Science.gov

Sample records for induces renal morphopathology

  1. Morphopathological aspects of healthy nails and nails affected by onychomycosis.

    PubMed

    Zaikovska, Olga; Pilmane, Mara; Kisis, Janis

    2014-09-01

    Patients of onychomycosis are common in the dermatology practice. Contemporary morphology creates opportunities to study the functional units of the nail when such infections occur from morphopathological point of view. There were 22 nails biopsies from onychomycosis patients taken for the research of morphopathological changes in the thickened nail plate affected by onychomycosis. Samples of cadaverous' nails were used as a control material. The material was stained with haematoxylin and eosin and immunohistochemical methods. Terminal deoxynucleotidyl transferase dUTP nick end labelling reaction and periodic acid-Schiff reaction were also performed. We found patchy hypertrophy in the granulose layer of the epidermis, with focal acanthosis. In the horn layer, we identified nests of parakeratosis of various sizes, with incorporations of homogenous and eosinophil masses. We found high levels of interleukin 6 and interleukin 10 positive cells in the nail bed and in the bloodstream. Interleukin 1, however, was not a part of any of the functional units of any of the nails. Significant amount of fibres containing human beta defensin-2 were found in the bed and plate of the nail. Therefore one can conclude that as regards the nails affected by onychomycosis, the most effective morphopathogenical processes include cytokine and defensin excretion occurrence in the nail bed.

  2. Ifosfamide induced renal rickets.

    PubMed

    Lionel, Arul P; Chinnaswamy, Girish; John, Rikki R; Mathai, Sarah

    2014-09-01

    Ifosfamide is commonly used as a chemotherapeutic agent in children. The authors report a 4-y-old boy who developed proximal renal tubulopathy with florid rickets a year after completion of ifosfamide therapy for Ewing's sarcoma. After initiation of treatment, there was complete healing of rickets and he did not need supplements beyond 18 mo. Growth monitoring and musculoskeletal system examination is important in all children who have received ifosfamide therapy. Routine monitoring for nephrotoxicity during and after ifosfamide therapy helps in early identification and intervention.

  3. Radiocontrast-Induced Renal Failure

    PubMed Central

    Misson, Robert T.; Cutler, Ralph E.

    1985-01-01

    Review of the literature concerning contrast-induced renal dysfunction shows that the currently used agents are remarkably safe with careful patient selection. Clinically apparent kidney failure after their use is essentially nonexistent in those without preexistent renal insufficiency. The incidence rises rapidly in those with azotemia from any cause, however, and diabetic persons with nephropathy are perhaps at special risk. Vigorous volume expansion is possibly effective as a preventive measure and may attenuate adverse effects in those in whom postcontrast dysfunction occurs. New agents are becoming available. It is not yet known if these will prove safer or cost-effective. They have some experimentally demonstrated and theoretic advantages over the presently used agents. PMID:4013281

  4. Local anesthetics induce human renal cell apoptosis.

    PubMed

    Lee, H Thomas; Xu, Hua; Siegel, Cory D; Krichevsky, Igor E

    2003-01-01

    Renal cell apoptosis contributes significantly to the pathogenesis of acute renal failure. Local anesthetics induce apoptosis in neuronal and lymphocytic cell lines. We examined the effects of chronic (48 h) local anesthetic treatment (lidocaine, bupivacaine and tetracaine) on human proximal tubular (HK-2) cells. Apoptosis induction was assessed by detecting poly(ADP)-ribose polymerase fragmentation, caspase activation, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, DNA laddering and by cellular morphology. Cell death was quantified by measuring neutral red dye uptake and lactate dehydrogenase released into the cell culture medium. All 3 local anesthetics caused concentration-dependent cell death, induced HK-2 cell apoptosis and potentiated TNF-alpha induced apoptosis. Local anesthetics induced HK-2 cell apoptosis by activation of caspases 3, 6, 7, 8 and 9. ZVAD-fmk, a pan-caspase inhibitor, blocked the local anesthetic induced HK-2 cell apoptosis. Local anesthetics also inhibited the activities of anti-apoptotic kinases protein kinase B (Akt) and extracellular signal regulated mitrogen-activated protein kinase. Local anesthetic's pro-apoptotic effects are independent of sodium channel inhibition as tetrodotoxin, a selective voltage-gated sodium channel blocker, failed to mimic local anesthetic-mediated induction or potentiation of HK-2 cell apoptosis. We conclude that local anesthetics induce human renal cell apoptotic signaling by caspase activation and via inhibition of pro-survival signaling pathways.

  5. Cyclosporine A-Induced Renal Fibrosis

    PubMed Central

    Slattery, Craig; Campbell, Eric; McMorrow, Tara; Ryan, Michael P.

    2005-01-01

    Cyclosporine A, which has been the foremost immunosuppressive agent since the early 1980’s, significantly improves the success of organ transplantation. However, common complications of cyclosporine A therapy, such as severe renal tubulointerstitial fibrosis, limit the drug’s clinical use. Although the exact mechanisms driving cyclosporine A-induced tubulointerstitial fibrosis remain elusive, we hypothesized that epithelial-mesenchymal transition (EMT) may play a major role. We investigated this in vitro by treating human proximal tubular cells with cyclosporine A. Morphological changes were observed after cyclosporine A treatment, including cell elongation (with a large degree of detachment), cytoskeletal rearrangement, and junctional disruption. In addition, expression of the myofibroblast-specific marker α-smooth muscle actin was detected in treated cells. These observations are consistent with events described during EMT. Using Affymetrix gene microarrays, we identified 128 genes that were differentially regulated in renal tubular cells after cyclosporine A treatment, including known profibrotic factors, oncogenes, and transcriptional regulators. Cyclosporine A induced a dose-dependent increase in transforming growth factor-β secretion from proximal tubular cells. Subsequent functional studies revealed that protein kinase C-β isoforms play a key role in cyclosporine A-induced effects. These findings provide novel insights into cyclosporine A-induced renal fibrosis and the molecular mechanisms underlying EMT, events that may be relevant in other disease states. PMID:16049326

  6. Erdosteine against acetaminophen induced renal toxicity.

    PubMed

    Isik, Bunyamin; Bayrak, Reyhan; Akcay, Ali; Sogut, Sadik

    2006-07-01

    Acetaminophen (APAP) induced toxicities have been a major problem in clinical practice. The aim of the present study was to demonstrate a possible protective role of erdosteine, a mucolytic agent having antioxidant properties via its active metabolites, on APAP induced renal damage in rats. Female Wistar Albino rats were divided into groups including control, erdosteine (150 mg/kg, oral), APAP (1 g/kg, oral) APAP+erdosteine (150 mg/kg, oral) and APAP+erdosteine (300 mg/kg, oral). APAP treatment caused lipid peroxidation as well as high NO level in renal tissue. Also, APAP treated rats had decreased activities of CAT and GSH-Px, but not SOD. In addition, tubular epithelial degeneration, vacuolization and cell desquamation were clearly observed in the APAP treated rats. The cellular debris in the proximal tubules and cortical interstitial congestions were prominent in the kidneys of APAP treated rats. BUN and creatinine levels were increased after APAP administration. All these pathological changes were reversed after erdosteine treatments. Erdosteine treated APAP groups showed milder tubular degeneration, epithelial vacuolization in the proximal tubules, lesser cellular desquamation and better morphology when compared with APAP groups. In conclusion, erdosteine may be a choice of preventive treatment against APAP induced nephrotoxicity.

  7. Fluoride-induced chronic renal failure.

    PubMed

    Lantz, O; Jouvin, M H; De Vernejoul, M C; Druet, P

    1987-08-01

    Renal fluoride toxicity in human beings is difficult to assess in the literature. Although experimental studies and research on methoxyflurane toxicity have shown frank renal damage, observations of renal insufficiency related to chronic fluoride exposure are scarce. We report a case of fluoride intoxication related to potomania of Vichy water, a highly mineralized water containing 8.5 mg/L of fluoride. Features of fluoride osteosclerosis were prominent and end-stage renal failure was present. The young age of the patient, the long duration of high fluoride intake, and the absence of other cause of renal insufficiency suggest a causal relationship between fluoride intoxication and renal failure.

  8. Honey induces apoptosis in renal cell carcinoma

    PubMed Central

    Samarghandian, Saeed; Afshari, Jalil Tavakkol; Davoodi, Saiedeh

    2011-01-01

    Background: The fact that antioxidants have several preventative effects against different diseases, such as coronary diseases, inflammatory disorders, neurologic degeneration, aging, and cancer, has led to the search for food rich in antioxidants. Honey has been used as a traditional food and medical source since ancient times. However, recently many scientists have been concentrating on the antioxidant property of honey. By use of human renal cancer cell lines (ACHN), we investigated the antiproliferative activity, apoptosis, and the antitumor activity of honey. Materials and Methods: The cells were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum treated with different concentrations of honey for 3 consecutive days. Cell viability was quantitated by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptotic cells were determined using Annexin-V-fluorescein isothiocyanate (FITC) by flow cytometry. Results: Honey decreased the cell viability in the malignant cells in a concentration- and time-dependent manner. The IC 50 values against the ACHN cell lines were determined as 1.7 ± 0.04% and 2.1 ± 0.03% μg/mL after 48 and 72 h, respectively. Honey induced apoptosis of the ACHN cells in a concentration-dependent manner, as determined by flow cytometry histogram of treated cells. Conclusion: It might be concluded that honey may cause cell death in the ACHN cells, in which apoptosis plays an important role. Most of the drugs used in the cancer treatment are apoptotic inducers, hence apoptotic nature of honey is considered vital. Therefore, it prompted us to investigate honey as a potential candidate for renal cancer treatment. PMID:21472079

  9. Tweak induces proliferation in renal tubular epithelium: a role in uninephrectomy induced renal hyperplasia

    PubMed Central

    Sanz, Ana B; Sanchez-Niño, Maria Dolores; Izquierdo, Maria Concepcion; Jakubowski, Aniela; Justo, Pilar; Blanco-Colio, Luis M; Ruiz-Ortega, Marta; Egido, Jesús; Ortiz, Alberto

    2009-01-01

    The tumour necrosis factor (TNF) family member TWEAK activates the Fn14 receptor and has pro-apoptotic, proliferative and pro-inflammatory actions that depend on the cell type and the microenvironment. We explored the proliferative actions of TWEAK on cultured tubular cells and in vivo on renal tubules. Additionally, we studied the role of TWEAK in compensatory proliferation following unilateral nephrectomy and in an inflammatory model of acute kidney injury (AKI) induced by a folic acid overdose. TWEAK increased the proliferation, cell number and cyclin D1 expression of cultured tubular cells, in vitro. Exposure to serum increased TWEAK and Fn14 expression and the proliferative response to TWEAK. TWEAK activated the mitogen-activated protein kinases ERK and p38, the phosphatidyl-inositol 3-kinase (PI3K)/Akt pathway and NF-κB. TWEAK-induced proliferation was prevented by inhibitors of these protein kinases and by the NF-κB inhibitor parthenolide. TWEAK-induced tubular cell proliferation as assessed by PCNA and cyclin D1 expression in the kidneys of adult healthy mice in vivo. By contrast, TWEAK knock-out mice displayed lower tubular cell proliferation in the remnant kidney following unilateral nephrectomy, a non-inflammatory model. This is consistent with TWEAK-induced proliferation on cultured tubular cells in the absence of inflammatory cytokines. Consistent with our previously published data, in the presence of inflammatory cytokines TWEAK promoted apoptosis, not proliferation, of cultured tubular cells. In this regard, TWEAK knock-out mice with AKI displayed less tubular apoptosis and proliferation, as well as improved renal function. In conclusion, TWEAK actions in tubular cells are context dependent. In a non-inflammatory milieu TWEAK induces proliferation of tubular epithelium. This may be relevant for compensatory renal hyperplasia following nephrectomy. PMID:19426154

  10. Fructokinase activity mediates dehydration-induced renal injury.

    PubMed

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-08-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.

  11. Effect of Cuscuta chinensis on renal function in ischemia/reperfusion-induced acute renal failure rats.

    PubMed

    Shin, Sun; Lee, Yun Jung; Kim, Eun Ju; Lee, An Sook; Kang, Dae Gill; Lee, Ho Sub

    2011-01-01

    The kidneys play a central role in regulating water, ion composition and excretion of metabolic waste products in the urine. Cuscuta chinensis has been known as an important traditional Oriental medicine for the treatment of liver and kidney disorders. Thus, we studied whether an aqueous extract of Cuscuta chinensis (ACC) seeds has an effect on renal function parameters in ischemia/reperfusion-induced acute renal failure (ARF) rats. Administration of 250 mg/kg/day ACC showed that renal functional parameters including urinary excretion rate, osmolality, Na(+), K(+), Cl(-), creatinine clearance, solute-free water reabsorption were significantly recovered in ischemia/reperfusion-induced ARF. Periodic acid Schiff staining showed that administration of ACC improved tubular damage in ischemia/reperfusion-induced ARF. In immunoblot and immunohistological examinations, ischemia/reperfusion-induced ARF decreased the expressions of water channel AQP 2, 3 and sodium potassium pump Na,K-ATPase in the renal medulla. However, administration of ACC markedly incremented AQP 2, 3 and Na,K-ATPase expressions. Therefore, these data indicate that administration of ACC ameliorates regulation of the urine concentration and renal functions in rats with ischemia/reperfusion-induced ARF.

  12. Fetal kidney stem cells ameliorate cisplatin induced acute renal failure and promote renal angiogenesis

    PubMed Central

    Gupta, Ashwani Kumar; Jadhav, Sachin H; Tripathy, Naresh Kumar; Nityanand, Soniya

    2015-01-01

    AIM: To investigate whether fetal kidney stem cells (fKSC) ameliorate cisplatin induced acute renal failure (ARF) in rats and promote renal angiogenesis. METHODS: The fKSC were isolated from rat fetuses of gestation day 16 and expanded in vitro up to 3rd passage. They were characterized for the expression of mesenchymal and renal progenitor markers by flow cytometry and immunocytochemistry, respectively. The in vitro differentiation of fKSC towards epithelial lineage was evaluated by the treatment with specific induction medium and their angiogenic potential by matrigel induced tube formation assay. To study the effect of fKSC in ARF, fKSC labeled with PKH26 were infused in rats with cisplatin induced ARF and, the blood and renal tissues of the rats were collected at different time points. Blood biochemical parameters were studied to evaluate renal function. Renal tissues were evaluated for renal architecture, renal cell proliferation and angiogenesis by immunohistochemistry, renal cell apoptosis by terminal deoxynucleotidyl transferase nick-end labeling assay and early expression of angiogenic molecules viz. vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF)-1α and endothelial nitric oxide synthase (eNOS) by western blot. RESULTS: The fKSC expressed mesenchymal markers viz. CD29, CD44, CD73, CD90 and CD105 as well as renal progenitor markers viz. Wt1, Pax2 and Six2. They exhibited a potential to form CD31 and Von Willebrand factor expressing capillary-like structures and could be differentiated into cytokeratin (CK)18 and CK19 positive epithelial cells. Administration of fKSC in rats with ARF as compared to administration of saline alone, resulted in a significant improvement in renal function and histology on day 3 (2.33 ± 0.33 vs 3.50 ± 0.34, P < 0.05) and on day 7 (0.83 ± 0.16 vs 2.00 ± 0.25, P < 0.05). The infused PKH26 labeled fKSC were observed to engraft in damaged renal tubules and showed increased proliferation and reduced

  13. Association of systemic hypertension with renal injury in dogs with induced renal failure.

    PubMed

    Finco, Delmar R

    2004-01-01

    Systemic hypertension is hypothesized to cause renal injury to dogs. This study was performed on dogs with surgically induced renal failure to determine whether hypertension was associated with altered renal function or morphology. Mean arterial pressure (MAP), heart rate (HR), systolic arterial pressure (SAP), and diastolic arterial pressure (DAP) were measured before and after surgery. Glomerular filtration rate (GFR) and urine protein:creatinine ratios (UPC) were measured at 1, 12, 24, 36, and 56-69 weeks after surgery, and renal histology was evaluated terminally. The mean of weekly MAP, SAP, and DAP measurements for each dog over the 1st 26 weeks was used to rank dogs on the basis of MAP, SAP, or DAP values. A statistically significant association was found between systemic arterial pressure ranking and ranked measures of adverse renal responses. When dogs were divided into higher pressure and lower pressure groups on the basis of SAP, group 1 (higher pressure, n = 9) compared with group 2 (lower pressure, n = 10) had significantly lower GFR values at 36 and 56-69 weeks; higher UPC values at 12 and 56-69 weeks; and higher kidney lesion scores for mesangial matrix, tubule damage, and fibrosis. When dogs were divided on MAP and DAP values, group 1 compared with group 2 had significantly lower GFR values at 12, 24, 36, and 56-69 weeks; higher UPC values at 12 and 56-69 weeks; and higher kidney lesion scores for mesangial matrix, tubule damage, fibrosis, and cell infiltrate. These results demonstrate an association between increased systemic arterial pressure and renal injury. Results from this study might apply to dogs with some types of naturally occurring renal failure.

  14. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  15. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    PubMed Central

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-01-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis. PMID:26689945

  16. Combination of tadalafil and diltiazem attenuates renal ischemia reperfusion-induced acute renal failure in rats.

    PubMed

    El-Sisi, Alaa E; Sokar, Samia S; Abu-Risha, Sally E; Ibrahim, Hanaa A

    2016-12-01

    Life threatening conditions characterized by renal ischemia/reperfusion (RIR) such as kidney transplantation, partial nephrectomy, renal artery angioplasty, cardiopulmonary bypass and aortic bypass surgery, continue to be among the most frequent causes of acute renal failure. The current study investigated the possible protective effects of tadalafil alone and in combination with diltiazem in experimentally-induced renal ischemia/reperfusion injury in rats. Possible underlying mechanisms were also investigated such as oxidative stress and inflammation. Rats were divided into sham-operated and I/R-operated groups. Anesthetized rats (urethane 1.3g/kg) were subjected to bilateral ischemia for 30min by occlusion of renal pedicles, then reperfused for 6h. Rats in the vehicle I/R group showed a significant (p˂0.05) increase in kidney malondialdehyde (MDA) content; myeloperoxidase (MPO) activity; TNF-α and IL-1β contents. In addition significant (p˂0.05) increase in intercellular adhesion molecule-1(ICAM-1) content, BUN and creatinine levels, along with significant decrease in kidney superoxide dismutase (SOD) activity. In addition, marked diffuse histopathological damage and severe cytoplasmic staining of caspase-3 were detected. Pretreatment with combination of tadalafil (5mg/kg bdwt) and diltiazem (5mg/kg bdwt) resulted in reversal of the increased biochemical parameters investigated. Also, histopathological examination revealed partial return to normal cellular architecture. In conclusion, pretreatment with tadalafil and diltiazem combination protected against RIR injury.

  17. Renal

    MedlinePlus

    ... term "renal" refers to the kidney. For example, renal failure means kidney failure. Related topics: Kidney disease Kidney disease - diet Kidney failure Kidney function tests Renal scan Kidney transplant

  18. Drug-induced impairment of renal function

    PubMed Central

    Pazhayattil, George Sunny; Shirali, Anushree C

    2014-01-01

    Pharmaceutical agents provide diagnostic and therapeutic utility that are central to patient care. However, all agents also carry adverse drug effect profiles. While most of these are clinically insignificant, some drugs may cause unacceptable toxicity that impacts negatively on patient morbidity and mortality. Recognizing adverse effects is important for administering appropriate drug doses, instituting preventive strategies, and withdrawing the offending agent due to toxicity. In the present article, we will review those drugs that are associated with impaired renal function. By focusing on pharmaceutical agents that are currently in clinical practice, we will provide an overview of nephrotoxic drugs that a treating physician is most likely to encounter. In doing so, we will summarize risk factors for nephrotoxicity, describe clinical manifestations, and address preventive and treatment strategies. PMID:25540591

  19. Diphenylamine-induced renal lesions in the chicken.

    PubMed

    Sorrentino, F; Fella, A; Pota, A

    1978-01-01

    Chronic intoxication with diphenylamine (DPA), which causes a cystic kidney disease in the rat and the guinea-pig, caused degeneration of the renal tubular epithelium in the chicken. This was similar to but much more serious than that preceding the formation of cysts in the rodents, but did not actually result in cyst formation, probably because of the high mortality rate observed in the birds even at this early stage. In the chicken until now it had been possible to obtain a pattern of renal cysts only with polychlorinated biphenyls (PCB) which also induce the "chick oedema" syndrome. The renal lesions due to DPA in the chicken were similar to those produced by PCB, but were not accompanied by oedema, which suggests that "chick oedema" caused by PCB is not due to renal insufficiency. The differences in the renal lesions noted in the various animal species give credit to the hypothesis that DPA may have two effects on the tubular epitelium, one stimulating cell proliferation and one leading to degeneration. Cysts may be formed only in those species in which there is cell proliferation.

  20. Contribution of renal purinergic receptors to renal vasoconstriction in angiotensin II-induced hypertensive rats.

    PubMed

    Franco, Martha; Bautista, Rocio; Tapia, Edilia; Soto, Virgilia; Santamaría, José; Osorio, Horacio; Pacheco, Ursino; Sánchez-Lozada, L Gabriela; Kobori, Hiroyuki; Navar, L Gabriel

    2011-06-01

    To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO(2)(-)/NO(3)(-)) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.

  1. Efficacy of Ficus spp. on renal injury induced by hypercholesterolaemia.

    PubMed

    Awad, Nagwa E; Hamed, Manal A; Seida, Ahmed A; Elbatanony, Marwa M

    2012-01-01

    The ethanol and hexane extracts of Ficus microcarpa, Ficus religiosa and Ficus mysorensis leaves were evaluated against renal injury induced by hypercholesterolaemia. Phytochemical screening of the investigated plants was undertaken. For the in vivo study, all rats were orally given cholesterol (30 mg kg⁻¹ body weight, BW) and leaves extract (500 mg kg⁻¹ BW) five times per week for 9 weeks. Hypercholesterolaemic rats showed significant increases in urea nitrogen and creatinine while serum protein and albumin levels, nitric oxide (NO), Na⁺-K⁺-ATPase and phospholipids in kidney tissue were all decreased. Treatment with leaves extract improved kidney function indices (urea nitrogen, creatinine, serum protein and albumin), kidney disorder biochemical parameters (NO, Na⁺-K⁺-ATPase and phospholipids), haematological profile (haemoglobin, RBCs and WBCs) and kidney histopathology. In conclusion, Ficus spp. succeeded in improving renal injury induced by hypercholesterolaemia, with the most potent effects seen while using Ficus microcarpa hexane extract.

  2. Acute hepatic ischemic-reperfusion injury induces a renal cortical "stress response," renal "cytoresistance," and an endotoxin hyperresponsive state.

    PubMed

    Zager, Richard A; Johnson, Ali C M; Frostad, Kirsten B

    2014-10-01

    Hepatic ischemic-reperfusion injury (HIRI) is considered a risk factor for clinical acute kidney injury (AKI). However, HIRI's impact on renal tubular cell homeostasis and subsequent injury responses remain ill-defined. To explore this issue, 30-45 min of partial HIRI was induced in CD-1 mice. Sham-operated or normal mice served as controls. Renal changes and superimposed injury responses (glycerol-induced AKI; endotoxemia) were assessed 2-18 h later. HIRI induced mild azotemia (blood urea nitrogen ∼45 mg/dl) in the absence of renal histologic injury or proteinuria, implying a "prerenal" state. However, marked renal cortical, and isolated proximal tubule, cytoprotective "stress protein" gene induction (neutrophil gelatinase-associated lipocalin, heme oxygenase-1, hemopexin, hepcidin), and increased Toll-like receptor 4 (TLR4) expression resulted (protein/mRNA levels). Ischemia caused release of hepatic heme-based proteins (e.g., cytochrome c) into the circulation. This corresponded with renal cortical oxidant stress (malondialdehyde increases). That hepatic derived factors can evoke redox-sensitive "stress protein" induction was implied by the following: peritoneal dialysate from HIRI mice, soluble hepatic extract, or exogenous cytochrome c each induced the above stress protein(s) either in vivo or in cultured tubule cells. Functional significance of HIRI-induced renal "preconditioning" was indicated by the following: 1) HIRI conferred virtually complete morphologic protection against glycerol-induced AKI (in the absence of hyperbilirubinemia) and 2) HIRI-induced TLR4 upregulation led to a renal endotoxin hyperresponsive state (excess TNF-α/MCP-1 gene induction). In conclusion, HIRI can evoke "renal preconditioning," likely due, in part, to hepatic release of pro-oxidant factors (e.g., cytochrome c) into the systemic circulation. The resulting renal changes can impact subsequent AKI susceptibility and TLR4 pathway-mediated stress.

  3. Diallyl disulfide attenuates acetaminophen-induced renal injury in rats

    PubMed Central

    Shin, Jin-Young; Han, Ji-Hee; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Jung, Tae-Yang; Kim, Hyun-A; Kim, Sung-Hwan; Shin, In-Sik

    2016-01-01

    This study investigated the protective effects of diallyl disulfide (DADS) against acetaminophen (AAP)-induced acute renal injury in male rats. We also investigated the effects of DADS on kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), which are novel biomarkers of nephrotoxicity in renal tissues, in response to AAP treatment. The following four experimental groups were evaluated: (1) vehicle control, (2) AAP (1,000 mg/kg), (3) AAP&DADS, and (4) DADS (50 mg/kg/day). AAP treatment caused acute kidney injury evidenced by increased serum blood urea nitrogen (BUN) levels and histopathological alterations. Additionally, Western blot and immunohistochemistry analysis showed increased expression of KIM-1 and NGAL proteins in renal tissues of AAP-treated rats. In contrast, DADS pretreatment significantly attenuated the AAP-induced nephrotoxic effects, including serum BUN level and expression of KIM-1 and NGAL proteins. Histopathological studies confirmed the renoprotective effect of DADS. The results suggest that DADS prevents AAP-induced acute nephrotoxicity, and that KIM-1 and NGAL may be useful biomarkers for the detection and monitoring of acute kidney injury associated with AAP exposure. PMID:28053613

  4. Diallyl disulfide attenuates acetaminophen-induced renal injury in rats.

    PubMed

    Shin, Jin-Young; Han, Ji-Hee; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Jung, Tae-Yang; Kim, Hyun-A; Kim, Sung-Hwan; Shin, In-Sik; Kim, Jong-Choon

    2016-12-01

    This study investigated the protective effects of diallyl disulfide (DADS) against acetaminophen (AAP)-induced acute renal injury in male rats. We also investigated the effects of DADS on kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), which are novel biomarkers of nephrotoxicity in renal tissues, in response to AAP treatment. The following four experimental groups were evaluated: (1) vehicle control, (2) AAP (1,000 mg/kg), (3) AAP&DADS, and (4) DADS (50 mg/kg/day). AAP treatment caused acute kidney injury evidenced by increased serum blood urea nitrogen (BUN) levels and histopathological alterations. Additionally, Western blot and immunohistochemistry analysis showed increased expression of KIM-1 and NGAL proteins in renal tissues of AAP-treated rats. In contrast, DADS pretreatment significantly attenuated the AAP-induced nephrotoxic effects, including serum BUN level and expression of KIM-1 and NGAL proteins. Histopathological studies confirmed the renoprotective effect of DADS. The results suggest that DADS prevents AAP-induced acute nephrotoxicity, and that KIM-1 and NGAL may be useful biomarkers for the detection and monitoring of acute kidney injury associated with AAP exposure.

  5. Renal tissue damage induced by focused shock waves

    NASA Astrophysics Data System (ADS)

    Ioritani, N.; Kuwahara, M.; Kambe, K.; Taguchi, K.; Saitoh, T.; Shirai, S.; Orikasa, S.; Takayama, K.; Lush, P. A.

    1990-07-01

    Biological evidence of renal arterial wall damage induced by the microjet due to shock wave-cavitation bubble interaction was demonstrated in living dog kidneys. We also intended to clarify the mechanism of renal tissue damage and the effects of different conditions of shock wave exposure (peak pressure of focused area, number of shots, exposure rate) on the renal tissue damage in comparison to stone disintegration. Disruption of arterial wall was the most remarkable histological change in the focused area of the kidneys. This lesion appeared as if the wall had been punctured by a needle. Large hematoma formation in the renal parenchym, and interstitial hemorrhage seemed to be the results of the arterial lesion. This arterial disorder also led to ischemic necrosis of the tubules surrounding the hematoma. Micro-angiographic examination of extracted kidneys also proved such arterial puncture lesions and ischemic lesions. The number of shots required for model stone disintegration was not inversely proportional to peak pressure. It decreased markedly when peak pressure was above 700 bar. Similarly thenumber of shots for hematoma formation was not inversely proportional to peak pressure, however, this decreased markedly above 500 bar. These results suggested that a hematoma could be formed under a lower peak pressure than that required for stone disintegration.

  6. Tubular cell apoptosis and cidofovir-induced acute renal failure.

    PubMed

    Ortiz, Alberto; Justo, Pilar; Sanz, Ana; Melero, Rosa; Caramelo, Carlos; Guerrero, Manuel Fernández; Strutz, Frank; Müller, Gerhard; Barat, Antonio; Egido, Jesus

    2005-01-01

    Cidofovir is an antiviral drug with activity against a wide array of DNA viruses including poxvirus. The therapeutic use of cidofovir is marred by a dose-limiting side effect, nephrotoxicity, leading to proximal tubular cell injury and acute renal failure. Treatment with cidofovir requires the routine use of prophylactic measures. A correct knowledge of the cellular and molecular mechanisms of cidofovir toxicity may lead to the development of alternative prophylactic strategies. We recently cared for a patient with irreversible acute renal failure due to cidofovir. Renal biopsy showed tubular cell apoptosis. Cidofovir induced apoptosis in primary cultures of human proximal tubular cells in a temporal (peak apoptosis at 7 days) and concentration (10-40 microg/ml) pattern consistent with that of clinical toxicity. Apoptosis was identified by the presence of hypodiploid cells, by the exposure of annexin V binding sites and by morphological features and was associated with the appearance of active caspase-3 fragments. Cell death was specific as it was also present in a human proximal tubular epithelial cell line (HK-2), but not in a human kidney fibroblast cell line, and was prevented by probenecid. An inhibitor of caspase-3 (DEVD) prevented cidofovir apoptosis. The survival factors present in serum, insulin-like growth factor-1 and hepatocyte growth factor, were also protective. The present data suggest that apoptosis induction is a mechanism contributing to cidofovir nephrotoxicity. The prophylactic administration of factors with survival activity for tubular epithelium should be further explored in cidofovir renal injury.

  7. Review of vancomycin-induced renal toxicity: an update

    PubMed Central

    Bamgbola, Oluwatoyin

    2016-01-01

    In recent times the use of larger doses of vancomycin aimed at curbing the increasing incidence of resistant strains of Staphylococcus aureus has led to a wider report of acute kidney injury (AKI). Apart from biological plausibility, causality is implied by the predictive association of AKI with larger doses, longer duration, and graded plasma concentrations of vancomycin. AKI is more likely to occur with the concurrent use of nephrotoxic agents, and in critically ill patients who are susceptible to poor renal perfusion. Although most vancomycin-induced AKI cases are mild and therefore reversible, their occurrence may be associated with greater incidence of end-stage kidney disease and higher mortality rate. The strategy for its prevention includes adequate renal perfusion and therapeutic drug monitoring in high-risk individuals. In the near future, there is feasibility of renoprotective use of antioxidative substances in the delivery of vancomycin. PMID:27293542

  8. Calcium Oxalate Induces Renal Injury through Calcium-Sensing Receptor

    PubMed Central

    Li, Xiaoran; Ma, Junhai; Shi, Wei; Su, Yu; Fu, Xu; Yang, Yanlin; Lu, Jianzhong

    2016-01-01

    Objective. To investigate whether calcium-sensing receptor (CaSR) plays a role in calcium-oxalate-induced renal injury. Materials and Methods. HK-2 cells and rats were treated with calcium oxalate (CaOx) crystals with or without pretreatment with the CaSR-specific agonist gadolinium chloride (GdCl3) or the CaSR-specific antagonist NPS2390. Changes in oxidative stress (OS) in HK-2 cells and rat kidneys were assessed. In addition, CaSR, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal protein kinase (JNK), and p38 expression was determined. Further, crystal adhesion assay was performed in vitro, and the serum urea and creatinine levels and crystal deposition in the kidneys were also examined. Results. CaOx increased CaSR, ERK, JNK, and p38 protein expression and OS in vitro and in vivo. These deleterious changes were further enhanced upon pretreatment with the CaSR agonist GdCl3 but were attenuated by the specific CaSR inhibitor NPS2390 compared with CaOx treatment alone. Pretreatment with GdCl3 further increased in vitro and in vivo crystal adhesion and renal hypofunction. In contrast, pretreatment with NPS2390 decreased in vitro and in vivo crystal adhesion and renal hypofunction. Conclusions. CaOx-induced renal injury is related to CaSR-mediated OS and increased mitogen-activated protein kinase (MAPK) signaling, which subsequently leads to CaOx crystal adhesion. PMID:27965733

  9. GSPE Inhibits HMGB1 Release, Attenuating Renal IR-Induced Acute Renal Injury and Chronic Renal Fibrosis

    PubMed Central

    Zhan, Juan; Wang, Kun; Zhang, Conghui; Zhang, Chunxiu; Li, Yueqiang; Zhang, Ying; Chang, Xiaoyan; Zhou, Qiaodan; Yao, Ying; Liu, Yanyan; Xu, Gang

    2016-01-01

    Grape seed proanthocyanindin extract (GSPE) is a polyphenolic bioflavonoid derived from grape seeds and has been widely studied for its potent antioxidant, anti-inflammatory and antitumor activities. HMGB1 is a newly discovered danger-associated molecular pattern (DAMP) that has potent proinflammatory effects once released by necrotic cells. However, the effect of GSPE on the HMGB1, and the relationship of those two with acute kidney injury and chronic kidney fibrosis are unknown. This study aimed to investigate the impact of GSPE on acute kidney injury and chronic fibrosis. C57bl/6 mice were subjected to bilateral ischemia/reperfusion (I/R) and unilateral I/R with or without GSPE administration. After bilateral I/R, mice administered GSPE had a marked improvement in renal function (BUN and Cr), decreased pathological damage and reduced inflammation. In unilateral I/R, mice subjected GSPE showed reduced tubulointerstitial fibrosis and decreased inflammatory reaction. The renoprotection of GSPE on both models was associated with the inhibition of HMGB1 nucleocytoplasmic shuttling and release, which can amplify the inflammation through binding to its downstream receptor TLR4 and facilitated P65 transcription. Thus, we have reason to believe that GSPE could be a good alternative therapy for the prevention and treatment of IR-induced renal injury and fibrosis in clinical practice. PMID:27690015

  10. MUTATIONS IN THE VHL GENE FRIOM POTASSIUM BROMATE-INDUCED RAT CLEAR CELL RENAL TUMORS

    EPA Science Inventory

    Potassium bromate (KBrO3) is a rat renal carcinogen and a major drinking water disinfection by-product in water disinfected with ozone. Clear cell renal tumors, the most common form of human renal epithelial neoplasm, are rare in animals but are inducible by KBrO3 in F344 rats. ...

  11. Lansoprazole-induced acute allergic interstitial nephritis in a renal transplant recipient: a case report.

    PubMed

    Yildirim, Tolga; Yilmaz, Rahmi; Baydar, Dilek Ertoy; Kutlugun, Aysun Aybal; Aki, Tuncay; Turgan, Cetin

    2012-12-01

    Drug-induced interstitial nephritis is one of the causes of graft dysfunction in renal transplant recipients. Although commonly implicated as a cause of drug-induced interstitial nephritis in the general population, proton pump inhibitor-induced interstitial nephritis has not yet been reported in renal transplant recipients. Trimethoprim-sulfamethoxazole is responsible for most cases of interstitial nephritis in this population. Here, we describe the first case of proton pump inhibitor-related interstitial nephritis in a renal transplant recipient.

  12. Efferent pathways in sodium overload-induced renal vasodilation in rats.

    PubMed

    Amaral, Nathalia O; de Oliveira, Thiago S; Naves, Lara M; Filgueira, Fernando P; Ferreira-Neto, Marcos L; Schoorlemmer, Gerard H M; de Castro, Carlos H; Freiria-Oliveira, André H; Xavier, Carlos H; Colugnati, Diego B; Rosa, Daniel A; Blanch, Graziela T; Borges, Clayton L; Soares, Célia M A; Reis, Angela A S; Cravo, Sergio L; Pedrino, Gustavo R

    2014-01-01

    Hypernatremia stimulates the secretion of oxytocin (OT), but the physiological role of OT remains unclear. The present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280-350 g) were anesthetized with sodium thiopental (40 mg. kg(-1), i.v.). A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP) and renal blood flow (RBF). Renal vascular conductance (RVC) was calculated as the ratio of RBF by MAP. In anesthetized rats (n = 6), OT infusion (0.03 µg • kg(-1), i.v.) induced renal vasodilation. Consistent with this result, ex vivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR) reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml • kg(-1) b.wt., i.v.) was infused over 60 s. In sham rats (n = 6), hypertonic saline induced renal vasodilation. The OXTR antagonist (AT; atosiban, 40 µg • kg(-1) • h(-1), i.v.; n = 7) and renal denervation (RX) reduced the renal vasodilation induced by hypernatremia. The combination of atosiban and renal denervation (RX+AT; n = 7) completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively), whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.

  13. Normalizing renal reducing ability prevents adriamycin-induced proteinuria

    SciTech Connect

    Oteki, Takaaki; Nagase, Sohji . E-mail: sohji-n@md.tsukuba.ac.jp; Yokoyama, Hidekatsu; Ohya, Hiroaki; Akatsuka, Takao; Tada, Mika; Ueda, Atsushi; Hirayama, Aki; Koyama, Akio

    2005-11-11

    Reactive oxygen species play an important role in adriamycin (ADR) nephropathy. We showed by in vivo electron paramagnetic resonance (EPR) that renal reducing ability (RRA) declined on the 7th day after ADR administration. Proteinuria appeared after the decline in RRA. The aim of this study was to prove by in vivo EPR whether the decline in RRA is altered by scavengers such as dimethyl sulfoxide (DMSO) and dimethylthiourea (DMTU) and that it is this change which is responsible for the proteinuria in ADR nephropathy. By showing that DMSO and DMTU ameliorate the RRA, we demonstrate that the decline in RRA is related to ADR-induced proteinuria.

  14. Mechanisms of portal hypertension-induced alterations in renal hemodynamics, renal water excretion, and renin secretion.

    PubMed Central

    Anderson, R J; Cronin, R E; McDonald, K M; Schrier, R W

    1976-01-01

    Clinical states with portal venous hypertension are frequently associated with impairment in renal hemodynamics and water excretion, as well as increased renin secretion. In the present investigation, portal venous pressure (PVP) was increased in anesthetized dogs undergoing a water diuresis. Renal arterial pressure was maintained constant in all studies. As PVP was increased from 6 to 20 mm Hg, decreases in cardiac output (2.5-2.0 liter/min, P less than 0.05) and mean arterial pressure (140-131 mm Hg, P less than 0.05) were observed. Increases in PVP were also associated with decreases in glomerular filtration rate (GFR, 40-31 ml/min, P less than 0.001), renal blood flow (RBF, 276-193 ml/min, P less than 0.001), and increases in renin secretion (232-939 U/min, P less than 0.025) in innervated kidneys. No significant change in either GFR or RBF and a decrease in renin secretion occurred with increases in PVP in denervated kidneys. To dissociate the changes in cardiac output and mean arterial pressure induced by increase PVP from the observed decreases in GFR and RBF, studies were performed on animals undergoing constriction of the thoracic inferior vena cava. In these studies, similar decreases in cardiac output and mean arterial pressure were not associated with significant changes in GFR or RBF. Increases in PVP also were associated with an antidiuresis as urine osmolality increased from 101 to 446 mosmol/kg H2O (P less than 0.001). This antidiuresis was significantly blunted but not abolished by acute hypophysectomy. In hypophysectomized animals, changes in free water clearance and urine flow were linearly correlated as PVP was increased. These studies indicate that increases in PVP result in decreases in GFR and RBF and increases in renin secretion mediated by increased renal adrenergic tone. Increased PVP is also associated with antidiuresis; this antidiuresis is mediated both by vasopressin release and by diminished tubular fluid delivery to the distal

  15. Two cases of cisplatin-induced permanent renal failure following neoadjuvant chemotherapy for esophageal cancer

    PubMed Central

    Sasaki, Tomohiko; Motoyama, Satoru; Komatsuda, Atsushi; Shibata, Hiroyuki; Sato, Yusuke; Yoshino, Kei; Wakita, Akiyuki; Saito, Hajime; Anbai, Akira; Jin, Mario; Minamiya, Yoshihiro

    2016-01-01

    Introduction We experienced two esophageal cancer patients who developed severe acute renal failure after neoadjuvant chemotherapy with cisplatin and 5-fluorourasil. Presentation of case After administration of cisplatin, their serum creatinine increased gradually until they required hemodialysis and their renal failure was permanent. In both cases, renal biopsy examination indicated partial recovery of the proximal tubule, but renal function did not recover. After these events, one patient underwent definitive radiotherapy and the other underwent esophagectomy for their esophageal cancers, while continuing dialysis. Both patients are alive without cancer recurrence. Discussion In these two cases of cisplatin-induced renal failure, renal biopsy examination showed only slight disorder of proximal tubules and tendency to recover. Conclusion Although cisplatin-related nephrotoxicity is a well-recognized complication, there have been few reports of renal failure requiring hemodialysis in cancer patients. In this report, we present their clinical courses and the pathological findings of cisplatin-related renal failure. PMID:26851395

  16. Vitamin D3 pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Xia, Mi-Zhen; Wang, Hua; Zhao, Hui; Xu, De-Xiang; Yu, De-Xin

    2015-08-01

    Increasing evidence demonstrates that reactive oxygen species plays important roles in sepsis-induced acute kidney injury. This study investigated the effects of VitD3 pretreatment on renal oxidative stress in sepsis-induced acute kidney injury. Mice were intraperitoneally injected with lipopolysaccharide (LPS, 2.0mg/kg) to establish an animal model of sepsis-induced acute kidney injury. In VitD3+LPS group, mice were orally pretreated with three doses of VitD3 (25 μg/kg) at 1, 24 and 48 h before LPS injection. As expected, oral pretreatment with three daily recommended doses of VitD3 markedly elevated serum 25(OH)D concentration and efficiently activated renal VDR signaling. Interestingly, LPS-induced renal GSH depletion and lipid peroxidation were markedly alleviated in VitD3-pretreated mice. LPS-induced serum and renal nitric oxide (NO) production was obviously suppressed by VitD3 pretreatment. In addition, LPS-induced renal protein nitration, as determined by 3-nitrotyrosine residue, was obviously attenuated by VitD3 pretreatment. Further analysis showed that LPS-induced up-regulation of renal inducible nitric oxide synthase (inos) was repressed in VitD3-pretreated mice. LPS-induced up-regulation of renal p47phox and gp91phox, two NADPH oxidase subunits, were normalized by VitD3 pretreatment. In addition, LPS-induced down-regulation of renal superoxide dismutase (sod) 1 and sod2, two antioxidant enzyme genes, was reversed in VitD3-pretreated mice. Finally, LPS-induced tubular epithelial cell apoptosis, as determined by TUNEL, was alleviated by VitD3 pretreatment. Taken together, these results suggest that VitD3 pretreatment alleviates LPS-induced renal oxidative stress through regulating oxidant and antioxidant enzyme genes.

  17. D-ribose ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice.

    PubMed

    Ueki, Masaaki; Ueno, Masaki; Morishita, Jun; Maekawa, Nobuhiro

    2013-01-01

    Cisplatin is one of the most potent chemotherapeutic anticancer drugs, but it can produce side effects such as nephrotoxicity. Inflammatory cytokines, chemokines and adhesion molecules have important roles in the pathogenesis of cisplatin-induced nephrotoxicity. D-Ribose is a naturally occurring five-carbon monosaccharide that is found in all living cells, and has anti-inflammatory effects in renal ischemia/reperfusion injury. The purpose of this study was to determine the protective effects of D-ribose on cisplatin-induced nephrotoxicity. Forty-eight mice were randomly divided into four groups: control, cisplatin, cisplatin + ribose, and ribose. Mice were given cisplatin (20 mg/kg body weight, intraperitoneally) with or without D-ribose (400 mg/kg body weight, intraperitoneally, immediately after cisplatin injection). At 72 h after cisplatin injection, we measured serum and renal tumor necrosis factor (TNF)-α and renal monocyte chemoattractant protein (MCP)-1 concentrations by enzyme-linked immunosorbent assay; renal expression of intercellular adhesion molecule (ICAM)-1 mRNA by real-time polymerase chain reaction; serum blood urea nitrogen and creatinine; and histological changes. Cisplatin increased serum and renal TNF-α concentrations, renal MCP-1 concentration, and renal ICAM-1 mRNA expression. Treatment with D-ribose attenuated the increase in serum and renal TNF-α concentrations, renal MCP-1 concentration, and renal ICAM-1 mRNA expression. Consequently, cisplatin-induced renal dysfunction and renal tubular necrosis were attenuated by D-ribose treatment. This is believed to be the first time that protective effects of D-ribose on cisplatin-induced nephrotoxicity via inhibition of inflammatory reactions have been investigated. Thus, D-ribose may become a new therapeutic candidate for the treatment of cisplatin-induced nephrotoxicity.

  18. Isoniazid-induced seizures with secondary rhabdomyolysis and associated acute renal failure in a dog.

    PubMed

    Haburjak, J J; Spangler, W L

    2002-04-01

    Isoniazid-induced seizures resulted in rhabdomyolysis and associated acute renal tubular necrosis in a dog. Rhabdomyolysis and myoglobinuric renal failure, although recognised in the dog, are reported infrequently as a consequence of seizures. The clinical presentation of isoniazid toxicity in a dog is described.

  19. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Zhang, Zhi-Hui; Wang, Hua; Zhao, Hui; Yu, De-Xin; Xu, De-Xiang

    2015-12-22

    Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury.

  20. The metabolic syndrome induces early changes in the swine renal medullary mitochondria.

    PubMed

    Eirin, Alfonso; Woollard, John R; Ferguson, Christopher M; Jordan, Kyra L; Tang, Hui; Textor, Stephen C; Lerman, Amir; Lerman, Lilach O

    2017-03-11

    The metabolic syndrome (MetS) is associated with nutrient surplus and kidney hyperfiltration, accelerating chronic renal failure. Mitochondria can be overwhelmed by substrate excess, leading to inefficient energy production and thereby tissue hypoxia. Mitochondrial dysfunction is emerging as an important determinant of renal damage, but whether it contributes to MetS-induced renal injury remains unknown. We hypothesized that early MetS induces kidney mitochondrial abnormalities and dysfunction, which would be notable in the vulnerable renal medulla. Pigs were studied after 16 weeks of diet-induced MetS, MetS treated for the last 4 weeks with the mitochondria-targeted peptide elamipretide (0.1 mg/kg SC q.d), and Lean controls (n = 7 each). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were measured in-vivo, whereas cortical and medullary mitochondrial structure and function and renal injurious pathways were studied ex-vivo. Blood pressure was slightly elevated in MetS pigs, and their renal blood flow and glomerular filtration rate were elevated. Blood oxygen level-dependent magnetic resonance imaging demonstrated that this was associated with medullary hypoxia, whereas cortical oxygenation remained intact. MetS decreased renal content of the inner mitochondrial membrane cardiolipin, particularly the tetra-linoleoyl (C18:2) cardiolipin species, and altered mitochondrial morphology and function, particularly in the medullary thick ascending limb. MetS also increased renal cytochrome-c-induced apoptosis, oxidative stress, and tubular injury. Chronic mitoprotection restored mitochondrial structure, ATP synthesis, and antioxidant defenses and decreased mitochondrial oxidative stress, medullary hypoxia, and renal injury. These findings implicate medullary mitochondrial damage in renal injury in experimental MetS, and position the mitochondria as a therapeutic target.

  1. Acute renal injury induced by valacyclovir hydrochloride: A case report

    PubMed Central

    Zhang, Yanning; Cong, Yuxi; Teng, Yan

    2016-01-01

    Acyclovir has been a frequently used antiviral agent in the clinical treatment of leukemia, acute encephalitis, malignant tumor and herpes simplex. The adverse effects of this drug have been widely described in clinical practice. In the present study, a case of a 35-year-old female patient diagnosed with herpes simplex, who developed acute renal injury following treatment with valacyclovir hydrochloride, is described. Kidney biopsy, light microscopy and laboratory examination were performed, and all findings revealed the signs of evident vacuolar degeneration of capillary endothelial and renal tubular epithelial cells, erythrocyte aggregation in partial renal tubule and microvilli exfoliation from epithelial cells. Renal interstitial edema was clearly identified. The clinical evidence observed from this female patient indicated that renal functions should be closely monitored during valacyclovir hydrochloride administration. A variety of effective measures, such as hydration, alkalizing urine, promoting the discharge of medication and the use of antagonists are recommended following the administration of antiviral agents. PMID:28101180

  2. Effects of lysine-induced acute renal failure in dogs.

    PubMed

    Asanuma, Kentaro; Adachi, Kenji; Sugimoto, Tetsuro; Chiba, Shuichi

    2006-05-01

    This study investigates the effects of lysine-induced acute renal failure. Female dogs received a lysine hydrochloride (lysine) of 4500 mg/kg/day (3.75 ml/kg/hr) for 3 consecutive days. The dogs were observed for clinical signs. Body weights were recorded, food consumption and water consumption calculated, and urinalysis and blood biochemistry were performed daily. Plasma samples for amino acid determinations were obtained from all dogs, which were necropsied on Day 3. Histopathological examinations were done on all test animals. Compound-related findings include the following. Blood biochemistry results showed increases in ammonia, blood urea nitrogen, blood urea nitrogen/creatinine ratio, and creatinine. Urinary changes consisted of increases in urine volume, total protein, albumin, gamma-glutamyl transpeptidase, and N-acetyl-beta-D-glucosaminidase. In addition, macroscopic findings consisted of pale, congested capsule; microscopic findings consisted of hypertrophy of proximal convoluted tubule (mainly S1 segment), and degeneration/desquamation of urinary tubule (mainly S3 segment with hyaline casts) in the kidney. From these findings, it can be concluded that lysine is nephrotoxic in dogs. Nephrotoxicity of lysine may relate to direct tubular toxicity and to tubular obstruction.

  3. Prognostic factors of renal dysfunction induced by environmental cadmium pollution

    SciTech Connect

    Nishijo, Muneko; Nakagawa, Hideaki; Morikawa, Yuko; Tabata, Masaji; Senma, Masami; Kitagawa, Yumiko; Kawano, Shunichi; Ishizaki, Masao ); Sugita, Naomichi; Nishi, Masami )

    1994-02-01

    To assess the influence of environmental cadmium (Cd) exposure on long-term outcome, a follow-up study was conducted from 1981-1982 to March 1991 on 3178 inhabitants living in the Cd-polluted Kakehashi River basin. The standardized mortality ratios of the urinary [beta][sub 2]-microglobulin ([beta]2-MG)-, protein-, and amino acid-positive subjects of both sexes and the urinary glucose-positive female subjects were higher than those of the subjects with urinary-negative findings or the general Japanese population during the observation period. After adjusting for age using Cox's proportional hazards model, significant associations were found between mortality and urinary indices. In multiple comparisons using all of the indices, urinary protein and [beta]2-MG in the women and urinary protein in the men were the factors most contributing to the mortality rates. In the urinary protein-negative female group as well, as significant association was found between urinary [beta]2-MG and mortality. These results suggest that the prognosis of subjects with Cd-induced renal dysfunction is unfavorable, with the mortality rate increasing even in the early stage of proximal tubular dysfunction. Urinary protein and urinary [beta]2-MG are important prognostic factors, with the latter, in particular, considered to be useful as an early index predictive of premature mortality. 30 refs., 6 tabs.

  4. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  5. Perinatal radiation-induced renal damage in the beagle

    SciTech Connect

    Jaenke, R.S.; Angleton, G.M. )

    1990-04-01

    The developing perinatal kidney is particularly sensitive to radiation. The pathogenesis of the radiation-induced lesion is related to the destruction of outer cortical developing nephrons and direct radiation injury with secondary hemodynamic alterations in remnant nephrons. In this study, which is part of a life span investigation of the effects of whole-body gamma radiation during prenatal and early postnatal life, dogs were given 0, 0.16, 0.83, or 1.25 Gy irradiation at either 55 days postcoitus or 2 days postpartum and were examined morphometrically and histopathologically at 70 days of age. Although irradiated dogs showed no reduction in the total number of nephrons per kidney, there was a significant increase in the total number and relative percentage of immature, dysplastic glomeruli. In addition, deeper cortical glomeruli of irradiated kidneys exhibited mesangial sclerosis similar to that associated with progressive renal failure in our previous studies. These findings are in accord with those reported at doses of 2.24 to 3.57 Gy and demonstrate that the perinatal kidney is affected by radiation doses much lower than previously demonstrated.

  6. Mixed Organic Solvents Induce Renal Injury in Rats

    PubMed Central

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287

  7. Omi/HtrA2 protease mediates cisplatin-induced cell death in renal cells.

    PubMed

    Cilenti, Lucia; Kyriazis, George A; Soundarapandian, Mangala M; Stratico, Valerie; Yerkes, Adam; Park, Kwon Moo; Sheridan, Alice M; Alnemri, Emad S; Bonventre, Joseph V; Zervos, Antonis S

    2005-02-01

    Omi/HtrA2 is a mitochondrial proapoptotic serine protease that is able to induce both caspase-dependent and caspase-independent cell death. After apoptotic stimuli, Omi is released to the cytoplasm where it binds and cleaves inhibitor of apoptosis proteins. In this report, we investigated the role of Omi in renal cell death following cisplatin treatment. Using primary mouse proximal tubule cells, as well as established renal cell lines, we show that the level of Omi protein is upregulated after treatment with cisplatin. This upregulation is followed by the release of Omi from mitochondria to the cytoplasm and degradation of XIAP. Reducing the endogenous level of Omi protein using RNA interference renders renal cells resistant to cisplatin-induced cell death. Furthermore, we show that the proteolytic activity of Omi is necessary and essential for cisplatin-induced cell death in this system. When renal cells are treated with Omi's specific inhibitor, ucf-101, they become significantly resistant to cisplatin-induced cell death. Ucf-101 was also able to minimize cisplatin-induced nephrotoxic injury in animals. Our results demonstrate that Omi is a major mediator of cisplatin-induced cell death in renal cells and suggest a way to limit renal injury by specifically inhibiting its proteolytic activity.

  8. Protective Effects of Luteolin on Lipopolysaccharide-Induced Acute Renal Injury in Mice

    PubMed Central

    Xin, Shao-bin; Yan, Hao; Ma, Jing; Sun, Qiang; Shen, Li

    2016-01-01

    Background Sepsis can cause serious acute kidney injury in bacterium-infected patients, especially in intensive care patients. Luteolin, a bioactive flavonoid, has renal protection and anti-inflammatory effects. This study aimed to investigate the effect and underlying mechanism of luteolin in attenuating lipopolysaccharide (LPS)-induced renal injury. Material/Methods ICR mice were treated with LPS (25 mg/kg) with or without luteolin pre-treatment (40 mg/kg for three days). The renal function, histological changes, degree of oxidative stress, and tubular apoptosis in these mice were examined. The effects of luteolin on LPS-induced expression of renal tumor necrosis factor-α (TNF-α), NF-κB, MCP-1, ICAM-1, and cleaved caspase-3 were evaluated. Results LPS resulted in rapid renal damage of mice, increased level of blood urea nitrogen (BUN), and serum creatinine (Scr), tubular necrosis, and increased oxidative stress, whereas luteolin pre-treatment could attenuate this renal damage and improve the renal functions significantly. Treatment with LPS increased TNF-α, NF-κB, IL-1β, cleaved caspase-3, MCP-1, and ICAM-1 expression, while these disturbed expressions were reversed by luteolin pre-treatment. Conclusions These results indicate that luteolin ameliorates LPS-mediated nephrotoxicity via improving renal oxidant status, decreasing NF-κB activation and inflammatory and apoptosis factors, and then disturbing the expression of apoptosis-related proteins. PMID:28029146

  9. Cefepime-Induced Non-Convulsive Status Epilepticus in a Patient with Normal Renal Function

    PubMed Central

    Park, Hyeon-Mi; Noh, Young; Yang, Ji Won; Shin, Dong Hoon; Lee, Yeong-Bae

    2016-01-01

    Cefepime-induced encephalopathy including nonconvulsive status epilepticus has been known to develop in the patients with renal impairment. However, we report a 74-year-old woman with normal renal function who developed stuporous mental status during cefepime administration. Electroencephalogram (EEG) revealed 2 Hz rhythmic sharp-and-waves continuously, which suggested nonconvulsive status epilepticus (NCSE). After cefepime discontinuation, clinical symptoms recovered gradually and EEG findings showed only background slowing without epileptiform discharges. Cefepime-induced NCSE could be developed even in the patients with normal renal function, when they are elderly. Therefore, clinicians should be aware of the possibility of cefepime-induced NCSE when prescribing cefepime even to the patients with normal renal function. PMID:28101482

  10. Hydrogen peroxide-induced renal injury. A protective role for pyruvate in vitro and in vivo.

    PubMed Central

    Salahudeen, A K; Clark, E C; Nath, K A

    1991-01-01

    Hydrogen peroxide (H2O2) contributes to renal cellular injury. alpha-Keto acids nonenzymatically reduce H2O2 to water while undergoing decarboxylation at the 1-carbon (1-C) position. We examined, in vitro and in vivo, the protective role of sodium pyruvate in H2O2-induced renal injury. Pyruvate effectively scavenged H2O2 in vitro, and suppressed H2O2-induced renal lipid peroxidation. Injury to LLC-PK1 cells induced by hydrogen peroxide was attenuated by pyruvate to an extent comparable to that seen with catalase. Studies utilizing [1-14C]pyruvate further demonstrated 1-C decarboxylation concurrent with cytoprotection by pyruvate from H2O2-induced injury. Pyruvate was also protective in vivo. Infusion of pyruvate before and during the intrarenal infusion of H2O2 attenuated H2O2-induced proteinuria. Systemic administration of pyruvate was also protective in the glycerol model of acute renal failure, a model also characterized by increased generation of H2O2. These findings indicate that pyruvate, a ubiquitous alpha-keto acid, scavenges H2O2 and protects renal tissue in vitro and in vivo from H2O2-mediated injury. These data suggest a potential therapeutic role for pyruvate in diseases in which increased generation of H2O2 is incriminated in renal damage. Images PMID:1752950

  11. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice.

    PubMed

    Ueki, Masaaki; Ueno, Masaki; Morishita, Jun; Maekawa, Nobuhiro

    2013-05-01

    Inflammatory mechanisms may play an important role in the pathogenesis of cisplatin-induced nephrotoxicity. Curcumin is an orange-yellow polyphenol present in curry spice and has anti-inflammatory and antioxidant effects. The purpose of this study was to determine the protective effects of curcumin on cisplatin-induced nephrotoxicity. Mice were randomly divided into four groups: control, cisplatin, cisplatin + curcumin and curcumin. Mice were given cisplatin (20 mg/kg body weight, intraperitoneally) with or without curcumin treatment (100 mg/kg body weight, intraperitoneally, immediately after cisplatin injection). Serum and renal tumor necrosis factor (TNF)-alpha and renal monocyte chemoattractant protein (MCP)-1 concentrations, intercellular adhesion molecule-1 (ICAM-1) mRNA expression in kidney, renal function and histological changes were determined 72 h after cisplatin injection. Serum TNF-alpha concentration in the cisplatin + curcumin group significantly decreased compared with that in the cisplatin group. Renal TNF-alpha and MCP-1 concentrations and ICAM-1 mRNA expression in kidney in the cisplatin + curcumin group also significantly decreased compared with those in the cisplatin group. Consequently, cisplatin-induced renal dysfunction and renal tubular necrosis scores were attenuated by curcumin treatment. These results indicate that curcumin acts to reduce cisplatin-induced nephrotoxicity through its anti-inflammatory effects. Thus, curcumin may become a new therapeutic candidate for the treatment of cisplatin-induced nephrotoxicity.

  12. Mode of Action: Oxalate Crystal-Induced Renal Tubule Degeneration and Glycolic Acid-Induced Dysmorphogenesis—Renal and Developmental Effects of Ethylene Glycol

    SciTech Connect

    Corley, Rick A.; Meek, M E.; Carney, E W.

    2005-10-01

    Ethylene glycol can cause both renal and developmental toxicity, with metabolism playing a key role in the mode of action (MOA) for each form of toxicity. Renal toxicity is ascribed to the terminal metabolite oxalic acid, which precipitates in the kidney in the form of calcium oxalate crystals and is believed to cause physical damage to the renal tubules. The human relevance of the renal toxicity of ethylene glycol is indicated by the similarity between animals and humans of metabolic pathways, the observation of renal oxalate crystals in toxicity studies in experimental animals and human poisonings, and cases of human kidney and bladder stones related to dietary oxalates and oxalate precursors. High-dose gavage exposures to ethylene glycol also cause axial skeletal defects in rodents (but not rabbits), with the intermediary metabolite, glycolic acid, identified as the causative agent. However, the mechanism by which glycolic acid perturbs development has not been investigated sufficiently to develop a plausible hypothesis of mode of action, nor have any cases of ethylene glycol-induced developmental effects been reported in humans. Given this, and the variations in sensitivity between animal species in response, the relevance to humans of ethylene glycol-induced developmental toxicity in animals is unknown at this time.

  13. Cinnabar Induces Renal Inflammation and Fibrogenesis in Rats

    PubMed Central

    Wang, Ying; Wang, Dapeng; Wu, Jie; Wang, Bohan; Wang, Liangjun; Gao, Xin; Huang, Hai; Ma, Honglin

    2015-01-01

    The purpose of this study was to investigate whether cinnabar causes renal inflammation and fibrosis in rats. Rats were dosed orally with cinnabar (1 g/kg/day) for 8 weeks or 12 weeks. The control rats were treated with solvent (5% carboxymethylcellulose solution) over the same time periods, respectively. Renal mercury (RHg), urinary mercury (UHg), serum creatinine (SCr), urine kidney injury molecule 1 (KIM-1), renal pathology, and renal mediators were examined. At both 8 weeks and 12 weeks, RHg, UHg, and urine KIM-1 were significantly higher in the cinnabar group than in the control group, although SCr was unchanged. Kidney lesions in the cinnabar-treated rats occurred mainly in the tubules and interstitium, including vacuolization, protein casts, infiltration of inflammatory cells, and slight increase in interstitial collagen. In addition, mild mesangial proliferation was observed in glomeruli. Moreover, the expression of inflammatory and fibrogenic mediators was upregulated in the cinnabar group. In conclusion, cinnabar may cause kidney damage due to the accumulation of mercury, and renal inflammation and slight fibrogenesis may occur in rats. In the clinic, the potential risk of renal injury due to the prolonged consumption of cinnabar should be considered even though the agent is relatively nontoxic. PMID:25734058

  14. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    PubMed

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.

  15. Betaine supplementation protects against high-fructose-induced renal injury in rats.

    PubMed

    Fan, Chen-Yu; Wang, Ming-Xing; Ge, Chen-Xu; Wang, Xing; Li, Jian-Mei; Kong, Ling-Dong

    2014-03-01

    High fructose intake causes metabolic syndrome, being an increased risk of chronic kidney disease development in humans and animals. In this study, we examined the influence of betaine on high-fructose-induced renal damage involving renal inflammation, insulin resistance and lipid accumulation in rats and explored its possible mechanisms. Betaine was found to improve high-fructose-induced metabolic syndrome including hyperuricemia, dyslipidemia and insulin resistance in rats with systemic inflammation. Betaine also showed a protection against renal dysfunction and tubular injury with its restoration of the increased glucose transporter 9 and renal-specific transporter in renal brush bolder membrane and the decreased organic anion transporter 1 and adenosine-triphosphate-binding cassette transporter 2 in the renal cortex in this model. These protective effects were relevant to the anti-inflammatory action by inhibiting the production of inflammatory cytokines including interleukin (IL)-1β, IL-18, IL-6 and tumor necrosis factor-α in renal tissue of high-fructose-fed rat, being more likely to suppress renal NOD-like receptor superfamily, pyrin domain containing 3 inflammasome activation than nuclear factor κB activation. Subsequently, betaine with anti-inflammation ameliorated insulin signaling impairment by reducing the up-regulation of suppressor of cytokine signaling 3 and lipid accumulation partly by regulating peroxisome proliferator-activated receptor α/palmityltransferase 1/carnitine/organic cation transporter 2 pathway in kidney of high-fructose-fed rats. These results indicate that the inflammatory inhibition plays a pivotal role in betaine's improvement of high-fructose-induced renal injury with insulin resistance and lipid accumulation in rats.

  16. Protective effects of icariin on cisplatin-induced acute renal injury in mice

    PubMed Central

    Ma, Pei; Zhang, Sen; Su, Xinlin; Qiu, Guixing; Wu, Zhihong

    2015-01-01

    Cisplatin chemotherapy often causes acute kidney injury in cancer patients. Icariin is a bioactive flavonoid, which has renal protection and anti-inflammation effects. This study investigated the mechanism underlying the attenuation of cisplatin-induced renal injury by icariin. BALB/c mice were treated with cisplatin (15 mg/kg) with or without treatment with icariin (30 or 60 mg/kg for 5 days). Renal function, histological changes, degree of oxidative stress and tubular apoptosis were examined. The effects of icariin on cisplatin-induced expression of renal TNF-α, NF-κB, cleaved caspase-3 and Bcl-2 family proteins were evaluated. Treatment of mice with cisplatin resulted in renal damage, showing an increase in blood urea nitrogen and creatinine levels, tubular damage, oxidative stress and apoptosis. These renal changes could be significantly improved by icariin treatment, especially in high dose of icariin group. Examination of molecules involving inflammation and apoptosis of the kidney revealed that treatment of icariin reduced expression of TNF-α, NF-κB, cleaved caspase-3, and Bax, increased the expression of BCL-2. These results indicate that icariin ameliorates the cisplatin-mediated nephrotoxicity via improving renal oxidant status, consequent NF-κB activation and inflammation cascade and apoptosis, and the following disturbed expression of apoptosis related proteins. PMID:26692955

  17. Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury

    PubMed Central

    Fakhruddin, Selim; Alanazi, Wael

    2017-01-01

    Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure. PMID:28164134

  18. Staphylococcus aureus Sepsis Induces Early Renal Mitochondrial DNA Repair and Mitochondrial Biogenesis in Mice

    PubMed Central

    Bartz, Raquel R.; Fu, Ping; Suliman, Hagir B.; Crowley, Stephen D.; MacGarvey, Nancy Chou; Welty-Wolf, Karen; Piantadosi, Claude A.

    2014-01-01

    Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection. PMID:24988481

  19. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion

    PubMed Central

    Mulay, Shrikant R.; Kulkarni, Onkar P.; Rupanagudi, Khader V.; Migliorini, Adriana; Darisipudi, Murthy N.; Vilaysane, Akosua; Muruve, Daniel; Shi, Yan; Munro, Fay; Liapis, Helen; Anders, Hans-Joachim

    2012-01-01

    Nephrocalcinosis, acute calcium oxalate (CaOx) nephropathy, and renal stone disease can lead to inflammation and subsequent renal failure, but the underlying pathological mechanisms remain elusive. Other crystallopathies, such as gout, atherosclerosis, and asbestosis, trigger inflammation and tissue remodeling by inducing IL-1β secretion, leading us to hypothesize that CaOx crystals may induce inflammation in a similar manner. In mice, intrarenal CaOx deposition induced tubular damage, cytokine expression, neutrophil recruitment, and renal failure. We found that CaOx crystals activated murine renal DCs to secrete IL-1β through a pathway that included NLRP3, ASC, and caspase-1. Despite a similar amount of crystal deposits, intrarenal inflammation, tubular damage, and renal dysfunction were abrogated in mice deficient in MyD88; NLRP3, ASC, and caspase-1; IL-1R; or IL-18. Nephropathy was attenuated by DC depletion, ATP depletion, or therapeutic IL-1 antagonism. These data demonstrated that CaOx crystals trigger IL-1β–dependent innate immunity via the NLRP3/ASC/caspase-1 axis in intrarenal mononuclear phagocytes and directly damage tubular cells, leading to the release of the NLRP3 agonist ATP. Furthermore, these results suggest that IL-1β blockade may prevent renal damage in nephrocalcinosis. PMID:23221343

  20. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.

    PubMed

    Zou, A P; Wu, F; Cowley, A W

    1998-01-01

    This study examined the effect of intravenous infusion of subpressor doses of angiotensin (Ang II) on renal medullary blood flow (MBF), medullary partial oxygen pressure (PO2), and nitric oxide (NO) concentration under normal conditions and during reduction of the medullary nitric oxide synthase (NOS) activity in anesthetized rats. With laser Doppler flowmetry and polarographic measurement of PO2 with microelectrodes, Ang II (5 ng/kg per minute) did not alter renal cortical and medullary blood flows or medullary PO2. N(omega)-nitro-L-arginine methyl ester (L-NAME) was infused into the renal medullary interstitial space at a dose of 1.4 microg/kg per minute, a dose that did not significantly alter basal levels of MBF or PO2. Intravenous infusion of Ang II at the same dose in the presence of L-NAME decreased MBF by 23% and medullary PO2 by 28%, but it had no effect on cortical blood flow or arterial blood pressure. An in vivo microdialysis-oxyhemoglobin NO trapping technique was used in other rats to determine tissue NO concentrations using the same protocol. Ang II infusion increased tissue NO concentrations by 85% in the renal cortex and 150% in the renal medulla. Renal medullary interstitial infusion of L-NAME (1.4 microg/kg per minute) reduced medullary NO concentrations and substantially blocked Ang II-induced increases in NO concentrations in the renal medulla, but not in the renal cortex. Tissue slices of the renal cortex and medulla were studied to determine the effects of Ang II and L-NAME on the nitrite/nitrate production. Ang II stimulated the nitrite/nitrate production predominately in the renal medulla, which was significantly attenuated by L-NAME. We conclude that small elevations of circulating Ang II levels increase medullary NO production and concentrations, which plays an important role in buffering the vasoconstrictor effects of this peptide and in maintaining a constancy of MBF.

  1. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms.

    PubMed

    Hall, John E; do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Hall, Michael E

    2015-03-13

    Excess weight gain, especially when associated with increased visceral adiposity, is a major cause of hypertension, accounting for 65% to 75% of the risk for human primary (essential) hypertension. Increased renal tubular sodium reabsorption impairs pressure natriuresis and plays an important role in initiating obesity hypertension. The mediators of abnormal kidney function and increased blood pressure during development of obesity hypertension include (1) physical compression of the kidneys by fat in and around the kidneys, (2) activation of the renin-angiotensin-aldosterone system, and (3) increased sympathetic nervous system activity. Activation of the renin-angiotensin-aldosterone system is likely due, in part, to renal compression, as well as sympathetic nervous system activation. However, obesity also causes mineralocorticoid receptor activation independent of aldosterone or angiotensin II. The mechanisms for sympathetic nervous system activation in obesity have not been fully elucidated but may require leptin and activation of the brain melanocortin system. With prolonged obesity and development of target organ injury, especially renal injury, obesity-associated hypertension becomes more difficult to control, often requiring multiple antihypertensive drugs and treatment of other risk factors, including dyslipidemia, insulin resistance and diabetes mellitus, and inflammation. Unless effective antiobesity drugs are developed, the effect of obesity on hypertension and related cardiovascular, renal and metabolic disorders is likely to become even more important in the future as the prevalence of obesity continues to increase.

  2. Nephroprotective action of Peucedanum grande against cadmium chloride induced renal toxicity in Wistar rats.

    PubMed

    Aslam, Mohammad; Ahmad, Shiekh Tanveer; Dayal, Rameshver; Javid, Kalim; Umar, Sadiq; Asiaf, Asia; Nafees, Sana; Bhat, Jalal Uddin; Wani, Arjumand; Samim, Mohammad; Singh, Surender

    2012-01-01

    Cadmium is a known industrial pollutant which accumulates in the kidney and its exposure leads to the production of reactive oxygen species (ROS). The present study was carried out to evaluate the protective effects of Peucedanum grande against CdCl2 induced renal toxicity in Wistar rats. Wistar rats were subjected to oral pre-treatment of P. grande (60 and 120 mg/kg b.wt) against the renal toxicity induced by administration of CdCl2 (3mg/kg b.wt). Efficacy of P. grande against the renal toxicity was evaluated in terms of biochemical estimation of antioxidant enzyme activities and histopathological changes. P. grande pretreatment prevented deteriorative effects induced by CdCl2 through a protective mechanism that involved reduction of increased oxidative stress as well as by restoration of histopathological changes against CdCl2 administration.

  3. Amiodarone-induced hypothyroidism with EPO-resistant anemia in a patient with chronic renal failure.

    PubMed

    Chang, Peter M S; Ng, Yee-Yung

    2008-11-01

    The overall incidence of amiodarone-induced thyroid dysfunction ranges from 2% to 24%. One third to half of patients with hypothyroidism have anemia due to some decrease in normal red blood cell mass and erythropoietin (EPO) resistance. Therefore, for patients with chronic renal disease under medication with amiodarone, early regular thyroid function test should be checked in order to avoid amiodarone-induced hypothyroidism and EPO-resistant anemia. If amiodarone-induced hypothyroidism and EPO-resistant anemia occur in patients with chronic renal failure, early thyroxine should be given instead of waiting for spontaneous recovery by amiodarone discontinuation only. Here, we report a patient with chronic renal failure who developed EPO-resistant anemia after amiodarone treatment for arrhythmia. The hemoglobin level responded to EPO therapy rapidly after thyroxine administration and amiodarone discontinuation.

  4. Ghrelin Protects against Renal Damages Induced by Angiotensin-II via an Antioxidative Stress Mechanism in Mice

    PubMed Central

    Fujimura, Keiko; Wakino, Shu; Minakuchi, Hitoshi; Hasegawa, Kazuhiro; Hosoya, Koji; Komatsu, Motoaki; Kaneko, Yuka; Shinozuka, Keisuke; Washida, Naoki; Kanda, Takeshi; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2014-01-01

    We explored the renal protective effects by a gut peptide, Ghrelin. Daily peritoneal injection with Ghrelin ameliorated renal damages in continuously angiotensin II (AngII)-infused C57BL/6 mice as assessed by urinary excretion of protein and renal tubular markers. AngII-induced increase in reactive oxygen species (ROS) levels and senescent changes were attenuated by Ghrelin. Ghrelin also inhibited AngII-induced upregulations of transforming growth factor-β (TGF-β) and plasminogen activator inhibitor-1 (PAI-1), ameliorating renal fibrotic changes. These effects were accompanied by concomitant increase in mitochondria uncoupling protein, UCP2 as well as in a key regulator of mitochondria biosynthesis, PGC1α. In renal proximal cell line, HK-2 cells, Ghrelin reduced mitochondria membrane potential and mitochondria-derived ROS. The transfection of UCP2 siRNA abolished the decrease in mitochondria-derived ROS by Ghrelin. Ghrelin ameliorated AngII-induced renal tubular cell senescent changes and AngII-induced TGF-β and PAI-1 expressions. Finally, Ghrelin receptor, growth hormone secretagogue receptor (GHSR)-null mice exhibited an increase in tubular damages, renal ROS levels, renal senescent changes and fibrosis complicated with renal dysfunction. GHSR-null mice harbored elongated mitochondria in the proximal tubules. In conclusion, Ghrelin suppressed AngII-induced renal damages through its UCP2 dependent anti-oxidative stress effect and mitochondria maintenance. Ghrelin/GHSR pathway played an important role in the maintenance of ROS levels in the kidney. PMID:24747517

  5. Paeoniflorin ameliorates acute necrotizing pancreatitis and pancreatitis‑induced acute renal injury.

    PubMed

    Wang, Peng; Wang, Weixing; Shi, Qiao; Zhao, Liang; Mei, Fangchao; Li, Chen; Zuo, Teng; He, Xiaobo

    2016-08-01

    Acute renal injury caused by acute necrotizing pancreatitis (ANP) is a common complication that is associated with a high rate of mortality. Paeoniflorin is the active ingredient of paeonia radix and exhibits a number of pharmacological effects, such as anti‑inflammatory, anticancer, analgesic and immunomodulatory effects. The present study detected the potential treatment effects of paeoniflorin on acute renal injury induced by ANP in a rat model. The optimal dose of paeoniflorin for preventing acute renal injury induced by ANP was determined. Then, the possible protective mechanism of paeoniflorin was investigated. The serum levels of tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6 were measured with enzyme‑linked immunosorbent assay kits. Renal inflammation and apoptosis were measured by immunohistochemistry and terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling assay. The expression of nitric oxide in kidney tissues was also evaluated. The p38 mitogen‑activated protein kinases (MAPKs) were measured by western blotting. The results shown that paeoniflorin may ameliorate acute renal injury following ANP in rats by inhibiting inflammatory responses and renal cell apoptosis. These effects may be associated with the p38MAPK and nuclear factor‑κB signal pathway.

  6. Wnt antagonist DICKKOPF-3 (Dkk-3) induces apoptosis in human renal cell carcinoma.

    PubMed

    Ueno, Koji; Hirata, Hiroshi; Majid, Shahana; Chen, Yi; Zaman, Mohd S; Tabatabai, Z Laura; Hinoda, Yuji; Dahiya, Rajvir

    2011-06-01

    The Wnt signaling pathway is activated in most cancers while Wnt antagonist genes are inactivated. However, the functional significance and mechanisms of inactivation of Wnt antagonist Dkk-3 gene in renal cell carcinoma (RCC) has not been reported. In this study, we examined potential epigenetic mechanisms regulating Dkk-3 expression in RCC cells and whether Dkk-3 expression affects cell growth and apoptosis. The expression of Dkk-3 is regulated by histone modification rather than CpG island DNA methylation in renal cancer cells. Renal cancer cell proliferation was significantly inhibited and apoptosis was promoted in Dkk-3 transfected renal cancer cells. Dkk-3 did not inhibit the Wnt/beta-catenin signaling pathway but induced apoptosis via the noncanonical JNK pathway in renal cancer cells. Expression of p21, MDM-2, and Puma genes were increased after transfecting RCC cell lines with a Dkk-3 expression plasmid. Overexpression of Dkk-3 induced G(0)/G(1) arrest together with an increase in p21 expression. Growth of stable Dkk-3 transfected cells in nude mice was decreased compared to controls. Our data show for the first time that mRNA expression of Dkk-3 is regulated by histone modification and that Dkk-3 inhibits renal cancer growth through modulation of cell cycle and apoptotic pathways.

  7. N-acetylcysteine improves renal hemodynamics in rats with cisplatin-induced nephrotoxicity.

    PubMed

    Abdelrahman, Aly M; Al Salam, Suhail; AlMahruqi, Ahmed S; Al husseni, Ishaq S; Mansour, Mohamed A; Ali, Badreldin H

    2010-01-01

    This work investigated the effect of N-acetylcysteine (NAC), on renal hemodynamics in cisplatin (CP)-induced nephrotoxicity in Wistar-Kyoto (WKY) rats. The animals were divided into four groups (n = 5 or 6). The first and second groups received normal saline (control) and intraperitoneal (i.p.) N-acetylcysteine (500 mg kg(-1) per day for 9 days), respectively. The third and fourth groups were given a single intraperitoneal (i.p.) injection of CP (5 mg kg(-1)) and an i.p. injection of CP (5 mg kg(-1)) together with i.p. NAC (500 mg kg(-1) per day for 9 days), respectively. At the end of the experiment, rats were anesthetized and blood pressure and renal blood flow were monitored, followed by intravenous (i.v.) injection of norepinephrine (NE) for measurement of renal vasoconstrictor responses. CP caused a significant reduction in renal blood flow but did not affect NE-induced renal vasoconstriction. In addition, CP significantly increased plasma concentrations of urea and creatinine and urinary N-acetyl-beta-D-glucosaminidase (NAG) activity and kidney relative weight. CP decreased body weight and creatinine clearance. Histopathologically, CP caused remarkable renal damage compared with control. NAC alone did not produce any significant change in any of the variables measured. However, NAC significantly ameliorated CP-induced hemodynamic, biochemical and histopathological changes. The concentration of platinum in the kidneys of CP ? NAC treated rats was less than in CP-treated rats by 37%. The results show that administration of i.p. NAC (500 mg kg(-1) per day for 9 days) reversed the renal hemodynamic changes as well as the biochemical and histopathological indices of CP-induced nephrotoxicity in WKY rats.

  8. Hypergravity upregulates renal inducible nitric oxide synthase expression and nitric oxide production

    PubMed Central

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-01-01

    Exposure to hypergravity severely decreases renal blood flow, potentially causing renal dysfunction. Nitric oxide (NO), which is endogenously synthesized by inducible NO synthase (iNOS), plays an important role in the regulation of renal function. The purpose of this study was to examine the effect of hypergravity exposure on the production of NO in kidneys. To determine whether hypergravity induces renal hypoxia and alters renal iNOS expression and NO production, mice were exposed to short-term hypergravity at +3Gz for 1 h. The time course of iNOS mRNA expression, hypoxia-inducible factor (HIF)-1α expression, and NO production was examined. Renal HIF-1α levels were significantly elevated immediately after centrifugation, and this increase was sustained for 3 h post-exposure. iNOS mRNA levels were also significantly increased immediately after exposure and were maintained during the reoxygenation period. Immunohistochemical staining for iNOS revealed that the cortical tubular epithelium exhibited moderate to strong cytoplasmic iNOS immunoreactivity immediately after hypergravity exposure and during the reoxygenation period. The time course of NO production was similar to that of iNOS expression. Our results suggest that both hypoxia and reoxygenation might be involved in the upregulation of HIF-1α in the kidneys of mice exposed to hypergravity. Significant increases in renocortical iNOS expression immediately after centrifugation and during the reoxygenation period suggest that iNOS expression induced by hypergravity exposure might play a protective role against hypoxia/reoxygenation injury in the renal cortex. Further investigations are necessary to clarify the role of iNOS and NO in kidneys exposed to hypergravity. PMID:27174912

  9. Role of Renal Drug Exposure in Polymyxin B-Induced Nephrotoxicity.

    PubMed

    Manchandani, Pooja; Zhou, Jian; Babic, Jessica T; Ledesma, Kimberly R; Truong, Luan D; Tam, Vincent H

    2017-04-01

    Despite dose-limiting nephrotoxic potentials, polymyxin B has reemerged as the last line of therapy against multidrug-resistant Gram-negative bacterial infections. However, the handling of polymyxin B by the kidneys is still not thoroughly understood. The objectives of this study were to evaluate the impact of renal polymyxin B exposure on nephrotoxicity and to explore the role of megalin in renal drug accumulation. Sprague-Dawley rats (225 to 250 g) were divided into three dosing groups, and polymyxin B was administered (5 mg/kg, 10 mg/kg, and 20 mg/kg) subcutaneously once daily. The onset of nephrotoxicity over 7 days and renal drug concentrations 24 h after the first dose were assessed. The effects of sodium maleate (400 mg/kg intraperitoneally) on megalin homeostasis were evaluated by determining the urinary megalin concentration and electron microscopic study of renal tissue. The serum/renal pharmacokinetics of polymyxin B were assessed in megalin-shedding rats. The onset of nephrotoxicity was correlated with the daily dose of polymyxin B. Renal polymyxin B concentrations were found to be 3.6 ± 0.4 μg/g, 9.9 ± 1.5 μg/g, and 21.7 ± 4.8 μg/g in the 5-mg/kg, 10-mg/kg, and 20-mg/kg dosing groups, respectively. In megalin-shedding rats, the serum pharmacokinetics of polymyxin B remained unchanged, but the renal exposure was attenuated by 40% compared to that of control rats. The onset of polymyxin B-induced nephrotoxicity is correlated with the renal drug exposure. In addition, megalin appears to play a pivotal role in the renal accumulation of polymyxin B, which might contribute to nephrotoxicity.

  10. Pharmacological investigations of Punica granatum in glycerol-induced acute renal failure in rats

    PubMed Central

    Singh, Amrit Pal; Singh, Amteshwar Jaggi; Singh, Nirmal

    2011-01-01

    Objective: The present study was designed to investigate the ameliorative potential and possible mechanism of hydroalcoholic extract of flowers of P. granatum in glycerol-induced acute renal failure (ARF) in rats. Materials and Methods: The rats were subjected to rhabdomyolytic ARF by single intramuscular injection of hypertonic glycerol (50% v/v; 8 ml/kg) and the animals were sacrificed after 24 hours of glycerol injection. The plasma creatinine, blood urea nitrogen, creatinine clearance, and histopathological studies were performed to assess the degree of renal injury. Results: Pretreatment with hydroalcoholic extract of flowers of P. granatum (125 and 250 mg/kg p.o. twice daily for 3 days) significantly attenuated hypertonic glycerol-induced renal dysfunction in a dose-dependent manner. BADGE (Bisphenol-A-diglycidyl ether) (30 mg/kg), a peroxisome proliferator-activated receptor (PPAR)-γ antagonist, and N(omega)-nitro-l-arginine-methyl ester (L-NAME) (10, 20, and 40 mg/kg), nitric oxide synthase inhibitor, were employed to explore the mechanism of renoprotective effects of Punica granatum. Administration of BADGE (30 mg/kg) and L-NAME (40 mg/kg) abolished the beneficial effects of P. granatum in glycerol-induced renal dysfunction. Conclusion: Hydroalcoholic extract of flowers of P. granatum has ameliorative potential in attenuating myoglobinuric renal failure and its renoprotective effects involve activation of PPAR-γ and nitric oxide-dependent signaling pathway. PMID:22021999

  11. Protective Effects of Berberine on Renal Injury in Streptozotocin (STZ)-Induced Diabetic Mice

    PubMed Central

    Zhang, Xiuli; He, Hui; Liang, Dan; Jiang, Yan; Liang, Wei; Chi, Zhi-Hong; Ma, Jianfei

    2016-01-01

    Diabetic nephropathy (DN) is a serious diabetic complication with renal hypertrophy and expansion of extracellular matrices in renal fibrosis. Epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells may be involved in the main mechanism. Berberine (BBR) has been shown to have antifibrotic effects in liver, kidney and lung. However, the mechanism of cytoprotective effects of BBR in DN is still unclear. In this study, we investigated the curative effects of BBR on tubulointerstitial fibrosis in streptozotocin (STZ)-induced diabetic mice and the high glucose (HG)-induced EMT in NRK 52E cells. We found that BBR treatment attenuated renal fibrosis by activating the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in the diabetic kidneys. Further revealed that BBR abrogated HG-induced EMT and oxidative stress in relation not only with the activation of Nrf2 and two Nrf2-targeted antioxidative genes (NQO-1 and HO-1), but also with the suppressing the activation of TGF-β/Smad signaling pathway. Importantly, knockdown Nrf2 with siRNA not only abolished the BBR-induced expression of HO-1 and NQO-1 but also removed the inhibitory effect of BBR on HG-induced activation of TGF-β/Smad signaling as well as the anti-fibrosis effects. The data from present study suggest that BBR can ameliorate tubulointerstitial fibrosis in DN by activating Nrf2 pathway and inhibiting TGF-β/Smad/EMT signaling activity. PMID:27529235

  12. Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency

    PubMed Central

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor activation in rat kidney reduces renal perfusion and ultrafiltration. Hypoperfusion-induced ischemia is the most frequent cause of functional insufficiency in the endotoxemic kidney. Here, we used non-hypotensive rat model of lipopolysaccharide-induced endotoxemia to examine whether NMDA receptor hyperfunction contributes to acute kidney injury. Lipopolysaccharide-induced renal damage via increased enzymuria and hemodynamic impairments were ameliorated by co-treatment with the NMDA receptor blocker, MK-801. The NMDA receptor NR1 subunit in the rat kidney mainly co-localized with serine racemase, an enzyme responsible for synthesizing the NMDA receptor co-agonist, D-serine. The NMDA receptor hyperfunction in lipopolysaccharide-treated kidneys was demonstrated by NR1 and serine racemase upregulation, particularly in renal tubules, and by increased D-serine levels. Lipopolysaccharide also induced cell damage in cultured tubular cell lines and primary rat proximal tubular cells. This damage was mitigated by MK-801 and by small interfering RNA targeting NR1. Lipopolysaccharide increased cytokine release in tubular cell lines via toll-like receptor 4. The release of interleukin-1β from these cells are the most abundant. An interleukin-1 receptor antagonist not only attenuated cell death but also abolished lipopolysaccharide-induced NR1 and serine racemase upregulation and increases in D-serine secretion, suggesting that interleukin-1β-mediated NMDA receptor hyperfunction participates in lipopolysaccharide-induced tubular damage. The results of this study indicate NMDA receptor hyperfunction via cytokine effect participates in lipopolysaccharide-induced renal insufficiency. Blockade of NMDA receptors may represent a promising therapeutic strategy for the treatment of sepsis-associated renal failure. PMID:26133372

  13. Hydroxyethylstarch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model

    PubMed Central

    Hüter, Lars; Simon, Tim-Philipp; Weinmann, Lenard; Schuerholz, Tobias; Reinhart, Konrad; Wolf, Gunter; Amann, Kerstin Ute; Marx, Gernot

    2009-01-01

    Introduction The aim of the study was to evaluate some of the underlying pathomechanisms of hydroxyethylstarch (HES) induced adverse effects on renal function using 24 porcine kidneys in an isolated perfusion model over six hours. Methods Infusion of either 10% HES 200/0.5, 6% HES 130/0.42 or Ringer's lactate (RL) was performed to achieve an haematocrit of 20% in eight kidneys from four animals per group. Physiological and pathophysiological parameters were determined (including N-acetyl-beta-aminoglucosidase as a marker for lysosomal tubular damage). Histological investigations and immunohistological stainings of the kidneys were performed. Results Initially after haemodilution, HES 130/0.42 and HES 200/0.5 reduced urine output compared with RL (P < 0.01). After six hours, N-acetyl-beta-aminoglucosidase was significantly higher in HES 200/0.5 (81 ± 23 U/L) compared with HES 130/0.42 (38 ± 12 U/L) and RL (21 ± 13 U/L; P < 0.001). Osmotic nephrosis-like lesions (OL) of the tubuli were present in all groups showing a significantly lower number of OL in RL (1.1 ± 0.4; P = 0.002) compared with both HES groups (HES 200/0.5 = 2.1 ± 0.6; HES 130/0.42 = 2.0 ± 0.5). Macrophage infiltration was significantly higher in HES 200/0.5 compared with HES 130/0.42 (1.3 ± 1.0 vs. 0.2 ± 0.04; P = 0.044). There was a significant increase in interstitial cell proliferation in the HES 200/0.5 group vs. HES 130/0.42 (18.0 ± 6.9 vs. 6.5 ± 1.6; P = 0.006) with no significant difference in RL (13.5 ± 4.0). Conclusions We observed impaired diuresis and sodium excretion by HES and identified renal interstitial proliferation, macrophage infiltration and tubular damage as potential pathological mechanisms of HES-induced adverse effects on renal function using an isolated porcine renal perfusion model. Furthermore, we demonstrated that 10% HES 200/0.5 had more of a pro-inflammatory effect compared with 6% HES 130/0.42 and caused more pronounced tubular damage than 6% HES 130/0.42 and

  14. Captopril-induced sialadenitis in a patient with end-stage renal disease

    PubMed Central

    Mahdiabadi, Fatemeh Musavi; Nikvarz, Naemeh

    2016-01-01

    Sialadenitis is a rare adverse effect of captopril. We report a case of captopril-induced sialadenitis in a patient with end-stage renal disease (ESRD). A 20-year-old man with ESRD encountered parotid and submandibular swelling after receiving two doses of captopril, administered sublingually. Despite of prescribing dexamethasone, resuming hemodialysis, and discontinuing other drugs that also can cause parotitis, he improved later than what was reported in patients with normal renal function. In conclusion recovery from captopril-induced sialadenitis in patients with ESRD may be more prolonged than that of patients with normal renal function; moreover, early hemodialysis which helps in drug removal may be the most effective treatment. PMID:27162811

  15. A Rare Case of Acute Renal Failure Secondary to Rhabdomyolysis Probably Induced by Donepezil

    PubMed Central

    Sahin, Osman Zikrullah; Ayaz, Teslime; Yuce, Suleyman; Sumer, Fatih

    2014-01-01

    Introduction. Acute renal failure (ARF) develops in 33% of the patients with rhabdomyolysis. The main etiologic factors are alcoholism, trauma, exercise overexertion, and drugs. In this report we present a rare case of ARF secondary to probably donepezil-induced rhabdomyolysis. Case Presentation. An 84-year-old male patient was admitted to the emergency department with a complaint of generalized weakness and reduced consciousness for two days. He had a history of Alzheimer's disease for one year and he had taken donepezil 5 mg daily for two months. The patient's physical examination revealed apathy, loss of cooperation, and decreased muscle strength. Laboratory studies revealed the following: urea: 128 mg/dL; Creatinine 6.06 mg/dL; creatine kinase: 3613 mg/dL. Donepezil was discontinued and the patient's renal function tests improved gradually. Conclusion. Rhabdomyolysis-induced acute renal failure may develop secondary to donepezil therapy. PMID:24864216

  16. A rare case of acute renal failure secondary to rhabdomyolysis probably induced by donepezil.

    PubMed

    Sahin, Osman Zikrullah; Ayaz, Teslime; Yuce, Suleyman; Sumer, Fatih; Sahin, Serap Baydur

    2014-01-01

    Introduction. Acute renal failure (ARF) develops in 33% of the patients with rhabdomyolysis. The main etiologic factors are alcoholism, trauma, exercise overexertion, and drugs. In this report we present a rare case of ARF secondary to probably donepezil-induced rhabdomyolysis. Case Presentation. An 84-year-old male patient was admitted to the emergency department with a complaint of generalized weakness and reduced consciousness for two days. He had a history of Alzheimer's disease for one year and he had taken donepezil 5 mg daily for two months. The patient's physical examination revealed apathy, loss of cooperation, and decreased muscle strength. Laboratory studies revealed the following: urea: 128 mg/dL; Creatinine 6.06 mg/dL; creatine kinase: 3613 mg/dL. Donepezil was discontinued and the patient's renal function tests improved gradually. Conclusion. Rhabdomyolysis-induced acute renal failure may develop secondary to donepezil therapy.

  17. Dalbergioidin Ameliorates Doxorubicin-Induced Renal Fibrosis by Suppressing the TGF-β Signal Pathway

    PubMed Central

    Ren, Xianguo; Bo, Yun; Fan, Junting; Chen, Maosheng; Xu, Daliang; Dong, Yang; He, Haowei; Ren, Xianzhi; Qu, Rong; Jin, Yulian

    2016-01-01

    We investigated the effect of Dalbergioidin (DAL), a well-known natural product extracted from Uraria crinita, on doxorubicin- (DXR-) induced renal fibrosis in mice. The mice were pretreated for 7 days with DAL followed by a single injection of DXR (10 mg/kg) via the tail vein. Renal function was analyzed 5 weeks after DXR treatment. DXR caused nephrotoxicity. The symptoms of nephrotic syndrome were greatly improved after DAL treatment. The indices of renal fibrosis, the phosphorylation of Smad3, and the expression of alpha-smooth muscle actin (α-SMA), fibronectin, collagen III (Col III), E-cadherin, TGF-β, and Smad7 in response to DXR were all similarly modified by DAL. The present findings suggest that DAL improved the markers for kidney damage investigated in this model of DXR-induced experimental nephrotoxicity. PMID:28100935

  18. Multiple Low-Dose Radiation Prevents Type 2 Diabetes-Induced Renal Damage through Attenuation of Dyslipidemia and Insulin Resistance and Subsequent Renal Inflammation and Oxidative Stress

    PubMed Central

    Shao, Minglong; Lu, Xuemian; Cong, Weitao; Xing, Xiao; Tan, Yi; Li, Yunqian; Li, Xiaokun; Jin, Litai; Wang, Xiaojie; Dong, Juancong; Jin, Shunzi; Zhang, Chi; Cai, Lu

    2014-01-01

    Background Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR) plays a critical role in attenuating insulin resistance, inflammation and oxidative stress. Objective The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms. Methods Mice were fed with a high-fat diet (HFD, 40% of calories from fat) for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy) for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured. Results HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2) expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks. Conclusion These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance

  19. Human CD133+ Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury

    PubMed Central

    Aggarwal, Shikhar; Grange, Cristina; Iampietro, Corinne; Camussi, Giovanni; Bussolati, Benedetta

    2016-01-01

    Persistent alterations of the renal tissue due to maladaptive repair characterize the outcome of acute kidney injury (AKI), despite a clinical recovery. Acute damage may also limit the renal production of erythropoietin, with impairment of the hemopoietic response to ischemia and possible lack of its reno-protective action. We aimed to evaluate the effect of a cell therapy using human CD133+ renal progenitor cells on maladaptive repair and fibrosis following AKI in a model of glycerol-induced rhabdomyolysis. In parallel, we evaluated the effect of CD133+ cells on erythropoietin production. Administration of CD133+ cells promoted the restoration of the renal tissue, limiting the presence of markers of injury and pro-inflammatory molecules. In addition, it promoted angiogenesis and protected against fibrosis up to day 60. No effect of dermal fibroblasts was observed. Treatment with CD133+ cells, but not with PBS or fibroblasts, limited anemia and increased erythropoietin levels both in renal tissue and in circulation. Finally, CD133+ cells contributed to the local production of erythropoietin, as observed by detection of circulating human erythropoietin. CD133+ cells appear therefore an effective source for cell repair, able to restore renal functions, including erythropoietin release, and to limit long term maldifferentiation and fibrosis. PMID:27853265

  20. Eupafolin nanoparticle improves acute renal injury induced by LPS through inhibiting ROS and inflammation.

    PubMed

    Zhang, Hao; Chen, Ming-Kun; Li, Ke; Hu, Cheng; Lu, Min-Hua; Situ, Jie

    2017-01-01

    Acute renal injury is a common severe clinical syndrome, occurring in many clinical situations. It is necessary to explore effective drugs to treat it. Eupafolin is a flavonoid compound, derived from Phyla nodiflora, which has been previously reported to possess a variety of pharmacological activities, including anti-inflammatory and antioxidant effects. However, it is known little about how it works in acute renal injury. Also, eupafolin is characterized by skin penetration and poor water solubility, limiting its clinical applications. Thus, we synthesized an eupafolin nanoparticle delivery system. We found that eupafolin nanoparticle could address the physicochemical defects of raw eupafolin and increase water solubility without any toxicity to normal renal cells via reducing particle size. Eupafolin nanoparticle attenuated LPS-induced acute renal injury in mice through inhibiting oxidative stress and inflammation accompanied with up-regulated SOD activity and down-regulated pro-inflammatory cytokines. Additionally, inactivation of NF-κB and MAPKs of p38, ERK1/2 and JNK signaling pathways was a main molecular mechanism by which eupafolin nanoparticle improved renal injury. Together, eupafolin nanoparticle exhibits effective anti-oxidant and anti-inflammatory activities, which could be used as a potential drug to ameliorate acute renal injury clinically.

  1. Açai berry extract attenuates glycerol-induced acute renal failure in rats.

    PubMed

    Unis, Amina

    2015-03-01

    Acute renal failure (ARF) is one of the most common problems encountered in hospitalized critically ill patients. In recent years great effort has been focused on the introduction of herbal medicine as a novel therapeutic agent for prevention of ARF. Hence, the current study was designed to investigate the effect of Açai berry extract (ABE) on glycerol-induced ARF in rats. Results of the present study showed that rat groups that received oral ABE in a dose of 100 and 200 mg/kg/day for 7 days before or 7 days after induction of ARF by a single intramuscular glycerol injection reported a significant improvement in kidney functions tests [decrease in serum urea, serum creatinine, and blood urea nitrogen (BUN)] when compared to the ARF model groups. Moreover, there was significant amelioration in renal oxidative stress markers [renal catalase (CAT), renal reduced glutathione (GSH)] and renal histopathological changes in the ABE-treated groups when compared to ARF model groups. The most significant improvement was reported in the groups where ABE was administered in a dose 200 mg/kg/day. These results indicate that ABE has a potential role in ameliorating renal damage involved in ARF.

  2. Basiliximab induced non-cardiogenic pulmonary edema in two pediatric renal transplant recipients.

    PubMed

    Dolan, Niamh; Waldron, Mary; O'Connell, Marie; Eustace, Nick; Carson, Kevin; Awan, Atif

    2009-11-01

    We report two cases of non-cardiogenic pulmonary edema as a complication of basiliximab induction therapy in young pediatric renal transplant patients identified following a retrospective review of all pediatric renal transplant cases performed in the National Paediatric Transplant Centre, Childrens University Hospital, Temple Street, Dublin, Ireland. Twenty-eight renal transplantations, of which five were living-related (LRD) and 23 were from deceased donors (DD), were performed in 28 children between 2003 and 2006. In six cases, transplantations were pre-emptive. Immunosuppression was induced pre-operatively using a combination of basiliximab, tacrolimus and methylprednisolone in all patients. Basiliximab induction was initiated 2 h prior to surgery in all cases and, in 26 patients, basiliximab was re-administered on post-operative day 4. Two patients, one LRD and one DD, aged 6 and 11 years, respectively, developed acute non-cardiogenic pulmonary edema within 36 h of surgery. Renal dysplasia was identified as the primary etiological factor for renal failure in both cases. Both children required assisted ventilation for between 4 and 6 days. While both grafts had primary function, the DD transplant patient subsequently developed acute tubular necrosis and was eventually lost within 3 weeks due to thrombotic microangiopathy and severe acute antibody-mediated rejection despite adequate immunosuppression. Non-cardiogenic pulmonary edema is a potentially devastating post-operative complication of basiliximab induction therapy in young pediatric patients following renal transplantation. Early recognition and appropriate supportive therapy is vital for patient and, where possible, graft survival.

  3. Metformin Prevents Renal Fibrosis in Mice with Unilateral Ureteral Obstruction and Inhibits Ang II-Induced ECM Production in Renal Fibroblasts.

    PubMed

    Shen, Yang; Miao, Naijun; Xu, Jinlan; Gan, Xinxin; Xu, Dan; Zhou, Li; Xue, Hong; Zhang, Wei; Lu, Limin

    2016-01-22

    Renal fibrosis is the final common pathway of chronic kidney disease (CKD), and no effective medication is available clinically for managing its progression. Metformin was initially developed as an anti-diabetic drug and recently gained attention for its potential in the treatment of other diseases. In this study, we investigated its effects on renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO) in vivo and in angiotensin II (Ang II)-treated renal fibroblast NRK-49F cells in vitro. Our data showed that UUO induced renal fibrosis and combined with the activation of ERK signaling, the upregulation of fibronectin, collagen I, and transforming growth factor-β (TGF-β). The administration of metformin inhibited the activation of ERK signaling and attenuated the production of extracellular matrix (ECM) proteins and collagen deposition in the obstructed kidneys. In cultured renal fibroblasts, Ang II increased the expression of fibronectin and collagen I and also activated ERK signaling and TGF-β in a time-dependent manner. Pretreatment of the cells with metformin blocked Ang II-induced ERK signaling activation and ECM overproduction. Our results show that metformin prevents renal fibrosis, possibly through the inhibition of ERK signaling, and may be a novel strategy for the treatment of renal fibrosis.

  4. Effects of renal impairment on aluminum (Al) kinetics and Al-induced toxicity

    SciTech Connect

    Yokel, R.A.; McNamara, P.J.

    1986-03-01

    Al-induced toxicity most commonly occurs in the renally impaired. To study the influence of renal impairment on Al kinetics and toxicity, renally impaired rabbits were prepared by the remnant kidney procedure. Six weeks after partial nephrectomy creatinine clearance was 21% of controls and serum creatinine, BUN, Ca, and PO/sub 4/ were 222, 248, 122, and 50% of presurgery levels respectively. Serum Al kinetics after i.v. Al were: Al clearance 27%, initial and steady state volumes of distribution 50 and 80%, half life 362% and mean residence time 300% of controls (renally intact rabbits). Beginning 9 weeks after partial nephrectomy, rabbits received 145 to 160 ..mu..mole Al/kg s.c. daily, 5 x weekly x 4 weeks. Acquisition of a classically conditioned reflex (nictitating membrane extension) was impaired comparable to that produced by 100-200 ..mu..mole Al in controls but retention and extinction deficits were greater than those seen after 400 ..mu..mole Al in controls. Tissue Al concentrations were less than those seen after 200 ..mu..mole Al in controls. Body weight was comparable to that produced by 400 ..mu..mole Al in controls. These results suggest that renal impairment alters Al serum distribution, impairs its clearance, and increases the Al-induced impairment of memory and body weight gain.

  5. Renal Denervation Improves the Baroreflex and GABA System in Chronic Kidney Disease-induced Hypertension

    PubMed Central

    Chen, Hsin-Hung; Cheng, Pei-Wen; Ho, Wen-Yu; Lu, Pei-Jung; Lai, Chi-Cheng; Tseng, Yang-Ming; Fang, Hua-Chang; Sun, Gwo-Ching; Hsiao, Michael; Liu, Chun-Peng; Tseng, Ching-Jiunn

    2016-01-01

    Hypertensive rats with chronic kidney disease (CKD) exhibit enhanced gamma-aminobutyric acid (GABA)B receptor function and regulation within the nucleus tractus solitarii (NTS). For CKD with hypertension, renal denervation (RD) interrupts the afferent renal sympathetic nerves, which are connecting to the NTS. The objective of the present study was to investigate how RD improves CKD-induced hypertension. Rats underwent 5/6 nephrectomy for 8 weeks, which induced CKD and hypertension. RD was induced by applying phenol to surround the renal artery in CKD. RD improved blood pressure (BP) by lowering sympathetic nerve activity and markedly restored the baroreflex response in CKD. The GABAB receptor expression was increased in the NTS of CKD; moreover, the central GABA levels were reduced in the cerebrospinal fluid, and the peripheral GABA levels were increased in the serum. RD restored the glutamic acid decarboxylase activity in the NTS in CKD, similar to the effect observed for central treatment with baclofen, and the systemic administration of gabapentin reduced BP. RD slightly improved renal function and cardiac load in CKD. RD may improve CKD-induced hypertension by modulating the baroreflex response, improving GABA system dysfunction and preventing the development and reducing the severity of cardiorenal syndrome type 4 in CKD rats. PMID:27917928

  6. Activation of PPAR-γ inhibits PDGF-induced proliferation of mouse renal fibroblasts.

    PubMed

    Lu, Jiamei; Shi, Jianhua; Gui, Baosong; Yao, Ganglian; Wang, Li; Ou, Yan; Zhu, Dan; Ma, Liqun; Ge, Heng; Fu, Rongguo

    2016-10-15

    Recent studies have shown that activation of peroxisome proliferators activated receptor-γ (PPAR-γ) ameliorates renal interstitial fibrosis (RIF) in animal model. Yet, the underlying molecular mechanisms remain still largely unknown. Here, we investigated the hypothesis that activation of PPAR-γ regulates renal remodeling by modulating proliferation of primary cultured renal fibroblasts. In our present study, platelet-derived growth factor-AA (PDGF-AA), a key isoform of PDGF superfamily as mitogen in RIF, was applied to stimulate renal fibroblasts, the selective inhibitor or sequence specific siRNA of PI3K, skp2 or PPAR-γ was used to investigate the involvement of above molecular mediators in PDGF-AA-induced cell proliferation. Our results demonstrate that PDGF-AA induced proliferation of renal fibroblasts by activating PI3K/AKT signaling and resultant skp2 production. Pre-stimulation of cells with rosiglitazone or adenovirus carrying PPAR-γ cDNA (AdPPAR-γ) blocked PDGF-AA-stimulated cell proliferation, this effect was particularly coupled to PPAR-γ inhibition of AKT phosphorylation and skp2 expression. Inhibition of PPAR-γ by GW9662 restored the suppression of activated PPAR-γ on phosphorylation of AKT and subsequent skp2 production. Our results indicate that activation of PI3K/AKT signaling and resultant skp2 generation mediated PDGF-induced proliferation of renal fibroblasts. Activation of PPAR-γ inhibited cell proliferation by inhibition of AKT phosphorylation and its down-streams.

  7. Amelioration of cisplatin-induced acute renal failure with 8-cyclopentyl-1,3-dipropylxanthine.

    PubMed Central

    Knight, R. J.; Collis, M. G.; Yates, M. S.; Bowmer, C. J.

    1991-01-01

    1. The effect of the selective adenosine A1-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPX), on the development of cisplatin-induced acute renal failure was investigated in the rat. 2. CPX at doses of 0.03, 0.1 and 0.3 mg kg-1, i.v. caused increasing degrees of antagonism of adenosine-induced bradycardia in anaesthetized rats. The magnitude of antagonism was not directly proportional to the increment in dose, but for each dose, it was similar in rats injected with either saline or cisplatin. CPX at a dose of 0.03 mg kg-1 significantly antagonized adenosine-induced bradycardia for up to 2.5 h, while doses of 0.1 and 0.3 mg kg-1 produced significant blockade for periods longer than 5 h. 3. Administration of cisplatin (6 mg kg-1, i.v.) caused acute renal failure characterized by decreased inulin and p-aminohippurate clearances, increased urine volume but decreased excretion of Na+, K+ and Cl- ions and by increased plasma levels of urea and creatinine. Kidney weight was increased in cisplatin-treated rats and renal tubule necrosis occurred. 4. Administration of CPX (0.03 mg kg-1, i.v.; twice daily for two days) to rats given cisplatin did not reduce the severity of the resultant renal failure. However, treatment with 0.1 mg kg-1 CPX attenuated the increases in plasma creatinine/urea levels observed in rats on days 3 and 7 after induction of renal failure. In addition, this dose significantly reduced renal tubule damage and increased inulin and p-aminohippurate clearances. A similar pattern of protection was noted with CPX at a dose of 0.3 mg kg-1 although the increase in inulin clearance was not statistically significant.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1810593

  8. Renal Protective Effect of Probucol in Rats with Contrast-Induced Nephropathy and its Underlying Mechanism

    PubMed Central

    Wang, Na; Wei, Ri-bao; Li, Qing-ping; Yang, Xi; Li, Ping; Huang, Meng-jie; Wang, Rui; Cai, Guang-yan; Chen, Xiang-mei

    2015-01-01

    Background Contrast-induced nephropathy (CIN) refers to acute renal damage that occurs after the use of contrast agents. This study investigated the renal protective effect of probucol in a rat model of contrast-induced nephropathy and the mechanism of its effect. Material/Methods Twenty-eight Wistar rats were randomly divided into the control group, model group, N-acetylcysteine(NAC) group, and probucol group. We used a rat model of iopromide-induced CIN. One day prior to modeling, the rats received gavage. At 24 h after the modeling, blood biochemistry and urine protein were assessed. Malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in renal tissue. Kidney sections were created for histopathological examination. Results The model group of rats showed significantly elevated levels of blood creatinine, urea nitrogen, 24-h urine protein, histopathological scores, and parameters of oxidative stress (P<0.05). Both the NAC and probucol groups demonstrated significantly lower Scr, BUN, and urine protein levels compared to the model group (P<0.05), with no significant difference between these 2 groups. The NAC group and the probucol group had significantly lower MDA and higher SOD than the model group at 24 h after modeling (P<0.05). The 8-OHdG-positive tubule of the probucol group and NAC group were significantly lower than those of the model group (p=0.046, P=0.0008), with significant difference between these 2 groups (P=0.024). Conclusions Probucol can effectively reduce kidney damage caused by contrast agent. The underlying mechanism may be that probucol accelerates the recovery of renal function and renal pathology by reducing local renal oxidative stress. PMID:26408630

  9. Role of calcitonin gene-related peptide in hypertension-induced renal damage.

    PubMed

    Bowers, Mark C; Katki, Khurshed A; Rao, Arundhati; Koehler, Michael; Patel, Parag; Spiekerman, Alvin; DiPette, Donald J; Supowit, Scott C

    2005-07-01

    Calcitonin gene-related peptide, a potent vasodilator neuropeptide, is localized in perivascular sensory nerves. We have reported that alpha-calcitonin gene-related peptide knockout mice have elevated baseline blood pressure and enhanced hypertension-induced renal damage compared with wild-type controls. Thus, the aim of this study was to determine the mechanism and functional significance of this increased hypertension-induced renal damage. We previously demonstrated by telemetric recording that the deoxycorticosterone-salt protocol produces a 35% increase in mean arterial pressure in both alpha-calcitonin gene-related peptide knockout and wild-type mice. Both strains of mice were studied at 0, 14, and 21 days after deoxycorticosterone-salt hypertension. Renal sections from hypertensive wild-type mice showed no pathological changes at any time point studied. However, on days 14 and 21, hypertensive knockout mice displayed progressive increases in glomerular proliferation, crescent formation, and tubular protein casts, as well as the inflammatory markers intercellular adhesion molecule-1, vascular adhesion molecule-1, and monocyte chemoattractant protein-1. There was a significant increase in 24-hour urinary isoprostane, a marker of oxidative stress-induced lipid peroxidation, levels at days 14 and 21 in the hypertensive knockout compared with hypertensive wild-type mice. Urinary microalbumin was significantly higher (2-fold) at day 21 and creatinine clearance was significantly decreased 4-fold in the hypertensive knockout compared with hypertensive wild-type mice. Therefore, in the absence of alpha-calcitonin gene-related peptide, deoxycorticosterone-salt hypertension induces enhanced oxidative stress, inflammation, and renal histopathologic damage, resulting in reduced renal function. Thus, sensory nerves, via alpha-calcitonin gene-related peptide, appear to be renoprotective against hypertension-induced damage.

  10. Statin-induced rhabdomyolysis in patient with renal failure and underlying undiagnosed hypothyroidism

    PubMed Central

    Ambapkar, Sachinkumar N.; Shetty, Naresh; Dwivedy, Arpita; Malve, Harshad Onkarrao

    2016-01-01

    Rhabdomyolysis is a syndrome characterized by muscle necrosis which causes the release of myoglobin into the bloodstream. The manifestations of this syndrome range from asymptomatic elevation of serum muscle enzymes to life-threatening cases associated with extremely high enzyme levels, electrolyte imbalance, and acute renal failure. Symptoms of rhabdomyolysis include dark urine, muscle weakness, and fatigue. Statins are commonly used drugs for the prevention and management of dyslipidemia. We present an interesting and critical case on statin-induced rhabdomyolysis with renal failure and previously undiagnosed idiopathic hypothyroidism. PMID:27275082

  11. Glomerular angiotensin II receptors in gentamicin-induced renal failure in the rat.

    PubMed

    Esquerro, E; Rivas-Cabãnero, L; López-Novoa, J M

    1995-11-01

    We evaluated the properties of glomerular angiotensin II receptors in renal glomeruli isolated from control rats and from rats with gentamicin-induced renal failure. There were no differences in the affinity of angiotensin II for its receptor between glomeruli from control and those from rats treated with gentamicin. Angiotensin II receptor density was lower in glomeruli from rats with renal failure than in those from control rats (985 +/- 71 in gentamicin treated rats vs. 1602 +/- 213 fmol/mg prot in controls). No significant differences were observed in renin activity in the supernatant from glomeruli isolated from control rats (3.74 +/- 0.29 ng angiotensin l/mL h) and those isolated from rats with gentamicin-induced renal failure (2.99 +/- 0.29 ng angiotensin l/mL h, p > 0.1). These findings do not support the contention of a role of angiotensin II in the development and maintenance of gentamicin-induced ARF.

  12. Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis.

    PubMed

    Topcu-Tarladacalisir, Yeter; Sapmaz-Metin, Melike; Karaca, Turan

    2016-11-01

    Curcumin has several biological functions particularly antioxidant and anti-inflammatory. The aims of this study are determination of the protective effects of curcumin on cisplatin-induced renal tubular cell apoptosis and related pathways in kidney. Eighteen male Wistar albino rats were randomly divided into three groups (n = 6): the control, cisplatin (CP), and cisplatin + curcumin (CP + CUR). Acute renal damage was induced by single dose of cisplatin (7.5 mg/kg) injected by intraperitoneally (i.p). The animals of curcumin-treated group were received daily 200 mg/kg curcumin per os (po), starting from 2 days before the injection of cisplatin to the day of sacrifice. Forty-eight hours after cisplatin injection, samples of cardiac blood and kidneys were harvested from the animals. In this study, the major finding is that curcumin treatment ameliorates the following conditions associated with cisplatin-induced nephrotoxicity: (1) the development of kidney injury (histopathology), (2) inflammatory responses [myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, IL-10 levels], (3) the degree of lipid peroxidation [malondialdehyde (MDA) level], (4) renal tubular cell apoptosis (active caspase-3) and expression of related proteins [p53, Fas, and Fas ligand (Fas-L)] by immunohistochemistry, (5) renal dysfunction (serum urea and creatinine). In a conclusion, this study suggests that curcumin has antiapoptotic effect against cisplatin nephrotoxicity, in addition to anti-inflammatory and antioxidant properties.

  13. Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats.

    PubMed

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Abdel Rahim, Mona; Suddek, Ghada M; Salem, Hatem A

    2016-03-01

    The present study was designed to explore the possible protective effects of agmatine, a known nitric oxide (NO) synthase inhibitor, against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of agmatine on gentamicin-induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was evaluated. Twenty-four male Wistar albino rats were randomly divided into 3 groups, namely control, gentamicin (100 mg/kg, i.p.), and gentamicin plus agmatine (40 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood and urine samples and kidneys were taken. Administration of agmatine significantly decreased kidney/body mass ratio, serum creatinine, lactate dehydrogenase (LDH), renal malondialdehyde (MDA), myeloperoxidase (MPO), NO, and tumor necrosis factor-alpha (TNF-α) while it significantly increased creatinine clearance and renal superoxide dismutase (SOD) activity when compared with the gentamicin-treated group. Additionally, agmatine ameliorated tissue morphology as evidenced by histological evaluation and reduced the responses of isolated bladder rings to ACh. Our study indicates that agmatine administration with gentamicin attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, restoring NO level and inhibiting inflammatory mediators such as TNF-α.

  14. Antioxidant effect of carnosine treatment on renal oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Yay, A; Akkuş, D; Yapıslar, H; Balcıoglu, E; Sonmez, M F; Ozdamar, S

    2014-11-01

    Nitric oxide (NO) plays a significant role in the development of diabetic nephropathy. We investigated the effects of an antioxidant, carnosine, on streptozotocin (STZ)-induced renal injury in diabetic rats. We used four groups of eight rats: group 1, control; group 2, carnosine treated; group 3, untreated diabetic; group 4, carnosine treated diabetic. Kidneys were removed and processed, and sections were stained with periodic acid-Schiff (PAS) and subjected to eNOS immunohistochemistry. Examination by light microscopy revealed degenerated glomeruli, thickened basement membrane and glycogen accumulation in the tubules of diabetic kidneys. Carnosine treatment prevented the renal morphological damage caused by diabetes. Moreover, administration of carnosine decreased somewhat the oxidative damage of diabetic nephropathy. Appropriate doses of carnosine might be a useful therapeutic option to reduce oxidative stress and associated renal injury in diabetes mellitus.

  15. Activation of Renal (Pro)Renin Receptor Contributes to High Fructose-Induced Salt Sensitivity.

    PubMed

    Xu, Chuanming; Lu, Aihua; Lu, Xiaohan; Zhang, Linlin; Fang, Hui; Zhou, Li; Yang, Tianxin

    2017-02-01

    A high-fructose diet is shown to induce salt-sensitive hypertension, but the underlying mechanism largely remains unknown. The major goal of the present study was to test the role of renal (pro)renin receptor (PRR) in this model. In Sprague-Dawley rats, high-fructose intake increased renal expression of full-length PRR, which were attenuated by allopurinol. High-fructose intake also upregulated renal mRNA and protein expression of sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter, as well as in vivo Na/K/2Cl cotransporter activity, all of which were nearly completely blocked by a PRR decoy inhibitor PRO20 or allopurinol treatment. Parallel changes were observed for indices of intrarenal renin-angiotensin-system including renal and urinary renin and angiotensin II levels. Radiotelemetry demonstrated that high-fructose or a high-salt diet alone did not affect mean arterial pressure, but the combination of the 2 maneuvers induced a ≈10-mm Hg increase of mean arterial pressure, which was blunted by PRO20 or allopurinol treatment. In cultured human kidney 2 cells, both fructose and uric acid increased protein expression of soluble PRR in a time- and dose-dependent manner; fructose-induced PRR upregulation was inhibited by allopurinol. Taken together, our data suggest that fructose via uric acid stimulates renal expression of PRR/soluble PRR that stimulate sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter expression and intrarenal renin-angiotensin system to induce salt-sensitive hypertension.

  16. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice

    PubMed Central

    Toyohara, Takafumi; Mae, Shin-Ichi; Sueta, Shin-Ichi; Inoue, Tatsuyuki; Yamagishi, Yukiko; Kawamoto, Tatsuya; Kasahara, Tomoko; Hoshina, Azusa; Toyoda, Taro; Tanaka, Hiromi; Araoka, Toshikazu; Sato-Otsubo, Aiko; Takahashi, Kazutoshi; Sato, Yasunori; Yamaji, Noboru; Ogawa, Seishi; Yamanaka, Shinya

    2015-01-01

    Acute kidney injury (AKI) is defined as a rapid loss of renal function resulting from various etiologies, with a mortality rate exceeding 60% among intensive care patients. Because conventional treatments have failed to alleviate this condition, the development of regenerative therapies using human induced pluripotent stem cells (hiPSCs) presents a promising new therapeutic option for AKI. We describe our methodology for generating renal progenitors from hiPSCs that show potential in ameliorating AKI. We established a multistep differentiation protocol for inducing hiPSCs into OSR1+SIX2+ renal progenitors capable of reconstituting three-dimensional proximal renal tubule-like structures in vitro and in vivo. Moreover, we found that renal subcapsular transplantation of hiPSC-derived renal progenitors ameliorated the AKI in mice induced by ischemia/reperfusion injury, significantly suppressing the elevation of blood urea nitrogen and serum creatinine levels and attenuating histopathological changes, such as tubular necrosis, tubule dilatation with casts, and interstitial fibrosis. To our knowledge, few reports demonstrating the therapeutic efficacy of cell therapy with renal lineage cells generated from hiPSCs have been published. Our results suggest that regenerative medicine strategies for kidney diseases could be developed using hiPSC-derived renal cells. Significance This report is the first to demonstrate that the transplantation of renal progenitor cells differentiated from human induced pluripotent stem (iPS) cells has therapeutic effectiveness in mouse models of acute kidney injury induced by ischemia/reperfusion injury. In addition, this report clearly demonstrates that the therapeutic benefits come from trophic effects by the renal progenitor cells, and it identifies the renoprotective factors secreted by the progenitors. The results of this study indicate the feasibility of developing regenerative medicine strategy using iPS cells against renal diseases

  17. Chelerythrine chloride induces apoptosis in renal cancer HEK-293 and SW-839 cell lines.

    PubMed

    Chen, Xiao-Meng; Zhang, Meng; Fan, Peng-Li; Qin, Yu-Hua; Zhao, Hong-Wei

    2016-06-01

    Previous studies have demonstrated that the benzo[c]phenanthridine alkaloid chelerythrine chloride (CC) has inhibitory effects on various tumors. However, the anticancer activity of CC and its underlying mechanisms have not been elucidated in renal cancer cells. The present study examined the effects of CC on growth inhibition and apoptosis of renal cancer cells in vitro and in vivo. Flow cytometry and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays revealed that CC markedly suppressed the growth of HEK-293 and human renal cancer SW-839 cells in a time- and dose-dependent manner. The xenograft mouse model, which was performed in nude mice, exhibited a reduced tumor growth following CC treatment. In addition, the present study revealed that CC significantly decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, which was accompanied by upregulation of p53, B-cell lymphoma 2 (Bcl-2)-associated X protein, cleaved caspase-3 and cleaved poly (adenosine diphosphate-ribose) polymerase (PARP), and downregulation of Bcl-2, caspase-3 and PARP. Furthermore, the use of PD98059, a specific mitogen-activated protein kinase kinase inhibitor, potentiated the proapoptotic effects of CC, which indicated that CC may induce apoptosis in renal cancer cells partly via inhibition of ERK activity. Overall, the results of the present study demonstrated that CC may be developed as a potential anticancer treatment for patients with renal cancer.

  18. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    PubMed

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (P<0.05) and improve renal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  19. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice

    PubMed Central

    Ye, Jian-Hong; Liu, Meng-Hua; Zhang, Xu-Lin; He, Jing-Yu

    2015-01-01

    Protective effect of Hedyotis diffusa (H. diffusa) Willd against lipopolysaccharide (LPS)-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography -diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight) obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones. PMID:26580602

  20. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    SciTech Connect

    Huang, J.-S. Chuang, L.-Y.; Guh, J.-Y.; Yang, Y.-L.; Hsu, M.-S.

    2008-12-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE, or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27{sup Kip1}, collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells.

  1. Onion (Allium cepa) extract prevents cadmium induced renal dysfunction

    PubMed Central

    Ige, S. F.; Salawu, E. O.; Olaleye, S. B.; Adeeyo, O. A.; Badmus, J.; Adeleke, A. A.

    2009-01-01

    Cadmium (Cd), a heavy metal, is known for its adverse effects on the body. In this study, the lowering effect of Cd on renal clearance (RC) was investigated, and Allium cepa extract (AcE) (an antioxidant) was pre-administered orally to prevent Cd's adverse effects. Seventy-two Wistar rats, grouped into three (n = 24), were used for this study. While Group C was given 1.0 ml of AcE daily (orally), Group A and Group B were given distilled water. AcE administration was done for eight weeks. Afterwards B and C were then given 1.5 ml/kg BW of 0.3 mg/L 3CdSO4.8H2O intraperitoneally for three consecutive days. The results obtained showed that Cd causes significant reduction in the 24 hour urine volume (from 3.017 ± 0.125 to 2.433 ± 0.118 ml), RC (from 3.258 ± 0.114 to 1.357 ± 0.104 ml/h for creatinine; and from 0.350 ± 0.057 to 0.185 ± 0.055 ml/h for urea), plasma and tissue SOD and CAT activity (form 1.644 ± 0.036 to 1.307 ± 0.056 u/g protein for plasma SOD; 0.391 ± 0.029 to 0.2692 ± 0.031 u/protein for plasma CAT; 1.695 ± 0.034 to 1.327 ± 0.049 u/g protein for tissues SOD; and from 0.350 ± 0.027 to 0.273 ± 0.043 u for tissue CAT), and significant MDA increased in plasma (from 1496.79 ± 1.321 to 1679.48 ± 143.29 μg/g protein) and tissue (from 1265.22 ± 2.285 to 1669.87 ± 14.61 μg/dL). AcE, however, prevents these Cd's adverse effects. This findings lead to the conclusion Cd exposure causes renal dysfunction, but oral administration of onion could prevent it. PMID:20535248

  2. Temsirolimus induced structural transition of cancerous renal cystatin to normal form in rats: In vitro mechanistic approach underlying renal cancer prevention.

    PubMed

    Shamsi, Anas; Ahmed, Azaj; Bano, Bilqees

    2017-03-01

    Globally, renal cell carcinomas (RCCs) represent a major portion of patients suffering from cancer. Temsirolimus is an anti-renal cancer drug that has already been approved in poor-risk metastatic RCC (mRCC) patients. In our present study, we have evaluated the in vitro effect of varying concentrations of temsirolimus on cancerous rat kidney cystatin; renal cancer was induced in rats making use of dimethylnitrosamine (DMN). It has already been reported that cancerous rat kidney cystatin performs its activity in an efficacious manner as compared to normal rat kidney cystatin, so here an attempt was made to see the effect of temsirolimus on this increased activity of cystatin in renal cancers. Anti-papain activity assay was utilized to see this effect and it was found that temsirolimus reduces the increased activity of cancerous rat kidney cystatin similar to that of normal rat kidney cystatin. Further, to have an insight into temsirolimus induced structural alterations in cancerous rat kidney cystatin; various spectroscopic assays viz. UV, Fluorescence, Circular dichroism (CD) and FTIR spectroscopy were employed. UV and Fluorescence spectroscopy shows cancerous rat kidney cystatin transformation to normal form in the presence of temsirolimus. FTIR and CD spectroscopy confirmed the complete structural reversion of cancerous rat kidney cystatin to normal form in the presence of 40μM temsirolimus. Thus, it can said that temsirolimus causes renal cystatin to revert to normal form; the increased activity of renal cystatin observed in incidences of renal cancer is restored back to normal thereby halting the progression of renal cancer.

  3. Involvement of MEK/ERK pathway in cephaloridine-induced injury in rat renal cortical slices.

    PubMed

    Kohda, Yuka; Hiramatsu, Jun; Gemba, Munekazu

    2003-07-20

    We have previously reported that free radical-mediated injury induced by cephaloridine (CER) is enhanced by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, in rat renal cortical slices. We have also shown that PKC activation in mitochondria is involved in CER-induced nephrotoxicity in rats. We investigated the role of a downstream PKC pathway, a MEK/ERK pathway, in free radical-induced injury in rat renal cortical slices exposed to CER. Immediately after preparing slices from rat renal cortex, the slices were incubated in the medium containing MEK inhibitors. ERK1/2 activation was determined by Western blot analysis for phosphorylated ERK (pERK) 1/2 protein in nucleus fraction prepared from the slices exposed to CER. Prominently, CER caused not only increases in lipid peroxidation as an index of free radical generation and in LDH leakage as that of cell injury in the slices, but also marked activation of ERK1/2 in nucleus fraction. PD98059 and U0126, MEK1/2 inhibitors, significantly attenuated CER-induced increases in lipid peroxidation and LDH leakage in the slices. PD98059 also suppressed ERK1/2 activation in nucleus fraction prepared from the slices treated with CER. Inhibition of other MAP kinase pathways, p38 MAP kinase and c-Jun N-terminal kinase (JNK) had no effect on CER-induced increases in lipid peroxidation level and LDH leakage in the slices. The present results suggest that a MEK/ERK pathway down stream of a PKC pathway is probably involved in free radical-induced injury in rat renal cortical slices exposed to CER.

  4. Renal transport of urate during diuretic-induced hypouricemia.

    PubMed

    Reese, O G; Steele, T H

    1976-06-01

    The effect of two weeks administration of a uricosuric diuretic (SKF-62698) on renal urate handling has been examined in 11 normal men. Plasma urate concentrations had declined by more than 60 per cent after two weeks. Urate excretion per unit of glomerular filtration rate and urate clearance (Curate) per unit of glomerular filtration rate were increased after the administration of SKF-62698. The importance of intact tubular secretion of urate in producing these changes was assessed by administering pyrazinamide, an agent that curtails urate secretion, to each participant. The decrements in urate excretion and clearance produced by pyrazinamide both increased significantly, whereas the residual urate excretion rates and clearances not suppressible by pyrazinamide were only minimally altered by SKF-62698 treatment. These results suggest that the excretion of secreted urate was enhanced by prolonged administration of SKF-62698, probably secondary to the inhibition of postsecretory urate reabsorption. In addition, because the nonsuppressible urate excretion did not decline despite a 63 per cent reduction in the plasma urate, it is likely that the reabsorption of filtered urate also was impaired by SKF-62698.

  5. Lin28 sustains early renal progenitors and induces Wilms tumor.

    PubMed

    Urbach, Achia; Yermalovich, Alena; Zhang, Jin; Spina, Catherine S; Zhu, Hao; Perez-Atayde, Antonio R; Shukrun, Rachel; Charlton, Jocelyn; Sebire, Neil; Mifsud, William; Dekel, Benjamin; Pritchard-Jones, Kathy; Daley, George Q

    2014-05-01

    Wilms Tumor, the most common pediatric kidney cancer, evolves from the failure of terminal differentiation of the embryonic kidney. Here we show that overexpression of the heterochronic regulator Lin28 during kidney development in mice markedly expands nephrogenic progenitors by blocking their final wave of differentiation, ultimately resulting in a pathology highly reminiscent of Wilms tumor. Using lineage-specific promoters to target Lin28 to specific cell types, we observed Wilms tumor only when Lin28 is aberrantly expressed in multiple derivatives of the intermediate mesoderm, implicating the cell of origin as a multipotential renal progenitor. We show that withdrawal of Lin28 expression reverts tumorigenesis and markedly expands the numbers of glomerulus-like structures and that tumor formation is suppressed by enforced expression of Let-7 microRNA. Finally, we demonstrate overexpression of the LIN28B paralog in a significant percentage of human Wilms tumor. Our data thus implicate the Lin28/Let-7 pathway in kidney development and tumorigenesis.

  6. [Neurologic complications induced by the treatment of the acute renal allograft rejection with the monoclonal antibody OKT3].

    PubMed

    Fernández, O; Romero, F; Bravo, M; Burgos, D; Cabello, M; González-Molina, M

    1993-10-01

    The treatment of the acute renal allograft rejection with the monoclonal antibody orthoclone OKT3 produces both systemic and neurologic alterations. In a series of 21 patients with an acute renal allograft rejection treated with this monoclonal antibody, 20 with a renal allograft transplantation and one with a renal and pancreatic allograft transplantation, 29% referred headache associated with fever and vomiting, and 14.2% presented severe neurological alterations induced by the treatment. We stress the need to know these secondary effects to differentiate them from other central nervous system disorders, particularly those of infectious origin.

  7. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury

    PubMed Central

    Farrar, Conrad A.; Tran, David; Li, Ke; Wu, Weiju; Peng, Qi; Schwaeble, Wilhelm; Zhou, Wuding

    2016-01-01

    Physiochemical stress induces tissue injury as a result of the detection of abnormal molecular patterns by sensory molecules of the innate immune system. Here, we have described how the recently discovered C-type lectin collectin-11 (CL-11, also known as CL-K1 and encoded by COLEC11) recognizes an abnormal pattern of L-fucose on postischemic renal tubule cells and activates a destructive inflammatory response. We found that intrarenal expression of CL-11 rapidly increases in the postischemic period and colocalizes with complement deposited along the basolateral surface of the proximal renal tubule in association with L-fucose, the potential binding ligand for CL-11. Mice with either generalized or kidney-specific deficiency of CL-11 were strongly protected against loss of renal function and tubule injury due to reduced complement deposition. Ex vivo renal tubule cells showed a marked capacity for CL-11 binding that was induced by cell stress under hypoxic or hypothermic conditions and prevented by specific removal of L-fucose. Further analysis revealed that cell-bound CL-11 required the lectin complement pathway–associated protease MASP-2 to trigger complement deposition. Given these results, we conclude that lectin complement pathway activation triggered by ligand–CL-11 interaction in postischemic tissue is a potent source of acute kidney injury and is amenable to sugar-specific blockade. PMID:27088797

  8. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells.

    PubMed

    Rombo, Roman; Weiher, Hans; Schmidt-Wolf, Ingo G H

    2016-01-01

    We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC) cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK) assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selective ex vivo anti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative CD4-/CD8- phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer.

  9. Protective effect of oral L-arginine administration on gentamicin-induced renal failure in rats.

    PubMed

    Can, C; Sen, S; Boztok, N; Tuglular, I

    2000-03-03

    We investigated the effects of orally supplemented L-arginine, the substrate of nitric oxide (NO) and N(omega)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide-synthase inhibitor in gentamicin-induced renal failure. Rats were given gentamicin (100 mg/kg/day s.c.), gentamicin and L-arginine (2 g/l, drinking water), gentamicin and L-NAME (100 mg/l, drinking water) or gentamicin plus L-arginine and L-NAME. After 8 days, the gentamicin group developed marked renal failure, characterized by a significantly decreased creatinine clearance and increased blood creatinine, fractional excretion of sodium, fractional excretion of lithium, urine gamma glutamyl transferase, systolic blood pressure and daily urine volume when compared to controls. Renal histological analysis confirmed tubular necrosis. L-arginine administration caused normalization of these parameters, whereas L-NAME led to aggravation of the failure. Concomitant administration of L-NAME and L-arginine to gentamicin-treated rats caused no significant changes when compared to the rats receiving gentamicin alone. We conclude that L-arginine supplementation has beneficial effects in gentamicin-induced renal failure in rats and that these effects are reversed by the NO-synthase inhibitor, L-NAME.

  10. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells

    PubMed Central

    Rombo, Roman; Weiher, Hans; Schmidt-Wolf, Ingo G.H.

    2016-01-01

    We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC) cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK) assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selective ex vivo anti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative CD4-/CD8- phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer. PMID:27141211

  11. Salt-induced changes in cardiac phosphoproteome in a rat model of chronic renal failure.

    PubMed

    Su, Zhengxiu; Zhu, Hongguo; Zhang, Menghuan; Wang, Liangliang; He, Hanchang; Jiang, Shaoling; Hou, Fan Fan; Li, Aiqing

    2014-01-01

    Heart damage is widely present in patients with chronic kidney disease. Salt diet is the most important environmental factor affecting development of chronic renal failure and cardiovascular diseases. The proteins involved in chronic kidney disease -induced heart damage, especially their posttranslational modifications, remain largely unknown to date. Sprague-Dawley rats underwent 5/6 nephrectomy (chronic renal failure model) or sham operation were treated for 2 weeks with a normal-(0.4% NaCl), or high-salt (4% NaCl) diet. We employed TiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for phosphoproteomic profiling of left ventricular free walls in these animals. A total of 1724 unique phosphopeptides representing 2551 non-redundant phosphorylation sites corresponding to 763 phosphoproteins were identified. During normal salt feeding, 89 (54%) phosphopeptides upregulated and 76 (46%) phosphopeptides downregulated in chronic renal failure rats relative to sham rats. In chronic renal failure rats, high salt intake induced upregulation of 84 (49%) phosphopeptides and downregulation of 88 (51%) phosphopeptides. Database searches revealed that most of the identified phospholproteins were important signaling molecules such as protein kinases, receptors and phosphatases. These phospholproteins were involved in energy metabolism, cell communication, cell differentiation, cell death and other biological processes. The Search Tool for the Retrieval of Interacting Genes analysis revealed functional links among 15 significantly regulated phosphoproteins in chronic renal failure rats compared to sham group, and 23 altered phosphoproteins induced by high salt intake. The altered phosphorylation levels of two proteins involved in heart damage, lamin A and phospholamban were validated. Expression of the downstream genes of these two proteins, desmin and SERCA2a, were also analyzed.

  12. Haloalkylamine-induced renal papillary necrosis: a histopathological study of structure-activity relationships.

    PubMed Central

    Powell, C. J.; Grasso, P.; Ioannides, C.; Wilson, J.; Bridges, J. W.

    1991-01-01

    The haloalkylamine 2-bromoethanamine (BEA) causes necrosis of renal papillae of rats within 24 h of a single intraperitoneal dose greater than or equal to 100 mg/kg. Nine structural analogues of BEA, differing by halide substitution, alkyl chain elongation or amine substitution, were tested for their ability to induce renal papillary lesions in rats. Three compounds (2-chloroethanamine, 3-bromopropanamine and 2-chloro-N,N-dimethylethanamine) induced lesions which were morphologically indistinguishable from those of BEA. All the molecular structural variations investigated reduced papillotoxicity compared with BEA, the parent compound. A variety of non-renal lesions including hepatic, adrenal, testicular and lymphoid necroses were also encountered. The most toxic compound was 2-fluorethanamine, a 5 mg/kg dose of which was lethal and induced renal corticomedullary mineralization and centrilobular hepatic necrosis. One analogue, 3-bromo-2-hydroxypropanamine, caused rapid and extensive necrosis of the adrenal pars fasciculata and reticularis, simulating human Waterhouse Friderichsen syndrome. The three newly identified renal papillotoxins are all theoretically capable of generating direct-acting alkylating species in solution and their activity as direct-acting mutagens in the Ames bacterial mutagenicity test with TA100 (indicating base pair substitution) closely correlated with their potency as papillotoxins. We therefore hypothesize that non-enzymically formed direct-acting alkylating species mediate these papillary lesions, and that the target selectivity of haloalkylamine toxicity most probably results from the accumulation of these alkylating species in papillary tissue. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:1768609

  13. C-met inhibition blocks bone metastasis development induced by renal cancer stem cells

    PubMed Central

    D'Amico, Lucia; Belisario, Dimas; Migliardi, Giorgia; Grange, Cristina; Bussolati, Benedetta; D'Amelio, Patrizia; Perera, Timothy; Dalmasso, Ettore; Carbonare, Luca Dalle; Godio, Laura; Comoglio, Paolo; Trusolino, Livio; Ferracini, Riccardo; Roato, Ilaria

    2016-01-01

    Cancer stem cells (CSCs) are key players in bone metastasis. In some renal tumors CSCs overexpress the HGF receptor c-MET, speculating that c-MET targeting could lead to bone metastasis inhibition. To address this hypothesis we isolated renal CD105+/CD24−CSCs, expressing c-MET receptor from a primary renal carcinoma. Then, to study their ability to metastasize to bone, we injected renal CSCs in NOD/SCID mice implanted with a human bone and we tested the effect of a c-MET inhibitor (JNJ-38877605) on bone metastasis development. JNJ-38877605 inhibited the formation of metastases at bone implant site. We showed that JNJ-38877605 inhibited the activation of osteoclasts induced by RCC stem cells and it stimulated osteoblast activity, finally resulting in a reduction of bone turnover consistent with the inhibition of bone metastases. We measured the circulating levels of osteotropic factors induced by RCC stem cells in the sera of mice treated with c-Met inhibitor, showing that IL-11 and CCL20 were reduced in mice treated with JNJ-38877605, strongly supporting the involvement of c-MET in the regulation of this process. To address the clinical relevance of c-MET upregulation during tumor progression, we analysed c-MET in renal cancer patients detecting an increased expression in the bone metastatic lesions by IHC. Then, we dosed CCL20 serum levels resulting significantly increased in patients with bone metastases compared to non-metastatic ones. Collectively, our data highlight the importance of the c-MET pathway in the pathogenesis of bone metastases induced by RCC stem cells in mice and humans. PMID:27322553

  14. Renal ammonia and glutamine metabolism during liver insufficiency-induced hyperammonemia in the rat.

    PubMed Central

    Dejong, C H; Deutz, N E; Soeters, P B

    1993-01-01

    Renal glutamine uptake and subsequent urinary ammonia excretion could be an important alternative pathway of ammonia disposal from the body during liver failure (diminished urea synthesis), but this pathway has received little attention. Therefore, we investigated renal glutamine and ammonia metabolism in midly hyperammonemic, portacaval shunted rats and severely hyperammonemic rats with acute liver ischemia compared to their respective controls, to investigate whether renal ammonia disposal from the body is enhanced during hyperammonemia and to explore the limits of the pathway. Renal fluxes, urinary excretion, and renal tissue concentrations of amino acids and ammonia were measured 24 h after portacaval shunting, and 2, 4, and 6 h after liver ischemia induction and in the appropriate controls. Arterial ammonia increased to 247 +/- 22 microM after portacaval shunting compared to controls (51 +/- 8 microM) (P < 0.001) and increased to 934 +/- 54 microM during liver ischemia (P < 0.001). Arterial glutamine increased to 697 +/- 93 microM after portacaval shunting compared to controls (513 +/- 40 microM) (P < 0.01) and further increased to 3781 +/- 248 microM during liver ischemia (P < 0.001). In contrast to controls, in portacaval shunted rats the kidney net disposed ammonia from the body by diminishing renal venous ammonia release (from 267 +/- 33 to -49 +/- 59 nmol/100 g body wt per min) and enhancing urinary ammonia excretion from 113 +/- 24 to 305 +/- 52 nmol/100 g body wt per min (both P < 0.01). Renal glutamine uptake diminished in portacaval shunted rats compared to controls (-107 +/- 33 vs. -322 +/- 41 nmol/100 g body wt per min) (P < 0.01). However, during liver ischemia, net renal ammonia disposal from the body did not further increase (294 +/- 88 vs. 144 +/- 101 nmol/100 g body wt per min during portacaval shunting versus liver ischemia). Renal glutamine uptake was comparable in both hyperammonemic models. These results indicate that the rat kidney plays

  15. Cinnamaldehyde impairs high glucose-induced hypertrophy in renal interstitial fibroblasts.

    PubMed

    Chao, Louis Kuoping; Chang, Wen-Teng; Shih, Yuan-Wei; Huang, Jau-Shyang

    2010-04-15

    Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. To explore whether cinnamaldehyde was linked to altered high glucose (HG)-mediated renal tubulointerstitial fibrosis in diabetic nephropathy (DN), the molecular mechanisms of cinnamaldehyde responsible for inhibition of HG-induced hypertrophy in renal interstitial fibroblasts were examined. We found that cinnamaldehyde caused inhibition of HG-induced cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, cleaved poly(ADP-ribose) polymerase (PARP) protein expression, and mitochondrial cytochrome c release in HG or cinnamaldehyde treatments in these cells. HG-induced extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) (but not the Janus kinase 2/signal transducers and activators of transcription) activation was markedly blocked by cinnamaldehyde. The ability of cinnamaldehyde to inhibit HG-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of collagen IV, fibronectin, and alpha-smooth muscle actin (alpha-SMA). The results obtained in this study suggest that cinnamaldehyde treatment of renal interstitial fibroblasts that have been stimulated by HG reduces their ability to proliferate and hypertrophy through mechanisms that may be dependent on inactivation of the ERK/JNK/p38 MAPK pathway.

  16. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid

    SciTech Connect

    Qi Xinming; Cai Yan; Gong Likun; Liu Linlin; Chen Fangping; Xiao Ying; Wu Xiongfei; Li Yan; Xue Xiang |; Ren Jin . E-mail: cdser_simm@mail.shcnc.ac.cn

    2007-07-01

    Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca{sup 2+}, AAI caused mitochondrial swelling, leakage of Ca{sup 2+}, membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelial cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid.

  17. Metformin improves metabolic memory in high fat diet (HFD)-induced renal dysfunction.

    PubMed

    Tikoo, Kulbhushan; Sharma, Ekta; Amara, Venkateswara Rao; Pamulapati, Himani; Dhawale, Vaibhav Shrirang

    2016-08-22

    Recently, we have shown that high fat diet (HFD) in vivo and in vitro generates metabolic memory by altering H3K36me2 and H3K27me3 on the promoter of FOXO1 (transcription factor of gluconeogenic genes) (Kumar et al., 2015). Here we checked the hypothesis, whether concomitant diet reversal and metformin could overcome HFD-induced metabolic memory and renal damage. Male adult Sprague Dawley rats were rendered insulin resistant by feeding high fat diet for 16 weeks. Then the rats were subjected to diet reversal (REV) alone and along with metformin (REV+MET) for 8 weeks. Biochemical and histological markers of insulin resistance and kidney function were measured. Blood pressure and in vivo vascular reactivity to Angiotensin II (200 mgkg-1) were also checked. Diet reversal could improve lipid profile but could not prevent renal complications induced by HFD. Interestingly, metformin along with diet reversal restored the levels of blood glucose, triglycerides, cholesterol, blood urea nitrogen and creatinine. In kidney, metformin increased the activation of AMPK, decreased inflammatory markers-COX-2, IL-1β and apoptotic markers-PARP, Caspase3. Metformin was effective in lowering the elevated basal blood pressure, acute change in mean arterial pressure (ΔMAP) in response to Ang II. It also attenuated the tubulointerstitial fibrosis and glomerulosclerosis induced by HFD-feeding in kidney. Here we report for the first time, that metformin treatment overcomes metabolic memory and prevents HFD-induced renal damage.

  18. Effect of photobiomodulation on ischemia/reperfusion-induced renal damage in diabetic rats.

    PubMed

    Asghari, Ahmad; Takhtfooladi, Mohammad Ashrafzadeh; Hoseinzadeh, Hesam Aldin

    2016-12-01

    This study was designed to investigate the possible effect of photobiomodulation (PBM) on renal damage induced by ischemia reperfusion (IR) in diabetic rats. Twenty streptozotocin-induced diabetic rats were randomly distributed into two groups, containing ten rats each: IR group (G1) and IR + PBM group (G2). After the right nephrectomy, the ischemia was produced in the left kidney for 30 min, followed by the reperfusion for 24 h. Then, a 685-nm laser diode with an output power of 15 mW (spot size = 0.28 cm(2) and energy density = 3.2 J/cm(2)) was employed. PBM was carried out by irradiating the rats over six points on the skin over the left kidney region three times, i.e., immediately after skin suturing and 1 and 2 h after initiating reperfusion for 6 min. At the end of reperfusion period, the rats were anesthetized, and blood samples were collected and used for the estimation of renal function (blood urea nitrogen (BUN) and creatinine). Then, the left kidney was harvested for histological and biochemical examination. The serum levels of BUN and creatinine were significantly higher in G1 compared to G2 (P < 0.05). G1 had higher renal malondialdehyde (MDA) levels compared to G2 (P < 0.05). Renal IR in diabetic rats (G1) resulted in a significant decrease in renal tissue glutathione (GSH) (P < 0.05) when compared to laser-treated rats (G2). A significant restoration was observed in the levels of superoxide dismutase (SOD) (P < 0.05) and catalase (CAT) (P < 0.05) in G2 as compared to G1. The levels of nitric oxide (NO) were increased in G1 in comparison to G2 (P < 0.05). The myeloperoxidase (MPO) activity was significantly higher in the renal tissue of G1 than that of G2 (P < 0.05). In addition, specimens from the G1 had a significantly greater histological injury than those from the G2 (P < 0.05). The results of present investigation revealed that PBM attenuated kidney damage induced by renal IR in diabetic rats.

  19. Maternal fructose-intake-induced renal programming in adult male offspring.

    PubMed

    Tain, You-Lin; Wu, Kay L H; Lee, Wei-Chia; Leu, Steve; Chan, Julie Y H

    2015-06-01

    Nutrition in pregnancy can elicit long-term effects on the health of offspring. Although fructose consumption has increased globally and is linked to metabolic syndrome, little is known about the long-term effects of maternal high-fructose (HF) exposure during gestation and lactation, especially on renal programming. We examined potential key genes and pathways that are associated with HF-induced renal programming using whole-genome RNA next-generation sequencing (NGS) to quantify the abundance of RNA transcripts in kidneys from 1-day-, 3-week-, and 3-month-old male offspring. Pregnant Sprague-Dawley rats received regular chow or chow supplemented with HF (60% diet by weight) during the entire period of pregnancy and lactation. Male offspring exhibited programmed hypertension at 3 months of age. Maternal HF intake modified over 200 renal transcripts from nephrogenesis stage to adulthood. We observed that 20 differentially expressed genes identified in 1-day-old kidney are related to regulation of blood pressure. Among them, Hmox1, Bdkrb2, Adra2b, Ptgs2, Col1a2 and Tbxa2r are associated with endothelium-derived hyperpolarizing factor (EDHF). NGS also identified genes in arachidonic acid metabolism (Cyp2c23, Hpgds, Ptgds and Ptges) that may be potential key genes/pathways contributing to renal programming and hypertension. Collectively, our NGS data suggest that maternal HF intake elicits a defective adaptation of interrelated EDHFs during nephrogenesis which may lead to renal programming and hypertension in later life. Moreover, our results highlight genes and pathways involved in renal programming as potential targets for therapeutic approaches to prevent metabolic-syndrome-related comorbidities in children with HF exposure in early life.

  20. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    SciTech Connect

    Aburto, Andrés; Barría, Agustín; Cárdenas, Areli; Carpio, Daniel; Figueroa, Carlos D.; Burgos, Maria E.; Ardiles, Leopoldo

    2014-10-15

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observed a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity.

  1. Chemical inducers of differentiation in a long-term renal cell line.

    PubMed Central

    Lever, J E

    1989-01-01

    The long-term renal epithelial cell line LLC-PK1 expresses at confluence several differentiated characteristics of renal proximal tubule including Na/glucose cotransport and several brush border membrane hydrolases. The differentiation-inducing chemical hexamethylene bisacetamide (HMBA) triggers a dramatic induction of Na+/glucose symport, trehalase and maltase, expressed as an increase in the number of cells in the culture that express the differentiated phenotype. Characteristics of the induction response are reviewed in terms of proposed mechanisms of inducer action. New evidence suggests that in addition to elevation of intracellular Na levels mediated by partial inhibition of the sodium pump, HMBA treatment also alters polyamine levels via effects on ornithine decarboxylase. These responses may be mediated by HMBA effects on protein kinase C activity. The possible role of polyamine fluctuations and DNA demethylation in mediating HMBA effects on differentiated gene expression is currently being investigated. Images FIGURE 2. FIGURE 3. PMID:2647478

  2. Ertapenem-Induced Encephalopathy in a Patient With Normal Renal Function

    PubMed Central

    Sutton, S. Scott; Jumper, Mark; Cook, Sean; Edun, Babatunde; Wyatt, Michael D.

    2017-01-01

    Drug-induced neurotoxicity is a rare adverse reaction associated with ertapenem. Encephalopathy is a type of neurotoxicity that is defined as a diffuse disease of the brain that alters brain function or structure. We report a patient with normal renal function who developed ertapenem-induced encephalopathy manifesting as altered mental status, hallucinations, and dystonic symptoms. The patient’s symptoms improved dramatically following ertapenem discontinuation, consistent with case reports describing ertapenem neurotoxicity in renal dysfunction. Since clinical evidence strongly suggested ertapenem causality, we utilized the Naranjo Scale to estimate the probability of an adverse drug reaction to ertapenem. Our patient received a Naranjo Scale score of 7, suggesting a probable adverse drug reaction, with a reasonable temporal sequence to support our conclusion. PMID:28203577

  3. Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats.

    PubMed

    Yildirim, Zeki; Sogut, Sadik; Odaci, Ersan; Iraz, Mustafa; Ozyurt, Huseyin; Kotuk, Mahir; Akyol, Omer

    2003-02-01

    The effect of oral erdosteine on tissue malondialdehyde (MDA) and nitric oxide (NO) levels, and catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities are investigated in the cisplatin model of acute renal failure in rats. A single dose of cisplatin caused kidney damage manifested by kidney histology as well as increases in plasma creatinine and blood urea nitrogen (BUN) levels. Treatment with free radical scavenger erdosteine attenuated increases in plasma creatinine and BUN, and tissue MDA and NO levels, and provided a histologically-proven protection against cisplatin-induced acute renal failure. Erdosteine also reduced depletion in the tissue CAT, GSH-Px, and SOD activities. These results show that erdosteine may be a promising drug for protection against cisplatin-induced nephrotoxicity. However, further studies with different doses of erdosteine are warranted for clarifying the issue.

  4. Electronegative low density lipoprotein induces renal apoptosis and fibrosis: STRA6 signaling involved[S

    PubMed Central

    Chen, Chao-Hung; Ke, Liang-Yin; Chan, Hua-Chen; Lee, An-Sheng; Lin, Kun-Der; Chu, Chih-Sheng; Lee, Mei-Yueh; Hsiao, Pi-Jung; Hsu, Chin; Chen, Chu-Huang; Shin, Shyi-Jang

    2016-01-01

    Dyslipidemia has been proven to capably develop and aggravate chronic kidney disease. We also report that electronegative LDL (L5) is the most atherogenic LDL. On the other hand, retinoic acid (RA) and RA receptor (RAR) agonist are reported to be beneficial in some kidney diseases. “Stimulated by retinoic acid 6” (STRA6), one retinol-binding protein 4 receptor, was recently identified to regulate retinoid homeostasis. Here, we observed that L5 suppressed STRA6 cascades [STRA6, cellular retinol-binding protein 1 (CRBP1), RARs, retinoid X receptor α, and retinol, RA], but L5 simultaneously induced apoptosis and fibrosis (TGFβ1, Smad2, collagen 1, hydroxyproline, and trichrome) in kidneys of L5-injected mice and L5-treated renal tubular cells. These L5-induced changes of STRA6 cascades, renal apoptosis, and fibrosis were reversed in kidneys of LOX1−/− mice. LOX1 RNA silencing and inhibitor of c-Jun N-terminal kinase and p38MAPK rescued the suppression of STRA6 cascades and apoptosis and fibrosis in L5-treated renal tubular cells. Furthermore, crbp1 gene transfection reversed downregulation of STRA6 cascades, apoptosis, and fibrosis in L5-treated renal tubular cells. For mimicking STRA6 deficiency, efficient silencing of STRA6 RNA was performed and was found to repress STRA6 cascades and caused apoptosis and fibrosis in L1-treated renal tubular cells. In summary, this study reveals that electronegative L5 can cause kidney apoptosis and fibrosis via the suppression of STRA6 cascades, and implicates that STRA6 signaling may be involved in dyslipidemia-mediated kidney disease. PMID:27256691

  5. Evaluation of anti-urolithiatic activity of Pashanabhedadi Ghrita against experimentally induced renal calculi in rats

    PubMed Central

    Gupta, Sanjay Kumar; Baghel, Madhav Singh; Bhuyan, Chaturbhuja; Ravishankar, B.; Ashok, B. K.; Patil, Panchakshari D.

    2012-01-01

    Population in an industrialized world is afflicted by urinary stone disease. Kidney stones are common in all kinds of urolithiasis. One distinguished formulation mentioned by Sushruta for management of Ashmari (urolithiasis) is Pashanabhedadi Ghrita (PBG), which is in clinical practice since centuries. Validation of drug is the requirement of time through the experimental study. In this study, trial of PBG has been made against ammonium oxalate rich diet and gentamicin injection induced renal calculi in albino rats. The calculi were induced by gentamicin injection and ammonium oxalate rich diet. Test drug was administered concomitantly in the dose of 900 mg/kg for 15 consecutive days. Rats were sacrificed on the 16th day. Parameters like kidney weight, serum biochemical, kidney tissue and histopathology of kidney were studied. Concomitant treatment of PBG attenuates blood biochemical parameters non-significantly, where as it significantly attenuated lipid peroxidation and enhanced glutathione and glutathione peroxidase activities. It also decreased crystal deposition markedly into the renal tubules in number as well as size and prevented damage to the renal tubules. The findings showed that PBG is having significant anti-urolithiatic activities against ammonium oxalate rich diet plus gentamicine injection induced urolithiasis in rats. PMID:23723654

  6. Renal assist device and treatment of sepsis-induced acute kidney injury in intensive care units.

    PubMed

    Issa, Naim; Messer, Jennifer; Paganini, Emil P

    2007-01-01

    Acute kidney injury (AKI) is a frequent and serious complication of sepsis in ICU patients and is associated with a very high mortality. Despite the advent of sophisticated renal replacement therapies (RRT) employing high-dose hemofiltration and high-flux membranes, mortality and morbidity from sepsis-induced AKI remained high. Moreover, these dialytic modalities could not substitute for the important functions of renal tubular cells in decreasing sepsis-induced AKI biological dysregulations. The results from the in vitro and preclinical animal model studies were very intriguing and led to the development of a bioartificial kidney consisting of a renal tubule assist device containing human proximal tubular cells (RAD) added in tandem to a continuous venovenous hemofiltration circuit. The results from the phase I safety trial and the recent phase II clinical trial showed that the RAD not only can replace many of the indispensable biological kidney functions, but also modify the natural history of sepsis-induced AKI by ameliorating patient survival.

  7. The effect of activated charcoal on adenine-induced chronic renal failure in rats.

    PubMed

    Ali, Badreldin H; Alza'abi, Mohamed; Ramkumar, Aishwarya; Al-Lawati, Intisar; Waly, Mostafa I; Beegam, Sumaya; Nemmar, Abderrahim; Brand, Susanne; Schupp, Nicole

    2014-03-01

    Activated charcoal (AC) is a sorbent that has been shown to remove urinary toxins like urea and indoxyl sulfate. Here, the influence of AC on kidney function of rats with experimental chronic renal failure (CRF) is investigated. CRF was induced in rats by feeding adenine (0.75%) for four weeks. As an intervention, AC was added to the feed at concentrations of 10%, 15% or 20%. Adenine treatment impaired kidney function: it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and vanin-1. Furthermore, it raised plasma concentrations of the uremic toxins indoxyl sulfate, phosphate and uric acid. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activity, total antioxidant capacity and reduced glutathione were adversely affected. Most of these changes were significantly ameliorated by dietary administration of AC at a concentration of 20%, while effects induced by lower doses of dietary AC on adenine nephrotoxicity were not statistically significant. The results suggest that charcoal is a useful sorbent agent in dietary adenine-induced CRF in rats and that its usability as a nephroprotective agent in human kidney disease should be studied.

  8. Thymoquinone and curcumin attenuate gentamicin-induced renal oxidative stress, inflammation and apoptosis in rats

    PubMed Central

    Mahmoud, Ayman M; Ahmed, Osama M; Galaly, Sanaa R

    2014-01-01

    The present study was aimed to investigate the possible protective effects of thymoquinone (TQ) and curcumin (Cur) on gentamicin (GM)-induced nephrotoxicity in rats. Rats were divided into four groups as follows: group 1 received normal saline and served as normal controls, group 2 received GM only, group 3 concurrently received GM and TQ and group 4 concurrently received GM and Cur. At day 21, rats were sacrificed and samples were collected for assaying serum tumor necrosis factor alpha (TNF-α), urea and creatinine levels, and renal lipid peroxidaion, glutathione (GSH) content as well as glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities. In addition, kidneys were collected for histopathological examination and immunohistochemical determination of the antiapoptotic protein, B-cell lymphoma 2 (Bcl-2). The biochemical results showed that GM-induced nephrotoxicity was associated with a significant increase in serum TNF-α, urea and creatinine as well as renal lipid peroxidation. On the other hand, renal GSH content and GPx and SOD activities were significantly declined. Concomitant administration of either TQ or Cur efficiently alleviated the altered biochemical and histopathological features. In conclusion, both TQ and Cur showed more or less similar marked renoprotective effect against GM-induced nephrotoxicity through their antioxidant, anti-inflammatory and anti-apoptotic efficacies. PMID:26417245

  9. Renal function impairment induced by change in posture in patients with cirrhosis and ascites.

    PubMed Central

    Bernardi, M; Santini, C; Trevisani, F; Baraldini, M; Ligabue, A; Gasbarrini, G

    1985-01-01

    The assumption of upright posture by patients with liver cirrhosis leads to striking activation of adrenergic and renin-angiotensin systems. The tilting-induced modifications in renal function of eight healthy controls and 14 untreated patients with liver cirrhosis and ascites were related to plasma concentrations of noradrenaline, renin activity and aldosterone. All patients had preserved renal blood perfusion. All parameters were evaluated during bed rest for two hours and in the sitting posture for one hour. Basal plasma renin activity (0.1 greater than p greater than 0.05), aldosterone and noradrenaline concentrations (p less than or equal to 0.01) were raised in cirrhotics. The renal function tests (creatinine clearance, filtered sodium, tubular rejection fraction, urinary sodium excretion) were significantly reduced in cirrhosis. Under basal conditions, in cirrhotic patients tubular rejection fraction and urinary sodium excretion were inversely related to both noradrenaline and aldosterone concentrations. After tilting, the noradrenaline and aldosterone integrated outputs (sigma delta) were significantly greater in cirrhosis. All renal function tests significantly decreased in cirrhotics, whereas creatinine clearance only significantly decreased in controls. Patient's tubular rejection fraction of sodium and sodium excretion were related to sigma delta aldosteronaemia (r = -0.72; p less than 0.01), but no longer to sigma delta plasma noradrenaline. PMID:3891534

  10. Epigallocatechin-3-gallate attenuates unilateral ureteral obstruction-induced renal interstitial fibrosis in mice.

    PubMed

    Wang, Yanqiu; Wang, Bowen; Du, Feng; Su, Xuesong; Sun, Guangping; Zhou, Guangyu; Bian, Xiaohui; Liu, Na

    2015-04-01

    The severity of tubulointerstitial fibrosis is regarded as an important determinant of renal prognosis. Therapeutic strategies targeting tubulointerstitial fibrosis have been considered to have potential in the treatment of chronic kidney disease. This study aims to evaluate the protective effects of (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, against renal interstitial fibrosis in mice. EGCG was administrated intraperitoneally for 14 days in a mouse model of unilateral ureteral obstruction (UUO). The results of our histological examination showed that EGCG alleviated glomerular and tubular injury and attenuated renal interstitial fibrosis in UUO mice. Furthermore, the inflammatory responses induced by UUO were inhibited, as represented by decreased macrophage infiltration and inflammatory cytokine production. Additionally, the expression of type I and III collagen in the kidney were reduced by EGCG, which indicated an inhibition of extracellular matrix accumulation. EGCG also caused an up-regulation in α-smooth muscle actin expression and a down-regulation in E-cadherin expression, indicating the inhibition of epithelial-to-mesenchymal transition. These changes were found to be in parallel with the decreased level of TGF-β1 and phosphorylated Smad. In conclusion, the present study demonstrates that EGCG could attenuate renal interstitial fibrosis in UUO mice, and this renoprotective effect might be associated with its effects of inflammatory responses alleviation and TGF-β/Smad signaling pathway inhibition.

  11. Cinnabar-Induced Subchronic Renal Injury Is Associated with Increased Apoptosis in Rats

    PubMed Central

    Wang, Ying; Wang, Dapeng; Wu, Jie; Wang, Bohan; Gao, Xianhui; Wang, Liangjun; Ma, Honglin

    2015-01-01

    The aim of this study was to explore the role of apoptosis in cinnabar-induced renal injury in rats. To test this role, rats were dosed orally with cinnabar (1 g/kg/day) for 8 weeks or 12 weeks, and the control rats were treated with 5% carboxymethylcellulose solution. Levels of urinary mercury (UHg), renal mercury (RHg), serum creatinine (SCr), and urine kidney injury molecule 1 (KIM-1) were assessed, and renal pathology was analyzed. Apoptotic cells were identified and the apoptotic index was calculated. A rat antibody array was used to analyze expression of cytokines associated with apoptosis. Results from these analyses showed that UHg, RHg, and urine KIM-1, but not SCr, levels were significantly increased in cinnabar-treated rats. Renal pathological changes in cinnabar-treated rats included vacuolization of tubular cells, formation of protein casts, infiltration of inflammatory cells, and increase in the number of apoptotic tubular cells. In comparison to the control group, expression of FasL, Fas, TNF-α, TRAIL, activin A, and adiponectin was upregulated in the cinnabar-treated group. Collectively, our results suggest that prolonged use of cinnabar results in kidney damage due to accumulation of mercury and that the underlying mechanism involves apoptosis of tubular cells via a death receptor-mediated pathway. PMID:25629042

  12. The impact of modern treatment principles may have eliminated lithium-induced renal failure.

    PubMed

    Aiff, Harald; Attman, Per-Ola; Aurell, Mattias; Bendz, Hans; Schön, Staffan; Svedlund, Jan

    2014-02-01

    We have previously shown that lithium can cause end-stage renal disease (ESRD): however, this serious side-effect of lithium in prophylactic treatment of mood disorders may reflect the treatment regime of the 1960s and 1970s. Today's modern treatment routines, intended to reduce or eliminate lithium-induced ESRD (Li-ESRD), were introduced in Sweden in the early 1980s. The aim of the present study was to test the hypothesis that these routines have eliminated the risk of Li-ESRD. We used the Swedish Renal Registry to identify patients on renal replacement therapy (RRT), treated with dialysis or renal transplantation, with suspected Li-ESRD in two regions of Sweden with altogether about three million inhabitants. We reviewed their medical records to verify the exposure to lithium treatment, the diagnosis of Li-ESRD and the date of starting the lithium treatment. We found 32 RRT patients in whom lithium treatment was the sole or main contributing cause of ESRD. The starting year of their lithium treatment was between 1965-1980 in all patients. No patient started lithium treatment later than 1980. Modern lithium treatment may have eliminated the risk of Li-ESRD. Our findings support the continued use of lithium as a safe drug for the long-term treatment of mood disorders.

  13. Prevention of Renal Complications Induced by Non- Steroidal Anti-Inflammatory Drugs.

    PubMed

    Ković, Sonja Vuč; Vujović, Katarina Savić; Srebro, Dragana; Medić, Branislava; Ilic-Mostic, Tatjana

    2016-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for the treatment of pain, inflamation and fever. They are usually well tolerated in healthy persons, but in patients with risk factors (advanced age, renal impairment, heart failure, liver disease, concurrent medications with antihypertensive drugs), NSAIDs can induce serious renal adverse effects. They include sodium and water retention with edema, worsening of heart failure, hypertension, hyponatremia, hyperkalemia, acute kidney injury, chronic kidney disease, renal papillary necrosis and acute interstitial nephritis. The majority of these adverse effects are due to the inhibition of prostaglandins synthesis and they are dose and duration-dependent. Acute forms of kidney injuries are transient and often reversible upon drug withdrawal. Chronic use of NSAIDs in some patients may result in chronic kidney disease. It is recommended that patients at risk should have preventative strategies in place, including the use of the "lowest effective dose" of NSAID for the "shortest possible time" and monitoring renal function, fluid retention and electrolyte abnormalities. Patients who are taking antihypertensive medications should be monitored for high blood pressure and the doses of antihypertensive medications should be adjusted if needed. In general, the combination of NSAIDs and angiotensin inhibitors should be avoided. Some other preventive measures are dietary salt restriction, use of topical NSAIDs/non-pharmacological therapies and use of calcium channel blockers for treating hypertension.

  14. Phosphate–Induced Renal Fibrosis Requires the Prolyl Isomerase Pin1

    PubMed Central

    Shiizaki, Kazuhiro; Kuro-o, Makoto; Malter, James S.

    2016-01-01

    Tubulo-interstitial fibrosis is a common, destructive endpoint for a variety of kidney diseases. Fibrosis is well correlated with the loss of kidney function in both humans and rodents. The identification of modulators of fibrosis could provide novel therapeutic approaches to reducing disease progression or severity. Here, we show that the peptidyl-prolyl isomerase Pin1 is an important molecular contributor that facilitates renal fibrosis in a well-characterized animal model. While wild-type mice fed a high phosphate diet (HPD) for 8–12 weeks developed calcium deposition, macrophage infiltration and extracellular matrix (ECM) accumulation in the kidney interstitium, Pin1 null mice showed significantly less pathology. The serum Pi in both WT and KO mice were significantly increased by the HPD, but the serum Ca was slightly decreased in KO compared to WT. In addition, both WT and KO HPD mice had less weight gain but exhibited normal organ mass (kidney, lung, spleen, liver and heart). Unexpectedly, renal function was not initially impaired in either genotype irrespective of the HPD. Our results suggest that diet containing high Pi induces rapid renal fibrosis before a significant impact on renal function and that Pin1 plays an important role in the fibrotic process. PMID:26914452

  15. Multiple Mechanisms are Involved in Salt-Sensitive Hypertension-Induced Renal Injury and Interstitial Fibrosis

    PubMed Central

    Wei, Shi-Yao; Wang, Yu-Xiao; Zhang, Qing-Fang; Zhao, Shi-Lei; Diao, Tian-Tian; Li, Jian-Si; Qi, Wen-Rui; He, Yi-Xin; Guo, Xin-Yu; Zhang, Man-Zhu; Chen, Jian-Yu; Wang, Xiao-Ting; Wei, Qiu-Ju; Wang, Yu; Li, Bing

    2017-01-01

    Salt-sensitive hypertension (SSHT) leads to kidney interstitial fibrosis. However, the potential mechanisms leading to renal fibrosis have not been well investigated. In present study, Dahl salt-sensitive (DS) rats were divided into three groups: normal salt diet (DSN), high salt diet (DSH) and high salt diet treated with hydrochlorothiazide (HCTZ) (DSH + HCTZ). A significant increase in systolic blood pressure (SBP) was observed 3 weeks after initiating the high salt diet, and marked histological alterations were observed in DSH rats. DSH rats showed obvious podocyte injury, peritubular capillary (PTC) loss, macrophage infiltration, and changes in apoptosis and cell proliferation. Moreover, Wnt/β-catenin signaling was significantly activated in DSH rats. However, HCTZ administration attenuated these changes with decreased SBP. In addition, increased renal and urinary Wnt4 expression was detected with time in DSH rats and was closely correlated with histopathological alterations. Furthermore, these alterations were also confirmed by clinical study. In conclusion, the present study provides novel insight into the mechanisms related to PTC loss, macrophage infiltration and Wnt/β-catenin signaling in SSHT-induced renal injury and fibrosis. Therefore, multi-target therapeutic strategies may be the most effective in preventing these pathological processes. Moreover, urinary Wnt4 may be a noninvasive biomarker for monitoring renal injury after hypertension. PMID:28383024

  16. Thalidomide ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in an experimental model.

    PubMed

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-04-01

    Cisplatin is a platinum-based chemotherapy drug. However, its chemotherapeutic use is restricted by serious side effects, especially nephrotoxicity. Inflammatory mechanisms have a significant role in the pathogenesis of cisplatin-induced nephrotoxicity. Thalidomide is an immunomodulatory and anti-inflammatory agent and is used for the treatment of various inflammatory diseases. The purpose of this study was to investigate the potential nephroprotective effect of thalidomide in a mouse model of cisplatin-induced nephrotoxicity. Nephrotoxicity was induced in mice by a single injection of cisplatin (15 mg/kg, i.p.) and treated with thalidomide (50 and 100 mg/kg/day, orally) for 4 days, beginning 24 h prior to the cisplatin injection. Renal toxicity induced by cisplatin was demonstrated by increasing plasma levels of creatinine and blood urea nitrogen (BUN). Cisplatin increased the renal production of the proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β1. In addition, kidney levels of malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) were increased by cisplatin. Biochemical results showed that thalidomide reduced cisplatin-induced increase in plasma creatinine and BUN. Thalidomide treatment also significantly reduced tissue levels of the proinflammatory cytokines, MDA, MPO, and NO and increased anti-inflammatory cytokine IL-10. Furthermore, histological examination indicated that thalidomide ameliorated renal damage caused by cisplatin. These data suggest that thalidomide attenuates cisplatin-induced nephrotoxicity possibly by inhibition of inflammatory reactions. Taken together, our findings indicate that thalidomide might be a valuable candidate for the prevention of nephrotoxicity in patients receiving cisplatin.

  17. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells.

    PubMed

    He, Wenjuan; Zhang, Min; Zhao, Min; Davis, Linda S; Blackwell, Timothy S; Yull, Fiona; Breyer, Matthew D; Hao, Chuan-Ming

    2014-02-01

    High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.

  18. Increased Dietary Sodium Induces COX2 Expression by activating NFκB in Renal Medullary Interstitial Cells

    PubMed Central

    Zhao, Min; Davis, Linda S.; Blackwell, Timothy S.; Yull, Fiona; Breyer, Matthew D.; Hao, Chuan-Ming

    2013-01-01

    High salt diet induces renal medullary COX2 expression. Selective blockade of renal medullary COX2 activity in rats causes salt sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8% NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6J mice. Co-immunofluorescence using a COX2 antibody and antibodies against AQP2, ClC-K, AQP1 and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a 7 fold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of EGFP expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet fed C57Bl/6J mice with selective IκB kinase inhibitor IMD-0354 (8mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary PGE2. These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium. PMID:23900806

  19. Renal Alterations in Feline Immunodeficiency Virus (FIV)-Infected Cats: A Natural Model of Lentivirus-Induced Renal Disease Changes

    PubMed Central

    Poli, Alessandro; Tozon, Natasa; Guidi, Grazia; Pistello, Mauro

    2012-01-01

    Human immunodeficiency virus (HIV) is associated with several renal syndromes including acute and chronic renal failures, but the underlying pathogenic mechanisms are unclear. HIV and feline immunodeficiency virus (FIV) share numerous biological and pathological features, including renal alterations. We investigated and compared the morphological changes of renal tissue of 51 experimentally and 21 naturally infected cats. Compared to the latter, the experimentally infected cats exhibited some mesangial widening and glomerulonephritis, milder proteinuria, and lower tubular and interstitial alterations. The numbers of giant protein tubular casts and tubular microcysts were also lower. In contrast, diffuse interstitial infiltrates and glomerular and interstitial amyloidosis were detected only in naturally infected cats. Similar alterations are found in HIV infected patients, thus supporting the idea of a causative role of FIV infection in renal disease, and underlining the relevance of the FIV and its natural host as an animal model for investigating lentivirus-associated nephropathy. PMID:23170163

  20. Responsiveness of renal glomeruli to adenosine in streptozotocin-induced diabetic rats dependent on hyperglycaemia level.

    PubMed

    Szczepańska-Konkel, M; Jankowski, M; Stiepanow-Trzeciak, A; Rudzik, A; Pawełczyk, T; Angielski, S

    2003-03-01

    Glomerular filtration rate (GFR) in response to adenosine precursor, NAD, and glomeruli contractility in response to adenosine were evaluated in streptozotocin-induced diabetic rats with severe (blood glucose 27.8 +/- 1.2 mmol/L) and moderate hyperglycaemia (18.2 +/- 0.9 mmol/L) compared with nondiabetic (ND)-rats. In anaesthetised rats, basal GFR was greater in moderately diabetic rats compared with severely diabetic rats (p < 0.05) and ND-rats (p < 0.02). Intravenous infusion of 5 nmol x min(-1) x kg(-1) NAD reduced GFR and renal plasma flow (RPF) in diabetic rats but had no effect on these parameters in ND-rats. Moreover, NAD-induced reduction of GFR and RPF was greater in rats with severe diabetes (41% and 30%, respectively) than in with moderate diabetes (25% and 26%, respectively). Theophylline (0.2 micromol x min(-1) x kg(-1) ) abolished renal response to NAD. Isolated glomeruli contraction in response to adenosine, assessed by glomerular 3H-inulin space reduction, was lowered in moderately diabetic-group and enhanced in severely diabetic-group. compared with ND-group (p < 0.05). Adenosine A1-receptor antagonist DPCPX inhibited adenosine-induced glomeruli contraction. This differential response of diabetic renal glomeruli to adenosine suggests that impaired glomerular contractility in response to adenosine could be responsible for hyperfiltration in moderate diabets, whereas, the increased adenosine-dependent contractility of glomeruli in severe diabetes may increase the risk of acute renal failure in this condition.

  1. Renal ischemia/reperfusion-induced cardiac hypertrophy in mice: Cardiac morphological and morphometric characterization

    PubMed Central

    Cirino-Silva, Rogério; Kmit, Fernanda V; Trentin-Sonoda, Mayra; Nakama, Karina K; Panico, Karine; Alvim, Juliana M; Dreyer, Thiago R; Martinho-Silva, Herculano

    2017-01-01

    Background Tissue remodeling is usually dependent on the deposition of extracellular matrix that may result in tissue stiffness and impaired myocardium contraction. Objectives We had previously demonstrated that renal ischemia/reperfusion (I/R) is able to induce development of cardiac hypertrophy in mice. Therefore, we aimed to characterize renal I/R-induced cardiac hypertrophy. Design C57BL/6 J mice were subjected to 60 minutes’ unilateral renal pedicle occlusion, followed by reperfusion (I/R) for 5, 8, 12 or 15 days. Gene expression, protein abundance and morphometric analyses were performed in all time points. Results Left ventricle wall thickening was increased after eight days of reperfusion (p < 0.05). An increase in the number of heart ventricle capillaries and diameter after 12 days of reperfusion (p < 0.05) was observed; an increase in the density of capillaries starting at 5 days of reperfusion (p < 0.05) was also observed. Analyses of MMP2 protein levels showed an increase at 15 days compared to sham (p < 0.05). Moreover, TGF-β gene expression was downregulated at 12 days as well TIMP 1 and 2 (p < 0.05). The Fourier-transform infrared spectroscopy analysis showed that collagen content was altered only in the internal section of the heart (p < 0.05); such data were supported by collagen mRNA levels. Conclusions Renal I/R leads to impactful changes in heart morphology, accompanied by an increase in microvasculature. Although it is clear that I/R is able to induce cardiac remodeling, such morphological changes is present in only a section of the heart tissue. PMID:28228941

  2. Melatonin treatment against remote organ injury induced by renal ischemia reperfusion injury in diabetes mellitus.

    PubMed

    Fadillioglu, Ersin; Kurcer, Zehra; Parlakpinar, Hakan; Iraz, Mustafa; Gursul, Cebrail

    2008-06-01

    Oxidative stress may have a role in liver damage after acute renal injury due to various reasons such as ischemia reperfusion (IR). Diabetes mellitus (DM) is an important disease for kidneys and may cause nephropathy as a long term complication. The aim of this study was to investigate protective effect of melatonin, a potent antioxidant, against distant organ injury on liver induced by renal IR in rats with or without DM. The rats were divided into six groups: control (n=7), DM (n=5), IR (n=7), DM+IR (n=7), melatonin+IR (Mel+IR) (melatonin, 4 mg/ kg during 15 days) (n=7), and Mel+DM+IR groups (n=7). Diabetes developed 3 days after single i.p. dose of 45 mg/kg streptozotocin. After 15 day, the left renal artery was occluded for 30 min followed 24 h of reperfusion in IR performed groups. DM did not alter oxidative parameters alone in liver tissue. The levels of malondialdehyde, protein carbonyl and nitric oxide with activities of xanthine oxidase and myeloperoxidase were increased in liver tissues of diabetic and non-diabetic IR groups. Nitric oxide level in DM was higher than control. The activities of catalase and superoxide dismutase were increased in IR groups in comparison with control and DM. ALT and AST levels were higher in IR and DM+IR groups than control and DM. Melatonin treatment reversed all these oxidant and antioxidant parameters to control values as well as serum liver enzymes. We concluded that renal IR may affect distant organs such as liver and oxidative stress may play role on this injury, but DM has not an effect on kidney induced distant organ injury via oxidant stress. Also, it was concluded that melatonin treatment may prevent liver oxidant stress induced by distant injury of kidney IR.

  3. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    SciTech Connect

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing; He, Xiaoyun; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2014-11-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation.

  4. Central Diabetes Insipidus and Cisplatin-Induced Renal Salt Wasting Syndrome: A Challenging Combination.

    PubMed

    Cortina, Gerard; Hansford, Jordan R; Duke, Trevor

    2016-05-01

    We describe a 2-year-old female with a suprasellar primitive neuroectodermal tumor and central diabetes insipidus (DI) who developed polyuria with natriuresis and subsequent hyponatremia 36 hr after cisplatin administration. The marked urinary losses of sodium in combination with a negative sodium balance led to the diagnosis of cisplatin-induced renal salt wasting syndrome (RSWS). The subsequent clinical management is very challenging. Four weeks later she was discharged from ICU without neurological sequela. The combination of cisplatin-induced RSWS with DI can be confusing and needs careful clinical assessment as inaccurate diagnosis and management can result in increased neurological injury.

  5. Antioxidant Activity of Tocotrienol Rich Fraction Prevents Fenitrothion-induced Renal Damage in Rats

    PubMed Central

    Budin, Siti Balkis; Han, Kim Jit; Jayusman, Putri Ayu; Taib, Izatus Shima; Ghazali, Ahmad Rohi; Mohamed, Jamaludin

    2013-01-01

    Fenitrothion (FNT) is an organophosphate compound widely used as pesticide in Malaysia. The present study aims to investigate effects of palm oil tocotrienol rich fraction (TRF) on the renal damage of FNT-treated rats. A total of 40 male Sprague Dawley rats were divided into 4 groups randomly, the control, TRF, FNT and FNT+TRF groups. FNT (20 mg/kg b.w.) and TRF (200 mg/kg b.w.) were given orally for 28 days continuously. Rats from the FNT+TRF group were supplemented with TRF 30 minutes prior to administration of FNT. Rats were sacrificed after 28 days, and the kidneys were removed for determination of oxidative stress and histological analysis. Plasma was collected for determination of blood creatinine and urea level. Statistical analysis showed that palm oil TRF has a protective effect against renal oxidative damage induced by FNT. In the FNT+TRF group, malondialdehyde and protein carbonyl levels were significantly lower, while the glutathione level as well as superoxide dismutase and catalase activities were significantly higher compared with the FNT-treated group (p<0.05). As for renal function, there was a markedly lower urea level (p<0.05) in the FNT+TRF group compared with the FNT-treated group, but there was no significant difference in creatinine level. Besides, total protein also showed no significant difference for all groups of rats (p>0.05). Histological evaluation also revealed that the FNT+TRF group had less glomerulus and renal tubule damage than the FNT-treated group. In conclusion, palm oil TRF was able to reduce oxidative stress and renal damage in FNT-treated rats. PMID:23914053

  6. Renoprotection of Kolaviron against benzo (A) pyrene-induced renal toxicity in rats.

    PubMed

    Adedara, Isaac A; Daramola, Yetunde M; Dagunduro, Joshua O; Aiyegbusi, Motunrayo A; Farombi, Ebenezer O

    2015-04-01

    Benzo(a)pyrene (B[a]P), a polycyclic aromatic hydrocarbon generally formed from incomplete combustion of organic matter, reportedly causes renal injury and elicits a nephropathic response. The present study investigated the modulatory effect of Kolaviron, an isolated bioflavonoid from the seed of Garcinia kola, on renal toxicity induced by B[a]P in Wistar rats. Benzo[a]pyrene was administered at a dose of 10 mg/kg alone or in combination with Kolaviron at 100 and 200 mg/kg for 15 d. Administration of B[a]P alone resulted in significant increase in plasma levels of urea and creatinine in the treated rats. Moreover, B[a]P exposure significantly decreased the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-s-transferase (GST) as well as glutathione (GSH) level in the kidneys of treated rats. Conversely, myeloperoxidase (MPO) activity, hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were markedly elevated in kidneys of B[a]P-treated rats compared with control. Further, B[a]P exposure significantly decreased the circulatory concentrations of triiodothyronine (T3) and T3/T4 ratio without affecting thyroxine (T4) in the treated rats. Light microscopy revealed tubular lumen with numerous protein casts in kidneys of rats exposed to B[a]P alone. Kolaviron co-treatment significantly improved the renal antioxidant status, thyroid gland function and restored the renal histology, thus demonstrating the protective effect of Kolaviron in B[a]P-treated rats. Dietary inclusion of Kolaviron could exert protective effects against renal toxicity resulting from B[a]P exposure.

  7. Importance of adenosine triphosphate in phospholipase A2-induced rabbit renal proximal tubule cell injury.

    PubMed Central

    Nguyen, V D; Cieslinski, D A; Humes, H D

    1988-01-01

    The pathogenesis of ischemic renal tubular cell injury involves a complex interaction of different processes, including membrane phospholipid alterations and depletion of high-energy phosphate stores. To assess the role of membrane phospholipid changes due to activation of phospholipases in renal tubule cell injury, suspensions enriched in rabbit renal proximal tubule segments were incubated with exogenous phospholipase A2 (PLA2). Exogenous PLA2 did not produce any significant change in various metabolic parameters reflective of cell injury in control nonhypoxic preparations despite a significant decrease in phosphatidylethanolamine (PE) and moderate increases in lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). In contrast, exogenous PLA2 treatment of hypoxic tubules resulted in a severe degree of cell injury, as demonstrated by marked declines in tubule K+ and ATP contents and significant decreases in tubule uncoupled respiratory rates, and was associated with significant phospholipid alterations, including marked declines in phosphatidylcholine (PC) and PE and significant rises in LPC, LPE, and free fatty acids (FFA). The injurious metabolic effects of exogenous PLA2 on hypoxic tubules were reversed by addition of ATP-MgCl2 to the tubules. The protective effect of ATP-MgCl2 was associated with increases in tubule PC and PE contents and declines in LPC, LPE, and FFA contents. These experiments thus indicate that an increase in exogenous PLA2 activity produces renal proximal tubule cell injury when cell ATP levels decline, at which point phospholipid resynthesis cannot keep pace with phospholipid degradation with resulting depletion of phospholipids and accumulation of lipid by-products. High-energy phosphate store depletion appears to be an important condition for exogenous PLA2 activity to induce renal tubule cell injury. PMID:3417866

  8. Lipid droplet accumulation is associated with an increase in hyperglycemia-induced renal damage: prevention by liver X receptors.

    PubMed

    Kiss, Eva; Kränzlin, Bettina; Wagenblaβ, Katja; Bonrouhi, Mahnaz; Thiery, Joachim; Gröne, Elisabeth; Nordström, Viola; Teupser, Daniel; Gretz, Norbert; Malle, Ernst; Gröne, Hermann-Josef

    2013-03-01

    Dyslipidemia is a frequent component of the metabolic disorder of diabetic patients contributing to organ damage. Herein, in low-density lipoprotein receptor-deficient hyperlipidemic and streptozotozin-induced diabetic mice, hyperglycemia and hyperlipidemia acted reciprocally, accentuating renal injury and altering renal function. In hyperglycemic-hyperlipidemic kidneys, the accumulation of Tip47-positive lipid droplets in glomeruli, tubular epithelia, and macrophages was accompanied by the concomitant presence of the oxidative stress markers xanthine oxidoreductase and nitrotyrosine, findings that could also be evidenced in renal biopsy samples of diabetic patients. As liver X receptors (LXRα,β) regulate genes linked to lipid and carbohydrate homeostasis and inhibit inflammatory gene expression in macrophages, the effects of systemic and macrophage-specific LXR activation were analyzed on renal damage in hyperlipidemic-hyperglycemic mice. LXR stimulation by GW3965 up-regulated genes involved in cholesterol efflux and down-regulated proinflammatory/profibrotic cytokines, inhibiting the pathomorphology of diabetic nephropathy, renal lipid accumulation, and improving renal function. Xanthine oxidoreductase and nitrotyrosine levels were reduced. In macrophages, GW3965 or LXRα overexpression significantly suppressed glycated or acetylated low-density lipoprotein-induced cytokines and reactive oxygen species. Specifically, in mice, transgenic expression of LXRα in macrophages significantly ameliorated hyperlipidemic-hyperglycemic nephropathy. The results demonstrate the presence of lipid droplet-induced oxidative mechanisms and the pathophysiologic role of macrophages in diabetic kidneys and indicate the potent regulatory role of LXRs in preventing renal damage in diabetes.

  9. Pioglitazone protects against cisplatin induced nephrotoxicity in rats and potentiates its anticancer activity against human renal adenocarcinoma cell lines.

    PubMed

    Mahmoud, Mona F; El Shazly, Shimaa M

    2013-01-01

    Cisplatin-induced nephrotoxicity is a serious problem that limits its use in cancer treatment. The present study aimed to investigate the renal protective capacity of pioglitazone to reduce the cisplatin- induced nephrotoxicity. The underlying suggested mechanism(s) and whether this nephroprotective effect (if any) interferes with the cytotoxic effect of cisplatin on cancer cells were also investigated. Pioglitazone, Bisphenol A diglycidyl ether, BADGE, IP injected (Peroxisome proliferator- activated receptor gamma (PPAR-γ) antagonist), or their combination were administered to rats one hour before cisplatin injection. Moreover, their effects on the cell viability of human renal adenocarcinoma cell models (ACHN) were studied. The obtained results showed that pioglitazone improved the renal function, structural changes, renal malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-κB) genes expression in cisplatin injected rats. It increased both renal reduced glutathione (GSH) content and PPAR-γ gene expression. In contrast to the data obtained by prior administration of BADGE. Pioglitazone also potentiated the cytotoxic effect of cisplatin on human renal adenocarcinoma cells and this effect was abolished by BADGE co administration. In conclusion, these results suggested that pioglitazone protected against cisplatin- induced nephrotoxicity through its interaction with PPAR-γ receptors and antioxidant effects. Furthermore, pioglitazone did not interfere but rather potentiated the cytotoxic effects of cisplatin on human renal adenocarcinoma cells.

  10. Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension

    PubMed Central

    Chen, Dong-Rui; Ruan, Cheng-Chao; Xu, Jian-Zhong; Chen, Jing; Wu, Yong-Jie; Ma, Yu; Zhu, Ding-Liang; Gao, Ping-Jin

    2016-01-01

    The sympathetic nervous system interacts with the renin-angiotensin-aldosterone system (RAAS) contributing to cardiovascular diseases. In this study, we sought to determine if renal denervation (RDN) inhibits aldosterone expression and associated cardiovascular pathophysiological changes in angiotensin II (Ang II)-induced hypertension. Bilateral RDN or SHAM operation was performed before chronic 14-day Ang II subcutaneous infusion (200ng/kg/min) in male Sprague-Dawley rats. Bilateral RDN blunted Ang II-induced hypertension and ameliorated the mesenteric vascular dysfunction. Cardiovascular hypertrophy in response to Ang II was significantly attenuated by RDN as shown by histopathology and transthoracic echocardiography. Moreover, Ang II-induced vascular and myocardial inflammation and fibrosis were suppressed by RDN with concurrent decrease in fibronectin and collagen deposition, macrophage infiltration, and MCP-1 expression. Interestingly, RDN also inhibited Ang II-induced aldosterone expression in the plasma, kidney and heart. This was associated with the reduction of calcitonin gene-related peptide (CGRP) in the adrenal gland. Ang II promoted aldosterone secretion which was partly attenuated by CGRP in the adrenocortical cell line, suggesting a protective role of CGRP in this model. Activation of transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinases (MAPKs) signaling pathway was both inhibited by RDN especially in the heart. These results suggest that the regulation of the renal sympathetic nerve in Ang II-induced hypertension and associated cardiovascular pathophysiological changes is likely mediated by aldosterone, with CGRP involvement. PMID:27661131

  11. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1.

    PubMed

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.

  12. Fucan-coated silver nanoparticles synthesized by a green method induce human renal adenocarcinoma cell death.

    PubMed

    Rocha Amorim, Monica Oliveira; Lopes Gomes, Dayanne; Dantas, Larisse Araujo; Silva Viana, Rony Lucas; Chiquetti, Samanta Cristina; Almeida-Lima, Jailma; Silva Costa, Leandro; Oliveira Rocha, Hugo Alexandre

    2016-12-01

    Polysaccharides containing sulfated L-fucose are often called fucans. The seaweed Spatoglossum schröederi synthesizes three fucans, among which fucan A is the most abundant. This polymer is not cytotoxic against various normal cell lines and is non-toxic to rats when administered at high doses. In addition, it exhibits low toxicity against tumor cells. With the aim of increasing the toxicity of fucan A, silver nanoparticles containing this polysaccharide were synthesized using a green chemistry method. The mean size of these nanoparticles was 210nm. They exhibited a spherical shape and negative surface charge and were stable for 14 months. When incubated with cells, these nanoparticles did not show any toxic effects against various normal cell lines; however, they decreased the viability of various tumor cells, especially renal adenocarcinoma cells 786-0. Flow cytometry analyses showed that the nanoparticles induced cell death responses of 786-0 cells through necrosis. Assays performed with several renal cell lines (HEK, VERO, MDCK) showed that these nanoparticles only induce death of 786-0 cells. The data obtained herein leads to the conclusion that fucan A nanoparticles are promising agents against renal adenocarcinoma.

  13. Effect of metformin against cisplatin induced acute renal injury in rats: a biochemical and histoarchitectural evaluation.

    PubMed

    Sahu, Bidya Dhar; Kuncha, Madhusudana; Putcha, Uday Kumar; Sistla, Ramakrishna

    2013-09-01

    Although cisplatin has been a mainstay for cancer therapy, its use is limited mainly because of nephrotoxicity. Accumulating literature suggest the antioxidant and cytoprotective effect of metformin, a first line antidiabetic drug. With this background, we investigated the effect of metformin on the cisplatin induced nephrotoxicity in rats. A single injection of cisplatin (7.5 mg/kg, i.p.) caused marked renal damage, characterized by a significant increase in blood urea nitrogen (BUN), serum creatinine (Cr) and abnormal histo-architecture of kidney. These were accompanied by significant elevation of malondialdehyde (MDA), total reactive oxygen species (tROS) and caspase-3 levels and decreased antioxidant levels. Metformin treatment significantly attenuated the increase in malondialdehyde and tROS generation and restores the decrease in both enzymatic and non-enzymatic antioxidants. However metformin treatment did not prevent the cisplatin induced renal injury as there was no significant difference of renal function parameters (BUN and Cr), kidney histopathology as well as caspase-3 activity between cisplatin per se and metformin plus cisplatin treated rats. Histopathology studies revealed that similar glomerular and tubular pathological architecture in both cisplatin per se and cisplatin plus metformin group. In conclusion, the present study demonstrated that metformin is not an adjuvant drug to treat nephrotoxicity associated with cisplatin therapy.

  14. Betulinic acid protects against ischemia/reperfusion-induced renal damage and inhibits leukocyte apoptosis.

    PubMed

    Ekşioğlu-Demiralp, Emel; Kardaş, E Riza; Ozgül, Seçkin; Yağci, Tayfur; Bilgin, Hüseyin; Sehirli, Ozer; Ercan, Feriha; Sener, Göksel

    2010-03-01

    The possible protective effect of betulinic acid on renal ischemia/reperfusion (I/R) injury was studied. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Betulinic acid (250 mg/kg, i.p.) or saline was administered at 30 min prior to ischemia and immediately before the reperfusion. Creatinine, blood urea nitrogen (BUN), lactate dehydrogenase (LDH) and TNF-alpha as well as the oxidative burst of neutrophil and leukocyte apoptosis were assayed in blood samples. Malondialdehyde (MDA), glutathione (GSH) levels, Na(+), K(+)-ATPase and myeloperoxidase (MPO) activities were determined in kidney tissue which was also analysed microscopically. I/R caused significant increases in blood creatinine, BUN, LDH and TNF-alpha. In the kidney samples of the I/R group, MDA levels and MPO activity were increased significantly, however, GSH levels and Na(+), K(+)-ATPase activity were decreased. Betulinic acid ameliorated the oxidative burst response to both formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA) stimuli, normalized the apoptotic response and most of the biochemical indices as well as histopathological alterations induced by I/R. In conclusion, these data suggest that betulinic acid attenuates I/R-induced oxidant responses, improved microscopic damage and renal function by regulating the apoptotic function of leukocytes and inhibiting neutrophil infiltration.

  15. Cymbopogon citratus Protects against the Renal Injury Induced by Toxic Doses of Aminoglycosides in Rabbits.

    PubMed

    Ullah, N; Khan, M A; Khan, T; Ahmad, W

    2013-03-01

    Renal injury is the most common side-effect of aminoglycosides. These antimicrobial drugs are particularly effective against Gram-negative microorganisms. The present study was conducted to investigate the renal protective activity of Cymbopogon citratus in gentamicin-induced nephrotoxicity. Male rabbits were divided into four groups (n=6) including group 1 (0.9% saline treated), group 2 (80 mg/kg/day gentamicin-treated), group 3 (200 mg/kg/day Cymbopogon citratus treated) and group 4 (80 mg/kg/day gentamicin and 200 mg/kg/day Cymbopogon citratus treated). Biochemical kidney functioning parameters, urinary enzymes and histopathological examination were performed. The results of the present study showed that simultaneous administration of Cymbopogon citrates and gentamicin significantly protected alteration in body weight, blood urea nitrogen, serum creatinine, creatinine clearance, serum uric acid, serum electrolytes, urinary volume, urinary protein, urinary lactate dehydrogenase and urinary alkaline phosphatase induced by gentamicin. Histological examination of the kidney also suggested the same. It is concluded from the current study that co-administration of Cymbopogon citratus with gentamicin for 3 weeks successfully prevented renal damage associated with aminoglycosides.

  16. Glutamate dehydrogenase requirement for apoptosis induced by aristolochic acid in renal tubular epithelial cells.

    PubMed

    Romanov, Victor; Whyard, Terry; Bonala, Radha; Johnson, Francis; Grollman, Arthur

    2011-12-01

    Ingestion of aristolochic acids (AA) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adduct formation, is well-documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. Epithelial cell death is a critical characteristic of these pathological conditions. To elucidate the mechanisms of AA-induced cytotoxicity, we explored AA-interacting proteins in tubular epithelial cells (TEC). We found that AA interacts with a mitochondrial enzyme glutamate dehydrogenase (GDH) and moderately inhibits its activity. We report that AA induces cell death in GDH-knockdown TEC preferentially via non-apoptotic means, whereas in GDH-positive cells, death was executed by both the non-apoptotic and apoptotic mechanisms. Apoptosis is an energy-reliant process and demands higher adenosine 5'-triphosphate (ATP) consumption than does the non-apoptotic cell death. We found that, after AAI treatment, the ATP depletion is more pronounced in GDH-knockdown cells. When we reduced ATP in TEC cells by inhibition of glycolysis and mitochondrial respiration, cell death mode switched from apoptosis and necrosis to necrosis only. In addition, in cells incubated at low glucose and no glutamine conditions, oxaloacetate and pyruvate reduced AAI-induced apoptosis our data suggest that AAI-GDH interactions in TEC are critical for the induction of apoptosis by direct inhibition of GDH activity. AA binding may also induce changes in GDH conformation and promote interactions with other molecules or impair signaling by GDH metabolic products, leading to apoptosis.

  17. Forced diuresis with the RenalGuard system: impact on contrast induced acute kidney injury.

    PubMed

    Solomon, Richard

    2014-01-01

    Kidney injury following the administration of iodinated contrast media occurs particularly in patients with reduced kidney and cardiac function and when large doses of contrast are used. There is little compelling evidence that vasodilators and anti-oxidants prevent this injury. Most prevention trials have employed intravenous volume loading as a central strategy. However, the success of this approach depends upon maintaining euvolemia while producing a vigorous diuresis. A novel strategy for maintaining euvolemia and inducing a vigorous diuresis has been developed using the RenalGuard system. In this review; the mechanism of protective action is reviewed. The trials of the RenalGuard device are reviewed and future uses of the device are discussed.

  18. Dysregulation of renal aquaporins and epithelial sodium channel in lithium-induced nephrogenic diabetes insipidus.

    PubMed

    Nielsen, Jakob; Kwon, Tae-Hwan; Christensen, Birgitte Mønster; Frøkiaer, Jørgen; Nielsen, Søren

    2008-05-01

    Lithium is used commonly to treat bipolar mood disorders. In addition to its primary therapeutic effects in the central nervous system lithium has a number of side effects in the kidney. The side effects include nephrogenic diabetes insipidus with polyuria, mild sodium wasting, and changes in acid/base balance. These functional changes are associated with marked structural changes in collecting duct cell composition and morphology, likely contributing to the functional changes. Over the past few years, investigations of lithium-induced renal changes have provided novel insight into the molecular mechanisms that are responsible for the disturbances in water, sodium, and acid/base metabolism. This includes dysregulation of renal aquaporins, epithelial sodium channel, and acid/base transporters. This review focuses on these issues with the aim to present this in context with clinically relevant features.

  19. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    SciTech Connect

    Morizane, Ryuji; Monkawa, Toshiaki; Itoh, Hiroshi

    2009-12-25

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  20. Health significance of cadmium induced renal dysfunction: a five year follow up.

    PubMed Central

    Roels, H A; Lauwerys, R R; Buchet, J P; Bernard, A M; Vos, A; Oversteyns, M

    1989-01-01

    To assess the health significance of the early renal changes after chronic exposure to cadmium, 23 workers removed from exposure because of the discovery of an increased urinary excretion of beta 2-microglobulin or retinol binding protein, or both, have been examined once a year for five years. Eight of these workers had also an increased albuminuria. These workers had been exposed to cadmium for six to 41.7 years (mean 25 years) and their first follow up examination took place when they had been removed from exposure for six years on average. At that time, their mean age was 58.6 years (range: 45.5-68.1). It has been confirmed that the proteinuria induced by cadmium is irreversible. The most important finding, however, is a significant increase of creatinine and beta 2-microglobulin concentrations in serum with time, indicating a progressive reduction of the glomerular filtration rate despite removal from exposure. It is estimated that on average this rate has decreased by 31 ml/min/1.73 m2 during the five year follow up study. This decrease is significantly greater (about five times) than that accounted for by aging and is not more pronounced in workers with impaired renal function at the start of the study than in those presenting only with subclinical signs of renal damage. Serum alkaline phosphatase activity also increases significantly with time. In conclusion, the present study indicates that the early renal changes induced by cadmium should be regarded as adverse effects; they are predictive of an exacerbation of the age related decline of the glomerular filtration rate. PMID:2686749

  1. Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans

    NASA Technical Reports Server (NTRS)

    Nagashima, K.; Wu, J.; Kavouras, S. A.; Mack, G. W.

    2001-01-01

    We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.

  2. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  3. Piroxicam-induced hepatic and renal histopathological changes in mice

    PubMed Central

    Ebaid, Hossam; Dkhil, Mohamed A; Danfour, Mohamed A; Tohamy, Amany; Gabry, Mohamed S

    2007-01-01

    Piroxicam is a non-steroidal anti-inflammatory drug widely used in rheumatic diseases. The aim of this study was to investigate Piroxicam-induced histopathological changes in livers and kidneys of male albino mice. Methods Animals were classified into a control group and 4 treated groups. Piroxicam was injected intraperitoneally using 0.3 mg/kg every day for four weeks. Each week a group of mice was sacrificed. Liver and kidneys were obtained for histological and histochemical examination. Animals were classified into a control group and 4 treated groups. Piroxicam was injected intraperitoneally using 0.3 mg/kg every day for four weeks. Each week a group of mice was sacrificed. Liver and kidneys were obtained for histological and histochemical examination. Results Liver sections appeared with inflammatory cellular infiltration, vacuolated hepatocytes, dilated sinusoids, and increased number of Kupffer cells. Kidney sections appeared with some cellular inflammations. The glomeruli were shrunk resulting in widening of the urinary space. Oedema and vacuolations were noticed in the tubular cells. There was a positive correlation between these pathological changes and the increased treatment periods. Histochemical staining revealed that glycogen and protein contents had decreased in the hepatocytes. This depletion worsened gradually in liver cells after two, three, and four weeks. Similar depletion of the glycogen content was observed in kidney tissue. However, protein content appeared to be slightly decreased in the kidney tubules and glomeruli. Incensement of coarse chromatin in the nuclei of hepatocytes, Kupffer cells and most inflammatory cells were detected by Fuelgen method. Kidney tissues appeared with a severe decrease in coarse chromatin in the nuclei. Liver sections appeared with inflammatory cellular infiltration, vacuolated hepatocytes, dilated sinusoids, and increased number of Kupffer cells. Kidney sections appeared with some cellular inflammations. The

  4. CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury.

    PubMed

    Lee, Dong Hun; Park, Mi Hee; Hwang, Chul Ju; Hwang, Jae Yeon; Yoon, Hae Suk; Yoon, Do Young; Hong, Jin Tae

    2016-05-01

    C-C chemokine receptor 5 (CCR5) regulates leukocyte chemotaxis and activation, and its deficiency exacerbates development of nephritis. Therefore, we investigated the role of CCR5 during lipopolysaccharide (LPS)-induced acute kidney injury. CCR5-deficient (CCR5-/-) and wild-type (CCR5+/+) mice, both aged about 10 months, had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg). Compared with CCR5+/+ mice, CCR5-/- mice showed increased mortality and renal injury, including elevated creatinine and blood urea nitrogen levels, following LPS challenge. Compared to CCR5+/+ mice, CCR5-/- mice also exhibited greater increases in the serum concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β following LPS challenge. Furthermore, infiltration of macrophages and neutrophils, expression of intracellular adhesion molecule (ICAM)-1, and the number of apoptotic cells were more greatly increased by LPS treatment in CCR5-/- mice than in CCR5+/+ mice. The concentrations of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β were also significantly increased in the kidney of CCR5-/- mice after LPS challenge. Moreover, primary kidney cells from CCR5-/- mice showed greater increases in TNF-α production and p38 MAP kinase activation following treatment with LPS compared with that observed in the cells from CCR5+/+ mice. LPS-induced TNF-α production and apoptosis in the primary kidney cells from CCR5-/- mice were inhibited by treatment with p38 MAP kinase inhibitor. These results suggest that CCR5 deficiency increased the production of TNF-α following LPS treatment through increased activation of the p38 pathway in the kidney, resulting in renal apoptosis and leukocyte infiltration and led to exacerbation of LPS-induced acute kidney injury.

  5. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition

    PubMed Central

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson’s trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson’s and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling. PMID:27607429

  6. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition.

    PubMed

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson's trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson's and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling.

  7. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    SciTech Connect

    Wu, Cheng Tien; Weng, Te I.; Chen, Li Ping; Chiang, Chih Kang; Liu, Shing Hwa

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  8. Modulation by cyclic AMP and phorbol myristate acetate of cephaloridine-induced injury in rat renal cortical slices.

    PubMed

    Kohda, Y; Gemba, M

    2001-01-01

    Intracellular signaling pathways of cAMP and protein kinase C (PKC) have been suggested to modulate the generation of free radicals. We investigated the effects of cAMP and phorbol myristate acetate (PMA), a PKC activator, on cephaloridine (CER)-induced renal cell injury, which has been reported to be due to the generation of free radicals. Incubation of rat renal cortical slices with CER resulted in increases in lipid peroxidation and lactate dehydrogenase (LDH) release and in decreases in gluconeogenesis and p-aminohippurate (PAH) accumulation in rat renal cortical slices, suggesting free radical-induced injury in slices exposed to CER. A derivative of cAMP ameliorated not only the increase in lipid peroxidation but also the renal cell damage induced by CER. This amelioration by a cAMP derivative of lipid peroxidation and renal cell damage caused by CER was blocked by KT 5720, a protein kinase A (PKA) inhibitor. Lipid peroxidation and the indices of cell injury were increased by PMA. PMA also enhanced CER-induced lipid peroxidation and cell damage in the slices. This enhancement by PMA of CER-induced injury was blocked by H-7, a PKC inhibitor. These results indicated that intracellular signaling pathways of cAMP and PKC modulate free radical-mediated nephrotoxicity induced by CER.

  9. Contribution of K(+) channels to endothelium-derived hypolarization-induced renal vasodilation in rats in vivo and in vitro.

    PubMed

    Rasmussen, Kasper Moller Boje; Braunstein, Thomas Hartig; Salomonsson, Max; Brasen, Jens Christian; Sorensen, Charlotte Mehlin

    2016-07-01

    We investigated the mechanisms behind the endothelial-derived hyperpolarization (EDH)-induced renal vasodilation in vivo and in vitro in rats. We assessed the role of Ca(2+)-activated K(+) channels and whether K(+) released from the endothelial cells activates inward rectifier K(+) (Kir) channels and/or the Na(+)/K(+)-ATPase. Also, involvement of renal myoendothelial gap junctions was evaluated in vitro. Isometric tension in rat renal interlobar arteries was measured using a wire myograph. Renal blood flow was measured in isoflurane anesthetized rats. The EDH response was defined as the ACh-induced vasodilation assessed after inhibition of nitric oxide synthase and cyclooxygenase using L-NAME and indomethacin, respectively. After inhibition of small conductance Ca(2+)-activated K(+) channels (SKCa) and intermediate conductance Ca(2+)-activated K(+) channels (IKCa) (by apamin and TRAM-34, respectively), the EDH response in vitro was strongly attenuated whereas the EDH response in vivo was not significantly reduced. Inhibition of Kir channels and Na(+)/K(+)-ATPases (by ouabain and Ba(2+), respectively) significantly attenuated renal vasorelaxation in vitro but did not affect the response in vivo. Inhibition of gap junctions in vitro using carbenoxolone or 18α-glycyrrhetinic acid significantly reduced the endothelial-derived hyperpolarization-induced vasorelaxation. We conclude that SKCa and IKCa channels are important for EDH-induced renal vasorelaxation in vitro. Activation of Kir channels and Na(+)/K(+)-ATPases plays a significant role in the renal vascular EDH response in vitro but not in vivo. The renal EDH response in vivo is complex and may consist of several overlapping mechanisms some of which remain obscure.

  10. The feasibility of using microwave-induced thermoacoustic tomography for detection and evaluation of renal calculi.

    PubMed

    Cao, Caijun; Nie, Liming; Lou, Cunguang; Xing, Da

    2010-09-07

    Imaging of renal calculi is important for patients who suffered a urinary calculus prior to treatment. The available imaging techniques include plain x-ray, ultrasound scan, intravenous urogram, computed tomography, etc. However, the visualization of a uric acid calculus (radiolucent calculi) is difficult and often impossible by the above imaging methods. In this paper, a new detection method based on microwave-induced thermoacoustic tomography was developed to detect the renal calculi. Thermoacoustic images of calcium oxalate and uric acid calculus were compared with their x-ray images. The microwave absorption differences among the calcium oxalate calculus, uric acid calculus and normal kidney tissue could be evaluated by the amplitude of the thermoacoustic signals. The calculi hidden in the swine kidney were clearly imaged with excellent contrast and resolution in the three orthogonal thermoacoustic images. The results indicate that thermoacoustic imaging may be developed as a complementary method for detecting renal calculi, and its low cost and effective feature shows high potential for clinical applications.

  11. Ameliorating activity of ginger (Zingiber officinale) extract against lead induced renal toxicity in male rats.

    PubMed

    Reddy, Y Amarnath; Chalamaiah, M; Ramesh, B; Balaji, G; Indira, P

    2014-05-01

    Lead poisoning has been known to be associated with structural and functional abnormalities of multiple organ systems of human body. The aim of this investigation was to study the renal protective effects of ginger (Zingiber officinale) extract in lead induced toxicity rats. In this study renal glutathione (GSH) level, glutathione peroxidase (GPX), glutathione-s-transferase (GST), and catalase enzymes were measured in lead nitrate (300 mg/kg BW), and lead nitrate plus ginger extract (150 mg/kg BW) treated rat groups for 1 week and 3 weeks respectively. The glutathione level and GSH dependent antioxidant enzymes such as glutathione peroxidase, glutathione-s-transferase, and catalase significantly (P < 0.05) increased in ginger extract treated rat groups. In addition, histological studies showed lesser renal changes in lead plus ginger extract treated rat groups than that of lead alone treated rat groups. These results indicate that ginger extract alleviated lead toxic effects by enhancing the levels of glutathione, glutathione peroxidase, glutathione-s-transferase and catalase.

  12. Inhibition of GSK-3 induces differentiation and impaired glucose metabolism in renal cancer

    PubMed Central

    Pal, Krishnendu; Cao, Ying; Gaisina, Irina N.; Bhattacharya, Santanu; Dutta, Shamit K.; Wang, Enfeng; Gunosewoyo, Hendra; Kozikowski, Alan P.; Billadeau, Daniel D.; Mukhopadhyay, Debabrata

    2014-01-01

    Glycogen synthase kinase-3 (GSK-3), a constitutively active serine/threonine kinase, is a key regulator of numerous cellular processes ranging from glycogen metabolism to cell cycle regulation and proliferation. Consistent with its involvement in many pathways, it has also been implicated in the pathogenesis of various human diseases including Type II diabetes, Alzheimer's disease, bipolar disorder, inflammation and cancer. Consequently it is recognized as an attractive target for the development of new drugs. In the present study, we investigated the effect of both pharmacological and genetic inhibition of GSK-3 in two different renal cancer cell lines. We have shown potent anti-proliferative activity of 9-ING-41, a maleimide-based GSK-3 inhibitor. The anti-proliferative activity is most likely caused by G0–G1 and G2-M phase arrest as evident from cell cycle analysis. We have established that inhibition of GSK-3 imparted a differentiated phenotype in renal cancer cells. We have also shown that GSK-3 inhibition induced autophagy, likely as a result of imbalanced energy homeostasis caused by impaired glucose metabolism. Additionally, we have demonstrated the antitumor activity of 9-ING-41 in two different subcutaneous xenograft RCC tumor models. To our knowledge, this is the first report describing autophagy induction due to GSK-3 inhibition in renal cancer cells. PMID:24327518

  13. LPS-induced renal inflammation is prevented by (-)-epicatechin in rats.

    PubMed

    Prince, Paula Denise; Fischerman, Laura; Toblli, Jorge E; Fraga, Cesar G; Galleano, Monica

    2017-04-01

    This work investigated the capacity of (-)-epicatechin to prevent the renal damage induced by LPS administration in rats. Male Sprague Dawley rats were fed for 4 days a diet without or with supplementation with (-)-epicatechin (80mg/kg BW/d), and subsequently i.p. injected with lipopolysaccharide (LPS). Six hours after injection, LPS-treated rats exhibited increased plasma creatinine and urea levels as indicators of impaired renal function. The renal cortex of the LPS-treated rats showed: i) increased expression of inflammatory molecules (TNF-α, iNOS and IL-6); ii) activation of several steps of NF-κB pathway; iii) overexpression of TLR4, and iv) higher superoxide anion production and lipid peroxidation index in association with increased levels of gp91(phox) and p47(phox) (NOX2) and NOX4. Pretreatment with dietary (-)-epicatechin prevented the adverse effects of LPS challenge essentially by inhibiting TLR4 upregulation and NOX activation and the consequent downstream events, e.g. NF-kB activation.

  14. Protective effect of crocetin on hemorrhagic shock-induced acute renal failure in rats.

    PubMed

    Wang, Yunbo; Yan, Junling; Xi, Liang; Qian, Zhiyu; Wang, Zhenghong; Yang, Lina

    2012-07-01

    Multiple organ failure is a common outcome of hemorrhagic shock followed by resuscitation, and the kidney is one of the prime target organs involved. The main objective of the study was to evaluate whether crocetin, a natural product from Gardenia jasminoides Ellis, has beneficial effects on renal dysfunction caused by hemorrhagic shock and resuscitation in rats. Anesthetized rats were bled to reduce mean arterial blood pressure to 35 (SD, 5) mmHg for 60 min and then were resuscitated with their withdrawn shed blood and normal saline. Crocetin was administered via the duodenum at a dose of 50 mg/kg 40 min after hemorrhage. The increase in creatinine and blood urea nitrogen was significantly reduced at 2 h after hemorrhage and resuscitation in crocetin-treated rats. The increases in renal nitric oxide, tumor necrosis factor α, and interleukin 6 were also attenuated by crocetin. Hemorrhagic shock resulted in a significant elevation in malondialdehyde production and was accompanied by a reduction in total superoxide dismutase activity, activation of nuclear factor κB, and overexpression of inducible nitric oxide synthase. These changes were significantly attenuated by crocetin at 2 h after resuscitation. These results suggested that crocetin blocks inflammatory cascades by inhibiting production of reactive oxygen species and restoring superoxide dismutase activity to ameliorate renal dysfunction caused by hemorrhage shock and resuscitation.

  15. Protective effects of Ficus racemosa stem bark against doxorubucin-induced renal and testicular toxicity

    PubMed Central

    Ahmed, Faiyaz; Urooj, Asna; Karim, Alias A.

    2013-01-01

    Background: Ficus racemosa Linn. (Moraceae) bark is a rich source of phenolic compounds known to possess potential antioxidant activity offering numerous health benefits. Materials and Methods: The present study evaluated the protective effects of sequential acetone extract of Ficus racemosa bark at two doses (FR250; 250 mg kg-1 and FR500; 500 mg kg-1 p.o.) against doxorubicin-induced renal and testicular toxicity in rats. Results: Doxorubicin administration resulted in significant decrease (P ≤ 0.05) in total protein and glutathione concentrations, while increased (P ≤ 0.05) serum urea, creatinine and thiobarbituric acid reactive substances (TBARS). Extract pretreatment restored biochemical parameters toward normalization. FR250 and FR500 decreased serum creatinine levels by 22.5% and 44%, while serum urea levels were decreased by 30.4% and 58.8%, respectively. Extract pretreatment (500 mg kg-1) decreased TBARS and increased glutathione levels in the kidney and testis to control levels. These observations were substantiated by histopathological studies, wherein normal renal and testicular architecture was restored in FR500 group. Conclusion: Doxorubicin exposure results in pronounced oxidative stress, and administration of F. racemosa stem bark extract offers significant renal and testicular protection by inhibiting lipidperoxidation-mediated through scavenging free radicals. PMID:23772108

  16. Immunohistochemical detection of hypoxia-inducible factor-1alpha in human renal allograft biopsies.

    PubMed

    Rosenberger, Christian; Pratschke, Johann; Rudolph, Birgit; Heyman, Samuel N; Schindler, Ralf; Babel, Nina; Eckardt, Kai-Uwe; Frei, Ulrich; Rosen, Seymour; Reinke, Petra

    2007-01-01

    Although it generally is accepted that renal hypoxia may occur in various situations after renal transplantation, direct evidence for such hypoxia is lacking, and possible implications on graft pathophysiology remain obscure. Hypoxia-inducible factors (HIF) are regulated at the protein level by oxygen-dependent enzymes and, hence, allow for tissue hypoxia detection. With the use of high-amplification HIF-1alpha immunohistochemistry in renal biopsies, hypoxia is shown at specific time points after transplantation with clinicohistologic correlations. Immediately after engraftment, in primarily functioning grafts, abundant HIF-1alpha is present and correlates with cold ischemic time >15 h and/or graft age >50 yr (P < 0.04). In contrast, a low HIF-1alpha score correlates with primary nonfunction, likely reflecting loss of oxygen consumption for tubular transport. Protocol biopsies at 2 wk show widespread HIF-1alpha induction, irrespective of histology. Beyond 3 mo, both protocol biopsies and indicated biopsies are virtually void of HIF-1alpha, with the only exception being clinical/subclinical rejection. HIF-derived transcriptional adaptation to hypoxia may counterbalance, at least partly, the negative impact of cold preservation and warm reflow injury. Transient hypoxia at 2 wk may be induced by hyperfiltration, hypertrophy, calcineurin inhibitor-induced toxicity, or a combination of these. Lack of detectable HIF-1alpha at 3 mo and beyond suggests that at this time point, graft oxygen homeostasis occurs. The strong correlation between hypoxia and clinical/subclinical rejection in long-term grafts suggests that hypoxia is involved in such graft dysfunction, and HIF-1alpha immunohistochemistry could enhance the specific diagnosis of acute rejection.

  17. Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice.

    PubMed

    Zhang, Yue; Peti-Peterdi, János; Heiney, Kristina M; Riquier-Brison, Anne; Carlson, Noel G; Müller, Christa E; Ecelbarger, Carolyn M; Kishore, Bellamkonda K

    2015-12-01

    Lithium (Li) administration causes deranged expression and function of renal aquaporins and sodium channels/transporters resulting in nephrogenic diabetes insipidus (NDI). Extracellular nucleotides (ATP/ADP/UTP), via P2 receptors, regulate these transport functions. We tested whether clopidogrel bisulfate (CLPD), an antagonist of ADP-activated P2Y(12) receptor, would affect Li-induced alterations in renal aquaporins and sodium channels/transporters. Adult mice were treated for 14 days with CLPD and/or Li and euthanized. Urine and kidneys were collected for analysis. When administered with Li, CLPD ameliorated polyuria, attenuated the rise in urine prostaglandin E2 (PGE2), and resulted in significantly higher urinary arginine vasopressin (AVP) and aldosterone levels as compared to Li treatment alone. However, urine sodium excretion remained elevated. Semi-quantitative immunoblotting revealed that CLPD alone increased renal aquaporin 2 (AQP2), Na-K-2Cl cotransporter (NKCC2), Na-Cl cotransporter (NCC), and the subunits of the epithelial Na channel (ENaC) in medulla by 25-130 %. When combined with Li, CLPD prevented downregulation of AQP2, Na-K-ATPase, and NKCC2 but was less effective against downregulation of cortical α- or γ-ENaC (70 kDa band). Thus, CLPD primarily attenuated Li-induced downregulation of proteins involved in water conservation (AVP-sensitive), with modest effects on aldosterone-sensitive proteins potentially explaining sustained natriuresis. Confocal immunofluorescence microscopy revealed strong labeling for P2Y(12)-R in proximal tubule brush border and blood vessels in the cortex and less intense labeling in medullary thick ascending limb and the collecting ducts. Therefore, there is the potential for CLPD to be directly acting at the tubule sites to mediate these effects. In conclusion, P2Y(12)-R may represent a novel therapeutic target for Li-induced NDI.

  18. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    PubMed Central

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  19. Carbon tetrachloride-induced hepatic and renal damages in rat: inhibitory effects of cacao polyphenol.

    PubMed

    Suzuki, Koichiro; Nakagawa, Kiyotaka; Yamamoto, Takayuki; Miyazawa, Taiki; Kimura, Fumiko; Kamei, Masanori; Miyazawa, Teruo

    2015-01-01

    Here, we investigated the protective effect of cacao polyphenol extract (CPE) on carbon tetrachloride (CCl4)-induced hepato-renal oxidative stress in rats. Rats were administered CPE for 7 days and then received intraperitoneal injection of CCl4. Two hours after injection, we found that CCl4 treatment significantly increased biochemical injury markers, lipid peroxides (phosphatidylcholine hydroperoxide (PCOOH) and malondialdehyde (MDA)) and decreased glutathione peroxidase activity in kidney rather than liver, suggesting that kidney is more vulnerable to oxidative stress under the present experimental conditions. CPE supplementation significantly reduced these changes, indicating that this compound has antioxidant properties against CCl4-induced oxidative stress. An inhibitory effect of CPE on CCl4-induced CYP2E1 mRNA degradation may provide an explanation for CPE antioxidant property. Together, these results provide quantitative evidence of the in vivo antioxidant properties of CPE, especially in terms of PCOOH and MDA levels in the kidneys of CCl4-treated rats.

  20. A signature of renal stress resistance induced by short-term dietary restriction, fasting, and protein restriction.

    PubMed

    Jongbloed, F; Saat, T C; Verweij, M; Payan-Gomez, C; Hoeijmakers, J H J; van den Engel, S; van Oostrom, C T; Ambagtsheer, G; Imholz, S; Pennings, J L A; van Steeg, H; IJzermans, J N M; Dollé, M E T; de Bruin, R W F

    2017-01-19

    During kidney transplantation, ischemia-reperfusion injury (IRI) induces oxidative stress. Short-term preoperative 30% dietary restriction (DR) and 3-day fasting protect against renal IRI. We investigated the contribution of macronutrients to this protection on both phenotypical and transcriptional levels. Male C57BL/6 mice were fed control food ad libitum, underwent two weeks of 30%DR, 3-day fasting, or received a protein-, carbohydrate- or fat-free diet for various periods of time. After completion of each diet, renal gene expression was investigated using microarrays. After induction of renal IRI by clamping the renal pedicles, animals were monitored seven days postoperatively for signs of IRI. In addition to 3-day fasting and two weeks 30%DR, three days of a protein-free diet protected against renal IRI as well, whereas the other diets did not. Gene expression patterns significantly overlapped between all diets except the fat-free diet. Detailed meta-analysis showed involvement of nuclear receptor signaling via transcription factors, including FOXO3, HNF4A and HMGA1. In conclusion, three days of a protein-free diet is sufficient to induce protection against renal IRI similar to 3-day fasting and two weeks of 30%DR. The elucidated network of common protective pathways and transcription factors further improves our mechanistic insight into the increased stress resistance induced by short-term DR.

  1. A signature of renal stress resistance induced by short-term dietary restriction, fasting, and protein restriction

    PubMed Central

    Jongbloed, F.; Saat, T. C.; Verweij, M.; Payan-Gomez, C.; Hoeijmakers, J. H. J.; van den Engel, S.; van Oostrom, C. T.; Ambagtsheer, G.; Imholz, S.; Pennings, J. L. A.; van Steeg, H.; IJzermans, J. N. M.; Dollé, M. E. T.; de Bruin, R. W. F.

    2017-01-01

    During kidney transplantation, ischemia-reperfusion injury (IRI) induces oxidative stress. Short-term preoperative 30% dietary restriction (DR) and 3-day fasting protect against renal IRI. We investigated the contribution of macronutrients to this protection on both phenotypical and transcriptional levels. Male C57BL/6 mice were fed control food ad libitum, underwent two weeks of 30%DR, 3-day fasting, or received a protein-, carbohydrate- or fat-free diet for various periods of time. After completion of each diet, renal gene expression was investigated using microarrays. After induction of renal IRI by clamping the renal pedicles, animals were monitored seven days postoperatively for signs of IRI. In addition to 3-day fasting and two weeks 30%DR, three days of a protein-free diet protected against renal IRI as well, whereas the other diets did not. Gene expression patterns significantly overlapped between all diets except the fat-free diet. Detailed meta-analysis showed involvement of nuclear receptor signaling via transcription factors, including FOXO3, HNF4A and HMGA1. In conclusion, three days of a protein-free diet is sufficient to induce protection against renal IRI similar to 3-day fasting and two weeks of 30%DR. The elucidated network of common protective pathways and transcription factors further improves our mechanistic insight into the increased stress resistance induced by short-term DR. PMID:28102354

  2. Antioxidant properties of repaglinide and its protections against cyclosporine A-induced renal tubular injury

    PubMed Central

    Li, Dao; Li, Jin; Li, Hui; Wu, Qiong; Li, Qi-Xiong

    2016-01-01

    Objective(s): Repaglinide (RG) is an antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus. It has a good safety and efficacy profile in diabetic patients with complications in renal impairment and is an appropriate treatment choice, even for individuals with more severe degrees of renal malfunctions. The aim of the present study was to examine the protective effect of RG on cyclosporine A (CsA)-induced rat renal impairment and to evaluate the antioxidant mechanisms by which RG exerts its protective actions. Materials and Methods: Fifty male Sprague-Dawley rats weighing 250–300 g were randomly divided into five groups: administrations of olive oil (control, PO), RG (0.4 mg/kg, PO), CsA (30 mg/kg in olive oil, SC), RG (0.2 or 0.4 mg/kg, PO) plus CsA (30 mg/kg in olive oil SC) every day for 15 days. Results: SC administration of CsA (30 mg/kg) to rats produced marked elevations in the levels of renal impairment parameters such as urinary protein, N-acetyl-beta-D-glucosaminidase (NAG), serum creatinine (SCr), and blood urea nitrogen (BUN). It also caused histologic injury to the kidneys. Oral administration of RG (0.2 and 0.4 mg/kg) markedly decreased all the aforementioned changes. In addition, CsA caused increases in the levels of malondialdehyde (MDA) and decreases in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione reductase (GSR), glutathione-S-transferase (GST), and glutathione in kidney homogenate, which were reversed significantly by both doses of RG. Conclusion: The findings of our study indicate that RG may play an important role in protecting the kidney from oxidative insult. PMID:27635199

  3. High-Fat Diet Increased Renal and Hepatic Oxidative Stress Induced by Vanadium of Wistar Rat.

    PubMed

    Wang, J P; Cui, R Y; Zhang, K Y; Ding, X M; Luo, Y H; Bai, S P; Zeng, Q F; Xuan, Y; Su, Z W

    2016-04-01

    The study was conducted to assess the effect of vanadium (V) in high-fat diet on the liver and kidney of rats in a 5-week trial. Seventy-two female Wistar rats (BW = 95 ± 5 g) were randomly allotted into eight groups. Groups I, II, III, and IV obtained low-fat diet containing 0, 3, 15, and 30 mg/kg V, and V, VI, VII, and VIII groups received the respective vanadium doses with high-fat diet, respectively. There were lesions in the liver and kidney of V, VI, VII, and VIII groups, granular degeneration and vacuolar degeneration were observed in the renal tubular and glomerulus epithelial cells, and hepatocytes showed granular degeneration and vacuolar degeneration. Supplemented high-fat diet with vanadium was shown to decrease (P < 0.05) activities of superoxide dismutase, total antioxidant capacity, glutathione-S transferase, and NAD(P)H/quinone oxidoreductase 1 (NQO1) and increase malondialdehyde content in the liver and kidney. The relative expression of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and NQO1 mRNA was downregulated by V addition and high-fat diet, and the effect of V was more pronounced in high-fat diet (interaction, P < 0.05), with VIII group having the lowest mRNA expression of Nrf-2 and NQO1 in the liver and kidney. In conclusion, it suggested that dietary vanadium ranging from 15 to 30 mg/kg could lead to oxidative damage and vanadium accumulation in the liver and kidney, which caused renal and hepatic toxicity. The high-fat diet enhanced vanadium-induced hepatic and renal damage, and the mechanism was related to the modulation of the hepatic and renal mRNA expression of Nrf-2 and NQO1.

  4. Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study.

    PubMed

    Lankhorst, Stephanie; Kappers, Mariëtte H W; van Esch, Joep H M; Smedts, Frank M M; Sleijfer, Stefan; Mathijssen, Ron H J; Baelde, Hans J; Danser, A H Jan; van den Meiracker, Anton H

    2014-12-01

    Common adverse effects of angiogenesis inhibition are hypertension and renal injury. To determine the most optimal way to prevent these adverse effects and to explore their interdependency, the following drugs were investigated in unrestrained Wistar Kyoto rats exposed to the angiogenesis inhibitor sunitinib: the dual endothelin receptor antagonist macitentan; the calcium channel blocker amlodipine; the angiotensin-converting enzyme inhibitor captopril; and the phosphodiesterase type 5 inhibitor sildenafil. Mean arterial pressure was monitored telemetrically. After 8 days, rats were euthanized and blood samples and kidneys were collected. In addition, 24-hour urine samples were collected. After sunitinib start, mean arterial pressure increased rapidly by ≈30 mm Hg. Coadministration of macitentan or amlodipine largely prevented this rise, whereas captopril or sildenafil did not. Macitentan, captopril, and sildenafil diminished the sunitinib-induced proteinuria and endothelinuria and glomerular intraepithelial protein deposition, whereas amlodipine did not. Changes in proteinuria and endothelinuria were unrelated. We conclude that in our experimental model, dual endothelin receptor antagonism and calcium channel blockade are suitable to prevent angiogenesis inhibition-induced hypertension, whereas dual endothelin receptor antagonism, angiotensin-converting enzyme inhibitor, and phosphodiesterase type 5 inhibition can prevent angiogenesis inhibition-induced proteinuria. Moreover, the variable response of hypertension and renal injury to different antihypertensive agents suggests that these side effects are, at least in part, unrelated.

  5. Potential Biomarkers for Radiation-Induced Renal Toxicity following 177Lu-Octreotate Administration in Mice

    PubMed Central

    Schüler, Emil; Larsson, Maria; Parris, Toshima Z.; Johansson, Martin E.; Helou, Khalil; Forssell-Aronsson, Eva

    2015-01-01

    The kidneys are one of the main dose-limiting organs in peptide receptor radionuclide therapy and due to large inter-individual variations in renal toxicity, biomarkers are urgently needed in order to optimize therapy and reduce renal tissue damage. The aim of this study was to investigate the transcriptional, functional, and morphological effects on renal tissue after 177Lu-octreotate administration in normal mice, and to identify biomarkers for radiation induced renal toxicity. Methods C57BL/6N mice were i.v. injected with 0, 30, 60, 90, 120, or 150 MBq 177Lu-octreotate (0, 16, 29, 40, 48, and 54 Gy to the kidneys). At 4, 8, and 12 months after administration, radiation-induced effects were evaluated in relation to (a) global transcriptional variations in kidney tissues, (b) morphological changes in the kidneys, (c) changes in white and red blood cell count as well as blood levels of urea, and (d) changes in renal function using 99mTc-DTPA/99mTc-DMSA scintigraphy. Results In general, the highest number of differentially regulated transcripts was observed at 12 months after administration. The Cdkn1a, C3, Dbp, Lcn2, and Per2 genes displayed a distinct dose-dependent regulation, with increased expression level with increasing absorbed dose. Ifng, Tnf, and Il1B were identified as primary up-stream regulators of the recurrently regulated transcripts. Furthermore, previously proposed biomarkers for kidney injury and radiation damage were also observed. The functional investigation revealed reduced excretion of 99mTc-DTPA after 150 MBq, an increased uptake of 99mTc-DMSA at all dose levels compared with the controls, and markedly increased urea level in blood after 150 MBq at 12 months. Conclusion Distinct dose-response relationships were found for several of the regulated transcripts. The Cdkn1a, Dbp, Lcn2, and Per2 genes are proposed as biomarkers for 177Lu-octreotate exposure of kidney. Correlations to functional and morphological effects further confirm

  6. Diquat induces renal proximal tubule injury in glutathione reductase-deficient mice

    SciTech Connect

    Rogers, Lynette K. . E-mail: rogersl@ccri.net; Bates, Carlton M.; Welty, Stephen E.; Smith, Charles V.

    2006-12-15

    Reactive oxygen species (ROS) have been associated with many human diseases, and glutathione (GSH)-dependent processes are pivotal in limiting tissue damage. To test the hypothesis that Gr1{sup a1Neu} (Neu) mice, which do not express glutathione reductase (GR), would be more susceptible than are wild-type mice to ROS-mediated injury, we studied the effects of diquat, a redox cycling toxicant. Neu mice exhibited modest, dose- and time-dependent elevations in plasma alanine aminotransferase (ALT) activities, 126 {+-} 36 U/l at 2 h after 5 {mu}mol/kg of diquat, but no ALT elevations were observed in diquat-treated C3H/HeN mice for up to 6 h after 50 {mu}mol/kg of diquat. Histology indicated little or no hepatic necrosis in diquat-treated mice of either strain, but substantial renal injury was observed in diquat-treated Neu mice, characterized by brush border sloughing in the proximal tubules by 1 h and tubular necrosis by 2 h after doses of 7.5 {mu}mol/kg. Decreases in renal GSH levels were observed in the Neu mice by 2 h post dose (3.4 {+-} 0.4 vs 0.2 {+-} 0.0 {mu}mol/g tissue at 0 and 50 {mu}mol/kg, respectively), and increases in renal GSSG levels were observed in the Neu mice as early as 0.5 h after 7.5 {mu}mol/kg (105.5 {+-} 44.1 vs 27.9 {+-} 4.8 nmol/g tissue). Blood urea nitrogen levels were elevated by 2 h in Neu mice after doses of 7.5 {mu}mol/kg (Neu vs C3H, 32.8 {+-} 4.1 vs 17.9 {+-} 0.3 mg/dl). Diquat-induced renal injury in the GR-deficient Neu mice offers a useful model for studies of ROS-induced renal necrosis and of the contributions of GR in defense against oxidant-mediated injuries in vivo.

  7. Diuretic-induced renal impairment without volume depletion in cirrhosis: changes in the renin-angiotensin system and the effect of β-adrenergic blockade

    PubMed Central

    Wilkinson, S. P.; Bernardi, M.; Wheeler, P. G.; Smith, I. K.; Williams, R.

    1979-01-01

    In 4 patients with cirrhosis and ascites, diuretic therapy resulted in an impairment of renal function that was associated with a rise in plasma renin activity (PRA). In 3, this occurred in the absence of volume depletion. When diuretics were discontinued, renal function returned to normal. β-adrenergic blocking drugs were then given to suppress renin secretion and diurectics restarted. On this occasion, impairment of renal function did not occur. In 2 further patients, administration of β-adrenergic blockers during a period of diuretic-induced renal impairment resulted in an improvement in renal function. Although these findings may indicate that diuretic-induced renal impairment in cirrhosis is at least partly due to activation of the renin-angiotensin system, in another group of patients a diuretic-induced rise in PRA was not associated with a deterioration in renal function. PMID:44911

  8. Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis.

    PubMed

    Wu, Hao Jia; Yiu, Wai Han; Li, Rui Xi; Wong, Dickson W L; Leung, Joseph C K; Chan, Loretta Y Y; Zhang, Yuelin; Lian, Qizhou; Lin, Miao; Tse, Hung Fat; Lai, Kar Neng; Tang, Sydney C W

    2014-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) have recently shown promise as a therapeutic tool in various types of chronic kidney disease (CKD) models. However, the mechanism of action is incompletely understood. As renal prognosis in CKD is largely determined by the degree of renal tubular injury that correlates with residual proteinuria, we hypothesized that BM-MSCs may exert modulatory effects on renal tubular inflammation and epithelial-to-mesenchymal transition (EMT) under a protein-overloaded milieu. Using a co-culture model of human proximal tubular epithelial cells (PTECs) and BM-MSCs, we showed that concomitant stimulation of BM-MSCs by albumin excess was a prerequisite for them to attenuate albumin-induced IL-6, IL-8, TNF-α, CCL-2, CCL-5 overexpression in PTECs, which was partly mediated via deactivation of tubular NF-κB signaling. In addition, albumin induced tubular EMT, as shown by E-cadherin loss and α-SMA, FN and collagen IV overexpression, was also prevented by BM-MSC co-culture. Albumin-overloaded BM-MSCs per se retained their tri-lineage differentiation capacity and overexpressed hepatocyte growth factor (HGF) and TNFα-stimulating gene (TSG)-6 via P38 and NF-κB signaling. Albumin-induced tubular CCL-2, CCL-5 and TNF-α overexpression were suppressed by recombinant HGF treatment, while the upregulation of α-SMA, FN and collagen IV was attenuated by recombinant TSG-6. Neutralizing HGF and TSG-6 abolished the anti-inflammatory and anti-EMT effects of BM-MSC co-culture in albumin-induced PTECs, respectively. In vivo, albumin-overloaded mice treated with mouse BM-MSCs had markedly reduced BUN, tubular CCL-2 and CCL-5 expression, α-SMA and collagen IV accumulation independent of changes in proteinuria. These data suggest anti-inflammatory and anti-fibrotic roles of BM-MSCs on renal tubular cells under a protein overloaded condition, probably mediated via the paracrine action of HGF and TSG-6.

  9. Sex differences in ischemia/reperfusion-induced acute kidney injury are dependent on the renal sympathetic nervous system.

    PubMed

    Tanaka, Ryosuke; Tsutsui, Hidenobu; Ohkita, Mamoru; Takaoka, Masanori; Yukimura, Tokihito; Matsumura, Yasuo

    2013-08-15

    Resistance to ischemic acute kidney injury has been shown to be higher in female rats than in male rats. We found that renal venous norepinephrine overflow after reperfusion played important roles in the development of ischemic acute kidney injury. In the present study, we investigated whether sex differences in the pathogenesis of ischemic acute kidney injury were derived from the renal sympathetic nervous system using male and female Sprague-Dawley rats. Ischemia/reperfusion-induced acute kidney injury was achieved by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after contralateral nephrectomy. Renal function was impaired after reperfusion in both male and female rats; however, renal dysfunction and histological damage were more severe in male rats than in female rats. Renal venous plasma norepinephrine levels after reperfusion were markedly elevated in male rats, but were not in female rats. These sex differences were eliminated by ovariectomy or treatment with tamoxifen, an estrogen receptor antagonist, in female rats. Furthermore, an intravenous injection of hexamethonium (25mg/kg), a ganglionic blocker, 5 min before ischemia suppressed the elevation in renal venous plasma norepinephrine levels after reperfusion, and attenuated renal dysfunction and histological damage in male rats, and ovariectomized and tamoxifen-treated female rats, but not in intact females. Thus, the present findings confirmed sex differences in the pathogenesis of ischemic acute kidney injury, and showed that the attenuation of ischemia/reperfusion-induced acute kidney injury observed in intact female rats may be dependent on depressing the renal sympathetic nervous system with endogenous estrogen.

  10. Renal disease in pregnancy.

    PubMed

    Thorsen, Martha S; Poole, Judith H

    2002-03-01

    Anatomic and physiologic adaptations within the renal system during pregnancy are significant. Alterations are seen in renal blood flow and glomerular filtration, resulting in changes in normal renal laboratory values. When these normal renal adaptations are coupled with pregnancy-induced complications or preexisting renal dysfunction, the woman may demonstrate a reduction of renal function leading to an increased risk of perinatal morbidity and mortality. This article will review normal pregnancy adaptations of the renal system and discuss common pregnancy-related renal complications.

  11. Effects of alpha adrenoceptor blockade on renal nerve stimulation-induced norepinephrine release and vasoconstriction in the dog kidney.

    PubMed

    Hisa, H; Araki, S; Tomura, Y; Hayashi, Y; Satoh, S

    1989-02-01

    Effects of alpha-antagonists on renal norepinephrine (NE) release and vasoconstriction induced by renal nerve stimulation (RNS) were examined in pentobarbital-anesthetized dogs. RNS at 1,2 and 3 Hz (1 msec duration, 10-20 V) for 1 min decreased renal blood flow (RBF) and increased both the renal venous NE concentration (NEC) and calculated renal NE efflux (NEE). The RBF responses to 2 and 3 Hz RNS and NEC responses to 1, 2 and 3 Hz RNS during intrarenal arterial infusion of yohimbine (1.0 micrograms/kg/min) were greater than those observed during the control period. The NEE responses to 1 and 2 Hz RNS, but not to 3 Hz RNS, were also potentiated by the yohimbine infusion. Prazosin treatment (0.2 mg/kg i.v.) attenuated the RBF responses. Subsequent infusion of yohimbine potentiated both the NEC and NEE responses to 1, 2 and 3 Hz RNS in this alpha-1 adrenoceptor-blocked state. These results suggest that an alpha-2 adrenoceptor-mediated inhibitory mechanism of neural NE release exists in the dog kidney, which can be activated by endogenously released catecholamines to modulate the neural control of renal hemodynamics. Alpha-1 adrenoceptor-mediated renal vasoconstriction may affect the evaluation of neural NE release by NEE when high-frequency RNS is applied during inhibition of the alpha-2 adrenoceptor-mediated mechanism.

  12. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses.

    PubMed

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing; He, Xiaoyun; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2014-11-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity.

  13. Protective Effect of Aqueous Crude Extract of Neem (Azadirachta indica) Leaves on Plasmodium berghei-Induced Renal Damage in Mice.

    PubMed

    Somsak, Voravuth; Chachiyo, Sukanya; Jaihan, Ubonwan; Nakinchat, Somrudee

    2015-01-01

    Malaria is a major public health problem in the world because it can cause of death in patients. Malaria-associated renal injury is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. Therefore, new plant extracts to protect against renal injury induced by malaria infection are urgently needed. In this study, we investigated the protective effect of aqueous crude extract of Azadirachta indica (neem) leaves on renal injury induced by Plasmodium berghei ANKA infection in mice. ICR mice were injected intraperitoneally with 1 × 10(7) parasitized erythrocytes of PbANKA, and neem extracts (500, 1,000, and 2,000 mg/kg) were given orally for 4 consecutive days. Plasma blood urea nitrogen (BUN) and creatinine levels were subsequently measured. Malaria-induced renal injury was evidenced as marked increases of BUN and creatinine levels. However, the oral administration of neem leaf extract to PbANKA infected mice for 4 days brought back BUN and creatinine levels to near normalcy, and the highest activity was observed at doses of 1,000 and 2,000 mg/kg. Additionally, no toxic effects were found in normal mice treated with this extract. Hence, neem leaf extract can be considered a potential candidate for protection against renal injury induced by malaria.

  14. Changes in expression of renal Oat1, Oat3 and Mrp2 in cisplatin-induced acute renal failure after treatment of JBP485 in rats

    SciTech Connect

    Liu, Tao; Meng, Qiang; Wang, Changyuan; Liu, Qi; Guo, Xinjin; Sun, Huijun; Peng, Jinyong; and others

    2012-11-01

    The purpose of this study is to investigate whether the effect of cyclo-trans-4-L-hydroxyprolyl-L-serine (JBP485) on acute renal failure (ARF) induced by cisplatin is related to change in expression of renal Oat1, Oat3 and Mrp2 in rats. JBP485 reduced creatinine, blood urea nitrogen (BUN) and indoxyl sulfate (IS) in plasma and malondialdehyde (MDA) in kidney, and recovered the glomerular filtration rate (GFR) and the activity of superoxide dismutase (SOD) in cisplatin-treated rats. The plasma concentration of PAH (para-aminohippurate) determined by LC–MS/MS was increased markedly after intravenous administration of cisplatin, whereas cumulative urinary excretion of PAH and the uptake of PAH in kidney slices were significantly decreased. qRT-PCR and Western-blot showed a decrease in mRNA and protein of Oat1 and Oat3, an increase in mRNA and protein of Mrp2 in cisplatin-treated rats, and an increase in IS (a uremic toxin) after co-treatment with JBP485. It indicated that JBP485 promoted urinary excretion of toxins by upregulating renal Mrp2. This therefore gives in part the explanation about the mechanism by which JBP485 improves ARF induced by cisplatin in rats. -- Highlights: ► Cisplatin induces acute renal failure (ARF). ► The expression of Oat1, Oat3 and Mrp2 were changed during ARF. ► The regulated expression of Oat1, Oat3 and Mrp2 is an adaptive protected response. ► JBP485 could facilitate the adaptive protective action.

  15. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  16. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant.

    PubMed

    Monaris, D; Sbrogio-Almeida, M E; Dib, C C; Canhamero, T A; Souza, G O; Vasconcellos, S A; Ferreira, L C S; Abreu, P A E

    2015-08-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigA(C)) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigA(C), either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigA(C) or LigA(C) coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen.

  17. Pharmacokinetic-pharmacodynamic analysis of sunitinib-induced thrombocytopenia in Japanese patients with renal cell carcinoma.

    PubMed

    Nagata, Masashi; Ishiwata, Yasuyoshi; Takahashi, Yutaka; Takahashi, Hiromitsu; Saito, Kazutaka; Fujii, Yasuhisa; Kihara, Kazunori; Yasuhara, Masato

    2015-01-01

    The aim of the present study was to clarify the therapeutic range and adequate dose of sunitinib in Japanese renal cell carcinoma patients by means of a pharmacokinetic-pharmacodynamic analysis of sunitinib-induced thrombocytopenia. Six patients with renal cell carcinoma were enrolled in this study. After starting the sunitinib treatment, between three and seven blood samples were obtained from each patient just before the administration of sunitinib. Serum concentrations of sunitinib and its active metabolite N-desethyl-sunitinib were fit to the 1-compartment model with first-order absorption. Changes in platelet counts were fit to the pharmacokinetic-pharmacodynamic model, in which the proliferation of platelet progenitor cells was assumed to be linearly inhibited by sunitinib and its metabolite. All patients using 50 mg as an initial dose of sunitinib developed grade 2 or 3 thrombocytopenia. The pharmacokinetic-pharmacodynamic model created successfully described the time course of sunitinib-induced thrombocytopenia and could predict changes in platelet counts after alterations to the dosage of sunitinib administered. The simulation results indicated that the total trough level of sunitinib to avoid severe thrombocytopenia should be <100 ng/mL, and also that the initial daily dose of sunitinib could be reduced to 37.5 mg or 25 mg in most Japanese patients. In addition to the pharmacokinetic-guided dosage adjustment, the careful monitoring of platelet counts is required for the safe use of sunitinib.

  18. Ameliorating Effect of Gemigliptin on Renal Injury in Murine Adriamycin-Induced Nephropathy

    PubMed Central

    Lee, Shin Yeong; Kim, Jin Sug; Kim, Yang Gyun; Moon, Ju-Young; Lee, Tae Won; Ihm, Chun Gyoo

    2017-01-01

    Background. Previous studies have shown the antiapoptotic and anti-inflammatory potential of DPP-IV inhibitor in experimental models of renal injury. We tested whether DPP-IV inhibitor (gemigliptin) ameliorates renal injury by suppressing apoptosis, inflammation, and oxidative stress in mice with adriamycin nephropathy. Methods. Mice were treated with normal saline (control), gemigliptin (GM), adriamycin (ADR), or adriamycin combined with gemigliptin (ADR+GM). Apoptosis, inflammation, and oxidative stress were analyzed via western blotting, real-time PCR, light microscopy, and immunofluorescence. Results. In the ADR+GM group, urine albumin creatinine ratio decreased significantly compared with that in the ADR group on day 15. Glomerulosclerosis index and tubulointerstitial injury index in mice with adriamycin-induced nephropathy decreased after gemigliptin treatment. ADR group showed higher levels of apoptosis, inflammation, and oxidative stress-related molecules compared with the control group. The upregulation of these molecules was significantly reduced by gemigliptin. In the ADR group, the staining intensities of WT-1 and nephrin reduced, but these changes were ameliorated in the ADR+GM group. Conclusion. We demonstrated that gemigliptin ameliorates nephropathy by suppressing apoptosis, inflammation, and oxidative stress in mice administered adriamycin. Our data demonstrate that gemigliptin has renoprotective effects on adriamycin-induced nephropathy. PMID:28326327

  19. Serum- and glucocorticoid-inducible kinase 1 in the regulation of renal and extrarenal potassium transport.

    PubMed

    Lang, Florian; Vallon, Volker

    2012-02-01

    Serum- and glucocorticoid inducible-kinase 1 (SGK1) is an early gene transcriptionally upregulated by cell stress such as cell shrinkage and hypoxia and several hormones including gluco- and mineralocorticoids. It is activated by insulin and growth factors. SGK1 is a powerful regulator of a wide variety of channels and transporters. The present review describes the role of SGK1 in the regulation of potassium (K(+)) channels, K(+) transporters and K(+) homeostasis. SGK1-regulated K(+) channels include renal outer medullary K+ channel, Kv1.3, Kv1.5, KCNE1/KCNQ1, KCNQ4 and, via regulation of calcium (Ca(2+)) entry, Ca(2+)-sensitive K(+) channels. SGK1-sensitive transporters include sodium-potassium-chloride cotransporter 2 and sodium/potassium-adenosine triphosphatase. SGK1-dependent regulation of K(+) channels and K(+) transport contributes to the stimulation of renal K(+) excretion following high K(+) intake, to insulin-induced cellular K(+) uptake and hypokalemia, to inhibition of insulin release by glucocorticoids, to stimulation of mast cell degranulation and gastric acid secretion, and to cardiac repolarization. Thus, SGK1 has a profound effect on K(+) homeostasis and on a multitude of K(+)-sensitive cellular functions.

  20. Lead Induced Hepato-renal Damage in Male Albino Rats and Effects of Activated Charcoal

    PubMed Central

    Offor, Samuel J.; Mbagwu, Herbert O. C.; Orisakwe, Orish E.

    2017-01-01

    Lead is a multi-organ toxicant implicated in various cancers, diseases of the hepatic, renal, and reproductive systems etc. In search of cheap and readily available antidote this study has investigated the role of activated charcoal in chronic lead exposure in albino rats. Eighteen mature male albino rats were used, divided into three groups of six rats per group. Group 1 (control rats) received deionised water (10 ml/kg), group 2 was given lead acetate solution 60 mg/kg and group 3 rats were given lead acetate (60 mg/kg) followed by Activated charcoal, AC (1000 mg/kg) by oral gavage daily for 28 days. Rats in group 2 showed significant increases in serum Aspartate aminotransferase, Alkaline phosphatase, Alanine aminotransferase, urea, bilirubin, total cholesterol, triglycerides, Low Density Lipoprotein, Very Low Density Lipoproteins, Total White Blood Cell Counts, Malondialdehyde, Interleukin-6, and decreases in Packed Cell Volume, hemoglobin concentration, Red blood cell count, total proteins, albumins, superoxide dismutase, glutathione peroxidase and total glutathione. Co-administration of AC significantly decreased these biomarkers with the exception of the sperm parameters. Histopathology of liver and kidney also confirmed the protective effective of AC against lead induced hepato-renal damage. AC may be beneficial in chronic lead induced liver and kidney damage. PMID:28352230

  1. Cisplatin-induced acute renal failure is ameliorated by erdosteine in a dose-dependent manner.

    PubMed

    Ozyurt, Hüseyin; Yildirim, Zeki; Kotuk, Mahir; Yilmaz, H Ramazan; Yağmurca, Murat; Iraz, Mustafa; Söğüt, Sad; Gergerlioglu, Serdar

    2004-01-01

    The aim of this study was to investigate the optimum dosage of erdosteine to ameliorate cisplatin-induced nephrotoxicity. Three different doses of erdosteine at 25, 50 and 75 mg kg(-1) were studied in rats. Intraperitoneal administration of 7 mg kg(-1) cisplatin led to acute renal failure, as indicated by kidney histology and increases in plasma creatinine and blood urea nitrogen (BUN) levels. At 5 days after cisplatin injection the BUN level was increased significantly from 15.1 +/- 4.3 to 126.7 +/- 152.6 mg dl(-1) and plasma creatinine levels increased from 0.37 +/- 0.005 to 1.68 +/- 1.9 mg dl(-1). When the rats were administered 50 and 75 mg kg(-1) erdosteine 24 h before cisplatin injection that was continued until sacrifice (total of 6 days), the BUN and creatinine levels remained similar to control levels and the grade of histology was similar. Erdosteine at doses of 50 and 75 mg kg(-1) ameliorates cisplatin-induced renal failure. The optimum dose of erdosteine may be 50 mg kg(-1) in this study.

  2. Sulfasalazine-induced renal and hepatic injury in rats and the protective role of taurine

    PubMed Central

    Heidari, Reza; Rasti, Maryam; Shirazi Yeganeh, Babak; Niknahad, Hossein; Saeedi, Arastoo; Najibi, Asma

    2016-01-01

    Introduction: Sulfasalazine is a drug commonly administrated against inflammatory-based disorders. On the other hand, kidney and liver injury are serious adverse events accompanied by sulfasalazine administration. No specific therapeutic option is available against this complication. The current investigation was designed to evaluate the potential protective effects of taurine against sulfasalazine-induced kidney and liver injury in rats. Methods: Male Sprague-Dawley rats were administered with sulfasalazine (600 mg/kg, oral) for 14 consecutive days. Animals received different doses of taurine (250, 500 and 1000 mg/ kg, i.p.) every day. Markers of organ injury were evaluated on day 15th, 24 h after the last dose of sulfasalazine. Results: Sulfasalazine caused renal and hepatic injury as judged by an increase in serum level of creatinine (Cr), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP). The levels of reactive oxygen species (ROS) and lipid peroxidation were raised in kidney and liver of sulfasalazine-treated animals. Moreover, tissue glutathione reservoirs were depleted after sulfasalazine administration. Histopathological changes of kidney and liver also endorsed organ injury. Taurine administration (250, 500 and 1000 mg/kg/day, i.p) alleviated sulfasalazine-induced renal and hepatic damage. Conclusion: Taurine administration could serve as a potential protective agent with therapeutic capabilities against sulfasalazine adverse effects. PMID:27340618

  3. Oxygen-dependent expression of hypoxia-inducible factor-1alpha in renal medullary cells of rats.

    PubMed

    Zou, A P; Yang, Z Z; Li, P L; Cowley AW, J R

    2001-08-28

    Hypoxia-inducible factor-1alpha (HIF-1alpha) is a transcription factor that regulates the oxygen-dependent expression of a number of genes. This transcription factor may contribute to the abundant expression of many genes in renal medullary cells that function normally under hypoxic conditions. The present study was designed to determine the characteristics of HIF-1alpha cDNA cloned from the rat kidney and the expression profile of HIF-1alpha in different kidney regions and to explore the mechanism activating or regulating HIF-1alpha expression in renal medullary cells. A 3,718-bp HIF-1alpha cDNA from the rat kidney was first cloned and sequenced using RT-PCR and TA cloning technique. It was found that 823 amino acids deduced from this renal HIF-1alpha cDNA had 99%, 96%, and 90% identity with rat, mouse, or human HIF-1alpha deposited in GenBank, respectively. The 3'-untranslated region of HIF-1alpha mRNA from the rat kidney contained seven AUUUA instability elements, five of which were found to be conserved among rat, mouse, and human HIF-1alpha. Northern blot analyses demonstrated a corticomedullary gradient of HIF-1alpha mRNA expression in the kidney, with the greatest abundance in the renal inner medulla. Western blot analyses also detected a higher HIF-1alpha protein level in the nuclear extracts from the renal medulla than the renal cortex. A classic loop diuretic, furosemide (10 mg/kg ip), markedly increased renal medullary Po(2) levels from 22.5 to 52.2 mmHg, which was accompanied by a significant reduction of HIF-1alpha transcripts in renal medullary tissue. In in vitro experiments, low Po(2), but not elevated osmolarity, was found to significantly increase HIF-1alpha mRNA in renal medullary interstitial cells and inner medullary collecting duct cells. These results indicate that HIF-1alpha is more abundantly expressed in the renal medulla compared with the renal cortex. Increased abundance of HIF-1alpha mRNA in the renal medulla may represent an adaptive

  4. Role of CDK5/cyclin complexes in ischemia-induced death and survival of renal tubular cells.

    PubMed

    Guevara, Tatiana; Sancho, Mónica; Pérez-Payá, Enrique; Orzáez, Mar

    2014-01-01

    Ischemia reperfusion processes induce damage in renal tubules and compromise the viability of kidney transplants. Understanding the molecular events responsible for tubule damage and recovery would help to develop new strategies for organ preservation. CDK5 has been traditionally considered a neuronal kinase with dual roles in cell death and survival. Here, we demonstrate that CDK5 and their regulators p35/p25 and cyclin I are also expressed in renal tubular cells. We show that treatment with CDK inhibitors promotes the formation of pro-survival CDK5/cyclin I complexes and enhances cell survival upon an ischemia reperfusion pro-apoptotic insult. These findings support the benefit of treating with CDK inhibitors for renal preservation, assisting renal tubule protection.

  5. Role of SRC family kinase in extracellular renal cyclic guanosine 3',5'-monophosphate- and pressure-induced natriuresis.

    PubMed

    Nascimento, Nilberto R F; Kemp, Brandon A; Howell, Nancy L; Gildea, John J; Santos, Cláudia F; Harris, Thurl E; Carey, Robert M

    2011-07-01

    cGMP functions as an extracellular (paracrine) messenger acting at the renal proximal tubule and is an important modulator of pressure-natriuresis (P-N). The signaling pathway activated by cGMP in the tubule cell basolateral membrane remains unknown. We hypothesized that renal interstitial microinfusion of cGMP (50 nmol/kg per minute) or P-N would be accompanied by increased renal protein levels of phospho-Src (Tyr 416) and that the natriuresis would be decreased by Src inhibition. Renal interstitial cGMP-induced natriuresis was blocked by Src inhibitor PP2 (2.0±0.4 versus 0.5±0.01 μEq/g per minute; P<0.001). The inactive analog of PP2, PP3, had no effect on cGMP-induced natriuresis. SU6656, another Src inhibitor, also inhibited cGMP-induced natriuresis (2.0±0.4 versus 1.02±0.01 μEq/g per minute; P<0.001). Renal interstitial cGMP infusion increased phospho-Src protein levels 5.6-fold at 15 minutes and 6.8-fold at 30 minutes compared with vehicle infusion but returned toward basal levels after 60 minutes. PP2 also blunted P-N (3.1±0.1 versus 1.1±0.3 μEq/g per minute; P<0.01) despite a similar increase in blood pressure. PP3 had no effect on P-N. Phospho-Src protein levels increased during P-N in vehicle- (1.8-fold) and PP3-treated (2.1-fold) groups compared with the sham-operated group. PP2 blocked the pressure-induced increase in renal phospho-Src protein levels. PP2 had no effect on renal hemodynamics but decreased both fractional excretion of Na(+) and lithium. Both extracellular cGMP and increased renal perfusion pressure increased renal phospho-Src protein levels and induced natriuresis in an Src-dependent manner, demonstrating that Src is an important downstream signaling molecule for extracellular cGMP-induced natriuresis.

  6. Ras modulation of superoxide activates ERK-dependent fibronectin expression in diabetes-induced renal injuries.

    PubMed

    Lin, C-L; Wang, F-S; Kuo, Y-R; Huang, Y-T; Huang, H-C; Sun, Y-C; Kuo, Y-H

    2006-05-01

    Although previous studies have demonstrated that diabetic nephropathy is attributable to early extracellular matrix accumulation in glomerular mesangial cells, the molecular mechanism by which high glucose induces matrix protein deposition remains not fully elucidated. Rat mesangial cells pretreated with or without inhibitors were cultured in high-glucose or advanced glycation end product (AGE) conditions. Streptozotocin-induced diabetic rats were given superoxide dismutase (SOD)-conjugated propylene glycol to scavenge superoxide. Transforming growth factor (TGF)-beta1, fibronectin expression, Ras, ERK, p38, and c-Jun activation of glomerular mesangial cells or urinary albumin secretion were assessed. Superoxide, not nitric oxide or hydrogen peroxide, mediated high glucose- and AGE-induced TGF-beta1 and fibronectin expression. Pretreatment with diphenyliodonium, not allopurinol or rotenone, reduced high-glucose and AGE augmentation of superoxide synthesis and fibronection expression. High glucose and AGEs rapidly enhanced Ras activation and progressively increased cytosolic ERK and nuclear c-Jun activation. Inhibiting Ras by manumycin A reduced the stimulatory effects of high glucose and AGEs on superoxide and fibronectin expression. SOD or PD98059 pretreatment reduced high-glucose and AGE promotion of ERK and c-Jun activation. Exogenous SOD treatment in diabetic rats significantly attenuated diabetes induction of superoxide, urinary albumin excretion, 8-hydroxy-2'-deoxyguanosine, TGF-beta1, and fibronectin immunoreactivities in renal glomerular mesangial cells. Ras induction of superoxide activated ERK-dependent fibrosis-stimulatory factor and extracellular matrix gene transcription of mesangial cells. Reduction of oxidative stress by scavenging superoxide may provide an alternative strategy for controlling diabetes-induced early renal injury.

  7. Renal arteriography

    MedlinePlus

    Renal angiogram; Angiography - kidney; Renal angiography; Renal artery stenosis - arteriography ... an artery by a blood clot Renal artery stenosis Renal cell cancer Angiomyolipomas (noncancerous tumors of the ...

  8. The effect of oculo-acupuncture on recovery from ethylene glycol-induced acute renal injury in dogs.

    PubMed

    Liu, Jianzhu; Song, Kun-Ho; You, Myung-Jo; Son, Dong-Soo; Cho, Sung-Whan; Kim, Duck-Hwan

    2007-01-01

    The potential recovery effect by oculo-acupuncture (OA) on ethylene glycol-induced acute renal injury in dogs was investigated. Acute renal damage was induced by ingestion of ethylene glycol in six mongrel dogs. The dogs were assigned to control (three dogs) and experimental (three dogs) groups. The control group did not receive any treatment, while the experimental group was treated with oculo-acupuncture at kidney/urinary bladder region plus zhong jiao region of the eyes after the induction of renal damage. Serum blood urea nitrogen (BUN), creatinine, sodium (Na), chloride (Cl), and potassium (K) were measured in both control and experimental groups. The blood RBC and Hb were also examined. The serum BUN and creatinine activities in the experimental group were lower than those in the control group, the serum Na and Cl had the irregular change in both groups, and the blood Hb in the control and experimental group showed decreasing tendency. Significant differences were observed on the 3rd and 7th day in BUN, 7th day in creatinine, 2nd day in Na and Cl, and 7th day in Hb when compared to the control group. Whereas, serum K concentration and RBC in the experimental group did not change significantly. The recovery findings of the renal injury were also observed in the experimental group histopathologically. In conclusion, OA therapy (kidney/urinary bladder region plus zhong jiao region) was effective for recovery of the renal injury induced by ethylene glycol in dogs.

  9. Activation of TRPV4 by dietary apigenin antagonizes renal fibrosis in deoxycorticosterone acetate (DOCA)-salt-induced hypertension.

    PubMed

    Wei, Xing; Gao, Peng; Pu, Yunfei; Li, Qiang; Yang, Tao; Zhang, Hexuan; Xiong, Shiqiang; Cui, Yuanting; Li, Li; Ma, Xin; Liu, Daoyan; Zhu, Zhiming

    2017-04-01

    Hypertension-induced renal fibrosis contributes to the progression of chronic kidney disease, and apigenin, an anti-hypertensive flavone that is abundant in celery, acts as an agonist of transient receptor potential vanilloid 4 (TRPV4). However, whether apigenin reduces hypertension-induced renal fibrosis, as well as the underlying mechanism, remains elusive. In the present study, the deoxycorticosterone acetate (DOCA)-salt hypertension model was established in male Sprague-Dawley rats that were treated with apigenin or vehicle for 4 weeks. Apigenin significantly attenuated the DOCA-salt-induced structural and functional damage to the kidney, which was accompanied by reduced expression of transforming growth factor-β1 (TGF-β1)/Smad2/3 signaling pathway and extracellular matrix proteins. Immunochemistry, cell-attached patch clamp and fluorescent Ca(2+) imaging results indicated that TRPV4 was expressed and activated by apigenin in both the kidney and renal cells. Importantly, knockout of TRPV4 in mice abolished the beneficial effects of apigenin that were observed in the DOCA-salt hypertensive rats. Additionally, apigenin directly inhibited activation of the TGF-β1/Smad2/3 signaling pathway in different renal tissues through activation of TRPV4 regardless of the type of pro-fibrotic stimulus. Moreover, the TRPV4-mediated intracellular Ca(2+) influx activated the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) pathway, which inhibited the TGF-β1/Smad2/3 signaling pathway. In summary, dietary apigenin has beneficial effects on hypertension-induced renal fibrosis through the TRPV4-mediated activation of AMPK/SIRT1 and inhibition of the TGF-β1/Smad2/3 signaling pathway. This work suggests that dietary apigenin may represent a promising lifestyle modification for the prevention of hypertension-induced renal damage in populations that consume a high-sodium diet.

  10. Renal effects of fresh water-induced hypo-osmolality in a marine adapted seal

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Wade, C. E.; Costa, D. P.; Ortiz, C. L.

    2002-01-01

    With few exceptions, marine mammals are not exposed to fresh water; however quantifying the endocrine and renal responses of a marine-adapted mammal to the infusion of fresh water could provide insight on the evolutionary adaptation of kidney function and on the renal capabilities of these mammals. Therefore, renal function and hormonal changes associated with fresh water-induced diuresis were examined in four, fasting northern elephant seal ( Mirounga angustirostris) (NES) pups. A series of plasma samples and 24-h urine voids were collected prior to (control) and after the infusion of water. Water infusion resulted in an osmotic diuresis associated with an increase in glomerular filtration rate (GFR), but not an increase in free water clearance. The increase in excreted urea accounted for 96% of the increase in osmotic excretion. Following infusion of fresh water, plasma osmolality and renin activity decreased, while plasma aldosterone increased. Although primary regulators of aldosterone release (Na(+), K(+) and angiotensin II) were not significantly altered in the appropriate directions to individually stimulate aldosterone secretion, increased aldosterone may have resulted from multiple, non-significant changes acting in concert. Aldosterone release may also be hypersensitive to slight reductions in plasma Na(+), which may be an adaptive mechanism in a species not known to drink seawater. Excreted aldosterone and urea were correlated suggesting aldosterone may regulate urea excretion during hypo-osmotic conditions in NES pups. Urea excretion appears to be a significant mechanism by which NES pups sustain electrolyte resorption during conditions that can negatively affect ionic homeostasis such as prolonged fasting.

  11. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats

    PubMed Central

    Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara EF; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia CM; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M

    2016-01-01

    This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. PMID:26490345

  12. Hypoxia-Inducible Factor-1α Causes Renal Cyst Expansion through Calcium-Activated Chloride Secretion

    PubMed Central

    Schley, Gunnar; Faria, Diana; Kroening, Sven; Willam, Carsten; Schreiber, Rainer; Klanke, Bernd; Burzlaff, Nicolai; Jantsch, Jonathan; Kunzelmann, Karl; Eckardt, Kai-Uwe

    2014-01-01

    Polycystic kidney diseases are characterized by numerous bilateral renal cysts that continuously enlarge and, through compression of intact nephrons, lead to a decline in kidney function over time. We previously showed that cyst enlargement is accompanied by regional hypoxia, which results in the stabilization of hypoxia-inducible transcription factor-1α (HIF-1α) in the cyst epithelium. Here we demonstrate a correlation between cyst size and the expression of the HIF-1α–target gene, glucose transporter 1, and report that HIF-1α promotes renal cyst growth in two in vitro cyst models—principal-like MDCK cells (plMDCKs) within a collagen matrix and cultured embryonic mouse kidneys stimulated with forskolin. In both models, augmenting HIF-1α levels with the prolyl hydroxylase inhibitor 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate enhanced cyst growth. In addition, inhibition of HIF-1α degradation through tubule-specific knockdown of the von Hippel-Lindau tumor suppressor increased cyst size in the embryonic kidney cyst model. In contrast, inhibition of HIF-1α by chetomin and knockdown of HIF-1α both decreased cyst growth in these models. Consistent with previous reports, plMDCK cyst enlargement was driven largely by transepithelial chloride secretion, which consists, in part, of a calcium-activated chloride conductance. plMDCKs deficient for HIF-1α almost completely lacked calcium-activated chloride secretion. We conclude that regional hypoxia in renal cysts contributes to cyst growth, primarily due to HIF-1α–dependent calcium-activated chloride secretion. These findings identify the HIF system as a novel target for inhibition of cyst growth. PMID:24203996

  13. Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma.

    PubMed

    Cao, Jingyi; Wang, Hainan; Chen, Feifei; Fang, Jianzheng; Xu, Aiming; Xi, Wei; Zhang, Shengli; Wu, Gang; Wang, Zengjun

    2016-05-01

    Galangin, a flavonoid extracted from the root of the Alpinia officinarum Hence, has been shown to have anticancer properties against several types of cancer cells. However, the influence of galangin on human renal cancer cells remains to be elucidated. In the present study, proliferation of 786‑0 and Caki‑1 cells was suppressed following exposure to various doses of galangin. Cell invasion and wound healing assays were used to observe the effect of galangin on invasion and migration. The results demonstrated that Galangin inhibited cell invasion by suppressing the epithelial mesenchymal transition (EMT), with an increase in the expression of E‑cadherin and decreased expression levels of N‑cadherin and vimentin. The apoptosis induced by galangin was analyzed by flow cytometry. The results revealed that galangin induced apoptosis in a dose‑dependent manner. The accumulation of reactive oxygen species (ROS) is an important contributing factor for the apoptosis of various types of cancer cell. The dichlorofluorescein-diacetate method was used to determine the level of ROS. Galangin induced the accumulation of intracellular ROS and malondialdehyde, and decreased the activities of total antioxidant and superoxide dismutase in renal cell carcinoma cells. Galangin exerted an antiproliferative effect and inhibited renal cell carcinoma invasion by suppressing the EMT. This treatment also induced apoptosis, accompanied by the production of ROS. Therefore, the present data suggested that galangin may have beneficial effects by preventing renal cell carcinoma growth, inhibiting cell invasion via the EMT and inducing cell apoptosis.

  14. Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma

    PubMed Central

    CAO, JINGYI; WANG, HAINAN; CHEN, FEIFEI; FANG, JIANZHENG; XU, AIMING; XI, WEI; ZHANG, SHENGLI; WU, GANG; WANG, ZENGJUN

    2016-01-01

    Galangin, a flavonoid extracted from the root of the Alpinia officinarum Hence, has been shown to have anticancer properties against several types of cancer cells. However, the influence of galangin on human renal cancer cells remains to be elucidated. In the present study, proliferation of 786-0 and Caki-1 cells was suppressed following exposure to various doses of galangin. Cell invasion and wound healing assays were used to observe the effect of galangin on invasion and migration. The results demonstrated that Galangin inhibited cell invasion by suppressing the epithelial mesenchymal transition (EMT), with an increase in the expression of E-cadherin and decreased expression levels of N-cadherin and vimentin. The apoptosis induced by galangin was analyzed by flow cytometry. The results revealed that galangin induced apoptosis in a dose-dependent manner. The accumulation of reactive oxygen species (ROS) is an important contributing factor for the apoptosis of various types of cancer cell. The dichlorofluorescein-diacetate method was used to determine the level of ROS. Galangin induced the accumulation of intracellular ROS and malondialdehyde, and decreased the activities of total antioxidant and superoxide dismutase in renal cell carcinoma cells. Galangin exerted an antiproliferative effect and inhibited renal cell carcinoma invasion by suppressing the EMT. This treatment also induced apoptosis, accompanied by the production of ROS. Therefore, the present data suggested that galangin may have beneficial effects by preventing renal cell carcinoma growth, inhibiting cell invasion via the EMT and inducing cell apoptosis. PMID:27035542

  15. Barnidipine ameliorates the vascular and renal injury in L-NAME-induced hypertensive rats.

    PubMed

    Alp Yildirim, F Ilkay; Eker Kizilay, Deniz; Ergin, Bülent; Balci Ekmekçi, Özlem; Topal, Gökçe; Kucur, Mine; Demirci Tansel, Cihan; Uydeş Doğan, B Sönmez

    2015-10-05

    The present study was aimed to investigate the influence of Barnidipine treatment on early stage hypertension by determining the function and morphology of the mesenteric and renal arteries as well as the kidney in N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME)-induced hypertensive rats. Barnidipine (3 mg/kg/day p.o) was applied to rats after 2 weeks of L-NAME (60 mg/kg/day) administration, and continued for the next 3 weeks concomitantly with L-NAME. The systolic blood pressure (SBP) of rats was determined to decrease significantly in Barnidipine treated hypertensive group when compared to that of rats received L-NAME alone. Myograph studies demonstrated that the contractile reactivity to noradrenaline were significantly reduced in both of the resistance arteries while endothelium-dependent relaxations to acethylcholine were significantly diminished particularly in the mesenteric arteries of L-NAME-induced hypertensive rats. The impaired contractile and endothelial responses were completely restored by concomitant treatment of Barnidipine with L-NAME. Histopathological examinations verified structural alterations in the arteries as well as the kidney. Moreover, a decrease in endothelial nitric oxide synthase (eNOS) expression was presented both in the arteries and kidney of hypertensive rats which were increased following Barnidipine treatment. Elevated plasma levels of malondialdehyde (MDA) and myeloperoxidase (MPO) were also reduced in Barnidipine treated hypertensive rats. In conclusion, besides to its efficacy in reducing the elevated SBP, amelioration of vascular function, modulation of arterial and renal eNOS expressions as well as reduction of the plasma levels of oxidative and inflammatory biomarkers are possible supportive mechanisms mediating the favorable implications of Barnidipine in L-NAME-induced hypertension model.

  16. Protective effect of sulfated chitosan of C3 sulfation on glycerol-induced acute renal failure in rat kidney.

    PubMed

    Xing, Ronge; Liu, Song; Yu, Huahua; Qin, Yukun; Chen, Xiaolin; Li, Kecheng; Li, Pengcheng

    2014-04-01

    The purpose of this study was to investigate the protective effects of sulfated chitosan of C3 sulfation (TCTS) on the glycerol-induced acute renal failure. Compared with the normal group, rats from model group exhibited collecting duct and medullary ascending limb dilation and casts by glycerol treating. TCTS, which was injected to pretreat rats by glycerol, exerted a protective effect. The results showed that serum creatinine and blood urea nitrogen were markedly increased in glycerol-treated rats. It is proved that TCTS reduced their levels significantly. Ions level in plasma and urine were significantly changed in glycerol-treated rats, whereas TCTS almost recovered their levels back to normal. For female rats, administration of TCTS reduced their mortality. This study showed a noticeable renal morphologic and functional protection by TCTS in glycerol-induced acute renal failure.

  17. Early Detection of Drug-Induced Renal Hemodynamic Dysfunction Using Sonographic Technology in Rats

    PubMed Central

    Fisch, Sudeshna; Liao, Ronglih; Hsiao, Li-Li; Lu, Tzongshi

    2016-01-01

    The kidney normally functions to maintain hemodynamic homeostasis and is a major site of damage caused by drug toxicity. Drug-induced nephrotoxicity is estimated to contribute to 19- 25% of all clinical cases of acute kidney injury (AKI) in critically ill patients. AKI detection has historically relied on metrics such as serum creatinine (sCr) or blood urea nitrogen (BUN) which are demonstrably inadequate in full assessment of nephrotoxicity in the early phase of renal dysfunction. Currently, there is no robust diagnostic method to accurately detect hemodynamic alteration in the early phase of AKI while such alterations might actually precede the rise in serum biomarker levels. Such early detection can help clinicians make an accurate diagnosis and help in in decision making for therapeutic strategy. Rats were treated with Cisplatin to induce AKI. Nephrotoxicity was assessed for six days using high-frequency sonography, sCr measurement and upon histopathology of kidney. Hemodynamic evaluation using 2D and Color-Doppler images were used to serially study nephrotoxicity in rats, using the sonography. Our data showed successful drug-induced kidney injury in adult rats by histological examination. Color-Doppler based sonographic assessment of AKI indicated that resistive-index (RI) and pulsatile-index (PI) were increased in the treatment group; and peak-systolic velocity (mm/s), end-diastolic velocity (mm/s) and velocity-time integral (VTI, mm) were decreased in renal arteries in the same group. Importantly, these hemodynamic changes evaluated by sonography preceded the rise of sCr levels. Sonography-based indices such as RI or PI can thus be useful predictive markers of declining renal function in rodents. From our sonography-based observations in the kidneys of rats that underwent AKI, we showed that these noninvasive hemodynamic measurements may consider as an accurate, sensitive and robust method in detecting early stage kidney dysfunction. This study also

  18. Numb Protects Human Renal Tubular Epithelial Cells From Bovine Serum Albumin-Induced Apoptosis Through Antagonizing CHOP/PERK Pathway.

    PubMed

    Ding, Xuebing; Ma, Mingming; Teng, Junfang; Shao, Fengmin; Wu, Erxi; Wang, Xuejing

    2016-01-01

    In recent studies, we found that Numb is involved in oxidative stress-induced apoptosis of renal proximal tubular cells; however, its function on ER stress-induced apoptosis in proteinuric kidney disease remains unknown. The objective of the present study is to explore the role of Numb in urinary albumin-induced apoptosis of human renal tubular epithelial cells (HKCs). In this study, we demonstrate that incubation of HKCs with bovine serum albumin (BSA) resulted in caspase three-dependent cell death. Numb expression was down-regulated by BSA in a time- and dose-dependent manner. Knockdown of Numb by siRNA sensitized HKCs to BSA-induced apoptosis, whereas overexpression of Numb protected HKCs from BSA-induced apoptosis. Moreover, BSA activated CHOP/PERK signaling pathway in a time- and dose-dependent manner as indicated by increased expression of CHOP, PERK, and P-PERK. Furthermore, knockdown of CHOP or PERK significantly attenuated the promoting effect of Numb on BSA-induced apoptosis, while overexpression of CHOP impaired the protective effect of Numb on BSA-induced apoptosis. Taken together, our findings demonstrate that Numb plays a protective role on BSA-induced apoptosis through inhibiting CHOP/PERK signaling pathway in human renal tubular epithelial cells. Therefore, the results from this study provides evidence that Numb is a new target of ER-associated apoptotic signaling networks and Numb may serve as a promising therapeutic target for proteinuric diseases.

  19. Antioxidant and Nephroprotective Activities of Aconitum heterophyllum Root in Glycerol Induced Acute Renal Failure in Rats

    PubMed Central

    Eerike, Madhavi; Raghuraman, Lakshmipathy Prabhu; Rajamanickam, Maignana Kumar

    2016-01-01

    Aim The present study was to evaluate the antioxidant and nephroprotective activities of ethanolic extract of Aconitum heterophyllum root (EEAHR) in glycerol induced acute renal failure (ARF) in Wistar albino rats. Materials and Methods In vitro antioxidant activity of EEAHR was assessed using the 2, 2-diphenyl-picrylhydrazyl (DPPH assay), nitric oxide radical scavenging (NO assay), hydrogen peroxide (H2O2 assay) and ferric reducing antioxidant power (FRAP) scavenging activity assays. In vivo study, rats were divided into four groups of six each for assessing the nephroprotective activity. Group-1 received normal saline, group-2 received 50% glycerol (10 ml/kg) alone, group-3 received glycerol and 250 mg/kg of EEAHR and group-4 received glycerol and 500 mg/kg of EEAHR. The renal injury and recovery was measured by serum creatinine, blood urea nitrogen (BUN), total proteins, albumin, urine output and histopathological changes. Results In vitro antioxidant activity of root extract was found to be equal to Vitamin C and in an in vivo study root extract treated animals showed significant attenuation of biochemical parameters and histopathological changes of the kidney compared to glycerol treated group and it was found to be more significant with the extract at 500 mg/kg than 250mg/kg. Conclusion The present study revealed that Aconitum heterophyllum root has shown antioxidant and nephroprotective activities. PMID:27134892

  20. Molecular mechanisms for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection.

    PubMed

    Watanabe, Hiroshi

    2013-01-01

    Chronic kidney disease (CKD), marked by a progressive loss in renal function, is a leading cause of hemodialysis initiation and cardiovascular disease (CVD). There are currently 13.3 million patients with CKD and 300 thousand patients are currently undergoing hemodialysis in Japan. Therefore, preventing the initiation of dialysis and reducing the risk of cardiovascular death are high-priority issues from the viewpoint of public health and economic implications. Understanding the molecular mechanism responsible for the progression of CKD and cardiovascular damage regarding crosstalk between the kidney and cardiovascular system is an important issue in controlling the pathogenesis of CKD-CVD. However, the mechanisms involved in CKD-CVD are not well understood. This hinders the development of new treatment strategies. We have been investigating the role of protein bound uremic toxins, that are difficult to remove by hemodialysis, on the onset and progression of CKD and CVD. The relationship between their redox properties and the pathogenesis of CKD-CVD was examined. In this review, we focus on two sulfate conjugated uremic toxins, namely, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), and summarize recent studies that provide new insights on the molecular mechanisms responsible for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection.

  1. Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells.

    PubMed

    Gao, Yang; Romero-Aleshire, Melissa J; Cai, Qi; Price, Theodore J; Brooks, Heddwen L

    2013-10-15

    Nephrogenic diabetes insipidus (NDI) is the most common renal side effect in patients undergoing lithium therapy for bipolar affective disorders. Approximately 2 million US patients take lithium of whom ∼50% will have altered renal function and develop NDI (2, 37). Lithium-induced NDI is a defect in the urinary concentrating mechanism. Lithium therapy also leads to proliferation and abundant renal cysts (microcysts), commonly in the collecting ducts of the cortico-medullary region. The mTOR pathway integrates nutrient and mitogen signals to control cell proliferation and cell growth (size) via the mTOR Complex 1 (mTORC1). To address our hypothesis that mTOR activation may be responsible for lithium-induced proliferation of collecting ducts, we fed mice lithium chronically and assessed mTORC1 signaling in the renal medulla. We demonstrate that mTOR signaling is activated in the renal collecting ducts of lithium-treated mice; lithium increased the phosphorylation of rS6 (Ser240/Ser244), p-TSC2 (Thr1462), and p-mTOR (Ser2448). Consistent with our hypothesis, treatment with rapamycin, an allosteric inhibitor of mTOR, reversed lithium-induced proliferation of medullary collecting duct cells and reduced levels of p-rS6 and p-mTOR. Medullary levels of p-GSK3β were increased in the renal medullas of lithium-treated mice and remained elevated following rapamycin treatment. However, mTOR inhibition did not improve lithium-induced NDI and did not restore the expression of collecting duct proteins aquaporin-2 or UT-A1.

  2. Beneficial effects of diminished production of hydrogen sulfide or carbon monoxide on hypertension and renal injury induced by NO withdrawal

    PubMed Central

    Wesseling, Sebastiaan; Fledderus, Joost O; Verhaar, Marianne C; Joles, Jaap A

    2015-01-01

    Background and Purpose Whether NO, carbon monoxide (CO) and hydrogen sulfide (H2S) compensate for each other when one or more is depleted is unclear. Inhibiting NOS causes hypertension and kidney injury. Both global depletion of H2S by cystathionine γ-lyase (CSE) gene deletion and low levels of exogenous H2S cause hypertension. Inhibiting CO-producing enzyme haeme oxygenase-1 (HO-1) makes rodents hypersensitive to hypertensive stimuli. We hypothesized that combined inhibition of NOS and HO-1 exacerbates hypertension and renal injury, but how combined inhibition of NOS and CSE affect hypertension and renal injury was unclear. Experimental Approach Rats were treated with inhibitors of NOS (L-nitroarginine; LNNA), CSE (DL-propargylglycine; PAG), or HO-1 (tin protoporphyrin; SnPP) singly for 1 or 4 weeks or in combinations for 4 weeks. Key Results LNNA always reduced NO, decreased H2S and increased CO after 4 weeks. PAG abolished H2S, always enhanced CO and reduced NO, but not when used in combination with other inhibitors. SnPP always increased NO, enhanced H2S and inhibited CO after 1 week. Rats treated with LNNA, but not PAG and SnPP, rapidly developed hypertension followed by renal dysfunction. LNNA-induced hypertension was ameliorated and renal dysfunction prevented by all additional treatments. Renal HO-1 expression was increased by LNNA in injured tubules and increased in all tubules by all other treatments. Conclusions and Implications The amelioration of LNNA-induced hypertension and renal injury by additional inhibition of H2S and/or CO-producing enzymes appeared to be associated with secondary increases in renal CO or NO production. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:24597655

  3. CRM1 inhibitor S109 suppresses cell proliferation and induces cell cycle arrest in renal cancer cells.

    PubMed

    Liu, Xuejiao; Chong, Yulong; Liu, Huize; Han, Yan; Niu, Mingshan

    2016-03-01

    Abnormal localization of tumor suppressor proteins is a common feature of renal cancer. Nuclear export of these tumor suppressor proteins is mediated by chromosome region maintenance-1 (CRM1). Here, we investigated the antitumor eff ects of a novel reversible inhibitor of CRM1 on renal cancer cells. We found that S109 inhibits the CRM1-mediated nuclear export of RanBP1 and reduces protein levels of CRM1. Furthermore, the inhibitory eff ect of S109 on CRM1 is reversible. Our data demonstrated that S109 signifi cantly inhibits proliferation and colony formation of renal cancer cells. Cell cycle assay showed that S109 induced G1-phase arrest, followed by the reduction of Cyclin D1 and increased expression of p53 and p21. We also found that S109 induces nuclear accumulation of tumor suppressor proteins, Foxo1 and p27. Most importantly, mutation of CRM1 at Cys528 position abolished the eff ects of S109. Taken together, our results indicate that CRM1 is a therapeutic target in renal cancer and the novel reversible CRM1 inhibitor S109 can act as a promising candidate for renal cancer therapy.

  4. Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats.

    PubMed

    Rashid, Summya; Ali, Nemat; Nafees, Sana; Hasan, Syed Kazim; Sultana, Sarwat

    2014-04-01

    5-Fluorouracil (5-FU) is a potent antineoplastic agent commonly used for the treatment of various malignancies. It has diverse adverse effects such as cardiotoxicity, nephrotoxicity and hepatotoxicity which restrict its wide and extensive clinical usage. It causes marked organ toxicity coupled with increased oxidative stress and apoptosis. Chrysin (CH), a natural flavonoid found in many plant extracts, propolis, blue passion flower. It has antioxidative and anti-cancerous properties. The present study was designed to investigate the protective effects of CH against 5-FU induced renal toxicity in wistar rats using biochemical, histopathological and immunohistochemical approaches. Rats were subjected to prophylactic oral treatment of CH (50 and 100mg/kg b.wt.) for 21 days against renal toxicity induced by single intraperitoneal administration of 5-FU (150 mg/kg b.wt.). The possible mechanism of 5-FU induced renal toxicity is the induction of oxidative stress; activation of apoptotic pathway by upregulation of p53, bax, caspase-3 and down regulating Bcl-2. However prophylactic treatment of CH decreased serum toxicity markers, increased anti-oxidant armory as well as regulated apoptosis in kidney. Histopathological changes further confirmed the biochemical and immunohistochemical results. Therefore, results of the present finding suggest that CH may be a useful modulator in mitigating 5-FU induced renal toxicity.

  5. Diabetes-Induced Decrease in Renal Oxygen Tension: Effects of an Altered Metabolism

    NASA Astrophysics Data System (ADS)

    Palm, Fredrik; Carlsson, Per-Ola; Fasching, Angelica; Hansell, Peter; Liss, Per

    During conditions with experimental diabetes mellitus, it is evident that several alterations in renal oxygen metabolism occur, including increased mitochondrial respiration and increased lactate accumulation in the renal tissue. Consequently, these alterations will contribute to decrease the interstitial pO2, preferentially in the renal medulla of animals with sustained long-term hyperglycemia.

  6. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats.

    PubMed

    Lakhera, Abhijeet; Ganeshpurkar, Aditya; Bansal, Divya; Dubey, Nazneen

    2015-06-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components.

  7. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats

    PubMed Central

    Lakhera, Abhijeet; Bansal, Divya; Dubey, Nazneen

    2015-01-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components. PMID:27486367

  8. Radiation induced esophageal adenocarcinoma in a woman previously treated for breast cancer and renal cell carcinoma

    PubMed Central

    2012-01-01

    Background Secondary radiation-induced cancers are rare but well-documented as long-term side effects of radiation in large populations of breast cancer survivors. Multiple neoplasms are rare. We report a case of esophageal adenocarcinoma in a patient treated previously for breast cancer and clear cell carcinoma of the kidney. Case presentation A 56 year-old non smoking woman, with no alcohol intake and no familial history of cancer; followed in the National Institute of Oncology of Rabat Morocco since 1999 for breast carcinoma, presented on consultation on January 2011 with dysphagia. Breast cancer was treated with modified radical mastectomy, 6 courses of chemotherapy based on CMF regimen and radiotherapy to breast, inner mammary chain and to pelvis as castration. Less than a year later, a renal right mass was discovered incidentally. Enlarged nephrectomy realized and showed renal cell carcinoma. A local and metastatic breast cancer recurrence occurred in 2007. Patient had 2 lines of chemotherapy and 2 lines of hormonotherapy with Letrozole and Tamoxifen assuring a stable disease. On January 2011, the patient presented dysphagia. Oesogastric endoscopy showed middle esophagus stenosing mass. Biopsy revealed adenocarcinoma. No evidence of metastasis was noticed on computed tomography and breast disease was controlled. Palliative brachytherapy to esophagus was delivered. Patient presented dysphagia due to progressive disease 4 months later. Jejunostomy was proposed but the patient refused any treatment. She died on July 2011. Conclusion We present here a multiple neoplasm in a patient with no known family history of cancers. Esophageal carcinoma is most likely induced by radiation. However the presence of a third malignancy suggests the presence of genetic disorders. PMID:22873795

  9. Low sodium intake does not impair renal compensation of hypoxia-induced respiratory alkalosis.

    PubMed

    Höhne, Claudia; Boemke, Willehad; Schleyer, Nora; Francis, Roland C; Krebs, Martin O; Kaczmarczyk, Gabriele

    2002-05-01

    Acute hypoxia causes hyperventilation and respiratory alkalosis, often combined with increased diuresis and sodium, potassium, and bicarbonate excretion. With a low sodium intake, the excretion of the anion bicarbonate may be limited by the lower excretion rate of the cation sodium through activated sodium-retaining mechanisms. This study investigates whether the short-term renal compensation of hypoxia-induced respiratory alkalosis is impaired by a low sodium intake. Nine conscious, tracheotomized dogs were studied twice either on a low-sodium (LS = 0.5 mmol sodium x kg body wt-1 x day-1) or high-sodium (HS = 7.5 mmol sodium x kg body wt-1 x day-1) diet. The dogs breathed spontaneously via a ventilator circuit during the experiments: first hour, normoxia (inspiratory oxygen fraction = 0.21); second to fourth hour, hypoxia (inspiratory oxygen fraction = 0.1). During hypoxia (arterial PO2 34.4 +/- 2.1 Torr), plasma pH increased from 7.37 +/- 0.01 to 7.48 +/- 0.01 (P < 0.05) because of hyperventilation (arterial PCO2 25.6 +/- 2.4 Torr). Urinary pH and urinary bicarbonate excretion increased irrespective of the sodium intake. Sodium excretion increased more during HS than during LS, whereas the increase in potassium excretion was comparable in both groups. Thus the quick onset of bicarbonate excretion within the first hour of hypoxia-induced respiratory alkalosis was not impaired by a low sodium intake. The increased sodium excretion during hypoxia seems to be combined with a decrease in plasma aldosterone and angiotensin II in LS as well as in HS dogs. Other factors, e.g., increased mean arterial blood pressure, minute ventilation, and renal blood flow, may have contributed.

  10. Renal antioxidant enzymes and glutathione redox status in leptin-induced hypertension.

    PubMed

    Bełtowski, Jerzy; Jamroz-Wiśniewska, Anna; Wójcicka, Grazyna; Lowicka, Ewelina; Wojtak, Andrzej

    2008-12-01

    Previously, we have demonstrated that leptin increases blood pressure (BP) in the rats through two oxidative stress-dependent mechanisms: stimulation of extracellular signal-regulated kinases (ERK) by H(2)O(2) and scavenging of nitric oxide (NO) by superoxide (O(2-.)). Herein, we examined if renal glutathione system and antioxidant enzymes determine the mechanism of prohypertensive effect of leptin. Leptin administered at 0.5 mg/kg/day for 4 or 8 days increased BP and renal Na(+),K(+)-ATPase activity and reduced fractional sodium excretion; these effects were prevented by NADPH oxidase inhibitor, apocynin. Superoxide scavenger, tempol, abolished the effect of leptin on BP and renal Na(+) pump in rats receiving leptin for 8 days, whereas ERK inhibitor, PD98059, was effective in animals treated with leptin for 4 days. Leptin administered for 4 days decreased glutathione (GSH) and increased glutathione disulfide (GSSG) in the kidney. In animals receiving leptin for 8 days GSH returned to normal level, which was accompanied by up-regulation of gamma-glutamylcysteine synthetase (gamma-GCS), a rate-limiting enzyme of the GSH biosynthetic pathway. In addition, superoxide dismutase (SOD) activity was decreased, whereas glutathione peroxidase (GPx) was increased in rats receiving leptin for 8 days. Cotreatment with gamma-GCS inhibitor, buthionine sulfoximine (BSO), accelerated, whereas GSH precursor, N-acetylcysteine (NAC), attenuated leptin-induced changes in gamma-GCS, SOD, and GPx. In addition, coadministration of BSO changed the mechanism of BP elevation from H(2)O(2)-ERK to (O(2-.))-NO dependent in animals receiving leptin for 4 days, whereas NAC had the opposite effect in rats treated with leptin for 8 days. These results suggest that initial change in GSH redox status induces decrease in SOD/GPx ratio, which results in greater amount of (O)2-.)) versus H(2)O(2) in later phase of leptin treatment, thus shifting the mechanism of BP elevation from H(2)O(2)-ERK to (O(2

  11. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice.

    PubMed

    Li, Jinhua; Qu, Xinli; Bertram, John F

    2009-10-01

    Diabetic nephropathy is the leading cause of chronic renal failure. Myofibroblasts play a major role in the synthesis and secretion of extracellular matrix in diabetic renal fibrosis. Increasing evidence suggests that endothelial cells may undergo endothelial-myofibroblast transition under physiological and pathophysiological circumstances. Therefore, this study investigates whether endothelial-myofibroblast transition occurs and contributes to the development of diabetic renal interstitial fibrosis. Diabetes was induced by administration of streptozotocin to Tie2-Cre;LoxP-EGFP mice, an endothelial lineage-traceable mouse line generated by crossbreeding B6.Cg-Tg(Tek-cre)12F1v/J mice with B6.Cg-Tg(ACTB-Bgeo/GFP)21Lbe/J mice. The endothelial-myofibroblast transition was also studied in MMECs (a mouse pancreatic microvascular endothelial cell line) and primary cultures of CD31+/EYFP- (enhanced yellow fluorescent protein) endothelial cells isolated from adult normal alpha-smooth muscle actin promoter-driven-EYFP (alpha-SMA/EYFP) mouse kidneys. Confocal microscopy demonstrated that 10.4 +/- 4.2 and 23.5 +/- 7.4% of renal interstitial myofibroblasts (alpha-SMA+) in 1- and 6-month streptozotocin-induced diabetic kidneys were of endothelial origin (EGFP+/alpha-SMA+ cells), compared with just 0.2 +/- 0.1% of myofibroblasts in vehicle-treated Tie2-Cre;LoxP-EGFP mice (P < 0.01). Confocal microscopy and real-time PCR showed that transforming growth factor (TGF)-beta1 induced de novo expression of alpha-SMA and loss of expression of VE-cadherin and CD31 in MMECs and primary cultures of renal endothelial cells in a time- and dose-dependent fashion. These findings demonstrate that the endothelial-myofibroblast transition occurs and contributes to the early development and progression of diabetic renal interstitial fibrosis and suggest that the endothelial-myofibroblast transition may be a therapeutic target.

  12. Protocatechuic Aldehyde Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Nox-Mediated Oxidative Stress and Renal Inflammation.

    PubMed

    Gao, Li; Wu, Wei-Feng; Dong, Lei; Ren, Gui-Ling; Li, Hai-Di; Yang, Qin; Li, Xiao-Feng; Xu, Tao; Li, Zeng; Wu, Bao-Ming; Ma, Tao-Tao; Huang, Cheng; Huang, Yan; Zhang, Lei; Lv, Xiongwen; Li, Jun; Meng, Xiao-Ming

    2016-01-01

    Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress, and programmed cell death of renal tubular epithelial cells, all of which lead to high mortality rates in patients. In this study, we examined the protective effect of protocatechuic aldehyde (PA) in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza (Lamiaceae). Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA blocks cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients receiving cisplatin treatment.

  13. Protocatechuic Aldehyde Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Nox-Mediated Oxidative Stress and Renal Inflammation

    PubMed Central

    Gao, Li; Wu, Wei-Feng; Dong, Lei; Ren, Gui-Ling; Li, Hai-Di; Yang, Qin; Li, Xiao-Feng; Xu, Tao; Li, Zeng; Wu, Bao-Ming; Ma, Tao-Tao; Huang, Cheng; Huang, Yan; Zhang, Lei; Lv, Xiongwen; Li, Jun; Meng, Xiao-Ming

    2016-01-01

    Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress, and programmed cell death of renal tubular epithelial cells, all of which lead to high mortality rates in patients. In this study, we examined the protective effect of protocatechuic aldehyde (PA) in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza (Lamiaceae). Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA blocks cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients receiving cisplatin treatment. PMID:27999546

  14. HIF Prolyl-Hydoxylase-2 Senses High Salt Intake to Increase Hypoxia Inducible Factor-1α Levels in the Renal Medulla

    PubMed Central

    Wang, Zhengchao; Zhu, Qing; Xia, Min; Li, Pin-Lan; Hinton, Shante J.; Li, Ningjun

    2010-01-01

    High salt induces the expression of transcription factor hypoxia-inducible factor (HIF)-1α and its target genes in the renal medulla, which is an important renal adaptive mechanism to high salt intake. HIF prolyl hydroxylase domain-containing proteins (PHDs) have been identified as major enzymes to promote the degradation of HIF-1α. PHD2 is the predominant isoform of PHDs in the kidney and primarily expressed in the renal medulla. The present study tested the hypothesis that PHD2 responds to high salt and mediates high salt-induced increase in HIF-1α levels in the renal medulla. In normotensive rats, high salt intake (4% NaCl, 10 days) significantly inhibited PHD2 expressions and enzyme activities in the renal medulla. Renal medullary overexpression of PHD2 transgene significantly decreased HIF-1α levels. PHD2 transgene also blocked high salt-induced activation of HIF-1α target genes heme oxygenase-1 and nitric oxide synthase-2 in the renal medulla. In Dahl salt-sensitive hypertensive rats, however, high salt intake did not inhibit the expression and activities of PHD2 in the renal medulla. Correspondingly, renal medullary HIF-1α levels were not up-regulated by high salt intake in these rats. After transfection of PHD2 shRNA, HIF-1α and its target genes were significantly up-regulated by high salt intake in Dahl S rats. Overexpression of PHD2 transgene in the renal medulla impaired renal sodium excretion after salt loading. These data suggest that high salt intake inhibits PHD2 in the renal medulla, thereby upregulating the HIF-1α expression. The lack of PHD-mediated response to high salt may represent a pathogenic mechanism producing salt sensitive hypertension. PMID:20308610

  15. Amelioration of Doxorubicin-Induced Cardiac and Renal Toxicity by Oxycarotenoid Lutein and Its Mechanism of Action.

    PubMed

    Sindhu, Edakkadath Raghavan; Nithya, Thattaruparambil Raveendran; Binitha, Ponnamparambil Purushothaman; Kuttan, Ramadasan

    2016-01-01

    We set out to determine the effect of oxycarotenoid lutein on reducing cardiac and renal toxicity induced by doxorubicin (DXR). We started with oral administration in rats of lutein for 15 d before administering DXR (30 mg/kg body weight, intraperitoneally, in a single dose). Animals in all groups were sacrificed 24 h after DXR administration. Serum markers of cardiac injury lactate dehydrogenase, creatine phosphokinase, serum glutamate oxaloacetate transaminase, and serum glutamate pyruvate transaminase increased drastically after DXR but decreased after lutein treatment (p < 0.001). Elevated serum urea and creatinine in DXR-treated rats were reduced by lutein treatment (p < 0.001). Lutein increased superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels in cardiac and renal tissues of DXR-treated rats. Pretreatment of lutein reduced DXR-induced rise of oxidative stress markers including lipid peroxidation, tissue hydroperoxides, and conjugated dienes in cardiac and renal tissue. These findings were supported by electrocardiogram measurements and histopathological analyses. Results confirmed the protection of lutein against cardiac and renal toxicity induced by DXR in rats.

  16. Differential effects of grape juice on gastric emptying and renal function from cisplatin-induced acute adverse toxicity.

    PubMed

    Ko, J-L; Tsai, C-H; Liu, T-C; Lin, M-Y; Lin, H-L; Ou, C-C

    2016-08-01

    Grape skin and seeds contain large amounts of phytochemicals such as polyphenols, resveratrol, and proanthocyanidins, which possess antioxidant activities. Cisplatin is widely used in the treatment of cancer. High doses of cisplatin have also been known to produce acute adverse effects. The aim of this study was to investigate the protective effects of antioxidant properties of whole grape juice (with skin and seeds) on cisplatin-induced acute gastrointestinal tract disorders and nephrotoxicity in Wistar rats. Gastric emptying is significantly increased in whole grape juice-pretreated rats when compared to cisplatin treatment alone. The expression of ghrelin mRNA of stomach is increased in rats with whole grape juice. However, pretreatment with whole grape juice did not reduce renal function markers in acute renal toxicity. No significant changes were recorded in the oxidative stress/antioxidant status parameters of any study group. In contrast, pretreatment with whole grape juice slightly improved tubular cell vacuolization, tubular dilatation, and cast formation in renal tubules. These results show that consumption of whole grape juice induces somewhat beneficial effects in preventing cisplatin-mediated dyspepsia but does not offer protection against cisplatin-induced acute renal toxicity.

  17. Vasopressin-induced natriuresis in the conscious rat: role of blood pressure, renal prostaglandin synthesis and the peptide ANF.

    PubMed Central

    Lote, C J; Thewles, A; Wood, J A

    1989-01-01

    1. The response to arginine vasopressin (AVP) at doses of 5 and 10 pmol (100 g body weight)-1 h-1 was studied in conscious rats during the infusion of 1% (w/v) dextrose at 11.6 ml h-1 with and without pre-treatment with indomethacin. 2. In the absence of indomethacin AVP infusion induced dose-related increases in sodium output that were positively correlated with increases in mean arterial blood pressure (MAP) and plasma atrial natriuretic factor (ANF) immunoreactivity. Increases in renal prostaglandin E2 (PGE2) synthesis were also associated with AVP infusion. 3. Indomethacin pre-treatment abolished the AVP-induced increases in renal PGE2 synthesis and also the dose-related differences in ANF immunoreactivity. Increases in MAP and sodium output were unaffected at the 10 pmol (100 g body weight)-1 h-1 dose of AVP and only slightly attenuated for the 5 pmol (100 g body weight)-1 h-1 dose. 4. For both series AVP induced marked falls in glomerular filtration rate (GFR) but only small transient falls in effective renal plasma flow. The observed falls in GFR support the view that the natriuresis is due to changes in tubular handling and not in the filtered load of sodium. 5. It is concluded that the natriuresis elicited by AVP is closely related to the pressor action of the hormone but renal PGE2 synthesis and plasma ANF are not responsible for mediating this response. PMID:2533261

  18. Targeting renal purinergic signalling for the treatment of lithium-induced nephrogenic diabetes insipidus.

    PubMed

    Kishore, B K; Carlson, N G; Ecelbarger, C M; Kohan, D E; Müller, C E; Nelson, R D; Peti-Peterdi, J; Zhang, Y

    2015-06-01

    Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development of nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulphate (Plavix(®)) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unravelled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action.

  19. Targeting Renal Purinergic Signalling for the Treatment of Lithium-induced Nephrogenic Diabetes Insipidus

    PubMed Central

    Kishore, B. K.; Carlson, N. G.; Ecelbarger, C. M.; Kohan, D. E.; Müller, C. E.; Nelson, R. D.; Peti-Peterdi, J.; Zhang, Y.

    2015-01-01

    Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats, and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulfate (Plavix®) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unraveled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action. PMID:25877068

  20. Vasodysfunction That Involves Renal Vasodysfunction, Not Abnormally Increased Renal Retention of Sodium, Accounts for the Initiation of Salt-Induced Hypertension

    PubMed Central

    Morris, R. Curtis; Schmidlin, Olga; Sebastian, Anthony; Tanaka, Masae; Kurtz, Theodore W.

    2016-01-01

    Prevailing theory holds that abnormally large increases in renal salt retention and cardiac output are early pathophysiologic events mediating initiation of most instances of salt-induced hypertension. This theory has come under increasing scrutiny because it is based on studies that lack measurements of sodium balance and cardiac output obtained during initiation of salt-loading in proper normal controls, i.e., salt-resistant subjects with normal blood pressure. Here we make the case for a “vasodysfunction” theory for initiation of salt-induced hypertension: In response to an increase in salt intake, a subnormal decrease in total peripheral resistance that involves a subnormal decrease in renal vascular resistance, in the absence of abnormally large increases in sodium retention and cardiac output, is the hemodynamic abnormality that usually mediates initiation of salt-induced increases in blood pressure (BP). It is the failure to normally decrease vascular resistance in response to salt loading that enables a normal increase of cardiac output to initiate the salt-induced increase in blood pressure. This theory is based on the results of properly controlled studies which consistently demonstrate that in salt-sensitive subjects, salt-loading initiates increased BP through a hemodynamic mechanism that: 1) does not usually involve early increases in sodium retention and cardiac output greater than those which occur with salt-loading in normal controls, and 2) usually involves an early failure to decrease vascular resistance to the same extent as that observed during salt-loading in normal controls. Multiple mechanisms including disturbances in nitric oxide and sympathetic nervous system activity likely underlie this subnormal vasodilatory response to salt that usually precedes and initiates salt-induced hypertension. PMID:26927006

  1. [Protective effect of Angelica sinensis polysaccharides on subacute renal damages induced by D-galactose in mice and its mechanism].

    PubMed

    Fan, Yan-ling; Xia, Jie-yu; Jia, Dao-yong; Zhang, Meng-si; Zhang, Yan-yan; Wang, Lu; Huang, Guo-ning; Wang, Ya-ping

    2015-11-01

    To explore the protective effect of Angelica sinensis polysaccharides(ASP) on subacute renal damages induced by D-galactose in mice and its mechanism. Male C57BL/6J mice were randomly divided into 3 groups, with 10 mice in each group. The D-galactose model group was subcutaneously injected with D-galactose (120 mg x kg(-1)), qd x 42; the ASP + D-galactose model group was intraperitoneally injected with ASP since the 8th day of the replication of the D-galactose model, qd x 35; and the normal control group was subcutaneously injected with saline at the same dose and time. On the 2nd day of after the injection, the peripheral blood was collected to measure the content of BUN, Crea, UA, Cys-C; paraffin sections were made to observe the renal histomorphology by HE staining; senescence-associated β-g-alactosidase (SA-β-Gal) stain was used to observe the relative optical density (ROD) in renal tissues; transmission electron microscopy was assayed to observe the renal ultrastructure; the renal tissue homogenate was prepared to measure the content of SOD, GSH-PX, MDA; the content of AGEs and 8-OH-dG were measured by ELISA. According to the result, compared with the D-galactose model group, the ASP + D-galactose model group showed obviously decreases in the content of BUN, Crea, UA, Cysc, AGES, 8-OH-dG, the number of hardening renal corpuscle, renal capsular space and renal tubular lumen, ROD of SA-β-Gal staining positive kidney cells, mesangial cells, basement membrane thickness, podocyte secondary processes fusion and MDA and increases in the number of normal renal corpuscle, ribosome and rough endoplasmic reticulum in podocytes, the activity of SOD and GSH-PX. In Conclusion, A. sinensis polysaccharides can antagonize kidney subacute damages induced by D-galactose in mice. Its protective mechanism may be correlated with the inhibition of the oxidative stress injury.

  2. [A Case of Renal Cell Carcinoma with High Everolimus Blood Concentrations and Hyperglycemia Due to Everolimus-Induced Hepatic Dysfunction].

    PubMed

    Takasaki, Shinya; Kikuchi, Masafumi; Kawasaki, Yoshihide; Ito, Akihiro; Arai, Yoichi; Yamaguchi, Hiroaki; Mano, Nariyasu

    2017-01-01

    We report the case of a patient who had renal cell carcinoma with high everolimus blood concentrations and hyperglycemia due to everolimus-induced hepatic dysfunction. A 74-year-old man who underwent right nephrectomy for renal cell carcinoma was administered everolimus for multiple lung metastases. Everolimus caused grade 3 hepatic dysfunction and hyperglycemia; hence, high blood levels of everolimus were observed. Although the patient was re-administrated everolimus after recovering from hepatic dysfunction, hepatic function test values worsened again. Everolimus was discontinued before its blood concentration increased, and the patient was switched to axitinib treatment. Therefore, the measurement of everolimus blood level is considered useful for the management of adverse events in renal cell carcinoma.

  3. Cancer Theranostic Nanoparticles Self-Assembled from Amphiphilic Small Molecules with Equilibrium Shift-Induced Renal Clearance

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Sun, Mo; Yu, Chunyang; Li, Jianqi; Huang, Xiaohua; Zhu, Xinyuan; Yan, Deyue; Shen, Jian

    2016-01-01

    Nano drug delivery systems have emerged as promising candidates for cancer therapy, whereas their uncertainly complete elimination from the body within specific timescales restricts their clinical translation. Compared with hepatic clearance of nanoparticles, renal excretion of small molecules is preferred to minimize the agent-induced toxicity. Herein, we construct in vivo renal-clearable nanoparticles, which are self-assembled from amphiphilic small molecules holding the capabilities of magnetic resonance imaging (MRI) and chemotherapy. The assembled nanoparticles can accumulate in tumor tissues for their nano-characteristics, while the small molecules dismantled from the nanoparticles can be efficiently cleared by kidneys. The renal-clearable nanoparticles exhibit excellent tumor-inhibition performance as well as low side effects and negligible chronic toxicity. These results demonstrate a potential strategy for small molecular nano drug delivery systems with obvious anticancer effect and low-toxic metabolism pathway for clinical applications. PMID:27446502

  4. Gemcitabine-induced hemolytic uremic syndrome mimicking scleroderma renal crisis presenting with Raynaud's phenomenon, positive antinuclear antibodies and hypertensive emergency.

    PubMed

    Yamada, Yuichiro; Suzuki, Keisuke; Nobata, Hironobu; Kawai, Hirohisa; Wakamatsu, Ryo; Miura, Naoto; Banno, Shogo; Imai, Hirokazu

    2014-01-01

    A 58-year-old woman who received gemcitabine for advanced gallbladder cancer developed an impaired renal function, thrombocytopenia, Raynaud's phenomenon, digital ischemic changes, a high antinuclear antibody titer and hypertensive emergency that mimicked a scleroderma renal crisis. A kidney biopsy specimen demonstrated onion-skin lesions in the arterioles and small arteries along with ischemic changes in the glomeruli, compatible with a diagnosis of hypertensive emergency (malignant hypertension). The intravenous administration of a calcium channel blocker, the oral administration of an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker and the transfusion of fresh frozen plasma were effective for treating the thrombocytopenia and progressive kidney dysfunction. Gemcitabine induces hemolytic uremic syndrome with accelerated hypertension and Raynaud's phenomenon, mimicking scleroderma renal crisis.

  5. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells.

    PubMed

    Baek, Su Mi; Kwon, Chae Hwa; Kim, Jae Ho; Woo, Jae Suk; Jung, Jin Sup; Kim, Yong Keun

    2003-09-01

    Reactive oxygen species (ROS) have been suggested as important mediators of cisplatin-induced acute renal failure in vivo. However, our previous studies have shown that cisplatin-induced cell death in vitro could not be prevented by scavengers of hydrogen peroxide and hydroxyl radical in rabbit renal cortical slices. This discrepancy may be attributed to differential roles of ROS in necrotic and apoptotic cell death. We therefore examined, in this study, the roles of ROS in necrosis and apoptosis induced by cisplatin in primary cultured rabbit proximal tubule. Cisplatin induced necrosis at high concentrations over a few hours and apoptosis at much lower concentrations over longer periods. Necrosis induced by high concentration of cisplatin was prevented by a cell-permeable superoxide scavenger (tiron), hydrogen peroxide scavengers (catalase and pyruvate), and antioxidants (Trolox and deferoxamine), whereas hydroxyl radical scavengers (dimethythiourea and thiourea) did not affect the cisplatin-induced necrosis. However, apoptosis induced by lower concentration of cisplatin was partially prevented by tiron and hydroxyl radical scavengers but not by hydrogen peroxide scavengers and antioxidants. Cisplatin-induced apoptosis was mediated by the signaling pathway that is associated with cytochrome c release from mitochondria and caspase-3 activation. These effects were prevented by tiron and dimethylthiourea but not by catalase. Dimethylthiourea produced a significant protection against cisplatin-induced acute renal failure, and the effect was associated with an inhibition of apoptosis. These results suggest that hydrogen peroxide is involved in the cisplatin-induced necrosis, whereas hydroxyl radical is responsible for the cisplatin-induced apoptosis. The protective effects of hydroxyl radical scavengers are associated with an inhibition of cytochrome c release and caspase activation.

  6. Involvement of activation of NADPH oxidase and extracellular signal-regulated kinase (ERK) in renal cell injury induced by zinc.

    PubMed

    Matsunaga, Yoshiko; Kawai, Yoshiko; Kohda, Yuka; Gemba, Munekazu

    2005-05-01

    Zinc is employed as a supplement; however, zinc-related nephropathy is not generally known. In this study, we investigated zinc-induced renal cell injury using a pig kidney-derived cultured renal epithelial cell line, LLC-PK(1), with proximal kidney tubule-like features, and examined the involvement of free radicals and extracellular signal-regulated kinase (ERK) in the cell injury. The LLC-PK(1) cells showed early uptake of zinc (30 microM), and the release of lactate dehydrogenase (LDH), an index of cell injury, was observed 24 hr after uptake. Three hours after zinc exposure, generation of reactive oxygen species (ROS) was increased. An antioxidant, N, N'-diphenyl-p-phenylenediamine (DPPD), inhibited a zinc-related increase in ROS generation and zinc-induced renal cell injury. An NADPH oxidase inhibitor, diphenyleneiodonium (DPI), inhibited a zinc-related increase in ROS generation and cell injury. We investigated translocation from the cytosol fraction of the p67(phox) subunit, which is involved in the activation of NADPH oxidase, to the membrane fraction, and translocation was induced 3 hr after zinc exposure. We examined the involvement of ERK1/2 in the deterioration of zinc-induced renal cell injury, and the association between ERK1/2 and an increase in ROS generation. Six hours after zinc exposure, the activation (phosphorylation) of ERK1/2 was observed. An antioxidant, DPPD, inhibited the zinc-related activation of ERK1/2. An MAPK/ERK kinase (MEK1/2) inhibitor, U0126, almost completely inhibited zinc-related cell injury (the release of LDH), but did not influence ROS generation. These results suggest that early intracellular uptake of zinc by LLC-PK(1) cells causes the activation of NADPH oxidase, and that ROS generation by the activation of the enzyme leads to the deterioration of renal cell injury via the activation of ERK1/2.

  7. Alleviative effect of myricetin on ochratoxin A-induced oxidative stress in rat renal cortex: histological and biochemical study.

    PubMed

    El-Haleem, Manal R Abdel; Kattaia, Asmaa A A; El-Baset, Samia A Abdel; Mostafa, Heba El Sayed

    2016-04-01

    Ochratoxins (OTA) are secondary metabolites of Aspergillus and Penicillium. The detoxification of OTA has been of major interest due to its widespread threat to human health. We aimed to investigate the possible alleviative effect of myricetin (MYR) against OTA-induced damage in renal cortex of rats. Thirty adult male albino rats were randomized into five equal groups: control (untreated), vehicle control (0.5 ml corn oil/day including dimethylsulfoxide [DMSO]), MYR (100 mg MYR/kg b.w./day in distilled water), OTA (0.5 mg OTA/kg b.w./day; dissolved in 10% DMSO and then corn oil) and OTA + MYR group (received OTA and MYR at similar doses). All treatments were given by oral gavage for 2 weeks. At the end of the experiment, renal cortices were processed for light and electron microscope examinations. Immunohistochemical staining for localization of proliferating cell nuclear antigen (PCNA), p53 and transforming growth factor beta 1 (TGF-β1) was carried out. Biochemical analysis of tissue glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) were determined to evaluate oxidative stress. OTA administration induced deleterious renal injury evidenced by the structural and ultra-structural changes. Immunohistochemical expression of p53, PCNA and TGF-β1 were significantly up regulated compared with control. Alterations in antioxidant parameters supported that oxidative stress was one of the mechanisms involved in OTA toxicity. On the contrary, co-administration of MRY partially ameliorated OTA-induced renal injury. We suggest the potential effectiveness of MYR to counteract OTA-induced toxic oxidative stress on the renal cortex.

  8. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity

    PubMed Central

    Huang, Ji; Rajapakse, Angana; Xiong, Yuyan; Montani, Jean-Pierre; Verrey, François; Ming, Xiu-Fen; Yang, Zhihong

    2016-01-01

    Obesity is associated with development and progression of chronic kidney disease (CKD). Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I) and arginase-II (Arg-II) in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS), leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT) C57BL/6 mice and mice deficient in Arg-II gene (Arg-II−/−) were fed with either a normal chow (NC) or a high-fat-diet (HFD) for 14 weeks (starting at the age of 7 weeks) to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal reactive oxygen species (ROS) levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II−/− mice. Moreover, mesangial expansion as analyzed by Periodic Acid Schiff (PAS) staining and renal expression of vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II−/− mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II−/− mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development. PMID:27920727

  9. Proteomic Analysis of Signaling Network Regulation in Renal Cell Carcinomas with Differential Hypoxia-Inducible Factor-2α Expression

    PubMed Central

    Nagaprashantha, Lokesh Dalasanur; Talamantes, Tatjana; Singhal, Jyotsana; Guo, Jia; Vatsyayan, Rit; Rauniyar, Navin; Awasthi, Sanjay

    2013-01-01

    Background The loss of von Hippel–Lindau (VHL) protein function leads to highly vascular renal tumors characterized by an aggressive course of disease and refractoriness to chemotherapy and radiotherapy. Loss of VHL in renal tumors also differs from tumors of other organs in that the oncogenic cascade is mediated by an increase in the levels of hypoxia-inducible factor-2α (HIF2α) instead of hypoxia-inducible factor-1α (HIF1α). Methods and Principal Findings We used renal carcinoma cell lines that recapitulate the differences between mutant VHL and wild-type VHL genotypes. Utilizing a method relying on extracted peptide intensities as a label-free approach for quantitation by liquid chromatography–mass spectrometry, our proteomics study revealed regulation of key proteins important for cancer cell survival, proliferation and stress-resistance, and implicated differential regulation of signaling networks in VHL-mutant renal cell carcinoma. We also observed upregulation of cellular energy pathway enzymes and the stress-responsive mitochondrial 60-kDa heat shock protein. Finding reliance on glutaminolysis in VHL-mutant renal cell carcinoma was of particular significance, given the generally predominant dependence of tumors on glycolysis. The data have been deposited to the ProteomeXchange with identifier PXD000335. Conclusions and Significance Pathway analyses provided corroborative evidence for differential regulation of molecular and cellular functions influencing cancer energetics, metabolism and cell proliferation in renal cell carcinoma with distinct VHL genotype. Collectively, the differentially regulated proteome characterized by this study can potentially guide translational research specifically aimed at effective clinical interventions for advanced VHL-mutant, HIF2α-over-expressing tumors. PMID:23940778

  10. Lactating and nonlactating rats differ to renal toxicity induced by mercuric chloride: the preventive effect of zinc chloride.

    PubMed

    Favero, Alexandre M; Oliveira, Cláudia S; Franciscato, Carina; Oliveira, Vitor A; Pereira, Juliana S F; Bertoncheli, Claudia M; da Luz, Sônia C A; Dressler, Valderi L; Flores, Erico M M; Pereira, Maria E

    2014-07-01

    This study evaluated the effects of HgCl2 on renal parameters in nonlactating and lactating rats and their pups, as well as the preventive role of ZnCl2 . Rats received 27 mg kg(-1) ZnCl2 for five consecutive days and 5 mg kg(-1) HgCl2 for five subsequent days (s.c.). A decrease in δ-aminolevulinic acid dehydratase (δ-ALA-D) activity in the blood and an increase in urine protein content in renal weight as well as in blood and urine Hg levels were observed in lactating and nonlactating rats from Sal-Hg and Zn-Hg groups. ZnCl2 prevented partially the δ-ALA-D inhibition and the proteinuria in nonlactating rats. Renal Hg levels were increased in all HgCl2 groups, and the ZnCl2 exposure potentiated this effect in lactating rats. Nonlactating rats exposed to HgCl2 exhibited an increase in plasma urea and creatinine levels, δ-ALA-D activity inhibition and histopathological alterations (necrosis, atrophic tubules and collagen deposition) in the kidneys. ZnCl2 exposure prevented the biochemical alterations. Hg-exposed pups showed lower body and renal weight and an increase in the renal Hg levels. In conclusion, mercury-induced nephrotoxicity differs considerably between lactating and nonlactating rats. Moreover, prior exposure with ZnCl2 may provide protection to individuals who get exposed to mercury occupationally or accidentally.

  11. Induced renal artery stenosis in rabbits: magnetic resonance imaging, angiography, and radionuclide determination of blood volume and blood flow

    SciTech Connect

    Mitchell, D.G.; Tobin, M.; LeVeen, R.; Tomaczewski, J.; Alavi, A.; Staum, M.; Kundel, H.

    1988-03-01

    To investigate the ability of MRI to detect alterations due to renal ischemia, a rabbit renal artery stenosis (RAS) model was developed. Seven rabbits had RAS induced by surgically encircling the artery with a polyethylene band which had a lumen of 1 mm, 1 to 2 weeks prior to imaging. The stenosis was confirmed by angiography, and the rabbits were then imaged in a 1.4 T research MRI unit. T1 was calculated using four inversion recovery sequences with different inversion times. Renal blood flow, using /sup 113/Sn-microspheres, and regional water content by drying were then measured. The average T1 of the inner medulla was shorter for the ischemia (1574 msec) than for the contralateral kidney (1849 msec), while no change ws noted in the cortex. Ischemic kidneys had less distinct outer medullary zones on IR images with TI = 600 msec than did contralateral or control kidneys. Blood flow to both the cortex and medulla were markedly reduced in ischemic kidneys compared with contralateral kidneys (119.5 vs. 391 ml/min/100 gm for cortex and 19.8 vs. 50.8 ml/min/100 gm for medulla). Renal water and blood content were less affected. Our rabbit model of renal artery stenosis with MRI, radionuclide, and angiographic correlation has the potential to increase our understanding of MR imaging of the rabbit kidney.

  12. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells

    PubMed Central

    Belloy, Marcy; Saulnier-Blache, Jean-Sébastien; Casemayou, Audrey; Ducasse, Laure; Grès, Sandra; Bellière, Julie; Caubet, Cécile; Bascands, Jean-Loup; Schanstra, Joost P.; Buffin-Meyer, Bénédicte

    2015-01-01

    Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, β-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium. PMID:26146837

  13. Dietary inclusion of local salt substitutes induces oxidative stress and renal dysfunction in rats.

    PubMed

    Akinyemi, Ayodele J; Oboh, Ganiyu; Ademiluyi, Adedayo O; Araoye, Obafemi O; Oyeleye, Sunday I

    2014-01-01

    Our earlier report has shown that salt substitutes (Obu-Otoyo) contain some toxic heavy metals. This study, therefore, investigated the effect of the dietary inclusion of salt substitutes (Obu-Otoyo), namely, salt "A" and "B", on biomarkers of oxidative stress and renal function in rats. Salt "A", which has a gray color, is the product of a process in which ash is produced by burning palm kernel shaft soaked in water overnight and extracting the residue to produce the salt substitute while Salt "B", which has a white color, is a rock salt mined from a local site at Ilobu town, Osun-State, Nigeria. Salt substitutes were fed to normal rats as dietary inclusion at 0.5% and 1.0% for 21 days. The dietary inclusion of the salt substitutes caused a significant (p<0.05) increase in plasma activities of creatinine, urea, uric acid, and blood urea nitrogen compared with the control. Meanwhile, the dietary inclusion of the salt substitutes caused a significant (p<0.05) decrease in renal superoxide dismutase, catalase, reduced glutathione level, glutathione-S-transferase, and glutathione peroxidase activities with a concomitant increase in the malondialdehyde level compared with the control. Furthermore, there was a significant (p<0.05) increase in the concentrations of heavy metals, such as Pb, Co, Cu, Fe, Zn and Cr, in kidney of rats fed with the salt substitute Obu-Otoyo. Therefore, this finding indicates that Obu-Otoyo induces nephrotoxicity in rats. The nephrotoxicity of Obu-Otoyo could be attributed to the induction of oxidative stress as a result of the presence of some heavy metals, suggesting possible health hazards in subjects who consume it.

  14. Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis

    PubMed Central

    Zhao, Zhiqing; Guan, Rui; Song, Shaohua; Zhang, Mingjian; Liu, Fang; Guo, Meng; Guo, Wenyuan; Yu, Qilin; Zhang, Luding; Wang, Quanxing

    2013-01-01

    Sinomenine (SIN) is a purified alkaloid from the Chinese herb Sinomenium acutum. Previous studies demonstrated that SIN possesses anti-inflammatory and anti-apoptotic properties. We thus in the present report conducted studies to examine its impact on ischemia reperfusion (IR) induced renal injury. Precondition of mice with 200 mg/kg of SIN provided significant protection for mice against IR-induced renal injury as manifested by the attenuated serum creatinine (Cre) and blood urea nitrogen (BUN) along with less severity for histological changes and tubular cell apoptosis. In line with these results, treatment of mice with SIN suppressed IR-induced inflammatory infiltration and the expression of chemokine CXCL-10, adhesion molecule ICAM-1, and cytokines TNF-а/IL-6. Mechanistic studies revealed that SIN inhibits NF-κB transcriptional activity to suppress IR-induced inflammatory response in the kidney, while it attenuates MAP kinase signaling to prevent tubular cells undergoing apoptosis after IR insult. Altogether, our data support that SIN could be a useful therapeutic agent for prevention and treatment of IR-induced renal injury in the clinical settings. PMID:24040435

  15. Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis.

    PubMed

    Zhao, Zhiqing; Guan, Rui; Song, Shaohua; Zhang, Mingjian; Liu, Fang; Guo, Meng; Guo, Wenyuan; Yu, Qilin; Zhang, Luding; Wang, Quanxing

    2013-01-01

    Sinomenine (SIN) is a purified alkaloid from the Chinese herb Sinomenium acutum. Previous studies demonstrated that SIN possesses anti-inflammatory and anti-apoptotic properties. We thus in the present report conducted studies to examine its impact on ischemia reperfusion (IR) induced renal injury. Precondition of mice with 200 mg/kg of SIN provided significant protection for mice against IR-induced renal injury as manifested by the attenuated serum creatinine (Cre) and blood urea nitrogen (BUN) along with less severity for histological changes and tubular cell apoptosis. In line with these results, treatment of mice with SIN suppressed IR-induced inflammatory infiltration and the expression of chemokine CXCL-10, adhesion molecule ICAM-1, and cytokines TNF-а/IL-6. Mechanistic studies revealed that SIN inhibits NF-κB transcriptional activity to suppress IR-induced inflammatory response in the kidney, while it attenuates MAP kinase signaling to prevent tubular cells undergoing apoptosis after IR insult. Altogether, our data support that SIN could be a useful therapeutic agent for prevention and treatment of IR-induced renal injury in the clinical settings.

  16. Therapeutic Potential of Ginger against Renal Injury Induced by Carbon Tetrachloride in Rats

    PubMed Central

    Hamed, Manal A.; Ali, Sanaa A.; Saba El-Rigal, Nagy

    2012-01-01

    The objective of this study was to evaluate the potential of successive ginger extracts (petroleum ether, chloroform, and ethanol) against nephrotoxicity induced by CCl4 in rats. The evaluation was done through measuring kidney antioxidant parameters: glutathione (GSH), lipid peroxides (LPO), and superoxide dismutase (SOD). Renal function test: urea, creatinine and serum protein values, were also evaluated. The work was extended to examine tissue inflammatory mediators, prostaglandin-E2 (PGE2), collagen content and the kidney histopathology. Severe alterations in all biomarkers were observed after injury with CCl4. Treatment with ginger extracts resulted in markedly decreased levels of LPO, PGE2, collagen and kidney function tests, while increased levels of GSH, SOD and serum protein were observed. In conclusion, extracts of ginger, particularly the ethanol, resulted in an attractive candidate for the treatment of nephropathy induced by CCl4 through scavenging free radicals, improved kidney functions, inhibition of inflammatory mediators, and normalizing the kidney histopathological architecture. Further studies are required in order to identify the molecules responsible of the pharmacological activity. PMID:22566780

  17. MANAGEMENT OF ACUTE RENAL FAILURE WITH DELAYED HYPERCALCEMIA SECONDARY TO SARCOCYSTIS NEURONA-INDUCED MYOSITIS AND RHABDOMYOLYSIS IN A CALIFORNIA SEA LION (ZALOPHUS CALIFORNIANUS).

    PubMed

    Alexander, Amy B; Hanley, Christopher S; Duncan, Mary C; Ulmer, Kyle; Padilla, Luis R

    2015-09-01

    A 3-yr-old captive-born California sea lion (Zalophus californianus) developed Sarcocystis neurona-induced myositis and rhabdomyolysis that led to acute renal failure. The sea lion was successfully managed with fluid therapy, antiprotozoals, antibiotics, anti-inflammatories, antiemetics, gastroprotectants, and diuretics, but developed severe delayed hypercalcemia, a syndrome identified in humans after traumatic or exertion-induced rhabdomyolysis. Treatment with calcitonin was added to the management, and the individual recovered fully. The case emphasizes that animals with rhabdomyolysis-induced renal failure risk developing delayed hypercalcemia, which may be life threatening, and calcium levels should be closely monitored past the resolution of renal failure.

  18. THE FAILURE OF CHLOROFORM ADMINISTERED IN THE DRINKING WATER TO INDUCE RENAL TUBULAR CELL NEOPLASIA IN MALE F344/N RATS

    EPA Science Inventory

    The failure of chloroform administered in drinking water to induce renal tubular cell neoplasia in male F344/N rats

    Chloroform (TCM) has been demonstrated to be a renal carcinogen in the male Osborne-
    Mendel rat when administered either by corn oil gavage or in drin...

  19. Renal Denervation Suppresses the Inducibility of Atrial Fibrillation in a Rabbit Model for Atrial Fibrosis

    PubMed Central

    Zhou, Genqing; Chen, Songwen; Ouyang, Ping; Liu, Shaowen

    2016-01-01

    Renal denervation (RD) was reported to reduce the susceptibility of atrial fibrillation (AF), but the underlying mechanism has not been well understood. This study was performed to investigate the effect of RD on the inducibility of AF in a rabbit model for atrial fibrosis and to explore the potential mechanisms. Thirty-five rabbits were randomly assigned into sham-operated group (n = 12), abdominal aortic constriction (AAC) group (n = 12) and AAC with RD (AAC-RD) group (n = 11). The incidence of AF induced by burst pacing in atriums was determined. Blood was collected to measure the levels of rennin, angiotensin II and aldosterone. Atrial samples were preserved to evaluate protein and gene expression of collagen, connective tissue growth factor (CTGF) and transforming growth factor-β1 (TGF-β1). Our data suggested cardiac structure remodeling and atrial fibrosis were successfully induced by AAC. Compared with the AAC group, the AAC-RD rabbits had smaller ascending aortic diameter and left ventricular end-systolic diameter. For burst pacing at the left atrium (LA), AF was induced in two of the 12 rabbits in the sham-operated group, 10 of the 12 rabbits in the AAC group, and 2 of the 11 rabbits in the AAC-RD group, with great difference among the three groups (P = 0.001). The percentage of LA burst stimulations with induced AF achieved 47.2% in the AAC group, which was higher than those in both the AAC-RD (12.1%) and the Sham-operated (5.6%) groups. Significantly increasing intercellular space in the AAC group (P<0.001) compared with the sham-operated rabbits. RD clearly decreased the volume fraction of collagen in LA and right atrium compared with that of the AAC group (P< 0.01). AAC-induced elevation of collagen I, CTGF and TGF-β1 was suppressed by RD. In conclusion, RD suppressed the inducibility of AF in a rabbit model for pressure associated atrial fibrosis, potentially by modulating renin-angiotensin-aldosterone system and decreasing pro-fibrotic factors

  20. Arachidonic acid supplementation does not affect N-methyl-N-nitrosourea-induced renal preneoplastic lesions in young Lewis rats.

    PubMed

    Yoshizawa, Katsuhiko; Emoto, Yuko; Kinoshita, Yuichi; Kimura, Ayako; Uehara, Norihisa; Yuri, Takashi; Shikata, Nobuaki; Hamazaki, Tomohito; Tsubura, Airo

    2013-04-01

    Arachidonic acid (AA) is naturally found in human breast milk. AA, together with docosahexaenoic acid, is commonly added as a functional food ingredient to commercial infant formula worldwide, in accordance with the international standards of Codex Alimentarius. However, few studies of the possible renal carcinogenic effects of AA supplementation during neonatal life have been performed. The effect of dietary AA supplementation in dams during gestation and lactation was investigated on N-methyl-N-nitrosourea (MNU)-induced preneoplastic lesions in the kidneys of young Lewis rats. Dams were fed a 2.0% AA diet or a basal diet (<0.01% AA). At birth (postnatal day 0), male and female pups received a single intraperitoneal injection of 35 mg/kg MNU or vehicle. Renal morphology was examined after 7, 14, 21, 28 and 60 days. Histopathologically, renal preneoplastic lesions, such as nephroblastomatosis and mesenchymal cell proliferation, were found on day 60 in both the MNU-treated groups. There was no significant difference in lesion incidence of 38% in the basal diet group and 31% in the AA diet group. In conclusion, an AA-rich diet for dams during gestation and lactation does not modify MNU-induced renal preneoplastic lesions in their offspring.

  1. Cyclooxygenase-2-dependent phosphorylation of the pro-apoptotic protein Bad inhibits tonicity-induced apoptosis in renal medullary cells.

    PubMed

    Küper, Christoph; Bartels, Helmut; Beck, Franz-X; Neuhofer, Wolfgang

    2011-11-01

    During antidiuresis, cell survival in the renal medulla requires cyclooxygenase-2 (COX-2) activity. We have recently found that prostaglandin E2 (PGE2) promotes cell survival by phosphorylation and, hence, inactivation of the pro-apoptotic protein Bad during hypertonic stress in Madin-Darby canine kidney (MDCK) cells in vitro. Here we determine the role of COX-2-derived PGE(2) on phosphorylation of Bad and medullary apoptosis in vivo using COX-2-deficient mice. Both wild-type and COX-2-knockout mice constitutively expressed Bad in tubular epithelial cells of the renal medulla. Dehydration caused a robust increase in papillary COX-2 expression, PGE2 excretion, and Bad phosphorylation in wild-type, but not in the knockout mice. The abundance of cleaved caspase-3, a marker of apoptosis, was significantly higher in papillary homogenates, especially in tubular epithelial cells of the knockout mice. Knockdown of Bad in MDCK cells decreased tonicity-induced caspase-3 activation. Furthermore, the addition of PGE2 to cells with knockdown of Bad had no effect on caspase-3 activation; however, PGE2 caused phosphorylation of Bad and substantially improved cell survival in mock-transfected cells. Thus, tonicity-induced COX-2 expression and PGE2 synthesis in the renal medulla entails phosphorylation and inactivation of the pro-apoptotic protein Bad, thereby counteracting apoptosis in renal medullary epithelial cells.

  2. Allopurinol Reduces the Lethality Associated with Acute Renal Failure Induced by Crotalus durissus terrificus Snake Venom: Comparison with Probenecid

    PubMed Central

    Frezzatti, Rodrigo; Silveira, Paulo Flavio

    2011-01-01

    Background Acute renal failure is one of the most serious complications of envenoming resulting from Crotalus durissus terrificus bites. This study evaluated the relevance of hyperuricemia and oxidative stress and the effects of allopurinol and probenecid in renal dysfunction caused by direct nephrotoxicity of C. d. terrificus venom. Methodology/Principal Findings Hematocrit, protein, renal function and redox status were assessed in mice. High ratio of oxidized/reduced glutathione and hyperuricemia induced by C. d. terrificus venom were ameliorated by both, allopurinol or probenecid, but only allopurinol significantly reduced the lethality caused by C. d. terrificus venom. The effectiveness of probenecid is compromised probably because it promoted hypercreatinemia and hypocreatinuria and worsed the urinary hypo-osmolality in envenomed mice. In turn, the highest effectiveness of allopurinol might be due to its ability to diminish the intracellular formation of uric acid. Conclusions/Significance Data provide consistent evidences linking uric acid with the acute renal failure induced by C. d. terrificus venom, as well as that this envenoming in mice constitutes an attractive animal model suitable for studying the hyperuricemia and that the allopurinol deserves to be clinically evaluated as an approach complementary to anti-snake venom serotherapy. PMID:21909449

  3. Salvianolic acid A alleviates renal injury in systemic lupus erythematosus induced by pristane in BALB/c mice.

    PubMed

    Lin, Yihuang; Yan, Yu; Zhang, Huifang; Chen, Yucai; He, Yangyang; Wang, Shoubao; Fang, Lianhua; Lv, Yang; Du, Guanhua

    2017-03-01

    The purpose of this study was to investigate the effects of salvianolic acid A (SAA) in systemic lupus erythematosus (SLE) induced by pristane in BALB/c mice. Lupus mice were established by confirming elevated levels of autoantibodies and IL-6 after intraperitoneal injection of pristane. Mice were then treated with daily oral doses of SAA for 5 months in parallel with mice treated with prednisone and aspirin as positive controls. The levels of autoantibodies were monitored at monthly intervals and nephritic symptoms observed by hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining. Western blot analysis of renal tissue was also employed. SAA treatment caused a significant reduction in the levels of anti-Sm autoantibodies and reduced renal histopathological changes and pathological effects. SAA treatment also significantly inhibited the phosphorylation of IKK, IκB and NFκB in renal tissues of lupus mice. In conclusion, the results suggest that SAA alleviates renal injury in pristane-induced SLE in BALB/c mice through inhibition of phosphorylation of IKK, IκB and NFκB.

  4. The effect of maleate induced proximal tubular dysfunction on the renal handling of Tc-99m DMSA in the rat

    SciTech Connect

    Provoost, A.P.; Van Aken, M.

    1984-01-01

    In the healthy kidney Tc-99m DMSA accumulates in the proximal tubular cells. Consequently, impairment of the reabsorptive function of these cells may alter the renal handling of this static renal imaging agent. The authors investigated in rats the effects of a sodiummaleate (Ma) (2mmol/kg iv) induced proximal tubular dysfunction on the renal accumulation and excretion of Tc-99m DMSA. Such a treatment results in a moderate fall of the glomerular filtration rate, glycosuria, aminoaciduria and a tubular proteinuria. In 7 adult male Wistar rats, Tc-99m DMSA scans were taken before Ma, on the day of treatment, and 1 week thereafter. The accumulation of Tc-99m DMSA in kidneys (Ki) and bladder (Bl) was determined at 1, 2, 4, and 24 hours after i.v. injection. The results, expressed as a percentage of the injected dose, are presented. The findings show that a reversible Ma induced impairment of the proximal reabsorptive capacity severely alters the renal tubular handling of Tc-99m DMSA. In contrast to the control situation, only a small fraction of the DMSA is retained in the kidney and the majority is transported directly to the urinary bladder. When similar alterations are observed in clinical Tc-99m DMSA scans, this may be an indication of an impairment of the proximal tubular function.

  5. Matrine ameliorates adriamycin-induced nephropathy in rats by enhancing renal function and modulating Th17/Treg balance.

    PubMed

    Xu, Yixiao; Lin, Hongzhou; Zheng, Wenjie; Ye, Xiaohua; Yu, Lingfang; Zhuang, Jieqiu; Yang, Qing; Wang, Dexuan

    2016-11-15

    Matrine (MAT) is an active alkaloid extracted from Radix Sophora flavescens. The present study was to investigate whether MAT could effectively treat Adriamycin-induced nephropathy (AIN). AIN was induced in rats using a single injection of Adriamycin (ADR). Renal interleukin-6 (IL-6), IL-10, IL-17 and transforming growth factor-β (TGF-β) levels, and the expression of forkhead box protein 3 (Foxp3) and retinoid-related orphan nuclear receptor γt (Rorγt) was measured. AIN rats developed severe albuminuria, hypoalbuminaemia, hyperlipidaemia and podocyte injury. Daily administration of MAT (100mg/kg or 200mg/kg) significantly prevented ADR-induced podocyte injury, decreased AIN symptoms and improved renal pathology manifestations. Of note, treatment with MAT (100mg/kg) plus prednisone (Pre, 5mg/kg) had equivalent efficacy to that of Pre alone (10mg/kg). Additional findings showed that ADR triggered a disordered cytokine network and abnormal expression of Foxp3 and Rorγt in rats, as reflected by increased levels of IL-6, IL-10, TGF-β, Rorγt and decreased levels of IL-10 and Foxp3. Interestingly, MAT weakened the disordered cytokine network and normalized the expression of Foxp3 and Rorγt. In addition, a significant negative correlation was observed between the values of Foxp3/Rorγt and renal pathology scores. Finally, MAT normalized regulatory T cells (Treg)/ T-helper17 cells (Th17) ratio in peripheral blood mononuclear cells of AIN rats. These data indicate MAT prevents AIN through the modification of disordered plasma lipids and recovery of renal function, and this bioactivity is at least partly attributed to the suppression of renal inflammation and the regulation of the Treg/Th17 imbalance.

  6. Clinical effect of trimetazidine on prevention of contrast-induced nephropathy in patients with renal insufficiency

    PubMed Central

    Ye, Ziliang; Lu, Haili; Su, Qiang; Guo, Wenqin; Dai, Weiran; Li, Hongqing; Yang, Huafeng; Li, Lang

    2017-01-01

    Abstract Background: With the continuous development of cardiac interventional medicine, the incidence of contrast-induced nephropathy (CIN) is increasing every year, which is a serious threat to people's physical and mental health. Trimetazidine (TMZ) is a type of anti-ischemic drug developed in recent years, which can significantly reduce the incidence of CIN. At present, a systematic review and meta-analysis was conducted to evaluate the clinical effect of TMZ on prevention of CIN in patients with renal insufficiency. However, the study did not include patients from other countries and speaking different languages. So we conducted this study to update the previous meta-analysis that investigated the effects of TMZ on prevention of CIN in patients with renal insufficiency, and provided some theoretical reference for clinical. Methods: By searching PubMed, Embase, the Cochrane Library, Web of Science, CBM, CNKI, VIP database, and Wang Fang database for randomized controlled trial, which is comparing TMZ versus conventional hydration for prevention of CIN. Two researchers independently screened literature, and then evaluated the quality of literature and extracted the relevant data. Stata 11.0 software was used for statistical analysis. Results: Finally, this updated review showed that 3 studies that were not included in the previous meta-analysis were included in our study (3 articles were published in the Chinese Journal, 1 study for CIN, 1 study for CIN, serum creatinine (Scr), and superoxide dismutase, 1 study for CIN and Scr), and 1 outcome (Scr) reflecting the change of renal function was additionally included in our study. Of the 932 studies, 6 randomized controlled trials met the criteria, including 377 patients in TMZ group and 387 patients in control group. This meta-analysis for all studies showed that TMZ can significantly reduce the incidence of CIN (relative risk 0.27, 95% confidence interval [CI] 0.16, 0.46, P = 0.000), and can decrease the level

  7. Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function

    PubMed Central

    Cano-Peñalver, José Luis; Griera, Mercedes; García-Jerez, Andrea; Hatem-Vaquero, Marco; Ruiz-Torres, María Piedad; Rodríguez-Puyol, Diego; de Frutos, Sergio; Rodríguez-Puyol, Manuel

    2015-01-01

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis–related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage. PMID:26562149

  8. Renal tubular angiotensin converting enzyme is responsible for nitro-L-arginine methyl ester (L-NAME)-induced salt sensitivity.

    PubMed

    Giani, Jorge F; Eriguchi, Masahiro; Bernstein, Ellen A; Katsumata, Makoto; Shen, Xiao Z; Li, Liang; McDonough, Alicia A; Fuchs, Sebastien; Bernstein, Kenneth E; Gonzalez-Villalobos, Romer A

    2017-04-01

    Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension.

  9. Hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced severe acute pancreatitis by inhibiting ROS and NF-κB pathway.

    PubMed

    Shi, Qiao; Liao, Kang-Shu; Zhao, Kai-Liang; Wang, Wei-Xing; Zuo, Teng; Deng, Wen-Hong; Chen, Chen; Yu, Jia; Guo, Wen-Yi; He, Xiao-Bo; Abliz, Ablikim; Wang, Peng; Zhao, Liang

    2015-01-01

    Hydrogen (H2), a new antioxidant, was reported to reduce (•)OH and ONOO(-) selectively and inhibit certain proinflammatory mediators to product, without disturbing metabolic redox reactions or ROS involved in cell signaling. We herein aim to explore its protective effects on acute renal injury in sodium taurocholate-induced acute pancreatitis and its possible mechanisms. Rats were injected with hydrogen-rich saline (HRS group) or normal saline (SO and SAP group) through tail intravenously (6 mL/kg) and compensated subcutaneously (20 mL/kg) after successful modeling. Results showed that hydrogen-rich saline attenuated the following: (1) serum Cr and BUN, (2) pancreatic and renal pathological injuries, (3) renal MDA, (4) renal MPO, (5) serum IL-1β, IL-6, and renal TNF-α, HMGB1, and (6) tyrosine nitration, IκB degradation, and NF-κB activation in renal tissues. In addition, it increased the level of IL-10 and SOD activity in renal tissues. These results proved that hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced acute pancreatitis, presumably because of its detoxification activity against excessive ROS, and inhibits the activation of NF-κB by affecting IκB nitration and degradation. Our findings highlight the potential value of hydrogen-rich saline as a new therapeutic method on acute renal injury in severe acute pancreatitis clinically.

  10. Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-κB signaling pathway

    PubMed Central

    Chen, Xi; Zhouhua, Wang; Jie, Zhou; Xinlu, Fu; Jinqiang, Liang; Yuwen, Qiu; Zhiying, Huang

    2015-01-01

    Previous studies have indicated that the nephrotoxicity induced by mesoporous silica nanoparticles (MSNs) is closely related to inflammation. Nuclear factor kappa B (NF-κB), a common rapid transcription factor associated with inflammation, plays an important role in the process of many kidney diseases. Acute toxicity assessment with a high-dose exposure is critical for the development of nanoparticle, as a part of standardized procedures for the evaluation of their toxicity. The present study was undertaken to observe the acute toxicity, predict the potential target organs of MSNs injury, and test the hypothesis that the NF-κB pathway plays a role in mediating the acute kidney injury and renal interstitial fibrosis in mice induced by MSNs. Balb/c mice were intraperitoneally injected with MSNs at concentrations of 150, 300, or 600 mg/kg. All of the animals were euthanized 2 and 12 days after exposure, and the blood and kidney tissues were collected for further studies. In vitro, the cytotoxicity, fibrosis markers, and NF-κB pathway were measured in a normal rat kidney cell line (NRK-52E). Acute kidney injury was induced by MSNs in mice after 2 days, some renal tubules regenerated and renal interstitial fibrosis was also observed. The expression of fibrosis markers and the nuclear translocation of NF-κB p65 in the kidney homogenates increased after exposure to MSNs. The in vitro study showed that MSNs cause cytotoxicity in NRK-52E cells and increased the expression of fibrosis markers. In addition, the NF-κB pathway could be induced, and inhibition of the NF-κB pathway could alleviate the fibrosis caused by MSNs. We conclude that inflammation is a major effector of the acute kidney toxicity induced by MSNs and results in renal interstitial fibrosis, which is mediated by the NF-κB signaling pathway. PMID:25565800

  11. Expression and Function of Interleukin-1β-Induced Neutrophil Gelatinase-Associated Lipocalin in Renal Tubular Cells

    PubMed Central

    Mamiya, Ryo; Tsuchiya, Hisashi; Kitanaka, Taku; Namba, Shinichi; Kitanaka, Nanako; Okabayashi, Ken; Narita, Takanori; Sugiya, Hiroshi

    2016-01-01

    Acute kidney injury (AKI) is characterized by a sudden loss of renal function. Early recognition of AKI, especially in critically ill patients, is essential for adequate therapy. Currently, neutrophil gelatinase-associated lipocalin (NGAL) is considered to be an effective biomarker of AKI; however, the regulation of its expression and function in renal tubular cells remains unclear. In this study, we investigated the regulation of the expression and function of NGAL in IL-1β-treated Madin–Darby canine kidney (MDCK) cells as a model of renal tubular cells. IL-1β induced a disturbance in the localization of E-cadherin and zonaoccludin-1 (ZO-1). The transepithelial electrical resistance (TER) also decreased 5 days after IL-1β treatment. IL-1β induced NGAL mRNA expression and protein secretion in a time- and dose-dependent manner, which occurred faster than the decrease in TER. In the presence of ERK1/2 and p38 inhibitors, IL-1β-induced NGAL mRNA expression and protein secretion were significantly attenuated. In the presence of recombinant NGAL, IL-1β-induced disturbance in the localization of E-cadherin and ZO-1 was attenuated, and the decrease in TER was partially maintained. These results suggest that NGAL can be used as a biomarker for AKI and that it functions as a protector from AKI. PMID:27851800

  12. Effect of gum arabic on oxidative stress and inflammation in adenine-induced chronic renal failure in rats.

    PubMed

    Ali, Badreldin H; Al-Husseni, Isehaq; Beegam, Sumyia; Al-Shukaili, Ahmed; Nemmar, Abderrahim; Schierling, Simone; Queisser, Nina; Schupp, Nicole

    2013-01-01

    Inflammation and oxidative stress are known to be involved in the pathogenesis of chronic kidney disease in humans, and in chronic renal failure (CRF) in rats. The aim of this work was to study the role of inflammation and oxidative stress in adenine-induced CRF and the effect thereon of the purported nephroprotective agent gum arabic (GA). Rats were divided into four groups and treated for 4 weeks as follows: control, adenine in feed (0.75%, w/w), GA in drinking water (15%, w/v) and adenine+GA, as before. Urine, blood and kidneys were collected from the rats at the end of the treatment for analysis of conventional renal function tests (plasma creatinine and urea concentration). In addition, the concentrations of the pro-inflammatory cytokine TNF-α and the oxidative stress markers glutathione and superoxide dismutase, renal apoptosis, superoxide formation and DNA double strand break frequency, detected by immunohistochemistry for γ-H2AX, were measured. Adenine significantly increased the concentrations of urea and creatinine in plasma, significantly decreased the creatinine clearance and induced significant increases in the concentration of the measured inflammatory mediators. Further, it caused oxidative stress and DNA damage. Treatment with GA significantly ameliorated these actions. The mechanism of the reported salutary effect of GA in adenine-induced CRF is associated with mitigation of the adenine-induced inflammation and generation of free radicals.

  13. Genetic susceptibility to hypertension-induced renal damage in the rat. Evidence based on kidney-specific genome transfer.

    PubMed Central

    Churchill, P C; Churchill, M C; Bidani, A K; Griffin, K A; Picken, M; Pravenec, M; Kren, V; St Lezin, E; Wang, J M; Wang, N; Kurtz, T W

    1997-01-01

    To test the hypothesis that genetic factors can determine susceptibility to hypertension-induced renal damage, we derived an experimental animal model in which two genetically different yet histocompatible kidneys are chronically and simultaneously exposed to the same blood pressure profile and metabolic environment within the same host. Kidneys from normotensive Brown Norway rats were transplanted into unilaterally nephrectomized spontaneously hypertensive rats (SHR-RT1.N strain) that harbor the major histocompatibility complex of the Brown Norway strain. 25 d after the induction of severe hypertension with deoxycorticosterone acetate and salt, proteinuria, impaired glomerular filtration rate, and extensive vascular and glomerular injury were observed in the Brown Norway donor kidneys, but not in the SHR-RT1.N kidneys. Control experiments demonstrated that the strain differences in kidney damage could not be attributed to effects of transplantation-induced renal injury, immunologic rejection phenomena, or preexisting strain differences in blood pressure. These studies (a) demonstrate that the kidney of the normotensive Brown Norway rat is inherently much more susceptible to hypertension-induced damage than is the kidney of the spontaneously hypertensive rat, and (b) establish the feasibility of using organ-specific genome transplants to map genes expressed in the kidney that determine susceptibility to hypertension-induced renal injury in the rat. PMID:9294102

  14. The protective effects of methyl jasmonate against adriamycin--induced hepatic and renal toxicities.

    PubMed

    Kosoko, A M; Molokwu, C J; Farombi, E O; Ademowo, O G

    2012-12-01

    The aim of the study was to investigate the protective effect of methyl jasmonate (MJ) in adriamycin (ADR) induced hepatic and renal toxicities. 36 BALB/c mice were randomly divided into control, ADR (20 mg/kg), MJ (50 mg/kg) only, MJ (100 mg/kg) only, MJ (50 mg/ kg) + ADR, MJ (100 mg/kg) + ADR groups (n = 6). The 2 doses of MJ was administered for 7 days in MJ only groups, ADR was administered intraperitoneally on the 8th day after pretreatment with the 2 different doses of MJ while ADR was administered on the 8th day only for the ADR only group. The malondialdehyde (MDA), glutathione (GSH), H2O2 generation, superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine in the liver, kidneys and serum samples as applicable were estimated. Tissue MDA, H2O2 generation, and GST activity were markedly elevated while GSH content, CAT and SOD activities were significantly reduced in the tissues when compared to the control (p < 0.05). Pretreatment with MJ ameliorated ADR toxicities, with a significant reduction in serum urea concentration, ALT activity, MDA level, H2O2 generation, GST activity and a significant elevation in GSH content, CAT and SOD activities in the organ tissues. MJ induced significant reduction in MDA level and increase of GSH content in liver and kidney tissues. This study suggests that MJ may play an overall protective effect on ADR-induced toxicities in liver and kidneys and the inhibition of tissue peroxidative damage might contribute to this beneficial effect.

  15. Urea-induced ROS cause endothelial dysfunction in chronic renal failure

    PubMed Central

    D'Apolito, Maria; Du, Xueliang; Pisanelli, Daniela; Pettoello-Mantovani, Massimo; Campanozzi, Angelo; Giacco, Ferdinando; Maffione, Angela Bruna; Colia, Anna Laura; Brownlee, Michael; Giardino, Ida

    2015-01-01

    Objective The pathogenic events responsible for accelerated atherosclerosis in patients with chronic renal failure (CRF) are poorly understood. Here we investigate the hypothesis that concentrations of urea associated with CRF and increased ROS production in adipocytes might also increase ROS production directly in arterial endothelial cells, causing the same pathophysiologic changes seen with hyperglycemia. Methods Primary cultures of human aortic endothelial cells (HAEC) were exposed to 20 mM urea for 48 hrs. C57BL/6J wild-type mice underwent 5/6 nephrectomy or a sham operation. Randomized groups of 5/6 nephrectomized mice and their controls were also injected i.p. with a SOD/catalase mimetic (MnTBAP) for 15 days starting immediately after the final surgical procedure. Results Urea at concentrations seen in CRF induced mitochondrial ROS production in cultured HAEC. Urea-induced ROS caused the activation of endothelial pro-inflammatory pathways through the inhibition of GAPDH, including increased protein kinase C isoforms activity, increased hexosamine pathway activity, and accumulation of intracellular AGEs (advanced glycation end products). Urea-induced ROS directly inactivated the anti-atherosclerosis enzyme PGI2 synthase and also caused ER stress. Normalization of mitochondrial ROS production prevented each of these effects of urea. In uremic mice, treatment with MnTBAP prevented aortic oxidative stress, PGI2 synthase activity reduction and increased expression of the pro-inflammatory proteins TNFα, IL-6, VCAM1, Endoglin, and MCP-1. Conclusions Taken together, these data show that urea itself, at levels common in patients with CRF, causes endothelial dysfunction and activation of proatherogenic pathways. PMID:25682038

  16. Pentoxifylline Diminishes the Oxidative Damage to Renal Tissue Induced by Streptozotocin in the Rat

    PubMed Central

    Martínez-Morales, F.

    2004-01-01

    Oxidative damage has been suggested to be a contributing factor in the development to diabetic nephropathy (DN). Recently, there has been evidence that pentoxifylline (PTX) has free radical-scavenging properties; thus, its antiinflammatory and renoprotective effects may be related to a reduction in reactive oxygen species production. It is likely that the pharmacological effects of PTX include an antioxidant mechanism as shown in in vitro assays. The aim of this study was to evaluate whether the reported renoprotective effects of PTX could be the result of its antioxidant actions in streptozotocin (STZ)-induced DN in rats. The administration of PTX over a period of 8 weeks, in addition to displaying renoprotective effects, caused a significant reduction in lipoperoxide levels (LPOS) in the diabetic kidney (P < 0.05), compared to untreated rats. These levels were comparable to those in the healthy kidney of experimental animals (P > 0.05). All untreated STZ rats exhibited an increase in LPOS as opposed to healthy controls (H) (P < 0.001). The total antioxidant activity (TAA) in plasma was increased significantly already after 2 days of STZ (P < 0.05). When we examined the progression of TAA in STZ rats, there was a significant decrease over 8 weeks (P < 0.05). PTX treatment caused an increase in TAA when compared to untreated STZ rats (P < 0.05). Renal hypertrophy was less evident in PTX-treated STZ than in untreated STZ rats, evaluated by kidney weight/body weight ratio. These results indicate that PTX decreases the oxidative damage induced by these experimental procedures and may increase antioxidant defense mechanisms in STZ-induced diabetes in rats. PMID:15763938

  17. Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3.

    PubMed

    Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Busslinger, Meinrad; Dominguez Rieg, Jessica A; Rieg, Timo

    2015-06-15

    Caffeine is one of the most widely consumed behavioral substances. We have previously shown that caffeine- and theophylline-induced inhibition of renal reabsorption causes diuresis and natriuresis, an effect that requires functional adenosine A1 receptors. In this study, we tested the hypothesis that blocking the Gi protein-coupled adenosine A1 receptor via the nonselective adenosine receptor antagonist caffeine changes Na(+)/H(+) exchanger isoform 3 (NHE3) localization and phosphorylation, resulting in diuresis and natriuresis. We generated tubulus-specific NHE3 knockout mice (Pax8-Cre), where NHE3 abundance in the S1, S2, and S3 segments of the proximal tubule was completely absent or severely reduced (>85%) in the thick ascending limb. Consumption of fluid and food, as well as glomerular filtration rate, were comparable in control or tubulus-specific NHE3 knockout mice under basal conditions, while urinary pH was significantly more alkaline without evidence for metabolic acidosis. Caffeine self-administration increased total fluid and food intake comparably between genotypes, without significant differences in consumption of caffeinated solution. Acute caffeine application via oral gavage elicited a diuresis and natriuresis that was comparable between control and tubulus-specific NHE3 knockout mice. The diuretic and natriuretic response was independent of changes in total NHE3 expression, phosphorylation of serine-552 and serine-605, or apical plasma membrane NHE3 localization. Although caffeine had no clear effect on localization of the basolateral Na(+)/bicarbonate cotransporter NBCe1, pretreatment with DIDS inhibited caffeine-induced diuresis and natriuresis. In summary, NHE3 is not required for caffeine-induced diuresis and natriuresis.

  18. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    SciTech Connect

    Liu, Senyan; Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin; Mei, Changlin; Gu, Jun

    2013-10-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.

  19. Mechanism of vasodilation induced by alpha-human atrial natriuretic polypeptide in rabbit and guinea-pig renal arteries.

    PubMed Central

    Fujii, K; Ishimatsu, T; Kuriyama, H

    1986-01-01

    Effects of alpha-human atrial natriuretic polypeptide (alpha-HANP) on electrical and mechanical properties of smooth muscle cells of the guinea-pig and rabbit renal arteries and of the guinea-pig mesenteric artery were investigated. alpha-HANP (up to 10 nM) modified neither the membrane potential nor resistance of smooth muscle cells of the guinea-pig and rabbit renal arteries. In the guinea-pig mesenteric and renal arteries, alpha-HANP (up to 10 nM) had no effect on the amplitude and facilitation (mesenteric artery) or depression (renal artery) of excitatory junction potentials nor on action potentials. In the guinea-pig renal artery, alpha-HANP (up to 10 nM) had no effect on the depolarization induced by noradrenaline (NA) (up to 10 microM) but markedly inhibited NA-induced contraction. alpha-HANP (10 nM) slightly inhibited the K-induced contraction. In the rabbit renal artery, alpha-HANP (10 nM) inhibited the NA-induced contraction and to a lesser extent the K-induced contraction. In the rabbit renal artery, the effects of alpha-HANP on the release of Ca from the cellular storage by two applications of NA, and its re-storage, were investigated in Ca-free solution containing 2 mM-EGTA. When 5 nM-alpha-HANP was applied before and during the first application of 0.5 microM-NA, the contraction was markedly inhibited but the contraction to a second application of 10 microM-NA was potentiated. If the first dose of NA was 10 microM the effect was very small. Under the same experimental procedures, nitroglycerine (10 microM) showed almost the same effects as alpha-HANP on the NA-induced contractions. When both the first (3 mM) and second (10 mM) contractions were evoked by caffeine in Ca-free solution, alpha-HANP (5 nM) and nitroglycerine (10 microM) inhibited both contractions to the same extent. In the rabbit renal artery, applications of alpha-HANP or nitroglycerine increased the amount of guanosine 3',5'-phosphate (cyclic GMP) in a dose-dependent manner. However, a

  20. Polyvinylpyrrolidone induced artefactual prolongation of activated partial thromboplastin times in intravenous drug users with renal failure.

    PubMed

    Kristoffersen, A H; Bjånes, T K; Jordal, S; Leh, S; Leh, F; Svarstad, E

    2016-05-01

    Essentials Prolonged activated partial thromboplastin times (APTT) were found in drug users with renal failure. An oral methadone solution containing polyvinylpyrrolidone (PVP) had been injected intravenously. Spiking normal plasma with increasing concentrations of PVP resulted in artifically prolonged APTT. APTT prolongation may indicate PVP deposits as underlying cause in patients with renal failure.

  1. PHF14: an innate inhibitor against the progression of renal fibrosis following folic acid-induced kidney injury

    PubMed Central

    Yang, Bo; Chen, Sixiu; Wu, Ming; Zhang, Lin; Ruan, Mengna; Chen, Xujiao; Chen, Zhengjun; Mei, Changlin; Mao, Zhiguo

    2017-01-01

    PHF14 is a newly identified regulator of mesenchyme growth in embryonic tissues. Previous studies have shown that phf14-null mutants die just after birth due to interstitial tissue hyperplasia in major organs, including the kidneys. The aim of this study was to investigate PHF14 function in renal fibrosis. By studying the chronic kidney injury mouse model, we found that PHF14 was upregulated in fibrotic kidneys after renal insults induced by folic acid administration. Compared with wild-type mice, PHF14-null mice showed more severe renal fibrosis after pro-fibrotic stimuli. Moreover, PHF14 in rat renal fibroblasts was upregulated by transforming growth factor-β (TGF-β) stimulation; while this upregulation was inhibited when smad3 phosphorylation was blocked. A chromatin immunoprecipitation (ChIP) assay further indicated that phospho-smad3 (p-smad3) acted as a transcription factor to enhance PHF14 expression. A lack of PHF14 expression enhanced collagen I and α-smooth muscle actin (α-SMA) synthesis induced by TGF-β in vitro. PHF14 was involved in inhibition of platelet-derived growth factor (PDGF) signaling overactivation by selectively repressing PDGF receptor-α (PDGFR-α) transcription. In summary, PHF14 expression was upregulated in fibrotic models in vivo and in vitro, and the TGF-β/smad3/PHF14 pathway acted as a self-limiting mechanism in the TGF-β-dominated renal pro-fibrotic process by suppressing PDGFR-α expression. PMID:28045076

  2. Effects of chitosan oligosaccharide (COS) on the glycerol-induced acute renal failure in vitro and in vivo.

    PubMed

    Yoon, Hyun Joong; Moon, Myoung E; Park, Haeng Soon; Kim, Hyun Woo; Im, Shun Young; Lee, Jun Haeng; Kim, Young Ho

    2008-02-01

    The purpose of this study was to investigate the effects of chitosanoligosaccharide (COS) on the change of inflammatory response, renal function factor, and renal oxidative stress in glycerol-induced ARF in vitro and in vivo. The molecular weight of COS was approximately below 10 kDa with 90% degree of deacetylation. Renal proximal tubular cells were treated with only COS (0, 0.01, 0.025, 0.05, 0.075 and 0.1%) or COS in the presence of glycerol (4mM). And rats were administered with glycerol (50%, 8 ml/kg) by intramuscular injection for the induction of ARF. For identification the protection effect of COS in the glycerol-induced ARF, rats were administered by COS (0.05 and 0.1%) using P.O. injection. The enzymatic activity of the released RDPase was assayed by the fluorometric method. The level of TNF-alpha in kidney or the culture medium was quantified using ELISA kit (R&D Systems, Minneapolis, USA) and, nitrite concentration was determined by the Griess reaction. We showed that COS stimulated the production of TNF-alpha, NO and the released RDPase. Glycerol increased the concentration of RDPase in kidney and decreased the released RDPase in proximal tubular cells. And, glycerol increased the production of NO, TNF-alpha, creatinine, and MDA, and decreased SOD. However, COS recovered the glycerol-induced inflammatory response, renal function factor, and antioxidant effect in kidney. COS had the antioxidant activity and the anti-inflammatory effect. And maybe that characteristics could help recover the glycerol-induced ARF.

  3. Leptin reduces gentamicin-induced apoptosis in rat renal tubular cells via the PI3K-Akt signaling pathway.

    PubMed

    Chen, Yen-Cheng; Chen, Cheng-Hsien; Hsu, Yung-Ho; Chen, Tso-Hsiao; Sue, Yuh-Mou; Cheng, Chung-Yi; Chen, Tzen-Wen

    2011-05-11

    Leptin, a circulating hormone secreted mainly from adipose tissues, possesses protective effects on many cell types. Serum leptin concentration increases in patients with chronic renal failure and those undergoing maintenance dialysis. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. In the present study, we intended to investigate the influence of leptin on apoptotic pathways and its mechanism in rat renal tubular cells treated with gentamicin. By using Annexin V-FITC/propidium iodide double staining, we found that leptin expressed a dose-dependent protective effect against gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) within 24h. Pretreatment of the cells with 50 or 100 ng/ml of leptin induced Bcl-2 and Bcl-x(L), increased the phosphorylation of Bad, and decreased the cleaved caspase-3 and caspase-9 in gentamicin-treated NRK-52E cells. Leptin also suppressed the activation of the transcription factor NF-κB and upregulated Akt activation in gentamicin-treated NRK-52E cells. We found that leptin activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway as demonstrated by the suppression of the anti-apoptotic effect of leptin by wortmannin. The treatment of wortmannin suppressed the leptin-induced phospho-Akt, Bcl-2, phospho-Bad as well as Bcl-x(L), and recovered the leptin-reduced cleaved caspase-3 and caspase-9. Based on our results, we suggested that leptin can attenuate gentamicin-induced apoptotic injury in rat renal tubular cells through PI3K/Akt signaling pathway.

  4. The NRF2-heme oxygenase-1 system modulates cyclosporine A-induced epithelial-mesenchymal transition and renal fibrosis

    PubMed Central

    Shin, Dong-ha; Park, Hyun-Min; Jung, Kyeong-Ah; Choi, Han-Gon; Kim, Jung-Ae; Kim, Dae-Duk; Kim, Sang Geon; Kang, Keon Wook; Ku, Sae Kwang; Kensler, Thomas W.; Kwak, Mi-Kyoung

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is an underlying mechanism of tissue fibrosis by generating myofibroblasts, which serve as the primary source of extracellular matrix production from tissue epithelial cells. Recently, it has been suggested that EMT is implicated in immunosuppressive cyclosporine A (CsA)-induced renal fibrosis. In the present study, the potential role of NRF2, which is the master regulator of genes associated with the cellular antioxidant defense system, in CsA-induced EMT-renal fibrosis has been investigated. Pre-treatment of rat tubular epithelial NRK-52E cells with sulforaphane, an activator of NRF2, could prevent EMT gene changes such as the loss of E-cadherin and the increase of α-smooth muscle actin (α-SMA) expression. Conversely, genetic inhibition of NRF2 in these cells aggravated changes in CsA-induced EMT markers. These in vitro observations could be confirmed in vivo: CsA-treatment developed severe renal damage and fibrosis with increased expression of α-SMA in NRF2-deficient mice compared to wild-type mice. NRF2-mediated amelioration of CsA-EMT changes could be accounted in part by the regulation of heme oxygenase-1 (HO-1). CsA treatment increased HO-1 expression in an NRF2-dependent manner in NRK cells as well as murine fibroblasts. Induction of HO-1 by CsA appears to be advantageous by counteracting EMT gene changes: specific increase of HO-1 expression by cobalt protoporphyrin prevented CsA-mediated α-SMA induction, while genetic inhibition of HO-1 by siRNA substantially enhanced α-SMA induction compared to control cells. Collectively, our current results suggest that the NRF2-HO-1 system plays a protective role against CsA-induced renal fibrosis by modulating EMT gene changes. PMID:20096777

  5. Combined inhibition of aromatase activity and dihydrotestosterone supplementation attenuates renal injury in male streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Manigrasso, Michaele B; Sawyer, R Taylor; Hutchens, Zachary M; Flynn, Elizabeth R; Maric-Bilkan, Christine

    2012-05-01

    Our previous studies showed that streptozotocin (STZ)-induced diabetic male rats have increased estradiol and decreased testosterone levels that correlate with renal injury (Xu Q, Wells CC, Garman GH, Asico L, Escano CS, Maric C. Hypertension 51: 1218-1224, 2008). We further showed that either supplementing dihydrotestosterone (DHT) or inhibiting estradiol biosynthesis in these diabetic rats was only partially renoprotective (Manigrasso MB, Sawyer RT, Marbury DC, Flynn ER, Maric C. Am J Physiol Renal Physiol 301: F634-F640, 2011; Xu Q, Prabhu A, Xu S, Manigrassso MB, Maric C. Am J Physiol 297: F307-F315, 2009). The aim of this study was to test the hypothesis that the combined therapy of DHT supplementation and inhibition of estradiol synthesis would afford better renoprotection than either treatment alone. The study was performed in 12-wk-old male nondiabetic (ND), STZ-induced diabetic (D), and STZ-induced diabetic rats that received the combined therapy of 0.75 mg/day of DHT along with 0.15 mg · kg(-1) · day(-1) of an aromatase inhibitor, anastrozole (Dta), for 12 wk. Treatment with the combined therapy resulted in attenuation of albuminuria by 84%, glomerulosclerosis by 55%, and tubulointerstitial fibrosis by 62%. In addition, the combined treatment decreased the density of renal cortical CD68-positive cells by 70% and decreased protein expression of transforming growth factor-β protein expression by 60%, collagen type IV by 65%, TNF-α by 55%, and IL-6 by 60%. We conclude that the combined treatment of DHT and blocking aromatase activity in diabetic male STZ-induced diabetic rats provides superior treatment than either treatment alone in the prevention of diabetic renal disease.

  6. Protective effects of ethanolic extract of rosemary against lead-induced hepato-renal damage in rabbits.

    PubMed

    Mohamed, Wafaa A M; Abd-Elhakim, Yasmina M; Farouk, Sameh M

    2016-09-01

    In traditional medicine, Rosmarinus officinalis L. leaf is used as a curative herbal therapy for the treatment of several diseases. The protective effects of rosemary in toxic effects of some environmental pollutants are known. However, there is paucity of information about its protective effects on lead acetate (LD) toxicity. To assess the protection of rosemary ethanolic extracts (REE) on LD-induced hepato- and nephro-toxicity, male albino rabbits were treated with REE (30mg/kg) and/or LD (30mg LD/kg) by gavage administration for 30 days. The total phenolic compound content in REE was estimated using Folin-Ciocalteu's assay and phyto-constituents were isolated and identified using gas chromatographic and mass spectrometry (GC-MS) analysis. The protective effect of REE in LD-induced liver and renal dysfunction and blood cells was evaluated by estimating blood biomarkers of liver and renal damage, histological, and biochemical examinations. Antioxidant enzyme activities, lipid peroxidation biomarker, protein and glycogen contents were estimated in both liver and kidney homogenates. The GC-MS analysis revealed that REE is rich in phenolic compounds including camphor, phytol, borneol, caryophyllene oxide, isopulegol, thymol, and verbenone. REE pre-treatment significantly (P<0.05) suppressed levels of LD induced hepatic and renal damage products as well as lipid peroxidation. In contrast, pre-treatment using REE significantly (P<0.05) decreased LD-induced depletion of antioxidant enzymes, protein, and glycogen content. Additionally, REE preserved blood cells and their structure and renal and hepatic architecture. In conclusion, these findings revealed that REE protects from toxic effects of LD possibly through its free radical-scavenging and antioxidant activities.

  7. Therapeutic inhibition of mitochondrial function induces cell death in starvation-resistant renal cell carcinomas.

    PubMed

    Isono, Takahiro; Chano, Tokuhiro; Yonese, Junji; Yuasa, Takeshi

    2016-05-09

    Renal cell carcinomas (RCC) have two types of cells for carbon metabolism and for cell signaling under nutrient-deprivation conditions, namely starvation-resistant and starvation-sensitive cells. Here, we evaluated the mitochondrial characteristics of these cell types and found that the resistant type possessed higher activities for both mitochondrial oxidative phosphorylation and glycolysis than the sensitive types. These higher activities were supported by the stored carbon, lipid and carbohydrate sources, and by a low level of mitochondrial reactive oxygen species (ROS) due to sustained SOD2 expression in the resistant RCC cells. In metastatic RCC cases, higher SOD2 expression was associated with a significantly shorter survival period. We found that treatment with the drugs etomoxir and buformin significantly reduced mitochondrial oxidative phosphorylation and induced cell death under glucose-deprivation conditions in starvation-resistant RCC cells. Our data suggest that inhibitory targeting of mitochondria might offer an effective therapeutic option for metastatic RCC that is resistant to current treatments.

  8. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    PubMed Central

    Yang, Chun-ming; Ji, Shan; Li, Yan; Fu, Li-ye; Jiang, Tao; Meng, Fan-dong

    2017-01-01

    β-Catenin (CTNNB1 gene coding protein) is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC) cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC. PMID:28260916

  9. Therapeutic inhibition of mitochondrial function induces cell death in starvation-resistant renal cell carcinomas

    PubMed Central

    Isono, Takahiro; Chano, Tokuhiro; Yonese, Junji; Yuasa, Takeshi

    2016-01-01

    Renal cell carcinomas (RCC) have two types of cells for carbon metabolism and for cell signaling under nutrient-deprivation conditions, namely starvation-resistant and starvation-sensitive cells. Here, we evaluated the mitochondrial characteristics of these cell types and found that the resistant type possessed higher activities for both mitochondrial oxidative phosphorylation and glycolysis than the sensitive types. These higher activities were supported by the stored carbon, lipid and carbohydrate sources, and by a low level of mitochondrial reactive oxygen species (ROS) due to sustained SOD2 expression in the resistant RCC cells. In metastatic RCC cases, higher SOD2 expression was associated with a significantly shorter survival period. We found that treatment with the drugs etomoxir and buformin significantly reduced mitochondrial oxidative phosphorylation and induced cell death under glucose-deprivation conditions in starvation-resistant RCC cells. Our data suggest that inhibitory targeting of mitochondria might offer an effective therapeutic option for metastatic RCC that is resistant to current treatments. PMID:27157976

  10. Cooked common beans (Phaseolus vulgaris L.) modulate renal genes in streptozotocin-induced diabetic rats.

    PubMed

    Lomas-Soria, Consuelo; Pérez-Ramírez, Iza F; Caballero-Pérez, Juan; Guevara-Gonzalez, Ramón G; Guevara-Olvera, Lorenzo; Loarca-Piña, Guadalupe; Guzman-Maldonado, Horacio S; Reynoso-Camacho, Rosalía

    2015-07-01

    Food consumption with different bioactive compounds could reduce the risk of diabetic complications. This study was designed to evaluate the effect of cooked common beans on differentially expressed genes in whole kidney homogenates of streptozotocin-induced diabetic rats. After 4weeks of treatment with a cooked bean supplemented (10%) diet, animals fed with Flor de Mayo bean (FMB) exerted the greatest protective effect, since they presented the lowest blood glucose levels, consistent with an increase in blood insulin levels, a decrease in urine albumin and urea levels and an increase in creatinine clearance (P≤.05). Regarding the gene expression of kidneys evaluated using expressed sequence tag, consumption of cooked beans improved the expression of Glu1, Cps1, Ipmk, Cacna1c, Camk1, Pdhb, Ptbp3 and Pim1, which are related to the elimination of ammonium groups, the regulation of inflammatory and oxidative response, as well as cell signaling and apoptosis. In addition, the beneficial effects observed were not related to their polyphenolic and saponin profile, suggesting the activity of other bioactive compounds or the synergistic interaction of these compounds. These results suggest that the consumption of cooked common beans (FMB) might be used as an alternative for the regulation of genes related to renal alterations.

  11. Faster non-renal clearance of metoprolol in streptozotocin-induced diabetes mellitus rats.

    PubMed

    Lee, Unji; Lee, Inchul; Lee, Byung K; Kang, Hee E

    2013-11-20

    Metoprolol is a selective β1-adrenergic receptor antagonist metabolized by hepatic cytochrome P450s (CYPs). In this study, we evaluated pharmacokinetic changes following intravenous (i.v.) and oral metoprolol in rats with diabetes mellitus induced by streptozotocin (DMIS). Metoprolol has an intermediate hepatic extraction ratio in rats (0.586-0.617), and it is assumed that the liver is exclusively responsible for metoprolol metabolism. Thus, the hepatic clearance, CL(H) (the non-renal clearance, CL(NR)) of metoprolol depends on the hepatic blood flow rate (Q(H)), the free fraction in plasma (f(p)), and in vitro hepatic intrinsic clearance, CL(int). After i.v. administration of 1.5 mg/kg metoprolol to DMIS rats, its CLNR was 40.9% faster than control animals. This could be due to a significantly faster QH because hepatic CL(int) and fp were comparable between the two groups of rats due to unchanged hepatic CYP2D activity. After oral administration of 1.5 mg/kg metoprolol to DMIS rats, gastrointestinal absorption was >99% of the oral dose for both groups, while the area under the curve (AUC) was 27.9% smaller, which could be caused by the greater hepatic metabolism seen in the i.v. study. These findings have potential therapeutic implications, assuming that the DMIS rats qualitatively reflect similar changes in patients with diabetes.

  12. Interleukin-1 decreases renal sodium reabsorption: possible mechanism of endotoxin-induced natriuresis

    SciTech Connect

    Caverzasio, J.; Rizzoli, R.; Dayer, J.M.; Bonjour, J.P.

    1987-05-01

    Administration of pyrogen or endotoxins such as Escherichia coli lipopolysaccharide can elicit a marked increase in urinary sodium excretion. This response occurs without any elevation in the filtered load of sodium and it does not appear to be prostaglandin mediated. The various effects produced by endotoxins appear to have interleukin-1 as a common mediator. In the present work, the authors have studied whether human recombinant interleukin-1..beta.. (hrIL-1) could affect the renal handling of sodium and thus, could be implicated in natriuretic response to pyrogens or endotoxins. They observed that hrIL-1 intravenously injected into conscious rats provokes a marked increase in sodium excretion. This natriuretic response was not associated with any increase in glomerular filtration rate (clearance of (/sup 3/H)inulin), nor was it accompanied by significant changes in the urinary excretion of potassium, calcium, or inorganic phosphate. The only concomitant alteration was a decrease in urinary pH. Pretreatment with indomethacin abolished the effect of hrIL-1 on urinary pH but did not modify the natriuretic response. In conclusion, hrIL-1 elicits a selective decrease in tubular sodium reabsorption, which does not appear to involve a change in prostaglandin synthesis. This observation strongly suggests that interleukin-1 could be a key mediator in endotoxin-induced natriuresis.

  13. Generation of induced pluripotent stem cells with high efficiency from human embryonic renal cortical cells

    PubMed Central

    Yao, Ling; Chen, Ruifang; Wang, Pu; Zhang, Qi; Tang, Hailiang; Sun, Huaping

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) emerges as a prospective therapeutic angle in regenerative medicine and a tool for drug screening. Although increasing numbers of iPSCs from different sources have been generated, there has been limited progress in yield of iPSC. Here, we show that four Yamanaka factors Oct4, Sox2, Klf4 and c-Myc can convert human embryonic renal cortical cells (hERCCs) to pluripotent stem cells with a roughly 40-fold higher reprogramming efficiency compared with that of adult human dermal fibroblasts. These iPSCs show pluripotency in vitro and in vivo, as evidenced by expression of pluripotency associated genes, differentiation into three embryonic germ layers by teratoma tests, as well as neuronal fate specification by embryoid body formation. Moreover, the four exogenous genes are effectively silenced in these iPSCs. This study highlights the use of hERCCs to generate highly functional human iPSCs which may aid the study of genetic kidney diseases and accelerate the development of cell-based regenerative therapy. PMID:27904699

  14. Renal disease in pregnancy.

    PubMed

    Sanders, C L; Lucas, M J

    2001-09-01

    Women with renal disease who conceive and continue a pregnancy are at significant risk for adverse maternal and fetal outcomes. Risk is inversely related to the degree of renal insufficiency. Pregnancy-induced changes in the urinary tract can temporarily increase renal function compromise, such as nephrosis, but most often results in no net increase in dysfunction. Common complications of pregnancy--such as hypertension and hypovolemia--can be associated with acute renal injury or aggravation of pre-existing disease.

  15. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats.

    PubMed

    Shalaby, Rokaya H; Rashed, Laila A; Ismaail, Alaa E; Madkour, Naglaa K; Elwakeel, Sherien H

    2014-01-01

    Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could

  16. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats

    PubMed Central

    Shalaby, Rokaya H; Rashed, Laila A; Ismaail, Alaa E; Madkour, Naglaa K; Elwakeel, Sherien H

    2014-01-01

    Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could

  17. Systemic treatment with interleukin-4 induces regression of pulmonary metastases in a murine renal cell carcinoma model.

    PubMed

    Hillman, G G; Younes, E; Visscher, D; Ali, E; Lam, J S; Montecillo, E; Pontes, J E; Haas, G P; Puri, R K

    1995-02-01

    Advanced metastatic renal cell carcinoma has been shown to be responsive to immunotherapy but the response rate is still limited. We have investigated the therapeutic potential of systemic interleukin-4 (IL-4) administration for the treatment of pulmonary metastases in the murine Renca renal adenocarcinoma model. Renca cells were injected iv in Balb/c mice to induce multiple pulmonary tumor nodules. From Day 5, Renca-bearing mice were treated with two daily injections of recombinant murine IL-4 for 5 consecutive days. IL-4 treatment induced a significant reduction in the number of lung metastases in a dose-dependent manner and significantly augmented the survival of treated animals. Immunohistochemistry studies, performed on lung sections, showed macrophage and CD8+ T cell infiltration in the tumor nodules 1 day after the end of IL-4 treatment. The CD8 infiltration increased by Day 7 after IL-4 treatment. Granulocyte infiltration was not detectable. To clarify further the role of the immune system in IL-4 anti-tumor effect, mice were depleted of lymphocyte subpopulations by in vivo injections of specific antibodies prior to treatment with IL-4. Depletion of CD8+ T cells or AsGM1+ cells abrogated the effect of IL-4 on lung metastases, whereas depletion of CD4+ T cells had no impact. These data indicate that CD8+ T cells and AsGM1+ cells are involved in IL-4-induced regression of established renal cell carcinoma.

  18. Unfractionated bone marrow cells attenuate paraquat-induced glomerular injury and acute renal failure by modulating the inflammatory response

    PubMed Central

    Gu, Sing-Yi; Yeh, Ti-Yen; Lin, Shih-Yi; Peng, Fu-Chuo

    2016-01-01

    The aim of this study was to evaluate the efficacy of unfractionated bone marrow cells (BMCs) in attenuating acute kidney injury (AKI) induced by paraquat (PQ) in a mouse model. PQ (55 mg/kg BW) was intraperitoneally injected into C57BL/6 female mice to induce AKI, including renal function failure, glomerular damage and renal tubule injury. Glomerular podocytes were the first target damaged by PQ, which led to glomerular injury. Upon immunofluorescence staining, podocytes depletion was validated and accompanied by increased urinary podocin levels, measured on days 1 and 6. A total of 5.4 × 106 BMCs obtained from the same strain of male mice were injected into AKI mice through the tail vein at 3, 24, and 48 hours after PQ administration. As a result, renal function increased, tubular and glomerular injury were ameliorated, podocytes loss improved, and recipient mortality decreased. In addition, BMCs co-treatment decreased the extent of neutrophil infiltration and modulated the inflammatory response by shifting from pro-inflammatory Th1 to an anti-inflammatory Th2 profile, where IL-1β, TNF-α, IL-6 and IFN-γ levels declined and IL-10 and IL-4 levels increased. The present study provides a platform to investigate PQ-induced AKI and repeated BMCs injection represents an efficient therapeutic strategy. PMID:26988026

  19. Angiotensin-(1-7) relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis

    PubMed Central

    Lu, W.; Kang, J.; Hu, K.; Tang, S.; Zhou, X.; Yu, S.; Xu, L.

    2017-01-01

    We aimed to study the renal injury and hypertension induced by chronic intermittent hypoxia (CIH) and the protective effects mediated by angiotensin 1-7 [Ang(1-7)]. We randomly assigned 32 male Sprague-Dawley rats (body weight 180-200 g) to normoxia control, CIH, Ang(1-7)-treated normoxia, and Ang(1-7)-treated CIH groups. Systolic blood pressure (SBP) was monitored at the start and end of each week. Renal sympathetic nerve activity (RSNA) was recorded. CTGF and TGF-β were detected by immunohistochemistry and western blotting. Tissue parameters of oxidative stress were also determined. In addition, renal levels of interleukin-6, tumor necrosis factor-α, nitrotyrosine, and hypoxia-inducible factor-1α were determined by immunohistochemistry, immunoblotting, and ELISA. TUNEL assay results and cleaved caspase 3 and 12 were also determined. Ang(1-7) induced a reduction in SBP together with a restoration of RSNA in the rat model of CIH. Ang(1-7) treatment also suppressed the production of reactive oxygen species, reduced renal tissue inflammation, ameliorated mesangial expansion, and decreased renal fibrosis. Thus, Ang(1-7) treatment exerted renoprotective effects on CIH-induced renal injury and was associated with a reduction of oxidative stress, inflammation and fibrosis. Ang(1-7) might therefore represent a promising therapy for obstructive sleep apnea-related hypertension and renal injury. PMID:28076452

  20. Bitter gourd (Momordica charantia) modulates activities of intestinal and renal disaccharidases in streptozotocin-induced diabetic rats.

    PubMed

    Kumar Shetty, Ajaya; Suresh Kumar, Gurusiddaiah; Veerayya Salimath, Paramahans

    2005-08-01

    During diabetes, structural and functional changes in the alimentary tract are known to take place resulting in increased absorption of intestinal glucose and alterations in the activities of brush border disaccharidases. Similar observations are also reported in the renal cortex. In the present investigation, we examined the effect of feeding bitter gourd fruit devoid of seeds on activities of intestinal and renal disaccharidases, viz., maltase, sucrase, and lactase in streptozotocin-induced diabetic rats. Normal and diabetic rats were fed either with basal diet or a diet containing 10% bitter gourd powder. Specific activities of intestinal disaccharidases were significantly increased during diabetes, and supplementing bitter gourd in the diet clearly indicated amelioration in the activities of maltase and lactase during diabetes. However, a significant change was not observed with sucrase activity by feeding of bitter gourd. During diabetes, renal disaccharidase activities were significantly lower than those in the control rats. Bitter gourd supplementation was beneficial in alleviating the reduction in maltase activity during diabetes. However, not much change in the activities of sucrase and lactase was observed upon feeding. This positive influence of feeding bitter gourd on intestinal and renal disaccharidases clearly indicates their beneficial role in the management of diabetes, thus making diabetic animals more tolerant to hyperglycemia.

  1. Role of TNF-associated cytokines in renal tubular cell apoptosis induced by hyperoxaluria.

    PubMed

    Horuz, Rahim; Göktaş, Cemal; Çetinel, Cihangir A; Akça, Oktay; Aydın, Hasan; Ekici, Işın D; Albayrak, Selami; Sarıca, Kemal

    2013-06-01

    Crystal-cell interaction has been reported as one of the most crucial steps in urinary stone formation. Hyperoxaluria-induced apoptotic changes in renal tubular epithelial cells is the end-stage of this interaction. We aimed to evaluate the possible pathways responsible in the induction of apoptosis within the involved cells by assessing the receptoral expression of three different pathways. 16 male Spraque-Dowley rats were divided into two groups: Group 1 (n:8) received only distilled water; Group 2 (n:8) received 0.75 % ethylene glycol (EG) in their daily water to induce hyperoxaluria for 2 weeks. After 24 h urine collection, all animals were euthenized and right kidneys were removed and fixed for immunohistochemical evaluation. Oxalate and creatinine levels (in 24 h-urine) and FAS, tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor-2 expressions (in tissue) have been assessed. In addition to TNF (p = 0.0007) expression; both FAS (p = 0.0129 ) and FASL (p = 0.032) expressions significantly increased in animals treated with EG. The expressions of TRAIL (p = 0.49) and TRAIL-R2 (p = 0.34) receptors did not change statistically after hyperoxaluria induction. Although a positive correlation with cytokine expression density and 24 h-urinary oxalate expression (mg oxalate/mg creatinine) has been assessed with TNF (p = 0.04, r = 0.82), FAS (p = 0.05, r = 0.80), FAS-L (p = 0.04, r = 0.82); no correlation could be demonstrated between TRAIL and TRAIL R2 expressions. Our results indicate that apoptosis induced by oxalate is possibly mediated via TNF and FAS pathways. However, TRAIL and TRAIL-R2 seemed to have no function in the cascade. Correlation with urinary oxalate levels did further strengthen the findings.

  2. Prostaglandin-E1 has a protective effect on renal ischemia/reperfusion-induced oxidative stress and inflammation mediated gastric damage in rats.

    PubMed

    Gezginci-Oktayoglu, Selda; Orhan, Nurcan; Bolkent, Sehnaz

    2016-07-01

    Gastrointestinal complications are frequent in renal transplant recipients. In this regard, renal ischemia/reperfusion injury (IRI)-induced gastric damage seems to be important and there is no data available on the mechanism of this pathology. Because of its anti-inflammatory and anti-oxidant properties, it can be suggested that prostaglandin-E1 (PGE1) protects cells from renal IRI-induced gastric damage. The aim of this study was to investigate the molecular mechanisms of gastric damage induced by renal IRI and the effect of PGE1 on these mechanisms. We set an experiment with four different animal groups: physiological saline-injected and sham-operated rats, PGE1 (20μg/kg)-administered and sham operated rats, renal IRI subjected rats, and PGE1-administered and renal IRI subjected rats. The protective effect of PGE1 on renal IRI-induced gastric damage was determined based on reduced histological damage and lactate dehydrogenase activity. Moreover, we demonstrated that PGE1 shows its protective effect through reducing the production of reactive oxygen species and malondialdehyde levels. During histological examination, we observed the presence of common mononuclear cell infiltration. Therefore, pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β levels were measured and it has been shown that PGE1 suppressed both cytokines. Furthermore, it was found that PGE1 reduced the number of NF-κB(+) and caspase-3(+) inflammatory cells, and also NF-κB DNA-binding activity, while increasing proliferating cell nuclear antigen(+) epithelial cells in the stomach tissue of rats subjected to renal IR. Our data showed that PGE1 has a protective effect on renal IRI-induced oxidative stress and inflammation mediated gastric damage in rats.

  3. Plasma heme-induced renal toxicity is related to a capillary rarefaction

    PubMed Central

    Tabibzadeh, Nahid; Estournet, Céline; Placier, Sandrine; Perez, Joëlle; Bilbault, Héloïse; Girshovich, Alexis; Vandermeersch, Sophie; Jouanneau, Chantal; Letavernier, Emmanuel; Hammoudi, Nadjib; Lionnet, François; Haymann, Jean-Philippe

    2017-01-01

    Severe hypertension can lead to malignant hypertension (MH) with renal thrombotic microangiopathy and hemolysis. The role of plasma heme release in this setting is unknown. We aimed at evaluating the effect of a mild plasma heme increase by hemin administration in angiotensin II (AngII)-mediated hypertensive rats. Prevalence of MH and blood pressure values were similar in AngII and AngII + hemin groups. MH rats displayed a decreased renal blood flow (RBF), increased renal vascular resistances (RVR), and increased aorta and interlobar arteries remodeling with a severe renal microcirculation assessed by peritubular capillaries (PTC) rarefaction. Hemin-treated rats with or without AngII displayed also a decreased RBF and increased RVR explained only by PCT rarefaction. In AngII rats, RBF was similar to controls (with increased RVR). PTC density appeared strongly correlated to tubular damage score (rho = −0.65, p < 0.0001) and also renal Heme Oygenase-1 (HO-1) mRNA (rho = −0.67, p < 0.0001). HO-1 was expressed in PTC and renal tubules in MH rats, but only in PTC in other groups. In conclusion, though increased plasma heme does not play a role in triggering or aggravating MH, heme release appears as a relevant toxic mediator leading to renal impairment, primarily through PTC endothelial dysfunction rather than direct tubular toxicity. PMID:28071761

  4. Role of CFTR in oxidative stress and suicidal death of renal cells during cisplatin-induced nephrotoxicity.

    PubMed

    Rubera, I; Duranton, C; Melis, N; Cougnon, M; Mograbi, B; Tauc, M

    2013-10-03

    The clinical use of the antineoplastic drug cisplatin is limited by its deleterious nephrotoxic side effect. Cisplatin-induced nephrotoxicity is associated with an increase in oxidative stress, leading ultimately to renal cell death and irreversible kidney dysfunction. Oxidative stress could be modified by the cystic fibrosis transmembrane conductance regulator protein (CFTR), a Cl(-) channel not only involved in chloride secretion but as well in glutathione (GSH) transport. Thus, we tested whether the inhibition of CFTR could protect against cisplatin-induced nephrotoxicity. Using a renal proximal cell line, we show that the specific inhibitor of CFTR, CFTR(inh)-172, prevents cisplatin-induced cell death and apoptosis by modulating the intracellular reactive oxygen species balance and the intracellular GSH concentration. This CFTR(inh)-172-mediated protective effect occurs without affecting cellular cisplatin uptake or the formation of platinum-DNA adducts. The protective effect of CFTR(inh)-172 in cisplatin-induced nephrotoxicity was also investigated in a rat model. Five days after receiving a single cisplatin injection (5 mg/kg), rats exhibited renal failure, as evidenced by the alteration of biochemical and functional parameters. Pretreatment of rats with CFTR(inh)-172 (1 mg/kg) prior to cisplatin injection significantly prevented these deleterious cisplatin-induced nephrotoxic effects. Finally, we demonstrate that CFTR(inh)-172 does not impair cisplatin-induced cell death in the cisplatin-sensitive A549 cancer cell line. In conclusion, the use of a specific inhibitor of CFTR may represent a novel therapeutic approach in the prevention of nephrotoxic side effects during cisplatin treatment without affecting its antitumor efficacy.

  5. Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin.

    PubMed

    Wu, Duo; Wen, Wei; Qi, Chun-Li; Zhao, Ru-Xia; Lü, Jun-Hua; Zhong, Chun-Yan; Chen, Yi-Yu

    2012-06-15

    Berberine (BBR) is one of the main constituents in Rhizoma coptidis and it has widely been used for the treatment of diabetic nephropathy. The aims of the study were to investigate the effects and mechanism of action of berberine on renal damage in diabetic rats. Diabetes and hyperglycaemia were induced in rats by a high-fat diet and intraperitoneal injection of 40 mg/kg streptozotocin (STZ). Rats were randomly divided into 5 groups, such as i) control rats, ii) untreated diabetic rats iii) 250 mg/kg metformin-treated, iv and v) 100 and 200 mg/kg berberine-treated diabetic rats and treated separately for 8 weeks. The fasting blood glucose, insulin, total cholesterol, triglyceride, glycosylated hemoglobin were measured in rats. Kidneys were isolated at the end of the treatment for histology, Western blot analysis and estimation of malonaldehyde (MDA), superoxide dismutase (SOD) and renal advanced glycation endproducts (AGEs). The results revealed that berberine significantly decreased fasting blood glucose, insulin levels, total cholesterol, triglyceride levels, urinary protein excretion, serum creatinine (Scr) and blood urea nitrogen (BUN) in diabetic rats. The histological examinations revealed amelioration of diabetes-induced glomerular pathological changes following treatment with berberine. In addition, the protein expressions of nephrin and podocin were significantly increased. It seems likely that in rats berberine exerts an ameliorative effect on renal damage in diabetes induced by high-fat diet and streptozotocin. The possible mechanisms for the renoprotective effects of berberine may be related to inhibition of glycosylation and improvement of antioxidation that in turn upregulate the expressions of renal nephrin and podocin.

  6. Renal Protective Effects of Low Molecular Weight of Inonotus obliquus Polysaccharide (LIOP) on HFD/STZ-Induced Nephropathy in Mice.

    PubMed

    Chou, Yen-Jung; Kan, Wei-Chih; Chang, Chieh-Min; Peng, Yi-Jen; Wang, Hsien-Yi; Yu, Wen-Chun; Cheng, Yu-Hsuan; Jhang, Yu-Rou; Liu, Hsia-Wei; Chuu, Jiunn-Jye

    2016-09-13

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in diabetes mellitus. Oxidative stress, insulin resistance and pro-inflammatory cytokines have been shown to play an important role in pathogeneses of renal damage on type 2 diabetes mellitus (DM). Inonotus obliquus (IO) is a white rot fungus that belongs to the family Hymenochaetaceae; it has been used as an edible mushroom and exhibits many biological activities including anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic properties. Especially the water-soluble Inonotus obliquus polysaccharides (IOPs) have been previously reported to significantly inhibit LPS-induced inflammatory cytokines in mice and protect from streptozotocin (STZ)-induced diabetic rats. In order to identify the nephroprotective effects of low molecular weight of IOP fraction (LIOP), from the fruiting bodies of Inonotus obliquus, high-fat diet (HFD) plus STZ-induced type 2-like diabetic nephropathy C57BL/6 mice were investigated in this study. Our data showed that eight weeks of administration of 10-100 kDa, LIOP (300 mg/kg) had progressively increased their sensitivity to glucose (less insulin tolerance), reduced triglyceride levels, elevated the HDL/LDL ratio and decreased urinary albumin/creatinine ratio(ACR) compared to the control group. By pathological and immunohistochemical examinations, it was indicated that LIOP can restore the integrity of the glomerular capsules and increase the numbers of glomerular mesangial cells, associated with decreased expression of TGF-β on renal cortex in mice. Consistently, three days of LIOP (100 μg/mL) incubation also provided protection against STZ + AGEs-induced glucotoxicity in renal tubular cells (LLC-PK1), while the levels of NF-κB and TGF-β expression significantly decreased in a dose-dependent manner. Our findings demonstrate that LIOP treatment could ameliorate glucolipotoxicity-induced renal fibrosis, possibly partly via the inhibition of NF

  7. Renal Protective Effects of Low Molecular Weight of Inonotus obliquus Polysaccharide (LIOP) on HFD/STZ-Induced Nephropathy in Mice

    PubMed Central

    Chou, Yen-Jung; Kan, Wei-Chih; Chang, Chieh-Min; Peng, Yi-Jen; Wang, Hsien-Yi; Yu, Wen-Chun; Cheng, Yu-Hsuan; Jhang, Yu-Rou; Liu, Hsia-Wei; Chuu, Jiunn-Jye

    2016-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in diabetes mellitus. Oxidative stress, insulin resistance and pro-inflammatory cytokines have been shown to play an important role in pathogeneses of renal damage on type 2 diabetes mellitus (DM). Inonotus obliquus (IO) is a white rot fungus that belongs to the family Hymenochaetaceae; it has been used as an edible mushroom and exhibits many biological activities including anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic properties. Especially the water-soluble Inonotus obliquus polysaccharides (IOPs) have been previously reported to significantly inhibit LPS-induced inflammatory cytokines in mice and protect from streptozotocin (STZ)-induced diabetic rats. In order to identify the nephroprotective effects of low molecular weight of IOP fraction (LIOP), from the fruiting bodies of Inonotus obliquus, high-fat diet (HFD) plus STZ-induced type 2-like diabetic nephropathy C57BL/6 mice were investigated in this study. Our data showed that eight weeks of administration of 10–100 kDa, LIOP (300 mg/kg) had progressively increased their sensitivity to glucose (less insulin tolerance), reduced triglyceride levels, elevated the HDL/LDL ratio and decreased urinary albumin/creatinine ratio(ACR) compared to the control group. By pathological and immunohistochemical examinations, it was indicated that LIOP can restore the integrity of the glomerular capsules and increase the numbers of glomerular mesangial cells, associated with decreased expression of TGF-β on renal cortex in mice. Consistently, three days of LIOP (100 μg/mL) incubation also provided protection against STZ + AGEs-induced glucotoxicity in renal tubular cells (LLC-PK1), while the levels of NF-κB and TGF-β expression significantly decreased in a dose-dependent manner. Our findings demonstrate that LIOP treatment could ameliorate glucolipotoxicity-induced renal fibrosis, possibly partly via the inhibition of NF

  8. Autophagy activation protects shock wave induced renal tubular epithelial cell apoptosis may through modulation of Akt/ GSK-3β pathway

    PubMed Central

    Long, Qingzhi; Li, Xiang; He, Hui; He, Dalin

    2016-01-01

    Purpose: Extracorporeal shock wave lithotripsy (ESWL) is well documented to exert destructive effect to renal cells and its mechanism is not clear. Autophagy is one of cell basic response for stressful conditions and it is important to determine cell's fate. The aim of this study is to elucidate the role of autophagy in the process of shock wave-induced renal cells injury. Methods: NRK-52E cell, a rat renal tubular epithelial cell, was exposed to shock wave at the voltage of 14KV. GFP-LC3 puncta was used to monitor Autophagy flux in the process of shock wave injury. Autophagic relative proteins, such as light chain 3 (LC3), beclin-1 and p62, were also examined. Cell variability and apoptosis were detected when inhibition autophagy with 3-methyladenine (3MA) or stimulating its activity with rapamycin during the process of shock wave injury. The role of Akt/ GSK-3β and its connection with autophagy in the process of shock wave injury were also investigated. Results: Shock wave was confirmed to activate autophagy in renal cells, which was manifested in LC3-II turnover, beclin-1 induction and degradation of p62. Inhibition autophagy enhanced cell damage or apoptosis, whereas its stimulating was able to exert protection from shock wave injury. Akt/ GSK-3β, a cell-survival signaling pathway, can also be activated during the process. And its activation could be suppressed by blockade autophagy. Conclusion: Autophagy is a self-protective response for renal cells from shock wave injury. The cyto-protection of autophagy may be connected with modulation Akt/ GSK-3β pathway. PMID:27994511

  9. Progranulin protects against endotoxin-induced acute kidney injury by downregulating renal cell death and inflammatory responses in mice.

    PubMed

    Xu, Xiaoying; Gou, Linfeng; Zhou, Meng; Yang, Fusheng; Zhao, Yihan; Feng, Tingting; Shi, Peikun; Ghavamian, Armin; Zhao, Weiming; Yu, Yuan; Lu, Yi; Yi, Fan; Liu, Guangyi; Tang, Wei

    2016-09-01

    Progranulin (PGRN), a pluripotent secreted growth factor, is involved in various physiologic and disease processes. However, the role of PGRN in endotoxin-induced septic acute kidney injury (AKI) remains unknown. The objective of this study is to investigate the protective effects of PGRN on an endotoxin-induced AKI mouse model by using PGRN-deficient mice and recombinant PGRN (rPGRN) pretreatment. PGRN levels were increased in kidneys of wild-type (WT) mice at 6 and 24h after lipopolysaccharide (LPS) injection. Renal function detection, hematoxylin and eosin staining, immunohistochemical staining, ELISA and in situ terminal deoxynucleotidyl transferase-mediated uridine triphosphate nick-end labeling were used to reveal tissue injury, inflammatory cell infiltration, production of inflammatory mediators and cell death in mouse kidneys after LPS injection. PGRN deficiency resulted in severe kidney injury and increased apoptotic death, inflammatory cell infiltration, production of pro-inflammatory mediators and the expression and nucleus-to-cytoplasmic translocation of HMGB1 in the kidney. In addition, rPGRN administration before LPS treatment ameliorated the endotoxin-induced AKI in WT mice. PGRN may be a novel biologic agent with therapeutic potential for endotoxin-induced septic AKI possibly by inhibiting LPS-induced renal cell death and inflammatory responses in mice.

  10. Hypoxia inducible factor-1α-mediated gene activation in the regulation of renal medullary function and salt sensitivity of blood pressure

    PubMed Central

    Li, Ningjun

    2012-01-01

    Many enzymes that produce natriuretic factors such as nitric oxide synthase (NOS), hemeoxygenase-1 (HO-1) and cyclooxygenase-2 (COX-2) are highly expressed in the renal medulla. These enzymes in the renal medulla are up-regulated in response to high salt intake. Inhibition of these enzymes within the renal medulla reduces sodium excretion and increases salt sensitivity of arterial blood pressure, indicating that these enzymes play important roles in kidney salt handling and renal adaptation to high salt challenge. However, it remains a question what mechanisms mediate the activation of these enzymes in response to high salt challenge in the renal medulla. Interestingly, these enzymes are oxygen sensitive genes and regulated by transcription factor hypoxia-inducible factor (HIF)-1α. Our recent serial studies have demonstrated that: 1) High salt intake stimulates HIF-1α-mediated gene expression, such as NOS, HO-1 and COX-2, in the renal medulla, which may augment the production of different antihypertensive factors in the renal medulla, mediating renal adaptation to high salt intake and regulating salt sensitivity of arterial blood pressure. 2) HIF prolyl-hydroxylase 2 (PHD2), an enzyme that promotes the degradation of HIF-1α, is highly expressed in renal medulla. High salt intake suppresses the expression of PHD2 in the renal medulla, which increases HIF-1α-mediated gene expressions in the renal medulla, thereby participates in the control of salt sensitivity of blood pressure. 3) The high salt-induced inhibition in PHD2 and the consequent activation of HIF-1α in the renal medulla is not observed in Dahl salt sensitive hypertensive (Dahl/ss) rats. Correction of these defects in PHD2/HIF-1α-associated molecular adaptation in the renal medulla improves sodium excretion, reduces sodium retention and attenuates saltsensitive hypertension in Dahl/ss rats. In conclusion, PHD2 regulation of HIF-1α-mediated gene activation in the renal medulla is an important

  11. Thymoquinone induces apoptosis through downregulation of c-FLIP and Bcl-2 in renal carcinoma Caki cells.

    PubMed

    Park, Eun Jung; Chauhan, Anil Kumar; Min, Kyoung-Jin; Park, Dong Cheol; Kwon, Taeg Kyu

    2016-10-01

    Renal carcinoma is a common and frequently fatal carcinoma occurring worldwide and death rates due to this carcinoma are increasing with time. In the present study, we investigated the potential of thymoquinone a natural compound to induce apoptosis in renal carcinoma Caki cells. Thymoquinone efficiently enhanced the apoptotic population of Caki cells in a dose-dependent manner. Moreover, thymoquinone-mediated apoptosis caused downregulation of c-FLIP and Bcl-2, the master regulators of the anti-apoptotic mechanism. However, we did not find any changes in mRNA expression level of c-FLIP, therefore; this regulation of c-FLIP was a result of post-translation modification by thymoquinone. In contrast, expression of the Bcl-2 protein was observed at both transcriptional and translational level. However, we also observed that thymoquinone enhanced the level of intracellular reactive oxygen species (ROS) in Caki cells, which resulted in reduction of mitochondrial membrane potential (MMP) and cytochrome c release into cytoplasm. Our results postulate that thymoquinone induces apoptosis through downregulating c-FLIP and Bcl-2 which can be utilized as a chemotherapeutic agent to treat renal carcinoma.

  12. Acute-onset hypomagnesemia-induced hypocalcemia caused by the refractoriness of bones and renal tubules to parathyroid hormone.

    PubMed

    Yamamoto, Masahiro; Yamaguchi, Toru; Yamauchi, Mika; Yano, Shozo; Sugimoto, Toshitsugu

    2011-11-01

    Chronic hypomagnesemia is closely associated with hypocalcemia, which is caused by impaired parathyroid hormone (PTH) secretion or the refractoriness of bone and renal tubules to PTH. The dominant mechanism of acute-onset, hypomagnesemia-induced hypocalcemia is currently unclear. An 83-year-old man who had undergone chemotherapy with carboplatin for prostate cancer suffered from acute diarrhea and finger paresthesia. Laboratory data confirmed hypocalcemia as well as hypomagnesemia. Urinary calcium levels were not measured. However, the urinary fractional excretion of Mg (FE(Mg)) was elevated. Despite elevated PTH levels, the renal tubular maximal reabsorption rate of phosphate to GFR (TmP/GFR) was elevated, and bone formation and resorption markers were suppressed. A magnesium loading test revealed a clear magnesium deficiency. After administration of magnesium, bone marker levels were increased, and TmP/GFR was reduced to normal levels, despite the persistent elevation of PTH. Serum calcium levels eventually increased to approximately the reference range. Clinical histories and these observations both suggest that when patients with hypomagnesemia-induced hypocalcemia rapidly lose magnesium through complications such as diarrhea, the primary cause may be the refractoriness of bone and renal tubules to PTH, rather than impaired PTH secretion.

  13. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  14. [Successful Management by Immunoglobulin for Sunitinib-Induced Thrombocytopenia in a Patient with Advanced Metastatic Renal Cell Carcinoma].

    PubMed

    Okazaki, Satoshi; Hori, Jun-ichi; Watanabe, Masaki; Hashizume, Kazumi; Kobayashi, Shin; Azumi, Makoto; Kita, Masafumi; Iwata, Tatsuya; Matsumoto, Seiji; Kakizaki, Hidehiro

    2016-02-01

    An 81-year-old man was referred to our hospital because of a right renal tumor with vena cava thrombus and multiple lung metastases that were detected by computed tomography (CT) scan during evaluation of respiratory discomfort. We started medical treatment with sunitinib at a dose of 50 mg daily in a 2-week-on, 1-week-off schedule after confirming clear cell renal cell carcinoma by tumor biopsy. After 2-week sunitinib treatment, thrombocytopenia continued and platelet count decreased to 1.8×10(9)/l at day 11 after stopping sunitinib. We needed to administer a total of 60 units platelet transfusion because of persistent thrombocytopenia. Bone marrow aspiration did not reveal myelosuppression or carcinoma invasion to bone marrow. Under the clinical diagnosis of drug-induced thrombocytopenia secondary to sunitinib, we started immunoglobulin therapy at day 23 after stopping sunitinib. Platelet count returned to normal 10 days after starting immunoglobulin. The patient developed exacerbating lung metastasis and carcinomatous lymphangiosis during subsequent course and died of renal cell carcinoma 79 days after starting sunitinib. Thrombocytopenia after sunitinib therapy is often encountered but prolonged thrombocytopenia is rare after stopping sunitinib. This case suggests that immunoglobulin therapy is effective for drug-induced prolonged thrombocytopenia through immunological mechanism.

  15. Heparanase: A Potential New Factor Involved in the Renal Epithelial Mesenchymal Transition (EMT) Induced by Ischemia/Reperfusion (I/R) Injury

    PubMed Central

    Gambaro, Giovanni; Onisto, Maurizio; Bellin, Gloria; Vischini, Gisella; Khamaysi, Iyad; Hassan, Ahmad; Hamoud, Shadi; Nativ, Omri; N. Heyman, Samuel; Lupo, Antonio; Vlodavsky, Israel; Abassi, Zaid

    2016-01-01

    Background Ischemia/reperfusion (I/R) is an important cause of acute renal failure and delayed graft function, and it may induce chronic renal damage by activating epithelial to mesenchymal transition (EMT) of renal tubular cells. Heparanase (HPSE), an endoglycosidase that regulates FGF-2 and TGFβ-induced EMT, may have an important role. Therefore, aim of this study was to evaluate its role in the I/R-induced renal pro-fibrotic machinery by employing in vitro and in vivo models. Methods Wild type (WT) and HPSE-silenced renal tubular cells were subjected to hypoxia and reoxygenation in the presence or absence of SST0001, an inhibitor of HPSE. In vivo, I/R injury was induced by bilateral clamping of renal arteries for 30 min in transgenic mice over-expressing HPSE (HPA-tg) and in their WT littermates. Mice were sacrificed 48 and 72 h after I/R. Gene and protein EMT markers (α-SMA, VIM and FN) were evaluated by bio-molecular and histological methodologies. Results In vitro: hypoxia/reoxygenation (H/R) significantly increased the expression of EMT-markers in WT, but not in HPSE-silenced tubular cells. Notably, EMT was prevented in WT cells by SST0001 treatment. In vivo: I/R induced a remarkable up-regulation of EMT markers in HPA-tg mice after 48–72 h. Noteworthy, these effects were absent in WT animals. Conclusions In conclusion, our results add new insights towards understanding the renal biological mechanisms activated by I/R and they demonstrate, for the first time, that HPSE is a pivotal factor involved in the onset and development of I/R-induced EMT. It is plausible that in future the inhibition of this endoglycosidase may represent a new therapeutic approach to minimize/prevent fibrosis and slow down chronic renal disease progression in native and transplanted kidneys. PMID:27467172

  16. Chemopreventive efficacy of hesperidin against chemically induced nephrotoxicity and renal carcinogenesis via amelioration of oxidative stress and modulation of multiple molecular pathways.

    PubMed

    Siddiqi, Aisha; Hasan, Syed Kazim; Nafees, Sana; Rashid, Summya; Saidullah, Bano; Sultana, Sarwat

    2015-12-01

    In the present study, chemopreventive efficacy of hesperidin was evaluated against ferric nitrilotriacetate (Fe-NTA) induced renal oxidative stress and carcinogenesis in wistar rats. Nephrotoxicity was induced by single intraperitoneal injection of Fe-NTA (9 mg Fe/kg b.wt). Renal cancer was initiated by the administration of N-nitrosodiethylamine (DEN 200mg/kg b.wt ip) and promoted by Fe-NTA (9 mg Fe/kg b.wt ip) twice weekly for 16 weeks. Efficacy of hesperidin against Fe-NTA-induced nephrotoxicity was assessed in terms of biochemical estimation of antioxidant enzyme activities viz. reduced renal GSH, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, catalase, superoxide dismutase and renal toxicity markers (BUN, Creatinine, KIM-1). Administration of Fe-NTA significantly depleted antioxidant renal armory, enhanced renal lipid peroxidation as well as the levels of BUN, creatinine and KIM-1. However, simultaneous pretreatment of hesperidin restored their levels in a dose dependent manner. Expression of apoptotic markers caspase-3, caspase-9, bax, bcl-2 and proliferative marker PCNA along with inflammatory markers (NFκB, iNOS, TNF-α) were also analysed to assess the chemopreventive potential of hesperidin in two-stage renal carcinogenesis model. Hesperidin was found to induce caspase-3, caspase-9, bax expression and downregulate bcl-2, NFκB, iNOS, TNF-α, PCNA expression. Histopathological findings further revealed hesperidin's chemopreventive efficacy by restoring the renal morphology. Our results provide a powerful evidence suggesting hesperidin to be a potent chemopreventive agent against renal carcinogenesis possibly by virtue of its antioxidant properties and by modulation of multiple molecular pathways.

  17. Protective Role of Silymarin on Hepatic and Renal Toxicity Induced by MTX Based Chemotherapy in Children with Acute Lymphoblastic Leukemia

    PubMed Central

    Hagag, Adel A.; Elgamsy, Mohamed A.; El-Asy, Hassan M.; Mabrouk, Maaly M.

    2016-01-01

    Background ALL is the most common childhood malignancy. The children with ALL are treated with methotrexate (MTX) based chemotherapy protocols. MTX causes unpredictable serious hepatic and renal side effects. Silymarin has antioxidant and anti-inflammatory activities and stimulates tissue regeneration. This study aims to evaluate the protective effects of Silymarin on MTX-based chemotherapy-induced Hepatic and renal toxicity in children with ALL. Patients and Methods 80 children with newly diagnosed ALL were enrolled in the study. They were randomly divided into two groups. Group I included 40 children with ages ranging from 4–13 years and the mean age of 6.85± 2.89 years, who received Silymarin 420 mg/day in 3 divided doses for one week after each MTX dose. Group II included 40 children, with ages ranging from 4–12 years and the mean age of 7.30±2.6 years, who received placebo for one week after MTX therapy. For all patients liver functions including serum bilirubin, total proteins, albumin, globulin and albumin-globulin ratio, alkaline phosphatase, ALT and AST, prothrombin time and activity and renal functions including blood urea and serum creatinine, serum cystatin C and urinary N-acetyl-beta-D-glucosaminidase were done to assess hepatic and renal toxicity before and after chemotherapy. Results There were no significant differences between group I and II as regard liver and renal functions before chemotherapy. After chemotherapy, there were significantly higher values of ALT and AST and alkaline phosphatase, and significantly lower Prothrombin activity in group II compared with group I. No significant differences between group I and II were found in total bilirubin, serum protein, and albumin levels. There was significantly lower blood urea, serum creatinine, and cystatin C and urinary N-acetyl-beta-D-glucosaminidase in group I compared with group II. Conclusion Silymarin improved some hepatic and renal functions in children with ALL who received MTX

  18. Urothelial changes of the renal papillae in Sprague-Dawley rats induced by long term feeding of phenacetin.

    PubMed

    Johansson, S; Angervall, L

    1976-09-01

    Thirty female Sprague-Dawley rats were fed 0.535 per cent phenacetin in the diet for up to 110 weeks. Twenty-six of these rats developed urothelial hyperplasia, partly papillary, of the renal papillae. Twenty-eight rats showed dilatation of the vasa recta frequently associated with thrombus formation and calcification. One phenacetin fed rat had epithelial hyperplasia associated with chronic pyelitis. In 2 of the 30 control rats urothelial hyperplasia was found to be associated with chronic pyelitis. The hyperplastic urothelial changes and vascular changes were often, but not always, present simultaneously. One control rat developed a mammary carcinoma, as compared with 5 rats in the phenacetin group. Four phenacetin fed rats developed carcinoma of the ear duct. The results of the present investigation provide evidence that phenacetin can induce proliferative lesions of the urothelium of the rat renal pelvis with weak carcinogenic activity in the ear duct and mammary glands.

  19. On the mechanisms underlying poisoning-induced rhabdomyolysis and acute renal failure.

    PubMed

    Talaie, Haleh; Emam-Hadi, Mohammad; Panahandeh, Reyhaneh; Hassanian-Moghaddam, Hosein; Abdollahi, Mohammad

    2008-01-01

    ABSTRACT The clinical syndrome of rhabdomyolysis is caused by injury of skeletal muscles resulting in release of intracellular muscle constituents. Drug poisoning is one of the causes of severe rhabdomyolysis. Severe electrolyte disorders and acute renal failure may occur in rhabdomyolysis, leading to life-threatening situations. Early initiation of renal replacement therapy can help improve outcome. In the present retrospective study, medical records of 181 patients suspected of rhabdomyolysis from Loghman-Hakim Hospital in the period of 2004 to 2005 were reviewed. A creatinine phosphokinase (CPK) value of greater than five times normal (>/=975 IU/L) was the basis for confirmation of a rhabdomyolysis diagnosis. An increased serum creatinine level of more than 30% was the basis for acute renal failure diagnosis. Out of 156 patients, 100 were male with an age range of 13 to 78 years. One hundred and two (92%) patients had CPK >975 U/L, and 36 patients (28.6%) had a 30% or more increase in their creatinine level during their admission days. Mean fluid intake was the same in patients with renal failure and those without renal failure. In 8.3% of the cases, multiple drug poisoning was observed. The most common compound overdose associated with rhabdomyolysis was opium. It is concluded that fluid therapy alone is not adequate in the management of acute renal failure in rhabdomyolysis. Therefore, other etiological factors are involved that remain to be elucidated by further studies.

  20. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Zhi, Xuan; Han, Baoqin; Sui, Xianxian; Hu, Rui; Liu, Wanshun

    2015-02-01

    The effects of low-molecular-weight-chitosan (LMWC) on chronic renal failure (CRF) rats induced by adenine were investigated in vivo and in vitro. Chitosan were hydrolyzed using chitosanase at pH 6-7 and 37° for 24 h to obtain LMWC. In vitro, the effect of LMWC on the proliferation of renal tubular epithelial cells (RTEC) showed that it had no cytotoxic effect and could promote cell growth. For the in vivo experiment, chronic renal failure rats induced by adenine were randomly divided into control group, Niaoduqing group, and high-, medium- and low-dose LMWC groups. For each group, we detected serum creatinine (SCR), blood urea nitrogen (BUN), and total superoxide dismutase (T-SOD), glutathione oxidase (GSH-Px) activities of renal tissue, and obtained the ratio of kidney weight/body weight, pathological changes of kidney. The levels of serum SCR, BUN were higher in the adenine-induced rats than those in the control group, indicating that the rat chronic renal failure model worked successfully. The results after treatment showed that LMWC could reduce the SCR and BUN levels and enhance the activities/levels of T-SOD and GSH-PX in kidney compared to control group. Histopathological examination revealed that adenine-induced renal alterations were restored by LMWC at three tested dosages, especially at the low dosage of 100 mg kg-1 d-1.

  1. Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury.

    PubMed

    Negishi, K; Noiri, E; Maeda, R; Portilla, D; Sugaya, T; Fujita, T

    2008-06-01

    Fibrates, the PPAR alpha ligand-like compounds increase the expression of proximal tubule liver fatty acid binding protein (L-FABP) and significantly decrease cisplatin-induced acute kidney injury. To study whether the bezafibrate-mediated upregulation of renal L-FABP was involved in this cytoprotective effect we treated transgenic mice of PPAR agonists inducible human L-FABP expression with cisplatin in the presence or absence of bezafibrate. Blood urea nitrogen was unchanged in the first day but increased 3 days after cisplatin. While urinary L-FABP increased over 100-fold 1 day after cisplatin treatment in the transgenic mice it was significantly reduced when these transgenic mice were pretreated with bezafibrate. Cisplatin-induced renal necrosis and apoptosis were significantly reduced in bezafibrate pretreated transgenic mice and this correlated with decreased accumulation of lipid and lipid peroxidation products. Immunohistochemical analysis of kidney tissue of bezafibrate-cisplatin-treated transgenic mice showed preservation of cytoplasmic L-FABP in the proximal tubule, but this was reduced in transgenic mice treated only with cisplatin. L-FABP mRNA and protein levels were significantly increased in bezafibrate-cisplatin-treated transgenic mice when compared to mice not fibrate treated. Our study shows that the bezafibrate-mediated upregulation of proximal tubule L-FABP plays a pivotal role in the reduction of cisplatin-induced acute kidney injury.

  2. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    SciTech Connect

    Hasegawa, Kazuhiro; Wakino, Shu Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Washida, Naoki; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2008-07-18

    NAD{sup +}-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H{sub 2}O{sub 2}. Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H{sub 2}O{sub 2}, Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H{sub 2}O{sub 2}-induced apoptosis through the upregulation of catalase. H{sub 2}O{sub 2} induced the nuclear accumulation of forkhead transcription factor, FoxO3a and the gene silencing of FoxO3a enhanced H{sub 2}O{sub 2}-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.

  3. Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells

    PubMed Central

    Han, Min Ae; Lee, Dong Hee; Woo, Seon Min; Seo, Bo Ram; Min, Kyoung-jin; Kim, Shin; Park, Jong-Wook; Kim, Sang Hyun; Choi, Yung Hyun; Kwon, Taeg Kyu

    2016-01-01

    Galangin, bioflavonoids, has been shown anti-cancer properties in various cancer cells. In this study, we investigated whether galangin could enhance TRAIL-mediated apoptosis in TRAIL resistant renal carcinoma Caki cells. Galangin alone and TRAIL alone had no effect on apoptosis, while combined treatment with galangin and TRAIL significantly induced apoptosis in renal carcinoma (Caki, ACHN and A498) but not normal cells (normal mouse kidney cells and human normal mesangial cells). Galangin induced down-regulation of Bcl-2 protein at the transcriptional level via inhibition of NF-κB activation but not p53 pathway. Furthermore, galangin induced down-regulation of cFLIP, Mcl-1 and survivin expression at the post-translational levels, and the over-expression of Bcl-2, cFLIP, Mcl-1 and survivin markedly reduced galangin-induced TRAIL sensitization. In addition, galangin increased proteasome activity, but galangin had no effect on expression of proteasome subunits (PSMA5 and PSMD4). In conclusion, our investigation suggests that galangin is a potent candidate for sensitizer of TRAIL resistant cancer cell therapy. PMID:26725939

  4. Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells.

    PubMed

    Han, Min Ae; Lee, Dong Hee; Woo, Seon Min; Seo, Bo Ram; Min, Kyoung-Jin; Kim, Shin; Park, Jong-Wook; Kim, Sang Hyun; Choi, Yung Hyun; Kwon, Taeg Kyu

    2016-01-04

    Galangin, bioflavonoids, has been shown anti-cancer properties in various cancer cells. In this study, we investigated whether galangin could enhance TRAIL-mediated apoptosis in TRAIL resistant renal carcinoma Caki cells. Galangin alone and TRAIL alone had no effect on apoptosis, while combined treatment with galangin and TRAIL significantly induced apoptosis in renal carcinoma (Caki, ACHN and A498) but not normal cells (normal mouse kidney cells and human normal mesangial cells). Galangin induced down-regulation of Bcl-2 protein at the transcriptional level via inhibition of NF-κB activation but not p53 pathway. Furthermore, galangin induced down-regulation of cFLIP, Mcl-1 and survivin expression at the post-translational levels, and the over-expression of Bcl-2, cFLIP, Mcl-1 and survivin markedly reduced galangin-induced TRAIL sensitization. In addition, galangin increased proteasome activity, but galangin had no effect on expression of proteasome subunits (PSMA5 and PSMD4). In conclusion, our investigation suggests that galangin is a potent candidate for sensitizer of TRAIL resistant cancer cell therapy.

  5. Evaluation of snake envenomation-induced renal dysfunction in dogs using early urinary biomarkers of nephrotoxicity.

    PubMed

    Hrovat, A; Schoeman, J P; de Laat, B; Meyer, E; Smets, P; Goddard, A; Nagel, S; Daminet, S

    2013-10-01

    Renal dysfunction in dogs envenomed by poisonous snakes is currently detected using traditional serum and urinary biomarkers such as creatinine and proteinuria. However, these markers lack sensitivity at the early stages of renal dysfunction and their diagnostic accuracy is affected by pre-analytical factors commonly occurring in these dogs, such as haemolysis and haemoglobinuria. Early detection of renal dysfunction would allow for the identification of dogs requiring intensive treatment and monitoring and may help inform prognosis. The aim of this study was to evaluate the performance of several novel urinary biomarkers of glomerular dysfunction, namely, urinary albumin (uAlb), immunoglobulin G (uIgG) and C-reactive protein (uCRP) and of proximal tubular dysfunction (urinary retinol binding protein (uRBP)) compared to traditional end points in dogs with renal damage caused by snake envenomation. Biomarker results were compared between 19 dogs bitten by snakes producing either neurotoxins or cytotoxins and 10 clinically healthy controls. uAlb, uIgG, and uRBP were significantly increased in snake-envenomed dogs at presentation compared to controls, whereas only uIgG and uCRP were significantly elevated 24h post-envenomation. The urinary protein:creatinine ratio was also increased in envenomed dogs compared to controls, but because of the presence of haematuria and haemoglobinuria, differentiation between pre-renal and renal proteinuria was not possible. The results showed that these novel urinary biomarkers may assist in better detecting renal dysfunction in dogs envenomed by poisonous snakes at the acute disease stage compared to traditional laboratory endpoints.

  6. Renal Nitric Oxide Synthase and Antioxidant Preservation in Cyp1a1-Ren-2 Transgenic Rats With Inducible Malignant Hypertension

    PubMed Central

    2013-01-01

    BACKGROUND Dietary administration of 0.30% indole-3-carbinol (I3C) to Cyp1a1-Ren2 transgenic rats (TGRs) generates angiotensin II (ANG II)–dependent malignant hypertension (HTN) and increased renal vascular resistance. However, TGRs with HTN maintain a normal or slightly reduced glomerular filtration rate. We tested the hypothesis that maintenance of renal function in hypertensive Cyp1a1-Ren2 TGRs is due to preservation of the intrarenal nitric oxide (NO) and antioxidant systems. METHODS Kidney cortex, kidney medulla, aortic endothelial (e) and neuronal (n) nitric oxide synthase (NOS), superoxide dismutases (SODs), and p22phox (nicotinamide adenine dinucleotide phosphate-oxidase subunit) protein abundances were measured along with kidney cortex total antioxidant capacity (TAC) and NOx. TGRs were fed a normal diet that contained 0.3% I3C or 0.3% I3C + candesartan (AT1 receptor antagonist; 25mg/L in drinking water) (n = 5–6 per group) for 10 days. RESULTS Blood pressure increased and body weight decreased in I3C-induced TGRs, while candesartan blunted these responses. Abundances of NOS, SOD, and p22phox as well as TAC were maintained in the kidney cortex of I3C-induced TGRs with and without candesartan, while kidney cortex NOx production increased in both groups. Kidney medulla eNOS and extracellular (EC) SOD decreased and nNOS were unchanged in both groups of I3C-induced TGRs. In addition, a compensatory increase occurred in kidney medulla Mn SOD in I3C-induced TGRs + candesartan. Aortic eNOS and nNOS∝ fell and p22phox and Mn SOD increased in hypertensive I3C-induced TGRs; all changes were reversed with candesartan. CONCLUSIONS The preservation of renal cortical NO and antioxidant capacity is associated with preserved renal function in Cyp1a1-Ren2 TGRs with ANG II-dependent malignant HTN. PMID:23764378

  7. Acute nephropathy induced by gold sodium thiomalate: alterations in renal heme metabolism and morphology.

    PubMed

    Eiseman, J L; Ribas, J L; Knight, E; Alvares, A P

    1987-11-01

    Gold compounds are used clinically in rheumatoid arthritis therapy. Acute renal toxicity is observed in some patients receiving chrysotherapy. The present study addresses morphofunctional and biochemical changes in rat kidneys during the first 8 days following a single ip injection of gold sodium thiomalate (AuTM), one of the gold compounds presently in clinical use. Compared to controls, AuTM pretreatment resulted in increased urine output and elevated serum creatinine and urea nitrogen concentrations. Also, by Day 8, treated rats had decreased body weights and increased kidney weights. Postmortem examination on Day 1 showed pale and mottled kidneys and diffusely pale inner cortex. Microscopically, there was severe coagulative necrosis of the proximal tubular epithelium. Epithelial regeneration was prominent by Day 4 and was nearly complete by Day 8. The regenerating epithelium was hyperplastic with basophilic cytoplasm and pleomorphic nuclei. Alterations in renal heme biosynthesis and drug metabolism paralleled the morphologic changes. The activity of delta-aminolevulinic acid dehydratase and benzo[a]pyrene hydroxylase were inhibited on Days 1, 2, and 4 following AuTM administration. Decreases in monooxygenase activity were accompanied by decreases in renal cytochrome P-450 levels. In contrast, renal microsomal heme oxygenase activity was elevated 9.5-fold on Day 1 and 2.5-fold on Day 2. By Day 8, all renal enzymatic activities assayed for were similar to those obtained with untreated rats.

  8. Febuxostat-induced agranulocytosis in an end-stage renal disease patient

    PubMed Central

    Poh, Xue Er; Lee, Chien-Te; Pei, Sung-Nan

    2017-01-01

    Abstract Introduction: Febuxostat, a nonpurine xanthine oxidase inhibitor, is approved as the first-line urate-lowering therapy in gout patients with normal renal function or mild to moderate renal impairment. The most common adverse effects of febuxostat are liver function test abnormalities, diarrhea, and skin rash. However, there is insufficient data in patients with severe renal impairment and end-stage renal disease (ESRD). We report the first case, to our knowledge, in which agranulocytosis developed after febuxostat treatment in an ESRD patient. Clinical presentation: A 67-year-old woman with gout and ESRD received febuxostat 40 mg a day for 2.5 months. She subsequently complicated with febrile neutropenia and the absolute neutrophil count was only 14/μL. After broad-spectrum antibiotics treatment and no more exposure to febuxostat for 17 days, her infection and neutrophil count recovered. Bone marrow study during neutropenic period showed myeloid hypoplasia without evidence of hematologic neoplasms. Conclusion: As febuxostat use may become more common in the population of advanced renal failure, clinicians should be aware of this rare but potentially life-threatening adverse effect. Based on our experience, close monitoring hemogram and immediate discontinuation of this medication may prevent serious consequences. PMID:28079821

  9. Low molecular weight fucoidan protects renal tubular cells from injury induced by albumin overload

    PubMed Central

    Jia, Yingli; Sun, Yi; Weng, Lin; Li, Yingjie; Zhang, Quanbin; Zhou, Hong; Yang, Baoxue

    2016-01-01

    Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD. PMID:27545472

  10. The nephroprotection exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy.

    PubMed

    Molina-Jijón, Eduardo; Aparicio-Trejo, Omar Emiliano; Rodríguez-Muñoz, Rafael; León-Contreras, Juan Carlos; Del Carmen Cárdenas-Aguayo, María; Medina-Campos, Omar Noel; Tapia, Edilia; Sánchez-Lozada, Laura Gabriela; Hernández-Pando, Rogelio; Reyes, José L; Arreola-Mendoza, Laura; Pedraza-Chaverri, José

    2016-11-12

    We have previously reported that the antioxidant curcumin exerts nephroprotection in maleate-induced renal damage, a model associated with oxidative stress. However, the mechanisms involved in curcumin protective effect were not explored, to assess this issue, curcumin was administered daily by gavage (150 mg/kg) five days before a single maleate (400 mg/kg)-injection. Curcumin prevented maleate-induced proteinuria, increased heat shock protein of 72 KDa (Hsp72) expression, and decreased plasma glutathione peroxidase activity. Maleate-induced oxidative stress by increasing the nicotinamide-adenine dinucleotide phosphate oxidase 4 (NOX4) and mitochondrial complex I-dependent superoxide anion (O2 •(-) ) production, formation of malondialdehyde (MDA)- and 3-nitrotyrosine (3-NT)-protein adducts and protein carbonylation and decreased GSH/GSSG ratio. Curcumin treatment ameliorated all the above-described changes. The maleate-induced epithelial damage, evaluated by claudin-2 and occludin expressions, was ameliorated by curcumin. It was found that maleate-induced oxidative stress promoted mitochondrial fission, evaluated by dynamin-related protein (Drp) 1 and fission (Fis) 1 expressions and by electron-microscopy, and autophagy, evaluated by phospho-threonine 389 from p70 ribosomal protein S6 kinase (p-Thr 389 p70S6K), beclin 1, microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate (LC3-II), autophagy-related gene 5 and 12 (Atg5-Atg12) complex, p62, and lysosomal-associated membrane protein (LAMP)-2 expressions in isolated proximal tubules and by electron-microscopy and LC-3 immunolabelling. Curcumin treatment ameliorated these changes. Moreover, curcumin alone induced autophagy in proximal tubules. These data suggest that the nephroprotective effect exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. © 2016 BioFactors, 42(6):686-702, 2016.

  11. Protective effect of Garcinia against renal oxidative stress and biomarkers induced by high fat and sucrose diet

    PubMed Central

    2011-01-01

    Background Obesity became major health problem in the world, the objective of this work was to examine the effect of high sucrose and high fat diet to induce obesity on antioxidant defense system, biochemical changes in blood and tissue of control, non treated and treated groups by administration of Garcinia cambogia, and explore the mechanisms that link obesity with altered renal function Methods Rats were fed a standard control diet for 12 week (wk) or a diet containing 65% high sucrose (HSD) or 35% fat (HFD) for 8 wk and then HFD group divided into two groups for the following 4 wks. One group was given Garcinia+HFD, the second only high fat, Also the HSD divided into two groups, 1st HSD+Garcinia and 2nd HSD. Blood and renal, mesenteric, Perirenal and epididymal adipose tissues were collected for biochemical assays. Results HFD and HSD groups of rats showed a significant increase in feed intake, Body weight (BW) and body mass index (BMI). Also there were significant increases in weights of mesenteric, Perirenal and epididymal adipose tissues in HFD and HSD groups. HFD and HSD affect the kidney by increasing serum urea and creatinine levels and decreased level of nitric oxide (NO) and increased blood glucose, low density lipoproteins (LDL), triacylglycerol (TG), total cholesterol (TC) and malondialdehyde (MDA). Glucose 6-phosphate dehydrogenase (G6PD) activities were significantly decreased in HFD while there were significant increases in HSD and HSD+G groups p ≤ 0.05 compared with control. Moreover, renal catalase activities and MDA levels were significantly increased while NO level was lowered. These changes improved by Garcinia that decreased the oxidative stress biomarkers and increased NO level. There were significant positive correlations among BMI, kidney functions (Creatinine and urea), TG and Oxidative markers (renal MDA and catalase). Conclusions Rats fed a diet with HFD or HSD showed, hypertriglyceridemia, increased LDL production, increased

  12. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    SciTech Connect

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan Ni, Zhaohui

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  13. The isolated perfused kidney: an in vitro test system for evaluation of renal tissue damage induced by high-energy shockwaves sources.

    PubMed

    Bergsdorf, Th; Thüroff, S; Chaussy, Ch

    2005-09-01

    Most of our knowledge of shockwave-induced renal damage is based on animal experiments and clinical observation. We developed a tissue model using isolated porcine kidneys perfused with Berliner Blau dye in physiologic saline using a Ureteromat Perez-Castro peristaltic pump connected to the renal artery. Reproducible results were obtained under a variety of experimental conditions. Further refinements of the model might consist of interposition of tissue layers in the shockwave path or simulation of ventilatory movements.

  14. Recovery of renal function after administration of adipose-tissue-derived stromal vascular fraction in rat model of acute kidney injury induced by ischemia/reperfusion injury.

    PubMed

    Lee, Chunwoo; Jang, Myoung Jin; Kim, Bo Hyun; Park, Jin Young; You, Dalsan; Jeong, In Gab; Hong, Jun Hyuk; Kim, Choung-Soo

    2017-03-10

    Acute kidney injury (AKI) induced by ischemia/reperfusion (I/R) injury is a major challenge in critical care medicine. The purpose of this study is to determine the therapeutic effects of the adipose-tissue-derived stromal vascular fraction (SVF) and the optimal route for SVF delivery in a rat model of AKI induced by I/R injury. Fifty male Sprague-Dawley rats were randomly divided into five groups (10 animals per group): sham, nephrectomy control, I/R injury control, renal arterial SVF infusion and subcapsular SVF injection. To induce AKI by I/R injury, the left renal artery was clamped with a nontraumatic vascular clamp for 40 min, and the right kidney was removed. Rats receiving renal arterial infusion of SVF had a significantly reduced increase in serum creatinine compared with the I/R injury control group at 4 days after I/R injury. The glomerular filtration rate of the renal arterial SVF infusion group was maintained at a level similar to that of the sham and nephrectomy control groups at 14 days after I/R injury. Masson's trichrome staining showed significantly less fibrosis in the renal arterial SVF infusion group compared with that in the I/R injury control group in the outer stripe (P < 0.001). TUNEL labeling showed significantly decreased apoptosis in both the renal arterial SVF infusion and subcapsular SVF injection groups compared with the I/R injury control group in the outer stripe (P < 0.001). Thus, renal function is effectively rescued from AKI induced by I/R injury through the renal arterial administration of SVF in a rat model.

  15. Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling.

    PubMed

    Xie, Xi; Chang, Xiuting; Chen, Lei; Huang, Kaipeng; Huang, Juan; Wang, Shaogui; Shen, Xiaoyan; Liu, Peiqing; Huang, Heqing

    2013-12-05

    The accumulation of glomerular extracellular matrix proteins, especially fibronectin (FN), is a critical pathological characteristic of diabetic renal fibrosis. Inflammation mediated by nuclear factor-κB (NF-κB) plays a critical role in the pathogenesis of diabetic nephropathy (DN). RhoA/ROCK signaling is responsible for FN accumulation and NF-κB activation. Berberine (BBR) treatment significantly inhibited renal inflammation and thus improved renal damage in diabetes. Here, we study whether BBR inhibits FN accumulation and NF-κB activation by inhibiting RhoA/ROCK signaling and the underlying mechanisms involved. Results showed that BBR effectively inhibited RhoA/ROCK signaling activation in diabetic rat kidneys and high glucose-induced glomerular mesangial cells (GMCs) and simultaneously down-regulated NF-κB activity, which was accompanied by reduced intercellular adhesionmolecule-1, transforming growth factor-beta 1 and FN overproduction. Furthermore, we observed that BBR abrogated high glucose-mediated reactive oxygen species generation in GMCs. BBR and N-acetylcysteine inhibited RhoA/ROCK signaling activation in high glucose-exposed GMCs. Collectively, our data suggest that the renoprotective effect of BBR on DN partly depends on RhoA/ROCK inhibition. The anti-oxidative stress effect of BBR is responsible for RhoA/ROCK inhibition in DN.

  16. Chamomile and oregano extracts synergistically exhibit antihyperglycemic, antihyperlipidemic, and renal protective effects in alloxan-induced diabetic rats.

    PubMed

    Prasanna, Rajagopalan; Ashraf, Elbessoumy A; Essam, Mahmoud A

    2017-01-01

    The bio-activities of separate Matricaria chamomilla (chamomile) and Origanum vulgare (oregano) are well studied; however, the combined effects of both natural products in animal diabetic models are not well characterized. In this study, alloxan-induced male albino rats were treated with single dose aqueous suspension of chamomile or oregano at dose level of either 150 or 300 mg/kg body mass or as equal parts as combination by stomach tube for 6 weeks. After treatment, blood samples were assessed for diabetic, renal, and lipid profiles. Insulin, amylase activity, and diabetic renal apoptosis were further evaluated. Treatment with higher dose of the extracts (300 mg/kg) as individual or as mixture of low doses (150 mg/kg of both the extracts) had significant mass gain, hypoglycemic effect (p ≤ 0.05) with decreased amylase activity and increased serum insulin levels. Restoration of renal profile, lipid profile with increase in HDL-c (p ≤ 0.05) along with reversal of pro-apoptotic Bax and anti-apoptotic Bcl-2 were well observed with 300 mg/kg mixture, showing synergistic activity of the extracts compared with individual low dose of 150 mg/kg. Collectively, our results indicate that combination of chamomile and oregano extracts will form a new class of drugs to treat diabetic complications.

  17. CCR2 Positive Exosome Released by Mesenchymal Stem Cells Suppresses Macrophage Functions and Alleviates Ischemia/Reperfusion-Induced Renal Injury

    PubMed Central

    Shen, Bing; Liu, Jun; Zhang, Fang; Wang, Yong; Qin, Yan; Zhou, Zhihua; Qiu, Jianxin

    2016-01-01

    Mesenchymal stem cells (MSCs) derived exosomes have been shown to have protective effects on the kidney in ischemia/reperfusion-induced renal injury. However, the key components in the exosomes and their potential mechanisms for the kidney protective effects are not well understood. In our current study, we focused on the abundant proteins in exosomes derived from MSCs (MSC-exo) and found that the C-C motif chemokine receptor-2 (CCR2) was expressed on MSC-exo with a high ability to bind to its ligand CCL2. We also proved that CCR2 high-expressed MSC-exo could reduce the concentration of free CCL2 and suppress its functions to recruit or activate macrophage. Further, knockdown of CCR2 expression on the MSC-exo greatly abolished these effects. Finally, we also found that CCR2 knockdown impaired the protective effects of MSC-exo for the renal ischemia/reperfusion injury in mouse. The results indicate that CCR2 expressed on MSC-exo may play a key role in inflammation regulation and renal injury repair by acting as a decoy to suppress CCL2 activity. Our study may cast new light on understanding the functions of the MSC-exo and these receptor proteins expressed on exosomes. PMID:27843457

  18. Amelioration of Renal Inflammation, Endoplasmic Reticulum Stress and Apoptosis Underlies the Protective Effect of Low Dosage of Atorvastatin in Gentamicin-Induced Nephrotoxicity

    PubMed Central

    Jaikumkao, Krit; Pongchaidecha, Anchalee; Thongnak, La-ongdao; Wanchai, Keerati; Arjinajarn, Phatchawan; Chatsudthipong, Varanuj; Chattipakorn, Nipon; Lungkaphin, Anusorn

    2016-01-01

    Gentamicin is a commonly used aminoglycoside antibiotic. However, its therapeutic use is limited by its nephrotoxicity. The mechanisms of gentamicin-induced nephrotoxicity are principally from renal inflammation and oxidative stress. Since atorvastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, exerts lipid-lowering effects, antioxidant, anti-inflammatory as well as anti-apoptotic effects, this study aimed to investigate the protective effects of atorvastatin against gentamicin-induced nephrotoxicity. Male Sprague Dawley rats were used and nephrotoxicity was induced by intraperitoneal injection of gentamicin, 100 mg/kg/day, for 15 days. Atorvastatin, 10 mg/kg/day, was administered by orally gavage 30 min before gentamicin injection on day 1 to 15 (pretreatment) or on day 10 to15 (delayed treatment). For only atorvastatin treatment group, it was given on day 1 to 15. At the end of the experiment, kidney weight, blood urea nitrogen and serum creatinine as well as renal inflammation (NF-κB, TNFαR1, IL-6 and iNOS), renal fibrosis (TGFβ1), ER stress (calpain, GRP78, CHOP, and caspase 12) and apoptotic markers (cleaved caspase-3, Bax, and Bcl-2) as well as TUNEL assay were determined. Gentamicin-induced nephrotoxicity was confirmed by marked elevations in serum urea and creatinine, kidney hypertrophy, renal inflammation, fibrosis, ER stress and apoptosis and attenuation of creatinine clearance. Atorvastatin pre and delayed treatment significantly improved renal function and decreased renal NF-κB, TNFαR1, IL-6, iNOS and TGFβ1 expressions. They also attenuated calpain, GRP78, CHOP, caspase 12, Bax, and increased Bcl-2 expressions in gentamicin-treated rat. These results indicate that atorvastatin treatment could attenuate gentamicin-induced nephrotoxicity in rats, substantiated by the reduction of inflammation, ER stress and apoptosis. The effect of atorvastatin in protecting from renal damage induced by gentamicin seems to be more effective when it

  19. Relationship between cisplatin or nedaplatin-induced nephrotoxicity and renal accumulation.

    PubMed

    Kawai, Yoshiko; Taniuchi, Saburo; Okahara, Shigeki; Nakamura, Masuhisa; Gemba, Munekazu

    2005-08-01

    Nedaplatin is known to exhibit antitumor activity similar to that of cisplatin. However, concerning side effects, nedaplatin causes renal toxicity less frequently than cisplatin. In this study, we compared the incidence of renal toxicity between cisplatin and nedaplatin by investigating the difference in kidney tissue accumulation. Kidney tissue accumulation of cisplatin administered at 3.75 mg/kg was similar to that of nedaplatin administered at 24 mg/kg. At these doses, the plasma creatinine level and urinary excretion of glucose and N-acetyl-beta-D-glucosaminidase (NAG) similarly increased. There was a correlation between kidney accumulation of cisplatin and nedaplatin and the increases in plasma creatinine level and urinary excretion of NAG. Therefore, our results suggest that nedaplatin less frequently causes renal toxicity in comparison to cisplatin due to lower kidney accumulation.

  20. Prolonged Subcutaneous Administration of Oxytocin Accelerates Angiotensin II-Induced Hypertension and Renal Damage in Male Rats.

    PubMed

    Phie, James; Haleagrahara, Nagaraja; Newton, Patricia; Constantinoiu, Constantin; Sarnyai, Zoltan; Chilton, Lisa; Kinobe, Robert

    2015-01-01

    Oxytocin and its receptor are synthesised in the heart and blood vessels but effects of chronic activation of this peripheral oxytocinergic system on cardiovascular function are not known. In acute studies, systemic administration of low dose oxytocin exerted a protective, preconditioning effect in experimental models of myocardial ischemia and infarction. In this study, we investigated the effects of chronic administration of low dose oxytocin following angiotensin II-induced hypertension, cardiac hypertrophy and renal damage. Angiotensin II (40 μg/Kg/h) only, oxytocin only (20 or 100 ng/Kg/h), or angiotensin II combined with oxytocin (20 or 100 ng/Kg/h) were infused subcutaneously in adult male Sprague-Dawley rats for 28 days. At day 7, oxytocin or angiotensin-II only did not change hemodynamic parameters, but animals that received a combination of oxytocin and angiotensin-II had significantly elevated systolic, diastolic and mean arterial pressure compared to controls (P < 0.01). Hemodynamic changes were accompanied by significant left ventricular cardiac hypertrophy and renal damage at day 28 in animals treated with angiotensin II (P < 0.05) or both oxytocin and angiotensin II, compared to controls (P < 0.01). Prolonged oxytocin administration did not affect plasma concentrations of renin and atrial natriuretic peptide, but was associated with the activation of calcium-dependent protein phosphatase calcineurin, a canonical signalling mechanism in pressure overload-induced cardiovascular disease. These data demonstrate that oxytocin accelerated angiotensin-II induced hypertension and end-organ renal damage, suggesting caution should be exercised in the chronic use of oxytocin in individuals with hypertension.

  1. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice

    PubMed Central

    Lee, Craig R.; Imig, John D.; Edin, Matthew L.; Foley, Julie; DeGraff, Laura M.; Bradbury, J. Alyce; Graves, Joan P.; Lih, Fred B.; Clark, James; Myers, Page; Perrow, A. Ligon; Lepp, Adrienne N.; Kannon, M. Alison; Ronnekleiv, Oline K.; Alkayed, Nabil J.; Falck, John R.; Tomer, Kenneth B.; Zeldin, Darryl C.

    2010-01-01

    Renal cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) regulate sodium transport and blood pressure. Although endothelial CYP-derived EETs are potent vasodilators, their contribution to the regulation of blood pressure remains unclear. Consequently, we developed transgenic mice with endothelial expression of the human CYP2J2 and CYP2C8 epoxygenases to increase endothelial EET biosynthesis. Compared to wild-type littermate controls, an attenuated afferent arteriole constrictor response to endothelin-1 and enhanced dilator response to acetylcholine was observed in CYP2J2 and CYP2C8 transgenic mice. CYP2J2 and CYP2C8 transgenic mice demonstrated modestly, but not significantly, lower mean arterial pressure under basal conditions compared to wild-type controls. However, mean arterial pressure was significantly lower in both CYP2J2 and CYP2C8 transgenic mice during coadministration of N-nitro-l-arginine methyl ester and indomethacin. In a separate experiment, a high-salt diet and subcutaneous angiotensin II was administered over 4 wk. The angiotensin/high-salt-induced increase in systolic blood pressure, proteinuria, and glomerular injury was significantly attenuated in CYP2J2 and CYP2C8 transgenic mice compared to wild-type controls. Collectively, these data demonstrate that increased endothelial CYP epoxygenase expression attenuates afferent arteriolar constrictor reactivity and hypertension-induced increases in blood pressure and renal injury in mice. We conclude that endothelial CYP epoxygenase function contributes to the regulation of blood pressure.—Lee, C. R., Imig, J. D., Edin, M. E., Foley, J., DeGraff, L. M., Bradbury, J. A., Graves, J. P., Lih, F. B., Clark, J., Myers, P., Perrow, A. L., Lepp, A. N., Kannon, M. A., Ronnekleiv, O. K., Alkayed, N. J., Falck, J. R., Tomer, K. B., Zeldin, D. C. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. PMID:20495177

  2. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects.

    PubMed

    Young, Colin N; Morgan, Donald A; Butler, Scott D; Mark, Allyn L; Davisson, Robin L

    2013-03-01

    The adipocyte-derived hormone leptin acts within the central nervous system to decrease food intake and body weight and to increase renal and thermogenic brown adipose tissue sympathetic nerve activity (SNA). Previous studies have focused on hypothalamic brain regions, although recent findings have identified leptin receptors (ObR) in a distributed brain network, including the circumventricular subfornical organ (SFO), a forebrain region devoid of a blood-brain barrier. We tested the hypothesis that ObR in the SFO are functionally linked to leptin-induced decreases in food intake and body weight and increases in SNA. SFO-targeted microinjections of an adenovirus encoding Cre-recombinase in ObR(flox/flox) mice resulted in selective ablation of ObR in the SFO. Interestingly, deletion of ObR in the SFO did not influence the decreases in either food intake or body weight in response to daily systemic or cerebroventricular administration of leptin. In line with these findings, reduction in SFO ObR did not attenuate leptin-mediated increases in thermogenic brown adipose tissue SNA. In contrast, increases in renal SNA induced by systemic or cerebroventricular administration of leptin were abolished in mice with SFO-targeted deletion of ObR. These results demonstrate that ObR in the SFO play an important role in leptin-induced renal sympathoexcitation, but not in the body weight, food intake, or brown adipose tissue SNA thermogenic effects of leptin. These findings highlight the concept of a distributed brain network of leptin action and illustrate that brain regions, including the SFO, can mediate distinct cardiovascular and metabolic responses to leptin.

  3. Betaine supplementation protects against renal injury induced by cadmium intoxication in rats: role of oxidative stress and caspase-3.

    PubMed

    Hagar, Hanan; Al Malki, Waleed

    2014-03-01

    Cadmium (Cd) is an environmental and industrial pollutant that can induce a broad spectrum of toxicological effects that affect various organs in humans and experimental animals. This study aims to investigate the effect of betaine supplementation on cadmium-induced oxidative impairment in rat kidney. The animals were divided into four groups (n=10 per group): control, cadmium, betaine and betaine+cadmium (1) saline control group; (2) cadmium group in which cadmium chloride (CdCl2) was given orally at a daily dose of 5 mg/kg body weight for four weeks; (3) betaine group, in which betaine was given to rats at a dose of 250 mg/kg/day, orally via gavage for six weeks; (4) cadmium+betaine group in which betaine was given at a dose of 250 mg/kg/day, orally via gavage for two weeks prior to cadmium administration and concurrently during cadmium administration for four weeks. Cadmium nephrotoxicity was indicated by elevated blood urea nitrogen (BUN) and serum creatinine levels. Kidneys from cadmium-treated rats showed an increase in lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) concentration and reductions in total antioxidant status (TAS), reduced glutathione (GSH) content, glutathione peroxidase (GSH-Px) activity, superoxide dismutase concentration (SOD) and catalase activity. Caspase-3 activity, a marker of DNA damage was also elevated in renal tissues of cadmium-treated rats. Pre-treatment of rats with betaine substantially attenuated the increase in BUN and serum creatinine levels. Betaine also inhibited the increase in TBARS concentration and reversed the cadmium-induced depletion in total antioxidant status, GSH, GSH-Px, SOD and catalase concentrations in renal tissues. Renal caspase-3 activity was also reduced with betaine supplementation. These data emphasize the importance of oxidative stress and caspase signaling cascade in cadmium nephrotoxicity and suggest that betaine pretreatment reduces severity of cadmium nephrotoxicity

  4. Captopril attenuates hypertension and renal injury induced by the vascular endothelial growth factor inhibitor sorafenib.

    PubMed

    Nagasawa, Tasuku; Hye Khan, Md Abdul; Imig, John D

    2012-05-01

    Vascular endothelial growth factor inhibitors (VEGFi) are known to cause hypertension and renal injury that severely limits their use as an anticancer therapy. We hypothesized that the angiotensin-converting enzyme inhibitor captopril not only prevents hypertension, but also decreases renal injury caused by the VEGFi sorafenib. Rats were administered sorafenib (20 mg/kg per day) alone or in combination with captopril (40 mg/kg per day) for 4 weeks. Sorafenib administration increased blood pressure, which plateaued by day 10. Concurrent treatment with captopril for 4 weeks resulted in a 30 mmHg decrease in blood pressure compared with sorafenib alone (155 ± 5 vs 182 ± 6 mmHg, respectively; P < 0.05). Furthermore, concurrent captopril treatment reduced albuminuria by 50% compared with sorafenib alone (20 ± 8 vs 42 ± 9 mg/day, respectively; P < 0.05) and reduced nephrinuria by eightfold (280 ± 96 vs 2305 ± 665 μg/day, respectively; P < 0.05). Glomerular injury, thrombotic microangiopathy and tubular cast formation were also decreased in captopril-treated rats administered sorafenib. Renal autoregulatory efficiency was determined by evaluating the afferent arteriolar constrictor response to ATP. Sorafenib administration attenuated the vasoconstriction to ATP, whereas concurrent captopril treatment improved ATP reactivity. In conclusion, captopril attenuated hypertension and renal injury and improved renal autoregulatory capacity in rats administered sorafenib. These findings indicate that captopril treatment, in addition to alleviating the detrimental side-effect of hypertension, decreases the renal injury associated with anticancer VEGFi therapies such as sorafenib.

  5. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways

    PubMed Central

    Wu, Xu; Gu, Wenyu; Lu, Huan; Liu, Chengying; Yu, Biyun; Xu, Hui; Tang, Yaodong

    2016-01-01

    Obstructive sleep apnea (OSA) associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH) triggered tissue damage. Receptor for advanced glycation end product (RAGE) and its ligand high mobility group box 1 (HMGB1) are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE), the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1) normal air (NA), (2) CIH, (3) CIH+sRAGE, and (4) NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6), apoptotic (Bcl-2/Bax), and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK) signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways. PMID:27688824

  6. Amelioration of glycerol-induced acute renal failure in the rat with 8-cyclopentyl-1,3-dipropylxanthine.

    PubMed Central

    Kellett, R.; Bowmer, C. J.; Collis, M. G.; Yates, M. S.

    1989-01-01

    1. Previous studies have shown that 8-phenyltheophylline (8-PT), a non-selective antagonist at adenosine A1- and A2-receptors, can ameliorate the severity of glycerol-induced acute renal failure (ARF) in the rat. In the present study we have examined the effects of an antagonist with selectivity for adenosine A1-receptors (8-cyclopentyl-1,3-dipropylxanthine, CPX) on the development of ARF. 2. In the anaesthetised rat 8-PT (4 mg kg-1, i.v.) and CPX (0.1 mg kg-1, i.v.) antagonised adenosine-evoked responses which are thought to be mediated via A1-receptors (bradycardia and decrease in renal blood flow). The agonist dose-ratio produced by CPX was equal to or greater than that found with 8-PT (heart rate and renal blood flow respectively). The hypotensive response to adenosine which is predominantly due to A2-receptor activation was also antagonised by 8-PT, whereas CPX was a much less effective antagonist of this response. 3. Administration of CPX (0.1 mg kg-1, i.v.; twice daily for two days) significantly attenuated the increase in plasma levels of urea and creatinine, the increased kidney weight and the renal tubule damage observed in rats 2 days following induction of ARF with intramuscular glycerol injection. In addition treatment with CPX significantly enhanced the clearances of inulin and p-aminohippurate. 4. After glycerol injection, the mortality rate over 7 days in untreated and vehicle-treated rats was 43% and 21% respectively. In contrast, all animals treated with CPX survived over the 7 day observation period. 5. These results support the suggestion that adenosine is an important factor in the development of ARF and indicate that this effect of the purine is likely to be mediated via an adenosine A1-receptor. PMID:2590769

  7. Schisandrin B Enhances Renal Mitochondrial Antioxidant Status, Functional and Structural Integrity, and Protects against Gentamicin-Induced Nephrotoxicity in Rats.

    PubMed

    Chiu, Po Yee; Leung, Hoi Yan; Ko, Kam Ming

    2008-04-01

    Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against oxidative damage in liver, heart and brain tissues in rodents. In the present study, the effect of long-term Sch B treatment (1-10 mg/kg/d x 15) on gentamicin-induced nephrotoxicity was examined in rats. Sch B treatment protected against gentamicin-induced nephrotoxicity, as evidenced by significant decreases in plasma creatinine and blood urea nitrogen levels. The nephroprotection was associated with the enhancement in renal mitochondrial antioxidant status, as assessed by the level/activity of reduced glutathione, alpha-tocopherol and Mn-superoxide dismutase, as well as the improvement/preservation of mitochondrial functional and structural integrity, as assessed by the extents of ATP generation capacity, malondialdehyde production, Ca2+ loading and cytochrome c release, as well as the sensitivity to Ca2+-induced permeability transition, in control and gentamicin-intoxicated rats. In conclusion, long-term Sch B treatment could enhance renal mitochondrial antioxidant status as well as improve mitochondrial functional and structural integrity, thereby protecting against gentamicin nephrotoxicity.

  8. Genetic overexpressing of GPx-1 attenuates cocaine-induced renal toxicity via induction of anti-apoptotic factors.

    PubMed

    Mai, Huynh Nhu; Jeong, Ji Hoon; Kim, Dae-Joong; Chung, Yoon Hee; Shin, Eun-Joo; Nguyen, Lan Thuy Ty; Nam, Yunsung; Lee, Yu Jeung; Cho, Eun-Hee; Nah, Seung-Yeol; Jang, Choon-Gon; Lei, Xin Gen; Kim, Hyoung-Chun

    2016-04-01

    The present study investigates the role of the glutathione peroxidase (GPx)-1 gene in cocaine-induced renal damage in mice. Multiple doses of cocaine increased lipid peroxidation, protein oxidation, and glutathione oxidation in the kidney of the non-transgenic mice (non-TG mice). The enzymatic activities of GPx and glutathione reductase were significantly decreased in non-TG mice, whereas superoxide dismutase was increased in the early phase of cocaine exposure. Treatment with cocaine resulted in significant decreases in expression of Bcl-2 and Bcl-xl in the kidney of non-TG mice, which resulted in significant increases in Bax and cleaved-caspase 3. Consistently, cocaine-induced tubular epithelial vacuolization and focal tubular necrosis were mainly observed in the proximal tubules in the kidneys of non-TG mice. These renal pathologic changes were much less pronounced in GPx-1 TG than in non-TG mice. These results suggest that the GPx-1 gene is a protective factor against nephrotoxicity induced by cocaine via interactive modulations between antioxidant and cell survival signaling processes.

  9. Ghrelin counteracts salt-induced hypertension via promoting diuresis and renal nitric oxide production in Dahl rats.

    PubMed

    Aoki, Hirotaka; Nakata, Masanori; Dezaki, Katsuya; Lu, Ming; Gantulga, Darambazar; Yamamoto, Keiji; Shimada, Kazuyuki; Kario, Kazuomi; Yada, Toshihiko

    2013-01-01

    Ghrelin is the endogenous ligand for the growth hormone-secretagogue receptor expressed in various tissues including the heart, blood vessels and kidney. This study sought to determine the effects of long-term treatment with ghrelin (10 nmol/kg, twice a day, intraperitoneally) on the hypertension induced by high salt (8.0% NaCl) diet in Dahl salt-sensitive hypertensive (DS) rats. Systolic blood pressure (SBP) was measured by a tail cuff method. During the treatment period for 3 weeks, high salt diet increased blood pressure compared to normal salt (0.3% NaCl) diet, and this hypertension was partly but significantly (P<0.01) attenuated by simultaneous treatment with ghrelin. Ghrelin significantly increased urine volume and tended to increase urine Na⁺ excretion. Furthermore, ghrelin increased urine nitric oxide (NO) excretion and tended to increase renal neuronal nitric oxide synthase (nNOS) mRNA expression. Ghrelin did not alter the plasma angiotensin II level and renin activity, nor urine catecholamine levels. Furthermore, ghrelin prevented the high salt-induced increases in heart thickness and plasma ANP mRNA expression. These results demonstrate that long-term ghrelin treatment counteracts salt-induced hypertension in DS rats primarily through diuretic action associated with increased renal NO production, thereby exerting cardio-protective effects.

  10. Hypoxia reduces constitutive and TNF-{alpha}-induced expression of monocyte chemoattractant protein-1 in human proximal renal tubular cells

    SciTech Connect

    Li Xuan; Kimura, Hideki . E-mail: hkimura@fmsrsa.fukui-med.ac.jp; Hirota, Kiichi; Sugimoto, Hidehiro; Yoshida, Haruyoshi

    2005-10-07

    Chronic hypoxia has been reported to be associated with macrophage infiltration in progressive forms of kidney disease. Here, we investigated the regulatory effects of hypoxia on constitutive and TNF-{alpha}-stimulated expression of monocyte chemoattractant protein-1 (MCP-1) in cultured human proximal renal tubular cells (HPTECs). Hypoxia reduced constitutive MCP-1 expression at the mRNA and protein levels in a time-dependent fashion for up to 48 h. Hypoxia also inhibited MCP-1 up-regulation by TNF-{alpha}. Treatment with actinomycin D showed that hypoxic down-regulation of MCP-1 expression resulted mainly from a decrease in the transcription but not the mRNA stability. Immunoblot and immunofluorescence analyses revealed that treatment with hypoxia or an iron chelator, desferrioxamine, induced nuclear accumulation of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in HPTECs. Desferrioxamine mimicked hypoxia in the reduction of MCP-1 expression. However, overexpression of a dominant negative form of HIF-1{alpha} did not abolish the hypoxia-induced reduction of MCP-1 expression in HPTECs. These results suggest that hypoxia is an important negative regulator of monocyte chemotaxis to the renal inflamed interstitium, by reducing MCP-1 expression partly via hypoxia-activated signals other than the HIF-1 pathway.

  11. [A case of cat-scratch-induced Pasteurella multocida infection presenting with disseminated intravascular coagulation and acute renal failure].

    PubMed

    Fukuchi, Takahiko; Morisawa, Yuji

    2009-09-01

    Domestic animals are the main reservoirs of Pasteurella species for human zoonosis due to bites and scratches. Pasterurella multocida may cause serious soft-tissue infection and, less commonly, sepsis or septic shock, particularly in insufficient initial therapy and an immunocompromised host. We report a case of cat-scratch-induced P. multocida infection, presenting with disseminated intravascular coagulation and acute renal failure. A febrile 83-year-old woman with consciousness disturbance and a subcutaneous left-foot abscess due to a scratch from a pet cat. She was successfully treated with antibiotic piperacillin and clindamycin therapy and aggressive wound drainage.

  12. Thiazide-induced subtle renal injury not observed in states of equivalent hypokalemia.

    PubMed

    Reungjui, S; Hu, H; Mu, W; Roncal, C A; Croker, B P; Patel, J M; Nakagawa, T; Srinivas, T; Byer, K; Simoni, J; Wesson, D; Sitprija, V; Johnson, R J

    2007-12-01

    Hydrochlorothiazide (HCTZ) is used to manage hypertension and heart failure; however, its side effects include mild hypokalemia, metabolic abnormalities, and volume depletion, which might have deleterious effects on renal and endothelial function. We studied whether HCTZ cause renal injury and/or altered vasoreactivity and if these changes are hypokalemia-dependent. Rats were given a normal diet or a diet moderately low in potassium K+ with or without HCTZ. Animals fed either a low K+ diet alone or HCTZ developed mild hypokalemia. There was no significant difference in systolic blood pressure in the different treatment groups. All three groups with hypokalemia had mild proteinuria; low K(+)-HCTZ rats had reduced creatinine clearance. HCTZ-treated rats displayed hypomagnesemia, hypertriglyceridemia, hyperglycemia, insulin resistance, and hyperaldosteronism. No renal injury was observed in the groups without HCTZ; however, increased kidney weight, glomerular ischemia, medullary injury, and cortical oxidative stress were seen with HCTZ treatment. Endothelium-dependent vasorelaxation was reduced in all hypokalemic groups and correlated with reduced serum K+, serum, and urine nitric oxide. Our results show that HCTZ is associated with greater renal injury for the same degree of hypokalemia as the low K+ diet, suggesting that factors such as chronic ischemia and hyperaldosteronism due to volume depletion may be responsible agents. We also found impaired endothelium-dependent vasorelaxation was linked to mild hypokalemia.

  13. Administration of α-Galactosylceramide Improves Adenine-Induced Renal Injury.

    PubMed

    Aguiar, Cristhiane Favero; Naffah-de-Souza, Cristiane; Castoldi, Angela; Corrêa-Costa, Matheus; Braga, Tárcio T; Naka, Érika L; Amano, Mariane T; Abate, Débora T R S; Hiyane, Meire I; Cenedeze, Marcos A; Pacheco e Silva Filho, Alvaro; Câmara, Niels O S

    2015-06-18

    Natural killer T (NKT) cells are a subset of lymphocytes that reacts to glycolipids presented by CD1d. Invariant NKT cells (iNKT) correspond to >90% of the total population of NKTs and reacts to α-galactosylceramide (αGalCer). αGalCer promotes a complex mixture of Th1 and Th2 cytokines, as interferon (IFN)-γ and interleukin (IL)-4. NKT cells and IFN-γ are known to participate in some models of renal diseases, but further studies are still necessary to elucidate their mechanisms. The aim of our study was to analyze the participation of iNKT cells in an experimental model of tubule-interstitial nephritis. We used 8-wk-old C57BL/6j, Jα18KO and IFN-γKO mice. They were fed a 0.25% adenine diet for 10 d. Both adenine-fed wild-type (WT) and Jα18KO mice exhibited renal dysfunction, but adenine-fed Jα18KO mice presented higher expression of kidney injury molecule-1 (KIM-1), tumor necrosis factor (TNF)-α and type I collagen. To analyze the role of activated iNKT cells in our model, we administered αGalCer in WT mice during adenine ingestion. After αGalCer injection, we observed a significant reduction in serum creatinine, proinflammatory cytokines and renal fibrosis. However, this improvement in renal function was not observed in IFN-γKO mice after αGalCer treatment and adenine feeding, illustrating that this cytokine plays a role in our model. Our findings may suggest that IFN-γ production is one of the factors contributing to improved renal function after αGalCer administration.

  14. Administration of α-Galactosylceramide Improves Adenine-Induced Renal Injury

    PubMed Central

    Aguiar, Cristhiane Favero; Naffah-de-Souza, Cristiane; Castoldi, Angela; Corrêa-Costa, Matheus; Braga, Tárcio T; Naka, Érika L; Amano, Mariane T; Abate, Débora T R S; Hiyane, Meire I; Cenedeze, Marcos A; Filho, Alvaro Pacheco e Silva; Câmara, Niels O S

    2015-01-01

    Natural killer T (NKT) cells are a subset of lymphocytes that reacts to glycolipids presented by CD1d. Invariant NKT cells (iNKT) correspond to >90% of the total population of NKTs and reacts to α-galactosylceramide (αGalCer). αGalCer promotes a complex mixture of Th1 and Th2 cytokines, as interferon (IFN)-γ and interleukin (IL)-4. NKT cells and IFN-γ are known to participate in some models of renal diseases, but further studies are still necessary to elucidate their mechanisms. The aim of our study was to analyze the participation of iNKT cells in an experimental model of tubule-interstitial nephritis. We used 8-wk-old C57BL/6j, Jα18KO and IFN-γKO mice. They were fed a 0.25% adenine diet for 10 d. Both adenine-fed wild-type (WT) and Jα18KO mice exhibited renal dysfunction, but adenine-fed Jα18KO mice presented higher expression of kidney injury molecule-1 (KIM-1), tumor necrosis factor (TNF)-α and type I collagen. To analyze the role of activated iNKT cells in our model, we administered αGalCer in WT mice during adenine ingestion. After αGalCer injection, we observed a significant reduction in serum creatinine, proinflammatory cytokines and renal fibrosis. However, this improvement in renal function was not observed in IFN-γKO mice after αGalCer treatment and adenine feeding, illustrating that this cytokine plays a role in our model. Our findings may suggest that IFN-γ production is one of the factors contributing to improved renal function after αGalCer administration. PMID:26101952

  15. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice.

    PubMed

    Trentin-Sonoda, Mayra; da Silva, Rogério Cirino; Kmit, Fernanda Vieira; Abrahão, Mariana Vieira; Monnerat Cahli, Gustavo; Brasil, Guilherme Visconde; Muzi-Filho, Humberto; Silva, Paulo André; Tovar-Moll, Fernanda Freire; Vieyra, Adalberto; Medei, Emiliano; Carneiro-Ramos, Marcela Sorelli

    2015-01-01

    We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation.

  16. Augmenter of liver regeneration inhibits TGF-β1-induced renal tubular epithelial-to-mesenchymal transition via suppressing TβR II expression in vitro

    SciTech Connect

    Liao, Xiao-hui; Zhang, Ling; Chen, Guo-tao; Yan, Ru-yu; Sun, Hang; Guo, Hui; Liu, Qi

    2014-10-01

    Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD. - Highlights: • ALR is involved in the pathological progression of renal EMT in NRK-52E cells. • ALR suppresses the expression of TβRII and the phosphorylation of Smad2 and NF-κB. • ALR plays a role in inhibiting progression of renal tubular EMT.

  17. Microvascular and interstitial oxygen tension in the renal cortex and medulla studied in a 4-h rat model of LPS-induced endotoxemia.

    PubMed

    Dyson, Alex; Bezemer, Rick; Legrand, Matthieu; Balestra, Gianmarco; Singer, Mervyn; Ince, Can

    2011-07-01

    The pathophysiology of sepsis-induced acute kidney injury remains poorly understood. As changes in renal perfusion and oxygenation have been shown, we aimed to study the short-term effects of endotoxemia on microvascular and interstitial oxygenation in the cortex and medulla, in conjunction with global and renal hemodynamics. In a 4-h rat model of endotoxemia, we simultaneously assessed renal artery blood flow and microvascular and interstitial oxygen tensions in the renal cortex and medulla using ultrasonic flowmetry, dual wavelength phosphorimetry, and tissue oxygen tension monitoring, respectively. Whereas medullary microvascular and interstitial oxygen tensions decreased promptly in line with macrovascular blood flow, changes in cortical oxygenation were only seen later on. During the entire experimental protocol, the gradient between microvascular PO₂ and tissue oxygen tension remained unchanged in both cortex and outer medulla. At study end, urine output was significantly decreased despite a maintained oxygen consumption rate. In this 4-h rat model of endotoxemia, total renal oxygen consumption and the gradient between microvascular PO₂ and tissue oxygen tension remained unaltered, despite falls in renal perfusion and oxygen delivery and urine output. Taken in conjunction with the decrease in urine output, our results could represent either a functional renal impairment or an adaptive response.

  18. Effects of Nigella sativa oil and ascorbic acid against oxytetracycline-induced hepato-renal toxicity in rabbits

    PubMed Central

    Abdel-Daim, Mohamed M.; Ghazy, Emad W.

    2015-01-01

    Objective(s): Oxytetracycline (OTC) is a broad spectrum antibiotic widely used for treatment of a wide range of infections. However, its improper human and animal use leads to toxic effects, including hepatonephrotoxicity. Our objective was to evaluate protective effects of Nigella sativa oil (NSO) and/or ascorbic acid (AA), against OTC-induced hepatonephrotoxicity in rabbits. Materials and Methods: Forty male white New Zealand rabbits were divided into 5 groups of eight each. The 1st group (control) was given saline. The 2nd group was given OTC (200 mg/kg, orally). The 3rd and 4th groups were orally administered NSO and AA (2 ml/kg and 200 mg/kg respectively) 1 hr before OTC administration at the same dose regimen used for the 2nd group. Both NSO and AA were given in combination for the 5th group along with OTC administration. Serum biochemical parameters related to liver and kidney injury were evaluated, and lipid peroxidation as well as antioxidant markers in hepatic and renal tissues were examined. Results: OTC-treated animals revealed significant alterations in serum biochemical hepato-renal injury markers, and showed a markedly increase in hepato-renal lipid peroxidation and inhibition in tissue antioxidant biomarkers. NSO and AA protect against OTC-induced serum and tissue biochemical alterations when each of them is used alone or in combination along with OTC treatment. Furthermore, both NSO and AA produced synergetic hepatoprotective and antioxidant properties. Conclusion: The present study revealed the preventive role of NSO and/or AA against the toxic effects of OTC through their free radical-scavenging and potent antioxidant activities. PMID:25945233

  19. New clues for nephrotoxicity induced by ifosfamide: preferential renal uptake via the human organic cation transporter 2.

    PubMed

    Ciarimboli, Giuliano; Holle, Svenja Kristina; Vollenbröcker, Beate; Hagos, Yohannes; Reuter, Stefan; Burckhardt, Gerhard; Bierer, Stefan; Herrmann, Edwin; Pavenstädt, Hermann; Rossi, Rainer; Kleta, Robert; Schlatter, Eberhard

    2011-02-07

    Anticancer treatment with ifosfamide but not with its structural isomer cyclophosphamide is associated with development of renal Fanconi syndrome leading to diminished growth in children and bone problems in adults. Since both cytotoxics share the same principal metabolites, we investigated whether a specific renal uptake of ifosfamide is the basis for this differential effect. First we studied the interaction of these cytotoxics using cells transfected with organic anion or cation transporters and freshly isolated murine and human proximal tubules with appropriate tracers. Next we determined changes in membrane voltage in proximal tubular cells to understand their differentiated nephrotoxicity. Ifosfamide but not cyclophosphamide was significantly transported into cells expressing human organic cation transporter 2 (hOCT2) while both did not interact with organic anion transporters. This points toward a specific interaction of ifosfamide with hOCT2, which is the main OCT isoform in human kidney. In isolated human proximal tubules ifosfamide also interacted with organic cation transport. This interaction was also seen in isolated mouse proximal tubules; however, it was absent in tubules from OCT-deficient mice, illustrating the biological importance of this selective transport. Ifosfamide decreased the viability of cells expressing hOCT2, but not that of control cells. Coadministration of cimetidine, a known competitive substrate of hOCT2, completely prevented this ifosfamide-induced toxicity. Finally, ifosfamide but not cyclophosphamide depolarized proximal tubular cells. We propose that the nephrotoxicity of ifosfamide is due to its selective uptake by hOCT2 into renal proximal tubular cells, and that coadministration of cimetidine may be used to prevent ifosfamide-induced nephrotoxicity.

  20. The restrained expression of NF-kB in renal tissue ameliorates folic acid induced acute kidney injury in mice.

    PubMed

    Kumar, Dev; Singla, Surinder K; Puri, Veena; Puri, Sanjeev

    2015-01-01

    The Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) represent family of structurally-related eukaryotic transcription factors which regulate diverse array of cellular processes including immunological responses, inflammation, apoptosis, growth & development. Increased expression of NF-kB has often been seen in many diverse diseases, suggesting the importance of genomic deregulation to disease pathophysiology. In the present study we focused on acute kidney injury (AKI), which remains one of the major risk factor showing a high rate of mortality and morbidity. The pathology associated with it, however, remains incompletely known though inflammation has been reported to be one of the major risk factor in the disease pathophysiology. The role of NF-kB thus seemed pertinent. In the present study we show that high dose of folic acid (FA) induced acute kidney injury (AKI) characterized by elevation in levels of blood urea nitrogen & serum creatinine together with extensive tubular necrosis, loss of brush border and marked reduction in mitochondria. One of the salient observations of this study was a coupled increase in the expression of renal, relA, NF-kB2, and p53 genes and proteins during folic acid induced AKI (FA AKI). Treatment of mice with NF-kB inhibitor, pyrrolidine dithio-carbamate ammonium (PDTC) lowered the expression of these transcription factors and ameliorated the aberrant renal function by decreasing serum creatinine levels. In conclusion, our results suggested that NF-kB plays a pivotal role in maintaining renal function that also involved regulating p53 levels during FA AKI.

  1. Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells.

    PubMed

    Suh, Han Na; Lee, Yu Jin; Kim, Mi Ok; Ryu, Jung Min; Han, Ho Jae

    2014-10-01

    The aim of this study is to determine whether GlcN could recover the endoplasmic reticulum (ER) stress-induced dysfunction of Na(+) /glucose cotransporter (SGLT) in renal proximal tubule cells (PTCs) under hypoxia. With the rabbit model, the renal ischemia induced tubulointerstitial abnormalities and decreased SGLTs expression in tubular brush-border, which were recovered by GlcN. Thus, the protective mechanism of GlcN against renal ischemia was being examined by using PTCs. Hypoxia decreased the level of protein O-GlcNAc and the expression of O-GlcNAc transferase (OGT) while increased O-GlcNAcase (OGA) and these were reversed by GlcN. Hypoxia also decreased the expression of SGLTs (SGLT1 and 2) and [(14) C]-α-methyl-D-glucopyranoside (α-MG) uptake which were recovered by GlcN and PUGNAc (OGA inhibitor). Hypoxia enhanced reactive oxygen species (ROS) and then ER stress proteins, glucose-regulated protein 78 (GRP78), and C/EBP-homologous protein (CHOP). However, the expression of GRP78 increased till 6 h and then decreased whereas CHOP increased gradually. Moreover, decreased GRP78 and increased CHOP were reversed by NAC (antioxidant) and GlcN. GlcN ameliorated hypoxia-induced decrease of O-GlcNAc modification of Sp1 but OGT or Sp1 siRNAs blocked the recovery effect of GlcN on SGLT expression and α-MG uptake. In addition, hypoxia-decreased GRP78 and HIF-1α expression was reversed by GlcN but OGT siRNA or Sp1 siRNA ameliorated the effect of GlcN. When PTCs were transfected with GRP78 siRNA or HIF-1α siRNA, SGLT expression and α-MG uptake was decreased. Taken together, these data suggest that GlcN-induced O-GlcNAc modified Sp1 with stimulating GRP78 and HIF-1α activity ameliorate hypoxia-induced SGLT dysfunction in renal PTCs. J. Cell. Physiol. 229: 1557-1568, 2014. © 2014 Wiley Periodicals, Inc.

  2. Total Coumarins from Hydrangea paniculata Protect against Cisplatin-Induced Acute Kidney Damage in Mice by Suppressing Renal Inflammation and Apoptosis

    PubMed Central

    Jie, Ma; Jingzhi, Yang; Dongjie, Wang; Dongming, Zhang

    2017-01-01

    Aim. Hydrangea paniculata (HP) Sieb. is a medical herb which is widely distributed in southern China, and current study is to evaluate renal protective effect of aqueous extract of HP by cisplatin-induced acute kidney injury (AKI) in animal model and its underlying mechanisms. Materials and Methods. HP extract was prepared and the major ingredients were coumarin glycosides. AKI mouse models were established by single i.p. injection of 20 mg/kg cisplatin, and HP was orally administrated for total five times. The renal biochemical functions, pathological staining, kidney oxidative stress, and inflammatory status were measured. Apoptosis of tubular cells and infiltration of macrophages and neutrophils were also tested. Results. HP administration could improve the renal function by decreasing concentration of blood urea nitrogen (BUN) and creatinine and attenuates renal oxidative stress and tubular pathological injury and apoptosis; further research demonstrated that HP could inhibit the overproduction of proinflammatory cytokines and regulate caspase and BCL-2 family proteins. HP also reduced renal infiltration of macrophages and neutrophils, and its effect might be by downregulating phosphorylation of ERK1/2 and stat3 signaling pathway. Conclusions. This present study suggests that HP could ameliorate cisplatin induced kidney damage by antioxidation and suppressing renal inflammation and tubular cell apoptosis. PMID:28367225

  3. Involvement of Raf-1/MEK/ERK1/2 signaling pathway in zinc-induced injury in rat renal cortical slices.

    PubMed

    Kohda, Yuka; Matsunaga, Yoshiko; Shiota, Ryugo; Satoh, Tomohiko; Kishi, Yuko; Kawai, Yoshiko; Gemba, Munekazu

    2006-08-01

    Zinc is an essential nutrient that can also be toxic. We have previously reported that zinc-related renal toxicity is due, in part, to free radical generation in the renal epithelial cell line, LLC-PK(1) cells. We have also shown that an MEK1/2 inhibitor, U0126, markedly inhibits zinc-induced renal cell injury. In this study, we investigated the role of an upstream MEK/ERK pathway, Raf-1 kinase pathway, and the transcription factor and ERK substrate Elk-1, in rat renal cortical slices exposed to zinc. Immediately after preparing slices from rat renal cortex, the slices were incubated in medium containing Raf-1 and MEK inhibitors. ERK1/2 and Elk-1 activation were determined by Western blot analysis for phosphorylated ERK (pERK) 1/2 and phosphorylated Elk-1 (pElk-1) in nuclear fractions prepared from slices exposed to zinc. Zinc caused not only increases in 4-hydroxynonenal (4-HNE) modified protein and lipid peroxidation, as an index of oxidant stress, and decreases in PAH accumulation, as that of renal cell injury in the slices. Zinc also induced a rapid increase in ERK/Elk-1 activity accompanied by increased expressions of pERK and pElk-1 in the nuclear fraction. A Raf-1 kinase inhibitor and an MEK1/2 inhibitor U0126 significantly attenuated zinc-induced decreases PAH accumulation in the slices. The Raf-1 kinase inhibitor and U0126 also suppressed ERK1/2 activation in nuclear fractions prepared from slices treated with zinc. The present results suggest that a Raf-1/MEK/ERK1/2 pathway and the ERK substrate Elk-1 are involved in free radical-induced injury in rat renal cortical slices exposed to zinc.

  4. Amelioration of pancreatic and renal derangements in streptozotocin-induced diabetic rats by polyphenol extracts of Ginger (Zingiber officinale) rhizome.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin

    2015-12-01

    Free and bound polyphenol extracts of Zingiber officinale rhizome were investigated for their antidiabetic potential in the pancreatic and renal tissues of diabetic rats at a dose of 500mg/kg body weight. Forty Wistar rats were completely randomized into five groups: A-E consisting of eight animals each. Group A (control) comprises normal healthy animals and were orally administered 1.0mL distilled water on a daily basis for 42 days while group B-E were made up of 50mg/kg streptozotocin (STZ)-induced diabetic rats. Group C and D received 1.0mL 500mg/kg body weight free and bound polyphenol extracts respectively while group E received 1.0mL 0.6mg/kg of glibenclamide. Administration of the extracts to the diabetic rats significantly reduced (p<0.05) serum glucose and urea concentrations, increased (p<0.05) serum insulin and Homeostatic Model Assessment for β-cell dysfunction (HOMA-β) while the level of creatinine and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were not affected. Histological examination of the pancreas and kidney revealed restoration of the structural derangements caused by streptozotocin in the polyphenol extracts treated diabetic rats compared to the control groups. Therefore, polyphenols from Zingiber officinale could ameliorate diabetes-induced pancreatic and renal derangements in rats.

  5. Curcumin Ameliorates Lead (Pb(2+))-Induced Hemato-Biochemical Alterations and Renal Oxidative Damage in a Rat Model.

    PubMed

    Abdel-Moneim, Ashraf M; El-Toweissy, Mona Y; Ali, Awatef M; Awad Allah, Abd Allah M; Darwish, Hanaa S; Sadek, Ismail A

    2015-11-01

    This study aims to evaluate the protective role of curcumin (Curc) against hematological and biochemical changes, as well as renal pathologies induced by lead acetate [Pb (CH3COO)2·3H2O] treatment. Male albino rats were intraperitoneally treated with Pb(2+) (25 mg of lead acetate/kg b.w., once a day) alone or in combination with Curc (30 mg of Curc/kg b.w., twice a day) for 7 days. Exposure of rats to Pb(2+) caused significant decreases in hemoglobin (Hb) content, hematocrit (Ht) value, and platelet (Plt) count, while Pb(2+)-related leukocytosis was accompanied by absolute neutrophilia, monocytosis, lymphopenia, and eosinopenia. A significant rise in lipid peroxidation (LPO) and a marked drop of total antioxidant capacity (TAC) were evident in the kidney, liver, and serum of Pb(2+) group compared to that of control. Furthermore, significantly high levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), and a sharp drop in serum high-density lipoprotein (HDL-C) level were also seen in blood after injection of Pb(2+). Additionally, hepatorenal function tests were enhanced. Meanwhile, Pb(2+) produced marked histo-cytological alterations in the renal cortex. Co-administration of Curc to the Pb(2+)-treated animals restored most of the parameters mentioned above to near-normal levels/features. In conclusion, Curc appeared to be a promising agent for protection against Pb(2+)-induced toxicity.

  6. Contrast Media-Induced Renal Inflammation Is Mediated Through HMGB1 and Its Receptors in Human Tubular Cells.

    PubMed

    Guan, Xiao-Feng; Chen, Qing-Jie; Zuo, Xiao-Cong; Guo, Ren; Peng, Xiang-Dong; Wang, Jiang-Lin; Yin, Wen-Jun; Li, Dai-Yang

    2017-01-01

    With the rapid development of imaging diagnosis and interventional therapy, contrast media (CM) are widely used in clinics. However, contrast-induced nephropathy (CIN) is the third leading cause of hospital-acquired acute renal failure accounting for 10-12% of all causes of hospital-acquired renal failure. Recent study found that inflammation may participate in the pathogenesis of CIN, but the role of it remains unclear. HK-2 cells were treated with Iohexol, Urografin, and mannitol. Two types of CM increased the release of HMGB1 in cell supernatant accompanied by increased expression of TLR2 and CXCR4. Iohexol and Urografin also caused a significant increase in NF-κB followed by the release of IL-6 and MCP-1. To clarify the role of HMGB1, TLR2, and CXCR4, glycyrrhizin, anti-TLR2-IgG, and AMD3100 were used to inhibit HMGB1, TLR2, and CXCR4, respectively. Significant decrease in the expression of TLR2, CXCR4, nuclear NF-κB, and the release of IL-6 and MCP-1 were observed. These results indicate that TLR2 and CXCR4 signaling are involved in CM-induced HK-2 cell injury model in an HMGB1-dependent pathway, which may provide a new target for the prevention and the treatment of CIN.

  7. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice

    PubMed Central

    Al-Attar, Atef M.

    2010-01-01

    Toxic heavy metals in water, air and soil are global problems that are a growing threat to humanity. Heavy metals are widely distributed in the environment and some of them occur in food, water, air and tissues even in the absence of occupational exposure. The antioxidant and protective influences of vitamin E on a mixture of some heavy metals (Pb, Hg, Cd and Cu)-induced oxidative stress and renal and testicular injuries were evaluated in male mice. Exposure of mice to these heavy metals in drinking water for seven weeks resulted in statistical increases of plasma creatinine, urea and uric acid concentrations. The levels of glutathione (GSH) and superoxide dismutases (SOD) in kidney and testis tissues were significantly declined. Moreover, the histopathological evaluation of kidney and testis showed severe changes in mice treated with these heavy metals. Administration of vitamin E protected the kidney and testis of mice exposed to heavy metals as evidenced by appearance of normal histological structures, insignificant changes in the values of plasma creatinine, urea and uric acid, and the levels of kidney GSH and SOD, while the levels of testis GSH and SOD were notably decreased. These data suggest that the administration of vitamin E protects against heavy metals-induced renal and testicular oxidative stress and injuries. PMID:23961105

  8. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    SciTech Connect

    Quoilin, C.; Mouithys-Mickalad, A.; Duranteau, J.; Gallez, B.; Hoebeke, M.

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  9. Radiation-induced glioma following CyberKnife® treatment of metastatic renal cell carcinoma: a case report

    PubMed Central

    2012-01-01

    Introduction Post-stereotactic radiation-induced neoplasms, although relatively rare, have raised the question of benefit regarding CyberKnife® treatments versus the risk of a secondary malignancy. The incidence of such neoplasms arising in the nervous system is thought to be low, given the paucity of case reports regarding such secondary lesions. Case presentation Here we describe a case of a 43-year-old Middle Eastern woman with primary clear cell renal cell carcinoma and a metastatic focus to the left brain parenchyma who presented with focal neurologic deficits. Following post-surgical stereotactic radiation in the region of the brain metastasis, the patient developed a secondary high-grade astrocytoma nearly 5 years after the initial treatment. Conclusion Although the benefit of CyberKnife® radiotherapy treatments continues to outweigh the relatively low risk of a radiation-induced secondary malignancy, knowledge of such risks and a review of the literature are warranted. PMID:22943305

  10. Multiple carcinomas in the hemodialysis access induced ischemic hand of a renal transplant patient.

    PubMed

    Van Hoek, Frank; Van Tits, Herm W; Van Lijnschoten, Ineke; De Haas, Boudewijn D; Scheltinga, Marc R

    2010-01-01

    Long term immunosuppression following organ transplantation promotes the onset of skin cancers. A renal transplant patient developed multiple hyperkeratotic nodi in the left hand and digital pain following prolonged immunosuppression. Several skin abnormalities were observed in an ischemic and atrophic left hand in the presence of a patent Cimino-Brescia arteriovenous fistula previously used for hemodialysis. Severe hand ischemia was confirmed by digital plethysmography. Pathological examination of all 7 excised skin lesions indicated manifestations of well differentiated squamous cell carcinomas (SCC). Severe loco-regional ischemia due to an intact hemodialysis access may enhance the toxic effects of chronic immunosuppressive medication. Oxidative stress may act as a co-carcinogenic factor for the development of SCC in renal transplant patients receiving immunosuppressive agents.

  11. Effects of dexmedetomidine on renal tissue after lower limb ischemia reperfusion injury in streptozotocin induced diabetic rats

    PubMed Central

    Erbatur, Meral Erdal; Sezen, Şaban Cem; Bayraktar, Aslıhan Cavunt; Arslan, Mustafa; Kavutçu, Mustafa; Aydın, Muhammed Enes

    2017-01-01

    ABSTRACT Aim: The aim of this study was to investigate whether dexmedetomidine – administered before ischemia – has protective effects against lower extremity ischemia reperfusion injury that induced by clamping and subsequent declamping of infra-renal abdominal aorta in streptozotocin-induced diabetic rats. Material and Methods: After obtaining ethical committee approval, four study groups each containing six rats were created (Control (Group C), diabetes-control (Group DM-C), diabetes I/R (Group DM-I/R), and diabetes-I/R-dexmedetomidine (Group DM-I/R-D). In diabetes groups, single-dose (55 mg/kg) streptozotocin was administered intraperitoneally. Rats with a blood glucose level above 250 mg/dl at the 72nd hour were accepted as diabetic. At the end of four weeks, laparotomy was performed in all rats. Nothing else was done in Group C and DM-C. In Group DM-I/R, ischemia reperfusion was produced via two-hour periods of clamping and subsequent declamping of infra-renal abdominal aorta. In Group DM-I/R-D, 100 μg/kg dexmedetomidine was administered intraperitoneally 30 minutes before ischemia period. At the end of reperfusion, period biochemical and histopathological evaluation of renal tissue specimen were performed. Results: Thiobarbituric acid reactive substance (TBARS), Superoxide dismutase (SOD), Nitric oxide synthase (NOS), Catalase (CAT) and Glutathion S transferase (GST) levels were found significantly higher in Group DM-I/R when compared with Group C and Group DM-C. In the dexmedetomidine-treated group, TBARS, NOS, CAT, and GST levels were significantly lower than those measured in the Group D-I/R. In histopathological evaluation, glomerular vacuolization (GV), tubular dilatation (TD), vascular vacuolization and hypertrophy (VVH), tubular cell degeneration and necrosis (TCDN), tubular hyaline cylinder (THC), leucocyte infiltration (LI), and tubular cell spillage (TCS) in Group DM-I/R were significantly increased when compared with the control group

  12. Resolution of renal adenocarcinoma-induced secondary inappropriate polycythaemia after nephrectomy in two cats.

    PubMed

    Klainbart, Sigal; Segev, Gilad; Loeb, Emmanuel; Melamed, Dana; Aroch, Itamar

    2008-07-01

    Two cases of secondary, inappropriate polycythaemia caused by renal adenocarcinoma in domestic shorthair cats, are described. The cats were 9 and 12 years old and both were presented because of generalised seizures presumably due to hyperviscosity. Both cats had a markedly increased haematocrit (0.770 and 0.632 l/l) and thrombocytosis (744 x 10(9)/l and 926 x 10(9)/l). An abdominal ultrasound revealed a mass in the cranial pole of one kidney in both cats. Serum erythropoietin (EPO) concentration was within the reference interval (RI) in both cats but was inappropriately high considering the markedly increased haematocrit. The cats were initially stabilised and managed by multiple phlebotomies and intravenous fluid therapy and underwent nephrectomy of the affected kidney later on. Both the polycythaemia and thrombocytosis resolved following surgery. Postoperative serum EPO concentration, measured in one cat, decreased markedly. Histopathology of the affected kidneys confirmed a diagnosis of renal adenocarcinoma. Both cats were stable for an 8-month follow-up period; however, one cat had developed a stable chronic kidney disease (CKD), while the other was represented 8 months postoperatively due to dyspnoea, and had radiographic evidence of lung metastasis, presumably because of the spread of the original renal tumour and was euthanased. Initial stabilisation of polycythaemic cats should include multiple phlebotomies. Nephrectomy should be considered in cats with secondary, inappropriate, renal adenocarcinoma-related polycythaemia when only one kidney is affected by the tumour, and provided that the other kidney's function is satisfactory. Nephrectomy should be expected to resolve the polycythaemia and lead to normalisation of serum EPO concentration.

  13. Amelioration of Gamma-hexachlorocyclohexane (Lindane) induced renal toxicity by Camellia sinensis in Wistar rats

    PubMed Central

    Prasad, W. L. N. V. Vara; Srilatha, Ch.; Sailaja, N.; Raju, N. K. B.; Jayasree, N.

    2016-01-01

    Aim: A study to assess the toxic effects of gamma-hexachlorocyclohexane (γ-HCH) (lindane) and ameliorative effects of Camellia sinensis on renal system has been carried out in male Wistar rats. Materials and Methods: Four groups of rats with 18 each were maintained under standard laboratory hygienic conditions and provided feed and water ad libitum. γ-HCH was gavaged at 20 mg/kg b.wt. using olive oil as vehicle to Groups II. C. sinensis at 100 mg/kg b.wt. was administered orally in distilled water to Group IV in addition to γ-HCH 20 mg/kg b.wt. up to 45 days to study ameliorative effects. Groups I and III were treated with distilled water and C. sinensis (100 mg/kg b.wt.), respectively. Six rats from each group were sacrificed at fortnight intervals. Serum was collected for creatinine estimation. The kidney tissues were collected in chilled phosphate buffer saline for antioxidant profile and in also 10% buffered formalin for histopathological studies. Results: γ-HCH treatment significantly increased serum creatinine and significantly reduced the renal antioxidative enzymes catalase, superoxide dismutase, and glutathione peroxidase. Grossly, severe congestion was noticed in the kidneys. Microscopically, kidney revealed glomerular congestion, atrophy, intertubular hemorrhages, degenerative changes in tubular epithelium with vacuolated cytoplasm, desquamation of epithelium and urinary cast formation. A significant reduction in serum creatinine levels, significant improvement in renal antioxidant enzyme activities and near to normal histological appearance of kidneys in Group IV indicated that the green tea ameliorated the effects of γ-HCH, on renal toxicity. Conclusion: This study suggested that C. sinensis extract combined with γ-HCH could enhance antioxidant/detoxification system which consequently reduced the oxidative stress thus potentially reducing γ-HCH toxicity and tissue damage. PMID:27956790

  14. Yohimbine-induced cutaneous drug eruption, progressive renal failure, and lupus-like syndrome.

    PubMed

    Sandler, B; Aronson, P

    1993-04-01

    Yohimbine is an indole alkaloid obtained from the yohimbe tree, a common tree in West Africa. We describe a forty-two-year black man in whom a generalized erythrodermic skin eruption, progressive renal failure, and lupus-like syndrome developed following treatment with the drug, yohimbine. A literature review failed to reveal any reported association of these side effects. We review current information on yohimbine's use in male impotence, reported side effects, and its role as a drug allergen.

  15. Hyperosmolarity Induces Armanni-Ebstein-like Renal Tubular Epithelial Swelling and Cytoplasmic Vacuolization.

    PubMed

    Zhou, Chong; Vink, Robert; Byard, Roger W

    2017-01-01

    Armanni-Ebstein lesions have been considered pathognomonic for diabetes mellitus and appear as markedly swollen renal tubular epithelial cells with cytoplasmic clearing and glycogen accumulation. However, the extent to which hyperosmolarity contributes to the Armanni-Ebstein phenotype is unclear. Ten sheep were injected intravenously with 20% mannitol at 11 mOsm/kg, and subsequent histological evaluation of the kidneys showed variable degrees of osmotic nephrosis and cytoplasmic clearing of renal tubular epithelial cells similar to that seen with Armanni-Ebstein lesions. However, although morphological changes similar to Armanni-Ebstein lesions could be produced, no intracytoplasmic glycogen was demonstrated with periodic Acid-Schiff (PAS) stain. This suggests that while hyperosmolarity may contribute to the development of an Armanni-Ebstein phenotype, glycogen accumulation may result from the more complex metabolic effects of glucose on renal tubular epithelial cells. Thus, when Armanni/Ebstein-like vacuolizations are seen at autopsy, a confirmatory PAS stain is recommended because of the potential effect of hyperosmolar states.

  16. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis.

    PubMed

    van der Heijden, Roel A; Bijzet, Johan; Meijers, Wouter C; Yakala, Gopala K; Kleemann, Robert; Nguyen, Tri Q; de Boer, Rudolf A; Schalkwijk, Casper G; Hazenberg, Bouke P C; Tietge, Uwe J F; Heeringa, Peter

    2015-11-13

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process.

  17. Salvianolic Acid B Prevents Iodinated Contrast Media-Induced Acute Renal Injury in Rats via the PI3K/Akt/Nrf2 Pathway.

    PubMed

    Tongqiang, Liu; Shaopeng, Liu; Xiaofang, Yu; Nana, Song; Xialian, Xu; Jiachang, Hu; Ting, Zhang; Xiaoqiang, Ding

    2016-01-01

    Contrast-induced acute renal injury (CI-AKI) has become a common cause of hospital-acquired renal failure. However, the development of prophylaxis strategies and approved therapies for CI-AKI is limited. Salvianolic acid B (SB) can treat cardiovascular-related diseases. The aim of the present study was to assess the effect of SB on prevention of CI-AKI and explore its underlying mechanisms. We examined its effectiveness of preventing renal injury in a novel CI-AKI rat model. Compared with saline, intravenous SB pretreatment significantly attenuated elevations in serum creatinine and the histological changes of renal tubular injuries, reduced the number of apoptosis-positive tubular cells, activated Nrf2, and lowered the levels of renal oxidative stress induced by iodinated contrast media. The above renoprotection of SB was abolished by the PI3K inhibitor (wortmannin). In HK-2 cells, SB activated Nrf2 and decreased the levels of oxidative stress induced by hydrogen peroxide and subsequently improved cell viability. The above cytoprotection of SB was blocked by the PI3K inhibitor (wortmannin) or siNrf2. Thus, our results demonstrate that, due to its antioxidant properties, SB has the potential to effectively prevent CI-AKI via the PI3K/Akt/Nrf2 pathway.

  18. Salvianolic Acid B Prevents Iodinated Contrast Media-Induced Acute Renal Injury in Rats via the PI3K/Akt/Nrf2 Pathway

    PubMed Central

    Tongqiang, Liu; Shaopeng, Liu; Xiaofang, Yu; Nana, Song; Xialian, Xu; Jiachang, Hu; Ting, Zhang; Xiaoqiang, Ding

    2016-01-01

    Contrast-induced acute renal injury (CI-AKI) has become a common cause of hospital-acquired renal failure. However, the development of prophylaxis strategies and approved therapies for CI-AKI is limited. Salvianolic acid B (SB) can treat cardiovascular-related diseases. The aim of the present study was to assess the effect of SB on prevention of CI-AKI and explore its underlying mechanisms. We examined its effectiveness of preventing renal injury in a novel CI-AKI rat model. Compared with saline, intravenous SB pretreatment significantly attenuated elevations in serum creatinine and the histological changes of renal tubular injuries, reduced the number of apoptosis-positive tubular cells, activated Nrf2, and lowered the levels of renal oxidative stress induced by iodinated contrast media. The above renoprotection of SB was abolished by the PI3K inhibitor (wortmannin). In HK-2 cells, SB activated Nrf2 and decreased the levels of oxidative stress induced by hydrogen peroxide and subsequently improved cell viability. The above cytoprotection of SB was blocked by the PI3K inhibitor (wortmannin) or siNrf2. Thus, our results demonstrate that, due to its antioxidant properties, SB has the potential to effectively prevent CI-AKI via the PI3K/Akt/Nrf2 pathway. PMID:27382429

  19. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis

    PubMed Central

    van der Heijden, Roel A.; Bijzet, Johan; Meijers, Wouter C.; Yakala, Gopala K.; Kleemann, Robert; Nguyen, Tri Q.; de Boer, Rudolf A.; Schalkwijk, Casper G.; Hazenberg, Bouke P. C.; Tietge, Uwe J. F.; Heeringa, Peter

    2015-01-01

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process. PMID:26563579

  20. Morin Hydrate Mitigates Cisplatin-Induced Renal and Hepatic Injury by Impeding Oxidative/Nitrosative Stress and Inflammation in Mice.

    PubMed

    K V, Athira; Madhana, Rajaram Mohanrao; Kasala, Eshvendar Reddy; Samudrala, Pavan Kumar; Lahkar, Mangala; Gogoi, Ranadeep

    2016-12-01

    Cisplatin is a widely used chemotherapeutic drug; however, it induces damage on kidney and liver at clinically effective higher doses. Morin hydrate possesses antioxidant, anti-inflammatory, and anticancer properties. Therefore, we aimed to investigate the effects of morin hydrate (50 and 100 mg/kg, orally) against the renohepatic toxicity induced by a high dose of cisplatin (20 mg/kg, intraperitoneally). Renal and hepatic function, oxidative/nitrosative stress, and inflammatory markers along with histopathology were evaluated. Morin hydrate ameliorated cisplatin-induced renohepatic toxicity significantly at 100 mg/kg as evidenced from the significant reversal of cisplatin-induced body weight loss, mortality, functional and structural alterations of kidney, and liver. The protective role offered by morin hydrate against cisplatin-induced renohepatic toxicity is by virtue of its free radical scavenging property, thereby abating the depletion of cellular antioxidant defense components and through modulation of inflammatory cytokines. We speculate morin hydrate as a protective candidate against renohepatic toxicity of cisplatin.

  1. Inhibition of atrial receptor-induced renal responses by stimulation of carotid baroreceptors in anaesthetized dogs.

    PubMed Central

    Karim, F; Majid, D S

    1991-01-01

    1. Dogs were anaesthetized with chloralose and artificially ventilated. The receptors at three pulmonary vein-atrial junctions and in the left atrial appendage were stimulated by distension of small balloons. The carotid sinuses were vascularly isolated and perfused with arterial blood. A volume reservoir was connected to the aorta via the common carotid and femoral arteries to keep the mean aortic pressure constant (78.8 +/- 2.9 mmHg at low and 87.1 +/- 4.3 mmHg at high carotid sinus pressure, CSP). Propranolol and atropine were infused (i.v.) at 17 and 13 micrograms kg-1 min-1 respectively in order to block beta-adrenergic and cholinergic receptor activities. The renal blood flow was measured by an electromagnetic flow meter (wrap-round probe), glomerular filtration rate by creatinine clearance, urinary sodium excretion by flame photometry and osmolar excretion by osmometry. 2. In twelve tests in eight dogs, stimulation of the left atrial receptors for 13 min, at a mean CSP of 68.6 +/- 2.3 mmHg, resulted in significant increases in renal blood flow from 216 +/- 20.0 to 230 +/- 22.1 ml min-1 (100 g renal mass)-1 (P less than 0.005), glomerular filtration rate from 33.9 +/- 3.2 to 42.1 +/- 4.1 ml min-1 100 g-1 (P less than 0.005), filtration fraction from 0.23 +/- 0.02 to 0.26 +/- 0.02 (P less than 0.005), urine flow rate from 0.21 +/- 0.03 to 0.26 +/- 0.03 ml min-1 100 g-1 (P less than 0.001), sodium excretion from 12.9 +/- 4.0 to 16.4 +/- 4.8 mumol min-1 100 g-1 (P less than 0.01), osmolar excretion from 196 +/- 27.8 to 246 +/- 32.9 muosmol min-1 100 g-1 (P less than 0.005), whilst free water clearance decreased from -0.39 +/- 0.07 to -0.50 +/- 0.09 ml min-1 100 g-1 (P less than 0.005). However, the fractional excretion of sodium did not change. 3. In nine tests in seven dogs, stimulation of the left atrial receptors at a constantly high CSP (161 +/- 11.3 mmHg) did not produce significant change in any of the renal variables. 4. The results show that high level

  2. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells.

    PubMed

    Krüger, Katharina; Ziegler, Verena; Hartmann, Christina; Henninger, Christian; Thomale, Jürgen; Schupp, Nicole; Fritz, Gerhard

    2016-02-01

    The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model. The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury.

  3. Renal Overexpression of Atrial Natriuretic Peptide and Hypoxia Inducible Factor-1α as Adaptive Response to a High Salt Diet

    PubMed Central

    Della Penna, Silvana Lorena; Cao, Gabriel; Carranza, Andrea; Zotta, Elsa; Gorzalczany, Susana; Cerrudo, Carolina Susana; Rukavina Mikusic, Natalia Lucía; Correa, Alicia; Trida, Verónica; Toblli, Jorge Eduardo; Fernández, Belisario Enrique

    2014-01-01

    In the kidney, a high salt intake favors oxidative stress and hypoxia and causes the development of fibrosis. Both atrial natriuretic peptide (ANP) and hypoxia inducible factor (HIF-1α) exert cytoprotective effects. We tested the hypothesis that renal expression of ANP and HIF-1α is involved in a mechanism responding to the oxidative stress produced in the kidneys of rats chronically fed a high sodium diet. Sprague-Dawley rats were fed with a normal salt (0.4% NaCl) (NS) or a high salt (8% NaCl) (HS) diet for 3 weeks, with or without the administration of tempol (T), an inhibitor of oxidative stress, in the drinking water. We measured the mean arterial pressure (MAP), glomerular filtration rate (GFR), and urinary sodium excretion (UVNa). We evaluated the expression of ANP, HIF-1α, and transforming growth factor (TGF-β1) in renal tissues by western blot and immunohistochemistry. The animals fed a high salt diet showed increased MAP and UVNa levels and enhanced renal immunostaining of ANP, HIF-1α, and TGF-β1. The administration of tempol together with the sodium overload increased the natriuresis further and prevented the elevation of blood pressure and the increased expression of ANP, TGF-β1, and HIF-1α compared to their control. These findings suggest that HIF-1α and ANP, synthesized by the kidney, are involved in an adaptive mechanism in response to a sodium overload to prevent or attenuate the deleterious effects of the oxidative stress and the hypoxia on the development of fibrosis. PMID:24689065

  4. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression

    PubMed Central

    Xiao, Yun; Liu, Jishi; Peng, Yu; Xiong, Xuan; Huang, Ling; Yang, Huixiang; Zhang, Jian; Tao, Lijian

    2016-01-01

    Tubular epithelial-mesenchymal transition (EMT) has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF). The production of reactive oxygen species (ROS) plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3) in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO). Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF. PMID:27602565

  5. Downregulation of renal tubular Wnt/β-catenin signaling by Dickkopf-3 induces tubular cell death in proteinuric nephropathy

    PubMed Central

    Wong, D W L; Yiu, W H; Wu, H J; Li, R X; Liu, Y; Chan, K W; Leung, J C K; Chan, L Y Y; Lai, K N; Tang, S C W

    2016-01-01

    Studies on the role of Wnt/β-catenin signaling in different forms of kidney disease have yielded discrepant results. Here, we report the biphasic change of renal β-catenin expression in mice with overload proteinuria in which β-catenin was upregulated at the early stage (4 weeks after disease induction) but abrogated at the late phase (8 weeks). Acute albuminuria was observed at 1 week after bovine serum albumin injection, followed by partial remission at 4 weeks that coincided with overexpression of renal tubular β-catenin. Interestingly, a rebound in albuminuria at 8 weeks was accompanied by downregulated tubular β-catenin expression and heightened tubular apoptosis. In addition, there was an inverse relationship between Dickkopf-3 (Dkk-3) and renal tubular β-catenin expression at these time points. In vitro, a similar trend in β-catenin expression was observed in human kidney-2 (HK-2) cells with acute (upregulation) and prolonged (downregulation) exposure to albumin. Induction of a proapoptotic phenotype by albumin was significantly enhanced by silencing β-catenin in HK-2 cells. Finally, Dkk-3 expression and secretion was increased after prolonged exposure to albumin, leading to the suppression of intracellular β-catenin signaling pathway. The effect of Dkk-3 on β-catenin signaling was confirmed by incubation with exogenous Dkk-3 in HK-2 cells. Taken together, these data suggest that downregulation of tubular β-catenin signaling induced by Dkk-3 has a detrimental role in chronic proteinuria, partially through the increase in apoptosis. PMID:27010856

  6. Effects of ellagic acid pretreatment on renal functions disturbances induced by global cerebral ischemic-reperfusion in rat

    PubMed Central

    Nejad, Khojasteh Hoseiny; Gharib-Naseri, Mohammad Kazem; Sarkaki, Alireza; Dianat, Mahin; Badavi, Mohammad; Farbood, Yaghoub

    2017-01-01

    Objective(s): Global cerebral ischemia-reperfusion (GCIR) causes disturbances in brain functions as well as other organs such as kidney. Our aim was to evaluate the protective effects of ellagic acid (EA) on certain renal disfunction after GCIR. Materials and Methods: Adult male Wistar rats (n=32, 250-300 g) were used. GCIR was induced by bilateral vertebral and common carotid arteries occlusion (4-VO). Animal groups were: 1) received DMSO/saline (10%) as solvent of EA, 2) solvent + GCIR, 3) EA + GCIR, and 4) EA. Under anesthesia with ketamine/xylazine, GCIR was induced (20 and 30 min respectively) in related groups. EA (100 mg/kg, dissolved in DMSO/saline (10%) or solvent was administered (1.5 ml/kg) orally for 10 consecutive days to the related groups. EEG was recorded from NTS in GCIR treated groups. Results: Our data showed that: a) EEG in GCIR treated groups was flattened. b) GCIR reduced GFR (P<0.01) and pretreatment with EA attenuated this reduction. c) BUN was increased by GCIR (P<0.001) and pretreatment with EA improved the BUN to normal level. d) Serum creatinine concentration was elevated by GCIR but not significantly, however, in EA+GCIR group serum creatinine was reduced (P<0.05). e) GCIR induced proteinuria (P<0.05) but, EA was unable to reduced proteinuria. Conclusion: Results indicate that GCIR impairs certain renal functions and EA as an antioxidant can improve these functions. Our results suggest the possible usefulness of ellagic acid in patients with brain stroke. PMID:28133528

  7. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    PubMed

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy.

  8. Discoidin domain receptor 1 (DDR1), a promising biomarker, induces epithelial to mesenchymal transition in renal cancer cells.

    PubMed

    Song, Jingyuan; Chen, Xiao; Bai, Jin; Liu, Qinghua; Li, Hui; Xie, Jianwan; Jing, Hui; Zheng, Junnian

    2016-08-01

    Discoidin domain receptor I (DDR1) is confirmed as a receptor tyrosine kinase (RTK), which plays a consequential role in a variety of cancers. Nevertheless, the influence of DDR1 expression and development in renal clear cell carcinoma (RCCC) are still not well corroborated. In our research, we firstly discovered that the expression level of DDR1 was remarkable related to TNM stage (p = 0.032), depth of tumor invasion (p = 0.047), and lymph node metastasis (p = 0.034) in 119 RCCC tissue samples using tissue microarray. The function of DDR1 was then evaluated in vitro using collagen I and DDR1 small interfering RNA (siRNA) to regulate the expression of DDR1 in OS-RC-2 and ACHN renal cancer cells (RCC). DDR1 expression correlated with increased RCC cell migration, invasion, and angiogenesis. Further study revealed that high expression of DDR1 can result in epithelial to mesenchymal transition (EMT) activation. Western blot assay showed that the N-cadherin protein and vimentin were induced while E-cadherin was reduced after DDR1 over expression. Our results suggest that DDR1 is both a prognostic marker for RCCC and a potential functional target for therapy.

  9. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma

    PubMed Central

    Whitson, Jared M; Noonan, Emily J; Pookot, Deepa; Place, Robert F; Dahiya, Rajvir

    2014-01-01

    Small double stranded RNAs (dsRNA) are a new class of molecules which regulate gene expression. Accumulating data suggest that some dsRNA can function as tumor suppressors. Here we report further evidence on the potential of dsRNA mediated p21 induction. Using the human renal cell carcinoma cell line A498, we found that dsRNA targeting the p21 promoter significantly induced the expression of p21 mRNA and protein levels. As a result, dsP21 transfected cells had a significant decrease in cell viability with a concomitant G1 arrest. We also observed a significant increase in apoptosis. These findings were associated with a significant decrease in survivin mRNA and protein levels. This is the first report that demonstrates dsRNA mediated gene activation in renal cell carcinoma and suggests that forced over-expression of p21 may lead to an increase in apoptosis through a survivin dependent mechanism. PMID:19384944

  10. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma.

    PubMed

    Whitson, Jared M; Noonan, Emily J; Pookot, Deepa; Place, Robert F; Dahiya, Rajvir

    2009-07-15

    Small double stranded RNAs (dsRNA) are a new class of molecules which regulate gene expression. Accumulating data suggest that some dsRNA can function as tumor suppressors. Here, we report further evidence on the potential of dsRNA mediated p21 induction. Using the human renal cell carcinoma cell line A498, we found that dsRNA targeting the p21 promoter significantly induced the expression of p21 mRNA and protein levels. As a result, dsP21 transfected cells had a significant decrease in cell viability with a concomitant G1 arrest. We also observed a significant increase in apoptosis. These findings were associated with a significant decrease in survivin mRNA and protein levels. This is the first report that demonstrates dsRNA mediated gene activation in renal cell carcinoma and suggests that forced over-expression of p21 may lead to an increase in apoptosis through a survivin dependent mechanism.

  11. The phosphatase inhibitor okadaic acid induces AQP2 translocation independently from AQP2 phosphorylation in renal collecting duct cells.

    PubMed

    Valenti, G; Procino, G; Carmosino, M; Frigeri, A; Mannucci, R; Nicoletti, I; Svelto, M

    2000-06-01

    Phosphorylation by kinases and dephosphorylation by phosphatase markedly affect the biological activity of proteins involved in intracellular signaling. In this study we investigated the effect of the serine/threonine phosphatase inhibitor okadaic acid on water permeability properties and on aquaporin2 (AQP2) translocation in AQP2-transfected renal CD8 cells. In CD8 cells both forskolin alone and okadaic acid alone increased the osmotic water permeability coefficient P(f) by about 4- to 5-fold. In intact cells, in vivo phosphorylation studies revealed that forskolin stimulation resulted in a threefold increase in AQP2 phosphorylation. In contrast, okadaic acid treatment promoted only a 60% increase in AQP2 phosphorylation which was abolished when this treatment was performed in the presence of 1 microM H89, a specific protein kinase A (PKA) inhibitor. Nevertheless, in this latter condition, confocal microscopy analysis revealed that AQP2 translocated and fused to the apical membrane. Okadaic acid-induced AQP2 translocation was dose dependent having its maximal effect at a concentration of 1 microM. In conclusion, our results clearly indicate that okadaic acid exerts a full forskolin-like effect independent from AQP2 phosphorylation. Thus AQP2 phosphorylation is not essential for water channel translocation in renal cells, indicating that different pathways might exist leading to AQP2 apical insertion and increase in P(f).

  12. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats.

    PubMed

    Geurts, Aron M; Mattson, David L; Liu, Pengyuan; Cabacungan, Erwin; Skelton, Meredith M; Kurth, Theresa M; Yang, Chun; Endres, Bradley T; Klotz, Jason; Liang, Mingyu; Cowley, Allen W

    2015-02-01

    Environmental exposure of parents or early in life may affect disease development in adults. We found that hypertension and renal injury induced by a high-salt diet were substantially attenuated in Dahl SS/JrHsdMcwiCrl (SS/Crl) rats that had been maintained for many generations on the grain-based 5L2F diet compared with SS/JrHsdMcwi rats (SS/Mcw) maintained on the casein-based AIN-76A diet (mean arterial pressure, 116±9 versus 154±25 mm Hg; urinary albumin excretion, 23±12 versus 170±80 mg/d). RNAseq analysis of the renal outer medulla identified 129 and 82 genes responding to a high-salt diet uniquely in SS/Mcw and SS/Crl rats, respectively, along with minor genetic differences between the SS substrains. The 129 genes responding to salt in the SS/Mcw strain included numerous genes with homologs associated with hypertension, cardiovascular disease, or renal disease in human. To narrow the critical window of exposure, we performed embryo-transfer experiments in which single-cell embryos from 1 colony (SS/Mcw or SS/Crl) were transferred to surrogate mothers from the other colony, with parents and surrogate mothers maintained on their respective original diet. All offspring were fed the AIN-76A diet after weaning. Salt-induced hypertension and renal injury were substantially exacerbated in rats developed from SS/Crl embryos transferred to SS/Mcw surrogate mothers. Conversely, salt-induced hypertension and renal injury were significantly attenuated in rats developed from SS/Mcw embryos transferred to SS/Crl surrogate mothers. Together, the data suggest that maternal diet during the gestational-lactational period has substantial effects on the development of salt-induced hypertension and renal injury in adult SS rats.

  13. Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells.

    PubMed

    Bae, Eunjin; Kim, Seong-Jin; Hong, Suntaek; Liu, Fang; Ooshima, Akira

    2012-10-26

    Transforming growth factor-β1 (TGF-β1) has a distinct role in renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. Smad3 plays an essential role in fibrosis initiated by EMT. Phosphorylation of Smad3 in the C-terminal SSXS motif by type I TGF-β receptor kinase is essential for mediating TGF-β response. Smad3 activity is also regulated by phosphorylation in the linker region. However, the functional role of Smad3 linker phosphorylation is not well characterized. We now show that Smad3 EPSM mutant, which mutated the four phosphorylation sites in the linker region, markedly enhanced TGF-β1-induced EMT of Smad3-deficient primary renal tubular epithelial cells, whereas Smad3 3S-A mutant, which mutated the C-terminal phosphorylation sites, was unable to induce EMT in response to TGF-β1. Furthermore, immunoblotting and RT-PCR analysis showed a marked induction of fibrogenic gene expression with a significant reduction in E-cadherin in HK2 human renal epithelial cells expressing Smad3 EPSM. TGF-β1 could not induce the expression of α-SMA, vimentin, fibronectin and PAI-1 or reduce the expression of E-cadherin in HK2 cells expressing Smad3 3S-A in response to TGF-β1. Our results suggest that Smad3 linker phosphorylation has a negative regulatory role on Smad3 transcriptional activity and TGF-β1/Smad3-induced renal EMT. Elucidation of mechanism regulating the Smad3 linker phosphorylation can provide a new strategy to control renal fibrosis.

  14. Pharmacological evidence that 5-HT1D activation induces renal vasodilation by NO pathway in rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-06-01

    5-HT is a powerful vasoconstrictor substance in renal vasculature (mainly by 5-HT₂ activation). Nevertheless, 5-HT is notable for its dual cardiovascular effects, producing both vasodilator and vasoconstrictor actions. This study aimed to investigate whether, behind the predominant serotonergic vasoconstrictor action, THE 5-HT system may exert renal vasodilator actions, and, if so, characterize the 5-HT receptors and possible indirect pathways. Renal perfusion pressure (PP), systemic blood pressure (SBP) and heart rate (HR) measurement in in situ autoperfused rat kidney was determined in phenylephrine infused rats. Intra arterial (i.a.) bolus administration of 5-HT (0.00000125-0.1 μg/kg) decreased renal PP in the presence of a phenylephrine continuous infusion (phenylephrine-infusion group), without modifying SBP or HR. These vasodilator responses were potentiated by 5-HT₂ antagonism (ritanserin, 1 mg/kg i.v.), whereas the responses were abolished by 5-HT₁ /₇ antagonist (methiothepin, 100 μg/kg i.v.) or 5-HT1D antagonist (LY310762, 1 mg/kg i.v.). The i.a. administration (0.00000125 to 0.1 μg/kg) of 5-CT or L-694,247 (5-HT1D agonist) mimicked 5-HT vasodilator effect, while other agonists (1-PBG, α-methyl-5-HT, AS-19 (5-HT₇), 8-OH-DPAT (5-HT1A) or CGS-12066B (5-HT1B)) did not alter baseline haemodynamic variables. L-694,247 vasodilation was abolished by i.v. bolus of antagonists LY310762 (5-HT1D, 1 mg/kg) or L-NAME (nitric oxide, 10 mg/kg), but not by i.v. bolus of indomethacin (cyclooxygenase, 2 mg/kg) or glibenclamide (ATP-dependent K(+) channel, 20 mg/kg). These outcomes suggest that 5-HT1D activation produces a vasodilator effect in the in situ autoperfused kidney of phenylephrine-infusion rats mediated by the NO pathway.

  15. Sulphadiazine-induced obstructive renal failure complicating treatment of HIV-associated toxoplasmosis.

    PubMed

    Allinson, J; Topping, W; Edwards, S G; Miller, R F

    2012-03-01

    A patient with newly-diagnosed HIV infection and biopsy-proven cerebral toxoplasmosis was treated with sulphadiazine and pyrimethamine. Despite adequate hydration and daily examination of urine for sulphadiazine crystals obstructive uropathy due to bilateral ureteric stones with hydronephrosis occurred, resulting in rapid onset renal failure. Sulphadiazine was discontinued and clindamycin was substituted. With intravenous fluid hydration and bilateral nephrostomies the urolithiasis resolved. This case serves to remind clinicians of the need for vigilance when treating cerebral toxoplasmosis with sulphadiazine, in order to avoid this potentially serious complication of treatment.

  16. Effects of angiotensin-converting enzyme inhibition on altered renal hemodynamics induced by low protein diet in the rat.

    PubMed Central

    Fernández-Repollet, E; Tapia, E; Martínez-Maldonado, M

    1987-01-01

    We assessed the role of angiotensin II in mediating the alterations in renal hemodynamics known to result from low protein feeding to normal rats by examining the effect of the angiotensin-converting enzyme (ACE) inhibitor captopril. 2 wk of low protein (6% casein) diet resulted in decreased glomerular filtration rate (normal protein [NP], 1.82 +/- 0.17 vs. low protein [LP], 0.76 +/- 0.01 ml/min; P less than 0.05) and renal plasma flow (NP, 6.7 +/- 0.2 vs. LP, 3.3 +/- 0.3 ml/min; P less than 0.05); renal vascular resistance rose (NP, 8.7 +/- 0.4 vs. LP, 19.8 +/- 1.4 dyn . s per cm5; P less than 0.05). These changes were accompanied by a significant decrease in plasma renin activity (NP, 7.0 +/- 0.7 vs. LP, 4.4 +/- 0.8 ng A I/ml per h; P less than 0.05), plasma aldosterone concentration (NP, 7.0 +/- 0.6 vs. LP, 4.1 +/- 0.7 ng/dl; P less than 0.05), and urinary PGE2 excretion (NP, 3,120 +/- 511 vs. LP, 648 +/- 95 pg/mgCr; P less than 0.05); by contrast renal renin content was significantly increased (NP, 2,587 +/- 273 vs. LP, 7,032 +/- 654 ng A I/mg protein; P less than 0.05). Treatment with captopril (30 mg/kg per d) raised glomerular filtration rate (GFR; LP + capt, 1.6 +/- 0.2 ml/min) and renal plasma flow (RPF; LP + capt, 6.7 +/- 0.7 ml/min), and reduced renal vascular resistance (LP + capt, 9.2 +/- 0.5 dyn/s per cm5) in low protein-fed animals. These values were not different from those measured in untreated and captopril-treated rats fed a normal (23%) protein diet. There were no changes in systemic mean arterial pressure in any group of rats. These data provide evidence that intrarenal angiotensin II mediates the changes in intrarenal hemodynamics induced by protein deprivation. The effects of low protein feeding may be partly potentiated by the reduction in PGE2 synthesis. However, the normalization of GFR and RPF in view of only modest increases in PGE2 excretion after captopril (LP, 648 +/- 95 vs. LP + capt, 1,131 +/- 82 pg/mgCr; P less than 0.05) suggests

  17. Effects of berberine on matrix accumulation and NF-kappa B signal pathway in alloxan-induced diabetic mice with renal injury.

    PubMed

    Liu, Weihua; Zhang, Xiaoyan; Liu, Peiqing; Shen, Xiaoyan; Lan, Tian; Li, Wenyuan; Jiang, Qin; Xie, Xi; Huang, Heqing

    2010-07-25

    One of the main pathological changes in diabetic nephropathy is the renal fibrosis, which includes glomerulosclerosis and tubulointerstitial fibrosis. In vivo and in vitro studies demonstrated that berberine could ameliorate renal dysfunction in diabetic rats with nephropathy and inhibit fibronectin expression in mesangial cells cultured under high glucose. However, the molecular mechanisms have not been fully elucidated. The purpose of the present study was to investigate the effects of berberine on the nuclear factor-kappa B (NF-kappaB) activation, intercellular adhesion molecule-1, transforming growth factor-beta1 and fibronectin protein expression in renal tissue from alloxan-induced diabetic mice with renal damage. The distribution of NF-kappaB p65 in glomerulus and the degradation of I kappaB-alpha in renal cortex were examined by immunohistochemistry and Western blot, respectively. The protein expression of intercellular adhesion molecule-1, transforming growth factor-beta 1 and fibronectin in renal cortex were also detected by Western blot. Our results revealed that in alloxan-induced diabetic mice, the nuclear staining of NF-kappaB p65 was increased in glomerulus, whereas renal I kappaB-alpha protein was significantly reduced. The protein levels of intercellular adhesion molecule-1, transforming growth factor-beta 1 and fibronectin were upregulated in kidney from diabetic mice. After berberine treatment, the immunostaining of NF-kappaB was decreased, and the reduced degradation of I kappaB-alpha level was partially restored. The protein levels of intercellular adhesion molecule-1, transforming growth factor-beta 1 and fibronectin were all downregulated by berberine compared with diabetic model group. In conclusion, the ameliorative effects of berberine on extracellular matrix accumulation might associate with its inhibitory function on NF-kappaB signal pathway.

  18. Therapeutic effects of renal denervation on renal failure.

    PubMed

    Wang, Yutang; Seto, Sai-Wang; Golledge, Jonathan

    2013-05-01

    Sympathetic nerve activity (SNA) is increased in both patients and experimental animals with renal failure. The kidney is a richly innervated organ and has both efferent and afferent nerves. Renal denervation shows protective effects against renal failure in both animals and humans. The underlying mechanisms include a decrease in blood pressure, a decrease in renal efferent SNA, a decrease in central SNA and sympathetic outflow, and downregulation of the reninangiotensin system. It has been demonstrated that re-innervation occurs within weeks after renal denervation in animals but that no functional re-innervation occurs in humans for over two years after denervation. Renal denervation might not be renal protective in some situations including bile duct ligation-induced renal failure and ischemia/reperfusion-induced acute kidney injury. Catheter-based renal denervation has been applied to patients with both early and end stage renal failure and the published results so far suggest that this procedure is safe and effective at decreasing blood pressure. The effectiveness of renal denervation in improving renal function in patients with renal failure needs to be further investigated.

  19. Total antioxidant and oxidant status of plasma and renal tissue of cisplatin-induced nephrotoxic rats: protection by floral extracts of Calendula officinalis Linn.

    PubMed

    Verma, Pawan Kumar; Raina, Rajinder; Sultana, Mudasir; Singh, Maninder; Kumar, Pawan

    2016-01-01

    The present study was aimed to determine the total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) of plasma and renal tissue in cisplatin (cDDP) induced nephrotoxic rats and its protection by treatments with floral extracts of Calendula officinalis Linn. Treatment with cDDP elevated (p < 0.05) the levels of blood urea nitrogen, creatinine (CR), TOS, OSI and malondialdehyde (MDA) but lowered (p < 0.05) total plasma proteins, TAS, total thiols (TTH), blood glutathione (GSH) and antioxidant enzymes compared to the control group. Pre- and post-treatments of ethanolic floral extract of C. officinalis along with cDDP restored (p > 0.05) CR, albumin, TOS, GSH and activities of antioxidant enzymes in blood and renal tissue. Ethanolic extract treatments reduced (p < 0.05) MDA level in renal tissue without restoring the erythrocyte MDA level following cDDP treatment. These observations were further supported by the histopathological findings in renal tissue. Observations of the present study have shown that treatments with ethanolic floral extract of C. officinalis protect cDDP induced nephrotoxicity by restoring antioxidant system of the renal tissue.

  20. Post-treatment effects of erythropoietin and nordihydroguaiaretic acid on recovery from cisplatin-induced acute renal failure in the rat.

    PubMed

    Lee, Dong Won; Kwak, Ihm Soo; Lee, Soo Bong; Song, Sang Heon; Seong, Eun Young; Yang, Byeong Yun; Lee, Min Young; Sol, Mee Young

    2009-01-01

    5-lipoxygenase inhibitor and human recombinant erythropoietin might accelerate renal recovery in cisplatin-induced acute renal failure rats. Male Sprague-Dawley rats were randomized into four groups: 1) normal controls; 2) Cisplatin group-cisplatin induced acute renal failure (ARF) plus vehicle treatment; 3) Cisplatin+nordihydroguaiaretic acid (NDGA) group-cisplatin induced ARF plus 5-lipoxygenase inhibitor treatment; 4) Cisplatin+erythropoietin (EPO) group-cisplatin induced ARF plus erythropoietin treatment. On day 10 (after 7 daily injections of NDGA or EPO), urea nitrogen and serum Cr concentrations were significantly lower in the Cisplatin+NDGA and Cisplatin+EPO groups than in the Cisplatin group, and 24 hr urine Cr clearances were significantly higher in the Cisplatin+EPO group than in the Cisplatin group. Semi-quantitative assessments of histological lesions did not produce any significant differences between the three treatment groups. Numbers of PCNA(+) cells were significantly higher in Cisplatin, Cisplatin+NDGA, and Cisplatin+EPO groups than in normal controls. Those PCNA(+) cells were significantly increased in Cisplatin+NDGA group. These results suggest that EPO and also NDGA accelerate renal function recovery by stimulating tubular epithelial cell regeneration.

  1. Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling.

    PubMed

    Yang, Chih-Ching; Yao, Chien-An; Yang, Jyh-Chin; Chien, Chiang-Ting

    2014-09-01

    Lipopolysaccharides (LPS) through Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) activation induce systemic inflammation where oxidative damage plays a key role in multiple organ failure. Because of the neutralization of LPS toxicity by sialic acid (SA), we determined its effect and mechanisms on repurified LPS (rLPS)-evoked acute renal failure. We assessed the effect of intravenous SA (10 mg/kg body weight) on rLPS-induced renal injury in female Wistar rats by evaluating blood and kidney reactive oxygen species (ROS) responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. SA can interact with rLPS through a high binding affinity. rLPS dose- and time-dependently reduced arterial blood pressure, renal microcirculation and blood flow, and increased vascular resistance in the rats. rLPS enhanced monocyte/macrophage (ED-1) infiltration and ROS production and impaired kidneys by triggering p-IRE1α/p-JNK/CHOP/GRP78/ATF4-mediated endoplasmic reticulum (ER) stress, Bax/PARP-mediated apoptosis, Beclin-1/Atg5-Atg12/LC3-II-mediated autophagy, and caspase 1/IL-1β-mediated pyroptosis in the kidneys. SA treatment at 30 min, but not 60 min after rLPS stimulation, gp91 siRNA and protein kinase C-α (PKC) inhibitor efficiently rescued rLPS-induced acute renal failure via inhibition of TLR4/PKC/NADPH oxidase gp91-mediated ER stress, apoptosis, autophagy and pyroptosis in renal proximal tubular cells, and rat kidneys. In response to rLPS or IFNγ, the enhanced Atg5, FADD, LC3-II, and PARP expression can be inhibited by Atg5 siRNA. Albumin (10 mg/kg body weight) did not rescue rLPS-induced injury. In conclusion, early treatment (within 30 min) of SA attenuates rLPS-induced renal failure via the reduction in LPS toxicity and subsequently inhibiting rLPS-activated TLR4/PKC/gp91/ER stress/apoptosis/autophagy/pyroptosis signaling.

  2. Prohibitin is associated with antioxidative protection in hypoxia/reoxygenation-induced renal tubular epithelial cell injury

    NASA Astrophysics Data System (ADS)

    Zhou, Tian-Biao; Qin, Yuan-Han; Lei, Feng-Ying; Huang, Wei-Fang; Drummen, Gregor P. C.

    2013-11-01

    Prohibitin is an evolutionary conserved and pleiotropic protein that has been implicated in various cellular functions, including proliferation, tumour suppression, apoptosis, transcription, and mitochondrial protein folding. We recently demonstrated that prohibitin downregulation results in increased renal interstitial fibrosis. Here we investigated the role of oxidative stress and prohibitin expression in a hypoxia/reoxygenation injury system in renal tubular epithelial cells with lentivirus-based delivery vectors to knockdown or overexpress prohibitin. Our results show that increased prohibitin expression was negatively correlated with reactive oxygen species, malon dialdehyde, transforming-growth-factor-β1, collagen-IV, fibronectin, and apoptosis (r = -0.895, -0.764, -0.798, -0.826, -0.817, -0.735 each P < 0.01), but positively correlated with superoxide dismutase, glutathione and mitochondrial membrane potential (r = 0.807, 0.815, 0.739; each P < 0.01). We postulate that prohibitin acts as a positive regulator of mechanisms that counteract oxidative stress and extracellular matrix accumulation and therefore has an antioxidative effect.

  3. Bismuth induced encephalopathy caused by tri potassium dicitrato bismuthate in a patient with chronic renal failure.

    PubMed

    Playford, R J; Matthews, C H; Campbell, M J; Delves, H T; Hla, K K; Hodgson, H J; Calam, J

    1990-03-01

    A 68 year old man with a creatinine clearance rate of only 15 ml/min took twice the recommended dose of tripotassium dicitrato bismuthate (TDB) as DeNol liquid; 10 ml qds; a total of 864 mg bismuth daily for two months. Whole blood bismuth concentrations rose to 880 micrograms/l and he developed global cerebral dysfunction with hallucinations, ataxia, and an abnormal EEG. Renal clearance of bismuth rose from 0.24 to 2.4 ml/min when the heavy metal chelator 2-3 dimercapto-1 propane sulphonic acid (DMPS) was given by mouth. Bismuth was measured by a novel method involving inductively coupled plasma source mass spectrometry. Fifty days after stopping TDB, whole blood bismuth concentrations fell to 46 micrograms/l and the patient's EEG returned to normal. His mental function also recovered completely. The case serves as a timely reminder that TDB should not be administered to patients with renal disorders, as stated in the data sheet.

  4. Oxidative stress, mitochondrial perturbations and fetal programming of renal disease induced by maternal smoking.

    PubMed

    Stangenberg, Stefanie; Nguyen, Long T; Chen, Hui; Al-Odat, Ibrahim; Killingsworth, Murray C; Gosnell, Martin E; Anwer, Ayad G; Goldys, Ewa M; Pollock, Carol A; Saad, Sonia

    2015-07-01

    An adverse in-utero environment is increasingly recognized to predispose to chronic disease in adulthood. Maternal smoking remains the most common modifiable adverse in-utero exposure leading to low birth weight, which is strongly associated with chronic kidney disease (CKD) in later life. In order to investigate underlying mechanisms for such susceptibility, female Balb/c mice were sham or cigarette smoke-exposed (SE) for 6 weeks before mating, throughout gestation and lactation. Offspring kidneys were examined for oxidative stress, expression of mitochondrial proteins, mitochondrial structure as well as renal functional parameters on postnatal day 1, day 20 (weaning) and week 13 (adult age). From birth throughout adulthood, SE offspring had increased renal levels of mitochondrial-derived reactive oxygen species (ROS), which left a footprint on DNA with increased 8-hydroxydeoxyguanosin (8-OHdG) in kidney tubular cells. Mitochondrial structural abnormalities were seen in SE kidneys at day 1 and week 13 along with a reduction in oxidative phosphorylation (OXPHOS) proteins and activity of mitochondrial antioxidant Manganese superoxide dismutase (MnSOD). Smoke exposure also resulted in increased mitochondrial DNA copy number (day 1-week 13) and lysosome density (day 1 and week 13). The appearance of mitochondrial defects preceded the onset of albuminuria at week 13. Thus, mitochondrial damage caused by maternal smoking may play an important role in development of CKD at adult life.

  5. Bismuth induced encephalopathy caused by tri potassium dicitrato bismuthate in a patient with chronic renal failure.

    PubMed Central

    Playford, R J; Matthews, C H; Campbell, M J; Delves, H T; Hla, K K; Hodgson, H J; Calam, J

    1990-01-01

    A 68 year old man with a creatinine clearance rate of only 15 ml/min took twice the recommended dose of tripotassium dicitrato bismuthate (TDB) as DeNol liquid; 10 ml qds; a total of 864 mg bismuth daily for two months. Whole blood bismuth concentrations rose to 880 micrograms/l and he developed global cerebral dysfunction with hallucinations, ataxia, and an abnormal EEG. Renal clearance of bismuth rose from 0.24 to 2.4 ml/min when the heavy metal chelator 2-3 dimercapto-1 propane sulphonic acid (DMPS) was given by mouth. Bismuth was measured by a novel method involving inductively coupled plasma source mass spectrometry. Fifty days after stopping TDB, whole blood bismuth concentrations fell to 46 micrograms/l and the patient's EEG returned to normal. His mental function also recovered completely. The case serves as a timely reminder that TDB should not be administered to patients with renal disorders, as stated in the data sheet. PMID:2323603

  6. Effect of the adenosine antagonist 8-phenyltheophylline on glycerol-induced acute renal failure in the rat.

    PubMed Central

    Bowmer, C. J.; Collis, M. G.; Yates, M. S.

    1986-01-01

    8-Phenyltheophylline (8-PT)(10 mg kg-1) or its vehicle(1 ml kg-1) were administered intravenously or intraperitoneally twice daily over 48 h to rats with acute renal failure (ARF) induced by intramuscular (i.m.) injection of glycerol. Rats treated with 8-PT i.v. had significantly lower plasma urea and creatinine levels at 24 and 48 h compared to untreated animals. The vehicle also reduced plasma urea and creatinine when compared to untreated controls. However, plasma urea levels in 8-PT-treated rats were significantly lower than in vehicle-treated animals at 24 and 48 h after both i.v. and i.p. administration. Plasma creatinine concentrations also tended to be lower in the 8-PT-treated group. [3H]-inulin clearance at 48 h after i.m. glycerol was significantly greater in rats dosed i.p. with 8-PT compared to either untreated or vehicle treated rats. Examination of kidneys taken from rats 48 h after i.m. glycerol showed that 8-PT treatment significantly reduced renal damage and kidney weight compared to the untreated or vehicle-treated groups. In a 7 day study all the rats which received 8-PT i.p. survived whilst in the vehicle and untreated groups the mortality rates were 12 and 21% respectively. In a separate series of experiments 8-PT (10 mg kg-1, i.v. or i.p.) was found to antagonize adenosine-induced bradycardia in conscious rats for up to 5 h. There is no clear explanation for the partial protection afforded by the vehicle but it may be related to either its alkalinity or an osmotic effect produced by the polyethylene glycol component.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3708216

  7. Insulin induces the correlation between renal blood flow and glomerular filtration rate in diabetes: implications for mechanisms causing hyperfiltration.

    PubMed

    Pihl, Liselotte; Persson, Patrik; Fasching, Angelica; Hansell, Peter; DiBona, Gerald F; Palm, Fredrik

    2012-07-01

    Glomerular filtration rate (GFR) and renal blood flow (RBF) are normally kept constant via renal autoregulation. However, early diabetes results in increased GFR and the potential mechanisms are debated. Tubuloglomerular feedback (TGF) inactivation, with concomitantly increased RBF, is proposed but challenged by the finding of glomerular hyperfiltration in diabetic adenosine A(1) receptor-deficient mice, which lack TGF. Furthermore, we consistently find elevated GFR in diabetes with only minor changes in RBF. This may relate to the use of a lower streptozotocin dose, which produces a degree of hyperglycemia, which is manageable without supplemental suboptimal insulin administration, as has been used by other investigators. Therefore, we examined the relationship between RBF and GFR in diabetic rats with (diabetes + insulin) and without suboptimal insulin administration (untreated diabetes). As insulin can affect nitric oxide (NO) release, the role of NO was also investigated. GFR, RBF, and glomerular filtration pressures were measured. Dynamic RBF autoregulation was examined by transfer function analysis between arterial pressure and RBF. Both diabetic groups had increased GFR (+60-67%) and RBF (+20-23%) compared with controls. However, only the diabetes + insulin group displayed a correlation between GFR and RBF (R(2) = 0.81, P < 0.0001). Net filtration pressure was increased in untreated diabetes compared with both other groups. The difference between untreated and insulin-treated diabetic rats disappeared after administering N(ω)-nitro-l-arginine methyl ester to inhibit NO synthase and subsequent NO release. In conclusion, mechanisms causing diabetes-induced glomerular hyperfiltration are animal model-dependent. Supplemental insulin administration results in a RBF-dependent mechanism, whereas elevated GFR in untreated diabetes is mediated primarily by a tubular event. Insulin-induced NO release partially contributes to these differences.

  8. Changes in renal tissue proteome induced by mesenteric lymph drainage in rats after hemorrhagic shock with resuscitation.

    PubMed

    Zhao, Zi-Gang; Zhang, Li-Min; Lv, Yong-Zhuang; Si, Yong-Hua; Niu, Chun-Yu; Li, Ji-Cheng

    2014-10-01

    Kidney injury commonly occurs after hemorrhagic shock. Previous studies have shown that post-hemorrhagic shock mesenteric lymph (PHSML) return negatively affects the kidneys and may induce injury. This study investigates the effect of PHSML drainage on the proteome in renal tissue. A controlled hemorrhagic shock model was established in the shock and shock+drainage groups. After 1 h of hypotension, fluid resuscitation was implemented within 30 min. Meanwhile, PHSML was drained in the shock+drainage group. After 3 h of resuscitation, renal tissue was extracted for proteome analysis using two-dimensional fluorescence difference gel electrophoresis. Differential proteins with intensities that either increased or decreased by 1.5-fold or greater were selected for trypsin digestion and analyzed by matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrometry and tandem TOF/TOF mass spectrometry. Enzyme-linked immunosorbent assay was used to validate the identified partial proteins. Compared with the sham group, hnRNPC and Starp decreased in the shock group, whereas Hadha, Slc25a13, Atp5b, hnRNPC, Starp, Rps3, and actin were downregulated in the shock+drainage group. Meanwhile, Atp5b and actin decreased in the shock+drainage group relative to the shock group. The identified proteins can be classified into different categories, such as cell proliferation (hnRNPC, Strap, and Rps3), energy metabolism (Hadha, Atp5b, and Slc25a13), cell motility, and cytoskeleton (actin). Moreover, enzyme-linked immunosorbent assay measurement validated the changed levels of Atp5b and Actg2. Our findings provide a starting point for investigating the functions of differentially expressed proteins in acute kidney injury induced by hemorrhagic shock. These findings hold great potential for the development of therapeutic interventions.

  9. 5-Lypoxygenase Products Are Involved in Renal Tubulointerstitial Injury Induced by Albumin Overload in Proximal Tubules in Mice

    PubMed Central

    Landgraf, Sharon Schilling; Silva, Leandro Souza; Peruchetti, Diogo Barros; Sirtoli, Gabriela Modenesi; Moraes-Santos, Felipe; Portella, Viviane Gomes; Silva-Filho, João Luiz; Pinheiro, Carla Silva; Abreu, Thiago Pereira; Takiya, Christina Maeda; Benjamin, Claudia Farias; Pinheiro, Ana Acacia Sá; Canetti, Claudio; Caruso-Neves, Celso

    2014-01-01

    The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO–/–). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO–/– mice. The levels of urinary protein observed in the 5-LO–/– mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO–/– mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO–/– mice. However, 5-LO–/– mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload. PMID:25302946

  10. Angiotensin-(1-7)-induced renal vasodilation in hypertensive humans is attenuated by low sodium intake and angiotensin II co-infusion.

    PubMed

    van Twist, Daan J L; Houben, Alfons J H M; de Haan, Michiel W; Mostard, Guy J M; Kroon, Abraham A; de Leeuw, Peter W

    2013-10-01

    Current evidence suggests that angiotensin-(1-7) plays an important role in the regulation of tissue blood flow. This evidence, however, is restricted to studies in animals and human forearm. Therefore, we studied the effects of intrarenal angiotensin-(1-7) infusion on renal blood flow in hypertensive humans. To assess the influence of renin-angiotensin system activity, sodium intake was varied and co-infusion with angiotensin II was performed in a subgroup. In 57 hypertensive patients who were scheduled for renal angiography, renal blood flow was measured ((133)Xenon washout method) before and during intrarenal infusion of angiotensin-(1-7) (3 incremental doses: 0.27, 0.9, and 2.7 ng/kg per minute). Patients were randomized into low or high sodium intake. These 2 groups of patients received angiotensin-(1-7), with or without intrarenal co-infusion of angiotensin II (0.3 ng/kg per minute). Angiotensin-(1-7) infusion resulted in intrarenal vasodilation in patients adhering to a sodium-rich diet. This vasodilatory effect of angiotensin-(1-7) was clearly attenuated by low sodium intake, angiotensin II co-infusion, or both. Regression analyses showed that the prevailing renin concentration was the only independent predictor of angiotensin-(1-7)-induced renal vasodilation. In conclusion, angiotensin-(1-7) induces renal vasodilation in hypertensive humans, but the effect of angiotensin-(1-7) is clearly attenuated by low sodium intake and co-infusion of angiotensin II. This supports the hypothesis that angiotensin-(1-7) induced renal vasodilation depends on the degree of renin-angiotensin-system activation.

  11. Hyperoxia-Induced Protein Alterations in Renal Rat Tissue: A Quantitative Proteomic Approach to Identify Hyperoxia-Induced Effects in Cellular Signaling Pathways

    PubMed Central

    Hinkelbein, Jochen; Böhm, Lennert; Spelten, Oliver; Sander, David; Soltész, Stefan; Braunecker, Stefan

    2015-01-01

    Introduction. In renal tissue as well as in other organs, supranormal oxygen pressure may lead to deleterious consequences on a cellular level. Additionally, hyperoxia-induced effect in cells and related free radicals may potentially contribute to renal failure. The aim of this study was to analyze time-dependent alterations of rat kidney protein expression after short-term normobaric hyperoxia using proteomics and bioinformatic approaches. Material and Methods. N = 36 Wistar rats were randomized into six different groups: three groups with normobaric hyperoxia (exposure to 100% oxygen for 3 h) and three groups with normobaric normoxia (NN; room air). After hyperoxia exposure, kidneys were removed immediately, after 3 days and after 7 days. Kidney lysates were analyzed by two-dimensional gel electrophoresis followed by peptide mass fingerprinting using tandem mass spectrometry. Statistical analysis was performed with DeCyder 2D software (p < 0.01). Biological functions of differential regulated proteins were studied using functional network analysis (Ingenuity Pathways Analysis and PathwayStudio). Results. Expression of 14 proteins was significantly altered (p < 0.01): eight proteins (MEP1A_RAT, RSSA_RAT, F16P1_RAT, STML2_RAT, BPNT1_RAT, LGMN_RAT, ATPA_RAT, and VDAC1_RAT) were downregulated and six proteins (MTUS1_RAT, F16P1_RAT, ACTG_RAT, ACTB_RAT, 2ABA_RAT, and RAB1A_RAT) were upregulated. Bioinformatic analyses revealed an association of regulated proteins with inflammation. Conclusions. Significant alterations in renal protein expression could be demonstrated for up to 7 days even after short-term hyperoxia. The identified proteins indicate an association with inflammation signaling cascades. MEP1A and VDAC1 could be promising candidates to identify hyperoxic injury in kidney cells. PMID:26106253

  12. Preferential renal and mesenteric vasodilation induced by barnidipine and amlodipine in spontaneously hypertensive rats.

    PubMed

    Janssen, B J; Kam, K L; Smits, J F

    2001-11-01

    Barnidipine is a stereoselective single isomer formulation of a long-term acting dihydropyridine calcium antagonist (CaA). In anaesthetised animals, the antihypertensive response to barnidipine is accompanied by a diuretic effect. The aim of the present study was to examine whether barnidipine increased renal blood flow in a conscious animal model for essential hypertension. We compared the regional specific hemodynamic effects of barnidipine with those obtained with its racemic mixture and amlodipine. Male adult spontaneously hypertensive rats (SHR) were instrumented with Doppler flow probes and catheters to measure renal (RVR), mesenteric (MVR) and hindquarter (HQVR) vascular resistance changes. One week after surgery, barnidipine, its racemic mixture, and amlodipine were intravenously administered at three doses (n> or =10 per dose) causing comparable reductions in mean arterial pressure (MAP). At doses of 3, 10 and 30 microg/kg barnidipine reduced MAP (+/- SEM) by 8+/-2, 26+/-3 and 45+/-4 mmHg. Equipotent effects on MAP were achieved by the racemic mixture of barnidipine at 10, 30 and 100 microg/kg, and by amlodipine at doses of 100, 300 and 1000 microg/kg. Following the 3 microg/kg and 10 microg/kg dose, barnidipine reduced MVR (% +/- SEM) by 4+/-4 and 19+/-4, and RVR by 8+/-2 and 15+/-4, respectively. In contrast, HQVR remained unaltered. Similar data were obtained for the racemic mixture of barnidipine and for amlodipine, although for the latter the changes in RVR were half of those found after barnidipine. After the highest doses of barnidipine, its racemic mixture as well as amlodipine, HQVR fell more than 25% whereas RVR and MVR remained unaltered. Analysis of the dynamic response to the CaAs revealed that the reductions in vascular resistance were associated with decreased myogenic-like oscillations in blood flow. We conclude that, in conscious SHR, the single isomer barnidipine reduces MAP at doses which are three times lower than its racemic mixture

  13. Effect of lycopene against cisplatin-induced acute renal injury in rats: organic anion and cation transporters evaluation.

    PubMed

    Erman, Fazilet; Tuzcu, Mehmet; Orhan, Cemal; Sahin, Nurhan; Sahin, Kazim

    2014-04-01

    In the present study, we investigated the effects of lycopene on the expression of organic anion transporters (OATs), organic cation transporters (OCTs), and multidrug resistance-associated proteins (MRPs) of cisplatin-induced nephrotoxicity in rats. Twenty-eight 8-week-old Wistar rats were divided into four groups: control, lycopene-treated (6 mg/kg BW by oral gavage), cisplatin-treated (7 mg/kg BW, IP), and lycopene in combination with cisplatin-treated groups. In the presence of cisplatin, serum urea nitrogen (urea-N) (48.5 vs. 124.3 mg/dl) and creatinine (0.29 vs. 1.37 mg/dl) levels and the kidney efflux transporters MRP2 and MRP4 levels were significantly increased, whereas OAT1, OAT3, OCT1, and OCT2 levels in kidney were decreased in the treated rats compared with normal control rats. However, administration of lycopene in combination with cisplatin resulted in a reduction in the serum urea-N (124.3 vs. 62.4) and creatinine (1.37 vs. 0.40) levels and the kidney efflux transporters MRP2 and MRP4 proteins in the kidneys. Administration of lycopene to acute renal injury-induced rats largely upregulated the organic anion transporters (OAT1 and 3) and organic cation transporters (OCT1 and 2) to decrease the side effects of cisplatin. The present study suggests that lycopene synergizes with its nephroprotective effect against cisplatin-induced acute kidney injury in rats.

  14. IL-8 induces the epithelial-mesenchymal transition of renal cell carcinoma cells through the activation of AKT signaling

    PubMed Central

    Zhou, Nan; Lu, Fuding; Liu, Cheng; Xu, Kewei; Huang, Jian; Yu, Dexin; Bi, Liangkuan

    2016-01-01

    The epithelial-mesenchymal transition (EMT) process has increasingly been examined due to its role in the progression of human tumors. Renal cell carcinoma (RCC) is one of the most common urological tumors that results in patient mortality. Previous studies have demonstrated that the EMT process is closely associated with the metastasis of RCC; however, the underlying molecular mechanism has not been determined yet. The present study revealed that interleukin (IL)-8 was highly expressed in metastatic RCC. IL-8 could induce the EMT of an RCC cell line by enhancing N-cadherin expression and decreasing E-cadherin expression. Furthermore, IL-8 could induce AKT phosphorylation, and the phosphatidylinositol-4,5-bisphosphate 3-kinase inhibitor LY294002 could inhibit the EMT of RCC cells that was induced by IL-8. Therefore, these results suggest that IL-8 is able to promote the EMT of RCC through the activation of the AKT signal transduction pathway, and this may provide a possible molecular mechanism for RCC metastasis. PMID:27588140

  15. Protective Effect of Artemisia asiatica Extract and Its Active Compound Eupatilin against Cisplatin-Induced Renal Damage

    PubMed Central

    Park, Jun Yeon; Lee, Dahae; Jang, Hyuk-Jai; Jang, Dae Sik; Kwon, Hak Cheol; Kim, Ki Hyun; Kim, Su-Nam; Hwang, Gwi Seo; Kang, Ki Sung; Eom, Dae-Woon

    2015-01-01

    The present study investigated the renoprotective effect of an Artemisia asiatica extract and eupatilin in kidney epithelial (LLC-PK1) cells. Although cisplatin is effective against several cancers, its use is limited due to severe nephrotoxicity. Eupatilin is a flavonoid compound isolated from the Artemisia plant and possesses antioxidant as well as potent anticancer properties. In the LLC-PK1 cellular model, the decline in cell viability induced by oxidative stress, such as that induced by cisplatin, was significantly and dose-dependently inhibited by the A. asiatica extract and eupatilin. The increased protein expressions of phosphorylated JNK and p38 by cisplatin in cells were markedly reduced after A. asiatica extract or eupatilin cotreatment. The elevated expression of cleaved caspase-3 was significantly reduced by A. asiatica extract and eupatilin, and the elevated percentage of apoptotic cells after cisplatin treatment in LLC-PK1 cells was markedly decreased by cotreatment with A. asiatica extract or eupatilin. Taken together, these results suggest that A. asiatica extract and eupatilin could cure or prevent cisplatin-induced renal toxicity without any adverse effect; thus, it can be used in combination with cisplatin to prevent nephrotoxicity. PMID:26539226

  16. Renal podocyte apoptosis in Zucker diabetic fatty rats: involvement of methylglyoxal-induced oxidative DNA damage.

    PubMed

    Kim, J; Sohn, E; Kim, C-S; Kim, J S

    2011-01-01

    Methylglyoxal (MGO) is a cytotoxic metabolite produced by in-vivo glycolysis that may result in diabetic complications. The aim of this study was to determine whether MGO and oxidative stress caused apoptosis of renal podocytes in the Zucker diabetic fatty (ZDF) rat, an animal model of type 2 diabetes mellitus. Male ZDF rats aged 21 weeks developed marked hyperglycaemia with proteinuria and albuminuria. Immunohistochemical evaluation of sections of kidney demonstrated expression of MGO and 8-hydroxydeoxyguanosine (8-OHdG) in the podocytes of both normoglycaemic and diabetic rats. Podocyte apoptosis was shown through application of the TUNEL method. These findings suggest that expression of MGO and 8-OHdG is caused by hyperglycaemia, and that this expression is associated with the observed apoptosis of podocytes and is related to diabetic nephropathy.

  17. Anti-thymocyte globulin induced non-cardiogenic pulmonary edema during renal transplantation.

    PubMed

    Parikh, Beena K; Bhosale, Guruprasad P; Shah, Veena R

    2011-10-01

    Non-cardiogenic pulmonary edema (NCPE) is a clinical syndrome characterized by simultaneous presence of severe hypoxemia, bilateral alveolar infiltrates on chest radiograph, without evidence of left atrial hypertension/congestive heart failure/fluid overload. The diagnosis of drugrelated NCPE relies upon documented exclusion of other causes of NCPE like gastric aspiration, sepsis, trauma, negative pressure pulmonary edema. We describe a 28year-old, 50 kg male with ASA risk III posted for laparoscopic renal transplantation, who developed NCPE after 4 hours of administration of rabbit anti-human thymocyte immunoglobulin (ATG). He was successfully treated with mechanical ventilatory support and adjuvant therapy. This report emphasizes that this fatal complication may occur with use of ATG.

  18. Salt-induced renal injury in SHRs is mediated by AT1 receptor activation

    PubMed Central

    Susic, Dinko; Frohlich, Edward D.; Kobori, Hiroyuki; Shao, Weijian; Seth, Dale; Navar, L. Gabriel

    2011-01-01

    Objective This study aimed to examine the effects of salt loading, with or without simultaneous angiotensin receptor blocker (ARB) treatment, on the systemic and tissue renin-angiotensin system (RAS) in spontaneously hypertensive rats (SHRs). Method Evaluation was performed early (4 weeks) in the course of salt loading in order to examine initial mediating events of cardiovascular and renal damage produced by salt excess. Four groups of rats were studied. Group 1 received regular rat chow (normal-salt diet); group 2 received normal-salt diet and an ARB (losartan, 30 mg/kg per day); group 3 received high-salt (8%) chow; and group 4 received high-salt diet and losartan. Results High-salt diet increased systolic pressure to 193 ± 1 mmHg compared to 180 ± 2 in normal-salt diet group. Losartan reduced SBP in SHRs fed normal-salt diet but did not reduce SBP in the SHRs fed high-salt diet (192 ± 2 mmHg). High-salt diet markedly increased urinary protein excretion from 27 ± 4 to 64 ± 13 mg/day and this increase was ameliorated by losartan (40 ± 9 mg/day). In SHRs on high-salt diet, plasma angiotensin II concentration increased three to four-fold, whereas urinary angiotensinogen excretion increased 10-fold; and these changes were significantly reduced by losartan. High-salt diet accelerated glomerular injury and interstitial fibrosis in SHRs which were reduced by losartan. Conclusion These results demonstrate that the activity of RAS was either not suppressed or, even augmented, after 4 weeks of salt loading despite high salt intake and increased SBP. The data suggest that an augmented intrarenal RAS during high-salt diet may contribute to the development of renal injury in this experimental model. PMID:21346625

  19. Auxin induces cell proliferation in an experimental model of mammalian renal tubular epithelial cells.

    PubMed

    Cernaro, Valeria; Medici, Maria Antonietta; Leonello, Giuseppa; Buemi, Antoine; Kohnke, Franz Heinrich; Villari, Antonino; Santoro, Domenico; Buemi, Michele

    2015-06-01

    Indole-3-acetic acid is the main auxin produced by plants and plays a key role in the plant growth and development. This hormone is also present in humans where it is considered as a uremic toxin deriving from tryptophan metabolism. However, beyond this peculiar aspect, the involvement of auxin in human pathophysiology has not been further investigated. Since it is a growth hormone, we evaluated its proliferative properties in an in vitro model of mammalian renal tubular epithelial cells. We employed an experimental model of renal tubular epithelial cells belonging to the LLC-PK1 cell line that is derived from the kidney of healthy male pig. Growth effects of auxin against LLC-PK1 cell lines were determined by a rapid colorimetric assay. Increasing concentrations of auxin (to give a final concentration from 1 to 1000 ng/mL) were added and microplates were incubated for 72 h. Each auxin concentration was assayed in four wells and repeated four times. Cell proliferation significantly increased, compared to control cells, 72 h after addition of auxin to cultured LLC-PK1 cells. Statistically significant values were observed when 100 ng/mL (p < 0.01) and 1000 ng/mL (p < 0.05) were used. In conclusion, auxin influences cell growth not only in plants, where its role is well documented, but also in mammalian cell lines. This observation opens new scenarios in the field of tissue regeneration and may stimul