice, to delay disease onset in a mouse model of amyotrophic lateral sclerosis and to inhibit Ca(2+)-induced mitochondrial permeability transition in rat liver mitochondria. We investigated whether PMZ could protect against the neurotoxic effects induced by 3-nitropropionic acid (3-NP), an inhibitor of the succinate dehydrogenase, used to model Huntington's disease (HD) in rats. Lewis rats receiving chronic subcutaneous infusion of 3-NP were treated with PMZ. The findings indicate that chronic PMZ treatment significantly reduced 3-NP-induced striatal lesion volume, loss of GABAergic neurons and number of apoptotic cells in the striatum. PMZ showed a strong neuroprotective effect against 3-NP toxicity in vivo. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Promethazine protects against 3-nitropropionic acid-induced neurotoxicity

    PubMed Central

    Cleren, Carine; Calingasan, Noel Y.; Starkov, Anatoly; Jacquard, Carine; Chen, Junya; Brouillet, Emmanuel; Beal, M. Flint

    2015-01-01

    Promethazine (PMZ), an FDA-approved antihistaminergic drug, was identified as a potentially neuroprotective compound in a NINDS screening program. It was shown to protect against ischemia in mice, to delay disease onset in a mouse model of amyotrophic lateral sclerosis and to inhibit Ca2+-induced mitochondrial permeability transition in rat liver mitochondria. We investigated whether PMZ could protect against the neurotoxic effects induced by 3-nitropropionic acid (3-NP), an inhibitor of the succinate dehydrogenase, used to model Huntington's disease (HD) in rats. Lewis rats receiving chronic subcutaneous infusion of 3-NP were treated with PMZ. The findings indicate that chronic PMZ treatment significantly reduced 3-NP-induced striatal lesion volume, loss of GABAergic neurons and number of apoptotic cells in the striatum. PMZ showed a strong neuroprotective effect against 3-NP toxicity in vivo. PMID:19852992

  15. Imipramine protects mouse hippocampus against tunicamycin-induced cell death.

    PubMed

    Ono, Yoko; Shimazawa, Masamitsu; Ishisaka, Mitsue; Oyagi, Atsushi; Tsuruma, Kazuhiro; Hara, Hideaki

    2012-12-05

    Endoplasmic reticulum (ER) stress is implicated in various diseases. Recently, some reports have suggested that the sigma-1 receptor may play a role in ER stress, and many antidepressants have a high affinity for the sigma-1 receptor. In the present study, we focused on imipramine, a widely used antidepressant, and investigated whether it might protect against the neuronal cell death induced by tunicamycin, an ER stress inducer. In mouse cultured hippocampal HT22 cells, imipramine inhibited cell death and caspase-3 activation induced by tunicamycin, although it did not alter the elevated expressions of 78 kDa glucose-regulated protein (GRP78) and C/EBP-homologous protein (CHOP). Interestingly, in such cells application of imipramine normalized the expression of the sigma-1 receptor, which was decreased by treatment with tunicamycin alone. Additionally, NE-100, a selective sigma-1 receptor antagonist, abolished the protective effect of imipramine against such tunicamycin-induced cell death. Imipramine inhibited the reduction of mitochondrial membrane potential induced by tunicamycin, and NE-100 blocked this modulating effect of imipramine. Furthermore, in anesthetized mice intracerebroventricular administration of tunicamycin decreased the number of neuronal cells in the hippocampus, particularly in the CA1 and dentate gyrus (DG) areas, and 7 days' imipramine treatment (10mg/kg/day; i.p.) significantly suppressed these reductions in CA1 and DG. These findings suggest that imipramine protects against ER stress-induced hippocampal neuronal cell death both in vitro and in vivo. Such protection may be partly due to the sigma-1 receptor.

  16. Pigment Epithelium Derived Factor Peptide Protects Murine Hepatocytes from Carbon Tetrachloride-Induced Injury

    PubMed Central

    Shih, Shou-Chuan; Ho, Tsung-Chuan; Chen, Show-Li; Tsao, Yeou-Ping

    2016-01-01

    Fibrogenesis is induced by repeated injury to the liver and reactive regeneration and leads eventually to liver cirrhosis. Pigment epithelium derived factor (PEDF) has been shown to prevent liver fibrosis induced by carbon tetrachloride (CCl4). A 44 amino acid domain of PEDF (44-mer) was found to have a protective effect against various insults to several cell types. In this study, we investigated the capability of synthetic 44-mer to protect against liver injury in mice and in primary cultured hepatocytes. Acute liver injury, induced by CCl4, was evident from histological changes, such as cell necrosis, inflammation and apoptosis, and a concomitant reduction of glutathione (GSH) and GSH redox enzyme activities in the liver. Intraperitoneal injection of the 44-mer into CCl4-treated mice abolished the induction of AST and ALT and markedly reduced histological signs of liver injury. The 44-mer treatment can reduce hepatic oxidative stress as evident from lower levels of lipid hydroperoxide, and higher levels of GSH. CCl4 caused a reduction of Bcl-xL, PEDF and PPARγ, which was markedly restored by the 44-mer treatment. Consequently, the 44-mer suppressed liver fibrosis induced by repeated CCl4 injury. Furthermore, our observations in primary culture of rat hepatocytes showed that PEDF and the 44-mer protected primary rat hepatocytes against apoptosis induced by serum deprivation and TGF-β1. PEDF/44-mer induced cell protective STAT3 phosphorylation. Pharmacological STAT3 inhibition prevented the antiapoptotic action of PEDF/44-mer. Among several PEDF receptor candidates that may be responsible for hepatocyte protection, we demonstrated that PNPLA2 was essential for PEDF/44-mer-mediated STAT3 phosphorylation and antiapoptotic activity by using siRNA to selectively knockdown PNPLA2. In conclusion, the PEDF 44-mer protects hepatocytes from single and repeated CCl4 injury. This protective effect may stem from strengthening the counter oxidative stress capacity and

  17. Salidroside protects cortical neurons against glutamate-induced cytotoxicity by inhibiting autophagy.

    PubMed

    Yin, Wei-Yong; Ye, Qiang; Huang, Huan-Jie; Xia, Nian-Ge; Chen, Yan-Yan; Zhang, Yi; Qu, Qiu-Min

    2016-08-01

    Recent evidence suggests that glutamate-induced cytotoxicity contributes to autophagic neuron death and is partially mediated by increased oxidative stress. Salidroside has been demonstrated to have neuroprotective effects in glutamate-induced neuronal damage. The precise mechanism of its regulatory role in neuronal autophagy is, however, poorly understood. This study aimed to probe the effects and mechanisms of salidroside in glutamate-induced autophagy activation in cultured rat cortical neurons. Cell viability assay, Western blotting, coimmunoprecipitation, and small interfering RNA were performed to analyze autophagy activities during glutamate-evoked oxidative injury. We found that salidroside protected neonatal neurons from glutamate-induced apoptotic cell death. Salidroside significantly attenuated the LC3-II/LC3-I ratio and expression of Beclin-1, but increased (SQSTM1)/p62 expression under glutamate exposure. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, decreased LC3-II/LC3-I ratio, attenuated glutamate-induced cell injury, and mimicked some of the protective effects of salidroside against glutamate-induced cell injury. Molecular analysis demonstrated that salidroside inhibited cortical neuron autophagy in response to glutamate exposure through p53 signaling by increasing the accumulation of cytoplasmic p53. Salidroside inhibited the glutamate-induced dissociation of the Bcl-2-Beclin-1 complex with minor affects on the PI3K/Akt/mTOR signaling pathways. These data demonstrate that the inhibition of autophagy could be responsible for the neuroprotective effects of salidroside on glutamate-induced neuronal injury.

  18. Inducible epithelial resistance protects mice against leukemia-associated pneumonia.

    PubMed

    Leiva-Juárez, Miguel M; Ware, Hayden H; Kulkarni, Vikram V; Zweidler-McKay, Patrick A; Tuvim, Michael J; Evans, Scott E

    2016-08-18

    Despite widespread infection prevention efforts, pneumonia remains the leading cause of death among patients with acute leukemia, due to complex disease- and treatment-dependent immune defects. We have reported that a single inhaled treatment with a synergistic combination of Toll-like receptor 2/6 (TLR 2/6) and TLR9 agonists (Pam2-ODN) induces protective mucosal defenses in mice against a broad range of pathogens. As Pam2-ODN-induced protection persists despite depletion of several leukocyte populations, we tested whether it could prevent pneumonia in a mouse model of acute myeloid leukemia (AML) remission induction therapy. Pam2-ODN prevented death due to pneumonia caused by Pseudomonas aeruginosa, Streptococcus pneumoniae, and Aspergillus fumigatus when mice were heavily engrafted with leukemia cells, had severe chemotherapy-induced neutropenia or both. Pam2-ODN also extended survival of pneumonia in NSG mice engrafted with primary human AML cells. Protection was associated with rapid pathogen killing in the lungs at the time of infection and with reduced pathogen burdens at distant sites at the end of observation. Pathogen killing was inducible directly from isolated lung epithelial cells and was not abrogated by the presence of leukemia cells or cytotoxic agents. Pam2-ODN had no discernible effect on replication rate, total tumor population, or killing by chemotherapy of mouse or human leukemia cells, either in vitro or in vivo. Taken together, we report that therapeutic stimulation of lung epithelial defenses robustly protects against otherwise lethal pneumonias despite the profound immune dysfunction associated with acute leukemia and its treatment. These findings may suggest an opportunity to protect this population during periods of peak vulnerability. © 2016 by The American Society of Hematology.

  19. DT-diaphorase protects astrocytes from aminochrome-induced toxicity.

    PubMed

    Huenchuguala, Sandro; Muñoz, Patricia; Graumann, Rebecca; Paris, Irmgard; Segura-Aguilar, Juan

    2016-07-01

    Astrocytes are exposed to aminochrome via the oxidation of dopamine that is taken up from the synaptic cleft after its release from dopaminergic neurons. Glutathione transferase M2-2 (GSTM2) has been shown to protect astrocytes from aminochrome-induced toxicity, but astrocytes also express DT-diaphorase, which has been shown to prevent aminochrome-induced neurotoxicity in dopaminergic neurons. Therefore, the question is whether DT-diaphorase also protects astrocytes from aminochrome-induced toxicity. DT-diaphorase is constitutively expressed in U373MG cells, and its inhibition by dicoumarol induced a significant increase of aminochrome-induced cell death. However, the inhibition of DT-diaphorase in U373MGsiGST6 cells, which have 74% of GSTM2 gene expression silenced, resulted in a more than 2-fold increase in cell death, suggesting that DT-diaphorase plays an important role in preventing aminochrome-induced toxicity in astrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Protection against Lipopolysaccharide-Induced Death by Fluoroquinolones

    PubMed Central

    Khan, Anis A.; Slifer, Teri R.; Araujo, Fausto G.; Suzuki, Yasuhiro; Remington, Jack S.

    2000-01-01

    Because fluoroquinolones have an immunomodulatory effect on cytokine production by lipopolysaccharide (LPS)-treated human monocytes, we examined the effect of fluoroquinolones on the survival of mice injected with a lethal dose of LPS. Trovafloxacin (100 mg/kg), ciprofloxacin (250 mg/kg), and tosufloxacin (100 mg/kg) protected 75% (P = 0.0001), 25% (P = 0.002), and 50% (P = 0.002), respectively, of mice against death. The fluoroquinolones significantly reduced serum levels of interleukin-6 and tumor necrosis factor alpha in LPS-treated mice. The protective effects of fluoroquinolones in LPS-induced shock in mice may also occur in humans. PMID:11036044

  1. Lactoferrin Protects Against Acetaminophen-Induced Liver Injury in Mice

    PubMed Central

    Yin, Hao; Cheng, Linling; Holt, Michael; Hail, Numsen; MacLaren, Robert; Ju, Cynthia

    2010-01-01

    Acetaminophen-induced liver injury (AILI) is a significant health problem and represents the most frequent cause of drug-induced liver failure in the United States. The development and implementation of successful therapeutic intervention strategies have been demanding, due to significant limitations associated with the current treatment for AILI. Lactoferrin (Lac), a glycoprotein present in milk, has been demonstrated to possess a multitude of biological functions. Our study demonstrated a profound protective effect of Lac in a murine model of AILI, which was not dependent on its iron binding ability, inhibition of acetaminophen (APAP) metabolism, or a direct cytoprotective effect on hepatocytes. Instead, Lac treatment significantly attenuated APAP-induced liver sinusoidal endothelial cell dysfunction and ameliorated hepatic microcirculation disorder. This protective effect of Lac appeared to be dependent on hepatic resident macrophages (Kupffer cells, KC). Collectively, our data indicated that Lac, through activation of KC, inhibited APAP-induced liver sinusoidal endothelial cell damage and improved hepatic congestion, thereby protecting against AILI. These findings reveal the significant therapeutic potential of Lac during AILI and other types of liver diseases. PMID:20099297

  2. Protective role of misoprostol against cisplatin-induced ototoxicity.

    PubMed

    Doğan, Murat; Polat, Halil; Yaşar, Mehmet; Kaya, Altan; Bayram, Ali; Şenel, Fatma; Özcan, İbrahim

    2016-11-01

    Cis-diammineedichloroplatinum (cisplatin) is a chemotherapeutic agent that is widely used in the treatment of many cancers. Nephrotoxicity, ototoxicity and neurotoxicity are dose-limiting adverse effects for cisplatin. The cellular and molecular mechanisms underlying cisplatin-induced ototoxicity aren't fully understood. It has been proposed that cisplatin primarily cause damage at the cochlea, outer hair cells in particular, leading to excessive production of free oxygen radicals in the organ of Corti, stria vascularis, spiral ligament, and spiral ganglionic cells. The cytotoxicity is associated with the generation of reactive oxygen species (ROS); thus, there is an increasing interest on antioxidants with an effort to discover the established protection against cisplatin-induced ototoxicity over time. Misoprostol (MP) has gained considerable interest as a reactive oxygen species scavenger in recent years. To best of our knowledge, there is no study about protective effect of MP, a prostaglandin E1 (PGE1) analogue, on cisplatin-induced ototoxicity. In our study, we show that protective effects of misoprostol on cisplatin-induced ototoxcity on rats.

  3. Exercise protects against methamphetamine-induced aberrant neurogenesis

    PubMed Central

    Park, Minseon; Levine, Harry; Toborek, Michal

    2016-01-01

    While no effective therapy is available for the treatment of methamphetamine (METH)-induced neurotoxicity, aerobic exercise is being proposed to improve depressive symptoms and substance abuse outcomes. The present study focuses on the effect of exercise on METH-induced aberrant neurogenesis in the hippocampal dentate gyrus in the context of the blood-brain barrier (BBB) pathology. Mice were administered with METH or saline by i.p. injections for 5 days with an escalating dose regimen. One set of mice was sacrificed 24 h post last injection of METH, and the remaining animals were either subjected to voluntary wheel running (exercised mice) or remained in sedentary housing (sedentary mice). METH administration decreased expression of tight junction (TJ) proteins and increased BBB permeability in the hippocampus. These changes were preserved post METH administration in sedentary mice and were associated with the development of significant aberrations of neural differentiation. Exercise protected against these effects by enhancing the protein expression of TJ proteins, stabilizing the BBB integrity, and enhancing the neural differentiation. In addition, exercise protected against METH-induced systemic increase in inflammatory cytokine levels. These results suggest that exercise can attenuate METH-induced neurotoxicity by protecting against the BBB disruption and related microenvironmental changes in the hippocampus. PMID:27677455

  4. Exercise protects against methamphetamine-induced aberrant neurogenesis.

    PubMed

    Park, Minseon; Levine, Harry; Toborek, Michal

    2016-09-28

    While no effective therapy is available for the treatment of methamphetamine (METH)-induced neurotoxicity, aerobic exercise is being proposed to improve depressive symptoms and substance abuse outcomes. The present study focuses on the effect of exercise on METH-induced aberrant neurogenesis in the hippocampal dentate gyrus in the context of the blood-brain barrier (BBB) pathology. Mice were administered with METH or saline by i.p. injections for 5 days with an escalating dose regimen. One set of mice was sacrificed 24 h post last injection of METH, and the remaining animals were either subjected to voluntary wheel running (exercised mice) or remained in sedentary housing (sedentary mice). METH administration decreased expression of tight junction (TJ) proteins and increased BBB permeability in the hippocampus. These changes were preserved post METH administration in sedentary mice and were associated with the development of significant aberrations of neural differentiation. Exercise protected against these effects by enhancing the protein expression of TJ proteins, stabilizing the BBB integrity, and enhancing the neural differentiation. In addition, exercise protected against METH-induced systemic increase in inflammatory cytokine levels. These results suggest that exercise can attenuate METH-induced neurotoxicity by protecting against the BBB disruption and related microenvironmental changes in the hippocampus.

  5. Induced hypernatraemia is protective in acute lung injury.

    PubMed

    Bihari, Shailesh; Dixon, Dani-Louise; Lawrence, Mark D; Bersten, Andrew D

    2016-06-15

    Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Antigen-Pulsed CpG-ODN-Activated Dendritic Cells Induce Host-Protective Immune Response by Regulating the T Regulatory Cell Functioning in Leishmania donovani-Infected Mice: Critical Role of CXCL10

    PubMed Central

    Majumder, Saikat; Bhattacharjee, Amrita; Paul Chowdhury, Bidisha; Bhattacharyya Majumdar, Suchandra; Majumdar, Subrata

    2014-01-01

    Visceral leishmaniasis (VL), caused by Leishmania donovani, is a systemic infection of reticulo-endothelial system. There is currently no protective vaccine against VL and chemotherapy is increasingly limited due to appearance of drug resistance to first line drugs such as antimonials and amphotericin B. In the present study, by using a murine model of leishmaniasis we evaluated the function played by soluble leishmanial antigen (SLA)-pulsed CpG-ODN-stimulated dendritic cells (SLA–CpG–DCs) in restricting the intracellular parasitic growth. We establish that a single dose of SLA–CpG–DC vaccination is sufficient in rendering complete protection against L. donovani infection. In probing the possible mechanism, we observe that SLA–CpG–DCs vaccination results in the significant decrease in Foxp3+GITR+CTLA4+CD4+CD25+ regulatory T cells (Treg) cell population in Leishmania-infected mice. Vaccination with these antigen-stimulated dendritic cells results in the decrease in the secretion of TGF-β by these Treg cells by possible regulation of the SMAD signaling. Moreover, we demonstrate that a CXC chemokine, IFN-γ-inducible protein 10 (IP-10; CXCL10), has a direct role in the regulation of CD4+CD25+ Treg cells in SLA–CpG–DC-vaccinated parasitized mice as Treg cells isolated from IP-10-depleted vaccinated mice showed significantly increased TGF-β production and suppressive activity. PMID:24926293

  7. Convolution models for induced electromagnetic responses

    PubMed Central

    Litvak, Vladimir; Jha, Ashwani; Flandin, Guillaume; Friston, Karl

    2013-01-01

    In Kilner et al. [Kilner, J.M., Kiebel, S.J., Friston, K.J., 2005. Applications of random field theory to electrophysiology. Neurosci. Lett. 374, 174–178.] we described a fairly general analysis of induced responses—in electromagnetic brain signals—using the summary statistic approach and statistical parametric mapping. This involves localising induced responses—in peristimulus time and frequency—by testing for effects in time–frequency images that summarise the response of each subject to each trial type. Conventionally, these time–frequency summaries are estimated using post‐hoc averaging of epoched data. However, post‐hoc averaging of this sort fails when the induced responses overlap or when there are multiple response components that have variable timing within each trial (for example stimulus and response components associated with different reaction times). In these situations, it is advantageous to estimate response components using a convolution model of the sort that is standard in the analysis of fMRI time series. In this paper, we describe one such approach, based upon ordinary least squares deconvolution of induced responses to input functions encoding the onset of different components within each trial. There are a number of fundamental advantages to this approach: for example; (i) one can disambiguate induced responses to stimulus onsets and variably timed responses; (ii) one can test for the modulation of induced responses—over peristimulus time and frequency—by parametric experimental factors and (iii) one can gracefully handle confounds—such as slow drifts in power—by including them in the model. In what follows, we consider optimal forms for convolution models of induced responses, in terms of impulse response basis function sets and illustrate the utility of deconvolution estimators using simulated and real MEG data. PMID:22982359

  8. Protective effects of Asian green vegetables against oxidant induced cytotoxicity

    PubMed Central

    Rose, Peter; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    AIM: To evaluate the antioxidant and phase II detoxification enzyme inducing ability of green leaf vegetables consumed in Asia. METHODS: The antioxidant properties of six commonly consumed Asian vegetables were determined using the ABTS, DPPH, deoxyribose, PR bleaching and iron- ascorbate induced lipid peroxidation assay. Induce of phase II detoxification enzymes was also determined for each respective vegetable extract. Protection against authentic ONOO- and HOCl mediated cytotoxicity in human colon HCT116 cells was determined using the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) viability assay. RESULTS: All of the extracts derived from green leaf vegetables exhibited antioxidant properties, while also having cytoprotective effects against ONOO- and HOCl mediated cytotoxicity. In addition, evaluation of the phase II enzyme inducing ability of each extract, as assessed by quinone reductase and glutathione-S-transferase activities, showed significant variation between the vegetables analyzed. CONCLUSION: Green leaf vegetables are potential sources of antioxidants and phase II detoxification enzyme inducers in the Asian diet. It is likely that consumption of such vegetables is a major source of beneficial phytochemical constituents that may protect against colonic damage. PMID:16437686

  9. Protective effect of silymarin against cisplatin-induced ototoxicity.

    PubMed

    Cho, Sung Il; Lee, Ji-Eun; Do, Nam Yong

    2014-03-01

    Silymarin is a plant extract with strong antioxidant properties in addition to anti-inflammatory and anticarcinogenic actions. The aim of this study was to investigate the potential preventive effect of silymarin on cisplatin ototoxicity in an auditory cell line, HEI-OC1 cells. Cultured HEI-OC1 cells were exposed to cisplatin (30 μM) with or without pre-treatment with silymarin (50 μM). Cell viability was evaluated using MTT assay. Hoechst 33258 staining was used to identify cells undergoing apoptosis. Western blot analysis was done to evaluate whether silymarin inhibits cisplatin-induced caspase and PARP activation. Cell-cycle analysis was done by flow cytometry to investigate whether silymarin is capable of protecting cisplatin-induced cell cycle arrest. Cell viability significantly increased in cells pretreated with silymarin compared with cells exposed to cisplatin alone. Pre-treatment of silymarin appeared to protect against cisplatin-induced apoptotic features on Hoechst 33258 staining. Cisplatin increased cleaved caspase-3 and PARP on Western blot analysis. However, pre-treatment with silymarin inhibited the expression of cleaved caspase-3 and PARP. Silymarin did attenuate cell cycle arrest and apoptosis in HEI-OC1 cells. Our results demonstrate that silymarin treatment inhibited cisplatin-induced cytotoxicity in the auditory cell line, HEI-OC1. Silymarin may be a potential candidate drug to eliminate cisplatin induced ototoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Protective Effects of Cilastatin against Vancomycin-Induced Nephrotoxicity

    PubMed Central

    Humanes, Blanca; Jado, Juan Carlos; Camaño, Sonia; López-Parra, Virginia; Torres, Ana María; Álvarez-Sala, Luís Antonio; Cercenado, Emilia; Tejedor, Alberto; Lázaro, Alberto

    2015-01-01

    Vancomycin is a very effective antibiotic for treatment of severe infections. However, its use in clinical practice is limited by nephrotoxicity. Cilastatin is a dehydropeptidase I inhibitor that acts on the brush border membrane of the proximal tubule to prevent accumulation of imipenem and toxicity. The aim of this study was to investigate the potential protective effect of cilastatin on vancomycin-induced apoptosis and toxicity in cultured renal proximal tubular epithelial cells (RPTECs). Porcine RPTECs were cultured in the presence of vancomycin with and without cilastatin. Vancomycin induced dose-dependent apoptosis in cultured RPTECs, with DNA fragmentation, cell detachment, and a significant decrease in mitochondrial activity. Cilastatin prevented apoptotic events and diminished the antiproliferative effect and severe morphological changes induced by vancomycin. Cilastatin also improved the long-term recovery and survival of RPTECs exposed to vancomycin and partially attenuated vancomycin uptake by RPTECs. On the other hand, cilastatin had no effects on vancomycin-induced necrosis or the bactericidal effect of the antibiotic. This study indicates that cilastatin protects against vancomycin-induced proximal tubule apoptosis and increases cell viability, without compromising the antimicrobial effect of vancomycin. The beneficial effect could be attributed, at least in part, to decreased accumulation of vancomycin in RPTECs. PMID:26504822

  11. Protective Effects of Cilastatin against Vancomycin-Induced Nephrotoxicity.

    PubMed

    Humanes, Blanca; Jado, Juan Carlos; Camaño, Sonia; López-Parra, Virginia; Torres, Ana María; Álvarez-Sala, Luís Antonio; Cercenado, Emilia; Tejedor, Alberto; Lázaro, Alberto

    2015-01-01

    Vancomycin is a very effective antibiotic for treatment of severe infections. However, its use in clinical practice is limited by nephrotoxicity. Cilastatin is a dehydropeptidase I inhibitor that acts on the brush border membrane of the proximal tubule to prevent accumulation of imipenem and toxicity. The aim of this study was to investigate the potential protective effect of cilastatin on vancomycin-induced apoptosis and toxicity in cultured renal proximal tubular epithelial cells (RPTECs). Porcine RPTECs were cultured in the presence of vancomycin with and without cilastatin. Vancomycin induced dose-dependent apoptosis in cultured RPTECs, with DNA fragmentation, cell detachment, and a significant decrease in mitochondrial activity. Cilastatin prevented apoptotic events and diminished the antiproliferative effect and severe morphological changes induced by vancomycin. Cilastatin also improved the long-term recovery and survival of RPTECs exposed to vancomycin and partially attenuated vancomycin uptake by RPTECs. On the other hand, cilastatin had no effects on vancomycin-induced necrosis or the bactericidal effect of the antibiotic. This study indicates that cilastatin protects against vancomycin-induced proximal tubule apoptosis and increases cell viability, without compromising the antimicrobial effect of vancomycin. The beneficial effect could be attributed, at least in part, to decreased accumulation of vancomycin in RPTECs.

  12. Protection from noise-induced hearing loss with Src inhibitors.

    PubMed

    Bielefeld, Eric C

    2015-06-01

    Noise-induced hearing loss is a major cause of acquired hearing loss around the world and pharmacological approaches to protecting the ear from noise are under investigation. Noise results in a combination of mechanical and metabolic damage pathways in the cochlea. The Src family of protein tyrosine kinases could be active in both pathways and Src inhibitors have successfully prevented noise-induced cochlear damage and hearing loss in animal models. The long-term goal is to optimize delivery methods into the cochlea to reduce invasiveness and limit side-effects before human clinical testing can be considered. At their current early stage of research investigation, Src inhibitors represent an exciting class of compounds for inclusion in a multifaceted pharmacological approach to protecting the ear from noise.

  13. Vector transmission of leishmania abrogates vaccine-induced protective immunity.

    PubMed

    Peters, Nathan C; Kimblin, Nicola; Secundino, Nagila; Kamhawi, Shaden; Lawyer, Phillip; Sacks, David L

    2009-06-01

    Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is "leishmanization," in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM)+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania.

  14. Sulforaphane protects the heart from doxorubicin-induced toxicity

    PubMed Central

    Singh, Preeti; Sharma, Rajendra; McElhanon, Kevin; Allen, Charles D.; Megyesi, Judit K.; Beneš, Helen; Singh, Sharda P.

    2015-01-01

    Cardiotoxicity is one of the major side effects encountered during cancer chemotherapy with doxorubicin (DOX) and other anthracyclines. Previous studies have shown that oxidative stress caused by DOX is one of the primary mechanisms for its toxic effects on the heart. Since the redox-sensitive transcription factor, Nrf2, plays a major role in protecting cells from the toxic metabolites generated during oxidative stress, we examined the effects of the phytochemical sulforaphane (SFN), a potent Nrf2-activating agent, on DOX-induced cardiotoxicity. These studies were carried out both in vitro and in vivo using rat H9c2 cardiomyoblast cells and wild type 129/sv mice, and involved SFN pretreatment followed by SFN administration during DOX exposure. SFN treatment protected H9c2 cells from DOX cytotoxicity and also resulted in restored cardiac function and a significant reduction in DOX-induced cardiomyopathy and mortality in mice. Specificity of SFN induction of Nrf2 and protection of H9c2 cells was demonstrated in Nrf2 knockdown experiments. Cardiac accumulation of 4-hydroxynonenal (4-HNE) protein adducts, due to lipid peroxidation following DOX-induced oxidative stress, was significantly attenuated by SFN treatment. The respiratory function of cardiac mitochondria isolated from mice exposed to DOX alone was repressed, while SFN treatment with DOX significantly elevated mitochondrial respiratory complex activities. Co-administration of SFN reversed the DOX-associated reduction in nuclear Nrf2 binding activity and restored cardiac expression of Nrf2-regulated genes, at both the RNA and protein levels. Together, our results demonstrate for the first time that the Nrf2 inducer, SFN, has the potential to provide protection against DOX-mediated cardiotoxicity. PMID:26025579

  15. Trachoma: Protective and Pathogenic Ocular Immune Responses to Chlamydia trachomatis

    PubMed Central

    Hu, Victor H.; Holland, Martin J.; Burton, Matthew J.

    2013-01-01

    Trachoma, caused by Chlamydia trachomatis (Ct), is the leading infectious blinding disease worldwide. Chronic conjunctival inflammation develops in childhood and leads to eyelid scarring and blindness in adulthood. The immune response to Ct provides only partial protection against re-infection, which can be frequent. Moreover, the immune response is central to the development of scarring pathology, leading to loss of vision. Here we review the current literature on both protective and pathological immune responses in trachoma. The resolution of Ct infection in animal models is IFNγ-dependent, involving Th1 cells, but whether this is the case in human ocular infection still needs to be confirmed. An increasing number of studies indicate that innate immune responses arising from the epithelium and other innate immune cells, along with changes in matrix metalloproteinase activity, are important in the development of tissue damage and scarring. Current trachoma control measures, which are centred on repeated mass antibiotic treatment of populations, are logistically challenging and have the potential to drive antimicrobial resistance. A trachoma vaccine would offer significant advantages. However, limited understanding of the mechanisms of both protective immunity and immunopathology to Ct remain barriers to vaccine development. PMID:23457650

  16. α-Melanocyte-stimulating hormone: a protective peptide against chemotherapy-induced hair follicle damage?

    PubMed

    Böhm, M; Bodó, E; Funk, W; Paus, R

    2014-04-01

    Effective, safe and well-tolerated therapeutic and/or preventive regimens for chemotherapy-induced alopecia (CIA) still remain to be developed. Because α-melanocyte-stimulating hormone (α-MSH) exerts a number of cytoprotective effects and is well tolerated, we hypothesized that it may be a candidate CIA-protective agent. To explore, using a human in vitro model for chemotherapy-induced hair follicle (HF) dystrophy that employs the key cyclophosphamide metabolite (4-hydroperoxy-cyclophosphamide, 4-HC), whether α-MSH protects from 4-HC-induced HF dystrophy. Microdissected human scalp HFs from four individuals were treated with 4-HC, α-MSH and 4-HC plus α-MSH. Changes in HF cycling, melanin distribution and hair matrix keratinocyte proliferation/apoptosis were examined by quantitative (immune-) morphometry. Expression of the cytoprotective enzyme haem oxygenase-1 (HO-1) was determined by real-time reverse transcriptase-polymerase chain reaction in HF of two individuals. In 50% of the individuals α-MSH reduced melanin clumping as an early sign of 4-HC-induced disruption of follicular pigmentation. α-MSH reduced 4-HC-induced apoptosis in the HFs of one female patient. These protective effects of α-MSH were not associated with changes in 4-HC-induced catagen induction. α-MSH and 4-HC both increased HO-1 mRNA expression, while the combination of both agents had additive effects on HO-1 transcription. Exogenous α-MSH exerts moderate HF-protective effects against 4-HC-induced human scalp HF damage and upregulates the intrafollicular expression of a key cytoprotective enzyme. However, as substantial interindividual response variations were found, further studies are needed to probe α-MSH as a candidate CIA-protective agent. © 2013 British Association of Dermatologists.

  17. Suspended animation inducer hydrogen sulfide is protective in an in vivo model of ventilator-induced lung injury

    PubMed Central

    Aslami, Hamid; Heinen, André; Roelofs, Joris J. T. H.; Zuurbier, Coert J.; Schultz, Marcus J.

    2010-01-01

    Purpose Acute lung injury is characterized by an exaggerated inflammatory response and a high metabolic demand. Mechanical ventilation can contribute to lung injury, resulting in ventilator-induced lung injury (VILI). A suspended-animation-like state induced by hydrogen sulfide (H2S) protects against hypoxia-induced organ injury. We hypothesized that suspended animation is protective in VILI by reducing metabolism and thereby CO2 production, allowing for a lower respiratory rate while maintaining adequate gas exchange. Alternatively, H2S may reduce inflammation in VILI. Methods In mechanically ventilated rats, VILI was created by application of 25 cmH2O positive inspiratory pressure (PIP) and zero positive end-expiratory pressure (PEEP). Controls were lung-protective mechanically ventilated (13 cmH2O PIP, 5 cmH2O PEEP). H2S donor NaHS was infused continuously; controls received saline. In separate control groups, hypothermia was induced to reproduce the H2S-induced fall in temperature. In VILI groups, respiratory rate was adjusted to maintain normo-pH. Results NaHS dose-dependently and reversibly reduced body temperature, heart rate, and exhaled amount of CO2. In VILI, NaHS reduced markers of pulmonary inflammation and improved oxygenation, an effect which was not observed after induction of deep hypothermia that paralleled the NaHS-induced fall in temperature. Both NaHS and hypothermia allowed for lower respiratory rates while maintaining gas exchange. Conclusions NaHS reversibly induced a hypometabolic state in anesthetized rats and protected from VILI by reducing pulmonary inflammation, an effect that was in part independent of body temperature. Electronic supplementary material The online version of this article (doi:10.1007/s00134-010-2022-2) contains supplementary material, which is available to authorized users. PMID:20721529

  18. Child protection and the conception of parental responsibility.

    PubMed

    Mass, Mili; van Nijnatten, Carolus

    2005-04-01

    The legal discourse on child protection that is characterized by the normalization-moralization paradigm focuses more on society's response to parental failure than on the predicament of the child. Findings from texts of legal discourse in Israel and in Holland portray an alliance between the respective legal systems and an epistemology of normality with regard to parenting that thereby turns normality into normalization. Both sets of texts are guided by an ontology of moral judgment that protects societal morale rather than the child. Morality is turned into moralization. To focus on the protection of the child, the article proposes a paradigm wherein the definition of morality is derived from concern for the other and relies on constructs that represent the evolving transaction between parent and child.

  19. Nardostachys jatamansi extract protects against cytokine-induced β-cell damage and streptozotocin-induced diabetes

    PubMed Central

    Song, Mi-Young; Bae, Ui-Jin; Lee, Bong-Hee; Kwon, Kang-Beom; Seo, Eun-A; Park, Sung-Joo; Kim, Min-Sun; Song, Ho-Joon; Kwon, Keun-Sang; Park, Jin-Woo; Ryu, Do-Gon; Park, Byung-Hyun

    2010-01-01

    AIM: To investigate the anti-diabetogenic mechanism of Nardostachys jatamansi extract (NJE). METHODS: Mice were injected with streptozotocin via a tail vein to induce diabetes. Rat insulinoma RINm5F cells and isolated rat islets were treated with interleukin-1β and interferon-γ to induce cytotoxicity. RESULTS: Treatment of mice with streptozotocin resulted in hyperglycemia and hypoinsulinemia, which was confirmed by immunohistochemical staining of the islets. The diabetogenic effects of streptozotocin were completely abolished when mice were pretreated with NJE. Inhibition of streptozotocin-induced hyperglycemia by NJE was mediated by suppression of nuclear factor (NF)-κB activation. In addition, NJE protected against cytokine-mediated cytotoxicity. Incubation of RINm5F cells and islets with NJE resulted in a significant reduction in cytokine-induced NF-κB activation and downstream events, inducible nitric oxide synthase expression and nitric oxide production. The protective effect of NJE was further demonstrated by the normal insulin secretion of cytokine-treated islets in response to glucose. CONCLUSION: NJE provided resistance to pancreatic β-cell damage from cytokine or streptozotocin treatment. The β-cell protective effect of NJE is mediated by suppressing NF-κB activation. PMID:20614480

  20. Antibodies Are Required for Complete Vaccine-Induced Protection against Herpes Simplex Virus 2

    PubMed Central

    Halford, William P.; Geltz, Joshua; Messer, Ronald J.; Hasenkrug, Kim J.

    2015-01-01

    Herpes simplex virus 2 (HSV-2) 0ΔNLS is a live HSV-2 ICP0- mutant vaccine strain that is profoundly attenuated in vivo due to its interferon-hypersensitivity. Recipients of the HSV-2 0ΔNLS vaccine are resistant to high-dose HSV-2 challenge as evidenced by profound reductions in challenge virus spread, shedding, disease and mortality. In the current study, we investigated the requirements for HSV-2 0ΔNLS vaccine-induced protection. Studies using (UV)-inactivated HSV-2 0ΔNLS revealed that self-limited replication of the attenuated virus was required for effective protection from vaginal or ocular HSV-2 challenge. Diminished antibody responses in recipients of the UV-killed HSV-2 vaccine suggested that antibodies might be playing a critical role in early protection. This hypothesis was investigated in B-cell-deficient μMT mice. Vaccination with live HSV-2 0ΔNLS induced equivalent CD8+ T cell responses in wild-type and μMT mice. Vaccinated μMT mice shed ~40-fold more infectious HSV-2 at 24 hours post-challenge relative to vaccinated wild-type (B-cell+) mice, and most vaccinated μMT mice eventually succumbed to a slowly progressing HSV-2 challenge. Importantly, passive transfer of HSV-2 antiserum restored full protection to HSV-2 0ΔNLS-vaccinated μMT mice. The results demonstrate that B cells are required for complete vaccine-induced protection against HSV-2, and indicate that virus-specific antibodies are the dominant mediators of early vaccine-induced protection against HSV-2. PMID:26670699

  1. Antibodies Are Required for Complete Vaccine-Induced Protection against Herpes Simplex Virus 2.

    PubMed

    Halford, William P; Geltz, Joshua; Messer, Ronald J; Hasenkrug, Kim J

    2015-01-01

    Herpes simplex virus 2 (HSV-2) 0ΔNLS is a live HSV-2 ICP0- mutant vaccine strain that is profoundly attenuated in vivo due to its interferon-hypersensitivity. Recipients of the HSV-2 0ΔNLS vaccine are resistant to high-dose HSV-2 challenge as evidenced by profound reductions in challenge virus spread, shedding, disease and mortality. In the current study, we investigated the requirements for HSV-2 0ΔNLS vaccine-induced protection. Studies using (UV)-inactivated HSV-2 0ΔNLS revealed that self-limited replication of the attenuated virus was required for effective protection from vaginal or ocular HSV-2 challenge. Diminished antibody responses in recipients of the UV-killed HSV-2 vaccine suggested that antibodies might be playing a critical role in early protection. This hypothesis was investigated in B-cell-deficient μMT mice. Vaccination with live HSV-2 0ΔNLS induced equivalent CD8+ T cell responses in wild-type and μMT mice. Vaccinated μMT mice shed ~40-fold more infectious HSV-2 at 24 hours post-challenge relative to vaccinated wild-type (B-cell+) mice, and most vaccinated μMT mice eventually succumbed to a slowly progressing HSV-2 challenge. Importantly, passive transfer of HSV-2 antiserum restored full protection to HSV-2 0ΔNLS-vaccinated μMT mice. The results demonstrate that B cells are required for complete vaccine-induced protection against HSV-2, and indicate that virus-specific antibodies are the dominant mediators of early vaccine-induced protection against HSV-2.

  2. Intramuscular delivery of adenovirus serotype 5 vector expressing humanized protective antigen induces rapid protection against anthrax that may bypass intranasally originated preexisting adenovirus immunity.

    PubMed

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-02-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 10⁸ infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD₅₀) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax.

  3. Measles virus-induced suppression of immune responses

    PubMed Central

    Griffin, Diane E.

    2010-01-01

    Summary Measles is an important cause of child mortality that has a seemingly paradoxical interaction with the immune system. In most individuals, the immune response is successful in eventually clearing measles virus (MV) infection and in establishing life-long immunity. However, infection is also associated with persistence of viral RNA and several weeks of immune suppression, including loss of delayed type hypersensitivity responses and increased susceptibility to secondary infections. The initial T-cell response includes CD8+ and T-helper 1 CD4+ T cells important for control of infectious virus. As viral RNA persists, there is a shift to a T-helper 2 CD4+ T-cell response that likely promotes B-cell maturation and durable antibody responses but may suppress macrophage activation and T-helper 1 responses to new infections. Suppression of mitogen-induced lymphocyte proliferation can be induced by lymphocyte infection with MV or by lymphocyte exposure to a complex of the hemagglutinin and fusion surface glycoproteins without infection. Dendritic cells are susceptible to infection and can transmit infection to lymphocytes. MV-infected dendritic cells are unable to stimulate a mixed lymphocyte reaction and can induce lymphocyte unresponsiveness through expression of MV glycoproteins. Thus, multiple factors may contribute both to measles-induced immune suppression and to the establishment of durable protective immunity. PMID:20636817

  4. Protective effect of curcumin against heavy metals-induced liver damage.

    PubMed

    García-Niño, Wylly Ramsés; Pedraza-Chaverrí, José

    2014-07-01

    Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. RAGE deficiency attenuates the protective effect of Lidocaine against sepsis-induced acute lung injury.

    PubMed

    Zhang, Zhuo; Zhou, Jie; Liao, Changli; Li, Xiaobing; Liu, Minghua; Song, Daqiang; Jiang, Xian

    2017-04-01

    Lidocaine (Lido) is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of cecal ligation and puncture (CLP)-induced acute lung injury (ALI). The receptor for advanced glycation end product (RAGE) exerts pro-inflammatory effects by enhancing pro-inflammatory cytokine production. However, the precise mechanism by which Lido confers protection against ALI is not clear. ALI was induced in RAGE WT and RAGE knockout (KO) rats using cecal ligation and puncture (CLP) operations for 24 h. The results showed that Lido significantly inhibited CLP-induced lung inflammation and histopathological lung injury. Furthermore, Lido significantly reduced CLP-induced upregulation of HMGB1 and RAGE expression and activation of the NF-κB and MAPK signaling pathways. With the use of RAGE KO rats, we demonstrate here that RAGE deficiency attenuates the protective effect of Lido against CLP-induced lung inflammatory cell infiltration and histopathological lung injury. These results suggest that RAGE deficiency attenuates the protective effect of Lido against CLP-induced ALI by attenuating the pro-inflammatory cytokines production.

  6. UVB and caffeine: inhibiting the DNA damage response to protect against the adverse effects of UVB.

    PubMed

    Kerzendorfer, Claudia; O'Driscoll, Mark

    2009-07-01

    The incidence of sunlight-induced skin cancer is increasing. Mouse studies indicate that caffeine, administered orally or topically, promotes apoptosis of UVB-irradiated keratinocytes. In this issue, Heffernan and colleagues identify the pathway targeted by caffeine and suggest that inhibition of this DNA damage response may offer a viable therapeutic option for nonmelanoma skin cancer. This potentially represents an important protective or therapeutic option from the most unlikely of sources: your daily coffee.

  7. Inducing host protection in pneumococcal sepsis by preactivation of the Ashwell-Morell receptor.

    PubMed

    Grewal, Prabhjit K; Aziz, Peter V; Uchiyama, Satoshi; Rubio, Gabriel R; Lardone, Ricardo D; Le, Dzung; Varki, Nissi M; Nizet, Victor; Marth, Jamey D

    2013-12-10

    The endocytic Ashwell-Morell receptor (AMR) of hepatocytes detects pathogen remodeling of host glycoproteins by neuraminidase in the bloodstream and mitigates the lethal coagulopathy of sepsis. We have investigated the mechanism of host protection by the AMR during the onset of sepsis and in response to the desialylation of blood glycoproteins by the NanA neuraminidase of Streptococcus pneumoniae. We find that the AMR selects among potential glycoprotein ligands unmasked by microbial neuraminidase activity in pneumococcal sepsis to eliminate from blood circulation host factors that contribute to coagulation and thrombosis. This protection is attributable in large part to the rapid induction of a moderate thrombocytopenia by the AMR. We further show that neuraminidase activity in the blood can be manipulated to induce the clearance of AMR ligands including platelets, thereby preactivating a protective response in pneumococcal sepsis that moderates the severity of disseminated intravascular coagulation and enables host survival.

  8. Cross-protection induced by Toxoplasma gondii virus-like particle vaccine upon intraperitoneal route challenge.

    PubMed

    Lee, Dong-Hun; Kim, Ah-Ra; Lee, Su-Hwa; Quan, Fu-Shi

    2016-12-01

    The inner membrane complex sub-compartment has a critical role in Toxoplasma gondii endodyogeny. In this study, we investigated the protection upon intraperitoneal route (IP) challenge induced by the virus-like particles (VLPs) vaccine containing Toxoplasma gondii IMC ISP (RH strain) (Type I). Intranasal immunization with the VLPs in mice elicited enhanced systemic and mucosal Toxoplasma gondii-specific IgG, IgG1, IgG2a and IgA antibody responses, and CD4+ and CD8+ responses. Immunized mice significantly reduced T. gondii cyst burden and size in brain, resulting in cross-protection upon T. gondii (ME49) (Type II) challenge infection. These results indicate that the IP route challenge infection induced by T. gondii IMC ISP VLPs might be a very good target for vaccination representing novel approach to reduce infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The responsibility to protect: a new notion of state sovereignty.

    PubMed

    Ashford, Mary-Wynne

    2003-01-01

    The recent policies of the United States Administration threaten the entire structure of international law. Widespread concern in the US and elsewhere has been expressed in a different cluster of principles, in particular in the report of the Canadian-based Commission on Intervention and State Sovereignty. Its report states that the primary responsibility of a state is to protect its citizens; such protection includes prevention, reaction and rebuilding. The implications of this for military intervention are discussed; this must be a last resort after all non-military options have failed in response to the actual or probable large-scale loss of life and the objective to prevent further suffering. The action must be authorized by the United Nations Security Council or, if this fails to respond, the General Assembly. A further commission should examine how the international community should respond to states that refuse to comply with international law regarding weapons of mass destruction.

  10. The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis.

    PubMed

    Monti, Martina; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia

    2013-10-01

    Pediatric and adult cancer patients, following the use of the antitumor drug Doxorubicin develop cardiotoxicity. Pharmacological protection of microvascular endothelium might produce a double benefit: (i) reduction of myocardial toxicity (the primary target of Doxorubicin action) and (ii) maintenance of the vascular functionality for the adequate delivery of chemotherapeutics to tumor cells. This study was aimed to evaluate the mechanisms responsible of the protective effects of the angiotensin converting enzyme inhibitor (ACEI) Zofenoprilat against the toxic effects exerted by Doxorubicin on coronary microvascular endothelium. We found that exposure of endothelial cells to Doxorubicin (0.1-1μM range) impaired cell survival by promoting their apoptosis. ERK1/2 related p53 activation, but not reactive oxygen species, was responsible for Doxorubicin induced caspase-3 cleavage. P53 mediated-apoptosis and impairment of survival were reverted by treatment with Zofenoprilat. The previously described PI-3K/eNOS/endogenous fibroblast growth factor signaling was not involved in the protective effect, which, instead, could be ascribed to cystathionine gamma lyase dependent availability of H2S from Zofenoprilat. Furthermore, considering the tumor environment, the treatment of endothelial/tumor co-cultures with Zofenoprilat did not affect the antitumor efficacy of Doxorubicin. In conclusion the ACEI Zofenoprilat exerts a protective effect on Doxorubicin induced endothelial damage, without affecting its antitumor efficacy. Thus, sulfhydryl containing ACEI may be a useful therapy for Doxorubicin-induced cardiotoxicity.

  11. Aerosol Vaccination Induces Robust Protective Immunity to Homologous and Heterologous Influenza Infection in Mice

    PubMed Central

    Smith, Jennifer Humberd; Brooks, Paula; Johnson, Scott; Tompkins, S. Mark; Custer, Koren M.; Haas, Debra L.; Mair, Raydel; Papania, Mark; Tripp, Ralph A.

    2011-01-01

    Live-attenuated influenza vaccine (LAIV) delivered by large droplet intranasal spray is efficacious against infection. However, many of the large droplets are trapped in the external nares and do not reach the target nasal airway tissues. Smaller droplets might provide better distribution yielding similar protection with lower doses. We evaluated 20 and 30 micron aerosol delivery of influenza virus in mice. A 15 second aerosol exposure optimall